
 

 



 

 

Université de Montréal 

 

 

 

The role of ThPOK and T cell receptor 

signaling in CD4+ versus CD8+ T-cell lineage fate 

 

 

par  

Nabil Zeidan 

 

Département de Microbiologie, Infectiologie et Immunologie 

Faculté de Médecine 

 

Thèse présentée à la faculté des études supérieures 

en vue de l’obtention du grade de Philosophiae Doctor (Ph.D.) 

en Microbiologie et Immunologie 

 

Septembre 2019 

 

 

 

© Nabil Zeidan, 2019 

 



 

 

Résumé 

Les lymphocytes T sont au cœur du système immunitaire adaptatif et leur dérégulation 

est à la base de pathologies. Les cellules T se développent dans le thymus et passent par de 

nombreuses étapes de maturations identifiables par l'expression des corécepteurs CD4+/CD8+ à 

la surface des cellules. À leur sortie du thymus, les cellules T sont divisées en deux sous-types 

principaux: les cellules T auxiliaires CD4+ spécifique aux antigènes présentés sur complexe 

majeur d'histocompatibilité (CMH) de classe II et les cellules T cytotoxiques CD8+ 

reconnaissant un antigène présenté sur un CMH-I. Toutes les cellules T proviennent d’un 

précurseur commun. Leur différenciation en cellule T CD4+ et T CD8+ est influencée par 

l'intensité et la durée de la signalisation du récepteur des cellules T (RCT) et des cytokines. Cette 

signalisation résulte en l’expression des facteurs de transcription ThPOK pour la différenciation 

de cellule T CD4+ et Runx3 pour les cellules T CD8+. Il a été démontré que ThPOK est à la fois 

nécessaire et suffisant pour le développement des lymphocytes T CD4+, puisque le gain et la 

perte de la fonction de ThPOK favorise le développement de cellules lymphocytes T CD4+ et 

CD8+, respectivement. Ma thèse vise à approfondir notre compréhension du choix de la lignée 

CD4+/CD8+ en explorant les mécanismes moléculaires de la voix de signalisation de ThPOK et 

du RCT. 

Dans cette étude, nous avons étudié l'impact d'un gain-de-fonction de ThPOK sur la 

différenciation des thymocytes, en utilisant trois lignées transgéniques exprimant des niveaux 

variables de ThPOK. Une analyse approfondie de ces transgènes chez des souris dont le RCT 

est restreint soit au CMH de classe I ou de classe II, a démontré que, comparés aux thymocytes 

restreints au CMH-II, les thymocytes restreints au CMH-I requéraient des niveaux plus 

importants de ThPOK pour se différencier en CD4+. L’introduction d’un transgène exprimant 

un niveau moins élevé de ThPOK comparé aux deux autres transgènes, mais un niveau plus 

élevé de ThPOK par rapport au niveau endogène dans les cellules CD4+ WT, n'induit qu'une 

réorientation partielle des cellules T CD8+ en CD4+, ce qui a mené à la génération, à la fois de 

lymphocytes T CD4+, DN (doubles négatifs) et CD8+ matures. L'analyse génotypique, plus 

précisément celle des cellules DN chez les souris porteuses du transgène ThPOK et dont le RCT 

est restreint au CMH-I, a révélé que l’inhibition des gènes spécifiques à la lignée CD8+ 
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nécessitait des niveaux d'expression différents de ThPOK comparés à ceux requis pour 

l’induction des gènes spécifiques à la lignée CD4+. En effet, cette étude nous a permis de 

démontrer que l’intensité du signal dérivé du RCT ainsi que sa spécificité pour un CMH donné 

jouent un rôle essentiel dans le choix de différentiation CD4+/CD8+ induit par ThPOK. Ainsi, 

la réorientation CD8+/CD4+ chez les souris exprimant le transgène ThPOK-H est 

significativement augmentée par l'amplification de l’intensité du signal dérivé du RCT dans les 

cellules spécifiques aux CMH-I. De plus, la fréquence des cellules CD4+ était plus élevée 

lorsqu’une quantité identique de ThPOK était exprimée dans des lymphocytes T spécifiques au 

CMH-II, suggérant qu’il existe un aspect qualitatif quant à la régulation de la différenciation 

des lymphocytes T CD4+ par la signalisation induite par le RCT.  

Nous avons également tenté d’étudier la voie de différenciation CD4+ en l’absence de 

ThPOK, à la suite de la perturbation physiologique de la voie de signalisation induite par le 

RCT, par rapport à la perte de fonction de ThPOK. Bien que nous ayons observé une 

réorientation des thymocytes spécifiques au CMH-II vers la lignée CD8+, aussi bien à la suite 

d'une délétion de Thpok, qu’à la perturbation de la signalisation RCT les deux modes de 

redirections semblent toutefois être différents. En effet, notre investigation a démontré qu’en 

l’absence de ThPOK, la signalisation induite par le RCT dans les cellules restreintes au CHM-

II induit l’activation de certains gènes, suggérant ainsi leur implication dans la voie de 

différenciation CD4+. Ces résultats suggèrent également que la contribution de la signalisation 

du RTC dans la différenciation des thymocytes restreints au CMH-II ne se limitait pas à 

l'induction de ThPOK. Étonnamment, seul un effet synergique limité a été observé sur la 

différenciation des thymocytes restreints au CMH-I, lorsque Gata3, un autre facteur de 

transcription également induit dans les thymocytes restreints au CMH-II, et ThPOK étaient 

surexprimés en même temps dans ces cellules, suggérant peu de chevauchement fonctionnel 

entre ces deux facteurs de transcription. L’ensemble de ces résultats indique que ThPOK et la 

signalisation induite par le RCT fonctionnent en synergie durant le développement des 

lymphocytes T CD4+. 

Mots-clés : ThPOK, lymphocyte T, RCT, choix de la lignée CD4+/CD8+, CMH, thymus, 

développement, Runx3, Gata3 
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Abstract 

T lymphocytes are at the core of the adaptive immune system and their dysfunction is 

associated with several disorders and pathologies, which are at times fatal. The two main types 

of T-cells in mice and man are: the major histocompatibility complex (MHC) class-II-restricted 

CD4+ helper T-cells, and the MHC-I-restricted CD8+ cytotoxic T-cells. Developmental stages 

of the two types of T-cells occurs in the thymus in multiple sequential maturation stages that are 

identified by cell-surface CD4+/CD8+ co-receptor expression. Differentiation of the two types 

of T-cells in the thymus from a common precursor is influenced by the intensity and duration of 

signals derived from the T-cell receptor (TCR) and cytokines secreted by the thymic stromal 

cells. These signals lead to the activation of ThPOK or Runx/CBF transcription factors, which 

control the transcriptional network regulating CD4+ and CD8+ lineage fate, respectively. Studies 

have demonstrated that ThPOK is both necessary and sufficient for CD4+ T-cell development 

as gain- and loss-of-ThPOK function redirects positively selected MHC-I- and MHC-II-

restricted thymocytes into CD4+ and CD8+ T-cell lineage fate, respectively. However, the role 

of TCR signaling and the extent to which ThPOK expression influences CD4+ lineage choice 

remains to be investigated. My thesis aims to elucidate the fundamental basis the CD4+/CD8+ 

lineage choice by exploring the molecular mechanism of action of ThPOK and TCR signaling 

in CD4+ lineage fate of MHC-I- and MHC-II-specific thymocytes.  

In this study, we have characterized gain-of-function of ThPOK in three independent 

transgenic mouse lines expressing varying amounts of ThPOK. Extensive analysis of the three 

ThPOK transgenic lines expressing MHC-I- and MHC-II-specific monoclonal TCR indicated 

that MHC-I-restricted, compared to MHC-II-restricted, thymocytes required significantly more 

ThPOK for efficient differentiation into the CD4+ lineage. Interestingly, the founder line with 

the lowest transgene expression, despite expressing significantly higher amounts of ThPOK 

compared to the endogenous levels in WT CD4+ T cells, induced a partial CD8+ to CD4+ 

redirection of MHC-I-restricted cells, leading to the generation of mature CD4+, DN and CD8+ 

T-cells in the same mouse. Lineage specific gene expression analysis, specifically in DN mature 

T cells from ThPOK transgenic mice expressing MHC-I-specific TCR, showed that, compared 

to induction of helper program, suppression of cytotoxic program required lower amount of 

ThPOK. Further investigation showed that TCR signal strength and MHC specificity of 
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developing thymocytes played a critical role in determining ThPOK-induced CD4+ lineage fate. 

While increase in TCR signal strength augmented the efficiency of ThPOK-induced CD4+ 

lineage choice of MHC-I-restricted thymocytes in part via endogenous ThPOK induction, it 

appeared to have ThPOK independent function as well as judged by significantly different CD4+ 

T-cell frequencies in OTI mice expressing the same amount of ThPOK but transduced 

quantitatively different TCR signal. Importantly, the efficiency of CD4+ lineage choice of MHC-

I-specific thymocytes with augmented TCR signal strength was still significantly lower 

compared to the efficiency of CD4+ lineage choice of MHC-II-restricted thymocytes expressing 

only the transgene-encoded ThPOK suggesting a qualitative role for TCR signaling as well in 

CD4+ lineage choice.  

We then evaluated CD4+ lineage fate decision in the absence of ThPOK induction in 

physiologically relevant alteration in TCR signaling versus loss of ThPOK function. While we 

observed CD4+ to CD8+ lineage redirection of MHC-II-specific thymocytes due to Thpok-

deficiency as well as lack of ThPOK induction due to disruption of TCR signaling, the two 

modes of lineage redirection appeared to be due to different mechanisms. Our investigation 

demonstrates that TCR signaling in MHC-II-restricted thymocytes induces the expression of 

select genes in loss-of-function of ThPOK model suggesting potential role for these genes in 

establishing the CD4+ helper program. These results also suggest that the contribution of MHC-

II-specific TCR signaling in driving CD4+ lineage choice is not limited to Thpok induction. 

Interestingly, only a limited synergistic effect was observed when both Gata3, which is also 

induced in MHC-II-signaled thymocytes, and ThPOK were overexpressed in MHC-I-restricted 

thymocytes suggesting a limited functional overlap between the two transcription factors. 

Collectively, these data indicate that ThPOK and TCR signaling work synergistically to promote 

the development of CD4+ T-cells with some ThPOK independent function for TCR signaling. 

 

Keywords: ThPOK, TCR signaling, CD4+/CD8+ lineage choice, MHC, thymus, T 

lymphocytes, helper T-cells, development, kinetic signaling, Runx3, Gata3  
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POZ: Pox virus zinc finger domain 

PSGL1: P-selectin glycoprotein ligand 1 

pTα: Pre-T cell receptor α (TCRα) chain 

PtdIns(4,5)P2: Phosphatidylinositol 4,5-bisphosphate 

PTPN22: Protein Tyrosine Phosphatase Non-Receptor Type 22 

PTP-PEST: protein tyrosine phosphatase - rich in proline, glutamic acid, serine, and 

threonine 

PRE: Proximal enhancer element 

Prf: Perforin 

PU.1: Purine-rich box1 

QPCR: Quantitative polymerase chain reaction  

R: Arginine  

Rac1: Ras-related C3 botulinum toxin substrate 1 

RAG: Recombination activating gene 

RASGRP1: Ras guanyl-releasing protein 1 

Rb: Retinoblastoma  

RFI: Relative fluorescence intensity 

rmIL: Recombinant murine IL 

RORγt: Retinoic acid-related orphan receptor γ t  

RT-PCR: Reverse transcription polymerase chain reaction  

Runx: Runt-related transcription factor 

Sca-1: Stem cell antigen 

SCN4B: Sodium voltage-gated channel β subunit 4 

SH: Src homology  

SHP-2: Src homology region 2 domain-containing phosphatase-2 

SLP76: SH2-domain-containing leukocyte protein of 76 kDa 
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Socs: Suppressor of cytokine signaling 

Sos: Son of sevenless  

Sos1: Son of sevenless homologue 1 

SOX2: Sex determining region Y-box 2 

SP: Single positive 

SMRT: Nuclear receptor co-repressor 2 

SWI/SNF: SWItch/Sucrose non-fermentable 

STAT: Signal transducer and activator of transcription 

T-cell: Thymus-derived cell 

TCF: T-cell factor  

TF: Transcription factor 

Tg: Transgenic 

THEMIS: Thymocyte-expressed molecule involved in selection 

ThPOK: T helper Inducing POZ-krüppel like factor 

Th: CD4+ T helper cell 

TM: Transmembrane 

TNFα: Tumor necrosis factor α 

TOX: Thymocyte selection-associated high mobility group box factor 

Treg: Regulatory T lymphocyte 

Tyr: Tyrosine 

V(D)J: Variable, diversity, joining recombination 

Vα: Variable α-chain 

VGSC: Voltage-gated sodium channels 

Vs: Versus 

WT: Wild-type  

Zap70: ζ chain of T-cell receptor associated protein kinase 70 

ZBTB: Zinc finger and BTB  

Zc: Zinc 

ZF: Zinc finger 
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Chapter 1: Introduction 
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1.1 Hematopoiesis  

1.1.1 General Overview 

Differentiation of progenitor stem cells into specialized cells endowed with unique 

biological functions is one of the most fundamental and critical biological processes for normal 

development of multicellular organisms including man. Amongst the various types of cells 

formed, blood lineage cells are essential for healthy living as they form the innate and adaptive 

arms of our immune system and play vital role in warding off myriads of pathogens that we 

encounter in our lifetime. Constant replenishment of cells of blood lineage is achieved by a 

process called hematopoiesis. In mammals, hematopoiesis is a structured process in which the 

hematopoietic stem cell (HSC) sits at the top of the hierarchy that self-renews and gives rise to 

all types of mature blood cells [1, 2].  

The most reliable procedure that is routinely employed for identifying HSCs is to 

conduct an in vivo assay to evaluate the multi-lineage differentiation and self-renewal potential 

of these cells in primary and secondary irradiated hosts [3]. Despite considerable progress made 

in the purification and molecular characterisation of HSCs in recent years, no singular 

gene/molecular signature specific to HSCs has been identified so far. This is not surprising 

considering the extensive heterogeneity that exists within the HSC population.  

HSC, which are of mesodermal origin, develop in localised niches that change over the 

course of a lifespan. As HSC progress through series of well-defined differentiation and 

proliferation stages, they gradually lose their self-renewal and multi-lineage potential [4, 5]. 
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Figure 1. Schematic representation of hematopoietic lineage differentiation and 

specification 

LSKFLT3−, are self-renewable, multipotent HSC that reside in the bone marrow. CLP, which 

develop from LSK with the help of IKAROS, can give rise to all lymphoid subsets. Important 

cytokines for the development and lineage specification of CLP progenitors are depicted in 

green brackets, while black brackets represent transcription factors/cell intrinsic signaling 

molecules that regulate the differentiation of the various subsets. CLP, common lymphoid 

progenitor; CMP, common myeloid progenitor; ETP, early thymic progenitor; HSC, 

hematopoietic stem cell; IL, interleukin; LSK, Lin−Sca1+c-Kit+; LSKFLT3−, Lin−Sca1+c-

Kit+FLT3−; NK, natural killer.  
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1.1.2 T-cell progenitors 

The multi-lineage potential of HSCs, first described by James Till and Ernest 

McCulloch, proceeds in a hierarchical fashion through a stepwise loss of lineage potential [6-

10]. The hematopoietic progenitors are defined as lineage markers negative (Lin-, which refer 

to specific lineage defining cell surface antigens, such as TER119, Mac1, Gr1, B220, CD3, 

CD4, CD8) and expressing stem cell antigen (Sca-1) and stem cell growth factor called c-Kit 

(CD117 antigen). Thus, cells with lin-sca1+c-Kithi (LSK) phenotype are the least differentiated 

hematopoietic progenitor cells in adult BM [11, 12]. LSK can be further differentiated based on 

surface expression of fms-related tyrosine kinase 3 (FLT3): LSKFLT3- are multipotent cells 

with self-renewing potential, whereas LSKFLT3+ are multipotent progenitors (MPP) that lack 

self-renewing potential. [5, 13].  MPPs can differentiate into common myeloid progenitor 

(CMP) that produce cells of myeloid and erythroid lineages (monocytes, erythrocytes, 

thrombocytes, granulocytes) or common lymphoid progenitor (CLP) that gives rise to lymphoid 

cells (T and B cells and NK cells) [14-17] (Fig1).  

Myeloid and lymphoid progenitors branch out early during hematopoiesis. CLPs arise 

from MPPs along a pathway that requires transcription factor IKAROS and FLT3 ligand [18, 

19]. Surprisingly deletion of IKAROS, did not affect T-cell development, suggesting that CLP 

may not be the only progenitors with T lineage potential [18, 20]. Actually, a fraction of MPP 

have been shown to express IL-7Rα and the lymphoid specific recombination-activating gene 1 

(Rag1), both needed for T-cell development [21-26].  

Although mechanisms governing thymic migration of progenitors is not fully elucidated, 

it requires expression of different receptors such as glycoprotein ligand 1 (PSGL1), CD44, 

CCR7 and CCR9 and integrins such as platelet-selectin (P-selectin). [27, 28].  

1.2 T-cell development  

The thymus is a specialized primary lymphoid organ that provides a microenvironment 

suitable for the differentiation of T-cells from progenitor cells. Although the identity of the 

earliest thymus seeding progenitors is not clear, interactions of developing thymocytes with 

thymic epithelial cells drive the multistep differentiation process that result in gradual loss of 
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non-T cell lineage capacity of the progenitors and eventually establish the T-cell identity. This 

process begins during the early stages of T-cell development commitment of and persist through 

out many subsequent cycles  [29, 30]. αβT-cells, which form the vast majority mature T-cell 

pool in man and mice, can be identified by the presence of a T-cell receptor (TCR) αβ 

heterodimer on their cell surface that can recognize foreign or self-protein-derived peptides 

presented by the major histocompatibility complex (MHC) class-I or -II. TCRα and TCRβ-chain 

encoded by Tcra and Tcrb genes, respectively, consists of several variable, joining and diversity 

(for TCRβ-chain) segments that rearrange somatically and join with constant region to produce 

diverse TCR repertoire [31]. As thymocytes lack self-renewing potential, continued 

thymopoiesis relies on the constant seeding of hematopoietic progenitor cells present in the BM.  

Early thymocyte development is independent of antigen receptor engagement, whereas 

the specificity of the TCR for self-peptide/MHC (pMHC) ligand is a determining factor in the 

outcome of several steps during the later stages of T-cell development. While a vast majority of 

thymocytes fail to interact with pMHC on thymic epithelial cells and die by neglect, a fraction 

of them undergo thymic selection. Depending on the strength of the TCR with pMHC 

interactions, developing thymocytes survive and further differentiate in a process termed 

positive selection or eliminated by apoptosis in a process termed negative selection. Those 

thymocytes with strong affinity TCR for pMHC typically undergo negative selection although 

some differentiate into regulatory T-cells, while those expressing TCR with weak affinity for 

pMHC are positively selected and differentiate into the CD4+CD8low (CD4+8lo) intermediate 

thymocytes before maturing into either CD4 helper or CD8 cytotoxic single positive T-cells 

[32]. This thymic selection checkpoint helps ensure that only thymocytes with “useful” TCR 

and devoid of potentially auto-reactive T-cells enter the circulation. The vast majority of MHC-

I-restricted thymocytes differentiate into CD8 SP cytotoxic T-cells, whereas MHC-II-restricted 

thymocytes typically become CD4 SP helper T-cells. Below I describe various stages of 

thymocyte development and critical players regulating the process of generation of mature T-

cells that surveillance our body for infection or transformed cells.   
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1.2.1 Early T-cell development 

1.2.1.1 Characteristics of the early T-cell progenitors (ETPs)  

The early T-cell progenitors (ETPs; LinloCD25-Kithi) constitute approximately 1:10,000 

cells in the thymus and are capable of more than 10,000-fold expansion [18, 33]. Different 

subsets of ETPs have been identified based on CD24, C-C chemokine receptor 9 (CCR) and 

FLT3 expression, with CCR9+FLT3+CD24- ETP being the more efficient precursors [34-37]. 

They constitute ~10% of the ETP pool and have ten-fold greater expansion potential than FTL3lo 

ETPs [35, 38]. Following expansion and differentiation, ETP downregulate CCR9 and FLT3, 

and lose B-cell-lineage potential [39]. Surprisingly, cell-surface expression of CD4 can be 

detected on more than half of ETP that enter the thymus [40-43].  This suggests that CD4 

expression is either rapidly downregulated following seeding the thymus or that a different 

developmental pathway is adopted by CD4+ ETP.  

1.2.1.2 Formation and maintenance of the T-cell identity  

Thymus seeding progenitors lose their ability to adopt alternate lineage fate and initiate the T-

cell differentiation program through a gradual process that is regulated by the thymic 

environment. The CD4-CD8- (double negative-DN) thymocytes can be subdivided into four 

distinct sequential subsets based on the differential surface expression of CD25, CD44 and 

CD117 (DN1 to DN4). The most immature DN1 cells (CD117hiCD44hiCD25−CD24−/lo) consists 

of a heterogeneous population, which includes the ETP, and amounts to 0.01% of the total pool 

of thymocytes [18, 36]. Cells at this stage reside at the corticomedullary junction where they 

spend around 10 days and undergo massive proliferation [44]. DN1 to DN2 

(CD117hiCD44hiCD25hiCD24+) differentiation is triggered by stimulatory signals from cortical 

thymic epithelial cells (cTECs) and fibroblasts in the subcapsular cortex region [45, 46]. The 

DN2 stage is characterized by the induction of lymphoid lineage specific genes, like Rag1/2 

(coding for Rag1/2) and T lineage specific tyrosine kinase Lck (coding for Lck), and the loss of 

potential to differentiate into dendritic cells (DC) [47]. As the cells progress from DN2 to DN3, 

the recombinase enzymes Rag1/2 mediate random recombination of V(D)J elements at the 

TCRβ locus, and thereby contribute to diverse TCR repertoire. Productively rearranged TCRβ 

associates with invariant pTα and CD3 chains to form preTCR complex whose surface 
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expression and oligomerization triggers cell autonomous signal transduction with critical role 

for Lck in this process [48-52]. DN3 (CD117loCD44loCD25+CD24+) thymocytes encounter the 

first important checkpoint during T-cell development, which ensures the functionality of the 

rearranged TCRβ chain [47, 53, 54]. This developmental checkpoint, referred to as β-selection, 

results in downregulation of Rag1/2 and is influenced by at least two additional signals: C-X-C 

motif chemokine receptor type 4 (CXCR4) and Notch signaling [55-58]. Notch suppresses the 

activity of the E proteins factors (E-box E12/E47-α [E2A] and HEB, encoded by T-cell factor 3 

(Tcf3) and Tcf12, respectively), which impair thymocyte proliferation by regulating cell survival 

and metabolism. CXCR4, on the other hand, regulates β-selection and proliferation by 

associating with the preTCR and influencing localization of developing thymocytes in thymic 

sub-compartments [55-59]. DN4 thymocytes (CD24+CD25−CD44−CD117−) migrate away from 

the subcapsular region deeper into the cortex of thymus. At the DN4 stage, thymocytes 

experience a proliferation burst followed by the re-expression of Rag genes to initiate 

recombination at the Tcra locus [44]. 

The thymus is a separate and specialized organ with a unique microenvironment that 

largely supports T-cell development. Signals from the thymus environment trigger multiple 

rounds of proliferation of progenitors, while simultaneously initiating the T-cell specification 

program [45, 60-66]. Early events of T-cell development are marked by the consecutive and 

stepwise loss of potential for alternative cell lineage fates and concomitant acquisition of T-cell 

identity. The ubiquitous presentation of Notch ligands, mainly delta-like ligand 4 (DLL4), is a 

key feature that characterizes the thymic environment and that drives all direct and indirect 

events critical for establishing the T-cell identity [64, 66, 67]. 

1.2.1.3 Transcriptional control of early T-cell development 

Transcriptional regulation of hematopoiesis serves as a model system for studying 

developmental biology. Understanding the basis of immune cell development from multi-

lineage progenitors by transcriptional regulators has shed significant light on the molecular 

mechanisms governing developmental biology [61, 68]. T-cell development, from early 

progenitor settling events in the thymus to CD4+/CD8+ lineage commitment, occurs in a 

progressive stepwise fashion.  
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T-cell development, like many other developmental processes, needs to be tightly 

regulated by a network of transcription factors to avoid detrimental physiological consequences. 

The transcriptional regulation of temporal and spatial gene expression helps ensure that the right 

gene is expressed at the right time and in right amount. It is important to note that transcription 

factors recruited to cis-regulatory motifs in eukaryotes can control promoter activity over large 

genomic distances. Chromatin looping is a common mechanism for long-range regulation of 

gene expression that in some cases is mediated by the CCCTC-binding transcription factor 

(CTCF). By binding to multiple sequences throughout the genome, homodimerized CTCF can 

regulate long-range DNA looping and gene expression [69]. 

The access of the transcription factors to their target sites is regulated by the acetylation 

and methylation status of histones (at specific lysine residues). Thus, the activating or repressing 

multi-step process initiated by a transcription factor, requires chromatin structure remodeling in 

advance, which mostly implicates nucleosome unpacking mediated by the chromatin 

remodeling complex SWItch/Sucrose non-fermentable (SWI/SNF) and by epigenetic 

modifications [70]. Recent studies have found that several transcription factors, referred to as 

“pioneer factors”, can open up chromatin without the help of chromatin remodeling or histone 

modifying complexes. Some of these pioneer factors include the forkhead box protein A 

(FOXA) factors, purine-rich box1 (PU.1), [AT]GATA[AG] (Gata) binding  factors, krüppel like 

factor 4 (KLF4) and sex determining region Y-box 2 (SOX2) [71, 72]. These pioneer factors 

influence gene expression in two ways: 1) by regulating chromatin accessibility and 2) by 

regulating the actual transcription of a given gene [71, 72]. Although it is speculated that pioneer 

factors are recruited to DNA sites that are marked with epigenetic features such as H3K4me1, 

H3K4me2 and H3K9me3, their mechanism of actions remains poorly elucidated [71]. 

Based on the expression of different surface molecules and transcription factors, early 

T-cell development can be divided into three phases (Fig. 2). While the first two, phase 1 and 

phase 2 depend on signals from the Notch receptor, the phase 3 differentiation requires pre-TCR 

signaling. While phase 1 is characterized by the expansion of multipotent progenitors, and in 

phase 2 differentiation to the T-cell lineage occurs by establishing the cells’ ability to respond 

to the pre-TCR signaling in the differentiation of DN3 to DN4 during the phase 3. The three 

phases and their corresponding transcriptional networks are described below. 
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1.2.1.3.1 Phase 1 

In the first phase, Notch signaling triggers the differentiation of IL-7Rαlo ETP 

progenitors into IL-7Rαhi DN2a cells.  

Notch signaling (Notch1-4) is an evolutionarily conserved signaling pathway, with 

Notch1 being the functionally predominant receptor in T-cell development [73-76]. While T-

cell differentiation in Notch1-deficient ETP is impaired at the DN1 stage, experimental studies 

showed that Notch signaling is also needed for DN2 to DN3 transition and in the β-selection 

[75-77]. Notch1-signaling is needed to antagonize the development of ETP into alternative non-

T-lineages and to induce transcription factors such as Hes1 (codes for Hes1), B cell chronic 

lymphoma 11b (Bcl11b codes for Bcl11b), Gata3 (codes for Gata3) and Tcf7 (codes for Tcf1) 

that regulate the T-cell identity [78-80]. Notch1-mediated inhibitory effect on non-T-cell lineage 

development of ETP occurs in a stepwise fashion. First, Notch signaling shuts off B-cell 

development by inducing the expression of Gata3 in ETP [81]. Following this, the potential of 

DN2a to develop into DC, macrophages and innate lymphocytes (ILC), is antagonized by 

sustained Notch signaling via Hes1 expression so that DN2b thymocytes are T-committed [82-

90].  

TCF-1-induced Gata3 plays a critical role in the establishment of the T-cell-regulatory 

network of transcription factors [91-95]. Gata3’s role is not restricted to the early steps of T-cell 

development, but functions throughout T-cell development and mature T-cell function in the 

periphery [95-99]. However, in ETP, Gata3 supports T-cell specification mainly by blocking B-

cell lineage potential in ETP thymocytes and inducing the expression Bcl11b [81, 85, 95, 99-

102]. Later during T-cell development, Gata3 is needed for activating the TCRβ locus and for 

the production of CD4+ SP T-cells [96]. Interestingly, Gata3 has a very limited range of dose-

response, in DN cells at least. While increased levels of Gata3 is tolerated in periphery in CD4+ 

Th2 cells, overexpression of Gata3 in ETPs is just as toxic to cells as Gata3 deficiency [85]. 

Several posttranslational modifications have been found to regulate Gata3 function [103-106]. 

IL-7 drives the proliferation of DN2a thymocytes and their differentiation into DN2b during 

phase 1 to phase 2 transition [22, 23, 107-111]. IL-7 regulates T-cell proliferation at several 

stages of development and function by activating both phosphoinositide 3-kinase (PI3K) and 
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signal transducer and activator of transcription 5 (STAT5) signaling pathways [22, 23, 107-

111].  

 

Figure 2. The three different phases of early T-cell development and role of 

cytokines and transcription factors  

Notch signaling activates the T-cell differentiation program in T-cell progenitors. The early 

events of T-cell development consist of the sequential progression of early thymic progenitors 

(ETP or DN1) through the consecutive DN2a, DN2b, DN3a, DN3b/4 stages before they develop 

into double positive (DP) thymocytes. Based on Notch or pre-TCR signaling, early T-cell 

development can be divided into phases with distinct cytokine signaling and transcription 

factors (TF) that regulate proliferation rate and T-lineage commitment program. DN, Double 

negative; IL, interleukin; TCR, T-cell receptor. Figure adapted from Hosokawa and Rothenberg 

2018 [79].  

1.2.1.3.2 Phase 2 

The transition from phase 1 to phase 2 is marked by a dynamic shift in the expression of 

several family of transcription factor [101]. The activation of the zinc-finger transcriptional 

repressor Bcl11b is one of the crucial transcriptional changes that marks the phase 2 [112-114]. 

By downregulating Kit expression and repressing all phase 1 specific transcription factors, 

Bcl11b prevents deviation to alternative cell lineage fates and dedifferentiation of developing 

thymocytes [112-114]. Bcl11b-mediated exclusion of myeloid/NK lineage fate and activation 

of Notch-signaling propels the DN2b cells into the T-committed DN3a stage in which T-cell 

restricted genes like Rag1, Rag2, Ptcra, and Cd3e are expressed by a process that is largely 

, 
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mediated by Notch and E proteins (E2A and HEB, encoded by Tcf3 and Tcf12, respectively) 

[115-119]. Alongside their role in the expression of T-cell specific genes, E proteins also 

regulate Rag-mediated recombination of the Tcrb locus by inducing the suppressor of cytokine 

signaling (Socs) genes, which uncouple growth factor receptors, such as IL-7R, from their 

signaling pathway and induce cell-cycle arrest needed for Rag-mediated recombination at the 

Tcrb locus [117, 120].  

Myelocytomatosis viral oncogene-associated zinc finger protein related factor (MAZR) 

is a transcription factor that regulates gene expression in a context-dependent manner [121-125]. 

MAZR plays an important role in silencing Cd8 gene expression by recruiting the nuclear 

coreceptor nuclear receptor corepressor 1 (NCoR1), during the DN3a to double positive (DP) 

transition [124]. MAZR was first described as a corepressor that functioned by recruiting the B-

cell and T-cell regulatory factor, broad-complex, tramtrack and bric-à-brac domain and 

cap'n'collar homolog (Bach2) [121, 126-128]. Moreover, MAZR deficient mice are smaller in 

size and show increased risk of developing Bcl6-dependent lymphomas [129].  

1.2.1.3.3 Phase 3 

During the third phase, Notch-signaling, is quickly turned off by the newly formed pre-TCR 

signaling complex in an Ikaros-dependent manner [57, 130-132]. Thymocytes that have 

undergone a productive β-selection, experience a massive expansion and upregulate IKAROS 

family zinc finger 3 (Ikzf3) and retinoic acid-related orphan receptor γ t (Rorγt), needed for the 

development of DP thymocytes [79, 133-135]. 

Repressive epigenetic marks accumulate at the promoters of Notch target genes and other phase 

1-related regulatory loci as DN4 cells proliferate/differentiate into DP thymocytes [101, 136]. 

At the same time, multiple DP thymocyte-specific genes are epigenetically activated, making 

the T-cell differentiation process irreversible [101, 136, 137]. The newly formed regulatory 

network of transcription factors that includes mainly, TCF-1, HEB/E2A and RORγt supports 

survival of DP cells by inducing the anti-apoptotic molecule B cell lymphoma-2-like 1 (BCL-

XL) [138-141].  
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1.2.2 Positive/negative thymic selection 

Immature DP cells make up around 90% of developing thymocytes and can be separated 

into several stages. After a successful β-selection checkpoint, thymocytes differentiate into the 

highly proliferative pre-TCR+ DP blasts. This is followed by a more quiescent phase during 

which DP thymocytes contract in size and downregulate pre-TCR complex [142]. 

Rearrangement at the Tcra locus is initiated at the small DP pre-TCR- stage before a fraction of 

cells audition for thymic selection. As mentioned earlier, the strength of the TCR interaction 

with pMHC complex will determine the fate of the developing thymocytes[142, 143][142, 

143][142, 143][142, 143]. While strong interactions result in negative selection, positive 

selection is promoted by weak interactions. In some cases, strong affinity and/or avidity 

promotes the development of TReg. Ordinarily, deviation into the TReg cell lineage occurs when 

the strength of the interaction is not strong enough to cause negative selection [144]. When the 

TCR on developing thymocytes fails to engage in a productive interaction with the pMHC on 

the stromal cells, cells undergo a type of programmed cell death, called death by neglect.  

