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Résumé 

 

Le diabète est en croissance à un rythme alarmant. Sa fatalité la plus importante provient de ses 

effets sur le système cardiovasculaire. Effectivement, le diabète est un facteur de risque majeur 

pour la maladie coronarienne et l’hypertension artérielle. En plus, les diabétiques courent le 

risque de développer une cardiomyopathie diabétique (DCM) qui est présente indépendamment 

de l’athérosclérose et de l’hypertension. Les causes exactes de cette maladie cardiaque ne sont 

pas encore définies complètement mais une anomalie du métabolisme lipidique a émergé 

comme étant un facteur contributeur clé. Il est intéressant de noter qu’une caractéristique 

commune de la DCM est l’accumulation des lipides intracellulaires ce qui est connu comme la 

stéatose cardiaque. Cette dernière est probablement causée par un déséquilibre entre l’absorption 

et la clairance cellulaires des lipides. En tant que tel, nous nous sommes concentré nos études 

sur l’élucidation des mécanismes de lipotoxicité dans le contexte de la DCM. Nous avons donc 

investigué le rôle du métabolisme lipidique sur des voies de signalisation reliées à la DCM telles 

que le stress du réticulum endoplasmique (ERS), l’activité du Récepteur activé par les 

proliférateurs de peroxysomes (PPAR), l’inflammation et la dysfonction mitochondriale avec 

un intérêt spécifique sur l’oxydation des acides gras. 

 

Nous avons caractérisé l’ERS et l’apoptose induits par les lipides; nous avons confirmé que le 

palmitate, un acide gras lipotoxique, induit l’ERS et la mort des cardiomyocytes primaires. 

Ensuite, on a démontré que la lipotoxicité médiée par cet acide gras est associée à un degré 

d’inflammation significatif qui peut être dû à une régulation à la baisse des récepteurs de PPAR. 
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La stéatose cardiaque et la lipotoxicité peuvent altérer des voies de signalisation ce qui conduit 

à la dysfonction mitochondriale. On a découvert que la toxicité du palmitate est associée à une 

déficience de l’oxydation complète des acides gras (FAO). Spécifiquement, le palmitate atténue 

la β-oxydation et le cycle de l’acide citrique sans toucher à l’activité de Cpt1b qui est l’étape 

cinétiquement déterminante dans la FAO. Il est intéressant de noter que l’augmentation de la 

FAO atténue les effets toxiques du palmitate, alors que l’atténuation de la FAO de l’oléate, qui 

est normalement un acide gras non toxique, induit la mort cellulaire. Ces résultats suggèrent que 

l’augmentation de la FAO peut avoir des effets cliniques utiles comme être une cible pour le 

traitement de la DCM. 

 

Nous avons également cherché à savoir si la déficience en FAO contribue à la DCM in vivo. 

Des études précédentes ont démontré que la FAO augmente chez les souris diabétiques. 

Cependant, les souris diabétiques montrent une absorption élevée des acides gras ce qui pourrait 

contribuer significativement à l’augmentation de la FAO dans leurs tissus cardiaques. Par la 

suite, nous avons tenté d’évaluer la FAO directement des mitochondries au lieu des tissus 

cardiaques complets afin d’éviter le facteur de confusion, qui est l’augmentation de l’absorption 

des acides gras. Nous avons démontré alors que les souris atteintes de diabète chronique 

présentent une déficience en FAO accompagnée d’une dysfonction cardiaque. En revanche, les 

souris atteintes de diabète aigu possédaient des fonctions cardiaques normales associées de taux 

normaux de FAO. 
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Ensemble, ces études ont amélioré notre compréhension des mécanismes de lipotoxicité 

associée à la DCM et ils soulignent l’importance de l’ERS, de l’inflammation et de la 

dysfonction mitochondriale comme des facteurs clefs dans la promotion de la lipotoxicité dans 

la DCM. 

 

Mots-clés : acides gras, cardiomyopathie diabétique, lipotoxicité, oxydation des acides gras, 

stress du réticulum endoplasmique, diabète type 2, stéatose, cardiomyocytes. 
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Abstract 

 

Diabetes is growing at an alarming rate in North America. The biggest killer of patients with 

diabetes is heart disease. Indeed, diabetes is a major risk factor for both coronary artery disease 

and hypertension. However, patients with diabetes are also at risk for developing diabetic 

cardiomyopathy (DCM), which is characterized as heart disease in the absence of atherosclerosis 

and hypertension. The exact causes of this diabetic heart disease has not been completely 

elucidated but abnormal lipid metabolism has emerged as a key contributing factor. 

Interestingly, a common characteristic of DCM is the accumulation of intra cellular lipids 

otherwise known as cardiac steatosis. Cardiac steatosis is likely caused by a mismatch between 

lipid uptake and lipid clearance from the cells. As such, we focused on elucidating the 

mechanisms of lipotoxicity in the context of diabetic cardiomyopathy. To this end, we 

investigated the role of lipid metabolism on key pathways related to diabetic cardiomyopathy 

including Endoplasmic Reticulum (ER) stress, Peroxisome proliferator-activated receptors 

(PPARs) activity, inflammation, and mitochondrial dysfunction with a specific focus on fatty 

acid oxidation.   

 

We characterized lipid induced ER stress and apoptosis in vitro, using primary neonatal 

cardiomyocytes. We were able to confirm that palmitate, a lipotoxic fatty acid, induces ER stress 

and cell death in primary cardiomyocytes. We also demonstrated that palmitate mediated 

lipotoxicity is associated with a significant degree of inflammation which may be due to down-

regulation of PPAR receptors. 
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Cardiac steatosis and lipotoxicity can alter metabolic signaling pathways leading to 

mitochondrial dysfunction. We discovered that palmitate toxicity is associated with an 

impairment of complete fatty acid oxidation (FAO). Specifically, palmitate impairs β-oxidation 

and citric acid cycle simultaneously with no effect on Cpt1b activity, the rate limiting step in 

FAO. Interestingly enhancing FAO attenuated the toxic effects of palmitate while inhibiting 

FAO caused oleate, which is normally non-toxic, to induce cell death. These results suggest that 

enhancing FAO might have some clinical utility as a therapeutic target for the treatment of 

diabetic cardiomyopathy. 

 

As such, we have investigated whether impaired fatty acid oxidation might contribute to DCM 

pathology in vivo. Previous studies have shown that FAO is actually increased in diabetic mice. 

However, diabetic mice also exhibit elevated fatty acid uptake which could significantly 

contribute to the elevated FAO rates in these hearts. Therefore, we aimed to assess FAO rates 

directly from isolated mitochondria instead of whole hearts to exclude the potentially 

confounding factor of enhanced fatty acid uptake. We found that older (chronic) diabetic mice 

exhibited impaired fatty acid oxidation rates and this was associated with ER stress and impaired 

cardiac function. In contrast, acutely diabetic mice had normal cardiac functions which was 

associated with normal FAO rates. 

 

Taken together, these studies have furthered our understanding of lipotoxic mechanisms in the 

context of diabetic cardiomyopathy and they accentuated the importance of ER stress, 



viii 
 

inflammation, and impaired mitochondrial function as key factors promoting lipotoxicity in 

diabetic cardiomyopathy.   

 

Key words: Fatty acids, Diabetic cardiomyopathy, Lipotoxicity, fatty acids oxidation, 

Endoplasmic reticulum stress, type 2 diabetes, steatosis, cardiomyocytes.  
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Chapter 1: Introduction and literature review 

 

1.1 The heart 

 

1.1.1 Heart anatomy 

 

The heart is a vital organ in the human body. This hollow intrathoracic muscular organ has the 

role of pumping blood to the blood vessels of the body through its rhythmic contractions.  The 

heart is made up of left and right sectors, each of which consists of two cavities: an atrium and 

a ventricle. The four cavities thus distinguish a “right heart” and a “left heart,” which normally 

do not communicate with each other (Figure 1.1). The role of the atria is to receive the blood 

and then redistribute it to the ventricles, while the role of the ventricles is to provide the force 

necessary to propel the blood towards the organs. The left and right ventricles are separated by 

a septum called the interventricular septum (1).  

   

The heart has four valves, which are non-muscular elastic membranes. Two separate each atrium 

from the adjacent ventricle and are called atrioventricular valves. A third valve called the aortic 

valve separates the left ventricle from the aorta, while the fourth valve, the pulmonary valve, is 

located between the right ventricle and the pulmonary artery. These valves prevent the blood 

from going backward and thus preventing backflow (2).  
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The heart wall is made of three different layers: 1) endocardium, 2) myocardium, and 3) 

pericardium. The endocardium is a sheet of epithelial tissue found in the inner layer, which is in 

direct contact with the blood thus preventing it from clotting. The myocardium is the heart 

muscle and the thickest component of the heart wall. It is the only part of the heart wall that 

contracts, and it is made mainly from cardiac muscle cells. The myocardium is composed of 

identifiable thick and thin filaments organized in sarcomeres that give it striated appearance like 

skeletal muscle (3). Finally, the pericardium is a double-walled sack that contains the pericardial 

fluid whose role is to prevent friction during the heartbeat, while giving the heart sufficient 

freedom of movement to achieve rapid and vigorous contractions. Additionally, the heart is 

shaped by connective tissue made from collagen, among other cells. Since it does not conduct 

electric signals, it provides a boundary for the heart’s electrical conduction system. 

 

 

Figure 1.1: Heart anatomy. The arrows indicate the direction of blood flow in the heart (4). 
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Cardiomyocytes and fibroblasts represent the majority of heart cells (5). Endothelial cells, 

vascular smooth muscle cells, and different stem cells account for the rest. In adult rat hearts, 

cardiomyocytes represent around 25% of total cells and almost 80% of total heart volume (5). 

Cardiomyocytes contract simultaneously because, unlike other muscle cells, they are connected 

to each other by intercalated discs. The electrical resistance between adjacent myocytes is low 

because of gap junctions within the intercalated disks. These gap junctions allow ions to move 

freely between two cardiac cells, enabling the cells to contract simultaneously, since the 

electrical signal can reach all cells in few milliseconds.   

  

1.1.2 Heart physiology 

 

The heart pumps blood across the body through two circulations called the systemic circulation 

and the pulmonary circulation. The systemic circulation consists of transporting blood full of 

oxygen and nutrients to the peripheries before transporting blood full of CO2 and waste out of 

the peripheral organs (6). The pulmonary circulation consists of transporting blood between the 

lungs and the heart. 

 

Blood transport function in a cycle where the heart is at its center. The cycle starts with venous, 

deoxygenated blood returning to the right atrium via the superior and inferior vena cava. The 

blood continues to the right ventricle followed by the lungs via the pulmonary valve. The 

pulmonary valve is connected to the pulmonary trunk, which splits into the right and left 

pulmonary arteries. These two arteries transport deoxygenated blood to the right and left lungs 



4 
 

respectively. It is important to note that the term “arteries” indicates the blood vessels coming 

out of the heart independently of whether the blood is oxygenated or deoxygenated.  The 

oxygenated blood returns to the heart via the left and right pulmonary veins and fills the left 

atrium. Once the left atrium is filled, the blood passes to the left ventricle via the mitral valve, 

which then ejects it into the systemic circulation through the aorta. Interestingly, heart cells are 

not supplied with oxygen and nutrients by either of the two circulations but by a circulation 

specific to them: the coronary circulation. This circulation, which is irrigated during the diastole, 

is formed of two coronary arteries (right and left) that are derived from the aortic artery and 

divide into a network bringing nutrition to the cardiac cells (7). Each day, the heart pumps the 

equivalent of 8,000 liters of blood, the equivalent of 100,000 heartbeats.  

 

Each heartbeat consists of three major movements: atrial systole, ventricular systole 

(contraction) and ventricular diastole (relaxation). During the atrial systole, the atria pump blood 

to the ventricles (though almost 70% of the blood flows passively). During the ventricular 

systole, which is the strong contraction, the ventricles contract and eject the blood accumulated 

from atrial systole to different organs and peripheries through the arteries. This step is followed 

by a rest phase known as diastole where the pressure in the ventricles decreases, allowing the 

filling of the atria. The rhythm, frequency, and rate of this cycle are regulated by two nervous 

systems known as the sympathetic and parasympathetic nervous system. These two systems 

influence the conduction system of the heart.  

 

The conduction system, which generates and distributes electrical impulses, is composed of 

specialized cardiac muscle cells found in the heart wall. It consists of: the sinoatrial node (SA), 
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the atrioventricular node (AV), the bundle of His, the bundle branches, and the Purkinje fibers. 

The SA node, or sinus node is where the heartbeat generates; it is considered the heart’s natural 

pacemaker (3). The cells of the SA node can spontaneously depolarize and generate an electrical 

impulse that reaches the left and right atria. The AV node receives the electrical signal from the 

SA node, then transmits the signal to the ventricles. The AV node is the only pathway by which 

the depolarization can pass from the atria to the ventricles. The conduction of the electrical 

impulse through the AV node is slow enough to prevent the atria and ventricles from contracting 

and filling up with blood simultaneously. The His bundle, which is an extension of the 

atrioventricular node, is divided into two branches, each of which is divided into a network of 

fibers called the Purkinje fibers. The Purkinje cells are myocytes, not nerve cells, that conduct 

the depolarization to all part of the ventricles. The sinus node, the bundle of His and the Purkinje 

network are the centers of the autorhythmicity of the cardiac fiber, each having their own 

intrinsic rhythm (3). They can generate their own potential action and dictate the heart rhythm. 

The one with the fastest rhythm dictates the rhythm of the others, since their slower rhythms 

cannot be imposed. The SA node is the primary center and controls the heart rate in normal 

conditions. The bundle of His and the Purkinje network are secondary centers that can only 

impose their rhythm if the SA node is failing.   

 

Propagation of the electrical impulse from the sinus node to cardiomyocytes induces their 

contraction. This contraction, which is well paced and synchronized, is partially modulated by 

the sympathetic and parasympathetic nervous systems. The sympathetic system increases the 

heart rate, while the parasympathetic system decreases it.  

https://en.wikipedia.org/wiki/Autorhythmicity
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Cardiac cells possess one or several electrophysiological properties, including automaticity, 

excitability, conductivity, contractility and refractoriness.  

 

Automaticity is controlled by the conduction system which represents less than 1% of heart 

cells. However, all myocardial cells can conduct an electrical impulse. Excitability is defined 

by the cells ability to react to an electrical, mechanical, or chemical stimulus and convert it into 

a mechanical function such as contraction (3). Excitability depends on the refractory period, 

which is defined as the inability of cardiomyocytes to respond to any stimulus, cancelling its 

excitability. The refractory period in cardiomyocytes spans the depolarization phase, the plateau 

phase, and most of the repolarization phase (about 250 ms). Due to the refractory period, cardiac 

cells cannot contract until the end of systole. This protects the heart from arrhythmias and helps 

coordinate the heart contractions (8).  

 

1.2 Cardiomyocytes 

 

1.2.1 Description, histology and contraction 

 

Cardiomyocytes are rod-shaped cells responsible for cardiac contraction. They are about 80-

140μm long and 15-25μm in diameter, and usually have a single nucleus located in the center. 

In human hearts, binucleated, trinucleated, and tetranucleated cardiomyocytes can also be found 

(9). Like other striated muscle cells, cardiomyocytes consist mainly of myofibrils, wherein the 

contractile units of the cell are found: the sarcomeres. Myofibrils are made up of mainly three 

proteins: 1) actin, 2) myosin, and 3) titin. These proteins are organized into two types of 

https://learningcentral.health.unm.edu/learning/user/onlineaccess/CE/intro_baci_online/anat/prop.html
https://learningcentral.health.unm.edu/learning/user/onlineaccess/CE/intro_baci_online/anat/prop.html
https://learningcentral.health.unm.edu/learning/user/onlineaccess/CE/intro_baci_online/anat/prop.html
https://learningcentral.health.unm.edu/learning/user/onlineaccess/CE/intro_baci_online/anat/prop.html
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filaments: 1) thick and 2) thin filaments. Multiple myosin molecules are clustered together to 

form each thick filament while thin filaments are made from actin and other proteins. The 

striated appearance of cardiac muscle is caused by overlapping arrays of thick and thin filaments, 

which appears under a microscope as a sequence of dark and light bands. Dark bands, named A 

Bands, are found in the center of sarcomeres. They are flanked by two light bands named I 

bands. While I bands contain only thin filaments, A bands contain both thin and thick filaments. 

Dark Z-lines separate two adjacent sarcomeres and serve as an anchoring point for actin 

filaments.  

 

Even though thin and thick filaments are juxtaposed, they can only interact in the presence of 

calcium. Calcium released from the sarcoplasmic reticulum binds to troponin, causing 

tropomyosin to modify the actin structure. As a result, modified actin molecules can interreact 

with myosin, causing thin filaments to slide along thick filaments. This contraction needs 

adenosine triphosphate (ATP) and thus depends on the activity of myosin molecules and the 

ability of myosin to convert chemical energy (ATP) into motion. This huge demand for ATP 

caused by the continuous activity of cardiomyocytes is explained by the high density of 

mitochondria in these cells (around 40% of cytoplasm). 

 

In order to contract simultaneously, gap junctions within intercalated discs connect 

cardiomyocytes together to form one functional syncytium. This allows the wave of excitation 

to reach all cardiomyocytes. When an action potential reaches the cell, a depolarization occurs, 

followed by the entry of calcium into the cells through voltage-gated calcium channels. These 

channels are present on cell membranes and transport the “trigger calcium” into the cell. Trigger 
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calcium binds to ryanodine receptors on the sarcoplasmic reticulum membranes and induces the 

release of intra-sarcoplasmic calcium. This mechanism is called calcium-induced calcium 

release and it increases the concentration of cytosolic free calcium (Figure 1.2). Free calcium 

binds to troponin and triggers a cascade of events that leads the sarcomeres to contract. Finally, 

calcium is sequestered back to sarcoplasmic reticulum and out of the cell, which leads to muscle 

relaxation.  

 

 

Figure 1.2: Calcium-induced calcium-release model (10). 

 

 

1.2.2 Cardiomyocytes metabolism 

 

The heart’s need for energy is enormous; it beats more than 100,000 times per day and consumes 

more energy than any other organ (11). Almost 95% of ATPs synthesized in cardiomyocytes 
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come from mitochondrial oxidative phosphorylation (12), while the rest are obtained from 

glycolysis and GTP (via the Krebs cycle) (13, 14). Myocardial ATP pool turnover, under normal 

conditions, is about ten seconds, so the heart must continually produce enough ATP to maintain 

its contractile function (15). It is important for the heart muscle to adapt quickly to physiological 

changes and the availability of different substrates. 

 

Cardiac metabolism is characterized by a large number of interdependent and highly regulated 

reactions that, together, orchestrate the energetic needs of the heart. Indeed, cardiomyocytes can 

use carbohydrates, lipids, ketone bodies, and amino acids as substrates for energy production 

(16). Glucose and fatty acids are the main energy substrates, while the contribution of others is 

minimal (Figure 1.3). Normally, in adult cardiomyocytes, fatty acids represent the main energy 

source, while glucose represents less than 10% of energy sources (17). However, these 

percentages are flexible and they depend on the physiological state of the heart (18). The 

alteration of substrate choice depends on substrate availability, oxygen supply and work load. 

For example, in a fasting state, fatty acids are the main energy source for the heart, while in a 

postprandial state, glucose becomes the main energy source (19). This equilibrium between 

glucose and fatty acids was first described by Randle et al. in 1963 (20). He demonstrates that 

an increase in cardiomyocytes’ use of fatty acids is reciprocated by an inhibition of glucose 

utilization and vice versa. This is known as the Randle cycle and was later confirmed by 

McGarry et al. in 1977 (21). 
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Figure 1.3: Fatty acids and glucose metabolism in cardiomyocytes (22). 

 

 

Several mechanisms are involved in glucose/fatty acid counterbalance. First, fatty acids inhibit 

glucose oxidation through phosphofructokinase 1 (23) and pyruvate dehydrogenase (20). The 

mechanism involves citrate and acetyl-CoA respectively, which are both intermediates of fatty 

acid oxidation (FAO). Citrate inhibits phosphofructokinase 1 activity and thus inhibits 

glycolysis. Acetyl-CoA induces pyruvate dehydrogenase (PDH) kinase, which inhibits PDH 

activity and thus inhibits pyruvate oxidation.  

 

Second, AMP-activated protein kinase (AMPK) is a metabolic sensor and plays a key role in 

energy homeostasis. AMPK can phosphorylate Acetyl-CoA carboxylase (ACC) and thus 

inhibits its activity (24) (25). ACC catalyzes malonyl-CoA synthesis, which is a potent inhibitor 

of Cpt1b. Since Cpt1b catalyzes the rate-limiting step of the FAO process, inducing AMPK 

activity leads to FAO upregulation.  
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Third, PPARs are master regulators of lipid metabolism and fatty acids are natural ligands of 

PPAR (26). When bound to fatty acids, PPARs translocate to the nucleus, where they 

heterodimerize with retinoid X receptors (RXRs) and bind PPAR response elements (PPREs). 

PPREs can be found in the promoters of many metabolic genes, including but not limited to: 

CD36 (27), Cpt1 (28), and PDK4 (29). CD36 translocates free fatty acids across the cell 

membrane and Cpt1 catalyzes the rate-limiting step for FAO. Therefore, PPARs are key factors 

of lipid metabolism in cardiomyocytes. Additionally, PDK4 phosphorylates and thus 

downregulates PDH activity, leading to inhibition of glucose oxidation. 

 

Finally, insulin directly impacts FAO by modulating AMPK activity. Insulin inhibits AMPK 

activity, and thus inhibiting Cpt1b activity and FAO in cardiomyocytes (30). Insulin, at the same 

time, induces Glut-4 translocation and the transport of glucose into cytosol. In consequence, 

insulin augments glucose utilization and glucose oxidation (31). 

   

1.2.3 Rat neonatal cardiomyocytes cultures 

 

Cultures of rat neonatal cardiomyocytes formed the main model used in our studies. These 

cardiomyocytes were isolated directly from the ventricles of 1- to 3-day-old rats. Fibroblasts 

and myocytes are the main components of rat heart ventricles (5). For this reason, fibroblasts 

were separated from cardiomyocytes by incubating the cells’ mixture for one hour. This was 

sufficient for fibroblasts to attach onto the plate but not enough for cardiomyocytes to do so. 

Cardiomyocytes were then transferred to another plate and incubated for seven days before 

performing experiments. We incubated for seven days, since the hearts of newborn mammals 
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adapt from the dramatic nutrient changes that occurs after birth, becoming less dependent on 

carbohydrates and more dependent on fatty acids (from colostrum and milk) as energy fuel  (32). 

Simultaneously, capacity for FAO increases significantly during post-natal development (32, 

33). Our cell cultures were almost 95% pure cardiomyocytes, which was confirmed through 

sarcomeric staining. This method provides a mean to study intracellular mechanisms in one 

specific cell type: cardiac myocytes. This model is known as the “redifferentiation model,” 

where cardiac myocytes dedifferentiate when isolated from hearts before redifferentiating into 

spontaneously beating cells after incubating the cells in 2-10% fetal bovine serum for a few days 

(34).  