Recently, genome wide analyses have uncovered a dynamic gene expression pattern that 

is unique to each DP subsets (pre-TCR+, pre-TCR-, αβTCR+) [143]. The mapping of the 

transcriptional landscape of the DP subpopulations revealed, among other things, that cells 

destined for positive selection versus apoptotic deletion display unique gene signatures. Equally 

important, results showed a large-scale transcriptional shutdown of several genes that 

accompanies the differentiation of the proliferative pre-TCR+ DP blasts to the resting pre-TCR- 

DP cells of smaller size. Then, the relatively transcriptionally quiescent stage is followed by 

another major transcriptional modification that is initiated by the TCR-mediated positive 

selection signaling. Some of these modifications include the reactivation of several important 

signaling pathways, such as the canonical TCR pathway, the metabolic pathway and distinct 

positive and negative selection-related genes, like Id2 and Id3 [145-147]. The transition of the 

small resting DP thymocytes into the transcriptionally dynamic CD69+ DP thymocytes is 

associated with increased glycolytic and oxidative phosphorylation activity [143].  

Signaling downstream of the newly formed TCR complex leads to the regulation of 

several factors involved in positive and negative selection. Some of these factors are involved 

in both positive and negative selections, like ID3 (encoded by Id3), ifn-regulatory factor 1 
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(IRF1, encoded by Irf1), and nuclear factor κ-B (NF-κB), while others, described below, 

function specifically in one or the other selection process.  

While this section covers the details of the complex regulatory network of transcription 

factors regulated by TCR-mediated signaling at the DP stage, the structural components of the 

TCR complex and the signaling pathways downstream of the TCR signaling will be discussed 

later.  

1.2.2.1 Transcription factors regulating positive selection 

1.2.2.1.1 Bcl11b 

At the DP stage, Bcl11b expression has also been shown to control positive selection 

efficiency [148]. Bcl11b-deficient mice displayed defective proximal TCR signaling events, 

leading to dysregulated expression of genes involved in positive selection as well as CD4+/CD8+ 

lineage commitment [148]. Interestingly, introduction of the antiapoptotic Bcl2 transgene, but 

not a TCR transgene, rescued the phenotype in Bcl11b-deficient mice [148]. 

1.2.2.1.2 Tox 

Thymocyte selection-associated high mobility group box protein (TOX, encoded by 

Tox) is induced following TCR-stimulation. Its deficiency severely impairs positive selection of 

developing thymocytes with a predominant impact on the development of MHC-II-restricted 

CD4+ thymocytes [149-151].  

1.2.2.1.3 Gata3 

Although Gata-3 deficiency does not impair positive selection (as identified by CD69 

upregulation on DP thymocytes), it is upregulated by the TCR-mediated positive selection 

signals and required for survival of selected MHC-II-restricted thymocyte. Gata-3 is induced in 

positively selected thymocytes immediately after TOX expression and increases gradually as 

cells undergo positive selection before peaking at the CD4+8lo stage, which is when CD4+/CD8+ 

lineage choice occurs [152]. Subsequently, while Gata-3 expression is maintained in MHC-II 

restricted CD4+ T-cells, it is downregulated in MHC-I-signaled CD8 committed thymocytes 

[153].  
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1.2.2.1.4 Notch signaling 

The role of Notch-signaling in positive selection remains controversial [154-156]. A 

study showing an inhibitory effect of Notch on TCR signaling during thymic selection was later 

challenged by a study indicating that Notch-signaling potentiated TCR signaling by regulating 

late (or delayed) responding genes during positive selection [157, 158]. It was later elucidated 

by high-throughput screening that Notch- and positive-selection-induced genes (which 

interestingly could not be activated by in vitro TCR activation) overlapped significantly [158].  

1.2.2.1.5 Nuclear factor of activated T-cells (NFAT) 

Similar to Notch signaling, the role of nuclear factor of activated T-cells (NFAT) in 

positive selection has been controversial. While three of the four members of the NFAT family 

of transcription factors are expressed by the immune cells (NFATc1, NFATc2, and NFATc3), 

only NFATc3 was shown to be potentially involved in positive selection [159]. Surprisingly, 

the detrimental effect of Nfatc3-deficiency on thymic selection was not aggravated by the 

additional loss-of-function of Nfatc2. As for NFATc1, experimental results so far are 

inconclusive [159-162]. Nevertheless, NFAT reporter mice are commonly used to monitor TCR 

signaling [163].  

1.2.2.2 Transcription factors regulating negative selection 

DP and SP expressing a TCR with high affinity for self-peptide/MHC complexes are eliminated 

by negative selection to ensure that self-reactive T-cells are prevented from entering circulation 

[164, 165].  Important regulators of negative selection include transcription factors such as 

Nur77 (encoded by nuclear receptor subfamily 4 group A member 1 [Nr4a1]) and Bim (encoded 

by Bcl2l11).  

1.2.2.2.1 Nur77  

The transcription factor Nur77 belongs to the steroid nuclear hormone receptors 

superfamily of transcription factors that includes two other members, Nurr1 (encoded by Nr4a2) 

and neuron-derived orphan receptor 1 (Nor-1 – encoded by Nr4a3) [166, 167]. Nur77 orphan 

receptor is a dynamic transcription factor that is induced in response to TCR stimulation and 

exhibits context dependent pro- or anti-apoptotic properties [168]. In thymus, expression of a 
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dominant negative version of Nur77, or its downregulation, correlated with reduced pro-

apoptotic activity [169, 170]. The Nur77 transcription factor has been shown to mediate 

apoptosis by two main mechanisms: 1) by transcriptionally regulating its downstream gene 

Ndg1, which codes for a protein that can trigger apoptosis through caspase-8, and 2) by a 

transcriptional independent mechanism involving depolarisation of the mitochondria, through 

the transformation of Bcl2 into a toxic protein [166, 171-177]. While overexpression of Nur77 

results in overt apoptosis of DP thymocytes, Nur77-deficient mice show no perturbation of 

clonal deletion, probably due to redundancy with Nurr1 or Nor-1 [170, 178]. 

1.2.2.2.3 Bim 

The proapoptotic factor Bim, which functions by inhibiting Bcl2, induces apoptosis by 

regulating mitochondrial permeability [179, 180]. Surprisingly, loss-of-function of Bim, does 

not result in autoimmune diseases, suggesting that other redundant mechanisms maintain 

peripheral tolerance [179-181].   

1.2.2.3 Transcription factors regulating positive and negative selection 

1.2.2.3.1 ID3, IRF1 and NF-κB 

ID3 is a Helix-Loop-Helix inhibitor protein that generally regulates E protein function 

by antagonising the DNA binding potential of E2A (encoded by TCF3) and HEB (encoded by 

TCF12) [182]. Although more rigorous research is needed, expression profile and genetic 

manipulations show that, unlike ID3, IRF1 and NF-κB control mainly positive and negative 

selection of MHC-I-restricted CD8+ cytotoxic T-cells [183-187].  

1.2.2.3.2 HDAC7 

A high-throughput screen identified histone deacetylase 7 (HDAC7) as a potential 

regulator of thymic selection. The introduction of various dominant negative mutant forms of 

HDAC7 not only impaired thymic selection, but failed to rescue thymic selection in Hdac7-

deficient mice as well [188]. 

The induction of the regulatory nuclear factors discussed above form a part of a broad 

transcriptional modifications induced by TCR-mediated positive selection signals. Thorough 
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investigations are needed to better elucidate the complete transcriptional landscape governing 

positive and negative selection. 

Following positive selection, MHC-I- and MHC-II-restricted thymocytes terminate Cd8 

transcription to become CD4+8lo intermediates, and differentiate into CD4+ and CD8+ single 

positive thymocytes by a process that is influenced by co-receptor, TCR and cytokine signaling 

[189]. Surprisingly, the differentiation of TCR-signaled thymocytes into CD4+ helper or CD8+ 

cytotoxic lineage is accompanied by differences in the expression of only a few lineage specific 

genes. These genes include Runx3 and Eomes for CD8+ cytotoxic lineage fate, and zinc-finger-

and-broad-complex, tramtrack and bric-à-brac-domain containing 7 (Zbtb7b also called 

“Thpok” here, encoding ThPOK protein) and Gata3 for CD4+ helper lineage [143].  

1.2.3 CD4+/CD8+ Lineage fate of positively selected thymocytes  

Following positive selection, developing thymocytes undergo a crucial lineage fate 

decision to differentiate into either CD8+ cytotoxic or CD4+ helper T-cells. DP thymocytes are 

unique among the developing T-cell subsets in that they express both CD4 and CD8 co-receptors 

and are unresponsive, due to high expression of SOCS proteins, to the pro-survival cytokine IL-

7 [189-191]. The intracellular domains of both co-receptors are bound by the lymphocyte 

specific tyrosine kinase Lck. Engagement of TCR/co-receptor with MHC brings the co-receptor 

associated Lck in close proximity to the TCR complex leading to a cascade of phosphorylation 

events [192]. The extracellular domains of CD4 and CD8 co-receptors, on the other hand, bind 

to the MHC-II and MHC-I molecules, respectively [193, 194]. TCR specificity for MHC then 

determines thymocytes developmental fate; thymocytes expressing MHC-I- and MHC-II-

specific TCR invariably differentiate into CD8+ and CD4+ SP mature T-cells, respectively. The 

development of DP thymocytes into either of the two lineages is a classical example of 

bipotential lineage-fate development of precursor cells. The last two decades have witnessed a 

significant progress in our understanding of the cellular and molecular mechanisms underlying 

the CD4+/CD8+ lineage choice, leading to development of various models as described below. 

It was previously thought that uncommitted positively selected DP thymocytes 

downregulated one or the other of the co-receptors to ultimately give rise to either CD4+ or 

CD8+ SP T-cells. The classical models of CD4+/CD8+ lineage choice typically considered that 



 

35 

the same TCR-signals in DP thymocytes regulated, simultaneously, positive selection and 

lineage commitment, resulting in the irreversible termination of either one of the Cd4 or Cd8 

co-receptor genes [189]. Opinions, however, were divided over whether co-receptor termination 

was “stochastic” or ‘instructive’ (Fig. 3). The kinetic signaling model, on the other hand, is a 

non-classical model and is currently the most widely accepted model of CD4+/CD8+ lineage 

choice. It proposes that positively selected DP thymocytes develop into CD4+8lo uncommitted 

intermediates before differentiating into either MHC-II-restricted CD4+ or MHC-I-restricted 

CD8+ SP mature thymocytes (Fig. 4) [195].  

1.2.3.1 Stochastic model of CD4+/CD8+ lineage choice 

The stochastic model of lineage choice proposes that TCR induces random termination 

of one of the co-receptors during positive selection, which generates a pool of SP thymocytes 

with matching and mismatching TCRs and co-receptors. Only selected thymocytes with 

matching co-receptors and TCRs, capable of transmitting a productive TCR signal, would 

proceed to differentiate into mature T-cells. Thymocytes with mismatching co-receptors and 

TCRs, which in theory should be observed in 50% of selected cells, are destined to die by 

apoptosis (Fig. 3). Actually, the presence of a significant number of MHC class-II-specific 

CD4+CD8+ (DP) mature T cells in CD4 co-receptor transgenic mice supported this model [196-

199]. This prompted the authors to argue that forced CD4 expression rescued MHC class-II-

restricted SP thymocytes that had incorrectly terminated Cd4 co-receptor expression and, hence, 

had died by apoptosis. However, the number of DP T-cells in periphery was fewer than 15%, 

much lower than the 50% frequency predicted by the stochastic model [196, 198, 200]. Studies 

of thymic selection using TCR transgenic mice have helped shed light on this matter. Positive 

selection efficiency in several TCR transgenic mice can reach up to 90%, which would not be 

feasible if co-receptor termination was a random event [201]. Another observation arguing 

against the stochastic lineage commitment model is the fact that long-lived and functionally 

mature TCR/co-receptor mismatched T-cells can be generated even in normal mouse [202, 203]. 

So, why does forced CD4 expression lead to the development of DP mature T-cells? It is 

possible that early transgenic co-receptor expression interfered in thymic selection leading to 

generation of mismatched thymocytes [196, 197, 204]. When investigators addressed this issue 

by placing a CD4 co-receptor transgene under the control of the CD8 enhancer I (E8I), which is 
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active only in positively selected CD8+-committed T-cells, mature T-cells expressing both the 

co-receptors were not produced contradicting the original study [205]. Taken together, these 

experimental observations have challenged the core principles of the stochastic model and 

demonstrate that lineage fate is neither error-prone nor stochastic [204, 206, 207].  

1.2.3.2 Instructive CD4+/CD8+ lineage choice models 

An alternate model explaining CD4+/CD8+ lineage choice proposes that TCR specificity 

for pMHC instructs positively selected thymocytes to develop into CD4+ or CD8+ lineage. Thus, 

MHC-II- and MHC-I-specific thymocytes almost always develop into CD4+ helper and CD8+ 

cytotoxic T-cells, respectively. Subsequent studies led to refinement of the instructive models 

as described below.  

 

1.2.3.2.1 Strength-of-signal 

The strength-of-signal model proposes that in the positively selected DP thymocytes a 

strong and weak TCR-signal terminates Cd8 and Cd4 transcription, respectively. As tyrosine 

kinase Lck binds the cytosolic tail of CD4 with more affinity than CD8 co-receptor [192, 208], 

MHC-II-restricted thymocytes would be predicted to receive quantitatively stronger signal 

compared to MHC-I-restricted thymocytes. Thus, according to this model, the relative strength 

of the TCR signaling instructs co-receptor transcription termination [201]. Redirection of MHC-

I-specific thymocytes to the CD4+ lineage upon introduction of a transgenic form of CD8α co-

receptor engineered to express the cytosolic domain of CD4 (CD8.4) provided the first evidence 

that TCR-signal strength influenced the lineage fate of selected thymocytes [209]. A similar 

pattern was observed when components of the TCR complex, such as Lck, ζ-chain-associated 

protein kinase 70 (Zap70), C-terminal SRC kinase (CSK) and extracellular signal–regulated 

kinase (ERK), were manipulated to affect strength-of-signal in developing thymocytes in mice 

[210-218]. Basically, when a component downstream of TCR signaling was modulated to 

augment TCR-signal strength more CD4+ T-cells were generated, while modifications leading 

to lower TCR-signal strength generated more CD8+ T-cells. Interestingly, when TCR signal 

strength was modified by altering the number of immunoreceptor tyrosine-based activation 
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motifs (ITAM) of CD3ζ chain, a critical component of TCR/CD3 signaling complex, the 

efficiency of positive selection but not CD4+/CD8+-lineage choice was affected [219]. More 

specifically, increasing and decreasing TCR signaling, enhanced and hindered selection 

efficiency, respectively. These results prompted a careful re-examination of the original study 

showing CD8+ to CD4+ lineage redirection of MHC-I-restricted thymocytes following forced 

expression of the CD8.4 co-receptor. The concern was that a constitutively active Cd8 transgene 

would complicate the analysis because, unlike endogenous Cd8, it is not downregulated after 

positive selection, which could lead to a constitutively active downstream signaling pathway. 

Indeed, developing thymocytes expressing CD8.4 transgene knocked into the Cd8 locus failed 

to alter CD4+/CD8+ lineage choice arguing against a simple signal strength model of lineage 

choice [205, 220]. Collectively, these experimental observations demonstrated that strength-of-

signal model cannot explain CD4+/CD8+ lineage fate decision of signaled thymocytes.  

1.2.3.2.2 Duration-of-signal 

Nonetheless, results described above strongly suggested that TCR specificity plays a 

critical role in the regulation of CD4+/CD8+ lineage choice. The duration-of-signal model is an 

extension of the strength-of-signal model, which suggests that, in addition to the signal strength, 

CD4+/CD8+ lineage fate is influence by TCR signal duration. The evidence in support of this 

model comes mostly from an important study showing that MHC-I- and MHC-II-restricted 

thymocytes exhibit different duration of TCR signaling [156]. This report showed that in ex 

vivo system longer incubation of pre-selection DP thymocytes and APCs (DCs or thymic 

stromal cells) resulted in CD4 development, while shorter incubation generated CD8 SP cells. 

This temporal signal duration model proposes that TCR signal of longer duration promotes 

CD4+ lineage development by terminating Cd8 expression, while shorter duration signal favors 

CD8+ lineage development by terminating Cd4 transcription [156]. Although, the evidence in 

support of this model is compelling, it was unclear why and how duration of MHC-I- and MHC-

II-restricted TCR signals influences the CD4+/CD8+ lineage choice. Experiments addressing this 

question have led to the development of the kinetic signaling model (described in the following 

section): reports have shown that all positively selected DP thymocytes, irrespective of their 

MHC specificity, terminate Cd8 expression to become CD4+8lo intermediates with bipotential 
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lineage fate capacities, i.e. CD4+8lo intermediates are uncommitted cells capable of giving rise 

to both CD4+ and CD8+ mature T-cells. Accordingly, CD8 co-receptor downregulation would 

be expected to disrupt TCR signal in MHC-I- but not MHC-II-specific thymocytes, leading to a 

transient or intermittent TCR-signal in MHC-I- compared to MHC-II-signaled thymocytes [221-

223]. However, the development of an intermediate subset with an asymmetric phenotype that 

is precursor of both CD4+ and CD8+ T-cells contradicts one of the fundamental requirements of 

the all classical models, including the duration-of-signal model: lineage choice must occur in 

thymocytes that are transcriptionally Cd4+Cd8+ [189]. However, all experimental evidences 

obtained so far suggest that CD4+8lo precursor cells are transcriptionally Cd4+Cd8- [224]. Taken 

together, these findings, are in sharp contradiction with several critical principles of all classical 

models, to which the “stochastic” and the “instructive” models belong.  
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Figure 3. Previous models of CD4/CD8 lineage fate 

(A) The stochastic model proposes that positively selected double positive (DP) thymocytes 

downregulate one co-receptor randomly to differentiate into short lived intermediate thymocytes 

expressing mismatched T-cell receptor (TCR) and co-receptor. Unless they are rescued by signal 

induced by matched TCR/co-receptor, short lived intermediates die by programmed cell death. 

(B) and (C) The strength-of-signal and duration-of-signal instructional models propose that a 

strong and long positively selecting TCR signal in major histocompatibility (MHC)-II-restricted 

thymocytes terminate Cd8 transcription, whereas a weak and short signal terminates Cd4 

transcription, respectively. Figure adapted from Singer et. al. 2008 [189]. 

 

1.2.3.3 Kinetic signaling model 

For the remaining part of this thesis, the “duration” of the TCR signaling, unless 

otherwise stated, refers to the signal duration in CD4+8lo thymocytes, in which lineage choice is 

made based on the selective downregulation of CD8 expression. Accordingly, at CD4+8lo stage 

continued CD4 expression results in persistent/continuous signaling in MHC class-II-specific 

thymocytes and CD4+ lineage choice, while CD8 down regulation causes signal disruption in 

MHC class-I-specific thymocytes and CD8+ lineage choice [189]. This process is expected to 

last several days and involve multiple individual encounters with pMHC bearing stromal cells 

[156, 163, 225].   
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The kinetic signaling model is based on a different set of principles than those proposed 

by the classical models. In the kinetic signalling model, positive selection and lineage choice 

are two independent and sequential events triggered by TCR-signals, and that reversible 

termination of Cd8 co-receptor transcription is required to assess duration of TCR-signals. Thus, 

in MHC-II-signaled thymocytes continued transcription and surface expression of CD4 is 

permissive for longer duration of continuous TCR signaling thereby committing these cells to 

the CD4+ lineage. In contrast, in MHC-I-signaled thymocytes ablation of Cd8 transcription 

results in surface CD8 down regulation leading to disrupted or shorter duration of TCR signaling 

causing these cells to respond to cytokine signaling essential for CD8+ lineage choice. 

1.2.3.3.1 Cytokine signaling 

On the basis of the evidence acquired thus far, signal emanating from TCR and cytokine 

receptors of the common γ-chain (γc) family play reciprocal antagonistic role in CD8 lineage 

choice (Fig. 4, 6) [221, 226, 227]. For MHC-I-signaled thymocytes to differentiate into CD8+ 

T-cells, the CD4+8lo intermediate cells must terminate Cd4 gene expression and re-express Cd8 

gene. This event is referred to as the ‘co-receptor reversal’ and is considered a central feature of 

the kinetic signaling model [189]. Co-receptor reversal is mainly driven by IL-7, and potentially 

other γc cytokines, that transmits survival signals to CD4+8lo thymocytes with disrupted TCR 

signals [221, 228]. Disruption of TCR signaling is critical for upregulation of IL7-Ra and thus 

rendering CD4+8lo thymocytes permissive to cytokine signaling as in vitro and in vivo studies 

have shown that IL-7-dependent signal transduction and co-receptor reversal is inhibited by 

persistent TCR signaling [221, 228-230]. Although the underlying mechanism remains to be 

elucidated, IL-7 has been shown to regulate Cd4 silencing and Cd8 re-expression [228].  

Several observations support the concept that IL-7 signaling promotes CD8+ but not 

CD4+ lineage choice as indicated by high cell-surface expression of the IL-7-regulated glucose 

transporter 1 (GLUT1) on CD8+  but not CD4+ T-cells [228, 231, 232]. The significance of IL-

7-receptor signaling in CD4+/CD8+ lineage commitment is further exemplified by studies 

showing impaired CD8+ T-cell development following inhibition of γc cytokine signal 

transduction, and conversely, deficiency of Socs1 (cytokine-signaling inhibitor) or growth-
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factor independent 1 (Gfi1, a negative regulator of IL-7-signaling) favored CD8+ T-cell 

development and [190, 191, 221, 228, 233-236].  

 

Figure 4. The kinetic signaling model  

The kinetic signaling model of CD4+/CD8+ lineage fate proposes that T-cell receptor (TCR)-

signaled double positive (DP) thymocytes terminate Cd8 transcription irrespective of major 

histocompatibility complex (MHC) specificity to differentiate into CD4+8lo uncommitted 

intermediates. Thymocytes at the CD4+8lo stage assess the effect of the loss of the CD8 co-

receptor on TCR signaling. In MHC-I-restricted thymocytes, termination of the CD8 co-receptor 

disrupts TCR signaling, allowing for interleukin (IL)-7-mediated signaling, which promotes co-

receptor reversal and differentiation into CD8+ T-cell. In MHC-II-restricted thymocytes, a 

persistent TCR signaling promotes the development of CD4+ by blocking IL-7-mediated 

signaling. Adapted from Singer et. al. 2008 [189]. 

 

1.2.3.3.2 Regulation of Cd4 and Cd8 expression 

Exhaustive biochemical and genetic studies were conducted to identify and characterize 

transcriptional regulators of CD4 and CD8 co-receptor expression. These studies demonstrated 

that Cd4 and Cd8 gene expression is principally controlled by a combination of enhancers and/or 

silencers whose activities are regulated by lineage specific transcription factors (Fig. 5) [237, 

238].  
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1.2.3.3.2.1 Cd4 gene regulation 

The studies revealed that a Cd4 regulatory element containing a 339-bp proximal 

enhancer located 13-kb upstream of the transcription start site initiated Cd4 transcription in 

MHC-II-specific thymocytes and included binding sites for several nuclear proteins such as 

E2A, HEB and TCF-1 that are active during the early steps of T-cell development. Results from 

the in vivo genetic manipulations revealed that these factors were critical for the proper 

expression of the Cd4 gene, particularly at the DP stage [145, 237, 239-241]. More recent 

genetic studies have implicated chromatin remodeling factors, such as Mi-2β, in the positive 

regulation of Cd4 expression in TCR-signalled DP thymocytes by acting on the Cd4 proximal 

enhancer [242]. The observation that the proximal enhancer lacks lineage specificity led to the 

identification of an intronic Cd4 silencer element that selectively inhibits Cd4 gene expression 

in CD8+ T-cells [238, 243]. The study of the CD4 silencer has resulted in the identification of a 

300-bp and 190-bp core sequence in mice and human Cd4 gene, respectively, and contains 

Runx-binding sites, which are indispensable for Cd4-silencing [244-246]. Surprisingly, 

conditional deletion of the CD4 silencer in mature CD8+ T-cells did not reverse the inhibition 

of the Cd4 gene expression in SP CD8 T-cells suggesting that the Runx-mediated epigenetic 

silencing of Cd4 expression was irreversible in mature CD8+ T-cells [247]. It is now believed 

that the chromatin remodelling complex barrier-to-autointegration factor (BAF) may be 

involved in the irreversible Cd4 silencing in CD8+ T-cells by relocating the Cd4 locus near 

transcriptionally inert heterochromatin [248-251].   

The CD4 protein consists of four extracellular immunoglobubin (Ig)-like domains linked 

to a transmembrane (TM) and a cytoplasmic domain by a short stalk [252]. While the 

cytoplasmic domain of the CD4 co-receptor binds Lck with more affinity than the cytoplasmic 

domain of the CD8 co-receptor, the binding affinity of CD4 to MHC class II, is much weaker 

than that of CD8 to MHC class I molecule [253].  

1.2.3.3.2.2 Cd8 gene regulation  

A complex array of stage-specific enhancers (E8I-V) control lineage-specific Cd8 

expression. The enhancer E8I, which is active selectively in mature CD8 SP T-cells and CD8αα+ 

intraepithelial cells, was the first to be characterized. Interestingly, CD8α and CD8β expressions 
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were not affected by deletion of E8I in thymocytes, suggesting redundancy between the different 

enhancer elements. Results from reporter assays revealed that while E8II, E8IV and E8V regulated 

Cd8 expression in DP and mature CD8 thymocytes, E8III regulated Cd8 expression only in DP 

thymocytes.  

The two main protein isoforms of CD8, CD8αα and CD8αβ, are expressed by different 

cell types with CD8αβ being the most common isoform [253]. The two α and β chains are 

connected by a disulfide bond and comprise each of one Ig-like domain linked to the TM and 

cytoplasmic domains by a long stalk [254, 255]. While glycosylation of both CD8α and CD8β 

stalks has been shown to regulate CD8 affinity to MHC class-I, only the CD8α cytoplasmic 

domain contains the binding motif for the tyrosine kinase Lck [253, 256, 257].  

The primary function of the co-receptors is to recruit the tyrosine kinase Lck to the TCR 

complex in order to initiate signal transduction. However, affinity measurement experiments 

suggest that CD8 co-receptor may also function to reinforce the binding TCR-pMHC complex 

[258]. 
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Figure 5. Cd4 and Cd8 gene structure and regulation 

The stage-specific enhancers of Cd8 (E8I-V) can be bound and regulated by transcription factors, 

such as Runx proteins, MAZR and IKAROS. Cd4 transcription is regulated by the activity a 

silencer motif, which can be bound by nuclear factors such as Hes-1, Runx proteins, and Myb. 

MAZR, myelocytomatosis viral oncogene-associated zinc finger protein related factor.  
 

1.2.3.3.3 Co-receptor reversal 

The elucidation of the molecular mechanism underlying the transcriptional regulation of 

Cd4/Cd8 co-receptor expression helped reinforced important aspects of the kinetic signalling 

model, such as co-receptor reversal. Contrary to Cd4 gene expression, which is primarily 

governed by the activity of one silencer, transcriptional regulation of the Cd8 gene is controlled 

by five stage-specific enhancers (E8I – E8V) [238, 243, 259, 260]. Two of these enhancers are 

particularly important for CD4+/CD8+ lineage commitment, E8III and E8I. It has been shown 

that TCR-signals in DP thymocytes disrupt Cd8 expression by inhibiting E8III enhancer activity, 

and that IL-7R-mediated co-receptor reversal, reinitiated Cd8 gene expression by regulating E8I 

enhancer activity [203, 230].  
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1.2.3.3.4 TCR signaling 

The importance of the activity of the TCR-mediated signaling in CD4+/CD8+ lineage 

choice has been assessed by several in vivo studies. Mainly, genetic manipulations of the TCR 

complex, intended to disrupt the duration of the TCR-signalling in MHC-II-restricted 

thymocytes, were found to affect thymocytes lineage choice. For instance, disrupting Zap70 

activity, critical for TCR signaling, at the CD4+8lo intermediate stage redirected MHC-II-

restricted thymocytes to the CD8 lineage [261-264]. A similar CD4+ to CD8+ lineage redirection 

of TCR-signalled thymocytes was observed when MHC-II-specific TCR signaling was 

disrupted due to ablation of CD4 expression in positively selected thymocytes [203]. 

1.2.3.4 The network of transcription factors in CD4+/CD8+ lineage fate decision 

The identification of critical transcription factors involved in regulating the lineage 

choice has greatly improved our understanding of the underlying molecular mechanism of 

lineage choice. Some of these factors include ThPOK, Gata3, TOX, Bcl11b, Runx3, and MAZR, 

and are discussed in greater details in the following section (Fig. 6) [149-151, 153, 265-273].  

1.2.3.4.1 Gata3 

The enhancer-binding zinc finger transcription factor Gata3 functions in many steps of 

T-cell development [153, 272]. Gata3 is preferentially expressed in MHC-II-signaled 

thymocytes suggesting that it may be required for their development. Indeed, Gata3 disruption 

selectively affected CD4+ T-cell development without lineage redirection, while its constitutive 

expression hindered CD8+ T-cell development confirming indispensable role for Gata3 in the 

CD4+ helper program in MHC-II-restricted thymocytes [153, 273]. Interestingly, while Gata3 

is recruited to the Thpok locus suggesting its possible role in transcriptional regulation of 

ThPOK expression, forced expression of Gata3 in MHC-I-restricted thymocytes, unlike 

ThPOK, did not influence the lineage fate of signaled thymocytes [274]. Collectively, these 

results indicated that Gata3 may require the induction of a binding partner for ThPOK induction 

in MHC-II-signaled thymocytes which is absent from MHC-I-restricted thymocytes. 

Alternately, Gata3 may activate ThPOK expression indirectly by inducing expression of an 

undefined factor in MHC-II-signaled thymocytes. It is important to note that Gata3 expression 

levels are directly regulated by the strength of TCR signaling and its role upstream of ThPOK 
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makes it a strong candidate protein in the TCR regulatory pathway governing CD4+/CD8+ 

lineage fate [189] Nonetheless, its specific role as well as its downstream effector molecules 

remain to be elucidated.  

1.2.3.4.2 Tox 

The HMG box protein TOX was implicated in positive selection and/or lineage 

commitment as it was found to be upregulated in TCR-signaled DP thymocytes [150]. However, 

results from genetic manipulations designed to elucidate the role of TOX in TCR-signalled DP 

thymocytes were inconclusive. In Tox-deficient mice, all lineages of MHC-II-restricted 

thymocytes failed to develop past a poorly characterized CD4loCD8lo intermediate stage, that 

appeared to precede Thpok and succeed Gata3 induction [149]. However, in contrast to the loss-

of-function experiments, phenotypes from gain-of-function mutants were hard to interpret, 

making it difficult to characterize TOX strictly as a CD4+ lineage promoting transcription factor 

[150].   

1.2.3.4.3 Bcl11b 

Apart from its role in thymic selection, Bcl11b plays a role in CD4+/CD8+ lineage choice 

as well. During T-cell development, MHC-I- and MHC-II-restricted thymocyte differentiation 

into CD8+ or CD4+ steps is mainly regulated by ThPOK and Runx3, respectively. However, 

very little is known about the mechanisms by which TCR regulates expression of lineage-

specifying genes. Bcl11b is a transcription factor expressed in TCR-signalled DP thymocytes 

that has recently been found to regulate expression of lineage-specifying Thpok and Runx3 

[275]. Conditional deletion of Bcl11b at the DP stage caused, irrespective of MHC specificity 

of the signaled thymocytes, random expression of ThPOK and Runx3 in the signaled 

thymocytes leading to the production of lineage confused DP mature T-cells. Surprisingly, while 

the Bcl11b-mediated repression of Thpok in preselection DP thymocytes was shown to be 

silencer-independent, Bcl11b was found to regulate Runx3 in MHC-II specific thymocytes by 

binding to and controlling the activity of two enhancers located −39 kb and −21 kb upstream of 

the distal promoter [275, 276].  
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1.2.3.4.4 Runx proteins 

Runx family of proteins consists of three members, Runx1-3, which share several 

properties, like structural motifs and DNA-binding sites [277]. While Runx proteins show some 

functional redundancy, their spatiotemporal expression in developing thymocytes differ with 

Runx1 mainly active in DN and DP cells and Runx3 in the CD8-commited thymocytes [245]. 

Nonetheless, regardless of the distinct expression pattern, Runx1 and Runx3 function 

redundantly in CD4+/CD8+ lineage fate decision. Loss- and gain-of-function studies show 

critical role for the two Runx proteins in the silencer-mediated repression of Cd4 expression in 

the thymus [245, 278]. While deletion of Runx3 relieved the Cd4 gene silencing in positively 

selected thymocytes leading to the development of MHC-I-specific DP mature T-cells, 

compound Runx1 and Runx3 deficiency repressed the Thpok silencer activity leading to 

redirection of some MHC-I-restricted thymocytes to the CD4+ lineage [279]. Conversely, 

overexpression of either Runx protein disrupted Cd4 upregulation in MHC-II-restricted 

thymocytes [245, 246, 271, 280]. Runx1, induced by Notch1, is ubiquitously expressed 

throughout T-cell development and functions differentially depending on its binding partner 

[281]. When complexed with cofactors like p300/core binding factor (Cbf) or DNA binding 

proteins like E-twenty-six-1 (Ets-1), Runx1 mainly acts as a transcriptional activator [282]. 

However, when bound to cofactors like HDAC, mSin3a and Groucho, via its VWRPY motif, 

Runx1 functions mainly as a repressor [283]. In contrast, Runx3 is specifically upregulated in 

MHC-I-signaled thymocytes as they transition from CD4+8lo intermediates to CD8 SP cells 

[217, 270]. At molecular level, Runx3 promotes CD8-lineage choice in MHC-I-restricted 

thymocytes in several ways: 1) by directly interacting and activating the Cd4 silencer to inhibit 

Cd4 gene expression, 2) initiating Cd8 expression via the E8I enhancer activation, and 3) 

heterodimerizing with MAZR to direct epigenetic silencing of Thpok in the CD8-committed 

thymocytes [245, 267, 270, 278]. Current hypothesis proposes that IL-7R signaling upregulates 

Runx3 and thus links cytokine signaling to CD8-commitment although the precise mechanism 

of cytokine action in Runx3 induction remains unclear.  