 

We have used primary cardiomyocyte cultures, since they have many important advantages over 

cell line cultures. First, most cell lines come from tumor cells or transformed cells. These cells 

divide in an uncontrolled manner which is a behavior not found in primary cell culture. For 

example, H9C2 is a cell line derived from rat heart myoblasts. These cells can be passaged up 

to four months (35). However, primary rat cardiomyocytes do not divide at all. Second, 

physiological, morphological, and phenotypical traits found in primary cells are not always 

replicated in cell line cultures (36). This discrepancy is reflected in cellular responses and 

signaling pathways where primary cells isolated directly from tissue maintain most of the 

functions found in vivo, though this which is not the case for cell lines. A clear example is the 

H9C2 cell line, which is isolated from the ventricles of embryonic rats, though they exhibit 

many features of skeletal muscle (35).  
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It’s important to mention that neonatal and adult cardiomyocytes are not identical. For example, 

some ion channels are not fully developed in neonatal cardiomyocytes (37). Additionally, some 

proteins (isoforms) implicated in contraction are not expressed in neonatal cardiomyocytes 

which is not the case for adult cardiomyocytes (37). Therefore, In vitro culture of Rat adult 

cardiomyocytes closely resemble the in-vivo myocardium of adult rats and hence it is a better 

model to study rat hearts. However, there are two main advantages for using neonatal over adult 

cardiomyocytes. First, culturing cardiomyocytes isolated from adult rats is laborious and cost 

intensive when compared to neonatal cardiomyocytes. Indeed, culturing neonatal 

cardiomyocytes yield more cells since they are less sensitive to the calcium-containing medium, 

a medium through which cells are reintroduced after dissociation (38). The disparity in calcium 

sensitivity is likely associated with Transverse tubule, since the Transverse tubule network is 

not fully developed until the adult period (39). Second, neonatal cardiomyocytes start beating 

spontaneously after they enter the dedifferentiation-redifferentiation cycle, unlike 

cardiomyocytes isolated from adult rats which require pacing to trigger contraction (40). 

 

1.3 Fatty acids 

 

1.3.1 Description and classification 

 

Fatty acids are essential molecules in all organisms. They are carboxylic acids (COOH) attached 

to a hydrophobic aliphatic chain. They can be saturated or unsaturated depending on the absence 

or the presence of double bonds in their aliphatic chain. Unsaturated fatty acids are referred to 

as monounsaturated if they possess only one double bond in their aliphatic chain; they are 



14 
 

referred to as polyunsaturated if they possess two or more double bonds. Almost all double 

bonds found in native fatty acids have a cis configuration. A cis configuration bends the 

hydrocarbon chain, which affects the shape of the molecule and confers specific physical and 

chemical properties. A trans configuration is usually obtained after hydrogenation of the double 

bond. Additional classifications are used depending on the length of the carbon chain and the 

position of the double bonds. Concerning the number of carbons in the aliphatic chain, fatty 

acids are classified into four groups: 1) short chain fatty acids (less than five carbons), 2) 

medium chain fatty acids (6 to 12 carbons), 3) long-chain fatty acids (13 to 21 carbons), and 4) 

very long-chain fatty acids (22 carbons or more). 

 

Since the physiological role of unsaturated fatty acids is more dependent on the relative position 

of the double bonds to the methyl group than saturated fatty acids, an alternative classification 

is used. The last methyl group from the carboxyl group is called omega (ω) and it is given the 

number 1. Omega-3 fatty acids are polyunsaturated fatty acids where three carbons from the 

methyl group form the first double bond, which means it is located between carbon 3 and carbon 

4. Omega-6, omega-7, and omega-9 fatty acids also exist. There are three major omega-3 fatty 

acids: 1) alpha linolenic acid (ALA), 2) eicosapentaenoic acid (EPA) and 3) docosahexaenoic 

acids (DHA). The main source of ALA is fish oil and the protective role of omega-3s against 

cardiovascular disease is well established (41-43). Unlike omega-3s, omega-6s are 

proinflammatory, prothrombotic, and hypertensives (44). 

   

The two most common fatty acids are palmitic and oleic acids (45). They are saturated and 

unsaturated fatty acids respectively. Palmitate has a carboxylic group and a 15-carbon aliphatic 
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chain for a total of 16 carbons. Oleate has a total of 18 carbons and one unsaturation between 

carbon 9 and carbon 10. A simplified nomenclature is used where the number of carbons 

followed by the number of unsaturated molecules are indicated. The positions of double bonds 

are specified by superscript numbers preceded with Δ. For example, palmitate is abbreviated 

16:0 and oleate is abbreviated 18:1 (Δ9). Additional well-known fatty acids in human diet 

include: arachidonic acid 20:4 (Δ5,8,11,14), stearic acid 18:0, and linoleic acid 18:2 (Δ9,12). It is 

important to note that saturated and monounsaturated fatty acids are metabolized differently in 

cardiomyocytes and significantly diverge in intracellular signaling (46, 47). For example, 

saturated fatty acids induce insulin resistance, while monounsaturated fatty acids induce insulin 

sensitivity in diabetic patients (48, 49). Additionally, palmitate causes mitochondrial 

dysfunction and increases mitochondrial reactive oxygen species, which is correlated with 

apoptosis in L6 skeletal muscle cells (50). Indeed, we showed that palmitate is a toxic fatty acid 

while oleate is neutral and even protective (51, 52).  

 

Fatty acids are poorly soluble in water. Their hydrophobic characteristics are based on their 

molecular structure. Water solubility is positively correlated with the number of double bonds 

and negatively correlated with the length of the hydrocarbon chain. Therefore, fatty acids in 

organisms are rarely found free. In blood vessels, they are attached to a carrier protein: serum 

albumin (53). They are also conjugated to glycerol and converted to triacylglycerol then packed 

into lipoproteins and chylomicrons (54). Lipoproteins are spheres of decreasing diameter but 

with increasing density. Their center contains hydrophobic lipids such as triglycerides and 

cholesteryl ester and engulfed with apolipoproteins and amphiphilic lipids such as 

phosphatidylcholine. In the heart, lipoprotein lipase (LPL) acts on lipoproteins to release fatty 
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acids from triglycerides (55). The released fatty acids are transported into cardiomyocytes via 

passive diffusion (56) or via several membrane transporters, including CD36, FATP1/6, or 

FABPpm (57). Once inside the cells, Acyl-CoA-synthetase “activates” fatty acids by adding a 

CoA group. The CoA group confers hydrophilic properties onto fatty acids that permit them to 

further interact with hydrophilic cytosolic enzymes (58). For long-chain fatty acids, five 

isoforms of acyl-CoA synthetase exist in mammals (59-61). Each isoform differs in its 

subcellular location (62) and it has been shown that fatty acids’ intracellular fate depends on the 

action of specific ACSLs (61). For example, heart-specific ACSL1 knockout in mice is 

associated with FAO impairment and cardiac hypertrophy (63).  

 

In cardiomyocytes, lipid droplet synthesis and phospholipid synthesis are two other possible 

fates, beside oxidation, for fatty acids. Lipids are the main component of cell membranes 

(phospholipids) and they provide energy for various metabolic process. Fatty acids are stored as 

energy depots in triacylglycerol form. Using triacylglycerol instead of polysaccharides as energy 

depots has two main advantages. First, oxidation of fatty acids yields almost twice as much ATP 

compared to polysaccharides oxidation (64). Second, triacylglycerols are hydrophobic, unlike 

polysaccharides, which are hydrated when stored as glycogen or starch. Triacylglycerols are 

denser than polysaccharides, since cells can store more triacylglycerol (two grams of 

triacylglycerol per gram of polysaccharide) (3). Indeed, obese people can store enough fats to 

meet their energy needs for months, while the human body cannot store more than one day worth 

of energy in the form of glycogen (3). 
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Fatty acids also play an indispensable role as signaling molecules (for example eicosanoids) and 

as cofactors (65). Additionally, fatty acids consumed through dietary, participate in cell 

membrane synthesis. They reduce the melting point and augment membrane fluidity (66). Thus, 

they can modify some receptors’ activity (67).  

 

1.3.2 Fatty acid oxidation 

 

1.3.2.1 β-oxidation 

 

FAO occurs in peroxisomes and mitochondria. Even though a small fraction of fatty acids is 

oxidized in peroxisomes (32), mitochondria is considered the main site for β-oxidation. Small, 

medium, and long-chain fatty acids are oxidized in mitochondria, while the peroxisomal system 

is much more active on very long-chain fatty acids (68). Peroxisomal oxidation cannot degrade 

the fatty acid completely (69), but it shortens the fatty acid chain with a few cycles of β-

oxidation. The shortened fatty acid translocates to mitochondria for further oxidation. Oxygen 

is the final electron acceptor in both mitochondria and peroxisome. However, one difference 

between the peroxisomal and mitochondrial oxidation pathways is that the former produces 

H2O2 while the latter produces H2O (70, 71). An additional difference between the two is in 

ATP synthesis. ATP is generated in mitochondrial oxidation, which is not the case for 

peroxisomal oxidation (72). 

 

Long-chain fatty acids cannot diffuse freely through mitochondrial membranes (73). Therefore, 

in cardiomyocytes, the CoA group of fatty acids is exchanged with the carnitine group through 
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CPT1B (Figure 1.4). CPT1B, which stands for carnitine-palmitoyl-transferase 1b, commits fatty 

acids to mitochondrial oxidation. The reaction catalyzed by CPT1B is the rate-limiting step for 

FAO, which regulates the number of fatty acids entering mitochondria (74, 75). The newly 

synthesized acyl-carnitine can diffuse freely through the outer mitochondrial membrane. Once 

it is in the mitochondrial intermembrane chamber, it is transported into a mitochondrial matrix 

with the help of carnitine/acylcarnitine translocase (CACT) (76). CACT exchanges carnitine 

with an acylcarnitine across the inner mitochondrial membrane. Subsequently, carnitine diffuses 

freely to the cytosol, where it is used by Cpt1b for the following reactions. Once inside the 

mitochondria, acyl-carnitine is converted back to acyl-CoA by Cpt2 (77). 

 

 

Figure 1.4: Initial steps of Fatty Acids Oxidation (adapted from (78)). 
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Mitochondrial acyl-CoA then enters the β-oxidation pathway. This pathway is a four-step 

reaction (Figure 1.5). The enzymes involved are in the following order (79): Acyl CoA 

dehydrogenase (ACAD), enoyl CoA hydratase, L-3-hydroxyacyl CoA dehydrogenase, and 3-

ketoacyl CoA thiolase. ACAD catalyzes the first step of β-oxidation when it introduces a trans 

double bond between carbon number 2 and carbon number 3. This reaction is called 

dehydrogenation and it produces one molecule of FADH2 as a by-product. Several members of 

the ACAD family have been found in the human genome and they are all involved in β-oxidation 

(80). Very long-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, medium 

chain acyl-CoA dehydrogenase, and short chain acyl-CoA dehydrogenase are responsible for 

the dehydrogenation of very long-chain acyl-CoA, long-chain acyl-CoA, medium chain acyl-

CoA, and short chain acyl-CoA respectively. Enoyl CoA hydratase catalyzes the second step of 

β-oxidation. It adds one water molecule to the double bond between carbon 2 and carbon 3 and 

it converts 2-trans-enoyl-CoA to L-3-hydroxyacyl-CoA. L-3-hydroxyacyl CoA dehydrogenase 

follows enoyl CoA hydratase and it is responsible for the second dehydrogenation of the β-

oxidation cycle. L-3-hydroxyacyl CoA dehydrogenase converts 3-hydroxyacyl-CoA to 3-

oxoacyl-CoA. In this step, NAD+ is the electron acceptor. 3-ketoacyl CoA thiolase catalyzes 

the fourth and last step of the β-oxidation cycle when it reacts with one molecule of free CoA in 

order to split the original fatty acid into acetyl-CoA and acyl-CoA. 

 

At the end of each β-oxidation cycle, an acetyl-CoA is produced and the fatty acid chain is 

shortened by two carbons. One additional molecule of the reducing equivalents nicotinamide 

adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) is produced (58). These 

reducing equivalents are transferred to the electron transport chain to undergo the oxidative 
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phosphorylation. The β-oxidation cycle continues until the fatty acid is entirely catabolized to 

acetyl-CoA (58). 

 

 

Figure 1.5: β-oxidation reaction of fatty acids (81).  

 

If the fatty acid carbon chain is unsaturated, or if contains an odd number of carbons, then 

additional enzymes are required (58). The double bonds found in fatty acids usually have a cis 
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configuration which enoyl CoA hydratase cannot recognize. Therefore, in monounsaturated 

fatty acids, such as oleate, an additional enzyme is required such as enoyl CoA isomerase. Enoyl 

CoA isomerase converts the cis configuration in fatty acids to trans configuration. For 

polyunsaturated fatty acids, such as linoleic acid, two enzymes are employed: enoyl CoA 

isomerase and 2,4 dienoyl CoA reductase. 

 

If the fatty acid chain contains an odd number of carbons, then the chain will be catabolized to 

several acetyl-CoA molecules and one propionyl-CoA molecule. Propionyl-CoA is metabolized 

to succinyl-CoA by a mechanism that involves three enzymes: 1) propionyl-CoA carboxylase, 

2) methylmalonyl-CoA epimerase, and 3) methylmalonyl-CoA mutase. Succinyl-CoA is 

subsequently fed into the citric acid cycle (CAC) as an intermediate (82).  

 

1.3.2.2 Citric acid cycle 

 

Acetyl-CoA, the final product of β-oxidation, is further oxidized by the CAC, followed by 

oxidative phosphorylation. The citric acid cycle (CAC) and oxidative phosphorylation are 

mutual for both glycolysis and β-oxidation pathways. The CAC is also named Krebs cycle after 

the German researcher Hans Krebs who described the steps of the cycle (83). Like β-oxidation, 

the CAC takes place in the mitochondrial matrix. It is an eight-step reaction catalyzed by at least 

eight different enzymes: 1) citrate synthase, 2) aconitase, 3) isocitrate dehydrogenase, 4) α-

ketoglutarate dehydrogenase, 5) succinyl-CoA synthetase, 6) succinate dehydrogenase, 7) 

fumarase, and 8) L-malate dehydrogenase (Figure 1.6) (58). First, a CoA group is cleaved from 

acetyl-CoA. Then citrate synthase combines oxaloacetate with acetate to form citrate. Next, 
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aconitase converts citrate to isocitrate. The latter is metabolized to α-ketoglutarate by isocitrate 

dehydrogenase, then to succinyl-CoA by α-ketoglutarate dehydrogenase. One molecule of CO2 

and two molecules of NADH are released during the last two steps. Succinyl-CoA synthetase 

converts succinyl-CoA to succinate and GTP. Next, succinate dehydrogenase metabolizes 

succinate to produced fumarate, which is then coupled with the synthesis of one FADH2 

molecule. Fumarase activity converts fumarate into to malate, which is further converted to 

oxaloacetate by L-malate dehydrogenase. A third molecule of NADH is formed (84). At the end 

of each cycle, acetyl-CoA yields two molecules of CO2, three molecules of NADH, one 

molecule of FADH2, and one molecule of GTP (85). CO2 is cleared out of the cell as a waste, 

while NADH and FADH2 enter the electron transport chain where they are used as precursors 

for oxidative phosphorylation. 
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Figure 1.6: Overview of citric acid cycle (86). 

      

In cardiomyocytes, the CAC is modulated by substrates availability and by the cell energy needs 

(87). For example, when the NADH/NAD+ ratio is elevated, citrate synthase (88), isocitrate 

dehydrogenase (89), and α-ketoglutarate dehydrogenase (89) are downregulated.  Additionally, 

CAC enzymes are regulated by the cycle intermediates such as oxaloacetate and acetyl-CoA.  
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CAC flux is regulated by anaplerotic and cataplerotic reactions (90). Anaplerosis is simply the 

regeneration of CAC intermediates while cataplerosis is the loss of CAC intermediates. 

Therefore, CAC intermediates can be used as precursors for cataplerotic reactions or they can 

be replenished by anaplerotic reactions. Some fatty acids such as palmitate do not contribute to 

anaplerosis (91), while glucose and pyruvate are important anaplerotic substrates (92, 93). 

Pyruvate carboxylation via pyruvate carboxylase or malic enzymes produces oxaloacetate and 

malate respectively (94).  Pyruvate can be used as a substrate for α-ketoglutarate regeneration 

(93). Propionate and amino acids are also metabolites for anaplerotic reactions (93, 95). The 

extent of these reactions depends on various circumstances including substrate and oxygen 

supply. Indeed, the importance of anaplerosis was established when a perfused heart was 

supplied with ketone bodies as an energy substrate (96). A rapid deterioration in contractile 

function was observed and this decline was only reversed by supplementation of glucose and 

pyruvate (97). 

 

1.3.2.3 Electron transport chain 

 

NADH and FADH2 generated in the CAC and in fatty acid beta oxidation are used to donate 

electrons for the mitochondrial respiratory chain. NADH and FADH2 are oxidized to NAD+ and 

FADH2+ respectively and the electrons released are captured by oxygen. Oxygen is transformed 

into water and this is coupled to the ATP synthesis. This process is called oxidative 

phosphorylation and it employs five complexes (NADH: ubiquinone oxidoreductase (or 

complex 1), succinate dehydrogenase (or complex 2), cytochrome bc1 complex (or complex 3), 

cytochrome c oxidase (or complex 4), and F0F1-type ATP synthase (or complex 5)) and two 
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electron carriers (ubiquinone and cytochrome c). The five protein complexes are bound to the 

mitochondrial inner membrane, unlike CAC enzymes, which are localized in the mitochondrial 

matrix (except for succinate dehydrogenase) (94-96). The first four complexes expulse H+ ions 

into the mitochondrial intermembrane chamber, creating a PH gradient. Therefore, the electron 

transport chain does not synthesize ATP directly. Instead, it generates energy by creating a 

proton gradient between mitochondrial inner and outer membranes. This proton gradient is 

capitalized by the last complex to generate ATP through chemiosmosis. The last complex, called 

F0F1 ATP synthase, returns most of the protons to the mitochondrial matrix, which enables it 

to synthesize ATP from ADP (98).  

 

A small fraction of intermembrane protons “leaks” to the mitochondrial matrix through the 

uncoupling proteins. In cardiomyocytes, two main isoforms of uncoupling proteins exist: UCP-

2 and UCP-3 (99). They transport protons back to the mitochondrial matrix without being 

coupled to ATP synthesis, hence their name. Instead of ATP, UCPs capitalize on the proton 

gradient by releasing energy in form of heat (100). UCP-1 is highly concentrated in brown 

adipose tissue and it plays a pivotal role in thermogenesis (101, 102). 

 

Electrons carried by NADH are transferred to complex 1 in the electron transport chain, where 

flavoprotein is the electrons’ acceptor. Electron flux is transferred from one complex to the other 

(complex 2, 3, and 4), inducing the reduction and the oxidation of several electron transporters: 

ubiquinone and cytochrome B, C1, C, A, and A3. Electron transfer is coupled to proton 

expulsion from the mitochondrial matrix to the intermembrane space. Oxygen, the final electron 
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acceptor, obtains its electrons from cytochrome A3, then combines with two molecules of H+ 

to generate H2O.  

 

Unlike NADH, FADH2 transfers its electrons directly to complex 2, leading eventually to the 

synthesis of two molecules of ATP (instead of three molecules of ATP for NADH) (58).  

 

ATP and ADP are transported through the mitochondrial membrane in opposite direction by 

antiport (translocase) (85). ATP exits the mitochondria to be used by the contractile units and 

ions pumps, while ADP enters the mitochondria to be used by oxidative phosphorylation. In 

healthy adult cardiomyocytes, the ATP pool is only sufficient for ten seconds (15). Therefore, 

the robust activity of mitochondrial oxidative phosphorylation is indispensable. For it to work 

flawlessly, mitochondrial oxidative phosphorylation needs a constant supply of oxygen (through 

the coronary circulation), as well as ADP, protons, and electrons. In prenatal conditions, rat 

hearts have low activity in CAC enzymes and the mitochondrial respiratory chain. However, a 

few days after birth, enzyme activity is upregulated severalfold (85, 103, 104). 

 

At the end of the electron transport chain, the complete products of palmitate oxidation to carbon 

dioxide and water is:  

Palmitoyl-CoA + 23 O2 + 108 Pi + 108 ADP  → CoA + 108 ATP + 16 CO2 + 23 H2O 
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1.3.3 TAG and lipid droplets synthesis 

 

Triglycerides consists of two molecules attached together: glycerol and fatty acids. Glycerol is 

a three-carbon alcohol with a hydroxyl group for each carbon. Triglycerides can be found mainly 

in animal fats and vegetable oils. Most animal triglycerides are saturated triglycerides, which 

means they are composed of saturated fatty acids (58). These triglycerides are flexible and 

agglomerate together because they lack double bonds in their carbon chain. This is why lard and 

butter are solid at room temperature, while vegetable oils, in contrast, are liquid at room 

temperature since their triglyceride are unsaturated. Unsaturated triglycerides contain double 

bonds in their aliphatic chain. These double bonds usually have a cis configuration, causing the 

hydrocarbon chains to lose their flexibility and their ability to form agglomerates. In the food 

industry, unsaturated fatty acids found in vegetable oil are partially hydrogenated to improve 

their shelf life. A by-product of fatty acids hydrogenation is trans fats (105). These fats are 

unsaturated because their double bonds have a trans configuration. There is a clear association 

between trans-fat consumption and cardiovascular disease (106).   

   

Upon entering the cell, fatty acids can be esterified and used for TAG synthesis. In 

cardiomyocytes, TAG is mainly synthesized from glycerol 3-phosphate. This pathway is a four-

step reaction with each step catalyzed by a different enzyme. First, GPAT condenses acyl-CoA 

with glycerol 3-phosphate to form lysophosphatidic acid. This step is common for all 

glycerolipid synthesis and is considered the rate-limiting step in the TAG synthesis (107). 

Another acyl transferase, AGPAT, transfers a second acyl-CoA to lysophosphatidic acid. 

Phosphatase acts on phosphatidic acid (the product of the second step) and transforms it to 
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diacylglycerol (DAG) by removing a phosphate group. The final step produces TAG by 

condensing a third acyl-CoA with DAG. This step is catalyzed by DGAT and is the only 

committed step in TAG biosynthesis (108). Since DGAT is located on the ER membrane, TAG 

is considered a product of the ER (109). Another pathway for TAG synthesis involves the 

acylation of MAG. However, this pathway is not active in cardiomyocytes and is mainly found 

in hepatocytes and adipocytes.  

 

TAG is a neutral lipid and its moderate presence in cardiac cytoplasm is harmless and might 

even be protective (110). Since DAG is associated with ER stress (111, 112), inflammation 

(113) and insulin resistance (114), the transformation of DAG to TAG by DAGT is considered 

a protective mechanism (115). Indeed, an increase in the DAG/TAG ratio is associated with 

increased cardiac lipotoxicity (116). Additionally, DGAT2 deficiency (DGAT2 -/-)  in newborn 

mice is a lethal condition associated with a severe decrease in TAG levels (117).     