1.2.3.4.5 MAZR 

8
+
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Similar to Bcl11b, the role of MAZR in T-cell development is not restricted to the early 

stages of T-cell development as it was shown to influence CD4+/CD8+ lineage choice as well. 

MAZR was shown to activate, in association with Runx proteins, Thpok silencer during 

thymocyte development [278]. While in preselection DP thymocytes MAZR represses Thpok 

induction by recruiting Runx1 to the Thpok silencer, in mature CD8 SP thymocytes 

MAZR/Runx3 complex binds to the Thpok silencer thereby preventing MHC-I-signaled 

thymocytes from adopting CD4+ lineage fate [125, 278]. Interestingly, the stage-specific 

deletion of Mazr resulted in only a partial depression of Thpok, suggesting that other factors 

may regulate the Thpok silencer activity, particularly in DP thymocytes [125, 278].  
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Figure 6. Nuclear proteins and environmental factors that regulate CD4/CD8 

lineage choice 

Lineage defining transcription factors translate the environmental cues into molecular events 

by regulating co-receptor gene expression and lineage specific genes. T-cell receptor (TCR)-

mediated positive selection signals results in the sequential induction of TOX (thymus high-

mobility group box protein), Gata3 (GATA-binding protein 3) and ThPOK (T-helper-inducing 

pox virus zinc finger /krüppel-like factor). TOX and Gata3 are upregulated at the DP stage and 

ThPOK at the CD4+8lo stage. While TOX and Gata3 are required for the development and 

survival of CD4+8lo uncommitted intermediates, ThPOK commits thymocytes into the CD4+ 

lineage choice. Although the environmental signal that induces Runx3 remains to be 

determined, it is thought to be dependent on IL-7-signaling. Runx3 is upregulated in MHC-I-

restricted thymocytes at the CD4+8lo intermediate stage and is required for CD8-lineage 

commitment. Runx3 functions by silencing expression of Cd4 and Thpok by binding to their 

respective silencers, and by reinitiating Cd8 gene expression by being recruited to the E8I 

enhancer element. While Bcl11b affects lineage fate by priming Thpok and Runx3, promotes 

CD8+ T-cell development by dimerizing with Runx3 and inhibiting Thpok expression in a 

silencer dependent manner. Bcl11b, B cell chronic lymphoma 11b; IL-7, interleukin-7; 

MAZR, myelocytomatosis viral oncogene-associated zinc finger protein related factor. 

 

1.2.4 ThPOK, the master regulator of CD4+/CD8+ lineage choice 

The transcription factor ThPOK is a member of the BTB/POZ zinc finger (BTB-ZF) 

family of transcription factors. The BTB-ZF family is comprised of close to 50 proteins in 
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humans and the majority of them function as transcription factors [284]. Although members of 

the BTB-ZF transcription factors differ in the number and type of ZFs, and the length of the 

DNA sequence spacing between ZFs, they have multiple general organization of motifs with 

BTB domain and ZF domain located at the amino (N) and (C) terminal regions, respectively 

(Fig. 7) [129, 285]. 

1.2.4.1 Study of the helper deficient (HD) mutation and the discovery of ThPOK 

The identification of the HD mouse that does not produce CD4+ T-cells, despite normal 

positive selection of MHC-II-restricted thymocytes, has provided a major breakthrough in our 

understanding of CD4+/CD8+ lineage choice. Although the HD mouse originated from complex 

intercrosses between knockout and transgenic mice, genetic backcrossing demonstrated that the 

mutation was not specific to any mouse strain suggesting spontaneous nature of the mutation. 

The almost complete absence of peripheral CD4+ T-cells in HD mice was compensated by a 

proportional increase in CD8+ T-cells, such that the total number of peripheral T-cells was 

unchanged compared to WT [202, 286]. More detailed analysis of the CD8+ compartment 

showed that the HD mutation redirected MHC-II-restricted thymocytes into CD8+ rather than 

CD4+ lineage [287, 288]. The analysis of competitive mixed bone-marrow chimeras using WT 

and HD donors, revealed that the HD phenotype was due to T-cell intrinsic defect [265]. 

Genotype/phenotype experiments showed that the HD phenotype was not caused by a defect in 

Cd4 gene expression or TCR signal transduction [202, 265]. It is important to note that HD mice 

manifested features such as impaired female fertility and augmented embryonic lethality 

displayed by other immune compromised mouse models (e.g., Rag-/-) [287, 288]. 

Impaired CD4+ T-cell development in homozygous HD (HD-/-), but not HD+/- mice 

suggested the HD mutation was recessive. PCR-based linkage mapping using wild mice 

subspecies (Mus musculus castaneus and M. m. molossinus), enabled localisation of the HD 

mutation on chromosome 3, between markers D3Mit49 and D3Mit341. Transgenic mice 

expressing bacterial artificial chromosome (BAC) encompassing the Hd locus located the 

mutation within a 30-kb long region that comprised the gene coding for the zinc finger 

transcription factor T helper-inducing POZ/Krüppel-like factor (ThPOK, also known as Zbtb7b, 

Zfp67 or cKrox) [265, 266, 268, 287, 288]. Sequencing of the mutant allele revealed a single 
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transversion adenine to guanine (Ade>Gua) mutation in the coding sequence resulting in 

arginine to glycine (Arg>Gly) mutation at position 389 in the second zinc finger of ThPOK 

[265]. That the Arg>Gly point mutation in the evolutionary conserved motif of ThPOK was 

responsible for the HD defect was attested in transgenic rescue experiments as WT ThPOK but 

not ThPOK389R>G mutant rescued the HD phenotype [265, 287].  

ThPOK, similar to other BTB-ZF factors, primarily acts as a transcriptional repressor 

[289]. In fact, ThPOK was first cloned as a repressor of the collagen promoter [290-292]. 

Although, the precise mode of action of ThPOK in CD4+/CD8+ lineage fate remains to be 

determined, recent reports suggest that ThPOK may function as a transcriptional activator as 

well in the thymus [276, 293]. This is consistent with findings that, depending on their binding 

partners, BTB-POZ transcription factors can act as activators or repressors, however, at present, 

ThPOK binding partners remain unknown [121, 294]. 

In thymocytes, ThPOK is expressed in stage- and lineage-specific fashion, despite the 

fact that ThPOK is also expressed abundantly in other tissues [287, 288]. Transcriptional profile 

of ThPOK show that it is first induced in CD4+8lo intermediates, irrespective of MHC-

restriction. However, compared to MHC-II-, ThPOK induction levels in MHC-I-restricted 

thymocytes were much lower and quickly decreased to background levels. In contrast, in MHC-

II-restricted thymocytes, ThPOK expression increased persistently and peaked in CD4+ SP 

thymocytes [265, 268]. Importantly, gain- and loss-of-function experiments demonstrated that 

ThPOK is both necessary and sufficient for the differentiation of positively selected thymocytes 

into the CD4+ helper lineage irrespective of their MHC specificity [202, 265, 266, 287].  

The temporal pattern of Thpok expression and TCR signaling suggested that the two 

processes may be connected. Above described studies suggest that strong TCR signaling may 

be necessary for sustained ThPOK induction in signaled thymocytes. To better elucidate the link 

between TCR signals and Thpok induction, anti-TCRβ antibody was administered 

intraperitoneally into MHC-II-/- mice to mimic strong TCR signaling in DP thymocytes in vivo 

[266]. Surprisingly, at the DP stage before the lineage commitment steps, the Thpok locus was 

found to be insensitive to TCR signaling and not susceptible to induction, regardless of the 

strength of the TCR signaling [266]. Nonetheless, antibody-mediated stimulation induced 

higher levels of Thpok than normal in intermediate CD4+8lo and CD4+ thymocytes, thus, 
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establishing a strong link between TCR activation and ThPOK induction [266]. TCR signaling, 

however, is dispensable for maintenance of ThPOK expression in mature T-cells [274, 287].  

Interestingly, the characterization of the HD mutant mouse validated several core 

principles of the kinetics signaling model, primarily, that positive selection and CD4+/CD8+ 

lineage choice are mechanistically distinct events, involving two separate transcriptional 

networks [202]. This was mainly evidenced by the observation that efficiency of positive 

selection in Thpok-/- mice, which lack CD4+ T-cells, was comparable to WT. Moreover, the 

results revealing that MHC-II-restricted T-cells in HD-/- mice go through a CD4+8lo stage where 

CD8 co-receptor is downregulated before they are redirected to CD8+ lineage fate, confirmed 

that CD4+8lo cells are uncommitted intermediate precursors [189, 265, 287, 288].  

1.2.4.2 General Structure of BTB-POZ domain of ThPOK 

1.2.4.1.1 BTB domain 

The eukaryotic BTB or POZ domain is found in approximatively 200 genes in human with 

wide ranging biological functions like transcription regulation, cancer development, protein 

ubiquitination, and these domains can vary in length from 90 – 120 amino acids [295-299]. 

Although its role remains largely unknown, the BTB/POZ protein-protein interacting motif is 

typically involved in homo- and hetero-oligomerization. Recent publications, however, have 

highlighted novel functions for the BTB domain in gene regulation. When bound to nuclear 

co-repressors like NCoR1, B cell lymphoma 6 corepressor (BCoR) and SMRT, BTB-domains 

can influence gene expression by recruiting chromatin-remodelling factors such as histone 

deacetylases (HDACs), members of the BAF family, and methylated-DNA binding proteins 

[124, 289, 300-306]. Moreover, BTB-domains have also been shown to act as adaptors for 

substrate binding. The BTB-ZF transcription factors Bcl-6 and promyelocytic leukaemia zinc 

finger (PLZF), for example, were found to mediate effector function differentiation in T-cells 

partly by interacting with the ubiquitin ligase Cullin 3 and regulating chromatin-modifying 

complexes associated with Bcl-6 and PLZF [307]. Although BTB-domains have evolutionary 

been associated with gene suppression, it is likely that the nature of the complex recruited by a 

specific BTB-ZF factor determines their function. 



 

53 

The structure of the core BTB domain consists of five α-helices (A) and three β-strands (B) 

[308]. Computer generated models from crystallographic analyses revealed a ribbon-like 

structure with A4/A5 region connected to B1/B2/A1/A2/B3 region by A3 and a linker [309-

311]. 

 

 

Figure 7. Protein structure of BTB-ZF transcription factors  

The diagram shows the domain structures of the different BTB-ZF proteins that are involved 

in T-cell development. BTB (dark box) is always located at the N-terminal domain, whereas 

ZF (gray circles) are located at the C-terminal domain. The amino acid lengths are indicated at 

the right, and the protein names at the left. BTB-ZF, broad-complex, tramtrack and bric-à-

brac/pox virus zinc finger; ZF, zinc finger. Figure adapted from [129].  

1.2.4.1.2 Zinc finger domain 

One of the most common DNA-binding motifs present in eukaryotic transcription factors 

is the zinc finger (ZF) motif. The classical ZF domain, as present in ThPOK, is made up of two 

cysteines separated from two histidine by 20-30 amino acids. The finger like structure, which is 

formed by two cysteines on one chain and two histidines on another chain (C2H2) is stabilized 

by a zinc (Zc) ion in the center plane [312]. Electron crystallographic structure revealed that a 

classical ZF consists of two β-sheets and one α-helix [313]. The DNA sequence specificity of 

the ZF is determined by the stretch of amino-acids in its α-helix chain that comes in contact with 

DNA [314]. All ZF-containing proteins are made up of multiple ZF motifs. Adjacent fingers are 

connected through a highly conserved region referred to as the linker. The canonical linker 

Threonine-Glycine-Aspartate-Lysine-Phenylalanine (TGEKP) is present in more than half of 
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C2H2-containing transcription factors [315-318]. Each additional ZF connected by a linker 

increases binding affinity of the transcription factor for DNA by 1000-fold [319]. Although the 

role of the α-helix amino-acids in DNA binding is well-known, whether the linker plays an 

active role in DNA binding remains an open question. 

1.2.4.3 Transcriptional regulation of ThPOK induction in positively selected thymocytes 

Thpok expression is primarily regulated at the transcriptional level, as evidenced from 

the tight coordination between Thpok transcription and translation [268, 320]. Lineage and stage 

specific ThPOK expression suggested a silencer/enhancer-driven regulation of expression. 

Indeed, a bottom up approach led to the identification of several cis-regulatory elements 

governing ThPOK expression. Studies using BAC reporter transgenes revealed that a fragment 

extending 17-kb upstream of the transcription start site was sufficient for recapitulating stage 

and lineage specific ThPOK expression in developing thymocytes and mature T-cells [266].  

Initial mapping of the cis-regulatory regions revealed that the Thpok locus was made up of a 

proximal and a distal promoter that are 6-kb apart. Because the first start codon is situated within 

a common downstream exon, both distal and proximal promoters encode the same proteins, 

although the 5’ untranslated region differ between the two transcripts [266]. The promoters 

display distinct activation patterns during thymocyte development with the distal promoter 

preferentially active in CD4+8lo intermediates, while the proximal promoter is active in mature 

CD4+ SP thymocytes [266, 287]. Mapping studies by He et. al. involving sequence homology 

and DNaseI hypersensitivity site (DHS) analysis identified six important highly conserved 

regulatory sites [266, 287]. Two of these DHS sites mapped to the two promoter elements, 

whereas the other DHS sites suggested novel cis regulatory elements. Mice expressing 

transgenic constructs containing different Thpok cis elements and regulating a reporter gene 

expression determined the nature of these regulatory sites [266]. This approach identified a 500-

bp lineage-specific silencer (named the distal regulatory element – DRE) as deletion of this 

motif led to GFP expression in CD4+ as well as CD8+ SP thymocytes but not in DP thymocytes. 

Further investigation showed that the DRE could act as an enhancer as well. The DRE-element 

could augment the expression of a reporter gene under the control of heterologous promoter 

such as human CD2 promoter, which by itself lacked any significant transcriptional activity. 

Together, these findings demonstrated that the DRE governed lineage- and stage-specific 
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expression of Thpok [266]. Several transcription factor consensus binding sites were identified 

in the 500-bp long DRE element suggesting complex regulation of ThPOK during thymocyte 

development. However, their physiological importance needs further elucidation due to 

experimental inconsistencies (Fig. 8). For instance, when the two Runx-binding sites were 

mutated to study their role in the regulation of the DRE silencer activity discrepancies were 

observed. While their mutations in one study resulted in the derepression of Thpok expression, 

in another study Thpok expression was not affected [266, 267, 274].  
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Figure 8. Mouse Thpok gene structure and regulating transcription factors  

(A) The ThPOK regulatory region consists of the two promoters, the distal and proximal 

promoter, which is active selectively in T-cells. Thpok gene contains three cis-regulatory 

domains: a proximal enhancer (PRE), a general T lymphoid element (GTE) and the distal 

regulatory element (DRE), which consists of silencer and an enhancer. While the PRE is 

activated mostly in mature CD4+ T-cells, the DRE enhancer element initiates Thpok induction 

at the CD4+8lo stage. Gata3 and TCF-1/LEF-1 regulate Thpok expression by binding to a region 

upstream of exon II and the GTE, respectively. While Bcl11b is involved regulation of enhancer 

element of the DRE, ThPOK antagonizes the silencer activity. Runx proteins, on the other hand, 

silence Thpok expression by acting on the silencer. (B) Possible DNA configuration in CD4+ 

and CD8+ T-cells [276]. Gata3, Gata binding protein 3; Bcl11b, B cell lymphoma 11b; ThPOK, 

T helper Inducing pox virus zinc finger -krüppel like factor. 

 

 

Apart from the DRE motif with dual silence and enhancer activities, two other enhancers 

have been mapped to the Thpok locus: a general T enhancer (GTE) located downstream of the 

distal promoter that is active early during CD4+ T-cell development and a proximal regulatory 
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enhancer (PRE) located near the proximal promoter that regulates Thpok expression mainly in 

mature CD4+ T-cells; PRE deletion resulted in 20- and 5-fold lower Thpok expression in 

peripheral and thymic CD4+ SP T-cells, respectively. The DRE element is proposed to regulate 

the lineage- and stage-specific function of GTE, but not PRE [266, 321]. Taken together, these 

results suggest that persistent/strong TCR signaling may favor CD4+ T-cell development mainly 

by regulating the DRE and enhancer activities in MHC-II-restricted thymocytes. Interestingly, 

Thpok silencing in DP thymocytes, prior to its TCR-mediated induction at the CD4+8lo stage, is 

only partially dependent on the DRE element as its deletion leads to mild derepression of Thpok 

in only a fraction of DP thymocytes [322].  

1.2.4.4 Upstream regulatory pathway involved in regulating ThPOK expression 

The upstream regulatory network of transcription factors that controls ThPOK 

expression in MHC-II-restricted thymocytes is unclear. Most of the transcription factors that 

have been reported to induce ThPOK expression, also seem to be involved in the regulation of 

the CD8+ lineage fate [275, 323, 324]. The group of Hai-Hui Xue reported that the transcription 

factors TCF-1 and LEF-1 governed CD4+ T-cell development by directly regulating Thpok 

induction (Fig. 8) [323]. However, this was quickly followed by another publication by the same 

group, revealing that the TCF/LEF transcription factors were also needed for the development 

of the CD8+ lineage fate [324]. Similarly, the zinc finger transcription factor Bcl11b was found 

to be equally important for the CD4+ and CD8+ T-cells development by “priming” Thpok and 

Runx3 in post-selection thymocytes (Fig. 8, 9) [275]. It is possible that the function of TCF/LEF 

and Bcl11b in MHC-I and MHC-II-restricted thymocytes is regulated by lineage-specific 

binding partners. Finally, the transcription factors Tox and Gata3, which are part of the network 

of proteins that control CD4+ T-cell development, have been proposed to regulate ThPOK 

expression. Impaired CD4+ T-cell development as a result of Gata3 or Tox deficiency could not 

be rescued by overexpression of ThPOK. One possibility for these observations is that Gata3 

and Tox act upstream of ThPOK. Indeed, Gata3 was shown to associate with the proximal 

promoter region and positively regulate Thpok transcription (Fig. 8) [149, 274]. Nonetheless, 

results from Gata3 and Tox gain-of-function experiments indicated that their regulatory roles 

on CD4+ lineage fate are more complex than previously expected [149, 274, 325]. Transgenic 

overexpression of Gata3 in MHC-I-restricted thymocytes, had no effect on lineage fate and 
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failed to induce Thpok expression. Together, these studies suggest that potential role of Gata3 

and, to a much lesser extent Tox in positively regulating Thpok transcription is likely dependent 

on the presence of yet undefined factors. In contrast, the regulatory mechanisms underlying 

Thpok inhibition in MHC-I-restricted thymocytes is far less complex. Ample evidence exists to 

show that recruitment of Runx proteins, with the help of MAZR and/or Tle corepressors, to the 

Thpok silencer is necessary for its inhibitory function and epigenetic silencing of Thpok in 

MHC-I-restricted thymocytes [125, 278, 326].   

1.2.4.5 ThPOK-regulated pathways 

The regulation of CD4+ lineage choice by ThPOK can be accomplished by two 

mechanisms, 1) by activating or suppressing CD4+ or CD8+ lineage specific genes, respectively, 

or 2) by controlling the expression of genes implicated in TCR signaling. Analysis of HD-/- mice 

strongly argues against the latter possibility as functional and molecular readouts of TCR 

signaling show no change in thymic selection or phospho status of molecules critical for TCR 

signaling (CD3ζ, Zap70 and Lck) in the mutant thymocytes [202, 265]. Additionally, the results 

showing that constitutive expression of CD4, which mechanistically restores TCR signaling in 

MHC-II-restricted Thpok-/- thymocytes, did not rescue the HD phenotype providing a strong 

evidence that ThPOK does not regulate lineage commitment by modulating TCR signaling [202, 

287, 288]. 

Although evidence for guanine-rich (GGGAGGG) ThPOK recognition sequence is poor, 

which complicates the identification of potential target genes, several studies support the idea 

that ThPOK regulates expression of lineage-specific genes [327]. For instance, transduction of 

mature CD8+ T-cells with ThPOK downregulated, albeit partially, CD8+ lineage-specific 

genes including Cd8 expression itself, however, it failed to upregulate Cd4 expression.  [287, 

328]. The effect on lineage fate was more striking when ThPOK was introduced in developing 

thymocytes, which revealed a negative reciprocal transcriptional regulation between ThPOK 

and Runx3 (Fig. 8, 9) [287, 328]. ThPOK and Runx3 are the two major transcription factors 

regulating CD4+/CD8+ lineage choice, with ThPOK exerting a dominant role over Runx3 

[329]. Their antagonistic interplay has been proposed to play a central role in CD4+/CD8+ 

lineage commitment of signaled thymocytes. By counteracting Runx3-mediated epigenetic 
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silencing of its own locus, ThPOK establishes a positive feed forward loop that is required to 

establish and maintain the helper program in CD4+ committed thymocytes [321]. Direct and 

indirect reciprocal inhibitory functions were reported for ThPOK and Runx3. While the direct 

transcriptional inhibitory effect of ThPOK on the Runx3 locus is poorly characterised, ThPOK 

is proposed to bind to the Cd4 and Thpok silencer and, thereby, indirectly antagonize the 

Runx3-induced Cd4 and Thpok silencer activity [321]. Recently, it was found that ThPOK 

suppressed cytokine signaling required for Runx3 induction by inducing suppressor of 

cytokine signaling (Socs) genes [293]. Forced expression of one of the members of the SOCS 

family of proteins, SOCS1, was sufficient to restore CD4+ T-cell development in ~50% of 

thymocytes in ThPOK-/- mice [293]. Conversely, ThPOK-mediated CD8+ to CD4+ lineage 

redirection was impaired if Socs1 was ablated [293]. Despite the significant amount of 

knowledge gained so far about the mechanism by which ThPOK promotes CD4+ commitment, 

important questions remain unanswered as outlined below in section 1.3. 
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Figure 9. Mouse Runx3 gene structure  

(A) Runx3 can be transcribed from two promoters, a distal and a proximal promoter, similar to 

Thpok. Only the distal-driven transcript is sufficient for protein synthesis. Genetic manipulations 

have helped determine that the three regulatory regions of Runx3 function as enhancers [276]. 

Although the two most upstream regulatory regions contain ThPOK consensus sequences, the 

evidence of direct binding is lacking [276]. The exact mechanism by which IL-7-signaling 

induces Runx3 remains to be determined. However, ThPOK-induces Socs proteins, which 

terminate cytokine signaling and inhibits Runx3 upregulation. (B) Proposed DNA structure of 

Runx3 gene in CD4+ and CD8+ T-cells [276]. IL-7, interleukin-7; ThPOK, T helper Inducing 

pox virus zinc finger -krüppel like factor. 

 

 

1.2.4.6 Evidence for a dose-dependent effect of ThPOK on CD4+/CD8+ lineage fate 

Multiple lines of evidence suggest that ThPOK acts in a dose dependent manner in CD4+ 

lineage choice of MHC-II-signaled thymocytes. In mice carrying a hypomorphic allele of 

Thpok, inefficient induction of ThPOK resulted in a lineage redirection of a fraction of MHC-

II-restricted thymocytes into CD8+ lineage. In these mice the cells that remained as CD4+ SP T-
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cells expressed significantly lower ThPOK levels than WT CD4+ T-cells and displayed 

cytotoxic functions. This suggested that lower amounts of ThPOK, while enough for CD4+ T-

cell development, failed to establish/maintain the helper program, demonstrating that higher 

physiological ThPOK expression levels are required in MHC-II-restricted thymocytes for 

proper CD4+ helper T-cell development [320, 321]. In the same way, ablating Thpok in the 

peripheral CD4+ T-cells led to expression of cytotoxic effector molecules indicating that even 

after the establishment of the CD4+ lineage fate in the thymus ThPOK is essential for the 

maintenance of helper lineage [330-332]. Collectively, these observations clearly indicate that 

a threshold of ThPOK expression is needed to activate and maintain the expression of helper 

function genes in MHC-II-signaled thymocytes. 

1.2.5 Structural biology of the TCR complex  

The role of TCR signal strength in lineage commitment is well described in a previous 

section. In this section, I will describe the different components of the TCR complex, regulators 

of TCR signaling, the downstream effector molecules, and how they come together to influence 

T-cell development and lineage fate.  

1.2.5.1 The αβTCR-CD3 complex 

TCR complex consists of a covalently linked heterodimer of αβ TCR chains and three 

dimeric signaling modules, CD3δε, CD3γε, and ζζ, that are noncovalently associated with TCR 

chains [333]. While ζζ homodimer is covalently linked, two heterodimers of the CD3ε chain are 

formed by non-covalent pairing with CD3δ and CD3γ [334-338]. The formation of the 

heterodimers CD3δε, CD3γε and TCR is mediated through the interaction of their extracellular 

Ig domain with cysteine residues in the constant regions of TCR chains forming disulfide bond 

[339-342]. By contrast, because the ζ-chain has a very short ectodomain, it is through the TM 

domain that the disulfide-linked ζζ homodimer is formed [334, 343, 344]. TCR and CD3 chains 

assemble primarily via their TM domains that results in charged residues neutralized leading to 

stable assembly, transport and surface expression of the complex. While CD3 ε, δ, and γ contain 

one ITAM, ζ-chains have three ITAMs in their cytoplasmic tail. A close examination of the TM 

regions of the TCR proteins reveal that TCRα protein has two basic amino acids, while TCRβ 

chain has a single basic residue in their TM domains. Likewise, each subunit of the signaling 
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CD3 modules contains one TM acidic residue that can interact with the TCR basic residues 

[345-348]. Detailed analyses have revealed the following architecture of the αβTCR-CD3 

complex: each TCRα associates with one of each CD3δε and ζζ modules, while the TCRβ 

associates with the CD3γε module [334, 338, 349]. This suggests that there are 10 ITAMs per 

TCR complex, which serves to amplify TCR signal transduction following receptor-ligand 

engagement during thymocyte development or mature T-cell response to an antigen.  

Phosphorylation of ITAMs in the CD3 and ζ chains is the first detectable biochemical 

readout following TCR stimulation [350]. The efforts made to understand the early events of 

TCR signal transduction has unquestionably helped us elucidate more precisely the role of TCR 

signaling in T-cell development. The cytoplasmic domains of the TCR signaling modules are 

portrayed, by most textbook as flexible chains in the cytoplasm, with full access to the 

downstream effector molecules that could result in constant signal transduction. However, 

closer proximity of the negatively charged phosphatidylserine present in the inner leaflet of 

membrane lipid bilayer to the positively charged cytoplasmic domains of CD3ε and ζ raised the 

possibility of potential interactions between the cytosolic tails of the TCR complex and the 

phospholipid bilayer [349, 351-354]. Indeed, using synthetic lipid bilayer it was established that 

in resting T-cells ITAM domains of the CD3ε and ζ proteins are buried inside the lipid bilayer. 

The initial triggering events leading to the release of the cytoplasmic tail of CD3ε and ζ from 

the membrane remain elusive. Several hypotheses have been put forward:1) T-cell – antigen 

presenting cell (APC) interactions generating mechanical force could drive the dissociation of 

the ITAM from the membrane, 2) microclusters of TCR-CD3 complexes and their could cause 

spontaneous dissociations of CD3 cytoplasmic tails as a consequence of competitive binding 

between the cytosolic molecules of the different TCR complexes to the phospholipid bilayer, 3) 

microcluster formation could initiate spontaneous release of the cytoplasmic domains by 

modulating distribution of phospholipids in the inner leaflet within the vicinity of the ligand 

engaged TCR/CD3 complex [355, 356] [349, 354]. However, these hypotheses have yet to be 

tested in a reliable T-cell activation model [357, 358].  
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1.2.5.2 Lck and regulation of TCR signaling  

The tyrosine kinase Lck, a member of the Src family of kinases, is the most proximal 

signal transducer and, like all Src family kinases, consists of a single src homology 2 (SH2) and 

SH3 domains and a catalytic domain (SH1). Phosphorylation status of two tyrosine residues, 

Tyr394 present in the catalytic and Tyr505 present in the non-catalytic C-terminal domains, 

regulate the kinase function [49]. Tyr394, when phosphorylated, positively regulates kinase 

activity by stabilizing the active form of Lck. Tyr394 can be trans-phosphorylated by the other 

Src kinase such as Fyn or other Lck molecule or autophosphorylated. On the other hand, 

phosphorylation of Tyr505, a highly conserved regulatory tyrosine present in all Src kinases, 

acts as a negative regulator of the kinase activity by forming an autoinhibitory conformational 

loop via association with SH2 domain. Accordingly, mutation of these regulatory tyrosine 

residues alters Lck activity and TCR signal strength [210, 211, 359, 360]. These mutant variants 

of Lck provided an important tool for the study of TCR signaling in T-cell development and 

CD4+/CD8+ lineage choice. 

The kinase Csk and the phosphatase CD45 have been reported to phosphorylate and 

dephosphorylate Tyr505 residue in Lck, respectively [361, 362]. Other negative regulators 

include tyrosine-protein phosphatase non-receptor type 22 (PTPN22) and the protein tyrosine 

phosphatase - rich in proline, glutamic acid, serine, and threonine (PTP-PEST) tyrosine 

phosphatases, which act primarily by dephosphorylating Tyr394 [363, 364] In thymocytes, 

CD45 deficiency impairs ITAM phosphorylation and downstream activation events by 

increasing the pool of inhibitory Tyr505 phosphorylated form of Lck [50, 365-368]. These 

results strongly suggest that CD45 is involved in the early events of T-cell activation. 

Interestingly, several reports suggest that CD45 may negatively regulate Lck function by 

dephosphorylating Tyr394 as well, although studies employing physiologically relevant models 

have failed to confirm this [366, 368-371]. The counteracting forces of Csk and CD45 on Lck 

activity provide a tonic signal that maintain T-cells in a steady state (Fig. 10). When a Csk 

mutant with reduced activity was produced, investigators observed spontaneous TCR activation 

in the absence any stimulus due to decreased phosphorylation of inhibitory Tyr505 of Lck [372]. 

Interestingly, these TCR activation events were subsequently found to require the action CD45 

[373]. The evidence showing that titration of Csk and CD45 levels correlated with increased 
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and decreased phosphorylation at Tyr394 or Tyr505, respectively, indicated that basal level of 

phospho-turnover at these regulatory domains is highly dynamic [366, 368]. 

 

 

Figure 10. Regulation of Lck function 

This diagram shows the four different phosphorylation states of Lck on the basis of the 

phosphorylation status of Tyr394, and Tyr505. Phosphorylation of Tyr394, which is located in 

the catalytic domain, and Tyr505 are associated with increased and decreased enzymatic 

activity, respectively. This drawing also shows the kinase (Csk) and phosphatases (CD45 and 

PTPN22) that are thought to control the alteration between the different phosphorylation states. 

While SH2 and SH3 are structural domains that contribute to the overall protein conformation, 

the catalytic domain corresponds to SH1. PTPN22, protein tyrosine phosphatase, non-receptor 

type 22; SH, Src homology. Figure adapted from Chakraborty and Weiss [49].  

 

It is important to note that most reports looking into the initial TCR triggering events 

have primarily focused on assessing ITAM phosphorylation levels. This may be misleading, as 

there are several T-cell subsets that have constitutively phosphorylated ζ-chain, even in the 

resting state [374-377]. In fact, Csk inhibition, which induces spontaneous T-cell activation, had 

minimal effects on the phosphorylation status of ζ-chain when measured in ex vivo thymocytes 

[372]. Hence, assessing phosphorylation/activation status of downstream effector molecules, 

such as Zap70, may be more accurate. In stimulated, but not resting, thymocytes Zap70 is bound 

to the doubly phosphorylated ζ-chain ITAM via its tandem SH2 domain [378]. This step is 

required to release Zap70 from its inhibitory conformation and facilitate Lck-mediated 
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transphosphorylation, which are critical events for TCR signal amplification. Interestingly, 

transphosphorylation of Zap70 by Lck does not seem to occur in steady state T-cells and 

thymocytes, suggesting that Zap70 phosphorylation status may be a more reliable predictor of 

functional activation.  

1.2.5.3 TCR signaling pathway 

Upon TCR-ligand engagement a signal amplifying effect, initiated by Lck-mediated 

activation of Zap70, can trigger productive downstream TCR signaling [49]. Co-localization of 

the co-receptor-linked Lck to the ITAM-docked Zap70 occurs upon TCR stimulation by 

selecting ligand. Once in close proximity, Lck phosphorylates Zap70 at the Tyr319, thereby 

relieving the autoinhibitory constraint [379]. This phosphorylation event activates Zap70 and 

enables trans-autophosphorylation of Zap70 at Tyr493, which serves as a docking site for Lck. 

This is thought to stabilize the active conformation of Lck and help antagonize the negative 

feedback loop mediated by Csk and PTPN22 phosphatases [49, 379]. Subsequently, Zap70-

bound active Lck can generate a positive feedback loop by promoting the phosphorylation of 

other molecules of Lck Tyr394 and Zap70 Tyr319. Ultimately, the phosphorylation build-up 

helps ensure T-cells reach the TCR signaling threshold required for signal transduction.   

Zap70 phosphorylation primarily regulates phospholipase C γ1 (PLCγ1) activation, cytosolic 

Ca2+ mobilization, and activation of distal signaling pathways like NFAT, Activator protein-1 

(AP-1), and NF-κB [380, 381]. Intense research helped unveil several components that 

constitute the proximal signalosome for TCR signal transduction. Two key adaptor proteins 

phosphorylated by Zap70 are the transmembrane linker for the activation of T-cells (LAT), and 

the cytosol-associated SH2 containing leukocyte phosphoprotein of 76 kDa (SLP76) [382, 383]. 

These two adaptors form the proximal signaling complex. The function of this complex is to 

orchestrate the recruitment of several effector molecules such as PLCγ1, PI3K, growth factor 

receptor-bound protein 2 (Grb2) and growth factor receptor-bound protein 2-related adaptor 

downstream of Shc (Gads) [384-387]. While LAT recruits Grb2-Sos complex for Ras activation, 

SLP76 recruits Vav1, IL-2-inducible T-cell kinase (Itk), and other adaptor proteins to the 

complex [388-391]. The synchronized loading of the different components to the complex is 
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important for stability of TCR signalosome leading to optimal activation. SLP76-recruited Vav1 

is important to activate Ras-related C3 botulinum toxin substrate 1 

(Rac1)-dependent actin reorganization, which is critical to sustain TCR-induced proliferation 

and migration [380, 391]. Activation of PLCγ1 represents a key event in connecting the 

proximal and distal signaling branches of the TCR signaling pathway. Activated PLCγ1 

catalyses the hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2) into two secondary 

effector molecules – inositol triphosphate (InsP3), and diacylglycerol (DAG) [380, 392]. InsP3 

triggers the influx of the secondary messenger Calcium (Ca2+), which in turn triggers the 

activation of the calcineurin-NFAT signaling pathway. DAG, on the other hand, can activate 

multiple pathways, like protein kinase Cθ (PKCθ) and PDK1-mediated pathways [392, 393]. 

These events culminate in the activation and translocation of NFAT, AP-1 and NF-κB 

transcription factors to nucleus leading activation/suppression of genes that regulate various 

aspects of T-cell development, such as survival and differentiation. However, at present it is not 

known which of these TCR-induced signaling pathway lead to the activation of Thpok in the 

signaled thymocytes (Fig. 11). 

1.2.5.4 TCR signaling threshold in immature and mature T-cells 

Detailed transcriptional analysis revealed, as expected, that gene-expression profile of 

DP and SP thymocytes differ greatly (22). Some of these genes that are distinctively regulated, 

encode proteins involved in TCR proximal signaling events, include thymocyte-expressed 

molecule involved in selection (Themis), Tespa and Scn4b [394-396]. Ca2+ mobilization is a very 

important signaling event triggered by TCR stimulation [397]. While Tespa’s specific function 

remains to be fully elucidated, Tespa and Scn4b encoded proteins regulate Ca2+ mobilisation 

[395, 396]. Scn4b encodes a subunit (SCN4B) of the voltage-gated sodium channel (VGSC) 

that is critical for the regulation of Ca2+ influx, as its deletion was shown to block Ca2+-

dependent positive selection [396]. Conversely, VGSC overexpression in mature T-cells 

enhanced sensitivity to TCR signals. Themis, on the other hand, facilitates positive selection by 

attenuating TCR signaling threshold with the help of the zinc-finger protein Schnurri-2 [394, 

398].  
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Apart from these TCR signaling modulating molecules, microRNAs, a group of small 

non-coding RNAs, have recently been found to play an essential role in T-cell development. 

The microRNA, miR-181 in particular, shows preferential expression in DP thymocytes 

compared to SP thymocytes.  Results from genetic manipulations in rodents have demonstrated 

that miR-181 can regulate responsiveness to TCR stimulation by repressing negative regulators 

of early TCR signaling events, such as Src homology region 2 domain-containing phosphatase-

2 (SHP-2), PTPN22, Dual Specificity Phosphatase 5 (DUSP5) and DUSP6 [399-401]. Together 

these results demonstrate that DP thymocytes have a lower minimal threshold for TCR signaling 

compared to SP thymocytes [402].  

1.2.5.5 MHC class-I- vs MHC class-II-specific TCR signaling  

According to the kinetic signaling model for CD4+/CD8+ lineage fate, the persistence of 

TCR activity during the CD4+8lo stage is the main lineage determining factor. Hence, if 

CD4+/CD8+ lineage fate is quantitatively proportional to the activity of TCR signalling, then the 

constitutive expression of the CD8 co-receptor in MHC class-I-restricted thymocytes is 

expected to induce a CD8+ to CD4+ lineage redirection. However this was only partially 

observed, which is suggestive of the presence of a complementary qualitative signal in MHC 

class-II-restricted thymocytes [220, 287].  

For the rest of this section, the “duration” of the TCR signaling does not refer to the same 

temporal duration-of-signal mentioned earlier in the “kinetic signaling” section, but to the 

individual TCR-pMHC encounters at the cellular level. 

It has recently been shown that a voltage-gated Na+ channel (VGSC) increases the 

duration of activation of Ca2+ signaling in MHC class-II- vs class-I-restricted thymocytes by 

stimulating Ca2+ influx [163, 396, 403]. This in turn could potentially affect the transcription 

outcome in MHC class-II- vs class-I-restricted thymocytes as different levels of Ca2+ regulate 

distinct target genes [160, 404]. Similarly, in situ analyses have observed nuclear translocation 

of cytosolic NFAT during positive selection of MHC class-II- but not class-I-restricted 

thymocytes [163, 405-407]. While this would certainly affect the transcriptional outcome of 

positively selected MHC class-II- compared to class-I-restricted thymocytes, differences in 
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NFAT localization could be the result of a different pattern of Ca2+ signaling in MHC class-II-

restricted thymocytes [160, 404, 408].  

It is important to note that prolonged activation of Ca2+ signaling could also regulate the 

quantitative properties of TCR signaling by increasing the strength of the TCR-pMHC 

interaction [163, 396, 405]. Indeed, individual interactions with pMHC bearing stromal 

appeared to last longer for MHC class-II-restricted thymocytes (15 – 30 min) compared to MHC 

class-I-restricted thymocytes (~4 min) [163, 403].  

Hence, although there is considerable evidence in support of qualitative differences 

between positively selecting class-II- and class-I-restricted signaling, like Ca2+- and NFAT-

dependent gene expression, further work needs to be done for better characterization. [160, 163, 

396, 403, 404].  
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Figure 11. Overview of the most important TCR signaling pathways 

Activation of the T-cell receptor (TCR) is mediated by binding to the peptide-MHC-complex 

expressed on the antigen presenting cells. The tyrosine kinase Lck binds to the cytosolic tail of 

the co-receptor, which is recruited to the TCR-pMHC complex upon stimulation, leading to a 

cascading phosphorylation events that triggers the activation of the linker for activation of T-

cells (LAT)-associated effector molecules. Signal, subsequently, is propagated through three 

major pathways: the Ca2+-calcineurin signaling pathway, which results in the translocation of 

the nuclear factor of activated (NFAT) into the nucleus, the mitogen-activated protein kinase 

(MAPK) pathway, which results in the activation of Fos, Jun and activator protein-1 (AP-1), 

and nuclear factor-κB (NF-κB) signalling pathway, which results in the transport of the REL 

and NF-κB transcription factors into the nucleus. Together, these events lead to T-cell 

proliferation and effector functions. ADAP, adhesion and degranulation promoting adaptor 

protein; BCL-10, B-cell lymphoma 10; CARMA1, CARD-containing MAGUK protein 1; 

CDC42, cell division control protein 42 homologue; CRAC, calcium release-activated calcium 

channel; DAG, diacylglycerol; ER, endoplasmic reticulum; ERK, extracellular signal regulated 

kinase; GADS, growth factor receptor-bound protein 2 (GRB2)-related adaptor protein 2; InsP3, 

inositol trisphosphate; ITK, IL-2-inducible T-cell kinase; JNK, Jun N-terminal kinase; MALT1, 

mucosa-associated lymphoid tissue lymphoma translocation protein 1; MEKK, Mitogen 

activated protein (MAP)/ERK kinase kinase; MHC, Major histocompatibility complex; PKCθ, 

protein kinase Cθ; PLCγ1, phospholipase Cγ1; pMHC, peptide-MHC; PtdIns(4,5)P2, 

phosphatidylinositol 4,5-bisphosphate; RASGRP1, Ras guanyl-releasing protein 1; SLP76, 

SH2-domain-containing leukocyte protein of 76 kDa; SOS1, son of sevenless homologue 1. 

Figure adapted from Hosokawa and Rothenberg 2018 [79] 
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1.3 Rationale 

Following successful positive selection, αβ T-cells migrate to the medulla where they 

differentiate into either CD4+ helper or CD8+ cytotoxic T-cells from a common DP precursor. 

This important decision is known as CD4+/CD8+ lineage choice with T-cell receptor (TCR)-

mediated signaling playing a central role in this process. While sustained TCR signaling 

promotes CD4+ lineage choice, disrupted TCR signaling results in CD8+ lineage choice. 

Although, the expression pattern of various components of the TCR complex, and its 

downstream signal-transducing factors, is modulated as thymocytes transition from the signaled 

DP stage to the CD4+ or CD8+ SP stage, their expression and regulation in mature CD4+ SP 

thymocytes compared to CD8 thymocytes remain to be fully elucidated. The BTB-ZF 

transcription factor ThPOK has been identified as a critical factor for commitment to and 

maintenance of the CD4+ T helper lineage. Reduced Thpok expression from hypomorphic allele 

results in the upregulation of CD8+-specific cytotoxic genes in MHC-II-restricted T-cells. The 

transcription factors directly controlling Thpok expression are not well characterized. 

Nonetheless, there is a strong evidence linking TCR signaling to Thpok induction.  In fact, it has 

been suggested that the “dose-dependent” effect of TCR signaling on lineage fate and cell 

function is mediated molecularly by ThPOK, implying that the quantitative MHC-II-restricted 

TCR signaling instructs thymocytes to become CD4+ T-cells by inducing higher ThPOK 

expression levels. This fits nicely with the kinetic signaling model for lineage fate commitment, 

where ThPOK is proposed to act as a molecular sensor for the duration of TCR signaling. If this 

concept is correct, then, sustained TCR signaling in MHC-I-restricted thymocytes would induce 

similar levels of ThPOK detected in MHC-II-restricted thymocytes and make them become 

CD4+ T-cells. Unexpectedly, this was not observed. Knock-in expression of the CD8.4 co-

receptor construct, which increases TCR signaling in MHC-I-restricted T-cells, did not result in 

the redirection of MHC-I-specific thymocytes into CD4+ lineage. Moreover, assuming that TCR 

signaling influences lineage fate by inducing higher levels of ThPOK expression, it implies that 

ThPOK is the only CD4+ lineage commitment factor downstream of the TCR signaling pathway. 

Yet, in mice deficient for ThPOK and Runx proteins, more than 40% of selected cells were 

CD4+ SP T-cells. These results are in contradiction with the previously proposed notion that 
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ThPOK is the only CD4+ lineage fate determining factor. Moreover, it is not clear how TCR 

signaling influences ThPOK-mediated CD4+ lineage choice.  

 

1.4 Hypothesis and aims 

The work presented here is aimed at better understanding the mechanism that governs 

CD4+/CD8+ lineage commitment in the thymus. In the positively selected thymocytes, 

sustained/stronger TCR signaling is proposed to “open” the spatio-temporal lineage 

commitment window for a longer time for Thpok induction and to exert its impact. If so, we 

hypothesize that the higher amount of ThPOK may be necessary for redirecting MHC-I, 

compared to MHC-II, -specific thymocytes into CD4+ lineage. Further, as CD4+ lineage fate can 

occur in the absence of ThPOK/Runx proteins and that quantitatively different MHC-I- and 

MHC-II-specific TCR signaling appear to differ qualitatively as well, we hypothesized that 

TCR-intrinsic properties in MHC-II-restricted thymocytes regulate CD4+/CD8+ lineage choice 

via a mechanism other than inducing Thpok expression. However, the elucidation of the effect 

of TCR signaling on lineage fate has been hindered by the lack of appropriate mouse models. 

In order to test our hypothesis, first, we have aimed to study independent effect of enforced 

ThPOK and TCR signaling on lineage commitment of MHC-I-specific thymocytes, and 

subsequently assess their combined impact on lineage rescue or redirection. We have then 

evaluated the impact of MHC-I- and MHC-II-specific TCR signaling on CD4+ lineage choice 

in the presence of the same amount of ThPOK allowing us to evaluate quantitative and 

qualitative aspect of TCR signaling on ThPOK-mediated CD4+ lineage choice. 
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2.1 Résumé 

Une signalisation continue par le RCT est essentielle pour l'induction du facteur de 

transcription ThPOK dans les thymocytes restreints au CMH de classe II. ThPOK, dont 
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l’expression est indispensable pour le choix de la lignée CD4+, inhibe les gènes requis pour le 

développement de la lignée CD8+. La perte et le gain de fonction de ThPOK redirigent les 

thymocytes restreints au CMH de classe II et de classe I dans les lignées CD8+ et CD4+, 

respectivement. Cependant, l’impact d’un même taux d’expression de Thpok sur la 

différentiation en CD4+ des thymocytes restreints au CMH de classe I ou de classe II et le rôle 

de la signalisation du RCT dans ce processus restent à élucider. Par ailleurs, il n’est pas sûr que 

la suppression du programme cytotoxique par ThPOK soit suffisante pour rediriger les 

thymocytes restreints du CMH de classe I en lignée CD4+. Dans ce travail, nous avons étudié la 

différenciation des thymocytes restreints au CMH de classe I dans la voie CD4+ dans trois 

lignées de souris transgéniques surexprimant le facteur de transcription ThPOK. Nos analyses 

montrent que dans l’une des lignées transgéniques, malgré la surexpression de ThPOK bloquant 

le programme cytotoxique par rapport aux CD4+ WT contrôle, la redirection des thymocytes 

restreints au CMH de classe I en CD4+ n’est que partielle. Cela nous a conduit à retrouver un 

grand nombre de lymphocytes T matures CD8+ et DN en périphérie. Cependant, ce même 

transgène peut restaurer complètement la fonction endogène de ThPOK dans des thymocytes 

Thpok-/- restreints au CMH de classe II. De plus, nous avons observé que pour un même taux 

d’expression de ThPOK, l’augmentation de la puissance du signal du RCT dans les thymocytes 

restreints au CMH de classe I génère moins de cellules T CD4+ par rapport à ceux restreints au 

CMH de classe II. Ces résultats suggèrent que la fonction de ThPOK dans le développement des 

cellules T CD4+ est fortement influencé par la force du signal du TCR et par la spécificité du 

CMH. 
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2.1 Abstract  

Sustained TCR signaling is critical for ThPOK induction in MHC-II-signaled 

thymocytes leading to the CD4+ helper lineage commitment. ThPOK suppresses cytotoxic 

program in the signaled thymocytes and is shown to be necessary and sufficient for the CD4+ 

lineage choice. Accordingly, loss and gain of ThPOK function redirects MHC-II- and MHC-I-

signaled thymocytes into the CD8+ and CD4+ lineage, respectively. However, the impact of a 

defined ThPOK level on the CD4+ helper lineage choice of MHC-II- and MHC-I-specific 

thymocytes and the role of TCR signaling in this process is not evaluated. Equally, it is not clear 

if suppression of the cytotoxic program by ThPOK is sufficient in redirecting MHC-I-restricted 

thymocytes into the CD4+ lineage. Here, we have investigated CD8+ to CD4+ lineage redirection 

in three independent ThPOK overexpressing transgenic mouse lines. Our analysis show that one 

of the transgenic lines, despite overexpressing ThPOK compared to CD4+ WT control and 

compromising cytotoxic program, failed to redirect all MHC-I-signaled thymocytes into the 

CD4+ lineage resulting in the continued presence of CD8+ mature T-cells and the generation of 

a large number of DN mature T-cells. Critically, the same ThPOK transgene completely restored 

the CD4+ lineage commitment of MHC-II-specific Thpok-/- thymocytes. Importantly, 

augmenting TCR signaling significantly enhanced the ThPOK-mediated CD4+ lineage choice 

of MHC-I-specific thymocytes but was still substantially less efficient than that of MHC-II-

specific thymocytes expressing the same amount of ThPOK. Together, these data suggest that 

the ThPOK-induced CD4+ lineage commitment is strongly influenced by TCR signal strength 

and MHC specificity of developing thymocytes.  
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2.2 Introduction 

Functionally competent mature αβ T-cells play a central role in the cell-mediated immune 

responses [79, 409-411]. Development of these cells in the thymus is an ordered process 

consisting of distinct differentiation stages defined by the expression of CD4 and CD8 co-

receptors. Precursor thymocytes are CD4-CD8- double negative (DN), which following pre-T-

cell receptor (pre-TCR) transduced signaling differentiate into CD4+CD8+ double positive (DP) 

thymocytes. The DP thymocytes expressing low level of TCRαβ receptor and the associated 

CD3 chains undergo thymic selection such that those expressing high affinity TCR for self-

peptide/self-MHC (pMHC) are negatively selected, while those expressing low affinity TCR for 

pMHC are positively selected [64, 68, 412]. Positively selected thymocytes further differentiate 

into MHC-II-specific CD4+ helper and MHC-I-specific CD8+ cytotoxic mature thymocytes that 

populate the peripheral lymphoid organs [189, 222, 223]. How pMHC specificity of TCR/co-

receptor translates into MHC-II-specific CD4+ helper and MHC-I-specific CD8+ cytotoxic 

lineage is not completely understood.  

 

The CD4+/CD8+ binary lineage fate decision is strongly influenced by the duration and 

intensity of TCR signaling. A widely accepted kinetic signal strength model posits that 

positively selected DP thymocytes, irrespective of their MHC specificity, transcriptionally 

terminate Cd8 expression and become lineage uncommitted CD4+CD8lo thymocytes [189, 269, 

413]. Continued Cd4 transcription at this stage induces sustained/stronger signal in MHC-II-

specific thymocytes leading to an error-free CD4 lineage choice [414], whereas down-regulation 

of CD8 results in disrupted/weaker signal in MHC-I-specific thymocytes leading to CD8+ 

lineage choice. Lck, a Src family tyrosine kinase essential for T-cell development, is strongly 
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associated with the cytoplasmic tail of CD4 than that of CD8 [192, 210, 415]. Thus, increased 

Lck activity due to continued CD4 expression then results in stronger TCR signaling in MHC-

II- than in MHC-I-specific thymocytes [210, 211]. Indeed, altered Lck activity is shown to direct 

positively selected thymocytes into alternate lineages [211, 416].  

 

Induction of ThPOK (encoded by ZBTB7B, hereafter referred to as Thpok) in MHC-II-

signaled thymocytes is both necessary and sufficient for the CD4+ helper lineage commitment 

[276]. Similarly, Runx3 induction in MHC-I-signaled thymocytes establishes cytotoxic program 

in the CD8+ committed thymocytes [413]. ThPOK is proposed to suppress Runx3 expression 

and thereby impair initiation of cytotoxic program in MHC-II-signaled thymocytes leading to 

the CD4+ helper lineage choice [276, 293, 320, 417]. Accordingly, loss and gain of ThPOK 

function results in the production of MHC-II-specific CD8+ cytotoxic and MHC-I-specific CD4+ 

helper T-cells, respectively [265, 268]. The Thpok silencer-mediated heritable epigenetic 

modifications control ThPOK expression in the signaled thymocytes and is suggested to play an 

important role in the CD4+/CD8+ lineage choice [322]. These studies suggest that ThPOK 

induction during a temporal developmental window is critical for the CD4+ lineage choice [322]. 

Persistent TCR signaling in MHC-II-specific thymocytes is proposed to reverse silencer-

induced epigenetic modifications at the Thpok locus leading to stable ThPOK expression, which 

then suppresses cytotoxic program and thereby commits these cells into the CD4+ helper lineage 

[293, 329]. Based on these and other studies, it is proposed that persistent TCR signaling leading 

to ThPOK induction and extent of this induction during a temporal lineage commitment window 

affects the CD4+/CD8+ lineage fate of positively selected thymocytes [320-322, 418]. Although 

published data suggest that developmental constrain on the CD4+ lineage commitment of MHC-
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I-signaled thymocytes can be overcome by enforced ThPOK expression [265, 268], several 

questions remain to be addressed. For example, it is not clear why ThPOK induction in MHC-

I-signaled thymocytes lacking Tle proteins, which disrupt Runx3 function, or Runx1 and Runx3 

or MAZR and Runx3 results in an incomplete CD8+ to CD4+ lineage redirection or generation 

of “confused” DP mature T-cells [267, 278, 326]. Further, role of TCR signaling in ThPOK-

induced CD4+ lineage choice of MHC-II- and MHC-I-signaled thymocytes is not evaluated. Is 

suppression of the cytotoxic program in itself sufficient for establishing the CD4+ helper 

lineage? Thus, it remains to be investigated if the CD4+ lineage choice, irrespective of MHC 

specificity, requires the same level of ThPOK or it is also influenced by TCR signaling in MHC-

I- vs MHC-II-specific thymocytes.   

 

In the present investigation, we show that the efficiency of CD4+ lineage commitment of 

MHC-I-signaled thymocytes is proportional to ThPOK dose. Further, a ThPOK dose that 

induced the partial CD8+ to CD4+ lineage redirection of MHC-I-signaled thymocytes expressing 

monoclonal or polyclonal TCRs completely restored the CD4+ lineage commitment of MHC-

II-signaled thymocytes expressing monoclonal or polyclonal TCRs in ThPOK-deficient mice. 

Importantly, this differential ThPOK-induced CD4+ lineage commitment correlated, at least in 

part, with TCR signal strength as augmenting TCR signaling significantly enhanced the CD4+ 

lineage choice of MHC-I-signaled thymocytes; however, still it was significantly less efficient 

than the CD4+ lineage choice of MHC-II-signaled cells. Together, our results provide crucial 

insights into the mechanism of ThPOK-induced CD4+ helper lineage choice of thymocytes 

specific for disparate MHC and critical role for TCR signaling in this process.     
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2.3 Materials and methods 

2.3.1 Mice  

MHC-I-restricted OTI+Rag-/- (chicken ovalbumin antigen specific) and P14+TCRα-/- 

(LCMV GP33 peptide specific) transgenic mice were obtained from Taconic Farm or Nathalie 

Labrecque (CRHMR). MHC-II-specific OTII+Rag-/- mice were from Jackson Lab. MHC-II-/- 

and Nur77-GFP mice [419] were obtained from The Jackson Laboratory. All TCR transgenic 

mice were in Rag-deficient background unless mentioned otherwise. ThPOK transgenic mice 

were generated by cloning the genomic DNA encompassing the two coding exons flanking an 

intron into human CD2 expression vector. Following primers were used for cloning the ThPOK 

transgene; forward primer 5`-

GGCGGAATTCCCAGGGAAGCAGAAGATGGGGAGCCCCGAGGA-3` and reverse 

primer 5`-GCCCTTCCCCGGGCTTTTAAGAGGACTCCATGGCACC-3` (ThPOK sequence 

is underlined and ThPOK start codon in the forward primer is in bold letters). PCR product was 

digested with EcoRI and XmaI restriction enzymes, agarose gel purified and cloned into the 

EcoRI and XmaI cut hCD2 expression vector. The cloned DNA insert was sequenced to ensure 

fidelity of the ThPOK coding sequence. DNA was digested to release the insert from the vector 

backbone and agarose gel purified DNA devoid of the vector backbone was injected into the 

fertilized mouse eggs. Three independent founder lines were established and all of them showed 

increased frequency of CD4+ T-cells and severely reduced number of CD8+ T-cells in the 

lymphoid organs. ThPOK deficient mice were generated in the lab or acquired from Dan 

Littman (NYU). Constitutively active Lck transgenic mouse line (dLGF) is described elsewhere 

[211] and was obtained from Paul Jolicoeur [420]. Mice were genotyped by peripheral blood 

analysis and/or PCR of genomic DNA isolated from tail snippets. Lymphoid organs harvested 
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from five to seven-week-old mice were analyzed. Any mice that showed signs of ThPOK-

induced thymic leukemia [421], usually observed in more than 12 week old mice, were excluded 

from the analysis. All mice were housed under specific pathogen free conditions at the Research 

Center Hopital Maisonneuve-Rosemont (CRHMR). Animal care was approved by the 

institutional Animal Care Committee in accordance with the Canadian Committee on Animal 

Care.  

2.3.2 Flow cytometry 

One x 106 thymocytes or red blood cell-depleted spleen cells or stimulated T-cells were 

incubated with a combination of fluorescently labeled antibodies to CD4 (GK1.5), CD8 (53-

6.7), TCRβ (H57-957), CD5 (53-7.3), CD69 (H1.2F3), CD24 (M1/69), CD44 (IM7), CD62L 

(MEL-14), NK1.1 (PK136), CD154 (MR1), IFNγ (XMG1.2), IL-4 (11B11), Vα2 (B20.1), Vβ5 

(MR9-4), ThPOK (D9V5T) or donkey anti-rabbit secondary antibody (Poly4064), phospho-Src 

(pY418; clone K98-37), phosphor-CD3z (pY142, clone 3ZBR4S) and analyzed by flow 

cytometry using LSRFortessa X-20 (BD Bioscience) or LSRII (BD bioscience). Antibodies 

were obtained from Ebioscience, Biolegend or Cell Signaling Technology. For ThPOK staining, 

the human Foxp3 staining kit (eBioscience) was used for cell fixation and permeabilization 

using the manufacturer’s protocol. Data were analyzed using FlowJo software (Tree Star, Inc.). 

Gating strategy involving TCR transgenic mice is shown in Figure 1. Unless mentioned 

otherwise, this flow cytometry gating strategy was used for the analysis of all the thymic and 

splenic T-cells described in the manuscript.  
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2.3.3 Quantitative RT-PCR (QPCR)  

Various thymic or splenic T-cell subsets were FACS purified and total RNA was isolated 

using Trizol (Invitrogen Inc.). Complementary DNAs were synthesized using a commercial kit 

(Bio-Rad). QPCR for Thpok, Runx3d, Socs1, Nur77, Perforin, St8sia6, St3gal2, Cxxc5, and 

endogenous Thpok was performed in triplicate using SyBR green dye (Bio-Rad) or EvaGreen 

(Abcam). Amplification of housekeeping gene Hprt served as an internal control. QPCR data 

were analyzed by Applied Biosystem software ABI 7500 v2.0.5. Data were normalized to Hprt 

expression in each population. Relative expression values were calculated using ΔΔCt method. 

Ratio of gene specific values to housekeeping gene for wild type or OTI reference subset was 

treated as one. Data are presented as an average of triplicate values and standard deviation. 

Following QPCR primers were obtained from the Integrated DNA Technologies or designed in 

our lab;  

total Thpok, TGTCACAAGATAATCCACGGG and GGTCGTAGCTATGCAGGAAG;  

Runx3d, CGACATGGCTTCCAACAG and CGGCGGAGTAGTTCTCATC;  

Socs1, CAGAAAAATGAAGCCAGAGACC and ATTCCACTCCTACCTCTCCAT;  

Nur77, CCATGTGCTCCTTCAGACAG and GCTCTGGTCCTCATCACTG;  

Perforin, GTACAACTTTAATAGCGACACAGTA and AGTCAAGGTGGAGTGGAGGT; 

Endogenous Thpok CCTCAGCGTTCAGGAGAAGAT and GCTGCTGTGGTCTGGGAAT 

(sequence unique for endogenous Thpok is underlined);  

St8sia6, CCACCTCGTAGCTCATGTTAG and CGGCAAGCAGAAGAATATGAC;  

St3gal2, GGTGTTGTGTGACTTGAATTGG and GTTTGACAGCCACTTTGACG;  

Cxxc5, ATCACTGAAACCACCGGAAG and TTGTAGGAACCGAAAGACTGG;  

Hprt, CCTCATGGACTGATTATGGACAG and TCAGCAAAGAACTTATAGCCCC;  
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Thpok transgene copy number, TTGAGGCTGTGGTGGTGGCAGT and 

GGTGAGGAAGAAGAGGAGGA.  

2.3.4 Functional assays 

Mature T-cell subsets from spleen of OTI (CD8+) and OTI mice expressing specific 

ThPOK transgene (CD4+, CD8+, and DN) mice were purified and cultured in the presence of 

irradiated (2500 rads) BL/6 splenocytes pulsed with cognate OVA peptide (SIINFEKL) for 5 to 

7 days. Purified mature T-cell subsets from WT (CD4+ and CD8+) and ThPOK-H+MHC-II-/- 

(CD4+, CD8+, and DN) mice were stimulated with irradiated splenocytes obtained from Balb/c 

mice. In some cases, purified T-cells were stimulated with plate-bound anti-CD3 and anti-CD28 

(in suspension). The stimulated cells were stained with a combination of CD69, CD154, CD4, 

CD8, and TCRβ specific antibodies and analyzed by flow cytometry. For cytokine staining, the 

activated T-cells were re-stimulated with PMA plus ionomycin in the presence of brefeldin for 

4 hours, surface stained, fixed in 2% paraformaldehyde, permeabilized, washed and stained with 

anti-IL-4 and anti-IFNγ antibodies and analyzed by flow cytometry. 

In vitro differentiation culture: FACS sorted thymic subsets were cultured in 96-well flat 

bottom plates at a concentration of 1 x 106 cells/ml. Cultures were maintained in RPMI 1640 

medium (Gibco BRL) supplemented with 10% (vol/vol) FBS, L-glutamine (2mM), 2-ME 

(50μM), streptomycin (100 mg/ml), penicillin (10U/ml) and IL-7 (1ng/ml). After two days of 

culture, cells were collected and analyzed by flow cytometry. 
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2.3.5 Luciferase reporter Assay  

For luciferase reporter assay promoter sequence of Actin and Nur77 was cloned into the 

EcoRV and HindIII cut pGL4.17 vector (Promega). Promoter sequence was amplified using 

genomic DNA and following primers.  

Nur77 promoter, TCGCCGGTCGACTCGATATCAGGAGATGGAGTTCGATGGCCC and 

GTCGCCTCTAGATCAAGCTTACCAAGCACCTTGCAGACCCTTC;  

Actin promoter, GGGGTGGCCGGTACCAGAGACACTAGCTAACGGCCC AND 

GGGCCCGGGAAGCTTCTGGTGGCGGGTGTGGACCGG.  

The promoter-reporter DNA was co-transfected with either a ThPOK-YFP or control YFP 

plasmid (pMSCV) using the lipofectamine 2000 (Invitrogen) at a ratio of 3:1 (promoter-reporter 

to YFP) in 293T HEK cells. Twenty four hours after transfection, an equal number of YFP 

expressing cells were seeded in a 96 flat-bottom plate. Socs1 promoter driven luciferase plasmid 

was used as a positive control (kind gift of Hyun Park, NIH). Luciferase activity was measured 

48 h after transfection using the Luciferase Assay System (Promega).  

Statistical analyses: was performed using Graphpad Software or Microsoft Excel software. 

Data are displayed as a mean with standard deviation error bar. Unpaired two-tailed Student t-

test was used for determining the statistical significance when thymic and splenic T-cell subsets 

from different mice were compared. For experiments involving comparison of T-cell subsets 

isolated from the same mouse, paired Student t-test was used for evaluating the statistical 

significance. P < 0.05 was considered statistically significant. * P < 0.05, ** P < 0.005, and *** 

P < 0.0005. 

 

 



 

85 

2.4 Results 

2.4.1 Characterization of ThPOK transgenic mice 

To investigate if ThPOK-mediated suppression of the cytotoxic program in MHC-I-

signaled thymocytes is in itself sufficient for inducing the CD4+ T-cell helper program and, role 

of TCR signaling and MHC specificity in this process we generated three independent ThPOK 

founder lines (ThPOK-H, ThPOK-163 and ThPOK-611) in which ThPOK expression is driven 

by human CD2 promoter/enhancer cassette [422]. All the progenies of three ThPOK founders 

showed, in agreement with the previously published reports [265, 268], increased and decreased 

frequencies of CD4+ and CD8+ mature T-cells, respectively, in the lymphoid organs (Fig. S1). 

While CD8+ mature T-cells in the spleen (TCR+) and thymus (CD24-CD69-TCR+) of ThPOK-

611+ and ThPOK-163+ mice were almost completely absent, we consistently detected a small 

number CD8+ mature T-cells in the lymphoid organs of ThPOK-H+ mice (Fig. S1A, S1B). 

Accordingly, compared to WT control, CD4+/CD8+ ratio of mature T-cells increased by ~20-

fold in ThPOK-H+ mice and >100-fold in ThPOK-163+ and ThPOK-611+ mice (Fig. S1C).  

In order to investigate the basis of differential CD4+/CD8+ phenotype of the three 

transgenic mice, we analyzed ThPOK protein expression by intracellular staining. In WT mice, 

the basal ThPOK staining observed in preselection DP thymocytes increased as signaled 

thymocytes matured into CD4+CD8lo and CD4+ thymocytes (Fig. S1D). This ThPOK specific 

staining pattern in WT thymic subsets is in agreement with ThPOK induction in MHC-II-, but 

not MHC-I-, signaled thymocytes and its continued expression in CD4+ mature T-cells [265]. 

Importantly, compared to WT control, significantly higher ThPOK expression was observed in 

all the thymic subsets including the preselection DP thymocytes from the three ThPOK 

transgenic mice (Fig. S1E, S1G), which correlated with the observed CD4+/CD8+ phenotype in 
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the thymus of these mice. Interestingly, ThPOK levels in DP thymocytes showed hierarchical 

pattern with that in ThPOK-611 > ThPOK-163 > ThPOK-H; DP thymocytes from ThPOK-611+  

mice showed significantly higher ThPOK level compared to ThPOK-H+ DP thymocytes (Fig. 

S1G). Similar to the thymic subsets, significantly higher ThPOK expressed was observed in the 

splenic CD4+ mature T-cells from the three transgenic mice compared to WT CD4+ mature T-

cells (Fig. S1F, S1G). The differential ThPOK staining in thymocytes from the three transgenic 

mice was not correlated with transgene copy number (Fig. S1H). Interestingly, variegated 

ThPOK expression observed in the preselection DP thymocytes was lost as the signaled 

thymocytes matured as judged by largely uniform ThPOK staining in CD4+CD8lo and CD4+ 

thymocytes and CD4+ splenic T-cells (Fig. S1E, S1F) from the three ThPOK transgenic mice; 

a small number of  CD4+CD8lo and CD4+ thymocytes and mature T-cells, particularly from 

ThPOK-H+ and ThPOK-163+ mice, showed a slightly lower ThPOK staining. At present reason 

for this change in ThPOK expression pattern in DP thymocytes vs mature T-cells from these 

mice is not clear. Irrespective, we consistently observed about 1.5- to 2-fold more ThPOK 

expression in CD4+ mature T-cells from the spleen of three transgenic mice compared to that in 

CD4+ mature T-cells from the spleen of WT mice.  