 

TAGs are stored in specific organelles called lipid droplets (LD). While the main site for the 

synthesis of LDs are adipocytes, LDs can also be found in almost all cells, including 

cardiomyocytes. LD is filled with TAG and cholesterol ester, which are engulfed with a 

monolayer of phospholipids (118). Additionally, a wide array of proteins is found on the outer 

layer of lipid droplets. Protein composition varies among cell types, which are categorized into 

nine groups (119):  1) PAT family, 2) lipid metabolism, 3) membrane traffic, 4) cytoskeleton, 

5) chaperone, 6) ER, 7) mitochondria, 8) cell signal, and 9) miscellaneous. The PAT family, 

also known as perilipins, are the most abundant protein on LD membranes.  
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There are five isoforms of perilipin proteins numbered 1 to 5 (120). Perilipin 1 is dominant in 

white and brown adipocytes (121), while perilipin 2, 3, 4, and 5 can be found in cardiomyocytes 

(122). Perilipins are considered the gatekeepers of lipid droplets. They are phosphorylated by 

PKA and they play a major role in lipolysis by modulating the interaction between lipases 

(hormone sensitive lipase and adipose triglyceride lipase) and TAG in lipid droplets (123, 124). 

Initially, LDs were thought to play a passive role in energy and TAG. However, this role is far 

from the truth. LDs have been found to play a dynamic role in lipids’ metabolism, lipotoxicity, 

cell membrane homeostasis, signalization pathways, and protein modification (125, 126). 

Additionally, in leucocytes, LDs are considered as inflammatory organelles (127). Since DGAT 

(the final enzyme in TAG synthesis) is bound on ER membranes, ERs are considered the site 

for LD biogenesis (109).  

 

The exact mechanism for LD biogenesis is still unknown and several hypotheses have been 

proposed. The most accepted one suggests two steps for LD synthesis. First, TAG accumulates 

between the hydrophobic bilayers of ER membranes, and as TAG concentration increases, a 

len-shaped bulge starts to appear. Second, for reasons not well understood, TAG stops 

accumulating and LDs bud off through a mechanism similar to dewetting (128). Cytosolic LDs 

can also derive from existing LDs through fission. However, this process is not dominant (129). 

The stored triglycerides are ultimately hydrolyzed, then oxidized to meet the energy needs of 

cardiomyocytes. Interestingly, cardiomyocytes accumulate lipid droplets during fasting states; 

however, in a fed state, lipid droplets become scarce (130). 
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1.3.4 Phospholipids synthesis 

 

The lipidic part of a cardiomyocyte membrane consists mainly of cholesterol and phospholipids. 

Phospholipids are a heterogeneous group of lipids, glycerophospholipids, and sphingomyelins 

that share a common role of maintaining membrane integrity. Cardiac sarcolemma is composed 

of lipid bilayers containing phospholipids which are asymmetrically distributed between outer 

and inner layers (or leaflets) (131). The mechanism causing this asymmetry is not well 

understood, but it likely involves two steps: translocase enzymes interact with the amino-groups 

of phospholipids and transfer them from outer to inner membranes (132), followed by an 

interaction between phospholipids with the intracellular cytoskeleton (133). Phospholipids’ 

transversal diffusion from one leaflet to the other is slow; however, they can diffuse laterally 

very rapidly. Interestingly, negatively charged phospholipids are exclusively found on the inner 

membrane. This is important, since many membrane proteins have been shown to be modulated 

by their surrounding lipids (134, 135). Phospholipids are positioned in such a way that the 

hydrophilic groups are oriented towards the hydrophilic outside and the hydrophobic groups are 

oriented towards the membrane. 

 

Glycerophospholipids contain glycerol as a backbone, where two fatty acids are attached in ester 

linkage to two carbons of glycerol. The third glycerol carbon is attached by phosphodiester 

linkage to a highly polar group. For example, the polar group in phosphatidylserine is serine and 

in phosphatidylethanolamine it is ethanolamine (58). Two major phospholipids are found on 

cardiac sarcolemma: phosphatidylcholine represents almost 45% of all membrane lipids, while 

phosphatidylethanolamine represents almost 35% (131). Occasionally, in some animal tissue, 
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the first glycerol carbon in glycerophospholipids is attached to fatty acids by ether linkage. This 

is the case for plasmalogen, a phospholipid that represents almost 30% of phosphatidylcholine 

in the human heart (136). Sphingomyelins, is another subtype of phospholipid. They consist of 

sphingosine as a backbone where one fatty acid and one polar group are attached to sphingosine 

by amide and phosphodiester linkage respectively. Phospholipids assume many roles besides 

maintaining membrane integrity. For example, sphingomyelin is highly concentrated in myelin, 

the protective layer that surrounds axons (58). Additionally, ceramides are considered the 

structural parents of all sphingolipids, where one fatty acid is attached to one sphingosine, and 

they are the main second messenger for sphingomyelin when it signals transduction. Ceramides 

are well known for their involvement in cardiac dysfunction (137). However, sphingosine-1-

phosphate is one of ceramide’s derivatives and has been shown to protect the heart against 

ischemia/reperfusion injury (138).  

 

Additionally, phospholipids are hydrolyzed by phospholipase (A1, A2, C, and D) to generate 

lipid-signaling molecules known to modulate the function of cardiomyocytes. Inositol 

trisphosphate (IP3) and DAG are two molecules obtained by the hydrolysis of phosphatidyl 

inositol bisphosphate (PIP2) with phospholipase C (58). Inositol triphosphate (a phospholipid) 

triggers the release of Ca2+ from the endoplasmic reticulum and activates PKC. PKC regulates 

several cellular responses and plays a central role in signaling cascades (139). When their role 

is fulfilled, lipids on cellular membranes are recycled. Therefore, four types of phospholipase 

(A1, A2, C, and D) are used to hydrolyze the ester bonds and phosphodiester bonds in 

glycerophospholipids.    
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It is worth mentioning that cholesterols are also present on plasma membranes but their ratio to 

phospholipids is less than one (131). This ratio is even smaller in cardiomyocytes (131). 

 

1.4 Diabetes and heart disease 

 

1.4.1 Introduction 

 

Diabetes is a heterogenous clinical syndrome, characterized by abnormal metabolism of 

glucose, lipids, and proteins. It is a chronic disease and clinically evident in cases of 

hyperglycemia (high blood sugar) which is caused by a lack of insulin secretion, high insulin 

resistance, or both. These complications deteriorate the quality of life and increase death rates. 

For example, when hyperglycemia is uncontrolled, diabetes leads to many complications, such 

as microvascular disease (retinopathy, nephropathy, and neuropathy) and macrovascular disease 

(cardiovascular disease, atherosclerosis, stroke, etc.). Unfortunately, the prevalence of diabetes 

is rising at alarming rate. In 1897, Sir William Osler considered diabetes a rare disease affecting 

0.01% of the population in Europe and the United States (140). Today, about 420 million people 

have diabetes, according to the World Health Organization (WHO), and this number is expected 

to rise exponentially. Nationally, over 3 million Canadians are currently diagnosed with 

diabetes. WHO forecasts that this number will reach more than 4 million by 2030 (141). 

 

In 2019, the expert committee of the American Diabetes Association established four diagnostic 

criteria to confirm diabetes (142). A patient is considered diabetic if one of these criteria is met: 

1. Fasting plasma glucose is 7.0 mmol/L or higher. 
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2. Random plasma glucose is 11.0 mmol/L or higher + symptoms of diabetes. 

3. Oral glucose tolerance test is 11.1 mmol/L or higher. 

4. A1C test is 6.5% or higher. 

 

For the fasting plasma glucose test, patients should withhold from food and drink for eight hours 

before testing their glycemia. If the result is 7.0 mmol/L or higher, the patient is considered 

diabetic. Alternatively, patients may ingest 75g of glucose in a sweetened drink and wait two 

hours before taking an oral glucose tolerance test (OGTT). If the test results are 11.1 mmol/L or 

higher, the patient is considered diabetic. Another way patients can be tested for diabetes is if 

they show symptoms of the disease (such as polyuria, polydipsia, etc.). In this case, a random 

test for glycemia is taken and a result of 11.0 mmol/L or greater concludes that the subject is 

diabetic. Finally, glycated hemoglobin (also referred to Hb1c, HbA1c, or A1C) is measured and 

if it represents more than 6.5% of total hemoglobin, then the subject is considered diabetic. A1C 

is a marker for chronic hyperglycemia that reflects the average level of systemic glycemia for 

the last two to three months. A1C is an important criterion for glycose homeostasis. According 

to the American Diabetes Association (ADA), its value is correlated with late complications of 

diabetes. It is enough to “fail” just one of these four tests to confirm the diagnosis. However, 

there is a grey area, called prediabetes, where the test results show high levels of glycemia but 

not high enough to fall above the specified limits. Prediabetes is a stage that occurs when healthy 

patients progress to diabetes. Not all prediabetic subjects will develop diabetes, but there is a 

high chance for it to happen. There are no clear symptoms of prediabetes; however, according 

to the ADA, having one of the following results indicates prediabetes: A1C levels of 5.7% to 

6.4%, fasting plasma glucose levels of 6.1 mmol/L to 6.9 mmol/L, or OGTT levels of 7.8 



34 
 

mmol/L to 11 mmol/L. The last two tests are referred to “impaired fasting glucose” and 

“impaired glucose tolerance” respectively (Table 1). 

 

 

 Fasting glucose 

(mmol/L) 

Glucose tolerance test with 

75g of glucose intake 

(mmol/L) 

Impaired fasting glucose          6.1 to 6.9                                     N/O 

         6.1 to 6.9             and                  <7.8 

 

              <6.1                and              7.8 to 11.0 

 

 

         6.1 to 6.9             and              7.8 to 11.0 

 

             ≥ 7.0                 or                   ≥11.1 

Isolated impaired fasting glucose 

Isolated impaired glucose 

tolerance 

Impaired fasting glucose and 

impaired glucose tolerance 

Diabetes 

Table 1.1: Diabetes Canada diagnostic criteria for diabetes.  

       

 

According to the American Diabetes Association, diabetes is classified into four categories: 

1. Type 1 diabetes (T1DM) which is insulin dependent. 

2. Type 2 diabetes (T2DM) which is insulin independent. 

3. Gestational diabetes. 

4. Other type of diabetes such as MODY (Maturity Onset Diabetes of the Young), NDM 

(Neonatal Diabetes Mellitus), etc 
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Almost 10% of diabetics have T1DM, while most of the rest have T2DM. These two types will 

be described in detail in the following sections.  

 

Gestational diabetes, as well as other types of diabetes, can also be found; however, they are 

less widespread. Gestational diabetes develops during the second or the third trimester of 

pregnancy and affects around 10% of pregnant women. During pregnancy, physiological 

increase of insulin resistance is a characteristic of normal pregnancy. Consequently, to maintain 

euglycemia, pancreatic beta cells increase insulin secretion. Nonetheless, in 5% to 10% of 

pregnancies, insulin secretion remains constant and cannot compensate for the added insulin 

resistance. Therefore, this leads to gestational diabetes (143, 144). Increased risk of mortality 

and neonatal morbidity (hypocalcemia, hypoglycemia, and macrosomia) is associated with 

gestational diabetes (145, 146). Usually, after giving birth, glucose levels return to normal; 

however, these women are at high risk of developing T2DM. 

 

The fourth type of diabetes includes many rare types, such as monogenic diabetes, or diabetes 

caused by the dysfunction of the exocrine pancreas, as well as insulin resistance caused by 

endocrinopathy and diabetes caused by chemical exposure. Monogenic diabetes is further 

divided into two categories, since this genetic disorder can cause insulin deficiency by affecting 

production or secretion or by causing the secretion of non-functional insulin (147). NDM and 

MODY are the two main forms of monogenic diabetes. Those diagnosed with MODY are 

usually under the age of 25, while NDM appears in newborns and infants six months old or 

younger. So far, eleven subtypes of MODY have been identified, all of them involving a single 
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mutation that may inhibit insulin synthesis or secretion (148). One of these identified genes 

codes for glucokinase. Glucokinase catalyzes glucose phosphorylation to form glucose 6-

phosphate. Glucose 6-phosphate acts as a glucose sensor for beta cells and its level in the body 

influences insulin secretion. Individuals with MODY 2 have a mutation of this gene that causes 

in mild fasting hyperglycemia. Additional types of diabetes are those associated with mutations 

in insulin receptors. Symptoms include hyperinsulinemia and hyperglycemia. Carriers of these 

mutations can also be diagnosed with acanthosis nigricans, Donohue syndrome, and Rabson–

Mendenhall syndrome. 

 

Furthermore, any disorder that affects the exocrine secretion of the pancreas is capable of 

inducing diabetes: pancreatitis, cystic fibrosis, pancreatic carcinoma, etc. These pathologies 

reduce the total number of pancreatic beta cells and, as a result, reduce insulin secretion. 

Likewise, several endocrinopathies, such as acromegaly and Cushing syndrome, may lead to 

diabetes. These syndromes are characterized by increased levels of hormones (cortisol, 

glucagon, epinephrine) that antagonize insulin action. 

 

Finally, certain drugs and chemicals (beta adrenergic agonist, diazoxide, cyclosporine, 

glucocorticoids, etc) induce diabetes as one of their many undesired side-effects.  

 

Glucose is the main fuel for energy production in many organs and maintaining its concentration 

at a constant level is very important. Glucose levels are regulated by insulin and glucagon, which 

reduce or elevate glycemia respectively. The pancreatic islet’s beta cells secrete insulin into the 

systemic circulation, while the pancreatic islet’s alpha cells are responsible for glucagon 
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synthesis and secretion. Pancreatic islets, or islets of Langerhans, are clusters of approximately 

one thousand cells scattered all over the pancreas. Imbedded in the exocrine tissue, they 

represent approximately 1% of the total number of pancreatic cells. Among the cells found in 

these islets, we can count alpha cells (for glucagon secretion), beta cells (for insulin secretion), 

delta cells (for somatostatin secretion), and PP cells (for pancreatic polypeptide secretion). Beta 

cells represent 60% to 80% of Langerhans islet cells and are responsible for insulin production 

and secretion. Insulin is a hormone made of 51 amino acids that lowers glycemia by inducing 

glucose uptake and metabolism in the peripheral tissue. Alpha cells are the second most 

abundant cells in Langerhans islets and are responsible for glucagon secretion. Glucagon is a 

hormone made of 29 amino acids that raises blood glucose levels. Delta cells count for 2% to 

8% of total Langerhans islet cells and are responsible for somatostatin secretion. Somatostatin 

(also known as the growth hormone-inhibiting hormone) is a peptide made of 14 amino acids 

that inhibits both insulin and glucagon secretion. It also regulates the relation between insulin 

and glucagon and therefore controls glycemia. Finally, PP cells are the least studied among 

Langerhans islet cells. In general, they negatively regulate the exocrine and endocrine functions 

of the pancreas.  

 

1.4.2 Type 1 diabetes 

 

T1DM, also called insulin-dependent diabetes, affects 5 to 10% of diabetics and is mainly 

caused by the destruction of pancreatic beta cells. Almost 75% of those affected with this type 

are 30 years old or younger. The clinical manifestation of T1DM is distinguishable by the 

sudden appearance of a wide array of symptoms: polydipsia, polyuria, and rapid loss of body 
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weight. These patients will also develop absolute insulinopenia due to the destruction of 

pancreatic beta cells. The etiology of T1DM is only partially identified; however, the causes of 

this disease are classified into two categories: immune-mediated causes and idiopathy causes. 

Many studies attribute multiple risk factors such as genetic predisposition, viral infection, and 

the geographic location of the patient (149-151). However, the most described cause includes 

the destruction of insulin-producing cells by the body’s auto-immune system. This auto-immune 

process is characterized by mononuclear cells’ filtration into the islets of Langerhans, which 

occurs many years before diagnosis. These cells are responsible for the autoimmune mechanism 

and prompt the appearance of several circulating autoantibodies directed against pancreatic beta 

cells: islet cell cytoplasmic antibodies, insulin auto-antibodies, glutamic acid decarboxylase 

auto-antibodies and tyrosine phosphatase-like protein IA2 auto-antibodies (152). The 

destruction of pancreatic beta cells precedes the development of hyperglycemia by many years 

and begins when one of these four auto-antibodies is detected in the patient’s serum.   

 

Unlike T2DM, patients with T1DM remain sensitive to insulin and can regain control of their 

blood glycemia by injecting insulin.  

 

1.4.3 Type 2 diabetes 

 

T2DM accounts for almost 90% of all diagnosed cases of diabetes and is one of the most 

widespread diseases in Canada. This pathology is triggered in adulthood, usually in individuals 

who are obese and older than 40 years of age. It affects 10% of Canadians, a percentage expected 
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to increase since the leading risk factors, obesity and a sedentary lifestyle, are more prevalent 

than ever. 

 

The etiology of T2DM is complicated, since environmental and genetic factors are involved.  

The variance in the prevalence of T2DM among different countries can be explained by 

environmental factors. For example, age, sex, smoking, obesity, diet, and physiological activity 

are all etiological factors that contribute to the development of T2DM (153). Thus, lifestyle 

plays a major role in the etiology of T2DM. The majority of Type 2 diabetics are obese and their 

clinical profile includes abdominal obesity, hypertension, dyslipidemia, insulin resistance and 

dysglycemia (154). Individuals who suffer from these risk factors are five times more likely to 

develop T2DM. Fortunately, these risk factors can be avoided by exercising and losing weight, 

which reduces the incidence of T2DM by 40 to 70% (155-158). 

 

T2DM is a polygenic disorder where heredity is a dominant etiological factor. Indeed, there is 

a 40% chance to develop T2DM in individuals who have one diabetic parent and a 70% chance 

if both parents are diabetic (159). Genes associated with T2DM are susceptibility genes. A 

mutation in the DNA sequence of these genes does not necessarily lead to T2DM, but it does 

increase the chances of developing diabetes. Dozens of single nucleotide polymorphisms (SNPs) 

have been identified by genome-wide association studies; however, these mutations explain less 

than 10% of disease heritability (160). As such, several variants confer T2DM risk, but only two 

genes encoding for calpain-10 (CAPN10) and transcription factor 7-like 2 (TCF7L2) are 

associated with this disease (161-163). These two putative genes, whose functions were 

unknown before, are linked to insulin expression and secretion in pancreatic beta cells (164, 
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165). We know now that CAPN10 is a calcium dependent protease and TCF7L2 is a 

transcription factor. The identification of such roles, which betters our understanding of the 

mechanism by which T2DM develops, demonstrates the importance of genome-wide 

association studies.  

 

The exact mechanism that leads to T2DM is not fully elucidated, but insulin resistance always 

precedes the development of T2DM. Indeed, hyperglycemia seen in T2DM is mainly due to 

insulin resistance associated with impaired activity of insulin receptors Insulin becomes 

ineffective at stimulating glucose uptake by target cells (hepatocytes, myocytes, and adipocytes, 

etc.). These cells cannot consume or metabolize glucose properly and the resultant 

hyperglycemia causes a positive feedback for insulin production by beta cells, leading to 

systemic hyperinsulinemia (166). For this reason, insulin resistance at an early stage is 

characterized with compensatory hyperinsulinemia. Hence, T2DM is considered an insulin- 

independent disease. Hyperinsulinemia cannot persist forever and Beta cells cannot keep up 

with the high pace for a long time. As a result, pancreatic beta cells enter apoptosis and the 

pancreas start to fail. Consequently, insulin production decreases significantly, which causes 

T2DM to becomes more severe. Simultaneously, hyperglycemia induces glucotoxicity and a 

vicious cycle ensues that worsens T2DM (167).  

 

Since hyperglycemia progresses slowly and remains asymptomatic, T2DM remains undetected 

and microvascular/macrovascular complications might be present during diagnosis (168, 169). 

The most common symptoms of T2DM include: polyuria, polydipsia, polyphagia, weight loss, 

vision blur, and fatigue (166).  
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1.4.3.1 Insulin resistance and glucotoxicity 

 

Euglycemia is not only maintained by insulin secretion into the systemic circulation, but also by 

glucose uptake into peripheral tissues such as the liver, muscles, and adipose tissue, etc. A 

mismatch between glucose uptake and insulin secretion may indicate the presence of insulin 

resistance. Hyperglycemia seen in T2DM is mainly caused by inhibition of glucose transporter 

type 4 (GLUT-4) activity, which is a direct result of alterations in the function of insulin 

receptors (170). Cells’ insulin sensitivity is directly correlated with the number of insulin 

receptors expressed on the cells’ surface as well as the insulin’s affinity to these receptors.  

 

The accumulation of lipids plays a major role in the induction of insulin resistance (171). Insulin 

resistance is also induced by lipids’ metabolites and inflammatory molecules that stimulate 

serine and threonine phosphorylation of insulin receptor beta units and insulin receptor 

substrates (IRS). Phosphorylation of serine and threonine by specific kinases seems to 

antagonize tyrosine phosphorylation. This mechanism is very likely responsible for insulin 

resistance (172). Additionally, non-esterified fatty acids (NEFAs), DAGs, acyl-CoAs, glucose, 

insulin, and cytokines (TNF-α, IL-1β) can also catalyze tyrosine dephosphorylation and 

therefore participate in insulin resistance. The main enzymes responsible for serine and 

threonine in IRS are protein kinase C (PKC), an inhibitor of NFKB kinase, MAPK, and c-Jun 

N-terminal kinase (JNK). JNK induces insulin resistance by phosphorylating serine 312 on IRSs 

and thus inhibits the interaction between insulin receptors and the phospho-tyrosine binding 

sites on IRSs. JNK can be activated by insulin through negative feedback as well as by fatty 
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acids and TNFα (171, 173-176). Therefore, chronic hyperinsulinemia leads to insulin resistance 

(176). This insulin resistance increases the level of circulating fatty acids, leading to DAG and 

acyl-CoA accumulation in liver and muscle cells. Consequently, these molecules activate PKC-

θ and phosphorylate IRS1, exacerbating insulin resistance (177).  

 

Other proteins, such as phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and 

Src homology 2 domain-containing inositol-5-phosphatase (SHIP) may also induce insulin 

resistance by inhibiting PI3K and its downstream signal.  

    

Chronic hyperglycemia does not only induce insulin resistance but also inhibits insulin 

expression in several animal models (178-184). The mechanisms implicated include decreased 

binding of PDX-1 and MafA to their promoter’s regions, as well as increased binding of C/EBPβ 

to its promoter (185, 186). Additionally, hyperglycemia promotes advanced glycation end-

products (AGEs) formation. AGEs bind to their receptors’ RAGEs (receptors for advanced 

glycation end-products) and lead to the synthesis of reactive oxygen species (ROS), which 

damages the function of pancreatic beta cells. In parallel, AGEs inhibit PDX-1 protein 

expression and insulin promoter activity (187, 188). 