2.4.2 Impact of ThPOK dose on the CD4+ lineage choice of MHC-I-signaled 

thymocytes 

  To evaluate the impact of differential ThPOK levels on the CD8 to CD4 lineage 

redirection, we bred the three ThPOK transgenic lines to mice expressing MHC-I-restricted 

OTI-TCR (Vβ5+Vα2+; all mice Rag-/-). In these mice intra-thymic signaling in MHC-I-specific 

thymocytes does not induce endogenous ThPOK expression and thus, allow us to study the role 

of transgenic ThPOK expression in the CD8+ to CD4+ lineage redirection. Indeed, we observed 
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a ThPOK dose-dependent impact on the CD8+ to CD4+ lineage redirection in OTI mice 

expressing each ThPOK transgene as judged by the hierarchical pattern of the CD4+ mature T-

cell frequency in the thymus and spleen of these mice (Fig. 1A, 1B) with that in OTI+ThPOK-

611+ > OTI+ThPOK-163+ > OTI+ThPOK-H+ mice. Thus, there were only 16% Vα2+CD4+ 

mature T-cells in the spleen of OTI+ThPOK-H+ mice, whereas it was 44% in OTI+ThPOK-163+ 

and  68% in OTI+ThPOK-611+ mice compared to <1% in OTI control mice (Fig. 1A). Increase 

in the CD4+ frequency observed in the spleen was reflected in the thymus of these mice as well 

indicating an efficient lineage redirection in OTI+ThPOK-611+ mice compared to partial lineage 

redirection in OTI+ThPOK-163+ and OTI+ThPOK-H+ mice (Fig. 1B). As expected, the 

frequency of CD8+ mature T-cells in the thymus and spleen showed opposing pattern (Fig. 1A, 

1B) resulting in the CD4+/CD8+ ratio in OTI+ThPOK-611+ mice significantly higher than that 

in OTI+ThPOK-163+ or OTI+ThPOK-H+ mice (Fig. 1C). We also noticed a significant number 

of DN mature T-cells in OTI+ThPOK-H+ and OTI+ThPOK-163+ mice; as many as 25 to 40% of 

total splenic T-cells were DN in these mice (Fig. 1A). The DN mature T-cells in OTI+ThPOK-

H+ mice did not express NK1.1 and were CD62LhiCD44lo indicating that they were not innate 

or memory T-cells (Fig. S2A) [423, 424].  

Similar to non-TCR transgenic background, ThPOK specific staining in DP thymocytes 

was hierarchical with that in OTI+ThPOK-611+ > OTI+ThPOK163+ > OTI+ThPOK-H+ cells, 

and was substantially higher compared to similar subsets from OTI control (Fig. 1D, 1E). 

Similar to the analysis of ThPOK transgenic mice with WT background, variegated ThPOK 

expression observed in DP thymocytes was lost in a majority to the redirected CD4+ mature T-

cells from the three ThPOK transgenic mice expressing OTI TCR, and was about 1.5 to 2-fold 

higher compared to CD4+ mature T-cells from WT mice (Fig. 1D, 1E). Interestingly, DN and 
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CD8+ mature T-cells from the spleen of OTI+ThPOK-H+ or OTI+ThPOK-163+ mice continued 

to express a significant amount of ThPOK compared to ThPOK levels in CD4+ mature T-cells 

from WT mice (Fig. 1D bottom panels, 1E). While total thymocytes in OTI mice expressing or 

not individual ThPOK transgene were comparable, the frequency and number of selected 

thymocytes were reduced in ThPOK expressing mice likely due to impaired Runx3 expression 

(Fig. 1F; [245, 246, 269]; see below)). As expected, the frequency and number of CD4+ single 

positive thymocytes was significantly increased, while that of CD8+ single positive thymocytes 

decreased in all three ThPOK transgenic OTI lines compared to control. Similarly, frequency 

and number of TCR+ splenic cells were reduced in ThPOK expressing OTI mice compared to 

control likely reflecting reduced thymic maturation and survival/expansion of the redirected T-

cells in the periphery (Fig. 1F; ref 23, 24). Nevertheless, the frequency and cell number 

compilation data show significant increase in CD4+ and/or DN mature T-cells and decrease in 

CD8+ mature T-cells in all OTI mice expressing individual ThPOK transgene compared to 

control (Fig. 1F). Additionally, the DN mature T-cells appeared to be mostly derived from CD4+ 

thymocytes in OTI+ThPOK-H+ mice (Fig. S2B). 

To rule out the possibility that the ThPOK-H-mediated partial CD8+ to CD4+ lineage 

redirection was not specific to OTI model, we introduced ThPOK-H transgene into mice 

expressing MHC-I-specific monoclonal TCR (P14-TCR) or polyclonal TCRs (MHC-II-/-). 

Similar to OTI+ThPOK-H+ mice, P14+ThPOK-H+ mice also showed partial CD8+ to CD4+ 

lineage redirection as judged by the presence of CD4+, DN and CD8+ mature T-cells in the 

spleen of these mice (Fig. S3A). Importantly, introduction of ThPOK-H transgene in MHC-II-/- 

mice also resulted in the partial CD8+ to CD4+ lineage redirection (Fig. 2A, 2B) and significant 

increase in the CD4+/CD8+ ratio in the thymus and spleen of ThPOK-H+MHC-II-/- mice 



 

89 

compared to MHC-II-/- mice (Fig. 2C). Similar to OTI model, we noted decrease in thymic 

selection and mature splenic T-cell frequency and number in ThPOK-H+MHC-II-/- mice (Fig. 

2D). In the thymus of ThPOK-H+MHC-II-/- mice the frequency and number of CD4+ thymocytes 

was significantly increased, while that of CD8+ thymocytes was significantly decreased 

compared to control mice (Fig. 2D). In the spleen, we observed a similar pattern except that 

number of CD4+ mature T-cells were only slightly higher in ThPOK-H+MHC-II-/- mice 

compared to control mice likely due to their differentiation into DN mature T-cells in ThPOK-

H+MHC-II-/- mice (Fig. 2B, 2D). Together, the generation of a small number of CD4+ mature 

T-cells and the presence of a substantial number of DN mature T-cells with cytotoxic function 

but lack of activation of helper function suggest that ThPOK-H induces partial CD8+ to CD4+ 

lineage redirection of thymocytes expressing MHC-I-specific monoclonal or polyclonal TCRs. 

To determine the basis for the presence of CD4+, CD8+ and DN mature T-cells in 

OTI+ThPOK-H+ mice, we assessed Thpok, Runx3d, Socs1, and Nur77 levels in each T-cell 

subset purified from the same mouse. Socs1 is positively regulated by ThPOK [293], and Nur77 

influences CD8+ T-cell development via modulating Runx3 expression [425] and is suggested 

to be preferentially expressed in CD4+ mature T-cells [143]. QPCR and flow cytometric analysis 

of mature T-cells from OTI+ThPOK-H+ mice showed graded ThPOK expression levels with 

that in CD4+ > DN > CD8+ mature T-cells (Fig. 3A), which is in agreement with staining data 

(Fig. 1D, 1E). In agreement with ThPOK expression analysis, expression of Runx3 from distal 

promoter (Runx3d) was completely abolished in CD4+ and DN mature T-cells, and reduced in 

CD8+ mature T-cells from OTI+ThPOK-H+ mice compared to CD8+ mature T-cells from OTI 

mice (Fig. 3B). Similarly, Socs1 was mostly expressed in CD4+ mature T-cells (Fig. 3C), while 

Nur77 expression was directly proportional to ThPOK levels in the three mature T-cell subsets 
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from OTI+ThPOK-H+ mice (Fig. 3D). Note that Nur77 expression was significantly higher in 

CD4+ mature T-cells (P 0.0032) but not in DN or CD8+ mature T-cells from OTI+ThPOK-H+ 

mice compared to CD8+ mature T-cells from OTI mice. Comparable CD5 levels (a surrogate 

marker for TCR signal strength [426]) in CD4+ and CD8+ mature T-cells (Fig. S3B) from 

OTI+ThPOK-H+ and OTI control suggest that the differential Nur77 expression observed mature 

T-cells may be due to differential ThPOK expression [419]. We then evaluated Nur77-GFP 

reporter expression in DP thymocytes (to exclude influence of intra-thymic signaling on Nur77 

expression) from OTI+ThPOK-H+ and control mice; comparable CD5 levels but higher GFP 

expression was detected in DP thymocytes from OTI+ThPOK-H+ mice compared to OTI control 

expressing Nur77-GFP reporter (Fig. 3E); however, increase in Nur77-GFP expression in the 

presence of transgenic ThPOK did not appeared to be significant. In cell transfection studies we 

did not observe any increase in Nur77 promoter driven luciferase expression in the presence of 

ThPOK (Fig. S3C). These data suggest that ThPOK may not be involved in regulating Nur77 

expression.    

2.4.3 Functionality of mature T-cell subsets in OTI+ThPOK-H+ mice  

As ThPOK is proposed to suppress the cytotoxic program in mature T-cells [418], we 

wondered about the functionality of the three T-cell subsets, particularly CD8+ and DN mature 

T-cells that expressed a significant amount of ThPOK and reduced levels of Runx3. To this end, 

we evaluated expression of genes involved in cytotoxic and helper function in these T-cell 

subsets. In agreement with Runx3 and ThPOK expression analysis, we observed, compared to 

CD8+ mature T-cells from OTI mice, almost complete ablation of perforin and severely reduced 

IFNγ expression in CD4+ and DN mature T-cells (Fig. 3F, 3G). Interestingly, perforin and IFN  

expression was significantly reduced in CD8+ mature T-cells isolated from OTI+ThPOK-H+ 
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mice as well (Fig. 3F, 3G). Upon activation CD4+, but not DN or CD8+, mature T-cells from 

OTI+ThPOK-H+ mice upregulated CD154, a CD4+ lineage marker (Fig. 3H). This was also 

observed in mature T-cells subsets isolated from ThPOK-H+MHC-II-/- mice; activated CD4+ 

mature T-cells from ThPOK-H+MHC-II-/- mice expressed CD154 and IL-4 (Fig. S3D, S3E), 

while DN and CD8+ mature T-cells from ThPOK-H+MHC-II-/- mice continued to express IFNγ 

with DN mature T-cells expressing lower amounts. Together, these data suggest that a ThPOK 

level sufficient for suppressing the cytotoxic program does not activate the helper program 

(phenotype of DN mature T-cells) and that a higher amount of ThPOK is required for redirecting 

MHC-I-signaled thymocytes into the CD4+ lineage.  

2.4.4 Role of endogenous ThPOK in the CD8+ to CD4+ lineage redirection in 

OTI+ThPOK-H+ mice  

ThPOK is proposed to form a positive auto-regulatory loop [321]. Hence, we wondered 

if the transgenic ThPOK induced the expression of endogenous ThPOK in the signaled 

thymocytes, and whether this contributed to the CD8+ to CD4+ lineage redirection in 

OTI+ThPOK-H+ mice. To address this, we first evaluated, using specific QPCR primers, 

endogenous ThPOK expression in various T-cell subsets from OTI+ThPOK-H+ mice. Indeed, 

we observed a significant increase in endogenous ThPOK expression in the splenic CD4+ mature 

T-cells of OTI+ThPOK-H+ mice (Fig. 4A). To assess if this endogenous ThPOK induction 

played any role in the CD8+ to CD4+ lineage redirection in OTI+ThPOK-H+ mice, we analyzed 

CD4+/CD8+ phenotype of OTI+ThPOK-H+ mice expressing endogenous ThPOK or not. 

Surprisingly, we did not observe any significant changes in the frequency of CD4+ and CD8+ 

thymocytes in OTI+ThPOK-H+Thpok-/- mice compared to OTI+ThPOK-H+Thpok+/+ control 

(Fig. 4B). A slight decrease in CD4+ and increase in CD8+ mature T-cell frequency in the spleen 
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of OTI+ThPOK-H+Thpok-/- mice compared to OTI+ThPOK-H+Thpok+/+ mice was noticed, 

however, it did not result in any significant change in the CD4+/CD8+ ratio in these mice 

(0.41+0.09 in OTI+ThPOK-H+Thpok+/+ versus 0.28+0.035 in OTI+ThPOK-H+Thpok-/- mice; 

(Fig. 4C; relative to OTI control)). The frequency/number of various thymic and splenic T-cell 

subsets in OTI+ThPOK-H+ mice were comparable irrespective of the presence or absence of 

endogenous ThPOK (Fig. 4D; some mice were in Rag+/- background, which did not affect the 

CD4+/CD8+ phenotype). These data suggest that endogenous ThPOK played an insignificant 

role in the CD8+ to CD4+ lineage redirection in OTI+ThPOK-H+ mice.  

2.4.5 Evaluating role of ThPOK-H in the CD4+ lineage choice of MHC-II-

specific thymocytes 

The presence of a large number of DN and CD8+ mature T-cells in ThPOK-H+ mice 

expressing MHC-I-specific TCR (OTI, P14 or MHC-II-/-), despite expressing about 1.5 to 2-fold 

more transgenic ThPOK compared to endogenous ThPOK levels in CD4+ mature T-cells from 

WT mice, suggest that differential amount of ThPOK may be required for the CD4 lineage 

choice of MHC-I- and MHC-II-specific thymocytes. Alternately, the observed phenotype of 

OTI+ThPOK-H+ mice could be due to ThPOK-H transgene specific effect. To address these 

questions, we evaluated the impact of ThPOK-H on the rescue of CD4+ choice of MHC-II-

specific thymocytes in ThPOK deficient mice. To this end, we generated OTII+Thpok-/- mice 

expressing or not ThPOK-H transgene. In OTII+Thpok+/+ mice >95% of the Vα2+ mature T-cells 

are CD4+, which are directed into CD8+ lineage in the absence of ThPOK (Fig. 5A). Indeed, 

introduction of ThPOK-H transgene into OTII+Thpok-/- mice completely rescued CD4 lineage 

commitment; more than 95% of Vα2+ mature T-cells were CD4+ in the thymus and spleen of 

OTII+ThPOK-H+Thpok-/- mice, which was similar to that in OTII+Thpok+/+ mice (Fig. 5A, 5B).  
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ThPOK specific staining of the mature CD4+ thymocytes and splenic T-cells showed ~2-fold 

higher expression compared to endogenous ThPOK expression in control CD4+ mature T-cells 

from OTII+Thpok+/+ mice (Fig. 5C). The frequency and absolute cell numbers in the thymus and 

spleen of OTII+ThPOK-H+Thpok-/- mice were comparable to that in littermate control 

OTII+ThPOK-H+Thpok+/+ mice (Fig. 5D).  

To further support the observation that the same level of ThPOK differentially influences 

CD4+ lineage choice of MHC-I- and MHC-II-specific thymocytes, we introduced each of the 

three ThPOK transgene into Thpok-/- mice expressing polyclonal TCR repertoire. In Thpok-/- 

mice, positively selected MHC-II-specific thymocytes are redirected into the CD8+ lineage and 

thus, the peripheral CD8+ mature T-cell population consists of MHC-I- and MHC-II-specific T-

cells. Indeed, each of the ThPOK transgene rescued CD4+ development and impaired CD8+ 

development in Thpok-/- mice (Figure S4A-C). Together, these data strongly suggest that, 

compared to CD4+ lineage choice of MHC-II-specific thymocytes, an efficient CD8+ to CD4+ 

lineage redirection of MHC-I-specific thymocytes requires a higher amount of ThPOK, and the 

partial CD8+ to CD4+ lineage redirection in OTI+ThPOK-H+ mice is unlikely due to the ThPOK-

H transgene specific effect. 

2.4.6 Impact of augmented TCR signal strength on the ThPOK-induced 

CD4+ lineage choice of MHC-I-signaled thymocytes 

The partial CD8+ to CD4+ lineage redirection of MHC-I-signaled thymocytes but 

complete rescue of CD4+ lineage choice of MHC-II-signaled thymocytes prompted us to ask if 

differential TCR signaling played a role in the ThPOK-H-mediated CD4+ lineage choice of 

MHC-I- and MHC-II-specific thymocytes. We considered the possibility that weak TCR 

signaling in MHC-I-specific thymocytes, compared to that in MHC-II-specific thymocytes, may 
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be responsible for an inefficient CD4+ lineage choice of MHC-I-specific thymocytes expressing 

ThPOK-H transgene. If so, we reasoned that increasing TCR signal strength may enhance the 

efficiency of ThPOK-H-mediated CD4+ lineage choice of MHC-I-specific thymocytes. To test 

this notion, we introduced constitutively active Lck transgene (dLGF [210, 211, 420]) into 

OTI+ThPOK-H+ mice. We bred mice to obtain OTI+dLGF+ThPOK-H+ triple transgenic mice 

with Rag-/- background and analyzed CD4+/CD8+ development in these mice. As reported 

previously [210], increased TCR signaling due to constitutively active Lck led to an increase in 

the frequency of Vα2+CD4+ and a decrease in the frequency of Vα2+CD8+ mature T-cells in the 

thymus and spleen of OTI+dLGF+ mice compared to control mice (Fig. 6A). Importantly, 

analysis of mature T-cells in the thymus and spleen of OTI+dLGF+ThPOK-H+ mice showed a 

significant increase in the frequency and number of Vα2+CD4+ T-cells, while that of Vα2+CD8+ 

mature T-cells was significantly reduced compared to OTI+ThPOK-H+ mice (Fig. 6A, 6B). 

About 70% of mature T-cells were CD4+ in the spleen and thymus of triple transgenic mice 

resulting in a significantly higher CD4+/CD8+ ratio compared to OTI+ThPOK-H+ or OTI+dLGF+ 

mice (Fig. 6C). Of note, the frequency and absolute number of DN mature T-cells were also 

reduced in the spleen of triple transgenic mice compared to OTI+ThPOK-H+ mice but was still 

higher compared to OTI+dLGF+ mice (Fig. 6A, 6B). To ascertain that the efficient CD8+ to 

CD4+ lineage redirection was not specific to the introduction of dLGF transgene into 

OTI+ThPOK-H+ mice, we analyzed the CD4+/CD8+ phenotype of OTI+dLGF+ThPOK-163+ 

mice as well. Indeed, an increase in the CD4+ and a decrease in the CD8+ mature T-cell 

frequency was observed in the thymus and spleen of OTI+dLGF+ThPOK-163+ mice compared 

to OTI+ThPOK-163+ mice (Fig. S4D).  We then evaluated expression of St8sia6 and St3gal2, 

the helper lineage associated genes [143, 326], and Cxxc5, a ThPOK target gene that negatively 
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regulates CD154 and is highly expressed in CD8+ mature T-cells [427]. Indeed, QPCR analysis 

showed significantly elevated expression of St8sia6 and St3gal2, and decreased expression of 

Cxxc5 in CD4+ mature T-cells from the triple transgenic mice, which was similar to expression 

of these genes in CD4+ mature T-cells but opposite to their expression in CD8+ mature T-cells 

from WT mice (Fig. 6D). Note that the DN mature T-cells from the triple transgenic mice 

showed significantly lower St8sia6 and St3gal2 expression compared to CD4+ mature T-cells 

from the same mice. Interestingly, DN mature T-cells, which upon activation failed to 

upregulate CD154, expressed very little Cxxc5 suggesting possible complex regulation of 

CD154 expression in the activated CD4+ mature T-cells [427]. Upregulation of St8sia6, St3gal2 

and suppression of Cxxc5 was also observed in the redirected CD4+ mature T-cells isolated from 

OTI+ThPOK-163+ and OTI+ThPOK-611+ mice as well (Fig. 4SE). Together, these data strongly 

suggest that elevated TCR signal strength and transgenic ThPOK act synergistically in 

redirecting MHC-I-signaled thymocytes into the CD4+ helper T-cell lineage.  

2.4.7 Evaluating contribution of transgenic and endogenous ThPOK in the 

CD8+ to CD4+ lineage redirection in the presence of augmented TCR 

signaling 

  An efficient CD8+ to CD4+ lineage redirection of MHC-I-specific thymocytes in the 

presence of augmented TCR signaling and  ̴ two-fold more transgenic ThPOK protein 

(compared to endogenously expressed ThPOK in WT CD4+ mature T-cells) in 

OTI+dLGF+ThPOK-H+ and OTI+dLGF+ThPOK-163+ mice could be due to two overlapping 

possibilities; augmented TCR signaling (a) induces endogenous ThPOK that contributes to this 

lineage redirection or (b) plays a role in the CD4+ lineage choice of MHC-I-specific thymocytes 

that is independent of ThPOK. To investigate these possibilities, first we measured endogenous 
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ThPOK levels in the positively selected thymocytes from OTI+dLGF+ mice. As expected, we 

detected a significant ThPOK induction in the CD4+CD8lo thymocytes from OTI+dLGF+ mice 

compared to OTI control (Fig. 7A); ThPOK induction was essential for the generation of CD4+ 

mature T-cells in these mice as indicated by the absence of these cells in the thymus and spleen 

of OTI+dLGF+Thpok-/- mice (Fig. 7B). Thus, it was conceivable that the induction of 

endogenous ThPOK due to increased TCR signal strength substantially contributed to the 

increased frequency of CD4+ mature T-cells in OTI+dLGF+ThPOK-H+ mice. Therefore, to 

evaluate relative contribution of the two sources of ThPOK (transgenic and endogenous) in the 

CD4+ lineage choice in triple transgenic mice we ablated ThPOK expression in these mice (all 

mice Rag-/-). We predicted that if endogenous ThPOK induced by augmented TCR signaling 

primarily contributed to the increased frequency of CD4+ mature T-cells in OTI+dLGF+ThPOK-

H+ mice then ablating endogenous ThPOK in these mice would result in the CD4+ frequency 

that would be lower compared to the CD4+ frequency in OTI+dLGF+ThPOK-H+ThPOK+/+ mice 

but it would be comparable to the CD4+ frequency in OTI+ThPOK-H+ThPOK-/- mice (Fig. 4B). 

Indeed, ablating the endogenous ThPOK expression resulted in a small but significant decrease 

(P<0.02) in the splenic CD4+ mature T-cell frequency in OTI+dLGF+ThPOK-H+Thpok-/- mice 

compared to ThPOK-sufficient control mice; more than 50% of mature T-cells were still CD4+ 

in the thymus and spleen of OTI+dLGF+ThPOK-H+Thpok-/- mice compared to more than 60% 

in triple transgenic ThPOK sufficient mice (Fig. 7C, 7D). Importantly, despite expressing only 

the transgene encoded ThPOK the CD4+ mature T-cells frequency (52%) in the spleen of 

OTI+dLGF+ThPOK-H+Thpok-/- mice was still significantly higher than the CD4+ mature T-cell 

frequency (20%) observed in the spleen of OTI+ThPOK-H+Thpok-/- mice (Fig. 7C, 7D; P < 

0.0001). The frequency and number of DN and CD8+ splenic T-cell subsets were comparable in 
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triple transgenic mice expressing endogenous ThPOK or not (Fig. 7D). To ascertain the 

observed differential CD4+ frequency in OTI+dLGF+ThPOK-H+Thpok-/- mice, we analyzed 

CD4/CD8 phenotype of OTI+dLGF+ThPOK-163+Thpok-/- mice as well. Indeed, we observed 

only a small decrease in the splenic CD4+ mature T-cell frequency in OTI+dLGF+ThPOK-

163+Thpok-/- mice (48%) compared to OTI+dLGF+ThPOK-163+Thpok+/+ mice (54%) but it was 

higher compared to that in OTI+ThPOK-163+Thpok-/- mice (29%; Fig. S4D). Of note, ThPOK 

expression analysis showed slightly more frequency of ThPOKlo DP thymocytes from 

OTI+dLGF+ThPOK-H+Thpok-/- mice compared OTI+ThPOK-H+Thpok-/- control suggesting a 

possible influence of augmented TCR signaling on the transgenic ThPOK levels in DP 

thymocytes (Fig. 7E). Significantly higher phospho-Src staining in DP and CD4+8lo thymocytes 

confirmed augmented TCR signaling in OTI+dLGF+ mice expressing ThPOK-H or not 

compared to OTI or WT control (Fig. 7F, 7G). We also observed elevated, albeit insignificant, 

phospho-CD3ζ levels in DP and CD4+CD8lo thymocytes from these mice compared to OTI 

control (it was significantly higher compared to similar subsets from WT mice (Fig. 7F, 7G)). 

Note that the increased pSrc and pCD3ζ staining observed in DP thymocytes in OTI mice 

expressing dLGF transgene became less pronounced in CD4+CD8lo thymocytes reflecting 

possible impact of intra-thymic signaling and/or the limit of sensitivity of phospho specific 

antibody staining. We then evaluated expression of CD4+ lineage genes in purified T-cells from 

the triple transgenic Thpok-/- mice. Indeed, expression pattern of St8sia6, St3gal2 and Cxxc5 in 

CD4+ mature T-cells from OTI+dLGF+ThPOK-H+Thpok-/- mice was similar to that in CD4+ 

mature T-cells from WT mice, which is upregulation of St8sia6, St3gal2 and down regulation 

of Cxxc5 (Fig. 7H). Collectively, these data strongly suggest that augmenting TCR signal 

strength in MHC-I-specific thymocytes significantly promotes the ThPOK-induced CD8+ to 
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CD4+ lineage redirection. These data also suggest that TCR signaling plays a role in CD4+ 

lineage choice that may be independent of ThPOK.  

The CD4+ mature T-cell frequency in OTI+dLGF+ThPOK-H+Thpok-/- mice, while higher 

than the CD4+ mature T-cell frequency in OTI+ThPOK-H+Thpok-/- mice, was still significantly 

lower than the CD4+ mature T-cell frequency in OTII+ThPOK-H+Thpok-/- mice (Fig. 8A; P < 

0.0005). CD4+ mature T-cells in all these three mouse strains expressed the same amount of 

ThPOK but received differential intra-thymic signaling (MHC-I-induced signaling, MHC-I-

induced signaling combined with augmented TCR signaling, and MHC-II-induced signaling). 

Thus, it was possible that TCR signaling in MHC-I-specific CD4+ mature T-cells from 

OTI+dLGF+ThPOK-H+ mice, while elevated compared to that in MHC-I-specific CD4+ mature 

T-cells from OTI+ThPOK-H+ mature T-cells, may still be lower than that in MHC-II-specific 

CD4+ mature T-cells from OTII mice. Therefore, we compared CD5 levels in the thymic and 

splenic T-cells from OTI mice expressing or not dLGF with that from OTII mice to assess their 

TCR signal strength. In each experiment, we calculated CD5 levels in the thymocytes and 

mature T-cell subsets from various mice relative to CD5 levels in the relevant thymic subsets or 

CD8+ mature T-cells from OTI mice. As expected, DP and CD4+CD8lo thymocytes from OTI 

mice expressing dLGF transgene showed significantly higher CD5 levels compared to OTII 

subset (Fig. 8B). Interestingly, CD5 levels in CD4+ thymocytes from the two mice were quite 

comparable (Fig. 8C) likely reflecting stronger intra-thymic signaling transduced in OTII+ 

thymocytes but became significantly higher in the CD4+ splenic T-cells from OTI+dLGF+ mice 

compared to that from OTII mice (Fig. 8D). In OTI+dLGF+ThPOK-H+ mice, we observed a 

similar trend in CD5 expression levels in DP, CD4+CD8lo thymocytes (Fig. 8B, 8C) and CD4+ 

splenic T-cell (Fig. 8D) subsets compared to similar subsets from OTII mice. Of note, CD5 
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levels were lower in CD4+ mature thymocytes and splenic T-cells from OTI+dLGF+ThPOK-H+ 

mice compared to CD5 levels in similar subsets from OTI+dLGF+ mice. As well, CD5 levels in 

DN and/or CD8+ mature T-cells from OTI+dLGF+ or OTI+ThPOK-H+ mice were lower 

compared to that in CD8+ mature T-cells from OTI mice. Analysis of CD5 levels in the splenic 

CD4+ mature T-cells from OTI+dLGF+ThPOK-163+ mice also showed similar trend. CD5 levels 

in CD4+ mature T-cells from OTI+dLGF+ThPOK-163+ mice was significantly higher compared 

to that in CD4+ mature T-cells from OTII mice, and it was slightly lower compared to CD5 

levels in CD4+ mature T-cells from OTI+dLGF+ mice (Fig. S4F). Although unclear but 

differential intra-thymic signaling, which influences CD5 levels and correlates with mature T-

cell function [375, 428], may be responsible for the altered CD5 levels in CD4+ or CD8+ mature 

T-cells in the presence of transgenic ThPOK in OTI+dLGF+ mice. Nevertheless, these data 

support the notion that TCR signaling in MHC-I-specific OTI+ thymocytes expressing dLGF 

transgene is significantly higher than that in MHC-II-specific OTII+ thymocytes. Collectively, 

our in-depth analysis of CD4+/CD8+ lineage choice of MHC-I-specific thymocytes with or 

without augmented TCR signaling and of MHC-II-specific thymocytes in the presence of same 

amount of ThPOK strongly suggest that ThPOK-induced CD4+ lineage choice of developing 

thymocytes is critically influenced by quantitative as well as differential TCR signaling.  
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2.5 Discussion 

In the present manuscript, we have investigated the impact of ThPOK levels on the CD4+ 

lineage choice of MHC-I- and MHC-II-specific thymocytes, and role of TCR signaling in it. 

Specifically, we have evaluated the impact of ThPOK levels on the CD4+ lineage choice of 

thymocytes with differential TCR signaling. Our data strongly suggest that MHC-I-restricted 

thymocytes require higher level of ThPOK in preselection thymocytes for an efficient CD8+ to 

CD4+ lineage redirection (ThPOK-611 mice), while relatively low/moderate levels (still higher 

than ThPOK levels in WT CD4+ mature T-cells) result in the partial CD8+ to CD4+ lineage 

redirection (ThPOK-H and ThPOK-163 mice). The lower frequency of mature T-cells observed 

in the spleen of OTI+ThPOK-163+ and OTI+ThPOK-611+ mice likely reflects reduced thymic 

maturation and/or the effect of mismatched co-receptor expression (CD4+ T-cells) or lack of co-

receptor expression (DN T-cells) on survival and/or homeostatic expansion of the redirected T-

cells (ref 23, 24).  A consequence of partial lineage redirection is that a substantial number of 

CD8+ and DN mature T-cells are detected in OTI+ThPOK-H+ or OTI+ThPOK-163+ mice. It is 

interesting that the DN mature T-cells in OTI+ThPOK-H+ mice fail to maintain CD4 expression 

despite almost complete suppression of Runx3 expression indicating complex regulation of Cd4 

expression requiring sustained TCR signaling in developing thymocytes [429]. In vitro 

differentiation culture data supports such a notion; disrupting intra-thymic TCR signaling in in 

vitro culture of purified CD4+ thymic subsets from OTI+ThPOK-H+ mice results in the loss of 

CD4 expression in a significant number of cells leading to the generation of DN mature T-cells. 

Importantly, DN and CD8+ mature T-cells, particularly the former, continued to express a 

substantial amount of ThPOK that compromised the cytotoxic function but still failed to activate 

the helper program in these cells. A simple explanation would be that activation of the helper 
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program in MHC-I-signaled thymocytes requires a higher amount of ThPOK than that required 

for suppression of the cytotoxic program (phenotype of DN mature T-cells). However, it was 

paradoxical that ThPOK level in DN mature T-cells from OTI+ThPOK-H+ or OTI+ThPOK-163+ 

mice was significantly higher compared to endogenous ThPOK levels in MHC-II-restricted 

CD4+ mature T-cells from WT mice, and yet failed to redirect them into the CD4+ lineage. The 

inability of ThPOK-H to induce efficient CD8+ to CD4+ lineage redirection is unlikely due to 

variegated expression as the same ThPOK-H transgene completely rescued CD4+ development 

in Thpok-/- mice expressing or not OTII-TCR.  

We propose two mutually non-exclusive possibilities that may explain the ability of the 

same amount of transgenic ThPOK to completely rescue the CD4+ development in Thpok-/- or 

OTII+Thpok-/- mice but induce an inefficient CD8+ to CD4+ lineage redirection of MHC-I-

specific thymocytes (in OTI+, P14+ or MHC-II-/- mice). It is possible that genes responsible for 

activating helper program in MHC-I-specific thymocytes, due to weak or shorter duration of 

TCR signaling, are epigenetically modified in such a way that they are inaccessible or accessible 

for a shorter time for ThPOK-mediated regulation, and in such a case significantly higher 

amount of ThPOK (than the one required for CD4+ lineage choice of MHC-II-specific 

thymocytes) would be required to override this constrain on CD4+ lineage choice of MHC-I-

specific thymocytes. Significantly higher CD4+ mature T-cell frequency in OTI+dGLF+ThPOK-

H+Thpok-/- mice compared to OTI+ThPOK-H+Thpok-/- mice, both expressing the same amount 

of ThPOK but differing in their TCR signal strength, strongly suggest that TCR signal strength 

plays a critical role in establishing the ThPOK-mediated CD4+ lineage choice. We propose that 

augmented TCR signal strength, while critical for ThPOK induction, promotes the CD4+ lineage 

choice by extending the window of lineage choice during which the target gene loci are 
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accessible readily or for a longer time for ThPOK-mediated modulation. Any MHC-I-signaled 

thymocytes expressing ThPOK at levels comparable to that induced in MHC-II-signaled 

thymocytes but remain outside this temporal lineage commitment window will differentiate into 

CD8+ mature T-cells with compromised cytotoxic function. Such a possibility is supported by 

the observation that ThPOK induction in MHC-I-signaled thymocytes, due to compound 

deficiency of Runx1 and Runx3 or Tle1/3/4 or MAZR and Runx3, while upregulates helper 

lineage genes including Cd4, fails to completely suppress expression of cytotoxic lineage genes 

including Cd8 resulting in the generation of a large number of CD4+CD8+ mature T-cells of 

undefined functional potential [267, 278, 326]. Compromised cytotoxic function but failure to 

upregulate CD4 or secrete IL-4 following retroviral-mediated ThPOK expression in the 

peripheral mature CD8+ mature T-cells also supports such a notion [328]. These data are in 

agreement with signal strength model of CD4+/CD8+ lineage commitment; irrespective of MHC 

specificity stronger TCR signaling may alter chromatin structure such that not only the CD4+ 

lineage specifying genes such as Gata3, Tox or c-Myb are induced [149, 272, 430, 431] but 

accessibility of the target gene loci by ThPOK is enhanced as well leading to suppression of the 

CD8+ cytotoxic lineage choice and imprinting of the CD4+ helper lineage choice in these cells. 