 

 

 

 

1.5 Diabetic Cardiomyopathy 
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1.5.1 Introduction 

 

Cardiovascular disease is the main cause of mortality in diabetic patients. Diabetics represent 6 

to 8% of the general population; however, they represent 12 to 30% of patients with heart failure 

(189). Additionally, several epidemiological studies have demonstrated that diabetes is an 

independent risk factor for heart failure (190-192). For example, the Framingham study has 

shown that heart failure is two to four times more likely to occur in diabetic men compared to 

non-diabetic men and 5 times more likely to occurs in diabetic women compared to non-diabetic 

women, even when controlled for age, obesity, dyslipidemia, hypertension, and coronary heart 

disease (192). Before 1972, cardiovascular mortality and morbidity found in diabetics was 

attributed to vascular disease. However, in 1972, Rubler had four diabetic patients who suffered 

from congestive heart failure without the presence of hypertension, congenital heart disease, 

coronary artery disease, atherosclerosis or alcoholism. Therefore, Rubler became the first to use 

the term diabetic cardiomyopathy (DCM) to diagnose his diabetes patients (193). In the 

following years, the notion of isolated DCM was gradually accepted by the cardiology 

community, and subsequent studies have confirmed its presence. Isolated DCM is defined by 

abnormal myocardial function and structure in diabetics without vascular disease, alcoholism, 

or other etiological factors. The existence of this pathological entity is supported by several 

epidemiological and preclinical studies that found early alterations in left ventricular structure 

and function during the onset of diabetes. These abnormalities are manifested with ventricular 

hypertrophies, as well as systolic and diastolic dysfunction. However, there is no specific 

treatment for DCM and the exact molecular mechanism that leads to DCM has not been fully 
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elucidated. DCM was the main subject of many preclinical studies in which researchers 

investigated its origin on diabetic models and underlined various pathophysiological 

mechanisms as potentially responsible (194). Since diabetes is associated with hyperlipidemia 

and cardiac steatosis, lipotoxicity is becoming the main culprit for DCM. In parallel, systemic 

hyperglycemia in diabetics contributes to the formation of AGEs, which alters myocardial 

protein structure and may be the cause of cardiac hypertrophy. It is also worth mentioning the 

presence of abnormal calcium homeostasis that may be the origin of abnormal excitation-

contraction coupling. Finally, mitochondrial dysfunction, ER stress, increase ROS species, and 

inflammation have been identified as potential pathophysiological mechanisms for DCM. All 

these mechanisms lead to cardiomyocytes’ apoptosis and necrosis and eventually heart failure, 

which is considered the final stage of DCM. Early diagnosis of diabetic patients with DCM 

allow the use of specific strategies to monitor and prevent the progression of DCM to heart 

failure. However, the clinical importance to identify DCM remains low, since there is no specific 

treatment. Therefore, research on mechanisms of DCM must be maintained in order to identify 

new therapeutic targets and develop new treatments.         

 

1.5.2 Cardiac hypertrophy 

 

Type 2 diabetics can have left ventricular hypertrophy without arterial hypertension (195). 

Indeed, cardiac hypertrophy is one of the early manifestations of DCM and is responsible for 

reduced systolic functions. Additionally, insulin resistance and T2DM are associated with 

concentric hypertrophy and diastolic dysfunction (196, 197). Hypertrophy is defined as an 

increase in volume of myocardial tissue, usually the left ventricle. This increase is caused by the 
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synthesis of new sarcomeres (contraction units) and, therefore, an increase in cardiomyocytes’ 

volume. These new sarcomeres have two possible depositions. The first is parallel deposition, 

which makes the cells wider, the myocardium thicker, and the heart cavities smaller. This is 

known as concentric or pathologic hypertrophy and it is usually the outcome of chronic 

hypertension. The second is series deposition, which makes the cells longer, the myocardium 

larger, and the heart chambers bigger. This is known as eccentric or physiological hypertrophy 

and it is usually the outcome of regular exercising. 

 

Hyperinsulinemia seen in T2DM may contribute to cardiac hypertrophy by upregulating the 

mitogenic response. Insulin mitogenic response occurs when the RAS-MEK-ERK1/2 pathway 

is activated, which leads to protein synthesis and cellular differentiation and proliferation. 

Activating this pathway is implicated in cardiac hypertrophy (198-200). Interestingly, even 

though adipocytes in diabetics are resistant to insulin’s effect on glucose transport, it has been 

shown that insulin continues to activate and even upregulate the mitogenic pathway (201). 

 

Furthermore, obesity contributes to cardiac hypertrophy independently of hypertension (202). 

For example, cytokines produced by adipocytes, such as leptins, are likely the trigger of this 

process. The mechanism is not fully characterized; however, it likely involves an endothelin-1-

mediated ROS generation (203). Another adipokine, resistin, which is produced by macrophage, 

was shown to induce cardiac hypertrophy through IRS-1 and MAPK signaling pathways (204).  

 



46 
 

Another possible pathway for cardiac hypertrophy in diabetics is through hyperglycemia and 

angiotensin II  (205-207). However, this pathway is unlikely to be the cause of cardiac 

hypertrophy seen in DCM, since it is usually preceded by hypertension.  

 

1.5.3 Diastolic dysfunction 

 

Left Ventricular Diastolic dysfunction is an independent risk factor for heart failure. Many 

investigators have demonstrated the presence of diastolic dysfunction in diabetic patients 

without congestive heart failure. For example, Schannwell et al. found a high prevalence of 

independent left ventricular diastolic dysfunction with preserved systolic function in Type 1 

diabetic patients (208). Diastolic dysfunction is characterized by prolonged relaxation and an 

increase in ventricular pressure at the end of the diastole (209). Since ventricles cannot fill 

normally, it usually evolves into systolic dysfunction. Systolic dysfunction is defined as a 

decrease in the ejection fraction, or the incapability of the ventricles to pump enough blood to 

the peripheral organs. Hyperglycemia seen in diabetics contributes to diastolic dysfunction by 

upregulating PKC activity and increasing AGEs, polyol, and hexosamine production (210). 

These mediators modulate ryanodine receptors and SERCA (sarco/endoplasmic 

reticulum Ca2+-ATPase) and they impairs calcium accumulation in the endoplasmic reticulum 

during diastole (211-213). Furthermore, the β1 and β2 adrenergic receptors, which mediate 

positive inotropic effects, are downregulated in diabetics: hence, the sympathetic nervous 

system could also play a deleterious role in DCM. Simultaneously, the β3 adrenergic receptor, 

which possess a cardiodepressant effect on the ventricles, is upregulated in these similar 

https://en.wikipedia.org/wiki/Sarcoplasmic_reticulum
https://en.wikipedia.org/wiki/Endoplasmic_reticulum
https://en.wikipedia.org/wiki/Endoplasmic_reticulum
https://en.wikipedia.org/wiki/Calcium
https://en.wikipedia.org/wiki/ATPase
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circumstances (214, 215). These changes may contribute to diastolic dysfunction by impairing 

ventricles relaxation. 

 

1.5.4 Calcium dysregulation 

 

Calcium is an essential element and a vital electrolyte necessary for maintaining a regular 

heartbeat rhythm. Intracellular and extracellular levels of calcium are tightly regulated, as are 

its storage and movement. It is mainly stored in the endoplasmic reticulum (ER). Calcium is 

also present in interstitial fluid, where it can enter the cells through ion channels. In human 

cardiomyocytes, there are mainly two types of calcium channels: L-type (long-lasting current) 

and T-type (tiny voltage threshold). In order to contract, calcium is released from its intracellular 

storage mainly through ryanodine receptor 2, found on the ER membrane and during relaxation, 

it is pumped into the ER by SERCA and out of the cells through the sodium-calcium exchanger 

(NCX) (Figure 1.7). SERCA is an ATP-dependent transporter found on the ER membrane and 

it has a molecular weight of 110 kDa. There are ten known SERCA isoforms obtained by 

alternative splicing of three SERCA genes: SERCA1, SERCA2, and SERCA3 (216). SERCA2a 

is predominantly expressed in cardiomyocytes and skeletal muscles (217). Controlled calcium 

current across the cell and ER membranes is crucial for cardiomyocytes’ normal activity. Any 

alteration of this current causes dysregulation of calcium homeostasis, which perturbates the 

excitation-contraction coupling, and it may lead to DCM. Prolonged ventricular relaxation is 

one of DCM’s characteristics. The main culprit is calcium that is not efficiently removed from 

cytosol. Indeed, several investigators have demonstrated that levels of intracellular diastolic 

calcium are elevated in cardiomyocytes isolated from diabetic rats in comparison to control rats 
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(218-220). Perturbation of calcium homeostasis seen in DCM is generally perpetrated through 

SERCA2 (221). Many research groups have demonstrated that SERCA2 expression or activity 

was reduced in diabetic models (219, 222-224). For example, according to Ligeti et al., the 

increase in concentration of intracellular calcium seen at the end of diastole in DCM was 

attributable to reduced SERCA activity, where the Vmax of this transporter was significantly 

reduced (225). Nevertheless, a negative contribution of NCX cannot be excluded, since it was 

shown that this transporter is also downregulated in diabetic hearts (218, 226). In the later stage 

of DCM, diastolic dysfunction progresses to systolic dysfunction where the frequency and 

amplitude of cytoplasmic calcium during contractions are weaker in diabetic hearts compared 

to non-diabetic hearts (227). This was explained by Teshima et al. who demonstrate that a 

downregulation of SERCA expression preceded downregulation of ryanodine receptor 2 (RyR2) 

(222). 

 

The exact mechanism by which SERCA is downregulated in DCM is not fully elucidated but 

glucotoxicity is probably the main instigator. In fact, it was shown that SERCA activity was 

lower in cardiomyocytes incubated with a high level of glucose (25.5mM) compared to those 

incubated with a low concentration of glucose (5.5mM) (224). AGEs formation is an early 

manifestation of glucotoxicity, and Bidasee et al. underlined the presence of AGEs-bound 

SERCA2 after eight weeks of diabetes (228). Furthermore, when AGEs bind to their specific 

receptor RAGEs, the AGEs-RAGE system can modify myocardial calcium homeostasis 

(through SERCA, NCX, or other proteins) and alter ventricular relaxation, which progresses to 

DCM (229). SERCA2 can also be regulated by kinases such as Ca2+/calmodulin-dependent 
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protein kinase (CaMK). When SERCA2 is phosphorylated by CaKM, the Vmax of calcium 

uptake by ER is increased (230). 

     

SERCA activity is also regulated by phospholamban (PLB). When bound to PLB, SERCA is 

inactive. However, PLB contains several phosphorylation sites, and phosphorylating PLB 

releases it from SERCA, which renders SERCA active. Studies have shown that PLB can be 

phosphorylated at Ser10 by PKC, at Ser16 by protein kinase A (PKA), and at Thr17 by CaMK. 

The concentration of PLB phosphorylated isoform is positively correlated with SERCA activity. 

Indeed, heart preparations isolated from diabetic rats are characterized with elevated levels of 

non-phosphorylated PLB (219, 228, 231). Therefore, SERCA activity can be indirectly 

regulated by kinases and phosphatases. Unsurprisingly, PKA- and CaMK-mediated 

phosphorylation of PLB was reduced in diabetic hearts (223, 231, 232). 

 

Finally, oxidative stress is another factor believed to be implicated in calcium dysregulation. In 

fact, decreased expression of the SERCA2 protein in the cardiomyocytes of diabetic mice is 

completely prevented by overexpressing the antioxidant protein metallothionein (233).  
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Figure 1.7: Calcium signaling and homeostasis (234). 

      

1.5.5 Fibrosis 

 

In 1972, Rubler et al. were the first to introduce the term diabetic cardiomyopathy. He used this 

term on four diabetic hearts where the autopsy and histology findings on these hearts revealed 

the presence of ventricular hypertrophy associated with myocardial fibrosis (193). Fibrosis is 

defined by the scarring and/or hardening of tissue caused by excessive deposition of collagen or 

other components of the extracellular matrix. Rubler et al.’s results were later confirmed by 

several studies that showed interstitial collagen and glycoproteins deposition in cardiac tissue 
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isolated from diabetic humans (235-237). Furthermore, an increase in interstitial fibrosis was 

demonstrated in the hearts of diabetic rats (238, 239). Indeed, the most important 

histopathological characteristic of diabetic hearts is perivascular and/or interstitial fibrosis. 

Additionally, myocardial fibrosis is frequently put forward to explain cardiac modifications seen 

in DCM.  

 

In the heart, fibrosis can be reactive or reparative. For example, myocardial infarction is 

followed by the secretion of extracellular matrix components that protect against myocardial 

rupture and the loss of cardiac cells. This is called reparative fibrosis. In contrast, arterial 

hypertension induces reactive fibrosis characterized by excessive collagen secretion by 

fibroblasts which harden cardiac muscle and cause myocardial dysfunction (240). Fibrosis seen 

in DCM is mainly reactive fibrosis (241). 

 

Exhibiting both hypertension and diabetes is considered a key factor that induces interstitial 

fibrosis. This concept was initially suggested in a study performed on rats and was later 

confirmed in humans. These authors demonstrated, through autopsy, that perivascular and 

interstitial fibrosis is more likely to be found in diabetics with hypertension compared to only 

diabetics or only hypertensive patients (237, 242). 

 

The pathway leading to the development of fibrosis in DCM likely involves ROS synthesis and 

AGEs formation. Hyperglycemia and hyperlipidemia seen in diabetics induces ROS synthesis, 

which alters genes’ expression and signal transduction, leads to oxidative stress, and eventually, 

activates necrosis and apoptosis. Protein alteration by AGEs can also be the origin of cardiac 
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stiffness known as fibrosis. AGEs facilitate cross-linking between collagen molecules, rendering 

these molecules more resistant against degradation. This favors the appearance of myocardial 

fibrosis (243). Hence, collagen accumulation is not only caused by an increase of its secretion 

but also by a decrease of its degradation. Furthermore, the renin angiotensin system is a key 

mediator for interstitial fibrosis seen in diabetics (244). Angiotensin 2, an inflammatory 

chemokine, is the main effector of the renin angiotensin system (245). Additionally, 

upregulation of the endothelin system in diabetic hearts can also play an important role in 

myocardial fibrosis. In conclusion, whatever the mechanism leading to the development of 

fibrosis in DCM, a decrease in myocardial compliance is the main functional consequence. 

 

1.5.6 Steatosis 

 

Cardiomyocytes of diabetic patients are characterized by altered lipid metabolism. Additionally, 

insulin resistance, a key characteristic of T2DM, is associated with increased need of 

cardiomyocytes for fatty acids as an energy source for its metabolic activities. Indeed, in normal 

hearts, around 75% of total metabolic energy comes from fatty acid oxidation (FAO). However, 

in T2DM, cardiomyocytes become even more dependent on fatty acids and FAO represents 

more than 90% of total energy production (246, 247). These circumstances are associated with 

cardiac steatosis, which is the accumulation of intramyocardial lipids. Indeed, intracellular 

triglyceride levels are increased in cardiomyocytes of diabetic patients, and cardiac steatosis was 

proposed as an important cause for DCM (248, 249). The accumulation of fatty acids in 

cardiomyocytes was demonstrated in diabetic rodents as well as in diabetic humans (249-252). 

The exact mechanism leading to cardiac steatosis in T2DM is still under investigation; however, 
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two major contributors are increased fatty acid uptake and hyperlipidemia, an increased 

concentration of serum lipids.   

  

A key characteristic of hyperlipidemia in T2DM is high levels of plasma triglycerides (253). 

People with T2DM are at high risk to have hyperlipidemia, which is also one of the major risk 

factors for cardiovascular disease in T2DM. Insulin resistance and hyperlipidemia are highly 

correlated. Indeed, hyperlipidemia is usually found in prediabetics with insulin resistance and it 

has been found that treating Type 2 diabetics with thiazolidinediones (TZD) improves insulin 

activity and normalizes the concentration of plasma lipids (254, 255). In healthy subjects, insulin 

inhibits hormone sensitive lipase (HSL) in adipose tissue by decreasing its phosphorylation, 

which reduces the release of stored fatty acids from adipocytes into the systemic circulation 

(256). Therefore, the loss of insulin action on HSL in T2DM is associated with dyslipidemia 

and increased mobilization of lipids from adipocytes (257). Simultaneously, studies have 

demonstrated that apolipoprotein B (apoB) is overproduced by hepatocytes in T2DM (258-260). 

ApoB is an important protein found in both very low-density lipoproteins (VLDL) and low-

density lipoprotein (LDL) that may explain the cause of hyperlipidemia seen in diabetics (261). 

Interestingly, events that promote hyperlipidemia in T2DM are positively correlated with 

increased fatty acid uptake by cardiomyocytes. In the heart, fatty acids can be transported into 

cardiomyocytes via several membrane transporters, including the cluster of differentiation 36 

protein (CD36), the fatty acid transport protein 1/6 (FATP1/6), and the membrane-associated 

fatty acid binding protein (FABPpm) (57). These cells obtain their fatty acids mainly from 

lipoproteins where lipoprotein lipase (LPL) hydrolyzes triglycerides to free fatty acids. CD36 

expression and activity as well as cardiac LPL expression are upregulated in diabetic settings 
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(262-265). Inducing cardiac steatosis by upregulating fatty acid uptake in transgenic mice was 

sufficient to instigate cardiomyopathy independently of hyperglycemia. In these transgenic 

mice, proteins involved in fatty acid uptake, such as long-chain acyl-CoA synthetase, FATP1, 

and glycosylphosphatidylinositol (GPI), a membrane-anchored form of lipoprotein lipase, were 

over-expressed leading to lipotoxic cardiomyopathy (266-268).   

  

The incidence of cardiac steatosis is higher in the diabetic population compared to the general 

population. Cardiac steatosis precedes the onset of diastolic dysfunction and diabetic 

cardiomyopathy (248). The mechanism linking steatosis to DCM will be discussed in the 

following section on lipotoxicity.   

 

1.5.7 Lipotoxicity 

 

Free fatty acids and triglycerides are pathologically elevated in cardiac cells of diabetic patients.  

Lipotoxicity, which is defined by cellular dysfunction caused by overload of lipids (or its 

metabolites), is likely to play a central role in the development of DCM. Indeed, several research 

groups have demonstrated that lipotoxicity is a causal mechanism for DCM (194, 269, 270). 

Even though triglycerides are elevated in diabetic cardiomyocytes, their damaging effects are 

controversial. While some reports have indicated that cardiac triglyceride accumulation is 

associated with systolic and diastolic dysfunction, others have suggested that triglycerides are 

just markers for lipotoxic metabolites (248, 249, 271). TAG is likely to be a neutral lipid and 

lipotoxicity to be the result of buildup in other lipids such as ceramides, DAG, or oxidized 

phospholipids (194). In accordance with this, treating diabetic subjects with metformin or TZD 
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improved their cardiac function independently of changes in myocardial TAG content (272). 

Moreover, sequestering fatty acids (especially saturated fatty acids) into triglycerides, thus 

preventing the conversion of these fatty acids to toxic lipids, protected cardiomyocytes against 

ER stress and cell death (273, 274).  

 

Saturated fatty acids, such as palmitic acid and stearic acid, are largely involved in DCM 

development. They induce ER stress and apoptosis in many cell types, including cardiomyocytes 

(274-277). Borradaile et al. found that palmitate incorporates between the phospholipid layers 

of the ER membrane, dilating the membrane and leading to the disruption of its structure and 

loss of its integrity (278). Saturated fatty acids promote inflammation in a wide array of cell 

types by increasing pro-inflammatory cytokine secretion (IL-6 and TNF-α) (279, 280). They 

lower cardiolipin (anionic phospholipid) concentration on the mitochondrial membrane, leading 

to apoptosis in rat neonatal cardiomyocytes (281). Additionally, saturated fatty acids increase 

ROS production which activates PKC signaling pathways (282). PKC regulates several proteins’ 

activity through phosphorylation. Some of these target proteins are: JNK, mitogen-activated 

protein kinase (MAPK), and nuclear factor kappa B (NF-κB). Recent studies have demonstrated 

that fatty acid metabolites can activate PKC-θ, which consequently phosphorylates and activates 

IκB kinase (283). IκB phosphorylates the serine residue of IRS-1 and inhibits its capacity to 

bind to phosphoinositide 3-kinase (PI3K). The insulin-signaling cascade is therefore impaired 

and the translocation of glucose transporter GLUT4 to the membrane is inhibited. Glut4 is the 

primary transporter of glucose in cardiomyocytes (284).  
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PI3K is an important component of the insulin signaling pathway. Insulin-mediated inhibition 

of AMPK activity is lost in lipotoxic conditions in cardiomyocytes (285). The mechanism likely 

involves PI3K, which is downstream of AMPK (286). Since AMPK regulates fatty acid 

oxidation, lipotoxicity is also associated with impaired FAO (52, 287). Impairing FAO 

exacerbates DCM, since it promotes cardiac steatosis and lipotoxicity (288-291). A decrease in 

FAO is associated with increased accumulation of ceramides (291, 292).  

 

Ceramides are well known inducers of lipotoxicity and cellular dysfunction in many cell types, 

including cardiomyocytes (293, 294). They activate inflammatory signaling pathways and 

induce production of reactive nitrogen species (RNS) (269). They also impair insulin signaling 

by impeding GLUT4 translocation (295). The ceramides level is elevated in skeletal muscles of 

obese subjects (296). Lowering ceramide concentration improves insulin resistance and 

lipotoxicity (297). For example, lipotoxicity in transgenic mice overexpressing 

glycosylphosphatidylinositol (GPI), a membrane-anchored form of lipoprotein lipase, was 

prevented by inhibiting ceramide biosynthesis (298). Additionally, overexpressing ceramidase, 

an enzyme that cleaves ceramides, prevents insulin resistance mediated by saturated fatty acids 

(299). However, Listenberger et al. found that inhibiting ceramide biosynthesis was not enough 

to completely prevent palmitate-induced cell death in hamster ovary cells (300). The authors 

pointed to ROS as a mechanism for palmitate lipotoxicity. 

 

DAG and ROS signaling pathways share the same downstream kinase: PKC. DAG 

accumulation activates PKC, and both molecules induce insulin resistance in obese patients 

(301). Feeding mice a high fat diet for ten weeks impaired insulin-induced glucose oxidation, 
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which was positively associated with DAG accumulation (302). DAG accumulation was 

secondary to increased GPAT activity and decreased DGAT activity in the working hearts of 

these mice. Indeed, cardiac overexpression of DGAT, which transforms DAG to TAG, 

decreased DAG levels and protected mice hearts against lipotoxicity (303). GPAT, on the other 

hand, is one of several enzymes that catalyze DAG synthesis. Toxicity associated with an 

increased expression of GPAT is not only related to DAG accumulation, but also to elevated 

levels of lysophosphatidic acid (304). 

 

Interestingly, there are three isoforms of DAG and only one of them, sn-1,2 DAG, has the ability 

to activate PKCs (305-307). The other two isoforms, sn-2,3 DAG and sn-1,3 DAG, cannot bind 

to PKC. One difference between oleate and palmitate is the ratio of sn-1,2 DAG to sn-1,3 DAG 

found in cardiomyocytes treated with these fatty acids. The ratio was higher in palmitate 

compared to oleate (287). This may explain the difference between saturated fatty acids and 

unsaturated fatty acids regarding their toxicity. Indeed, palmitate activates the DAG/PKC 

pathway, causing a pleiotropic effect on cellular dysfunction (308, 309). This was not the case 

in oleate-treated cells. Oleate, an unsaturated fatty acid, is not only non-toxic in cardiomyocytes 

isolated from neonatal rats, but also protected these cells from palmitate-mediated lipotoxicity 

(52). Additionally, oleate improved the lipid profile and prevented mitochondrial dysfunction, 

insulin resistance, and inflammation in myocytes (310, 311). Diets rich in oleic acid are also 

associated with reduced cardiovascular events (312).  

 

 

 



58 
 

1.5.8 Hyperglycemia 

 

Chronic hyperglycemia seen in patients with undiagnosed prediabetes or uncontrolled diabetes 

has multiple consequences. In fact, chronic hyperglycemia is likely the main cause of some 

diabetic complications such as nephropathy, neuropathy and retinopathy (313). Furthermore, 

epidemiological studies have demonstrated a clear association between hyperglycemia and 

cardiovascular disease. Interestingly, this association can be seen even when glucose levels are 

lower than those found in diabetic patients (314). Cellular glucotoxicity is described as the 

deleterious effects of hyperglycemia on cells’ structure and function in different body tissue 

(315). Glucotoxicity, the consequence of chronic hyperglycemia, appears in a slow and 

progressive manner (186). The concept of glucotoxicity is usually used to describe the effect of 

T2DM on pancreatic beta cells (316). However, here we will describe the mechanism of 

glucotoxicity on the function of cardiac cells instead. So far, hyperglycemia stimulates three 

important mechanisms in cardiomyocytes that contribute to glucotoxicity: ROS formation, the 

hexosamine biosynthesis pathway, and AGEs formation. These mechanisms have a common 

ending: insulin resistance and cell death (317-319). 

 

Hyperglycemia induces ROS synthesis. An increased level of ROS mediates insulin resistance 

by inhibiting GLUT4 translocation to the membrane. Several serine/threonine kinases are 

stimulated by ROS which alters IRS-1 activity and initiates the pro-inflammatory signaling 

pathway by phosphorylating l’IKKβ and NF-κB (320, 321). Treatment with antioxidants, such 

as lipoic acid prevents deleterious effects of ROS on glucose transport in vivo and in vitro (322, 

323). 
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An increased flux of glucose in the hexosamine biosynthesis pathway is another mechanism 

where hyperglycemia may contribute to insulin resistance (324). The rate-limiting enzyme in 

this pathway is glutamine:fructose-6-phosphate amidotransferase (GFAT) and the final product 

is UDP-N-acetylglucosamine (UDP-GlcNAc). O-GlcNAc transferase, an enzyme responsible 

for proteins’ post-translational modification, uses UDP-GlcNAc as its substrate. Hexosamine 

biosynthesis pathways induce insulin resistance and vascular complication by causing 

modifications on O-GlcNAc. Indeed, overexpressing GFAT in mice causes insulin resistance 

(325). Thus, an increase in O-GlcNacylation can alters insulin signaling and inhibits GLUT4 

translocation to the membrane (324, 326). 

 

AGEs formation is stimulated by hyperglycemia and oxidative stress (321). AGEs are proteins 

or lipids that undergo glycation after contact with sugar (327). AGEs inhibits insulin mediated 

tyrosine phosphorylation of IRS-1 and IRS-2, altering PI3K and Akt activity (328). 

Simultaneously, AGEs binds to their specific receptor RAGE which activates the transcription 

factor NF-κB and stimulates ROS production (329, 330). 
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1.6 Mechanism implicated in diabetic cardiomyopathy 

  

1.6.1 ER stress 

 

1.6.1.1 ER stress and the unfolded protein response   

 

The endoplasmic reticulum (ER) can be described as a network of membranes in the form of 

tubules and sacks. It represents almost 50% of all membranes in eukaryotic cells. ER is a highly 

dynamic organelle that regulates many vital functions to maintain cellular homeostasis. Calcium 

concentration inside the ER is around three times higher compared to its intracellular 

concentration, making ER an important storage site for calcium. Nevertheless, the main function 

of the ER is the synthesis of lipids and proteins. Inside the ER, lipids and proteins are synthesized 

separately in two distinct zones: the smooth ER and the rough ER. Rough ER is rich with 

ribosomes, which give it a rough appearance when seen on an electronic microscope, hence the 

name. The smooth ER, which lacks ribosomes, is the site of lipid metabolism and synthesis, 

while the rough ER is the site of protein synthesis and maturation (331). Protein maturation is a 

critical process in insuring a proper functioning of these proteins. An important maturation step 

for newly synthesized proteins is “protein folding.” When it folds, a protein acquires its nascent 

three-dimensional structure. Before being exported to the Golgi apparatus, the nascent proteins 

undergo the maturation step while interacting with different classes of chaperone proteins. Even 

though these chaperone molecules are found in several organelles, some of them are exclusive 

for the ER such as glucose-related peptide 78 (GRP78). Chaperone molecules interreact with 
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the hydrophobic sequence of nascent proteins, which prevent their aggregation and facilitate 

their proper folding (332). 

  

Perturbation in ER homeostasis decreases its capacity to support proteins’ maturation. If protein 

synthesis exceeds protein maturation, an aggregate of unfolded proteins will start to accumulate, 

causing ER stress. The presence of ER stress triggers a physiological response called the 

unfolded protein response (UPR) (333). The UPR aims to: (1) reduce protein synthesis to 

prevent the accumulation of unfolded proteins, (2) increase expression of ER chaperons to 

stimulate protein folding, (3) promote the export of irreversibly misfolded proteins and, 

subsequently, their degradation in the proteasome, (4) set off apoptosis if the previous steps fail 

to solve ER stress (334). Indeed, unresolved ER stress is involved in the development of many 

pathologies, such as T2DM and diabetic cardiomyopathy (335, 336). The involvement of ER 

stress in diabetic cardiomyopathy will be discussed in detail in the following section. 

 

The unfolded protein response is a signaling pathway divided into three distinct branches (Figure 

1.8). These branches are regulated by three transmembrane proteins: protein kinase R (PKR)-

like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and 

inositol requiring enzyme 1 (IRE1). Under a normal physiological state, these three proteins are 

bound to GRP78 on the ER membrane, which keeps them inactive. The accumulation of 

unfolded proteins will recruit GRP78 and causes the dissociation of GRP78 with UPR effectors. 

This dissociation activates the UPR (337).   
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The IRE1 pathway can be described as follows. IRE1 is a transmembrane protein that has an 

endoribonuclease (RNase) activity on its C-terminal cytosolic domain and a serine/threonine 

kinase activity (338). The first branch discovered in UPR was the IRE1 branch and the IRE1 

remains the most studied protein in ER stress. Two isoforms of IRE1 are found in mammalian 

cells: IRE1α and IRE1β. IRE1β is expressed only in intestinal epithelial cells, while IRE1α is 

ubiquitously expressed in all cells, including cardiomyocytes (339, 340).  Once it is released 

from GRP78, IRE1 homodimerizes and auto-phosphorylates, thanks to its kinase activity (341). 

Activated IRE1 initiates mRNA splicing of the XBP-1 transcription factor (XBP-1 stands for 

X-box binding protein 1) and removes 26 nucleotides from its mRNA. Interestingly, the 

translation of spliced XBP-1 generates a longer protein compared to non-spliced mRNA (342). 

The splicing causes a frame shift in its codon sequence that moves the stop codon downstream 

of its original position. Spliced XBP-1 translocates to the nucleus and activates several genes 

involved in protein maturation and folding (343, 344). It equally induces the expression of many 

genes involved in protein degradation and apoptosis (343).   

   

The PERK pathway can be described as follows. PERK is a serine/threonine kinase that 

phosphorylates eukaryotic initiation factor 2 alpha (elF2-α). Once released from GRP78, PERK 

is dimerized and activated by autophosphorylation (342). Consequently, PERK phosphorylates 

and thus inhibits elF2-α. Inhibition of elF2-α causes a global decrease protein translation. 

Interestingly, some protein translations, such as activating transcription factor 4 (ATF4), are 

upregulated. ATF4 has an open reading frame (ORF) in its 5’ untranslated region (5’ UTR); 

therefore, it is translated in a 5’ cap independent manner, allowing it to be translated more 

efficiently (345). In the early stage of ER stress, ATF4 expression promotes cellular survival by 
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regulating genes involved in oxidative stress resistance and amino acid import. However, 

prolonged ER stress induces apoptosis through the ATF4/CHOP pro-apoptotic signaling 

pathway (338). Indeed, one of ATF4’s target genes is the CCAAT/enhancer binding protein 

(C/EBPs), a homologous protein (CHOP) that is also a transcription factor that upregulates 

genes involved in apoptosis (346). 

  

The ATF6 pathway can be described as follows. There are two isoforms of ATF6: ATF6α and 

ATF6β (347). Both are ubiquitously expressed; however, since most researchers have focused 

on ATF6α, the names ATF6 and ATF6α were used interchangeably. When bound to GRP78, 

ATF6 is inactive (343). Once released from GRP78, ATF6 is transported to the Golgi apparatus, 

where it is cleaved by two proteases: site 1 protease (S1P) and site 2 protease (S2P) (343). 

Following the cleavage, the N-terminal fragment is released, then translocated to the nucleus to 

act as a transcription factor. Interestingly, ATF6 belongs to the ATF/CREB family, since its 

structure and activation mechanism are similar to other proteins in the CREB family (CREB 

stands for cAMP response element binding protein) (348). Hence, the ATF6 structure contains 

a leucine zipper domain that mediates the binding of ATF6 to cAMP response element (CRE) 

and activation of target genes (349, 350). It also induces the expression of genes where the 

promoter contains UPRE (unfolded protein response element) and ERSE (ER stress response 

element) (351). For example, the expression of chaperons’ molecules, such as GRP-78, are 

upregulated in order to increase protein folding and decrease protein aggregation in the ER. 

CHOP, XBP-1, and proteins implicated in endoplasmic-reticulum-associated protein 

degradation (ERAD) are also induced by ATF6 (342, 343, 352). 
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Figure 1.8: The three arms of ER stress [adapted from (353)]. 

 

 

 

1.6.1.2 ER stress in diabetic cardiomyopathy 

 

ER stress is central to the pathogenesis of several degenerative diseases including Parkinson’s 

and Alzheimer’s (354, 355), several cancers (356), metabolic disorders such as obesity and 

insulin resistance (357, 358), and cardiac diseases such as ischemia, atherosclerosis, 

hypertrophy, and heart failure (359).  

 

In cardiomyocytes, the ER has the additional role of storing calcium and regulating calcium 

homeostasis; hence, it is called the sarcoplasmic reticulum (SR). Since the primary function of 

cardiomyocytes is to contract, the SR is relatively-well developed, making the cells highly 
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vulnerable to ER stress. As an example, thapsigargin, a non-selective inhibitor of SERCA 

channels, is a well-known powerful inducer of ER stress in cardiomyocytes—in other words, 

the mechanism for thapsigargin-mediated dysfunction and the death of cardiac cells (360). 

Tunicamycin, an inducer of ER stress because it inhibits protein glycation, causes cell death in 

cultured cardiomyocytes (361). Indeed, ER stress is an important risk factor for cardiovascular 

disease and some researchers have focused on attenuating ER stress as a therapeutic target (359).  

 

The relationship between ER stress and cardiovascular disease is based on many studies done 

in vivo and in vitro. Exacerbating ER stress through hypercholesterolemia or 

hypertriglyceridemia renders the heart more vulnerable to ischemia (362). ER stress is 

associated with heart dilatation and hypertrophy, since depleting the CHOP gene attenuates 

hypertrophy and cardiac dysfunction. The proapoptotic pathway involving CHOP, JNK, and 

caspase-12 is induced by ER stress and activated in failing hearts (363). Hypoxia induces CHOP 

expression, and ER stress is upregulated within the myocardial infarction area (364, 365). 

 

In diabetics, ER stress is a major contributor to cardiac dysfunction, since it can be triggered by 

characteristics usually seen in diabetic hearts, such as free fatty acids, hyperglycemia, and 

inflammation (366). Indeed, Miki et al. found markers of ER stress in Otsuka Long-Evans 

Tokushima Fatty (OLETF) rats were upregulated in a genetic model of T2DM (367). Similarly, 

unfolded protein response is triggered in the myocardium of streptozotocin-induced Type 1 

diabetic mice (368). 
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Free fatty acids are likely to be the main instigator of ER stress in diabetic patients. ER is an 

important regulator of lipid metabolism and triglyceride synthesis (369). Accumulation of newly 

synthesized TAG in the ER membrane bilayer is an obligatory step in lipid droplet synthesis. A 

perturbation in this process caused by an increase in intracellular fatty acids may trigger ER 

stress. For example, accumulation of saturated fatty acids perturbates ER membrane fluidity and 

inhibits SERCA activity, leading to ER stress (370). Palmitate, a saturated fatty acid, is a 

powerful inducer of ER stress in cultured human and rodent cardiomyocytes (274, 371). 

Palmitate also induces apoptosis, most likely through ER stress-mediated cell death since CHOP 

and JNK were upregulated in a mouse model of lipotoxic cardiomyopathy (372). 

 

Culturing cardiomyocytes in a high-glucose medium (28mM) activates ER stress and cell death 

(373). In vivo, hyperglycemia alters calcium homeostasis and causes ER stress that contributes 

to diabetic cardiomyopathy (374). The authors used transgenic, non-obese Type 2 diabetic rats, 

where only the PERK and the ATF6 branches of ER stress were activated (374). These findings 

are in agreement with other studies that found improving glucose intolerance and hyperglycemia 

alleviates ER stress (375).  

 

Inflammation is another possible instigator of ER stress in diabetic cardiomyopathy. However, 

it is still not clear whether inflammation induces ER stress or vice versa. Chronic infection and 

cytokine secretion is associated with ER stress and cell apoptosis (376). While some researchers 

demonstrated that certain cytokines induce different branches of the UPR (such as IL-1β, which 

induces PERK phosphorylation and XBP1 splicing), others have established that ER stress 

induces sterile inflammation (377, 378). 
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1.6.1.3 ER stress-induced apoptosis 

 

The main purpose of UPR and ER stress is to maintain ER homeostasis. Unfortunately, if ER 

persists and remains unresolved, it activates pro-apoptotic pathways. Inducing apoptosis via ER 

stress occurs through the activation of CHOP by PERK/elF2α, activation of the Ask1/JNK 

pathway by IRE1, and the release of calcium from ER via Bax/Bcl2 (379). 

 

The PERK/eIF2α branch of the UPR is the main pathway for CHOP activation. CHOP is a 

transcription factor that targets several genes, such as GADD34, TRB3, and Bcl-2 (380, 381). 

GADD34 exacerbates ER stress by interacting with protein phosphatase 1 (PP1) and 

upregulating eIF-2α. This is associated with apoptosis and cell death (381). Bcl-2 regulates 

apoptosis by inducing the pro-apoptotic pathway or inhibiting the anti-apoptotic pathway. 

Interestingly, Chop can activate apoptosis by eliminating the anti-apoptotic effect of Bcl-2 

(380). Unlike GADD34 and Bcl-2, TRB3 can regulate Chop activity. When ER stress is 

temporary and brief, TRB3 downregulates Chop activity. However, when ER stress persists for 

a longer period, TRB3 mediates apoptosis (382).  

 

IRE-1 can also activate apoptosis through ASk1-mediated upregulation of JNK and p38 

mitogen-activated protein kinases (p38 MAPK) (383). This signaling mechanism is highly 

reliant on the Bcl-2 protein family. Bcl-2 proteins are divided into two groups: 1) the pro-

apoptotic sub family consisting of proteins such as BAX, BAK, BAD, BIM, BID, and HRK, as 

well as 2) the anti-apoptotic sub family consisting of proteins such as Bcl-2 and Bcl-XL (384). 
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The pro-apoptotic protein must dimerize before being activated, while the anti-apoptotic 

proteins bind to the monomers of pro-apoptotic proteins and thus inhibit them. The pro-apoptotic 

proteins are activated once dissociated from the anti-apoptotic proteins. Therefore, to induce 

cell death, BID and BIM translocate to the mitochondrial membrane and bind to BAX and BAK. 

These four proteins are hence activated, altering the permeability of the mitochondrial 

membrane and releasing cytochrome c (385). Cytochrome c initiates a cascade of events that 

activate caspase-9 and, subsequently, the pro-apoptotic caspase pathway.  

 

The anti-apoptotic Bcl-2 proteins are regulated by IRE1 via an Ask1/JNK signaling cascade. 

Following this, JNK phosphorylates and thus dissociates the anti-apoptotic Bcl-2 from the 

monomers of pro-apoptotic Bcl-2. These latter proteins are hence activated (386). 

  

As a side note, the same protein family, Bcl-2, is involved in calcium homeostasis. The BAX 

inhibitor-1 (BI-1) proteins are found on the ER membrane and function as a calcium leak 

channel. Just like its name suggest, BI-1 is an inhibitor of BAX and, therefore, an inhibitor of 

BAX-mediated apoptosis (387, 388).  

 

1.6.2 Inflammation 

 

Inflammation is a defense mechanism that organisms have developed to protect themselves 

against pathogens, micro-organisms and their products, and certain internal elements such as 

abnormal cells. Inflammation is regulated by the immune system, which is subdivided into 

innate immunity (non-specific) or acquired immunity (specific). Innate immunity is gained at 
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birth and consists of barriers such as skin as well non-specific physiological processes involving 

leucocytes and their products. As for acquired immunity, it must evolve as the system encounters 

different kinds of invaders, setting up defense procedures such as the secretion of antibodies (by 

lymphocytes). Even though inflammation is a defense mechanism, it may cause cellular damage 

at an intensity dependent on the affected organ or tissue. Organs disposing internal redundancy 

(kidneys, for example, which have several independent renal glomeruli) or having a high 

capacity for cell regeneration are much more protected against inflammation compared to the 

heart, which lacks these characteristics. When the heart’s exposure to inflammation persists, an 

onset of cardiomyopathy may occur (389).  

  

Diabetes is associated with a low-grade inflammatory state and an increase of pro-inflammatory 

circulating cytokines (390). The first evidence suggesting the presence of inflammation in 

diabetic patients is traced back to more than a hundred years ago, when glycemia and glycosuria 

were reduced by administering sodium salicylate (391). Currently, diabetes is characterized by 

a low concentration of circulating inflammatory mediators such as acute phase proteins 

(fibrinogen, haptoglobin, and C-reactive protein), as well as cytokines and chemokines[(TNF-

α, IL-6, IL-1β, and monocyte chemoattractant protein 1 (MCP1)] (392, 393). Furthermore, it is 

now established that TNF-α is a key component in the insulin resistance seen in diabetics (394, 

395).  

 

The low-grade inflammatory state found in diabetic patients is due, at least, to macrophage 

infiltration in adipose tissue and islets of Langerhans (396, 397). Unfortunately, macrophage 

infiltration of cardiac tissue is much less studied. However, one research group found that 
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cardiomyopathy succeeds macrophage infiltration of the heart (398). Macrophage secretion of 

pro-inflammatory cytokines induces insulin resistance via the activation of JNK and NF-κB 

inflammatory pathways (399). 

 

Nevertheless, increased evidence now links low-grade inflammation in the heart to metabolic 

dysregulation (400). More precisely, saturated fatty acids and other lipids induce in situ 

inflammation, independently of circulating macrophage and cytokines (51, 279). This is in 

accordance with atherosclerosis, an inflammatory-based disease of which lipids are the main 

instigators (401). Activation of pro-inflammatory pathways by free fatty acids can be 

demonstrated by three events. First, cytosolic accumulation of fatty acids is associated with 

increased accumulation of intramyocellular DAGs and the activation of several isoforms of PKC 

(402). PKC is well known for its ability to activate the IκB kinase (IKK), a kinase upstream of 

NF-κB, in many cell types including cardiomyocytes (403, 404). Therefore, DAG-mediated 

activation of PKC may be an upstream event for NF-κB upregulation. On the other hand, PKC 

seems to upregulate TNF-α activity (405). Consequently, TNFα creates a feedback amplification 

loop by promoting lipid accumulation and steatosis via the suppression of AMPK (406). Second, 

toll-like receptor 4 (TLR-4) is essential for the production of inflammatory cytokines. It has 

been proposed that fatty acids are endogenous ligands for TLR4; hence, the TLR-4 

inflammatory pathway can be triggered by fatty acid accumulation, linking lipotoxicity to IKK 

and NF-κB (407, 408). Third, ER stress induced by long-chain fatty acids may lead to IKK and 

JNK upregulation and, therefore, the generation of an inflammatory response (357).  
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Schilling et al. proposed that lipid-induced inflammation is the main culprit for cardiac 

dysfunction in diabetes and obesity (398). Additionally, in T2DM, obesity-related inflammation 

and lipid abnormalities are usually present before the onset of hyperglycemia (409). Indeed, 

dysregulation in lipid metabolism remains the most important factor of inflammation in T2DM 

and diabetic cardiomyopathy (400). Since cardiac lipid metabolism is mainly regulated by 

peroxisome proliferator-activated receptors (PPARs), a type of transcription factor, the next 

section will examine the relationship between PPARs and inflammation in diabetic 

cardiomyopathy. 

 

1.6.2.1 PPARs 

 

The metabolic flexibility of the heart is essential for maintaining its contractile function. Long-

term alteration of the heart’s metabolic profile involves the transcriptional regulation of genes 

implicated in cardiac metabolism. PPARs and peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (PGC-1α) were among the first transcription factors identified that 

cardiomyocytes use to regulate the heart’s metabolism (410). The three different PPAR 

members (PPARα, PPARβ/δ, and PPARγ) are part of the nuclear receptors superfamily. Once a 

ligand binds and activates them, they form a heterodimer with RXR. RXR is a nuclear receptor 

activated by retinoic acid. The heterodimer PPAR-RXR induces the expression of its target 

genes by binding to a specific promoter region: PPRE. The PPAR transcription factors are 

known for their role in fatty acid metabolism and inflammation (411-413). TZD, a specific 

activator of PPARγ, is beneficial against Type 2 diabetes and insulin resistance (414). 
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Long-chain fatty acids are among the main ligands for PPARs. Once activated, PPARα induces 

the expression of proteins implicated in fatty acid uptake (CD36 and FATP1), fatty acids’ 

esterification and translocation (FABP and ACSL), and fatty acid mitochondrial oxidation (Cpt1 

and ACADL). The uncoupling proteins found on the mitochondrial membrane (UCP1 and 

UCP2), as well as PDK4, an enzyme involved in glucose oxidation, are also regulated by PPARα 

(400).  

 

The anti-inflammatory action of PPARs has been discovered thanks to a drug known as fibrate 

during the 1990s. Fibrates are PPARα ligands that lower hyperlipidemia and fight inflammation 

by lowering IL-6 secretion (415, 416). Interestingly, co-administering PPARα and PPARδ 

agonists to cultured cardiomyocytes attenuated palmitate-mediated lipotoxicity by 

downregulating IL-6 expression (51). Additionally, some non-steroidal drugs are 

simultaneously PPAR agonists and anti-inflammatory (417). This is in line with other findings 

that state PPARγ performs direct anti-inflammatory actions by reducing TNF-α and the secretion 

of other interleukins (418, 419).  