These data also suggest that stronger TCR signaling may be sufficient for the CD4+ lineage 

commitment even in the absence of ThPOK provided those critical for the CD8+ lineage 

commitment are suppressed [320]. 

While strong TCR signaling is critical for the CD4+ lineage choice, the MHC specificity 

of developing thymocytes appears to play an equally important role in the process. Comparing 

the CD4+ development of MHC-I-specific thymocytes in OTI+dLGF+ThPOK-H+Thpok-/- and 

MHC-II-specific thymocytes in OTII+ThPOK-H+Thpok-/- mice provides some insight into this 
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issue. Significantly higher frequency of CD4+ mature T-cells in OTII+ThPOK-H+Thpok-/- mice 

(MHC-II-specific) compared to OTI+dLGF+ThPOK-H+Thpok-/- mice (MHC-I-specific), both 

expressing the same amount of ThPOK, cannot simply be explained by TCR signal strength 

model as thymic subsets and CD4+ mature T-cells from OTII+ mice show significantly lower 

TCR signaling compared to that in similar subsets from OTI+dLGF+ mice expressing or not 

ThPOK transgene. Our data then suggest that TCR signaling in MHC-I- and MHC-II-specific 

thymocytes, while quantitatively different, are likely to be qualitatively different as well, and 

introducing constitutively active Lck in MHC-I-specific thymocytes mimics the quantitative 

aspect. We propose that continuous TCR signaling in the positively selected MHC-II-specific 

thymocytes not only results in stronger TCR signal that keeps the lineage commitment window 

“open” for longer time but also induces expression of CD4+ lineage establishing genes whose 

continued expression likely requires ThPOK. 

Based on these data we propose a model that links TCR signaling to CD4+/CD8+ lineage 

choice of MHC-I- and MHC-II-signaled thymocytes. We propose that qualitatively distinct and 

stronger TCR signaling opens the window of lineage commitment during which the CD4+ 

lineage specifying genes are induced in MHC-II-signaled thymocytes. It is conceivable that 

during the CD4+ lineage specification phase Gata3 induced by TCR signaling functions, for 

instance, as a “pioneer” transcription factor that remodels the chromatin landscape, which then 

facilitates the ability of other transcription factors to access the target gene loci in association 

with or independently of the pioneering factor [71, 432, 433]. The persistent TCR signaling, 

along with Gata3 expression, would then initiate ThPOK induction [274, 322] in MHC-II-

signaled thymocytes, which collectively play a role in the CD4+ lineage commitment and 

maintenance. The induction of helper program in MHC-I-signaled thymocytes but inability to 
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sustain it [217] may be due to inadequate chromatin alterations leading to insufficient induction 

of ThPOK and/or its residency at the target gene loci. In such a case very high ThPOK 

expression would be necessary for efficient redirection of the MHC-I-signaled thymocytes into 

the CD4+ lineage.  

 In conclusion, considerably different efficiency of CD4+ lineage choice in three different 

mouse models expressing the same amount of ThPOK but different modes of TCR signaling 

(OTI+ThPOK-H+Thpok-/-, OTI+dLGF+ThPOK-H+Thpok-/- and OTII+ThPOK-H+Thpok-/-) 

provides a critical in-sight into the mechanism of CD4 lineage choice of developing thymocytes. 

Our data link stronger TCR signaling to ThPOK induction and strongly suggest that the CD4+ 

lineage choice by a defined amount of ThPOK is critically influenced by TCR signal strength 

and MHC specificity of developing thymocytes during a temporal window of lineage 

commitment.  
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2.6 Figures and figure legends 
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Figure 12. ThPOK dose impacts the CD8+ to CD4+ lineage redirection 

To assess the impact of individual ThPOK transgene on the CD8+ to CD4+ lineage redirection, 

each ThPOK transgenic line was introduced into OTI+Rag-/- mice and T-cells were analyzed by 

flow cytometry. (A) Frequency of mature T-cells (TCRβ+Vα2+) and CD4/CD8 profiles of 

splenic T-cells in OTI mice expressing the indicated ThPOK transgene are shown. (B) 

CD4/CD8 and CD69/TCR profile of total thymocytes, CD69/CD24 profile of TCR+ thymocytes 

and CD4/CD8 profile of mature thymocytes (CD69-CD24-TCR+) from the indicated strain of 

mice are shown. (C) The CD4+/CD8+ ratio for Vα2+ T-cells from the spleen (left) and mature 

thymocytes (right) for the indicated strain of mice is shown. (D) ThPOK protein levels in DP, 

mature CD4+ and CD8+ thymocytes (CD69-CD24-TCR+; top histograms) and splenic T-cell 

subsets (bottom histograms) from the indicated strain of mice are shown. Numbers in histograms 

represent the Mean Fluorescence Intensity (MFI) values. (E) Compilations of ThPOK MFI for 

the indicated thymic and splenic T-cell subsets from the indicated mice are shown. For DP 

thymocytes ThPOK MFI is relative that in DP thymocytes from ThPOK-H.  For all other thymic 

subsets, ThPOK MFI is relative to the corresponding WT thymic subset. ThPOK MFI for 

splenic subsets is relative to that in splenic CD4+ mature T-cells from WT. Note that ThPOK 

MFI for CD4+ mature T-cells from OTI mice and DN mature T-cells from OTI and WT mice 

are not determined due to lack of a substantial number of these cells. (F) The frequency and 

absolute number of TCR+ and CD4+CD8lo subsets in total thymocyte, and CD4+ and CD8+ 

mature thymocytes (CD24-CD69-TCR+) in the indicated mice are shown. Also shown are total 

splenocytes and the frequency and number of splenic T-cells and T-cell subsets from OTI mice 

expressing or not the indicated ThPOK transgene (n>12). Data are representative examples of 

four or more independent experiments (A, B and D). n/d not determined.   
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Figure 13. ThPOK-induces partial CD8+ to CD4+ lineage redirection in MHC-II-/- 

mice 

The CD4/CD8 profiles of TCR+ thymocytes (A) and splenocytes (B) from MHC-II-/- (left) and 

ThPOK-H+MHC-II-/- (right) mice are shown. (C) CD4+/CD8+ ratio in the thymus and spleen of 

MHC-II-/- (black bars) and ThPOK-H+MHC-II-/- (white bars) mice is shown. (D) The frequency 

and absolute number of TCR+ and CD4+CD8lo subsets in total thymocytes, and CD4+ and CD8+ 

mature thymocytes (TCR+) in MHC-II-/- expressing or not ThPOK-H are shown. Also shown 

are total splenocytes and the frequency and number of splenic T-cells and T-cell subsets from 

MHC-II-/- mice expressing or not ThPOK-H transgene (n>8). Data are representative of six or 

more independent experiments (A and B). 
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Figure 14. ThPOK modulates lineage specific gene expression in T-cell subsets 

CD4+, CD8+, and DN mature T-cells from the spleen of OTI+ThPOK-H+ mice were isolated and 

expression levels of Thpok (A, left), Runx3d (B), Socs1 (C), and Nur77 (D) were evaluated by 

QPCR, and were compared to that in CD8+ mature T-cells from OTI mice (normalized to Hprt 

expression). Data depicts average of triplicate values with standard deviation and are expressed 

as fold increase over expression of individual genes in control CD8+ mature T-cells from OTI 

mice. (A, right) ThPOK protein levels in the indicated splenic T-cell subsets from OTI+ThPOK-

H+ or OTI+ mice are shown. Also shown is ThPOK MFI compilation for the indicated T-cell 

subsets (relative to WT CD4+ T-cells).  (E) MFI of CD5 and Nur77-GFP expression in DP 

thymocytes from OTI+ThPOK-H+, OTI and WT mice are compared (left) and compiled 

(bottom; relative to OTI). (F) shows perforin levels by QPCR in CD4+, DN and CD8+ mature 

T-cells from the spleen of OTI+ThPOK-H+ mice compared to CD8+ mature T-cells from OTI 

control mice (normalized to Hprt expression). (G) Purified T-cell subsets from OTI mice 

expressing or not ThPOK-H were activated for 5-7 days in the presence of irradiated splenocytes 

from BL/6 mice pulsed with OTI peptide (SIINFEKL) and then re-stimulated with 

PMA/ionomycin in the presence of brefeldin for analysis of IFN  expression. (H) CD154 

expression in the cognate-peptide activated indicated T-cell subsets from OTI+ and 

OTI+ThPOK-H+ mice is shown. Data are representative of two to six independent experiments.  
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Figure 15. Insignificant contribution of endogenous ThPOK in the CD8+ to CD4+ 

lineage redirection 

(A) To assess endogenous ThPOK levels various T-cell subset from OTI+THPOK-H+ mice were 

purified for QPCR analysis. Data shows endogenous ThPOK levels in the indicated splenic T-

cell subsets from OTI+ThPOK-H+ mice compared to that in CD8+ mature T-cells from OTI mice 

(normalized to Hprt expression). Data depicts average of triplicate values with standard 

deviation and are expressed as fold increase over endogenous ThPOK levels in control CD8+ 

mature T-cells from OTI mice. To determine the impact of endogenous ThPOK expression on 

CD4 lineage choice OTI+ThPOK-H+Thpok-/- mice. (B) shows flow cytometric analysis of the 

CD4/CD8 profiles of spleen and thymus from isolated from OTI+, OTI+ThPOK-H+Thpok+/+, 

and OTI+ThPOK-H+Thpok-/- mice. (C) CD4+/CD8+ ratio in the spleen of indicated mice relative 

to OTI is shown. (D) The frequency and absolute number of TCR+ and CD4+CD8lo subsets in 

total thymocytes, and CD4+ and CD8+ mature thymocytes (CD24-CD69-TCR+) in the indicate 

mice are shown (n>6). Also shown are total splenocytes and the frequency and number of 

splenic T-cells and T-cell subsets in these mice. Data representative of three or more 

independent experiments (A, B). 
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Figure 16. ThPOK-H completely rescues CD4+ development in OTII+Thpok-/- mice.  

To evaluate the ability of ThPOK-H transgene to rescue CD4+ development of MHC-II-specific 

thymocytes, the transgene was introduced into OTII+Thpok-/- mice. Panel (A) shows the 

CD4/CD8 profile of mature thymocytes (CD24-CD69-TCR+) and panel (B) shows the CD4/CD8 

phenotype of splenic T-cells from the indicated mice. (C) ThPOK protein levels in CD4+ mature 

T-cells from the thymus and spleen of OTII+Thpok+/+ (shaded histogram) and OTII+ThPOK-

H+Thpok-/- (open histogram) mice are shown. (D) The frequency and absolute number of TCR+ 

and CD4+CD8lo subsets in total thymocytes, and CD4+ and CD8+ mature thymocytes (CD24-

CD69-TCR+) in OTII+ThPOK-H+Thpok-/- and littermate OTII+ThPOK-H+Thpok+/+ (all Rag-/-) 

control mice are shown. Also shown are total splenocytes and the frequency and number of 

splenic T-cells and T-cell subsets from the same mice (n>4). Data representative of three or 

more independent experiments (A-C). 
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Figure 17. Augmenting TCR signal strength enhances the CD8+ to CD4+ lineage 

redirection 

Role of increased TCR signal strength in promoting CD8+ to CD4+ lineage redirection in 

OTI+ThPOK-H+ mice was investigated by introducing constitutively active Lck transgene 

(dLGF) into OTI+ThPOK-H+ mice. (A) shows a representative example of the CD4/CD8 profile 

of mature thymocytes (left) and splenic T-cells (right) from the indicated mice. (B) The 

frequency and absolute number of TCR+ and CD4+CD8lo subsets in total thymocytes, and CD4+ 

and CD8+ mature thymocytes (CD24-CD69-TCR+) as well as splenic T-cells and subsets from 

the indicated mice are shown (n>6). (C) CD4/CD8 ratio of mature thymic and splenic T-cells 

in the indicated mice is shown. (D) Mature T-cells from the spleen of WT (CD4+ and CD8+), 

OTI+dLGF+ (CD4+) and OTI+dLGF+ThPOK-H+ (CD4+ and DN) mice were isolated and 

expression of St8sia6, St3gal2, and Cxxc5 was evaluated by QPCR. Data depicts average of 

triplicate values with standard deviation and are expressed as fold increase over expression of 

individual genes in control CD4+ mature T-cells from WT mice (normalized to Hprt expression). 

Data are representative of more than six independent experiments (A) and two experiments (D). 
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Figure 18. Evaluating contribution of endogenous and transgenic ThPOK in CD4+ 

lineage choice in OTI+dLGF+ThPOK-H+ mice  

(A) CD4+CD8lo thymocytes were purified from OTI+dLGF+ and control OTI mice, and 

endogenous ThPOK expression was analyzed by QPCR. A representative example shows 

average of triplicate values + SD and are expressed as relative fold increase over pre-selection 

DP thymocytes from OTI control mice. (B) shows the CD4/CD8 profiles of the mature 

thymocytes (CD69-CD24-Vα2+) and splenic T-cells from OTI+dLGF+ mice expressing or not 

endogenous ThPOK. (C) Contribution of endogenous and transgenic ThPOK in the CD4 lineage 

choice of MHC-I-specific thymocytes with augmented TCR signaling was evaluated by 

assessing the CD4/CD8 phenotype of the mature thymocytes (top) and splenic T-cells (bottom) 

isolated from the indicated mice. (D) The frequency and absolute number of TCR+ and 

CD4+CD8lo subsets in total thymocytes, and CD4+ and CD8+ mature thymocytes (CD24-CD69-

TCR+) as well as splenic T-cells and subsets from the indicated mice are shown (n>6). (E) 

ThPOK specific staining in DP thymocytes and CD4+ mature thymocytes and splenic T-cells 

from the indicated mice is shown. (F) Histograms show phosphor-Src (upper panels) and 

phosphor-CD3ζ (middle panels) expression levels in DP and CD4+CD8lo thymocytes from the 

indicated mice. (G) Compilation of MFI data for pSrc and pCD3ζ for DP and CD4+CD8lo 

subsets from the indicated mice are shown and are expressed relative to MFI values in WT 

subsets. (H) Expression of St8sia6, St3gal2, and Cxxc5 was evaluated by QPCR in mature T-

cell subsets purified from the spleen of WT (CD4+ and CD8+) and OTI+dLGF+ThPOK-

H+Thpok-/- (CD4+ and DN) mice. Data depicts average of triplicate values with standard 

deviation and are expressed as fold increase over expression of individual genes in control CD4+ 

mature T-cells from WT mice (normalized to Hprt expression). Data are representative of two 

to six independent experiments (A-C, E, F and H).  
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Figure 19. Comparison of CD4+ mature T-cell frequency and TCR signal strength 

in MHC-I- and MHC-II-specific thymic and splenic T-cells from control mice and 

ThPOK-H mice expressing or not dLGF transgene  

(A) Efficiency of ThPOK-H-mediated CD4+ lineage choice of thymocytes with differential TCR 

signaling was evaluated by comparing the CD4+ splenic T-cell frequencies in the indicated mice. 

To assess relative TCR signal strength, CD5 levels in various thymic subsets and mature T-cells 

from OTI+, OTI+dLGF+, OTI+dLGF+ThPOK-H+ and OTII+ mice were compared. (B) CD5 

levels in DP and CD4+CD8lo thymocytes from the indicated mice were normalized to CD5 levels 

in the relevant thymic subsets from OTI mice. CD5 levels in the mature CD4+ and CD8+ 

thymocytes (C) and splenocytes (D) were normalized to CD5 levels in mature CD8+ thymocytes 

and splenocytes from OTI mice. Each symbol represents one mouse.  
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Figure 20. Characterization of ThPOK transgenic mice 

Three independent transgenic ThPOK founder lines (ThPOK-H, ThPOK-611, and ThPOK-163) 

were generated and CD4+/CD8+ T-cell lineage choice was determined by flow cytometry 

analysis of thymocytes and splenic T-cells isolated from the 5 to 7 week old indicated strain of 

mice. The CD4/CD8 profiles of TCR+ cells in the spleen (A) and mature (CD69-CD24-TCR+) 

thymocytes (B) are shown. Numbers in each FACS plot represent the frequency of the specific 

population. (C) shows the CD4+/CD8+ ratio in the blood of WT and ThPOK transgenic lines. 

Each symbol represents an individual mouse. (D) Thymocytes from WT mice were stained for 

CD4, CD8α, TCRβ, CD24 and CD69 followed by intranuclear staining for ThPOK. ThPOK 

staining histograms for the indicated thymic subsets (top) and the splenic CD4+ and CD8+ T-

cells (bottom) from WT mice are shown, which concords with ThPOK expression profile in 

MHC-II-signaled cells. ThPOK expression in the indicated thymic subsets (E) and CD4+ splenic 

T-cells (F) from WT and the indicated ThPOK transgenic mice was assessed by flow cytometry. 

CD4+ and CD8+ T-cells from WT thymus and spleen serve as controls. Numbers in the 

histogram represent Mean Fluorescent Intensity (MFI) values. (G) shows comparison of MFI 

for ThPOK staining for thymic subsets (top) and CD4+ splenic T-cells (bottom) from the 

indicated mice. ThPOK staining in DP thymocytes is relative to that in ThPOK-H mice, while 

for all other subsets it is relative corresponding WT subset. (H) Transgene copy number was 

determined by QPCR of genomic DNA and expressed as fold increase over WT mice. Data 

shown are representative examples of four or more experiments (A, B, D-F) or an average of at 

least three independent experiments (G, H).  
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Figure 21. Mature DN T-cells in OTI+ThPOK-H+ mice are not innate like T-cells 

and transdifferentiate mostly from CD4+ thymocytes  

(A) Innate like phenotype of various splenic T-cell subsets from OTI and OTI+ThPOK-H+ mice 

was assessed by evaluating expression of NK1.1, CD44, and CD62L. Single color histograms 

for NK1.1, CD44, and CD62L for the indicated T-cell subsets from the two strains of mice are 

shown. Data representative of two or more experiments. (B) The indicated thymocyte 

populations were purified from WT, OTII+, OTI+ or OTI+ThPOK-H+ mice, and cultured in the 

presence of IL-7 for two days and then analyzed for the CD4 and CD8 surface expression. Data 

are a representative example of two independent experiments.  
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Figure 22. Impact of ThPOK-H on lineage choice in P14 mice, Nur77 reporter and 

function of mature T-cells  

(A) Flow cytometric analyses of Vα2+ splenic T-cells and the CD4+/CD8+ ratio of splenic T-

cells for P14+ThPOK-H+ and P14 control mice are shown. Panel (B) compares CD5 levels on 

the CD4+ and CD8+ mature T-cells from OTI+ThPOK-H+ mice. Each symbol represents an 

individual mouse. (C) To evaluate if Nur77 was directly regulated by ThPOK, Nur77 promoter 

sequence was cloned into luciferase reporter plasmid pGL4.19 (Nur77-Luc). Reporter plasmid 

was transfected in 293T cells in the presence or absence of ThPOK expressing plasmid and 

luciferase activity was measured at 48 hours post-transfection. Luciferase expression under the 

control of Actin (Actin-Luc) and Socs1 (Socs1-Luc) promoters serve as negative and positive 

controls, respectively. RLI, Relative Luminescence Intensity. Purified mature T-cell subsets 

from WT (CD4+ and CD8+) and ThPOK-H+II-/- (CD4+, CD8+ and DN) were stimulated in the 

presence of irradiated Balb/c splenocytes. Five to seven days later cells were stained for CD154 

(D) or restimulated with PMA/Ionomycin and stained for intracellular IFNγ and IL-4 (E). 

Unstimulated T-cells from WT mice served as a control. Data are representative of two or more 

independent experiments (A, C-E). n/d not determined.  
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Figure 23. The impact of individual ThPOK transgene on CD4+ development in 

ThPOK-/- mice, the impact of augmented TCR signal strength on the CD8+ to CD4+ 

lineage redirection in OTI+ThPOK-163+ and CD4+ lineage gene expression analysis 

Each of the three ThPOK transgene was introduced into ThPOK-/- mice and thymocytes and 

splenic T-cells were analyzed by flow cytometry. Panel (A) shows the CD4/CD8 phenotype of 

the mature thymocytes (CD24-CD69-TCRβ+) from the indicated mice. (B) shows CD4/CD8 

profile of splenic T-cells from the indicated strain of mice. Numbers represent the frequency of 

relevant thymocytes and splenic T-cells in the specified gates in each FACS plot. (C)  shows 

ThPOK staining of the indicated thymocytes and splenic T-cells. CD8+/DP and CD4+ 

thymocytes and splenic T-cells from WT mice serve as ThPOK staining controls. Note the 

continued presence of a small number of CD8+ thymocytes and splenic T-cells in ThPOK-

H+Thpok-/- mice compared to ThPOK-163+Thpok-/- or ThPOK-611+Thpok-/- mice. Also note 

higher ThPOK staining in CD4+ thymocytes and splenic T-cells from the three transgenic mice 

compared to WT control. (D) Thymocytes (top panels) and splenic (bottom panels) T-cells from 

OTI+ThPOK-163+ThPOK-/- expressing or not dLGF transgene were analyzed by flow cytometry 

and compared to OTI+dLGF+ThPOK-163+Thpok+/+ mice. The CD4/CD8 phenotype of mature 

thymocytes and the Vα2+ splenic T-cells from the indicated mice is shown. At least three mice 

of each genotype were analyzed. (E) St8sia6, St3gal2 and Cxxc5 expression in the redirected 

CD4+ T-cells from OTI+ThPOK-163+ and OTI+ThPOK-611+ mice was analyzed by QPCR and 

was compared to expression in CD4+ (St8sia6 and St3gal2) or CD8+ (Cxxc5) T-cells from WT 

mice. Data are average of triplicate (normalized to Hprt expression; n=2). (F) CD5 MFI in CD4+ 

splenic T-cells from the indicated mice relative to CD5 MFI in CD4+ T-cells from WT mice is 

shown 
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3.1 Résumé 

La signalisation du RCT dans les thymocytes restreints au CMH de classe II, par 

l’induction du facteur de transcription ThPOK inhibant le développement du programme 

cytotoxique, joue un rôle essentiel dans l’engagement dans la lignée CD4+. En l'absence de 

ThPOK, les thymocytes sélectionnés par le CMH de classe II sont redirigés dans la voie CD8+. 

Hormis la fonction du signal RCT dans l’induction de ThPOK, le rôle que joue cette voie de 

signalisation dans l’orientation des thymocytes vers les voies CD4+ ou CD8+ reste à déterminer. 

De même, l'existence d’un chevauchement fonctionnel entre ThPOK et les autres facteurs de 

transcriptions induits par le RCT, tels que Gata3 est incertaine. Nous avons étudié ici l’effet de 

la modulation de la voie de signalisation du RCT sur le programme d’engagement vers la lignée 

CD4+. Notre analyse démontre que les thymocytes restreints au CMH de classe II qui se 

différencient dans la voie CD8+ en l’absence de ThPOK continuent à exprimer des facteurs 

spécifiques nécessaires au programme de développement de la lignée CD4+. Cependant, nos 

études de surexpression transgénique n’ont montré aucune synergie entre Gata3 et ThPOK dans 

l’orientation des thymocytes vers la voie CD4+ ou CD8+. L'ensemble de ces résultats suggèrent 

que la signalisation du TCR spécifique au CMH de classe II joue un rôle dans l'activation d'un 

réseau de facteurs de transcription avec peu de chevauchement fonctionnel ne se limitant pas à 

ThPOK. 
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3.2 Abstract 

The MHC class-II TCR signaling is essential for the development of CD4+ helper T-

cells, by inducing the transcription factor ThPOK, which suppresses the cytotoxic program. In 

the absence of ThPOK, MHC class-II-restricted thymocytes are redirected to the CD8+ lineage 

fate. Apart from inducing ThPOK, the role of TCR signaling, and its downstream effector 

nuclear factors, on CD4+/CD8+ lineage fate remains elusive. Equally, it is not clear if there is 

any functional overlap between ThPOK and other TCR-induced transcription factors, such as 

Gata3, in lineage choice. Here, we have investigated the effect of modulating the TCR signaling 

pathway on the CD4+ helper program. Our analysis showed that CD8+-redirected MHC-II-

restricted T-cells in Thpok-/- mice continued to express multiple genes specific to the helper 

lineage fate. Importantly, however, transgenic overexpression of Gata3 failed to show any 

synergistic effect with ThPOK in redirecting MHC-I-signaled thymocytes into CD4+ lineage. 

Together, these data suggest a role for MHC-II-specific TCR signaling in activating a network 

of transcription factors with limited functional overlap. 
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3.3 Introduction 

 The CD4+/CD8+ lineage fate decision marks a critical step in the life of a T-cell, and is 

primarily regulated by TCR- and cytokine-derived signals [326]. These signals specify lineage 

fate by inducing a network of transcription factors. At the centre of this network are the mutually 

antagonistic transcription factors ThPOK and Runx3, which mediate CD4+ and CD8+ lineage 

choice, respectively [276, 326]. It is thought that TCR- and cytokine-regulated expression of 

Gata3 and STAT5 control transcriptional expression of the lineage-determining factors ThPOK 

and Runx3, respectively [275, 276, 326, 434]. While loss- and gain-of-ThPOK function redirects 

positively selected thymocytes into CD8+ and CD4+ lineage, respectively, constitutive Runx3 

expression fails to induce CD4+ to CD8+ lineage redirection suggesting that, by itself, Runx3 is 

not sufficient to antagonise ThPOK [245, 246, 265, 268, 269, 271, 280, 286, 413]. The network 

of transcription factors in committed thymocytes also helps maintain the lineage integrity in the 

periphery by epigenetic modifications of target genes [276, 322]. 

We aim to provide an in-depth analysis of the role that TCR signaling plays in lineage 

commitment. It is generally agreed that timing, duration and strength of TCR signaling influence 

lineage fate decision of positively selected CD4+8lo uncommitted thymocytes [156, 326, 435, 

436]. While the disruption of TCR signals at the CD4+8lo uncommitted intermediate stage results 

in the transcriptional activation of Runx3 and commitment to the CD8+ lineage fate, sustained 

TCR signaling activates two CD4+ signature genes, Gata3 and ThPOK [98, 266, 287, 320, 321, 

437]. Recent models propose that TCR-induced Gata3 participates in the development of CD4+ 

T-cells by binding to a regulatory region upstream of the second exon of Thpok and provoking 

an epigenetic priming of the locus by antagonizing Thpok silencer-mediated repression of 

ThPOK [322, 438]. However, transgenic overexpression of Gata3 or ThPOK suggest that 

Gata3’s function is independent of its effect on Thpok expression. Constitutive expression of 

Gata3 fails to induce Thpok expression and instead induces apoptosis of CD8+ thymocytes [96, 

153, 272, 273, 431]. Additionally, transgenic ThPOK failed to rescue CD4+ development in 

Gata3-deficient mice [274].  

 Although ThPOK is at the centre of the transcriptional network regulating the helper 

program, several reports suggest that the expression of multiple genes that are active in CD4+ 

helper T-cells does not positively correlate with ThPOK expression [268, 321, 438]. For 
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example, redirected MHC-II-specific CD8+ T-cells in Thpok-/- mice can be induced to express 

similar levels of IL-4 as MHC-II-specific CD4+ T-cells [293]. This is intriguing because 

differentiation of MHC-II-restricted Thpok-/- and MHC-I-restricted conventional thymocytes 

into the CD8+ cytotoxic lineage is governed by the same Runx3 transcriptional network of 

proteins [320, 321]. We propose that these results correlate with the MHC specificity in 

developing thymocytes. Indeed, we previously showed that the efficiency of CD4+ lineage 

choice of MHC-I-specific thymocytes with augmented TCR signaling and MHC-II-specific 

thymocytes in the presence of same amount of ThPOK was significantly different. By 

modulating TCR signaling in MHC-II-specific TCR transgenic mice models, we show here that 

TCR specificity could potentially regulate CD4+ lineage commitment independently of ThPOK 

expression. Interestingly, constitutive Gata3 failed to promote ThPOK-mediated CD8+ to CD4+ 

lineage redirection suggesting a lack of functional overlap between these two T-helper signature 

genes.  

3.4 Materials and methods  

3.4.1 Mice  

MHC class-I-restricted OTI-TCR (chicken ovalbumin peptide specific) and P14-TCR 

(LCMV GP33 peptide specific) transgenic mice were obtained from Taconic Farm or Nathalie 

Labrecque (Hôpital Maisonneuve-Rosemont Research Centre). MHC class-II-restricted OTII-

TCR (chicken ovalbumin peptide specific), 5cc7-TCR (pigeon cytochrome c peptide specific) 

were obtained from Taconic, whereas AND-TCR (moth and pigeon cytochrome c peptide 

specific) and MHC-II-deficient mice were obtained from Jackson Lab. Generation of ThPOK 

transgenic mice was described earlier [439]. ThPOK deficient mice (ThPOKgfp/gfp) were 

acquired from Dan Littman (NYU). Constitutively active Lck transgenic mouse line (dLGF) is 

described elsewhere and was obtained from Paul Jolicoeur [211, 420]. Gata3 transgenic mice 

are described in detail elsewhere [273]. All the TCR transgenic mice used in this study were on 

a Rag-sufficient background. Mice were genotyped by peripheral blood analysis and/or PCR of 
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genomic DNA isolated from tail snippets. Six to nine-week-old mice were analyzed. All mice 

were housed under specific pathogen free conditions at the Hôpital Maisonneuve-Rosemont 

Research Centre. In accordance with the Canadian Committee on Animal Care, animal protocols 

were approved by the local Animal care Committee.  

3.4.2 Flow cytometry  

Single-cell suspensions were prepared from harvested thymi, spleens and/or lymph 

nodes of 4 – 8-week-old mice. Cells were stained with the following fluorescein isothiocyanate-

, peridinin-chlorophyll-protein complex-, peridinin-chlorophyll-protein complex cyanine 5.5-  

phycoerythrin-, phycoerythrin-cyanine 7-, pacific blue-, BV510-, allophycocyanin-, or 

allophycocyanin cyanine 7-conjugated antibodies: CD4 (GK1.5), CD8 (53-5.8), TCRβ (H57-

597), CD5 (53-7.3), CD69 (H1.2F3), CD24 (M1/69), CD103 (2E7), CD25 (3C7), CD127 

(A7R34), H-2Kb (AF6-88.5), H-2Kk (36-7-5), H-2Kd (SF1-1.1), Vα2 (B20.1), Vβ5 (MR9-4), 

IFN-γ (XMG1.2) or Gzmb (GB11) and analyzed by flow cytometry using an LSRII or 

LSRFortessa (BD Bioscience). To differentiate between YFP and GFP, the following filters 

were used: 510/20, 545/35, 495LP and 525LP. Data were analyzed using FlowJo software 

(Treestar Inc.). Antibodies were obtained from Ebioscience or Biolegend.  

3.4.3 Quantitative RT-PCR (Q-PCR) 

Various thymocyte or splenic T-cell subsets were FACS purified and total RNA was 

prepared using Trizol (Invitrogen Inc.). Complementary DNAs were synthesized using 

commercial kit (Invitrogen). QPCR for Thpok, Gata3, Nur77, distal Runx3 (dRunx3) and Nkg7 

was performed in triplicate using SyBR green dye (Qiagen Inc.) and data was analyzed with the 

Applied Biosystem software ABI 7500 v2.0.5 using the ΔΔCt method. The housekeeping genes 

https://www.biolegend.com/en-us/search-results?Clone=AF6-88.5
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Rp16 or Hprt or Gapdh served as an internal control. All QPCR primers were obtained from 

IDT or designed in our lab (primer information available upon request).  

3.4.4 Functional assays  

Mature T-cells from spleen of OTI+dLGF+, and OTI+ mice were isolated and 

resuspended at a concentration of 1milion/ml and activated with 2μg/ml of plate-bound α-CD3ε 

(clone 145-2C11, BioLegend®, catalogue number: 100301), 1ug/ml of soluble α-CD28 (clone 

37.51, BioLegend®, catalogue number: 102101) in the presence of 50U/ml of rmIl2 (R&D 

Systems, catalogue number: 402-ML-020) for 3 days. Stimulated cells were stained with anti-

TCRβ, CD69, CD4, CD8, interferon-γ and granzyme B specific antibodies and analyzed by flow 

cytometry. For intracellular cytokine staining, the activated T-cells were incubated with 

brefeldin A (BioLegend®, catalogue number: 420601) for 4 hours, then fixed with 

eBioscience™, IC Fixation Buffer (catalogue number: 00-8222-49) and permeabilized with 

eBioscience™, Permeabilization Buffer (catalogue number: 00-8333). 

3.4.5 Retroviral transduction of peripheral murine T cells 

Mature peripheral T-cells from the spleen of Thpok-/- mice were purified using the 

EasySep™ (STEMCELL™ technologies, catalogue number: 19851) isolation kit and activated 

for 48 hours in vitro with plate-bound anti-CD3ε and soluble anti-CD28, as described above. 

Activated peripheral mouse T-cells were transduced with either a ThPOK-YFP or control YFP 

retrovirus (produced by transfecting ecotropic GP+E86 packaging cell line (obtained from 

ATCC©)), for two days in the presence of polybrene.  
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3.4.6 Statistical analyses  

Prism (Graphpad Software©) or Microsoft Excel software were used for all statistical 

analyses. Data are displayed as a mean with standard error bar. Unpaired or paired Student t test 

was used for determining significance. P < 0.05 was considered statistically significant. 