 

1.6.3 Oxidative stress and ROS 

 

Under normal aerobic metabolism, oxygen undertakes a series of oxidation-reduction reactions 

leading to the production of water (420). During this process, intermediates called reactive 

oxygen species (ROSs) are formed. Their synthesis involves a fundamental mechanism of 

removal (oxidation) or the addition of an electron (reduction) by one of the many pro-oxidant 

enzymes. Under normal physiological conditions, ROS concentration is low since ROS 
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synthesis is highly controlled by enzymatic and non-enzymatic antioxidant systems (421). An 

imbalance in favor of ROS synthesis (or that of other oxidants) versus anti-oxidant molecules 

causes oxidative stress. The term ROS refers to several groups of oxygen-reactive metabolites 

such as free radicals or other non-free radicals (Table 2). Free radicals such as superoxide anion 

(O2
.-), a hydroxyl radical (.OH), are highly reactive molecules since they contain one or more 

non-paired electrons (422). 

 

 

Type Free radicals Non- radicals 

ROS Superoxide, O2
. 

Hydroxyl, OH- 

Peroxyl, RO2
. 

Alkoxyl, RO- 

Hydrogen peroxide, H2O2 

Ozone, O3 

RNS Nitrogen monoxide, NO 

Nitrogen dioxide, NO2
- 

Nitrous acid, HNO2 

Peroxynitrite, ONOO- 

Table 1.2: Selected examples of free reactive species (adapted from (423)). 

 

 

ROSs are mainly formed during the electron transport chain and as a by-product of lipid 

oxidation in mitochondria or peroxisome. In cardiomyocytes, saturated fatty acids significantly 

increase ROS generation (287, 424). ROSs are cytotoxic since they can damage the cell 

membrane and alter enzyme activity, thereby altering signaling cascades and promoting 

damaging processes such as inflammation and apoptosis. These species oxidize proteins, nucleic 
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acids, and lipids, and they react with nitric oxide to produce peroxynitrite. The latter reacts with 

tyrosine residues in proteins to produce nitrotyrosine. Nitrotyrosine is a marker of oxidative 

stress in tissue and is associated with apoptosis (425). 

 

Inflammation and ROS are highly associated. ROS can instigate an inflammatory response by 

activating stress-sensitive kinases (PKC, JNK, MAPK, and IKK), consequently activating 

nuclear transcription factors such as activator protein 1 (AP-1) and NF-κB. These transcription 

factors induce the expression of genes associated with inflammatory markers, including 

cytokines (TNF-α and IL-6) (426). A positive feedback loop is thus generated since these 

inflammatory markers can promote oxidative stress and ROS production (427).   

  

The concentration of anti-oxidants, such as glutathione, is low in obese patients with Type 2 

diabetes when compared to healthy subjects (428). Furthermore, glutathione activity is 

negatively associated with cardiovascular events (429). Oxidative stress starts early and its 

severity increases progressively in the hearts of Streptozotocin-induced (STZ) diabetic rats 

(430). It is also suggested that ROSs contribute to the progression of DCM. In the heart, ROSs 

are involved in the development of cardiac fibrosis and hypertrophy, two characteristics of DCM 

(431, 432). Finally, ROSs are associated with contractile dysfunction and heart failure (433). 
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1.6.4 Mitochondrial dysfunction 

 

1.6.4.1 Fatty acids oxidation 

 

In diabetic models, cardiac LPL and CD36 activity are upregulated, which is associated with 

increased intramyocardial fatty acid accumulation. CD36 plays a major role in FA uptake, since 

more than 50% of fatty acids are transported into cardiomyocytes through a CD36-dependent 

mechanism. Indeed, T2DM and DCM are associated with hyperlipidemia and cardiac steatosis. 

Lipid accumulation in diabetic hearts is mainly due to the mismatch between fatty acid uptake 

and mitochondrial capacity to oxidize these fatty acids (Figure 1.9). The inability of 

mitochondria to oxidize the increased supply of fatty acids is at least partially due to 

mitochondrial dysfunction. In accordance with this, evidence suggests that mitochondrial 

dysfunction is an early event that occurs during diabetes and DCM (434). Although 

cardiomyocytes appear to respond to this mitochondrial dysfunction by activating the 

mitochondrial biogenesis program via mechanisms that are both dependent and independent of 

the PGC-1α transcription factor, cardiac steatosis remain a key characteristic of T2DM and 

DCM (248, 435). 

  

Whether FAO oxidation is upregulated or downregulated in diabetic patients remains a 

controversial subject, since inconsistent results have been reported in different models of 

diabetes. While some studies show that FAO is upregulated in diabetic models, others have 

demonstrated a complete or partial impairment of FAO.  
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Arguments for increased FAO in DCM comes from several research groups where FAO has 

been shown to be upregulated in db/db and ob/ob mice, preceding the development of insulin 

resistance and cardiac dysfunction (370). Additionally, cardiac-specific overexpression of 

PPARα were associated with cardiac dysfunction similar to what is observed in human DCM 

(436). Furthermore, with the help of positron emission tomography, it was shown that patients 

with Type 2 diabetes have increased fatty acids uptake and β-oxidation (437). Finally, ATGL 

overexpression protects against STZ-induced cardiomyopathy, which was associated with 

reduction of β-oxidation in aerobic working heart perfusions (372). 

  

This suggests that inhibiting FAO is protective against DCM, which might be true in certain 

conditions. For example, Type 2 diabetic patients display insulin resistance and impaired 

glucose oxidation. Therefore, inhibiting FAO might sensibilize cardiomyocytes to glucose 

oxidation, since glucose oxidation and FAO are inversely regulated by a metabolic process 

referred to as the Randle cycle. Additionally, glucose oxidation is more advantageous compared 

to palmitate oxidation during hypoxia or ischemia, when oxygen levels are low (438, 439). This 

can be explained when we take into consideration that each substrate of fatty acids or glucose 

has a different ratio of energy produced to oxygen consumed. This ratio, expressed as ATP/O, 

is 3.17 for glucose and 2.83 for palmitate (440). It means that for each oxygen molecule 

consumed, glucose generates 3.17 ATP and palmitate generates 2.83 ATP. Since diabetes is a 

significant predictor for ischemic stroke, and since ischemic heart failures are increased in Type 

2 diabetic patients, inhibiting FAO may be beneficial (441, 442). 
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Despite the positive prospect of inhibiting FAO in DCM, this option is not viable as a long-term 

treatment for diabetic hearts. Long-term reduction of FAO leads to the accumulation of fatty 

acids in cytosol and, hence, lipotoxicity. This notion is supported by many studies showing the 

detrimental effects of inhibiting FAO in diabetic settings. For example, inhibiting PPARδ 

expression to downregulate FAO was associated with cardiac steatosis, cardiomyopathy, and 

ventricular dysfunction (443). Similarly, mice with long-chain acyl-CoA dehydrogenase 

(LCAD) deficiency have impaired FAO and develop cardiomyopathy, which has been 

associated with cytosolic lipids accumulation (444). This notion is further supported by two 

studies that investigated the outcome of the short-term and long-term effects of CPT1B 

deficiency in mice. CPT1B deficiency protected mice from insulin resistance in the short-term; 

however, the long-term effect causes CPT1B deficient mice to develop severe insulin resistance 

(445, 446). 

 

The fact that cardiac steatosis is associated with T2DM and DCM suggests that FAO is impaired 

in these cases and that stimulating FAO may protect against cardiac dysfunction by preventing 

lipid accumulation (447). Arguments confirming this hypothesis come from several studies 

where PPAR receptors are genetically modulated. Knocking out PPARα in mice overexpressing 

PPARγ induced FAO and enhanced cardiac function when compared to mice only 

overexpressing PPARγ (448). Similarly, knocking out CD36 in PPARα transgenic mice 

protected these mice from cardiac dysfunction (449). In support of this, samples taken from the 

atria of Type 2 diabetic patients display reduced capacity to oxidize fatty acids. Supplementing 

ZDF rats with resveratrol was associated with improved oxidation of palmitoyl-CoA and 

reduced oxidative stress (450, 451). Finally, we have demonstrated in cultured cardiomyocytes 
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that inhibiting FAO is associated with cell death, while upregulating FAO protected these 

cardiomyocytes from palmitate-mediated lipotoxicity (52). 

 

 

 

Figure 1.9: Inhibiting FAO is associated with lipotoxicity and mitochondrial dysfunction (FAOD stands for fatty 

acids oxidation disorders) (452). 
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1.7 Apoptosis 

 

Programmed cell death, or apoptosis, is an essential component of normal cell proliferation and 

development and also a response to certain abnormal states. Apoptosis occurs when cells trigger 

self-destruction in response to a signal. It is a physiological cell death, genetically programmed, 

necessary for the survival of multicellular organisms. Hence, it is in constant balance with cell 

proliferation. Apoptosis was identified in diabetic hearts (244). Cardiac apoptosis occurs when 

moderate stress is repetitive or chronic such as in DCM (453). Indeed, we have discussed in 

previous sections several mechanisms where diabetes may lead to heart failure and cell death 

independently of vascular disease or other etiological factors.  

 

Apoptosis takes several hours to complete, but it can be prevented by inhibitors of cytokine 

synthesis such as pentoxifylline), by antidepressants such as sertraline, or by inhibitors of cyclo-

oxygenase-2 (454, 455). There are two possible pathways for apoptosis that both lead to the 

caspase pathway: the intrinsic pathway and the extrinsic pathway. These two pathways are 

distinguished by the initiating proteins that trigger them and by adapter proteins involved in each 

of them (Figure 1.10).   

 

1.7.1 Intrinsic pathway 

 

Several factors can activate the intrinsic pathway, namely as the accumulation of unfolded 

proteins in ER, DNA damage, and hypoxia. The intrinsic pathway is also called the 

mitochondrial intrinsic pathway since it involves the release of cytochrome c from 
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mitochondria. Once released, cytochrome c interacts with procaspase-9 and APAF-1 to form the 

apoptosome. Apoptosome recruits the effector caspases: caspase-3, 6, and 7 (456). Caspase-3 is 

the more potent compared to the other caspases (457). However, Morishima et al. have 

demonstrated a caspase signaling pathway that is specific to ER stress and independent of 

cytochrome c (458). It starts when caspase-12 activates caspase-9 which in turns activates 

caspase-3. Additionally, caspase-12 mediates an ER-specific apoptosis pathway (459). 

 

As a side note, some caspases are implicated in inflammation. For example, caspase-1, -4, -5 

and -12 are associated with inflammation and usually activate the assembly of inflammasomes 

(460). Inflammasomes facilitate the secretion of pro-inflammatory proteins (IL-1β, IL-18, and 

IRFs) that mediate the antiviral response.           

 

1.7.2 Extrinsic pathway  

 

The extrinsic pathway is activated when specific ligands bind to cell death receptors. These 

ligands are TNF, CD-95 (cluster of differentiation 95), TRAIL (TNF-related apoptosis-inducing 

ligand), and TL1A (TNF-like ligand 1A). The receptors belong to the TNF family, which 

includes: TNFR1 (TNF-receptor 1), Fas/APO-1, DR-3 (death receptor 3), DR-4, and DR-5. 

 

These receptors are coupled to one of these two adapter proteins: FADD (Fas-associated death 

domain) or TRADD (TNFR-associated death domain). When ligands bind to their receptors, 

monomers of initiator caspases are recruited, causing their dimerization with the adapter 

proteins. These dimers are the biologically active form of initiator caspases. Once activated, 
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initiator caspases cleave and hence activate the effector caspases, which exert their proteolytic 

functions (456). Additionally, the initiating caspase-8 activates the effector caspases and cleaves 

BID which in turn activates the intrinsic pathway (456). 

 

  

Figure 1.10: Extrinsic and intrinsic pathways of apoptosis (456). 

   

1.8 Rationale, hypothesis and objectives 

 

Cardiovascular disease is the number-one killer of diabetic patients (461). Additionally, diabetes 

is an independent risk factor for heart failure. Indeed, diabetic patients are two to five times 

more likely to die from heart failure compared to the general population (462). Several studies 
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have shown cardiac dysfunction in these diabetic patients without the presence of hypertension, 

coronary artery diseases, or other etiological factors. This is known as diabetic cardiomyopathy 

(DCM). The specific cause for DCM is multifactorial however, recent studies tend to point at 

lipotoxicity as a possible causal mechanism (463). First, diabetic patients often exhibit 

hyperlipidemia and cardiac steatosis (248). Second, intramyocardial lipid accumulation causes 

lipotoxicity and leads to cell death with ensuing cardiac dysfunction (464). 

 

The two main fats in the human diet are oleate, a monounsaturated fatty acid, and palmitate, a 

saturated fatty acid (465). Importantly, lipotoxicity is mainly caused by saturated fatty acids, 

while unsaturated fatty acids have been described as neutral and even protective (274). The exact 

mechanism of action of saturated fatty acids is yet to be fully elucidated, but there is evidence 

that supports the role of calcium dysregulation, alterations in membrane phospholipids, loss of 

nuclear integrity, loss of mitochondrial membrane potential, impaired cardiolipin synthesis, 

oxidative stress, and impaired fatty acid oxidation (281, 466-473).  

 

However, in diabetic settings, the exact molecular mechanism where lipotoxicity induces 

cardiomyopathy is still under investigation. The first part of this thesis aims to characterize and 

assess the qualitative aspects of lipid accumulation in cultured rat neonatal cardiomyocytes. 

More precisely, we assessed the effect of palmitate and oleate on ER stress, cell viability, 

inflammation, and FAO. The results of the first part of our research led us to hypothesize that 

FAO is attenuated in diabetic mice and that enhancing FAO is a protective pathway in diabetic 

cardiomyopathy that attenuates cardiac steatosis and, hence, lipotoxicity. As such, we 

hypothesized that FAO is decreased in palmitate-treated cardiomyocytes and enhancing FAO 
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should attenuate palmitate-mediated cell death. Our hypothesis was also tested in STZ diabetic 

mice. 

The specific objectives are twofold: (1) to elucidate the mechanism of action and the effect of 

palmitate and oleate on ER stress, apoptosis, inflammation, oxidative stress and fatty acid 

oxidation. (2) to investigate the relationship between diabetic cardiomyopathy and FAO.  

 

We have proceeded with a methodical approach using cultured cardiomyocytes and progressed 

to a diabetic mice model. We combined in vitro techniques in cardiomyocytes with in vivo 

studies in STZ mice in order to investigate FAO and the role of this metabolic pathway in 

diabetic cardiomyopathy. 
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2.1 Authors’ contributions 

 

 

Taha Haffar performed most of the experiments, helped analyze the data, and assisted with 

writing the manuscript. Félix-Antoine Bérubé-Simard performed some experiments. Jean-

Claude Tardif contributed to the design of the study. Nicolas Bousette conceived and designed 

the study, performed some experiments, supervised the work, and wrote the manuscript. 

 

 

2.2 Context 

 

 

Lipotoxicity play a key role in the pathogenesis of diabetic cardiomyopathy. The toxicity of 

different types of fatty acids is not equivalent. Oleate and palmitate are the two most abundant 

fatty acids in the human diet. Additionally, palmitate is found toxic in many cell types, while 

oleate is not. Preliminary findings in our lab reveal a clear difference in the quality and quantity 

of oleate and palmitate intramyocellular accumulation. Since fatty acids are mainly stored in 

lipid droplets and since lipid droplets are initially formed between the leaflets of the endoplasmic 

reticulum, we have investigated the relationship between lipotoxicity and ER stress. We found 

that palmitate, a toxic fatty acid, induces ER stress and ER-stress mediated cell death in primary 

neonatal rat cardiomyocytes. We also found that oleate, a nontoxic fatty acid, does not induce 

ER stress.    
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2.3 Abstract 

 

 

Introduction: Diabetes is a major contributor to cardiovascular disease. There is a growing 

body of evidence pointing towards intra-myocellular lipid accumulation as an integral 

etiological factor. Here we aimed to determine the effect of two common fatty acids on lipid 

accumulation and cellular stress in primary cardiomyocytes. 

Methods: We evaluated lipid accumulation biochemically (by triacylglyceride assay and 

radiolabeled fatty acid uptake assay) as well as histologically (by BODIPY 493/503 staining) in 

mouse and rat neonatal cardiomyocytes treated with saturated (palmitate) or mono-unsaturated 

(oleate) fatty acids. Endoplasmic reticulum (ER) stress was evaluated by quantitative reverse 

transcription polymerase chain reaction (qRT-PCR) and Western blotting. Cell viability was 

assessed by propidium iodide staining. 

Results: We found that both oleate and palmitate led to significant increases in intracellular 

lipid in cardiomyocytes; however there were distinct differences in the qualitative nature of 

BODIPY staining between oleate and palmitate treated cardiomyocytes. We also show that 

palmitate caused significant apoptotic cell death and this was associated with ER stress. 

Interestingly, co-administration of oleate with palmitate abolished cell death, and ER stress. 

Finally, palmitate treatment caused a significant increase in ubiquitination of Grp78, a key 

compensatory ER chaperone. 

Conclusion: Palmitate causes ER stress and apoptotic cell death in primary cardiomyocytes and 

this is associated with apparent differences in BODIPY staining compared to oleate treated 
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cardiomyocytes. Importantly, the lipotoxic effects of palmitate are abolished with the co-

administration of oleate. 

 

 

2.4 introduction 

 

 

Diabetes is a major contributor to cardiovascular disease. In fact, diabetes is an independent risk 

factor for coronary artery disease and hypertensive heart disease. However, diabetics can also 

develop isolated diabetic cardiomyopathy, characterized by ventricular dysfunction in diabetics 

without obvious macro-vascular disease or other etiological factors including alcoholism. 

Diabetic cardiomyopathy, with or without superimposed vascular disease, predisposes diabetic 

patients to heart failure. Indeed, the incidence of heart failure is four times higher in diabetic 

patients than the general population [1]. Furthermore, diabetes is an independent risk factor for 

death in patients with heart failure [2]. 

 

The specific cause of diabetic cardiomyopathy is likely multifactorial, however amounting 

evidence now suggests that intra-myocellular lipid accumulation is an important contributory 

factor. Several studies have demonstrated excess myocardial lipids or, cardiac steatosis, in 

diabetic humans and mice [3-7]. Indeed the cardiac lipotoxicity resulting from elevated intra-

cellular lipids is believed to lead to cell death with ensuing cardiac dysfunction. The two main 

fats in the human diet are oleate, a monounsaturated fatty acid, and palmitate, a saturated fatty 

acid. Importantly, lipotoxicity is predominantly due to saturated fatty acids like palmitate, 
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whereas unsaturated fatty acids have been described as “lipo-protective”. A multitude of studies 

have demonstrated the toxic effects of palmitate in primary cardiomyocytes and cardiomyocyte 

cell lines. While the exact mechanism of palmitate has not yet been completely elucidated there 

is evidence to support the role of impaired β-oxidation [8-10], calcium dysregulation [11], loss 

of mitochondrial membrane potential [12], oxidative stress [13], alterations in membrane 

phospholipids [14], impaired cardiolipin synthesis [15], and finally loss of nuclear integrity [16]. 

 

Our aim here was to assess the qualitative nature of lipid accumulation in oleate and palmitate 

treated primary neonatal cardiomyocytes (NCMs) and their effects on endoplasmic reticulum 

(ER) stress and cell viability. ER stress results in the activation of several stress response genes 

including inositol requiring enzyme-1 (Ire1), and activating transcription factor-6 (Atf6), which 

are normally retained in the inactive state by glucose regulated protein 78 (Grp78/Bip), an ER 

chaperone. Ire1 functions as an endoribonuclease which catalyzes the splicing of X-box binding 

protein-1 (Xbp1) mRNA. Spliced Xbp1 mRNA is translated into a nuclear transcription factor 

essential to the ER stress response. In addition, Atf6 release from Grp78 results in migration of 

this protein to the Golgi apparatus where proteases act to release the amino terminus. This 

amino-terminal portion of Atf6 is also a nuclear transcription factor. 

 

Here we found distinct differences between oleate and palmitate induced lipid staining and ER 

stress activation in both mouse and rat NCMs thus providing mechanistic insight into the role 

of lipotoxicity in diabetic cardiomyopathy. 
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2.5 Methods 

 

 

Preparation of fatty acid-albumin complex solutions: For proper fatty acid transport into cells, 

we used bovine serum albumin (BSA) dissolved in 150mM NaCl as vehicle. Sodium Oleate 

(dissolved in methanol) or palmitate (dissolved in 150mM NaCl solution heated to 70°C) were 

mixed with 0.17mM BSA/150mM NaCl solutions (6:1molar ratio). Conjugation of oleate, or 

palmitate, to BSA was performed by gentle agitation at 37 °C for 1 hour and conserved at -80°C. 

In all experiments, NCMs were treated with either oleate or palmitate for 24 hours unless 

otherwise indicated. 

 

Isolation and culture of primary NCMs: Hearts were aseptically harvested from new born (1-

2 day old) CD-1 mouse or Sprague-Dawley rats pups and washed with Hanks buffer solution 

(137mM NaCl, 5.36 mM KCl, 0.81mM MgSO4, 5.55mM dextrose, 0.44mM KH2PO4, 0.34mM 

Na2HPO4, 20mM HEPES, and 50 μg/ml gentamicin). Next, ventricular tissue was isolated, cut 

in small pieces and washed 3 times in Hanks buffer solution. Ventricular tissue was digested by 

repeated incubations (for 10-20 mins at 37 °C) in Hanks buffer solution containing 50U ml 

collagenase-2 and 0.36μM CaCl2 until fully digested. Following each digestion round, cells 

were added to ice-cold fetal bovine serum (FBS). Post-digestion FBS suspensions were 

centrifuged at 800g for 5 min (4°C). The cell pellets were re-suspended in culture media 

(DMEM/ F12, 10% FBS) and plated on a 10 cm cell culture dish for 1 hour at 37 °C to let cardiac 

fibroblasts adhere to the plate. Non-adhering cardiomyocytes were then re-plated in appropriate 

cell culture plates. Cells were incubated for a minimum of 120 hours with daily replacement of 
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culture media (DMEM/F12, 2% FBS, 100μM bromodeoxyuridine). Bromodeoxyuridine was 

added to inhibit growth of cardiac fibroblasts. All animal experimentations were performed 

according to the guidelines of the Canadian Council on Animal Care and they were specifically 

approved by the institutional animal care committee at the Montreal Heart Institute. All 

experiments were carried out in rat NCMs unless otherwise indicated. 

 

Histology: NCMs were seeded onto 18mm round coverslips coated with 2% gelatin. NCMs 

were treated as described and then fixed in 3% paraformaldehyde for 30 min. at room 

temperature. Cells were then stained with 1μM BODIPY 493/503 (Invitrogen), 1μM Rhodamine 

Phalloidin (invitrogen), and 1μM DAPI (Invitrogen). 

 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) experiments: Total 

RNA was isolated from NCMs. RNA extraction, cDNA synthesis and qPCR were performed 

using respective commercial kits (Qiagen) and Eco Ilumina real-time qPCR system. Data was 

analysed using the 2-ΔΔCt method [17]. PCR results are presented as the expression of the 

indicated gene relative to an endogenous control gene (Rpl34) and normalized to the control 

group. Data are presented as mean ± standard error (SE). Samples were analyzed in triplicate in 

three separate experiments. Primers were designed to span exons using the NCBI Primer-

BLAST tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and are listed in supplemental 

table S2.1. Xbp1 primers do not amplify the non-spliced isoform, they only amplify the spliced 

Xbp1 isoform. 
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Western blot analysis: Total cellular protein was isolated from rat (or mouse where indicated) 

NCMs with isolation buffer (250mM Sucrose, 50mM Tris, 1μM PMSF (protease inhibitor), 

1μM DTT, and Proteinase inhibitor cocktail (ROCHE)). Protein concentrations were measured 

by Bradford assay. Proteins were transferred to polyvinylidene difluoride (PVDF) membranes 

and probed with the following antibodies: anti-Grp78 (SC-13968, Santa Cruz biotechnologies), 

anti-ATF6 (sc-22799, Santa Cruz biotechnologies), anti-Xbp1 (SC-7160, Santa Cruz 

Biotechnologies), anti-Chop (SC-7351, Santa Cruz biotechnologies), anti-Caspase3 (ab2302 

(abcam)). Equal protein loading conditions were utilized for all blots, which was verified by 

Ponceau staining of the membrane. 

 

Co-immunoprecipitation: Immunoprecipitations were carried out using protein A/G-agarose 

beads (Thermo Scientific). Briefly, freshly treated NCM lysate homogenates were incubated for 

4 hours under continuous rotation at 4˚C with anti-Grp78 antibody (SC-13968, Santa Cruz 

biotechnologies) in binding buffer (140 mM NaCl, 14 mM KCl, 0.1% Triton X-100 with 0.01% 

BSA). Simultaneously, protein A/G-agarose beads were blocked in 0.1% BSA in binding buffer 

for 2 h. Following this the antibody-protein complex formation was added to the agarose beads, 

and rotated overnight at 4°C. Samples were washed three times and eluted in 0.1 M glycine (pH 

2.4). Immunoprecipitates were probed with anti-ubiquitin antibody (1/400, Santa-Cruz 

Biotechnology) and anti-Grp78 antibody (SC-13968, Santa Cruz biotechnologies). 

 

Fatty acid uptake assay: NCMs were treated with either BSA (51μM), C14- radiolabelled oleate 

(100μM) or C14-radiolabelled palmitate (100μM) for 2 hours. Following this cells were washed 

twice with phosphate buffered saline (PBS), harvested by trypsinization and homogenized. Cell 
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lysates were added to scintillation fluid and samples were counted with the Scintillation counter 

(Beckman LS6500). Data are presented as μmol/min based on the counts per minute (CPMs) 

from isolated cells relative to CPMs from total amount of radiolabeled fatty acid that was added 

to the cells (divided by 120 since the cells were exposed for 2 hours). 

 

Triacylglyceride (TAG) assay: Mouse NCMs were treated with BSA (n=3), 300uM (n=3) oleate 

or 300uM palmitate (n=3) for 24 hours and then assayed for TAG levels using the adipogenesis 

assay kit from Biovision (Catalog #K610-100) as per the manufacturer’s instructions. Values 

are presented as nmol glycerol (determined via a standard curve derived from increasing 

concentrations of pure glycerol) and normalized to protein concentration (determined using the 

bicinchoninic acid (BCA) assay) for each sample. Assays were done in duplicate. 

 

Cell viability assay: Propidium iodide (PI) exclusion assays were carried out to evaluate cell 

viability. Briefly, NCMs were treated with palmitate (and oleate where indicated) for the 

indicated time points (n=4 per timepoint). After a 30 min incubation with PI at 37 °C, we 

measured fluorescence (535nm excitation / 617nm emission) with the Synergy2 fluorescence 

plate reader (Bio-Tek). Assays were done in triplicate. 

 

Statistical analysis: Numerical data were presented as the mean ± SE. Student’s T-test was used 

for two group experiments, while we performed one-way ANOVA with the Tukey post-hoc test 

for multiple group comparisons. P-values of <0.05 were considered statistically significant. 
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2.6 Results 

 

 

2.6.1 Palmitate induces cell death of primary NCMs, which is prevented by the addition 

of Oleate 

 

 

Treatment of NCMs with 300μM palmitate caused a time dependent cell death as evidenced by 

increased PI staining, a marker of late cell death. The palmitate induced cell death was 

significantly increased at 18 hours and progressed thereafter until at least the 24-hour time point 

(Figure 2.1A). Importantly, 8 hours of palmitate did not cause cell death while there was only a 

trend for increased cell death following 16 hours exposure. Because oleate has been shown to 

be protective against palmitate [18], we tested the effect of co-administration of various 

concentrations of oleate on the cytotoxic effect of palmitate. Interestingly, we found that 

concentrations as low as 50μM oleate were sufficient to completely abolish the cytotoxic effect 

of palmitate (Figure 2.1B). 

 

2.6.2 Distinct lipid staining in palmitate treated NCMs 

 

 

The marked difference in cell death between oleate and palmitate prompted us to evaluate if 

there is a difference in lipid accumulation in NCMs caused by these two fatty acids. Excess non-

metabolized fatty acids can be converted to TAG and stored in lipid droplets in mammalian 
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cells. 

 

Figure 2.1: Palmitate causes time dependent cell death in NCMs, which is prevented by the co-administration 

of oleate. (A) Graph demonstrating the relative fluorescence of cells stained with PI after treatment with 300μM 

palmitate for the indicated time points. Control cells were treated with 51μM BSA in serum free media. (B) Graph 

demonstrating the relative fluorescence of cells stained with PI after treatment with either palmitate (represented 

by the color red) or palmitate + oleate (represented by red and yellow) at the indicated concentrations. *Indicates 

p<0.05 vs. control NCMs. # Indicates p<0.05 vs. NCMs treated with palmitate alone. 

 

To characterize the degree of oleate and palmitate induced lipid droplets in NCMs, we treated 

cells with either 400μM oleate or 300μM palmitate for 24 hours and then stained the cells with 

BODIPY 493/503, a stain for neutral lipids, as well as Rhodamine Phalloidin, an actin stain 

(Figure 2.2). Importantly we show that our NCM cultures are relatively pure as the majority of 

cells exhibited the striated sarcomeric staining pattern characteristic of cardiomyocytes. In 

agreement with the high degree of cell death following 24 hours of palmitate, we observed a 
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loss of sarcomeric integrity in NCMs treated with palmitate (Figure 2.2G). We found that both 

oleate and palmitate led to increased BODIPY493/503 staining in NCMs. However there were 

some key differences in the staining pattern induced by the two different fatty acids. Firstly, 

oleate treated cells exhibited abundant BODIPY staining of spherical objects that were 

consistent with the morphology of typical lipid droplets (Figure 2.2D-F). On the other hand, 

BODIPY staining of palmitate treated NCMs was much fainter and more diffuse in appearance. 

(Figure 2.2G-I). Indeed the depicted micrographs of palmitate treated NCMs required brightness 

and contrast enhancement to visualize the BODIPY staining, despite being subjected to the 

identical staining protocol (similar results from >3 separate experiments). Secondly, while 

spherical stained objects could also be visualized in palmitate treated NCMs, suggesting the 

presence of lipid droplets, there were also many stained objects that appeared nonspherical or 

irregular in shape, which is inconsistent with the morphology of lipid droplets and hence may 

represent non lipid droplet staining. Thus the difference in BODIPY staining between the two 

fatty acids suggests a difference in the chemical or physical nature of the resulting lipid 

accumulation. 

 

In contrast to treatment with palmitate alone, the co-treatment of 50μM oleate and 300μM 

palmitate to NCMs for 24 hours resulted in a marked difference in cellular histology (Figure 

2.2J-L). Firstly, phalloidin staining showed high integrity of sarcomeres similar to control and 

oleate treated NCMs. In addition, we found that oleate +palmitate co-treatment altered the 

BODIPY staining with an apparent decrease in the faintly diffuse staining pattern characteristic 

of palmitate treated NCMs and an increase in small brightly staining spherical objects 

characteristic of oleate treated NCMs. Because there is a substantial degree of cell death in 



96 
 

NCMs treated with palmitate for 24 hours, we aimed to determine if the apparent difference in 

BODIPY staining was due to cell death. Therefore we evaluated histology of NCMs treated with 

300μM palmitate for 8 hours (Figure 2.3), a time point that is not associated with cell death. 

Indeed, at this time-point the palmitate treated NCMs exhibited sarcomeric integrity similar to 

control or oleate treated cells (Figure 2.3A,D,G). However, NCMs treated with palmitate for 8 

hours exhibited a similar staining pattern as observed for NCMs treated with palmitate for 24 

hours (Figure 2.3H), suggesting that the altered BODIPY staining in palmitate treated NCMs 

was a characteristic of palmitate treatment and not an indirect result of cell death. 

 

To verify that the altered BODIPY staining in palmitate treated NCMs was not due to alterations 

in lipid uptake, we measured fatty acid uptake and total cellular triglyceride levels. We found 

that there was no difference in uptake of radio-labeled oleate vs. palmitate (Figure 2.4A) and 

that both oleate and palmitate led to a ~3 fold increase in TAG levels (Figure 2.4B) confirming 

that both oleate and palmitate were being incorporated into the cells to similar degrees. 
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Figure 2.2: Marked differences in BODIPY staining in NCMs treated with oleate, palmitate, or oleate + 

palmitate for 24 hours. Images of NCMs treated with either BSA (control, A-C), 400μM oleate (D-F), 300μM 

palmitate (G-I), or 50μM oleate + 300μM palmitate (J-L) for 24 hours. All cells were stained with Rhodamine 

Phalloidin (actin stain, left column) and BODIPY 493/503 (neutral lipid stain, middle column) and DAPI (nuclear 

stain). Right column represents merged image of left and middle columns. All images exhibit cells at 1000x 

magnification. 
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Figure 2.3: Marked differences in BODIPY staining in NCMs treated with oleate, palmitate, or oleate + 

palmitate for 8 hours. Images of NCMs treated with either BSA (control, A-C), 400μM oleate (D-F), 300μM 

palmitate (G-I), or 50μM oleate + 300μM palmitate (J-L) for 8 hours. All cells were stained with Rhodamine 

Phalloidin (actin stain, left column) and BODIPY 493/503 (neutral lipid stain, middle column) and DAPI (nuclear 

stain). Right column represents merged image of left and middle columns. All images exhibit cells at 1000x 

magnification. 
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2.6.3 Palmitate induces ER stress 

 

 

The altered BODIPY staining in palmitate treated cells suggested that perhaps the intracellular 

lipid may also be accumulating in the ER in addition to lipid droplets. Indeed, palmitate has 

been previously shown to cause pathological changes to the ER membrane by increasing the 

degree of saturation of ER phospholipids and consequent ER stress in a cardiomyoblast cell line 

[19]. In accordance with this, numerous studies have shown that palmitate induces ER stress, 

but this has not been shown in either mouse or rat primary NCMs. Therefore we aimed to 

characterize ER stress in NCMs. We found that palmitate caused a significant increase in mRNA 

levels of key ER stress mediators including Grp78, spliced Xbp1, DnaJ (Hsp40) homolog, 

subfamily B, member 9 (Dnajb9, a marker of Xbp1 activity), Atf4, and Atf6 in both rat and 

mouse NCMs (Figure 2.5A & Supplemental Figure S2.1A). Importantly, the induction of all of 

these ER stress markers exhibited both dose and time dependence in palmitate treated NCMs 

(Supplemental figure S2.2). In addition, we also found that palmitate induced time dependent 

activation of cleaved and full length Atf6 (Figure 2.5B). Interestingly, Xbp1 protein (~30kDa) 

derived from the un-spliced Xbp1 mRNA decreased over time, indicating increased activity of 

Ire1. On the other hand, Xbp1 protein (~50kDa) derived from the spliced mRNA, increased over 

time indicating an increase in the active form of Xbp1 in palmitate treated NCMs (Figure 2.5C). 

It is important to mention that the protein derived from spliced Xbp1 mRNA is actually larger 

than the protein derived from the un-spliced mRNA because the splicing introduces a frame-

shift which displaces the stop codon. 
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2.6.4 Palmitate induces apoptotic cell death 

 

 

Severe or prolonged ER stress is believed to lead to activation of apoptotic pathways. 

CCAAT/enhancer binding protein (c/ebp) homologous protein (Chop) is a transcription factor 

implicated in ER stress induced apoptosis. Therefore we evaluated Chop expression and 

activation in palmitate treated NCMs. We found significantly increased mRNA levels of Chop 

in NCMs (Figure 2.5A). Furthermore, the palmitate mediated induction of Chop mRNA 

exhibited both time and dose dependency (Supplemental figure S2.2). Because Chop is active 

in the nucleus we evaluated nuclear levels of Chop protein. Interestingly, we show a dose 

dependent increase of Chop protein levels in the nuclear containing subcellular fraction of 

palmitate treated NCMs (Figure 2.6A). In addition we also demonstrate a time dependent 

increase of total Chop protein in palmitate treated NCMs (Figure 2.6B). Chop activation should 

lead to induction of proapoptotic pathways. Therefore we assessed the degree of caspase-3 

activation in palmitate treated NCMs. Indeed, we found that caspase-3 cleavage was 

significantly increased after 16 and 18 hours of palmitate exposure in NCMs compared to both 

oleate treated and control NCMs (Figure 2.6C). Importantly, the time point of Caspase-3 

cleavage coincides with the commencement of cell death in these cells. 
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Figure 2.4: Oleate and palmitate exhibit similar uptake rates and intracellular lipid accumulation in NCMs. 

(A) Graph demonstrating the μmol fatty acid uptake/minute from cells treated with C14- radiolabelled oleate 

(100μM) or C14- radiolabelled palmitate (100μM) for 2 hours. (B) Graph demonstrating significant increase in 

intracellular triglyceride levels in mouse NCMs treated with 300μM oleate (n=3) or 300μM palmitate (n=3) 

compared to cells treated with BSA (control, n=3). * Indicates p<0.05 vs. control NCMs. # Indicates p<0.05 vs. 

palmitate treated NCMs. 
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Figure 2.5: Palmitate induces ER stress in NCMs. (A) Graph demonstrating the mRNA levels of 6 key markers 

and mediators of ER stress in NCMs treated with either BSA (control), 400μM oleate or 300μM palmitate for 24 

hours (n= 9/group). (B) Western blot demonstrating the time dependent increase in full length and cleaved Atf6 

protein following administration of 300μM palmitate for the indicated time points. NCMs were also treated with 

tunicamycin (0.1μg/ml) for 24 hours as a positive control. (C) Western blot demonstrating the time dependent 

increase in Xbp1 protein derived from the spliced mRNA (~54kDa) and the time dependent decrease in Xbp1 

protein derived from the unspliced mRNA (~30kDa) in NCMs treated with 300μM palmitate for the indicated 

times. NCMs were also treated with tunicamycin (0.1μg/ml) for 24 hours as a positive control. (D) Graph 

demonstrating the mRNA levels of 6 key markers and mediators of ER stress in NCMs treated with 300μM 

palmitate, or 50μM oleate + 300μM palmitate for 24 hours (n= 3/group). * Indicates p<0.05 vs. control NCMs. # 

Indicates p<0.05 vs. palmitate treated NCMs. 
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2.6.5 The protective effect of oleate is associated with a decrease in ER stress 

 

 

Previous studies have demonstrated that unsaturated fatty acids, like oleate, prevent the toxicity 

associated with saturated fatty acids. In agreement with this, we showed that as little as 50μM 

oleate can prevent palmitate induced cell death. Expectedly, oleate alone, did not induce the 

mRNA levels of any of the ER stress markers in rat or mouse NCMs (Figure 2.5A and 

Supplemental Figure S2.1B). Furthermore, co-treatment of NCMs with 50μM oleate +300μM 

palmitate was sufficient to significantly attenuate ER stress compared to NCMs treated with 

palmitate alone (Figure 2.5D). Altogether these data demonstrate that palmitate but not oleate, 

induces ER stress and apoptosis in primary NCMs. 

 

 

2.6.6 Palmitate causes increased ubiquitination of Grp78 

 

 

Grp78 is an important ER chaperone and a key marker of ER stress. In accordance with this we 

show that palmitate significantly induces Grp78 mRNA levels (Figure 2.7A), and this effect is 

both dose and time dependent (Supplemental Figure S2.2A-B). However, surprisingly Grp78 

protein levels were only marginally elevated in palmitate treated rat NCMs (Figure 2.7B). As a 

positive control we evaluated the effect of tunicamycin, a known ER stressor, on Grp78 mRNA 

and protein expression. We found that tunicamycin (0.1μg/ml) substantially increased Grp78 

mRNA (> 10-fold, Figure 2.7A) and protein levels (Figure 2.7B). The fact that palmitate 
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increased Grp78 mRNA but not protein suggested that perhaps the protein was being degraded. 

To test if this was via the ubiquitin-proteasome pathway we evaluated the degree of Grp78 

ubiquitination in palmitate treated NCMs vs. untreated control and vs. tunicamycin treated cells. 

We immunoprecipitated Grp78 and then blotted for both Grp78 (to demonstrate equivalent 

loading of Grp78 immuno-precipitates) and for ubiquitin (Figure 2.7C). Semiquantitative 

analysis of the immunoblots demonstrated that the Grp78 immuno-precipitate isolated from 

NCMs treated with 200μm palmitate exhibited a significantly increased ubiquitin signal 

compared to either control, tunicamycin, or low dose (50μM) palmitate treated NCMs (Figure 

2.7C-D). 

 

 

2.7 Discussion 

 

 

Hearts of patients with diabetic cardiomyopathy have increased lipid levels compared to healthy 

non-diabetic patients [4,5,7,20,21]. The resulting lipotoxicity is likely to contribute to the 

increased cardiac events, heart failure and death in this patient population. Palmitate, a saturated 

fatty acid, is one of the most abundant lipids in human diets, and has been shown to cause 

lipotoxicity in a variety of cell types. In contrast, oleate, another major lipid in human diets, is 

non-toxic and has even been shown to reverse toxicity induced by palmitate. 

 

While there is a large body of evidence demonstrating the toxic effects of palmitate in vitro, no 

studies have investigated the effect of oleate and palmitate specifically on lipid accumulation in 
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NCMs. Here we show that oleate and palmitate led to distinctive BODIPY staining in 

spontaneously contracting mammalian cardiomyocytes. Specifically, BODIPY staining of 

oleate treated NCMs resulted in the appearance of distinct spherical objects, which is consistent 

with the presence of lipid droplets. 

 

On the other hand, BODIPY staining in palmitate treated NCMs was much fainter and less 

distinct. Although, spherical objects could be discerned in palmitate treated NCMs suggesting 

the presence of lipid droplets, they were much fainter than in oleate treated NCMs. In addition, 

there was also a large degree of staining of non-spherical or irregularly shaped objects, which is 

inconsistent with the morphology of lipid droplets. It is unlikely that this faint diffuse staining 

is background staining since it was not observed in control NCMs treated with BSA. 

 

Interestingly we also show that 50μM oleate completely abolished palmitate induced cell death 

and ER stress; and this was associated with a change in lipid staining. Indeed co-administration 

of oleate and palmitate to NCMs attenuated the appearance of the faint diffuse staining pattern 

characteristic of palmitate only treated NCMs. Instead we observed the staining of small 

spherical objects similar to cells treated with oleate alone. The cause for this alteration in lipid 

staining is currently unknown but may be related to the increased induction of TAG formation 

by oleate compared to palmitate. Indeed, it has been previously suggested that oleate attenuates 

palmitate-induced lipotoxicity by inducing the formation of TAG, thus sequestering saturated 

fatty acids into inert moieties [40]. Specifically, the incorporation of saturated fatty acids into 

TAG, and subsequent storage of this TAG in lipid droplets, may reduce their bioavailability. 
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This attenuated bioavailability is thus expected to decrease their subsequent metabolism into 

toxic metabolites and/or their incorporation into phospholipids and hence attenuate ER stress. 

In support of this, oleate has been shown to be a better substrate for TAG synthesis than 

palmitate in skeletal muscle cells [41]. Here we show that oleate produces brightly staining 

objects consistent with the morphology of lipid droplets, while palmitate produces a staining 

pattern that is fainter and more diffuse with the presence of irregularly shaped objects. This 

suggests that perhaps BODIPY has higher affinity for oleate derived TAG compared to DAG 

produced by palmitate. The nature of the irregularly shaped stained objects and the cause for the 

faint/diffuse staining pattern will be the focus of future studies. However, a potential caveat of 

these findings is that perhaps oleate and palmitate are differentially stained by BODIPY and 

hence the difference in staining pattern is due to differences in affinity of the dye for the 

respective fatty acids rather than differences in actual lipid accumulation. 
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Figure 2.6: Palmitate induces apoptotic cell death in NCMs. (A) Western blot demonstrating the increase in 

Chop protein in the nuclear subcellular fraction of NCMs treated with palmitate for 24 hours at the indicated 

concentrations. Tunicamycin (0.5μg/ml for 24 hours) treated NCMs were used as positive control. (B) Western 

blot demonstrating time dependent increase in Chop protein in whole cell lysates of NCMs treated with 300μM 

palmitate for the indicated times. Tunicamycin (0.5μg/ml for 24 hours) treated NCMs were used as positive 

control. (C) Western blot and graph demonstrating increased levels of cleaved caspase-3 in NCMs treated with 

300μM palmitate for the indicated time points compared to either BSA (Control), or 400μM oleate. * indicates 

p<0.05 vs. control and oleate treated NCMs. 
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Figure 2.7: Palmitate causes the ubiquitination of Grp78 protein in NCMs. (A) Both palmitate and 

tunicamycin significantly induce Grp78 mRNA levels. (B) Western blot demonstrating that tunicamycin strongly 

up-regulates Grp78 protein levels but palmitate does not. (C) Western blots demonstrating that Grp78 immuno-

precipitated from NCMs treated with 200μM palmitate exhibit significantly increased ubiquitination. The IgG 

bands in (C) represents the antibody that is used to immunoprecipitate Grp78. (D) Graph demonstrating results 

from densitometry analysis of ubiquitin immuno-blot in (C). * indicates p<0.05 vs. control. # indicates p<0.05 vs. 

palmitate. † indicates p<0.05 vs. all other conditions. 
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The altered lipid staining in palmitate treated NCMs suggested to us that perhaps lipid may not 

be completely stored in lipid droplets resulting in potential accumulation of lipid in the ER. The 

accumulation of lipid in the ER has major implications for lipotoxic mechanisms. Indeed, lipid 

accumulation in the ER can perturb ER membrane physiology thereby leading to ER stress [19, 

22]. ER stress has been shown to be induced by palmitate in different cell types [13, 19, 23-29], 

but this has not been previously demonstrated in primary NCMs. Altogether, we show that 

palmitate causes a robust induction of markers of ER stress with ensuing apoptosis in NCMs 

and this is associated with altered lipid staining patterns. 