*P<0.05; **P<0.005; ***P<0.0005. 

3.5 Results 

3.5.1 Disruption of TCR signaling affects lineage fate 

To evaluate the role of TCR signaling in CD4+/CD8+ lineage choice, we employed 

several MHC-II-specific TCR transgenic mice. We modified the TCR signaling in these mice 

by altering the expression level of the selecting ligand. The OTII-TCR is positively selected by 

Kb, but not Kd or Kk, MHC-II haplotype. We generated OTII mice heterozygous for selecting 

MHC haplotype by breeding OTII+H-2Kb to Kk mice. Indeed, OTII+H-2Kb/k mice, compared to 

OTII+H-2Kb/b, showed impaired positive selection of developing thymocytes; there was almost 

3-fold decrease in TCR+ thymocytes in OTII+ H-2Kb/k mice compared to OTII+H-2Kb/b mice 

(Fig. 24A). To better examine the effect of introducing a non-selecting MHC-II allele on TCR 

signaling, we measured cell-surface expression of CD5, a negative regulator of TCR signaling 

that is proportional to TCR signaling [428]. Compared to OTII+H-2Kb/b, we observed that CD5 

on selected DP thymocytes were lower in OTII+H-2Kb/k. Although this difference is not 

statistically significant, the results suggest that the presence of only one selecting allele may 

reduce TCR signaling in MHC-II-specific thymocytes (Fig. 24B). Since TCR signaling is a key 

determining factor in CD4 lineage fate, we analysed the effect of impairing MHC-II-specific 

TCR signaling on lineage fate in our model [189]. Indeed, diminished TCR signaling resulted 

in almost 9-fold decrease in the frequency of CD4+ SP thymocytes with a significant frequency 

of signaled thymocytes adopting the CD8+ lineage fate with some becoming DN mature T-cells 

in OTII+H-2Kb/k mice compared to control (Fig. 24C). In OTII+H-2Kb/k, regulatory T-cells 

(TReg) constitute a small proportion of the CD4+ compartment. However, this frequency was 

increased by more than 10-fold in OTII+H-2Kb/k, demonstrating that development of these cells 
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mediated by agonist ligand, and therefore stronger TCR signaling, was largely unaffected (Fig. 

24D).  

Sustained TCR signaling favors CD4+ T-cell development primarily by inducing the 

transcription factor Thpok [276]. Mouse with GFP knocked into the Thpok locus have been 

reported and Thpok+/gfp mice accurately recapitulates the endogenous ThPOK expression pattern 

in CD4+ T-cells [320, 321]. Unlike MHC-I-specific CD8+ T-cells lacking GFP expression, 

MHC-II-specific CD8+ T-cells continue to express GFP in Thpokgfp/gfp mice. As H-2Kb/k MHC 

background led to the generation of a significant number of CD8+ T-cells, we asked if this 

lineage redirection was due to a lack of transcriptional activation or post-transcriptional 

inactivation of ThPOK. To address this, we introduced Thpok+/gfp background in OTII+ H-2Kb/b 

and OTII+ H-2Kb/k mice. Analysis of T-cells showed that MHC-II-specific redirected DN and 

CD8+ mature T-cells failed to express GFP indicating that disrupted TCR signaling in OTII+H-

2Kb/k mice impair Thpok induction (Fig. 24E). Further investigation showed CD103 expression, 

a target of Runx3 and thus an indicator of Runx3 induction, on CD8+, but not CD4+, mature T-

cells from OTII+H-2Kb/k mice [271]. Interestingly, DN mature T-cells from OTII+H-2Kb/k mice, 

while failed to express GFP, showed lower CD103 expression, and therefore potentially lower 

Runx3 induction, compared to CD8+ T-cells from the same mouse. These data suggest that 

during lineage fate, disruption of TCR signaling in OTII+H-2Kb/k thymocytes could fail to 

induce Thpok expression leading to Runx3-dependent CD8+ T-cell differentiation (Fig. 24E). 

3.5.2 MHC-II redirected CD8+ T-cells following disruption in TCR-signals can be 

rescued by transgenic ThPOK expression  

To support the observed CD4+ to CD8+ lineage redirection following the introduction of 

a non-selecting allele in OTII+H-2Kb/k is not limited to OTII, we repeated the experiment using 

two other mice expressing MHC-II-specific TCR of different affinity for ligand. A previous 

report has shown that 5cc7- and AND-TCR have similar and higher TCR-signal strength as 

OTII-TCR, respectively [428]. 5cc7+ thymocytes are selected by Kk haplotype and so to reduce 

TCR signaling we introduced the non-selecting allele Kb [428]. AND-TCR, on the other hand, 

is selected by Kb and Kk, but not Kd, haplotypes, and so Kd allele was introduced to evaluate the 

impact of altered TCR signaling on thymic selection and lineage choice [428]. Similar to OTII 



 

141 

mice, the introduction of a non-selecting MHC-II molecule impaired CD4+ T-cell development 

in AND mice and were partially redirected to the CD8+ lineage fate with the generation of a 

large number of DN mature T-cells (Fig. 25A). In the same way, disruption of TCR signaling 

in 5cc7 impaired CD4+ T-cell development. However, unlike OTII and AND model, reduced 

TCR-signaling in 5cc7 mice favored the development of DP mature T-cells in the periphery 

(Fig. 25B). To demonstrate that the lineage redirection of MHC-II-restricted thymocytes 

occurred as a consequence of impaired Thpok induction, we introduced ThPOK transgene in 

5cc7+H-2Kk/b mice. Indeed, CD4+ development was completely rescued in 5cc7+ H-

2Kk/bThPOK-Tg+ mice as judged by the comparable frequency of CD4+ T-cells in these mice to 

control animals (Fig. 25C).  

3.5.3 MHC-II-specific redirected CD8+ T-cells in ThPOK knock out mice show some 

functional and transcriptional differences compared to genuine MHC-I-specific CD8+ T-

cells   

 So far, we have provided solid evidence that modulating TCR signaling in MHC-II-

restricted thymocytes impaired induction of the helper program potentially by hindering Thpok 

induction leading to Runx3 expression. However, it is not clear if there is any similarity between 

the mechanism that underlies the generation of MHC-II-specific CD8+ T-cells caused by 

weakened TCR signaling or genetic ablation of ThPOK, which does not affect TCR signaling 

[287]. We used ThPOK knock-out mice (Thpokgfp/gfp) mouse to test this prediction. As reported 

in the literature, the redirected MHC-II-specific CD8+ T-cells expressed GFP indicating that, 

despite Runx3 expression, the Thpok locus is active in the redirected CD8+ T-cells unlike  

conventional MHC-I-specific CD8+ T-cells (which do not express GFP) (Fig. 26A, B). 

Interestingly, CD5 levels on CD8+GFP+ T-cells were higher compared to CD8+GFP- T-cells 

suggesting a stronger TCR-signaling in CD8+GFP+ T-cells despite lack of expression of 

matching CD4 co-receptor (Fig. 26C). The expression levels of CD103 on CD8+GFP+ and 

CD8+GFP- populations were similar, suggesting that both populations could potentially be 

expressing similar levels of Runx3 (Fig. 26B). Moreover, we detected similar expression levels 

of Gata3 and Nur77 (which is induced by a strong TCR signaling, and is more abundant in 

MHC-II-restricted CD4+ T-cells compared to MHC-I-restricted CD8+ T-cells [439]) in 

CD8+GFP+ compared to those expressed by MHC-II-specific CD4+GFP+ T-cells, but not MHC-



 

142 

I-specific CD8+GFP- T-cells (Fig. 26D). These data propose that CD8+GFP+ and CD8+GFP- 

received different TCR signals during thymic selection. In MHC-I-restricted CD8+ T-cells, 

Thpok and other CD4+ specifying genes are epigenetically silenced by Runx3 as part of the 

CD8+ differentiation. This is probably not the case for CD8+GFP+ T-cells which displayed 

several active components of the helper program. Hence, we reasoned that introducing ThPOK 

in the redirected CD8+GFP+ T-cells may rescue CD4+ phenotype. While retroviral-expression 

of Thpok in CD8+GFP+ T-cells downregulated CD8+ expression (by around 30%), CD4 

expression was not affected (Fig. 26E). These data may suggest either that (1) peripheral T-cells 

are unresponsive to exogenous expression of ThPOK in terms of Cd4 induction, (2) the amount 

of ectopically expressed ThPOK was not sufficient to induce Cd4 expression in our model, or 

that (3) a binding partner necessary for ThPOK-induced Cd4-expression is absent from 

CD8+GFP+ T-cells in Thpok-/- mice.  

3.5.4 Sustained TCR signaling activates helper program and supresses cytotoxic 

program independently of ThPOK 

To further support our hypothesis that TCR signaling could trigger the expression of 

CD4+ lineage specific genes even in the redirected CD8+GFP+ T-cells, we introduced, in MHC-

I-specific TCR transgenic OTI mice, a constitutively active Lck transgene (dLGF) as increased 

Lck activity is known to redirect MHC-I-restricted thymocytes to the CD4+ lineage fate [210]. 

Augmenting the catalytic activity of Lck in MCH-I-restricted thymocytes partially phenocopied 

the effect of an MHC-II-restricted TCR signaling on the lineage fate (manuscript#1, Fig. 17A) 

as judged by a small but significant increase in the frequency of CD4+ T-cells in OTI+dLGF+ 

mice (Fig. 27A). Lineage redirection in OTI+dLGF+ mice required ThPOK induction because 

OTI+dLGF+Thpokgfp/gfp mice lacked mature CD4+ T-cells. Importantly, a fraction of CD8+ T-

cells in OTI+dLGF+Thpokgfp/gfp mice continued to express GFP with higher CD5 levels 

(compared to CD8+GFP- cells) which is indicative that these cells received stronger TCR 

signaling during thymic selection leading to the activation of the Thpok locus (Fig. 27B, C & 

D). Although more experiments need to be performed, but these data complement the above 

described data showing that disrupted MHC-II TCR signaling fails to induce ThPOK 

expression. However, these data may also argue against the proposed role of ThPOK in forming 

an autoregulatory feed forward loop [267, 275, 321, 322]. Additionally, we also observed a 
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slight decrease in CD103 expression, and by extension probably lower Runx3 expression, in 

CD8+GFP- T-cells from OTI+dLGF+Thpokgfp/gfp mice compared to control CD8+ T-cells from 

OTI mice (Fig. 27E). Although the difference is minimal, it is tempting to speculate that stronger 

TCR signaling may result in suppression of cytotoxic program even in the absence of ThPOK 

expression (Fig. 27E). A similar pattern was detected in P14+dLGF+ mice as well, indicating 

that the observations were not limited to OTI+ mice (data not shown). Moreover, in vitro 

activated CD8+ splenocytes from OTI+dLGF+ mice showed a small decrease in IFNγ expression 

but not enough to draw any significant conclusion (Fig. 27G).  

3.5.5 Impact of constitutive Gata3 expression on the ThPOK-induced lineage redirection 

Gata3 expression is critical for CD4+ lineage development and its expression levels in 

MHC-II-signaled thymocytes correlates with TCR signal strength [266, 272, 431]. Gata3, in 

turn, promotes TCR signal transduction and acts upstream of ThPOK [195]. We have previously 

shown that TCR signaling in MHC-II-restricted thymocytes can influence CD4+/CD8+ lineage 

fate because they require lower amounts of ThPOK compared to MHC-I-signaled thymocytes 

for CD4+ lineage commitment (Fig. 16, 17). Therefore, we reasoned that the ThPOK-

independent effect of MHC-II-specific TCR signaling on the activation of helper program may 

be mediated by Gata3. To test this hypothesis, we introduced Gata3 transgene into OTI mice 

[273]. We observed reduced frequency and absolute number of CD8+ SP thymocytes and 

splenocytes in OTI+Gata3+ mice without any significant increase in CD4+ T-cells suggesting 

that Gata3 expression in MHC-I-specific thymocytes does not induce lineage redirection (Fig. 

28A, B & C). Since it is reported that Gata3 and ThPOK have distinct functions during lineage 

fate [273, 274], we sought to determine if the two molecules act in synergistic fashion in 

promoting CD8+ to CD4+ lineage redirection. To address this issue, we used our ThPOK-H 

transgene, which causes a partial CD8+ to CD4+ lineage redirection in OTI mice but expresses 

more ThPOK than the endogenous locus (manuscript#1 Fig. 12, 18). Much like the 

introduction of the dLGF transgene in OTI+ThPOK-H+ mice (manuscript#1 Fig. 17, 18), we 

observed a significant decrease and increase in the frequency of CD8+ and CD4+ T-cells, 

respectively, in OTI+ThPOK-H+Gata3+ compared to OTI+ThPOK-H+ (Fig. 28A & B). The 

presence of Gata3 did not, however, affect the frequency of DN mature T-cells in triple 

transgenic mice compared to OTI+ThPOK-H+ mice. However, the increased frequency of CD4+ 
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T-cells did not appear to be due to augmented CD8+ to CD4+ lineage redirection but rather due 

to loss of significant number of not only CD8+ but CD4+ and DN mature T-cells in OTI+Gata3+ 

mice expressing or not ThPOK-H.  

In the thymus, we observed similar pattern for the CD4+/CD8+ ratio with the highest in 

the triple transgenic mice (Fig. 28C & D). However, unlike splenic T-cells, the absolute number 

of total or selected thymocytes were comparable in all groups of mice. Importantly, the absolute 

number of CD4+ SP thymocytes in OTI+ThPOK-H+ and OTI+ThPOK-H+Gata3+ was 

comparable, albeit the frequency was more elevated in OTI+ThPOK-H+Gata3+ mice suggesting 

that the presence of Gata3 per se does not affect the CD4+ lineage commitment in OTI+ThPOK-

H+ mice. These data suggest that the redirected CD4+ T-cells in OTI+ThPOK-H+ mice behave 

like CD8+ T-cells within the context of Gata3-induced apoptosis, and point to potential 

differences in TCR signaling in MHC-I- and MHC-II-specific thymocytes irrespective of their 

CD4/CD8 lineage choice. 

Significantly different CD4+ mature T-cell number in spleen of OTI+ThPOK-H+ and 

OTI+ThPOK-H+Gata3+ could be due to apoptotic effect of constitutive Gata3 expression in a 

strong affinity TCR transgenic mice. To address this issue, we introduced ThPOK-H and/or 

Gata3 transgene into MHC II-deficient (II-/-) mice. As expected, introducing Gata3 or ThPOK-

H transgene into II-/- mice significantly decreased in the frequency and number of T-cells in the 

spleen compared to control II-/- mice (Fig. 29A & B). This was further reduced, in the presence 

of both the transgenes in II-/- mice. Interestingly, constitutive Gata3 expression in II-/- mice 

expressing or not ThPOK-H resulted in severe depletion of total T-cells and this resulted in 1) 

a significant increase in the frequency but not absolute number of CD4+ mature T-cells and 2) 

almost complete depletion of CD8+ mature T-cells without any impact on a small number of 

DN mature T-cells. As a result, we observed a significant increase in the CD4+/CD8+ ratio in 

the spleen as well as thymus compared to ThPOK-H+II-/- and Gata3+II-/- (Fig. 29A & C).  We 

thought that Gata3 may be selectively inhibiting MHC-I-specific CD8+ T-cell development by 

interfering with cytokine signaling since MHC-I-signaled CD8+ committed thymocytes rely 

more on cytokine- rather than TCR-induced signaling for their continued differentiation. Indeed, 

cell-surface expression of CD127 was down regulated in CD4+8lo thymocytes in MHC-I-

specific CD8+ T-cells from Gata-3 transgenic mice compared to WT (Fig. 29E). However, more 
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research needs to be done in order to better understand Gata3-mediated apoptosis of CD8+ T-

cells.  

3.6 Discussion 

In the present investigation, we have studied the impact of TCR signaling on CD4+/CD8+ 

lineage commitment and how altering individual components of the downstream signaling 

pathway results in distinct CD4+/CD8+ phenotypes. Our data corroborate published reports 

suggesting the requirement of a persistent TCR signaling for CD4+ T-cell development via 

induction of Thpok and other factors like Gata3. While our recently published data show that 

augmenting TCR signal strength promotes ThPOK-induced CD4 lineage choice of MHC-I-

specific thymocytes, here we have employed converse approach of decreasing TCR signaling, 

by altering selecting ligand levels, to study CD4+/CD8+ lineage choice of MHC-II-specific 

thymocytes [439]. Our data show that decrease in TCR signaling in MHC-II-restricted 

thymocytes results in significant CD4+ to CD8+ lineage redirection (or generation of DP mature 

T-cells). The higher frequency of TReg within the remaining CD4+ T-cells in OTII+H-2Kb/k is 

likely due to intrinsic characteristics of TReg as they may be less susceptible to signal strength 

alterations. We found evidence suggesting that TCR signaling may inhibit the cytotoxic 

program, albeit partially, in developing thymocytes independently of ThPOK expression. One 

possible explanation could be that MHC-II-restricted TCR signaling could antagonize cytokine 

signaling by inducing SOCS proteins independently of ThPOK. Indeed, β-selected DP 

thymocytes are reported to express high levels of SOCS proteins, suggesting that Lck-derived 

signals in DN3b stage could be initiating their expression [189]. This could help explain our 

results showing dLGF partially downregulated the expression of CD103 from OTI and p14 

mice. We found that ThPOK was the main CD4+ lineage specifying transcription factor induced 

by MHC-II-restricted TCR signaling as forced expression of ThPOK rescued the lineage 

redirection caused by disruption of TCR signaling in 5cc7+H-2Kk/b [189, 275] 

Nonetheless, the molecular mechanism that leads to lineage redirection of MHC-II-

signaled cells due to the loss of ThPOK function, or the disruption of TCR signaling does not 

seem to be similar [265, 286]. The fact that genuine MHC-I-restricted CD8+ T-cells in 

ThPOKgfp/gfp had lower TCR signal strength than MHC-II-specific redirected CD8+ T-cells 



 

146 

suggest that the two subsets may share distinct features. Our results suggest that MHC-II TCR 

signaling has a broader effect on CD4+ lineage fate than ThPOK-mediated CD4+ lineage choice 

of MHC-I-specific thymocytes. The inability of Runx3 to silence Thpok locus in CD8+GFP+ T-

cells in ThPOKgfp/gfp mice demonstrate that ThPOK is dispensable for antagonizing Runx3-

mediated silencing of its own locus. This also suggest that ThPOK, rather than promoting its 

own expression during CD4+ lineage choice, could be more generally required for protecting 

cells from inducing the cytotoxic program. How do we explain continued activity of the Thpok 

locus in CD8+GFP+ T-cells in Thpokgfp/gfp mice? We suggest that MHC-II-specific TCR 

signaling may regulate the expression of a Thpok-inducing factor that functions to counteract 

the strong epigenetic Thpok silencing activity of Runx3 in these cells; in CD8+GFP- T-cells such 

factor will not be induced and thus, Thpok locus will be inactive. Gata3 could fit this role as it 

is suggested to act as a pioneer transcription factor that can regulate gene activity by directly 

binding and recruiting histone modifying enzymes on condensed chromatin [71, 440, 441]. 

Gata3 acts early in CD4+ T-cell development by promoting the development of the CD4+8lo 

intermediate stage in MHC-II-restricted double positive (DP) thymocytes [274]. In agreement 

with this, we find continued Gata3 expression in CD8+GFP- T-cells. However, constitutive 

Gata3 expression in OTI mice did not upregulate ThPOK or redirect thymocytes into CD4+ 

lineage. Importantly, concomitant constitutive Gata3 and ThPOK expression in OTI mice not 

only failed to show synergistic effect on the CD8+ to CD4+ redirection but resulted in significant 

loss of mature CD4+ T-cells compared to OTI mice expressing only ThPOK transgene. While 

reduction in the CD8+ T-cell number in OTI+ThPOK-H+Gata3+ mice is likely due to ThPOK-

induced lineage redirection and/or Gata3-mediated impaired maturation, reduction in CD4+ or 

DN mature T-cell number in these mice was unexpected [98, 273, 434, 437]. These data suggest 

that the impact of constitutive Gata3 on inducing apoptotic pathway in MHC-I-signaled 

thymocytes appears to be potentially preserved even in the redirected CD4+ T-cells in ThPOK 

transgenic mice. Reduced CD127 (IL-7Ra chain) expression on residual CD8+ T-cells from 

Gata3 transgenic mice may partly supports such a possibility as thymocytes rely on tonic TCR 

and cytokine signaling for homeostasis and survival [225, 230, 442, 443]. Finally, if and how 

Gata3, may contribute to suppression of cytotoxic program via a potential ThPOK-independent 

mechanism needs further study [195]. 
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3.7 Figures and figure legends 
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Figure 24. Disruption of MHC-II TCR signaling during lineage commitment 

impairs CD4+ lineage commitment  

(A) FACS analysis showing expression of H-2Kk and H-2Kb alleles (upper panels) and positive 

selection (bottom panels) in OTII+H-2Kb/b and OTII+H-2Kb/k mice. Values indicate the 

percentage of cells in each gate. (B) Histogram showing cell-surface expression of CD5 on 

selected DP T-cell subsets of indicated genotypes. (C) Contour analysis showing CD4 and CD8 

expression in total thymocytes, mature thymocytes (gated on TCR+CD24-CD69-) and spleen 

TCRβ+ Vα2+ T-cells from mice of the indicated genotypes. Numbers indicate the percentage of 

cells in each gate. (D) FACS analysis showing the CD5 MFI (upper panel) and CD5 relative 

fluorescence intensity (RFI) (upper histogram) in the different subsets from OTII+H-2Kbk as 

compared with CD5 levels on CD4+ T-cells from OTII+H-2Kb and frequency of Treg (lower 

panel) in CD4+ T-cells from mice of the indicated genotypes. (E) Histograms showing 

ThPOKGFP reporter expression (top panel) and CD103 expression levels (bottom panel) in 

splenic T-cells of indicated genotypes. Values indicate the frequency of CD103+ T-cells in the 

indicated gate. Data are representative of at least two independent experiments with n=3. 
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Figure 25. Lineage redirection in MHC-II impaired TCR signaling can be rescued 

by constitutive expression of transgenic ThPOK  

(A and B) FACS analysis showing CD4 and CD8 expression in mature thymocytes and spleen 

TCRβ+Vα11+ T-cells from mice of indicated genotypes. (C) CD4 and CD8 cell-surface 

expression on mature thymocytes and TCRβ+Vα11+ gated splenocytes were analysed from 

freshly isolated thymus and spleen organs from mice of indicated genotypes. Data are 

representative of at least two experiments with similar results with n=3. Numbers indicate the 

percentage of cells in each gate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

153 

 



 

154 

Figure 26. ThPOK deficiency does not affect class-II TCR signaling in redirected 

T-cells  

(A) Contour plot showing CD4 and CD8 expression on mature thymocytes and TCRβ+ 

splenocytes from mice of indicated genotypes. Numbers indicate the frequency of cells in 

designated gates. (B) (Upper panels) Histograms showing ThpokGFP reporter expression in 

mature thymocytes and TCRβ+ gated splenocytes, in the presence (Thpok+/gfp) or absence 

(Thpokgfp/gfp) of ThPOK, in T-cell subsets from mice of the indicated genotypes. Shaded 

histogram is GFP- control. (Lower panels) Histograms showing cell-surface expression of 

CD103 in CD4+ and CD8+ mature thymocytes and TCRβ+ splenocytes from Thpok+/gfp and 

Thpokgfp/gfp mice. (C) Flow cytometry of expression of CD5 splenic T-cells subsets from mice 

of the indicated genotypes. (D) Quantitative RT-PCR analysis of MHC-II-specific gene, Gata3 

and Nur77 and MHC-I-specific genes (dRunx3 and NKG7) in CD8+GFP+ and CD8+GFP- 

peripheral splenocytes from Thpokgfp/gfp mice and CD4+ peripheral splenocytes sorted from and 

Thpok+/gfp mice. (E) Contour plots showing CD4 and CD8 expression on CD8+GFP- or 

CD8+GFP+ peripheral T-cells infected with a ThPOK-expressing vector (ThPOK-YFP) or an 

empty vector (YFP). Values adjacent to outlined areas represent frequency cells in each. Values 

in red represent mean fluorescence intensity (MFI) of CD8. Data are representative of two 

analyses with similar results with n≥2.  
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Figure 27. Strong TCR signaling can induce helper function and repress cytotoxic 

program independently of ThPOK  

(A) CD5 expression on DP thymocytes from OTI and OTI+dLGF+ mice. (B) Expression of CD4 

and CD8 in mature thymocytes from mice of the indicated genotypes. Numbers next to the 

outlined areas represent percentage cells in each. (C) ThpokGFP reporter expression in TCRβ+ 

splenocytes from mice of the indicated genotypes. (D) Histograms and bar graph compilation 

illustrating surface CD5 expression levels in indicated subsets from mice of the indicated 

genotypes. Bar graph shows CD5 relative fluorescence intensity (RFI) compilation in the 

different subsets in comparison with levels in CD8+GFP+ from OTI+dLGF+ mice (E and F) 

Surface CD103 expression and Runx3YFP reporter expression in mature CD8 thymocytes and 

peripheral TCRβ+ CD8+ T-cells from mice of the indicated genotypes. (G) Purified CD8+ T-

cells from mice of the indicated genotypes were activated with plate-bound α-CD3ε, soluble α-

CD28 and rIL2 for three days and analysed for intracellular Ifnγ and Gzmb in the presence of 

brefeldin-A. The shaded histogram is unstimulated CD8+ cells from OTI+dLGF+. Bar graph 

shows compilation of Ifnγ and Gzmb. Representative example of two or more experiments with 

n≥2. 
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Figure 28. Constitutive Gata3 differentially affects the frequency and number of 

redirected T-cells in OTI+ThPOK-H+ mice  

OTI+ThPOK-H+Gata3+ mice were generated to determine if constitutively expressed Gata3 

enhanced CD8+ to CD4+ lineage redirection in OTI+ThPOK-H+ mice. CD4 and CD8 expression 

of Vα2+ splenic T-cells (A) and thymocytes (C) of mice from the indicated strain was analyzed 

by flow cytometry. In panel (B), the frequencies and absolute numbers of Vα2+ T-cells, CD4+, 

CD8+ and DN mature T-cell population in the spleen of various mice are shown. In panel (D), 

the frequencies and absolute numbers of positively selected thymocytes (CD69+TCR+), CD4 SP 

and CD8 SP thymocytes from mice of the indicated genotypes are shown. Total thymocytes 

number and CD4+/CD8+ ratio for single positive thymocytes are also shown for these mice. Data 

in panels A and C are representative example of 3 to 5 independent experiments with n>5.  
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Figure 29. Enforced GATA3 differentially affects the frequency and number of 

redirected T-cells in OTI+ThPOK-H+ mice  

ThPOK-H and GATA3 transgenes were expressed individually or together in MHC II-deficient 

mice to study the lineage redirection of polyclonal MHC class-I-restricted thymocytes. (A) 

Shows flow cytometric analysis of spleen of GATA3+II-/-, THPOK-H+II-/-, ThPOK-

H+GATA3+II-/- and II-/- mice. Numbers in the quadrants indicate percent cells in each. (B) 

Graphs illustrating the frequencies and absolute number of T-cells and T-cell subsets in the 

spleen of the indicated strain of mice. (B) Also shows CD4+/CD8+ ratio of splenic T-cells. (C) 

CD4+ and CD8+ profile of total thymocytes from the indicated strain of mice. The frequencies 

and absolute number of positively selected thymocytes, CD4+ SP, and CD8+ SP thymocytes are 

shown in (D). Also shown are total thymocytes numbers and CD4+/CD8+ ratio of SP thymocytes 

in GATA3+II-/-, THPOK-H+II-/-, ThPOK-H+GATA3+II-/- and II-/- mice. (E) Histograms showing 

CD127 expression in CD4+ and CD4+8lo thymocytes from mice of the indicated genotypes. Data 

are representative of at least two independent experiments with n>5.  
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Chapter 4: Discussion  

 

 

 

 

 



 

 

T lymphocytes are at the heart of the adaptive immune system and play an important role 

in eliminating offending pathogens and transformed cells. T-cell progenitors originate in the 

BM and migrate to the thymus where the T-cell identity is established through discrete 

developmentally regulated steps comprising sequential commitment stages and lineage 

checkpoints [79, 189]. The CD4+/CD8+ cell-fate specification is an essential developmental 

event and is regulated by MHC specificity and duration of TCR signaling via expression of 

lineage-specific transcription factors [326]. The goal of this thesis was to investigate the role of 

ThPOK and TCR signaling and, thereby, further our understanding of the mechanisms of CD4+ 

helper and CD8+ cytotoxic lineage choice of developing thymocytes.  

In the first part of this thesis (manuscript #1), our goal was to study, in the first place, 

the dose dependent effect of ThPOK on CD4+ lineage fate and helper function and, secondly, to 

determine the role of TCR signaling and MHC specificity on ThPOK-mediated CD4+ lineage 

fate. Studies with ThPOK hypomorphic mice showed that partial ThPOK loss-of-function 

redirected only a fraction of MHC-II-restricted T-cells into the CD8+ lineage [276, 320, 321]. 

Importantly, the residual CD4+ T-cells from ThPOK hypomorphic mice upregulated Runx3, 

which resulted in the loss of helper-lineage features and gain of cytotoxic characteristics [320, 

321]. This suggested that higher ThPOK levels are required to prevent differentiation of mature 

CD4+ T-cells towards the cytotoxic lineage, demonstrating that the ThPOK doses required for 

the acquisition of the CD4+ SP surface phenotype and the helper-lineage functions are different. 

Results from our gain-of-function experiments showed a similar dose dependent role for ThPOK 

(manuscript #1 Fig. 14) as one of the transgenes, ThPOK-H, induced only a partial CD8+ to 

CD4+ lineage redirection. The ThPOK-H transgene expressed 1.5 to 2-fold more ThPOK levels 

compared to the endogenous locus in conventional CD4+ T-cells. This suggests that the 

transgenic ThPOK should rescue conventional CD4+ development in ThPOK deficient mice, 

which indeed was the case, as evident from the phenotype of OTII+Thpok-/- mice expressing or 

not ThPOK-H. Partial lineage redirection of MHC-I-specific thymocytes, which transduce a 

different TCR signal compared to MHC-II-specific thymocytes, by ThPOK-H prompted us to 

define the role of TCR signaling in ThPOK-mediated CD4+ helper fate decision. The ability of 

constitutively active Lck transgene (dLGF) to significantly augment CD8+ to CD4+ lineage 

redirection in OTI+ThPOK-H+ mice, supported a role for TCR signaling in CD4+ lineage choice 
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in these mice. However, the CD4+ SP frequency in OTI+dLGF+ThPOK-H+Thpok-/- mice was 

still significantly lower than OTII+ThPOK-H+Thpok-/- (manuscript #1, Fig. 16, 17, 18) 

suggesting an important role for MHC specificity as well in ThPOK-mediated CD4+ lineage 

choice.  

In the second part of the thesis (manuscript #2), we further characterized the role of TCR 

signaling and downstream events in CD4+ T-cell development. Our results showed that 

sustained TCR signaling may protect CD4+ lineage integrity by potentially contributing to the 

inhibition of Runx3-dependent cytotoxic program and inducing CD4+-specific genes, 

independently of ThPOK (manuscript #2 Fig. 24, 26, 27). The fact that ThPOK and Gata3 are 

both induced by TCR signaling in MHC-II-restricted T-cells, motivated us to study their 

interplay in CD4+ cell identity (manuscript #2 Fig. 28, 29) [276]. We have generated evidence 

possibly implicating Gata3 in the selective disruption of MHC-I-specific T-cells irrespective of 

their lineage fate (manuscript #2 Fig. 28, 29). This study furthers our understanding of the role 

of TCR signaling in the of induction/suppression of the network of genes governing CD4+/CD8+ 

lineage fate of positively selected thymocytes.  

4.1 Role of TCR signaling in ThPOK-mediated CD4+ lineage 

commitment (manuscript#1) 

4.1.1 The dose dependent effect of ThPOK  

One purpose of this study was to investigate the dose-dependent effect of ThPOK on 

lineage commitment and helper function. In 2008, two independent research groups showed that 

the introduction of a ThPOK hypomorphic allele in MHC-II-restricted thymocytes redirected a 

fraction of them to the DN lineage fate, which expressed lower ThPOK levels compared to 

conventional CD4+ T-cells [320, 321]. This indicated that lowering ThPOK levels below a 

certain threshold in MHC-II-restricted thymocytes does not necessarily result in CD8+ lineage 

redirection. Instead, ThPOK exhibited a dose-dependent modulation of CD4+ lineage fate. 

Importantly, compared to control mice, CD4+ T-cells from the hypomorphic mice expressed 

lower amounts of ThPOK, which enabled Runx3 upregulation.  
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Our ThPOK transgenic founder lines were produced by cloning a DNA sequence that 

included the two coding exons of ThPOK downstream of the hCD2 promoter, resulting in an 

early constitutive expression of ThPOK that significantly increased the frequency of CD4+ T-

cells in the thymus and spleen (manuscript #1 Fig. 12, 20) [217, 276, 326, 331]. Further 

analysis demonstrated that the founder lines that we generated, expressed different levels of 

ThPOK (manuscript #1 Fig. 12, 20). Previous reports describing ThPOK transgenic mice 

suggested a complete CD8+ to CD4+ lineage redirection of MHC-I-specific transgenic TCR 

(HY-TCR, P14-TCR, OTI-TCR). However, both the studies were done in Rag-sufficient 

background thus making it difficult to assess if the complete CD8+ to CD4+ lineage redirection 

was due to ThPOK or that the endogenous TCR expression could have contributed to this 

process as well [265, 268]. Further, these studies failed to suggest if the ThPOK-mediated 

lineage redirection was dose dependent. In contrast, we have done extensive characterization of 

our three independent ThPOK transgenic mouse lines at RNA and, importantly, protein level. 

All three lines showed significant increase in CD4+ and decrease in CD8+ frequencies in the 

thymus and spleen, compared to WT control. Comparing the CD4+/CD8+ frequencies amongst 

the three lines showed that the line with the lowest ThPOK expression (ThPOK-H) showed 

significantly fewer CD4+ T-cells compared with the line with the strongest expression (ThPOK-

611). The third line, ThPOK-163, displayed an intermediate phenotype, thus highlighting the 

dose-dependent gain-of-function of ThPOK in CD4+ lineage commitment. As the same ThPOK-

expressing vector was used to generate all the founder lines, we propose that chromatin 

organisation at the transgene integration sites likely affected expression patterns. While ThPOK-

611 transgene integration probably occurred in euchromatic regions of the genome, in ThPOK-

H and ThPOK-163, integration likely occurred in both heterochromatic and euchromatic regions 

of the genome. The insertion of a transgene in heterochromatin DNA is often associated with a 

variegated pattern of expression [444, 445]. Indeed, analysis of ThPOK protein expression, by 

flow cytometry, in DP thymocytes from OTI+ThPOK-H+ mice show a wide peak, with some 

cells expressing high levels of ThPOK and others expressing lower or no ThPOK. In contrast, 

ThPOK protein levels in OTI+ThPOK-611+ mice were more uniform. This likely provides an 

explanation for the difference in mean fluorescence intensity between the two transgenic lines 

(manuscript #1 Fig. 12, 20). It is tempting to speculate that in OTI+ThPOK-H+, mature CD4+ 

T-cells originate from the ThPOKhi fraction, the DN from the ThPOKmed cells, and CD8+ T-
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cells from the ThPOKlo population (Fig. 30). To determine the impact of variegated expression 

on lineage choice, would require transgenic mice expressing ThPOK and a reporter gene as a 

bicistronic message. In contrast to DP thymocytes, ThPOK staining in peripheral T-cells from 

ThPOK-H mice gives a relatively tight peak, further suggesting that thymic progenitors 

expressing similar ThPOK levels differentiate into a unique peripheral T-cell subset 

(manuscript #1 Fig. 12). Regardless of the reasons behind the partial redirection of CD8+ T-

cells to the CD4+ lineage, our model provides us with the unique possibility to study the dose-

dependent effect of ThPOK on lineage fate and cell function.  

During lineage commitment, MHC-II TCR signaling favors CD4+ T-cell development 

by positively and negatively regulating the transcription of a set of genes involved in the helper 

and cytotoxic programs, respectively [446]. Indeed, our results show that the constitutively 

active Lck (dLGF) transgene redirected selected thymocytes to the CD4+ lineage fate by 

inducing ThPOK expression and suppressing Runx3 (manuscript #1 Fig. 17, 18; manuscript 

#2 Fig. 27). In the absence of ThPOK, selected MHC-II-restricted thymocytes are redirected to 

the CD8+ lineage due to Runx3 induction [320]. However, the presence of CD4+ T-cells in 

ThPOK-deficient mice that also lacked Runx complexes (Core binding factor beta – Cbfb-

deficiency) suggest that the CD4+ lineage commitment may be ThPOK independent [293, 320]. 

Assuming that CD4+ T-cells in Thpok-/-Cbfb-/- are MHC-II-specific, this study suggests that 

specific TCR signaling in itself may be sufficient for CD4+ lineage choice. As a matter of fact, 

the observation that a significantly higher frequency of CD4+ T-cells in OTI+dLGF+ThPOK-

H+Thpok-/- mice compared to OTI+ThPOK-H+Thpok-/- genotype strongly suggest that a 

constitutively active TCR signaling promotes CD4+ lineage independent of ThPOK. 
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Figure 30. ThPOK expression profile in DP thymocytes determines lineage fate  

This drawing shows ThPOK expression profile in double positive (DP) thymocytes from 

ThPOK-611+ and ThPOK-H+ transgenic mice. It is possible that different expression levels of 

ThPOK in ThPOK-H+ results in the partial redirection of major histocompatibility complex 

(MHC)-I-restricted CD8+ T-cells to the CD4+ lineage fate. 

 

ThPOK directs thymocytes to the helper fate by regulating CD4-specifying genes, like 

SOCS proteins, and by antagonising Runx3-mediated activation of the cytotoxic program [293, 

322]. Our gene expression comparison of the three peripheral T-cell subsets in OTI+ThPOK-H+ 

has highlighted the mechanism of ThPOK dose-dependent regulation of CD4+/CD8+ lineage 

fate. While only high ThPOK expression levels could induce SOCS1, intermediate and higher 

amounts of ThPOK upregulated the anti-cytotoxic lineage factor, Nur77 [425]. However, it 
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remains to be determined if Nur77, which is reported to suppress Runx3, is involved in inducing 

the CD4+ lineage fate [425]. Finally, we noted that the low levels of ThPOK in CD8+ T-cells, 

which failed to induce any lineage-determining factors, could still disrupt the cytotoxic function 

following T-cell activation. Based on these data, we propose a model wherein low or no ThPOK 

leads to CD8+ lineage choice, moderate ThPOK inducing Nur77 expression promotes DN 

mature T-cell development and higher ThPOK resulting in SOCS1 and Nur77 induction 

mediates CD4 lineage choice (Fig. 32).  

It needs to be noted that our results provide the first experimental evidence to suggest 

that ThPOK may act through Nur77 to inhibit Runx3 induction and cytotoxic program in MHC-

I-specific thymocytes. The transcription factor Nur77, which serves primarily as an indicator of 

TCR signal strength, has been shown to regulate CD8+ T-cell development by suppressing the 

expression of Runx3 [425]. We show here that Nur77 is part of the network of transcription 

factors that is regulated by ThPOK during lineage fate (manuscript #1, Fig. 14). However, we 

were unable to validate in promoter-luciferase reporter assay that Nur77 is a direct target gene 

of ThPOK. Interestingly, we noticed some Nur77-reporter upregulation, albeit insignificant, in 

in vivo model (manuscript #1, Fig. 14, 22). Several factors can explain the apparent discrepancy 

between our in vivo and in vitro studies. For instance, the cell line (HEK293 cells) we used in 

our experiment may be physiologically irrelevant for evaluating Nur77 promoter activity in the 

presence of ThPOK possibly due to lack of a binding partner. Alternately, ThPOK may regulate 

Nur77 expression via some other cis acting motif that is not present in the DNA fragment used 

for reporter assay; the DNA fragment contained only the promoter sequence of Nur77 (2kb 

DNA fragment upstream of the transcription start site and containing ThPOK binding sites). A 

recent chromatin IP and sequencing data strongly suggest that ThPOK may bind to Nur77 

sequence 3.5kb and 16kb upstream of the start codon [447]. To more precisely determine if 

ThPOK is recruited to the other regulatory regions of Nur77, reporter gene expression regulated 

by these motifs would be required.  

Results from our transcriptional analysis, suggesting unique gene signature in CD4+ and 

DN T-cells, coupled with our findings that the DN T-cell subset develop from the CD4+ thymic 

compartment reflect a complex regulatory mechanism of gene expression in developing 

thymocytes (manuscript #1 Fig. 14, 21).  The fraction of CD4+ thymocytes with intermediate 
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levels of ThPOK, most likely represents the population that is destined to give rise to DN T-

cells (manuscript #1 Fig. 19). They appear phenotypically as CD4+ SP T-cells likely because 

of continued intra-thymic signaling leading to delayed CD4 downregulation possibly by Runx1 

in association with Tle and Tcf/Lef proteins [326]. Although there is no evidence suggesting 

that the dynamics of Runx1-mediated inactivation of the Cd4 locus is any different from that of 

Runx3, it is possible that in the presence of ThPOK, the Runx1-dependent activation of the Cd4 

silencer may take longer time thereby delaying the emergence of DN T-cells [276].  
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Figure 31. Dose-dependent gain of function of ThPOK in periphery  

This drawing depicts the dose dependent gain of function of ThPOK model that we have 

established. When ThPOK expression levels are no/absent, thymocytes upregulate Runx3, 

which commits cells to the CD8+ lineage. When ThPOK is expressed at intermediate levels, 

Nur77 is induced, which blocks the CD8+ program by inhibiting Runx3 expression and cells 

adopt an intermediate phenotype. When high levels of ThPOK are present, on top of blocking 

the CD8 program, thymocytes induce the CD4+ helper program by upregulating CD4+ lineage 

specific genes like Socs genes. Socs, suppressor of cytokine signaling; ThPOK, T helper 

Inducing pox virus zinc finger -krüppel like factor. 

 

 

We noted that constitutive expression of ThPOK in MHC-I-restricted T-cells reduced 

the absolute number of peripheral T-cells compared to OTI+ control (manuscript #1, Fig. 12). 

We argue that this decrease in mature T-cell number is probably due to a defect in the 

homeostasis of the redirected T-cells expressing MHC mismatched TCR and co-receptor (OTI-

TCR and CD4 co-receptor), which may result in the inefficient recruitment of the co-receptor 
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bound Lck required for tonic signaling and T-cell survival [448]. While this could account for 

the lower number of T-cells in ThPOK-transgenic mice, many other factors can affect T-cell 

numbers in periphery. For instance, impaired positive selection can reduce peripheral T-cell 

numbers by hindering thymic output [449]. Actually, our analysis shows a drop in the frequency 

of positively selected T-cells in ThPOK-transgenic mice compared to OTI control. Such early 

transgenic ThPOK expression may affect positive selection of MHC-I-specific thymocytes, by 

a mechanism that remains to be elucidated.     

4.1.2 Role of TCR specificity in ThPOK-mediated CD4+ lineage redirection  

OTI-TCR has a higher ligand affinity compared to P14-TCR and continue to signal with 

fewer remaining CD8 molecules (i.e., the duration of TCR signaling in OTI+ thymocytes is 

higher than p14+) [326, 446]. It is suggested that stronger affinity of OTI-TCR for its ligand, 

while renders thymocytes more susceptible to lineage choice errors, induces higher Runx3 

expression. Given this, one would predict that more ThPOK would be needed to counteract 

higher Runx3 induction in OTI+ mice compared to P14 mice. On the other hand, as stronger 

TCR signaling favours CD4+ lineage choice one would have predicted more efficient CD8+ to 

CD4+ lineage redirection in OTI+ than in P14+ mice expressing the same amount of ThPOK. 

However, comparable T-cell subset frequencies in P14+ and OTI+ mice (manuscript #1, Fig. 

22) expressing ThPOK-H argues against TCR signal strength. It is quite likely that MHC-II 

TCR signaling influences ThPOK-induced CD4+ lineage choice in a way that is less dependent 

on the strength of TCR signaling. The inability of constitutively expressed CD8 or knocked in 

CD8.4 (into Cd8 locus) to generate significant lineage redirection supports such a notion [205, 

287]. 

Nonetheless, this does not dismiss the hypothesis that TCR signaling cannot affect 

CD4+/CD8+ lineage fate as reported by several labs. Indeed, increase in the activity of the TCR 

signaling via constitutively active Lck expression dramatically improved CD4+ lineage choice 

in OTI+ThPOK-H+ mice. To better elucidate the role of TCR signaling in CD4+/CD8+ lineage 

fate, we introduced our ThPOK-H transgene in OTII-TCR transgenic mice lacking endogenous 

ThPOK. Our objective was to confirm that stronger TCR signaling in OTII+ thymocytes would 

result in similar efficiency of CD4+ lineage choice by ThPOK-H transgene. However, we noted 
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a complete rescue of CD4 lineage in OTII+ThPOK-H+ThPOK-/- mice compared to 

OTI+dLGF+ThPOK-H+ThPOK-/- mice (manuscript #1 Fig. 17, 18). This is even more 

surprising given the fact that TCR signal strength, as measured by CD5 levels, was higher in 

OTI+ thymocytes compared to OTII+ thymocytes (manuscript #1 Fig. 19). In fact, our three 

different mouse models (OTI+ThPOK-H+Thpok-/-, OTI+dLGF+ThPOK-H+Thpok-/- and 

OTII+ThPOK-H+Thpok-/-) expressing the same amount of ThPOK but different levels of TCR 

signaling provide one of most unequivocal support for a potential role for a quantitative and 

qualitative aspect for TCR signaling in CD4+/CD8+ lineage fate decision (Fig. 33). We believe 

that MHC-II-restricted TCR signaling may help promote CD4+ T-cell development either, 

independently of ThPOK by inducing other lineage-specifying factors, or by improving ThPOK 

target gene accessibility [322]. The observation that high amounts of ThPOK (like in ThPOK-

611+) induced a full CD8+ to CD4+ lineage redirection supports the latter possibility. We think 

that there is a window of lineage commitment, regulated by the quantitative and qualitative 

aspects of TCR signaling, within which ThPOK must function. In MHC-II-restricted 

thymocytes both qualitative and quantitative TCR signaling may make target genes more 

accessible and/or for longer time for ThPOK-mediated activation and, thereby, enabling 

efficient lineage rescue in OTII+ThPOK-H+Thpok-/- mice. Such a situation may allow even 

ThPOKlo/med DP thymocytes to develop into CD4+ lineage. In contrast, in OTI+dLGF+ThPOK-

H+Thpok-/- mice only the quantitative aspect is operating, where both the aspects of TCR 

signaling are absent in OTI+ThPOK-H+Thpok-/- mice.  
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Figure 32. Representative model for the role of TCR specificity in ThPOK- 

mediated lineage redirection.  

While T-cell receptor (TCR) signaling in major histocompatibility complex (MHC)-II-restricted 

thymocytes promotes CD4+ lineage commitment by upregulating Thpok expression, MHC-I-

restricted TCR signaling promotes CD8+ lineage differentiation by inducing Runx3. Augmented 

MHC-I-restricted TCR signaling (quantitative aspect of TCR signaling), coupled with enforced 

expression of ThPOK, resulted in fewer CD4+ T-cells than OTII+ mice. This clearly 

demonstrated that the qualitative aspects of MHC-II-restricted TCR signaling are required for 

CD4+ lineage commitment, possibly by potentiating the effect of ThPOK. ThPOK, T helper 

Inducing pox virus zinc finger -krüppel like factor. 
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4.2 TCR-activated downstream pathways in CD4+ T-cell 

development (manuscript #2) 

4.2.1 CD4+/CD8+ lineage fate is susceptible to changes in selecting ligand 

density 

In the first manuscript presented in this thesis, we demonstrate that compared to MHC-

I-restricted thymocytes, TCR signaling in MHC-II-restricted thymocytes is more potent in 

promoting ThPOK function. 

The various developmental and maturation stages of positively signalled MHC-I- and 

MHC-II-restricted thymocytes are determined by TCR specificity [326]. MHC-I-restricted 

thymocytes also require STAT5/STAT6-mediated cytokine signaling for their development and 

survival [446].  The identification of signaling proteins and/or the genes that are differentially 

regulated by MHC-I- and MHC-II-specific TCR signaling during lineage commitment has 

proven to be difficult for several reasons: 1) it is difficult to separate positive selection from 

lineage commitment as they both are regulated by TCR signaling, making it hard to study one 

without affecting the other, and 2) that MHC-I- and MHC-II-restricted TCR signaling differ in 

several aspects that are challenging to elucidate, for instance TCR dwell time [49, 189]. In the 

second part of the thesis we have attempted to better elucidate the role TCR signaling and the 

different downstream nuclear factors, such as Gata3 and ThPOK, which exhibit differences in 

temporal regulation during CD4+/CD8+ lineage fate. We specifically asked if the ThPOK-

independent function of TCR signaling on CD4+/CD8+ lineage fate requires Gata3. 

In our TCR transgenic mice carrying a non-selecting allele, which is known to decrease 

positive selection efficiency, a significant fraction of MHC-II-restricted thymocytes failed to 

differentiate into CD4+ T-cells and were redirected to alternative fates [450]. Hence, similar to 

previously published reports, we showed that altering TCR-mediated positive selection signals 

affected the lineage commitment [189, 210]. We noted reduced cell-surface expression levels 

of selecting MHC molecules in MHC-heterozygous mice, carrying one selecting and one non-

selecting MHC-II allele, compared to the homozygous control, which is in line with previous 

experiments [450]. However, it is still unclear how the presence of a non-selecting MHC allele 
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disrupts TCR signals in thymocytes by selecting MHC ligand. It is possible that in mice 

heterozygous for selecting MHC-II, α- and β-chains of the selecting and non-selecting alleles 

form mismatched heterodimers. These could then result in MHC-II heterodimers with 

inefficient TCR binding properties leading to an altered duration/strength of TCR signaling. 

Indeed, mixed MHC haplotypes were first described more than 30 years ago, and although their 

specific function remains poorly understood developing thymocytes were shown to bind mixed 

MHC-II heterodimers with reduced affinity compared to the selecting MHC-II heterodimers 

[451, 452]. Although mixed haplotypes are less likely to assemble due to steric hindrance, those 

that are formed appear to have a structure comparable to that of parental haplotypes with some 

differences in the peptide-binding groove [451]. This is an important aspect to consider when 

evaluating the impact of mismatched MHC molecules on thymic selection and lineage choice. 

While the complementary-determining region (CDR) 1 and 2 of the TCR interact with the more 

constant segment of the MHC molecule, the more variable CDR3 is in direct contact with the 

selecting peptide residues facing the TCR [453]. Accordingly, alteration in peptide/MHC 

interaction could influence the activity of the TCR signaling in thymocytes. Alternatively, it 

could also be possible that mixed MHC heterodimers enabled the selection of non-conventional 

subset of thymocytes and committed them into CD8+ lineage. Nonetheless, it remains to be 

determined if disruption of the TCR signaling in thymocytes was due to the formation of mixed 

MHC-II haplotypes, to reduced abundance of the selecting ligand, or a combination of both. We 

favour the latter possibility as it is suggested that thymocytes also require multiple TCR/peptide-

MHC (pMHC) interactions for a successful positive selection and lineage choice [403]. Several 

other scenarios could be considered as well. For example, TCR-regulated immunological 

synapse formed between thymocytes and MHC-II-expressing cells is suggested to control signal 

transduction, and thus reduced number of these synapses may lower the signaling efficiency 

[454].  

4.2.2 Role of TCR signaling on the integrity of the helper phenotype 

Analysis of OTII+H-2Kb/k mice strongly suggest that disrupted TCR signaling redirects 

MHC-II-restricted thymocytes to the DN or CD8+ lineage fates. Intriguingly, the MHC-II-

specific redirected CD8+ T-cells in OTII+H-2Kb/k mice were transcriptionally different from the 

MHC-II-specific redirected CD8+ T-cells found in Thpok-/- mice. The indispensable role of 
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ThPOK in promoting the helper function and suppressing the cytotoxic program is well 

documented [276, 287]. Nonetheless, unlike disruption of TCR signaling, ThPOK deletion in 

MHC-II-restricted thymocytes did not result in a complete shutdown of the helper program 

[293]. There is mounting evidence that suggest that commitment to the CD4+ lineage is 

orchestrated by a complex interplay between multiple TCR-induced effector molecules. In fact, 

the differentiation of DP thymocytes into CD4+8lo intermediates requires the concerted action 

of Tox, Gata3 and Myb, and in their absence, ThPOK-fails to promote CD4+ T-cell development 

[195, 274]. However, their precise role in CD4+ lineage development remains to be fully 

elucidated. Although it is abundantly evident that Gata3 plays an important role during early 

CD4+ T-cell development and lineage specification via ThPOK induction, constitutive 

expression of Gata3 failed to redirect MHC-I-specific thymocytes into CD4+ lineage, and thus 

failed to replicate the CD8+ to CD4+ lineage redirection observed due to increased TCR signal 

strength in OTI+dLGF+ mice (manuscript #1, Fig. 18; manuscript #2, Fig. 28, 29) [195]. 

Importantly, constitutive Gata3 failed to act in synergy with ThPOK in promoting the CD8+ to 

CD4+ lineage redirection but continued to exert pro-apoptotic effect on MHC-I-specific cells, 

including CD4+ T-cells, possibly via down regulation of Runx3-activation by cytokine 

signaling. This implies that MHC-I-specific CD4+ T-cells in ThPOK transgenic mice likely 

continues to maintain some aspect of MHC-I-specific program, which likely underlies the 

apoptotic death of these cells in the presence of Gata3. Such a possibility complements similar 

results observed in the CD4+ to CD8+ redirected T-cells in Thpok-/- mice; MHC-II-specific CD8+ 

T-cells in Thpok-/- mice continue to display active Thpok locus, continue to express Gata3 at 

levels comparable to conventional CD4+ T-cells,  and yet, do not die by apoptosis [274, 455].  

We found lower levels of TCR signaling in DN T-cells compared to CD8+ T-cells from 

OTII+H-2Kb/k mice, which challenges our assumption that TCR signaling affected lineage fate 

in a dose-dependent fashion. One explanation could be that in the absence of any co-receptor, 

Lck associates weakly to the TCR complex, resulting in poor signal transduction in DN T-cells 

compared to CD4+ or CD8+ T-cells [456]. Surprisingly, we noted that CD4+ T-cells from 

OTII+H-2Kb/k mice showed increased TCR signaling compared to the same subset from 

OTII+H-2Kb/b mice, indicating that CD5hi T-cells, which may be less susceptible to changes in 

TCR signaling, accumulated within this particular subset. The observation that disruption of 
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TCR signaling led to the development of DN and CD8+ T-cells in OTII and AND mice, and DP 

mature T-cells in 5cc7 mice suggests a dynamic molecular interaction between TCR signaling 

and co-receptor gene expression likely via stage-specific enhancers present in the Cd4 and Cd8 

locus [189, 457].  

How might we explain continued Thpok promoter-driven GFP expression in the 

redirected MHC-II-specific CD8+ T-cells? We suggest a role for Gata3, albeit indirect one, in 

inducing and maintaining the Thpok locus activity only in MHC-II-, but not MHC-I-, signaled 

thymocytes. Gata3 is shown to antagonize Runx3 activity, and thus may impair Runx3-mediated 

silencing of Thpok in MHC-II-signaled thymocytes, an effect that is probably dependent on its 

chromatin modifying function [433, 440, 441]. These results suggest that TCR signaling plays 

a role in protecting the epigenetic integrity of MHC-II-restricted T-cells partly by inducing the 

pioneer transcription factor such as Gata3. It should be noted that the epigenetic silencing of 

helper-specific genes like Cd4 in CD8+ MHC-II-redirected T-cells from ThPOK-deficient mice, 

could not be rescued by ectopic expression of ThPOK in mature T-cells, which further reinforces 

the premise that the spatiotemporal regulation of Thpok expression is important to prevent 

Runx3-dependent adoption of the cytotoxic program [320].  

The CD8+ mature T-cells from thymus and spleen of OTI+dLGF+ mice, showed 

increased TCR signaling compared to CD8+ T-cells from control OTI mice. This increase in 

TCR activity, seem to influence the expression of certain CD8+ lineage-specific genes, implying 

that TCR signaling could affect the cytotoxic functional program without actually causing 

lineage redirection (Fig. 27). It remains to be determined, however, if the TCR-mediated 

inhibition of the cytotoxic program was orchestrated by Gata3, as ThPOK is not expressed in 

these CD8+ T-cells.  

Collectively, these results strongly suggest that MHC specificity of developing 

thymocytes likely plays a critical role in modulating quantitative as well as qualitative TCR 

signaling. 
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Chapter 5: Conclusions 
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The CD4+/CD8+ lineage choice is one of the most intensively studied topics in 

developmental immunology as it is essential to our understanding of thymocyte development. 

The kinetic signaling model is a widely accepted model that explains how CD4+/CD8+ lineage 

fate matches with the MHC specificity of positively selected thymocytes [189, 326]. It argues 

that differentiation of uncommitted CD4+8lo intermediates into helper or cytotoxic lineage is 

influenced by the strength and duration of TCR- and cytokines-derived signaling [189]. The 

transcriptions factors ThPOK and, its antagonist, Runx3 are at the center of the network of 

transcription factors establishing lineage specificity and functional program in the signaled 

thymocytes. While ThPOK is indispensable for the differentiation into the helper lineage, Runx3 

promotes the development of the CD8+ lineage. In this thesis, we first explored the dose-

dependent gain-of-function of ThPOK and the dynamic interplay between TCR signaling and 

ThPOK-mediated CD4+ lineage fate by using transgenic mice. High level of ectopic ThPOK 

expression (ThPOK-611) efficiently redirected MHC-I-restricted thymocytes to the CD4+ 

lineage, while relatively lower amounts (ThPOK-H and ThPOK-163) induced incomplete 

lineage redirection resulting in the development of significant numbers of mature DN and CD8+ 

T-cells in periphery. Interestingly, CD8+ and DN splenocytes from OTI+ThPOK-H+ and 

OTI+ThPOK-163+ still expressed an amount of ThPOK that was higher than that expressed in 

conventional CD4+ T-cells, making those mice great models to study the dose-dependent effect 

of ThPOK in CD4+/CD8+ lineage fate. Consistent with previously published results, our study 

demonstrated that ThPOK acted differently depending on its level of expression [195, 320, 321, 

417]. Runx3, albeit reduced, was detected only in CD8+ T-cells from OTI+ThPOK-H+ mice as 

DN and CD4+ mature splenocytes from the same mice expressed higher ThPOK levels. We 

showed that high levels of ThPOK promoted the helper program by activating SOCS proteins, 

while intermediate levels disrupted the cytotoxic program, likely by upregulating Nur77 that is 

shown to suppress Runx3 [425]. Together, this confirms that the activation and suppression of 

the helper and cytotoxic programs, respectively, are two independently regulated pathways 

initiated by ThPOK when it is expressed at different levels. Our study highlighted the 

complexity of the network of transcription factors that need to be precisely regulated by ThPOK 

for efficient induction of the helper program. We have also provided new insight into the role 

of TCR signaling in CD4+ T-cell development. Using various transgenic models, we have 

demonstrated that the establishment of the helper program requires a synergistic collaboration 
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between multiple independent but overlapping pathways downstream of the TCR signaling. The 

significantly higher numbers of CD4+ T-cells in OTII+ThPOK-H+Thpok-/- compared to 

OTI+dLGF+ThPOK-H+Thpok-/- indicated that differentiation into the helper program is 

influenced by quantitative as well as qualitative aspects of TCR signaling. We have showed that 

in CD8+ T-cells, Gata3 may induce apoptosis potentially by regulating the expression of 

cytokine receptors. In MHC-II-restricted T-cells, Gata3 plays an essential role in maintaining 

the integrity of CD4+ lineage-specific genes likely by regulating chromatin accessibility. 

Interestingly, we failed to observe any synergistic effect between ThPOK and Gata3 in 

promoting CD8+ to CD4+ lineage redirection as the number of CD8+ SP and ThPOK-redirected 

CD4+ SP T-cells were equally impaired by Gata3 overexpression. This study furthers our 

knowledge on CD4+/CD8+ lineage fate by demonstrating that, while transcription factors such 

as ThPOK, Runx3, Gata3, play an important role in CD4+/CD8+ lineage choice, functional 

integrity of these cells requires quantitatively and qualitatively different TCR signaling during 

their development in the thymus.  
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Chapter 6: Future Directions 
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In this thesis we have extensively characterized the dose-dependent effect of ThPOK 

and the role of TCR signaling in the development of helper and cytotoxic T-cells. Several issues, 

however, remain to be addressed as discussed below.  

First, it remains to be demonstrated if, and how, the qualitative and quantitative aspects 

of the TCR signaling modulate CD4+/CD8+ lineage choice of developing thymocytes and 

whether this is also necessary for maintaining the functional integrity of mature T-cells in the 

periphery. Precisely, the pathways downstream of the TCR-mediated positive-selection signals 

in MHC-I- vs MHC-II-restricted thymocytes must be elucidated. In our study, we have found 

that increased TCR signaling in MHC-I-restricted thymocytes augmented ThPOK-mediated 

CD4+ T-cell development less efficiently than genuine MHC-II-restricted TCR signaling 

expressing the same amounts of ThPOK (Fig. 21). Moreover, the results showing that TCR 

signaling in MHC-II-restricted cells helped ensure the integrity of the Thpok active locus despite 

the presence of Runx3, illustrates that TCR signaling could control CD4+ T-cell development 

partly through epigenetic modifications. Therefore, a thorough investigation regarding the 

contribution of MHC-restricted TCR signaling in the development of CD4+/CD8+ lineage is 

crucial to shed some light on this unresolved issue. For comprehensive understanding of the 

effect that MHC-restricted TCR signaling on lineage fate, genome-wide epigenetic and 

transcriptomic analyses must be performed. The use of signaled but uncommitted (CD4+8lo) 

Thpok-/- MHC-I-specific thymocytes with or without augmented TCR signaling or MHC-II-

specific thymocytes is essential for genome wide analysis to eliminate any ThPOK-mediated 

effect. While the analysis of CD4+8lo from OTI+ mice vs CD4+8loGFP+ (destined to become 

CD4+ T-cells) from OTI+dLGF+ThPOK+/gfp mice, could help us better understand the how the 

quantitative aspect of TCR signaling could favor CD4+ T-cell development, analysis of 

CD4+8loGFP+ from OTI+dLGF+ThPOK+/gfp mice vs CD4+8lo from OTII+ mice could help us 

better understand the role of qualitative  aspect of TCR signaling in the development of CD4+ 

T-cells. Our lab has, recently, done RNA sequencing using redirected mature T-cells from 

OTI+ThPOK-H+ mice and have identified several interesting target genes. Validation of these 

target genes would require gain- and loss-of-function experiments. Moreover, the contribution 

of the TCR signaling on chromatin structure could be tested by deleting chromatin remodeling 
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complexes in selected DP thymocytes by using the E8III-Cre system that is active at the DP stage 

only. 

Second, ever since its discovery in 2005, the efforts to elucidate the mechanism of 

ThPOK action have met with relatively little success [265]. In 2014, it was discovered that a 

crucial function of ThPOK in regulating the CD4+ helper lineage involved the induction of Socs 

genes. However, transgenic expression of SOCS1 only partially restored CD4+ T-cell 

development in ThPOK-/- mice, suggesting that the helper differentiating function likely requires 

the cooperation of several ThPOK-target genes [293]. Additionally, it remains to be elucidated 

how ThPOK induces Socs1 as, similar to our results with Nur77, experimental evidence 

associating ThPOK to the Socs1 locus is lacking [276, 293]. It is possible that, depending on the 

binding partner, ThPOK may induce different sets of genes. In fact, a recent publication revealed 

that the oligomerization of ThPOK and NF-κB, when bound to DNA elements referred to as 

NF-κB reception centres (NRCs), culminated in a stochastic inter-chromosomal interactions 

necessary for the induction of ThPOK target genes [458]. However, this model was established 

using human epithelial cell lines, and thus whether ThPOK/NF-κB plays any role in CD4+ 

lineage choice remains to be investigated. Nevertheless, this inter-chromosomal model for 

ThPOK function and its dependence on the binding partner provides an attractive model to 

explore the mechanism of ThPOK action. If ThPOK/NF-κB interaction is required for the 

development of the helper lineage, then conditional NF-κB knock-down in the signaled 

thymocytes from OTI+ ThPOK-611+ should reduce or abrogate the lineage redirection. If so, a 

comprehensive map of inter-chromosomal interactions with target genes can be established by 

performing a Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET), 

which is a technique that incorporates chromatin immunoprecipitation and high-thoughput 

sequencing to map long range regulatory regions [459]. Enriching DNA sequences bound to the 

NF-κB-ThPOK complex, could help identify genome-wide de novo chromatin interactions.  

Third, the evaluation of ThPOK’s function in a therapeutic setting has been poorly 

investigated. Here we propose two studies to elucidate how regulation of Thpok induction could 

be used for therapeutic purposes. First, ThPOK expression, and that of its antagonist Runx3, are 

maintained in CD4+ and CD8+ peripheral T-cells where they continue to play an active role in 

maintaining functional integrity [332]. While ThPOK and Runx3 exhibit a mutually exclusive 
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expression pattern during the establishment of lineage fate, they can be simultaneously 

expressed in peripheral T-cells under certain physiological conditions. For instance, a fraction 

of CD8+ T-cells upregulate ThPOK upon activation, which is stipulated to be necessary for their 

differentiation into long-lived memory cells [279]. Considering that ThPOK and its downstream 

effector molecules can inhibit the cytotoxic program in CD4+ or CD8+ peripheral T-cells along 

with the fact that tumor homing potentials of CD8+ T-cells is dependent on Runx3 suggest that 

eliminating ThPOK in the engineered T-cells may enhance the therapeutic efficacy of cellular-

based immunotherapies, such as CAR T-cell therapy [460]. Second, the helper function 

conferred by ThPOK is well documented. By suppressing Runx3 expression in peripheral T-

cells, ThPOK protects the integrity of the helper lineage. Previous studies have demonstrated 

that ThPOK safeguards the TH2 response and prevents aberrant TH17 differentiation of activated 

T-cells [332]. Psoriasis is a debilitating autoimmune disease that is primarily mediated by TH17 

polarized CD4+ T-cells [461]. Several antibody-based immunotherapies, such as Etanercept, 

perform better than older conventional systemic anti-inflammatory medications by skewing the 

TH17 response towards TH2 [462]. In view of the role of ThPOK in plasticity of helper T-cells, 

it would be interesting to determine if reversal of the response exerted by immunotherapies like 

Etanercept is ThPOK-dependent, which can be readily tested by deleting or knocking down 

ThPOK in peripheral CD4+ T-cells in vitro and in vivo. The transcription factor Nur77, which 

we have shown to be upregulated by ThPOK (manuscript #1), has recently been demonstrated 

to restrict and reverse the development of autoimmune diseases by regulating the metabolic 

response of activated T-cells [439, 463]. By deleting or knocking-down Nur77, and then 

assessing the effector function and metabolic program following treatment with the antibody it 

would be possible to investigate the potential role of Nur77 in the reversal of polarization. The 

results of this study would help in better understanding the molecular mechanism behind the 

beneficial effect of antibody-based immunotherapies for autoimmune diseases and develop 

more targeted treatments with fewer side-effects.
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