 

ER stress is an important pathological process in a variety of cardiovascular disorders including 

diabetic cardiomyopathy [30-32]. ER stress results in activation of a compensatory mechanism 

referred to as the unfolded protein response (UPR). As the name suggests, it can occur as a result 

of a build-up of unfolded proteins, but also results from other stress stimuli including calcium 

dysregulation [33], and membrane perturbations [19, 22]. Here we demonstrated activation of 

the UPR in palmitate treated mouse and rat NCMs. Indeed, we show significant increases in 

spliced Xbp1 mRNA (a marker of Ire1 activity) as well as full length and cleaved Atf6 protein 

levels in NCMs treated with 300μM palmitate. Of note, palmitate did not change the ratio of 

cleaved to un-cleaved Atf6, suggesting that palmitate induced ER stress did not cause an 

increase in the activity of the S1 and S2 proteases of the Golgi apparatus responsible for cleavage 

of Atf6. In addition, we showed that palmitate significantly induced active Xbp1 protein in 

NCMs. Finally we also demonstrated that palmitate induced significant increases in the 

expression of Dnajb9 mRNA (a marker of Xbp1 activity) as well as Grp78, Atf4 and Atf6 
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mRNA levels. Importantly, palmitate induction of all of the latter factors exhibited dose and 

time dependency. 

 

The ER stress-dependent apoptotic pathway is believed to occur through the activation of Chop 

[34]. Atf6, a mediator of ER stress, has been shown to induce Chop expression [35]. This is in 

accordance with our data demonstrating increased expression and activation of both Atf6 and 

Chop in palmitate treated NCMs. While Chop up-regulation is consistently associated with 

apoptosis [36, 37], the underlying mechanism has not been fully elucidated. There is evidence 

to suggest that Chop downregulates bcl-2 [38], and/or up-regulates death receptors [39]. We 

show here that palmitate leads to significant cell death after 18 hours exposure which is preceded 

by cleavage of caspase-3 at 16 hours suggesting that the mechanism of cell death is at least 

partially apoptotic. 

 

It is important to bear in mind that the UPR is actually a compensatory response aimed at 

restoring ER function in part by up-regulation of ER chaperones. Indeed loss of key UPR 

chaperones results in cell death [42, 43], whereas their overexpression is protective [44, 45]. 

Interestingly, we found that palmitate treated NCMs exhibited only marginally elevated Grp78 

protein levels despite a prominent induction of Grp78 mRNA levels. This suggests that there is 

an important post-transcriptional regulation of Grp78 in palmitate treated NCMs. In fact, we 

show significantly increased ubiquitination of Grp78 following high dose palmitate, suggesting 

this protein is actively degraded by the ubiquitin-proteasome pathway in palmitate treated 

NCMs. Loss of this important chaperone likely contributes to palmitate induced cell death. 

Palmitate has been shown to induce the ubiquitinproteasome pathway via PKC activation in 
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hepatocytes leading to degradation of anti-apoptotic proteins and subsequent lipoapoptosis [46]. 

Future studies are required to determine whether this is the mechanism for ubiquitination of 

Grp78 in NCMs. 

 

Here we aimed to characterize the effect of palmitate in NCMs. We found that palmitate led to 

significant increases in intracellular lipid accumulation, ER stress, and cell death. However the 

qualitative nature of the BODIPY staining in palmitate treated NCMs differed markedly from 

that of the oleate treated NCMs which may be due to differences in their inherent capacity to 

form DAG vs. TAG. Further studies are required to fully characterize the nature of palmitate 

induced lipid accumulation in cardiomyocytes and how this translates into ER stress. 

 

 

2.8 Acknowledgements 

 

 

This work was supported by the Montreal Heart Institute Foundation and the Heart and Stroke 

foundation of Canada. Dr Tardif holds the Canada Research Chair in translational and 

personalized medicine and the University of Montreal endowed research chair in 

atherosclerosis. We thank Maria Eugenia Juarez Ugarte for her technical assistance. 

 

Conflict of interest statement: Authors state no conflict of interest. 

 



112 
 

 

2.9 Supplementary data 

 

 

 

Supplemental Table S2.1: List of primers  
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Supplemental figure S2.1: Palmitate induces ER stress in mouse cardiomyocytes (mNCMs). (A) Graph 

demonstrating the mRNA levels of 6 key markers and mediators of ER stress in mNCMs treated with 300μM 

palmitate for 24 hours vs. control mNCMs treated with BSA.* indicates p<0.05, ** indicates p<0.01, *** 

indicates p<0.001. (B) Graph demonstrating the mRNA levels of 6 key markers and mediators of ER stress in 

mNCMs treated with 300μM oleate for 24 hours vs. control mNCMs. Rpl34 was used as housekeeping control 

gene. 
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Supplemental figure S2.2: Palmitate Palmitate induces markers of ER stress in a dose and time dependent 

manner in rat neonatal cardiomyocytes (rNCMs). (A) Graph representing the degree of mRNA expression of 

Grp78, spliced Xbp1, Dnajb9, Atf-4, Atf-6, and Chop relative to the housekeeping gene Rpl34. Expressed as 

percent of maximum values in rNCMs treated with either 0, 50, 100, or 200μM Palmitate for 25 hours. (B) Graph 

representing the degree of mRNA expression of Grp78, spliced Xbp1, Dnajb9, Atf-4, Atf-6, and Chop relative to 

the housekeeping gene Rpl34. Expressed as percent of maximum values in rNCMs treated with 300μM Palmitate 

for either 0, 4, 8, or for 20 hours. * indicates p<0.05 vs. control (0 hour or 0 μM palmitate). # indicates p<0.05 vs. 

50μM palmitate or 4 hours palmitate. † indicates p<0.05 vs. 8 hours palmitate. 
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3.2 Context 

 

 

We have previously found that palmitate induces ER stress, while oleate does not. Since PPARs 

play a key role in lipid metabolism, we wanted to investigate the effect of oleate and palmitate 

on the expression and activity of PPARs. PPAR activity was determined by measuring the 

expression of PPAR target genes (CPT1B, ACADL, and ACSL). Our results show that twenty-

four-hour treatment of palmitate inhibits PPAR expression and activity in primary rat neonatal 

cardiomyocytes. Since PPARs are implicated as regulators of inflammatory response, we have 

examined the expression of two major cytokines: IL-6 and TNFα. We found that palmitate 

lipotoxicity is associated with an increased expression of both IL-6 and TNFα mRNA. 

Interestingly, the protective effect of oleate against palmitate-mediated lipotoxicity is associated 

with the attenuation of IL-6 but not TNFα, suggesting Il-6’s more important role in propagating 

palmitate-mediated inflammatory response.     
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3.3 Abstract 

 

Here we sought to evaluate the effect of palmitate on cytokine and PPAR activity/expression. 

We investigated the effect of BSA conjugated palmitate and oleate on PPAR activity, PPAR-a 

and d expression, as well as the expression of cytokines and key factors responsible for b-

oxidation by qRT-PCR and western blotting in primary rat neonatal cardiomyocytes (NCMs). 

Furthermore we evaluated the effect of anti-inflammatory actions of AICAR and PPAR agonists 

on cytokine expression and cell death in palmitate treated NCMs. We found that palmitate 

caused down regulation of PPARs and increased cytokine expression and cell death, all of which 

was significantly attenuated by the co-administration of either AICAR or PPAR agonists. This 

work supports the pro-inflammatory actions of intracellular lipid and provides further insight 

into the pathological mechanism of cardiac lipotoxicity as occurs in diabetic hearts. 

 

 

3.4 Introduction 

 

 

Diabetic cardiomyopathy is associated with cardiac lipid accumulation. Indeed, studies have 

shown a build-up of intramyocellular lipids or, cardiac steatosis, in diabetic hearts and this is 

believed to lead to cardiac lipotoxicity [1-5]. A key to understanding lipotoxicity is a delineation 

of how lipid metabolic pathways are perturbed in cardiac disease. 
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PPARs regulate the expression of several metabolic genes and are therefore key determinants 

of lipid metabolism. PPAR-d deletion in the heart impairs b-oxidation and causes 

cardiomyopathy suggesting critical importance of this protein [6]. Similarly, PPAR-a null mice 

also exhibit cardiac functional defects [7,8]. In contrast PPAR activation can attenuate cardiac 

pathologies due to a variety of stress stimuli [9,10]. Interestingly, diabetic rats have been shown 

to have attenuated PPAR activity in the heart [11] as well as decreased PPAR-a and d protein 

levels [12,13]. 

 

One of the key PPAR target genes is Carnitine palmitoyl transferase-1b (Cpt1b, muscle isoform) 

since it catalyzes the rate limiting step in b-oxidation, namely the transport of fatty acids across 

the outer mitochondrial membrane. Cpt1b is transcriptionally regulated by PPAR-a and d. On 

the other hand, activity of Cpt1b is regulated by the metabolic intermediate malonyl-CoA. 

Malonyl- CoA is synthesized by Acetyl-CoA carboxylase (Acc2 is the predominant isoform in 

the heart) while it is degraded by Malonyl-CoA decarboxylase (Mcd). Acc2 on the other hand 

is regulated by the master metabolic regulator AMP-activated protein kinase (AmpK). The 

importance of Cpt1b in normal cardiac physiology is underscored by a recent study showing 

that Cpt1b deletion leads to adult mortality associated with severe hypertrophy [14]. 

Furthermore overexpression of Cpt1b in skeletal muscle has been shown to enhance b-oxidation 

and attenuate high fat diet induced insulin resistance [15]. 

 

Inflammation is an important pathological component of diabetes. Several studies have 

demonstrated the association between inflammation and diabetic cardiomyopathy [16-22]. 

Diabetics frequently exhibit systemic inflammation as evidenced by increased circulating levels 
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of TNF-α, and Il-6 [23-25]. In addition, there is evidence to suggest that intracellular lipids can 

induce cardiac inflammation in situ independently of circulating cytokines. Indeed, palmitate, a 

saturated fatty acid, induces increased expression of TNF-a and Il-6 levels in skeletal muscle 

cells [26,27], adipocytes [28], endothelial cells [29], keratinocytes [30], and hepatocytes [31]. 

 

Here we sought to further our understanding of cardiac lipotoxicity by evaluating the effects of 

palmitate, a toxic saturated fatty acid, on PPAR activity and expression as well as cytokine 

expression in primary cardiomyocytes. We show that palmitate causes down-regulation of 

PPARs which in turn impairs the expression of key proteins involved in b-oxidation. In addition, 

we show that the impaired PPAR levels may be due to induction of Il-6, and that anti-

inflammatory treatments which attenuate cytotoxicity are associated with attenuated Il-6 

expression. This report describes the effects of palmitate on PPAR and cytokine expression in 

primary rat neonatal cardiomyocytes (NCMs) thus providing new information on the 

mechanism of cardiac lipotoxicity. 

 

 

3.5 Methods 

 

 

Preparation of fatty acids: Bovine serum albumin (BSA) in 150 mM NaCl was used as fatty 

acid vehicle. Sodium oleate was dissolved in methanol and then added to 0.17 mM BSA (6:1 M 

ratio). Oleate was conjugated to BSA by gentle agitation at 37 °C for 1 h and then stored at -80 

°C until used. Palmitate was dissolved in 150 mM NaCl at 70 °C. The latter solution was then 
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slowly added to 0.17 mM BSA at 37 °C (6:1 M ratio). The palmitate-BSA conjugate was 

agitated for 1 h at 37 °C and then stored at -80 °C until used. 

 

 

Primary cardiomyocyte harvest and cell culturing: All animal care protocols were approved 

by and conformed with the guidelines of the institutional animal care and use committees at the 

Montreal Heart Institute. Hearts from 1 to 2 day old neonatal Spraguee Dawley rats were 

removed aseptically and washed with Hanks buffer solution containing 137 mM NaCl, 5.36 mM 

KCl, 0.81 mM MgSO4, 5.55 mM dextrose, 0.44 mM KH2PO4, 0.34 mM Na2HPO4, 20 mM 

HEPES, and 50 mg/ml gentamicin (Gibco). Ventricular tissue digestion was carried out through 

repeated incubations of the tissue with Hanks buffer solution containing 50 U/ml collagenase-2 

(Worthington, NJ) and 0.36uM CaCl2 for 5e10 min or until solution became noticeably turbid. 

Once turbid, the digestion solution was added to ice-cold fetal bovine serum (FBS), taking care 

to leave the non-digested ventricular tissue in the initial tube. This was repeated until ventricular 

tissue was completely digested. The resultant cell suspension was plated on a Falcon Primaria 

cell culture dish (Becton Dickenson) for 1 h at 37 °C to let cardiac fibroblasts adhere to the plate. 

After 1 h non-adherent cardiomyocytes were re-plated on the Primaria plate for 120 h. Cells 

were subject to daily media replacement with DMEM/F12 (50:50; Gibco, ON) with 2% FBS 

and 100 mM bromodeoxyuridine to inhibit growth of any contaminating cardiac fibroblasts. 

 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR): Total cellular 

RNA was isolated from mouse or rat neonatal cardiomyocytes using RNEasy (Qiagen). cDNA 

was synthesized using a commercially available kit (Qiagen). qPCR was performed using SYBR 
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Green Master mix from Qiagen and the Eco Ilumina real-time qPCR system. Primer sequences 

are listed in supplemental table S1. Data was analyzed using the 2-DDCt method [32]. All PCR 

results represent the expression of the gene of interest relative to endogenous control (Rpl34) 

normalized to the control group, and are presented as mean ± standard error (SE). Primers were 

designed to span exoneexon regions to avoid amplification of contaminating DNA and primer 

specificity was verified by blasting all sequences using the NCBI Primer-BLAST tool 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

 

Western blot analysis: Total cellular protein was harvested from rat neonatal cardiomyocytes 

using protein isolation buffer (250 mM Sucrose, 50 mM Tris, 1 mM PMSF (protease inhibitor), 

1 mM DTT, and Proteinase inhibitor cocktail (ROCHE)). Protein concentrations were 

determined using Bradford assay and equal protein loading conditions were used and verified 

by Ponceau staining of the membrane. Proteins were transferred to PVDF membranes and 

probed with the following antibodies: anti-Acadl (Sc-82466, Santa Cruz biotechnologies), anti-

Cpt1b (GWB-MQ462C, GenWay Biotech), anti-PPAR-a (SC-9000, Santa Cruz 

Biotechnologies), anti-PPARd 

(PA1-823A, Pierce antibodies). 

 

Viability assays: We evaluated cell viability by propidium iodide (PI) exclusion assays. Briefly, 

rat NCMs were treated with palmitate for indicated time points (n ¼ 4 per timepoint). The treated 

cells were then incubated with PI for 30 min at 37 °C. Fluorescence was measured (535 nm 

excitation/617 nm emission) using the Synergy2 fluorescence plate reader from Bio-Tek. Assays 

were done in duplicate.  
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Statistics: All data are presented as mean ± standard error. Student's T-test was used for 

comparison of two groups, while one-way ANOVA with the Tukey post-hoc test was used for 

multiple group comparisons. P-values of <0.05 were considered statistically significant. 

 

 

3.6 Results 

 

 

3.6.1 Time dependent effects of palmitate on PPARs 

 

 

Because of the importance of PPARs in lipid metabolism and hence cardiac lipotoxicity, we 

sought to evaluate the effect of palmitate on PPAR activity in primary rat neonatal 

cardiomyocytes (NCMs). PPAR activity was measured indirectly by assessing the mRNA 

expression of PPAR target genes including Acyl-CoA dehydrogenase, long chain (Acadl), Acyl-

CoA synthetase (Acsl1), and carnitine palmitoyltransferase (Cpt1b) [33]. To validate these as 

legitimate PPAR target genes in NCMs we administered PPAR-a and d agonists (Wy-14643 and 

GW501516, respectively) to NCMs for 24 h. We found that both PPAR agonists significantly 

induced the expression of all 3 genes (Supplemental Fig. S3.1). Having validated these as 

legitimate PPAR targets in NCMs, we assessed the time dependent expression of these genes in 

palmitate treated NCMs. Interestingly, we found that 300 mM palmitate initially increased 

PPAR activity as evidenced by significantly increased expression of the 3 genes after 4 and/or 
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8 h exposure (Fig. 3.1A). However, after 24 h of palmitate exposure, we found that mRNA 

expression of PPAR target genes had significantly decreased from peak values down to levels 

below baseline. On the other hand, oleate, a non toxic unsaturated fatty acid, significantly 

induced PPAR activity for more than 24 h (Fig. 3.1B). To assess if the attenuated mRNA 

expression translated into decreased protein levels we assessed protein levels for Acadl and 

Cpt1b. Interestingly, Cpt1b (Fig. 3.2A), but not Acadl (Supplemental Fig. S3.2A), was 

significantly decreased after 24 h palmitate exposure. To determine if the decrease in PPAR 

activity was due to decreased PPAR abundance we performed Western blots for PPAR-a and 

PPAR-d. Interestingly, NCMs treated with 300 mM palmitate for 24 h showed significant 

reductions in both PPAR-a (Supplemental Fig. S3.2B) and -d (Fig. 3.2B) isoforms. 

 

 

Fig. 3.1 PPAR target gene expression is induced early on, and then repressed later, in palmitate treated 

neonatal cardiomyocytes (NCMs). Graphs showing the % maximum expression of Acyl-CoA synthetase (Acsl), 

Acyl-CoA dehydrogenase (Acad), and Carnitine palmitoyl transferase (Cpt1b) in NCMs treated with (A) 300 mM 

palmitate or (B) 400 mM oleate for the indicated times. Control cells were treated with BSA (fatty acid vehicle) 

for 24 h. Values represent expression at indicated time relative to maximum expression of all time points 

(normalized to housekeeping gene Rpl34). * indicates p < 0.05 vs. control. # indicates p < 0.05 vs. 8 h time-point. 
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3.6.2 Lipotoxicity induces marked cytokine expression in primary cardiomyocytes 

 

 

Because of the well established link between PPARs and inflammatory cytokines we sought to 

determine if palmitate induced the expression of cytokines in primary cardiomyocytes. Palmitate 

has been shown to induce inflammatory markers in a variety of cell types but this has not been 

previously shown in NCMs. Therefore, we evaluated TNF-α and Il-6 mRNA expression in 

NCMs treated with 300 mM palmitate for 24 h. We found that palmitate led to a robust induction 

of both TNF-α (>20 fold) and Il-6 mRNA (>200 fold) levels (Fig. 3.3A-B) and this was dose 

dependent (Fig. 3.3C). 

 

Because both AICAR (an AmpK activator) and PPAR agonists have previously been shown to 

attenuate cytokine expression in other cell types; we were interested if these treatments could 

attenuate palmitate induced cytokine expression in primary cardiomyocytes. In addition, we also 

tested the effect of oleate on palmitate induced cytokine expression because of the well 

established capacity for oleate to protect against palmitate induced lipotoxicity. Therefore, we 

tested the effect of oleate (50 mM), AICAR (2 mM), and PPAR agonists [Wy-14643 (240 mM) 

or GW501516 (10 mM)] on expression of TNF-α and Il-6 in palmitate treated NCMs. 

Interestingly, we found that all four treatments had different effects on TNF-a mRNA 

expression. Specifically, oleate had no effect, AICAR caused a significant decrease, while 

PPAR agonists caused nonsignificant increases in TNF-α mRNA levels (Fig. 3.3D). In contrast, 

all four treatments concordantly led to significant decreases in Il-6 levels (Fig. 3.3E). 
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Oleate has been previously shown to attenuate palmitate mediated cell death but the effect of 

AICAR and PPAR agonists on palmitate induced cell death has not been previously described 

in primary cardiomyocytes. Therefore, we evaluated viability in cells treated with palmitate ± 

AICAR, Wy-14643, or GW501516. We found that all treatments significantly attenuated 

palmitate induced cell death (Fig. 3.4A and B). 

 

 

Fig. 3.2 Palmitate induces the down regulation of Cpt1b and PPAR-d protein levels. (A) Western blot and 

associated ponceau staining of membrane demonstrate that Cpt1b protein significantly decreases after 24 h of 

palmitate exposure in NCMs. Graph at bottom represents quantification of Cpt1b protein abundance relative to 

total protein as determined by ponceau stain from 3 separate experiments (B) Western blot and associated ponceau 

staining of membrane demonstrate that PPAR-d protein significantly decreases after 24 h of palmitate exposure in 

NCMs. Graph at bottom represents quantification of PPAR-d protein abundance relative to total protein as 

determined by ponceau stain from 3 separate experiments. In all cases Control cells were treated with BSA (the 

fatty acid vehicle) in serum free media for 24 h * indicates p < 0.05 vs. control. 
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Fig. 3.3 Palmitate induces the expression of inflammatory mediators Tnf-a and Il-6 in neonatal 

cardiomyocytes (NCMs). (A-B) Graphs showing the expression of Tumor necrosis factor-alpha (Tnf-a) and 

Interleukin-6 (Il-6) relative to housekeeping gene Rpl34 in NCMs treated with 300 mM palmitate for 24 h 

(compared to BSA treated control NCMs). (C) Graph showing the % maximum expression of Tnf-a and Il-6 

(relative to housekeeping gene Rpl34) in NCMs treated with palmitate at the indicated concentration. (D) Graphs 

showing the expression of Tnf-a (relative to housekeeping gene Rpl34) in NCMs treated with palmitate ± the 

indicated treatment for 24 h (E) Graphs showing the expression of Il-6 (relative to housekeeping gene Rpl34) in 

NCMs treated with palmitate ± the indicated treatment for 24 h * indicates p < 0.05 vs. control. 
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3.7 Discussion 

 

 

Diabetes is a major contributor to cardiovascular disease. Indeed, the dyslipidemia in diabetics 

significantly increases risk for atherosclerosis. However, the accumulation of lipid within 

cardiomyocytes themselves, as opposed to in the vessels that supply them, may be equally 

pathological. Furthermore, the two pathological conditions can occur simultaneously, hence the 

substantial increase in heart failure and death by cardiovascular disease in diabetics. 

 

Here we were interested in delineating the pathological mechanisms of lipotoxicity in an in vitro 

model of cardiac lipotoxicity. Indeed, we utilized primary rat neonatal cardiomyocytes which 

have the advantage of continuous spontaneous contraction which more closely mimics the high 

energy demand, and hence the energy metabolism of the beating heart, than would 

cardiomyocyte cell lines like H9c2 or AC16 cells. Although HL-1 cells can be differentiated to 

spontaneously contract, in our hands we found that this was highly variable. 

 

Using primary cardiomyocytes we found several important aspects regarding mechanisms of 

cardiac lipotoxicity. Specifically, we show that (1) lipotoxicity causes impairment of PPAR 

activity due to loss of PPAR protein abundance and this results in Cpt1b downregulation; (2) 

cardiomyocyte lipotoxicity is associated with induction of cytokines, (3) oleate, AICAR and 

PPAR agonists significantly decrease Il-6 but not TNF-α levels in palmitate treated 

cardiomyocytes and this is associated with attenuated cell death. Together this data points to a 

key role for Il-6 in the pathological mechanism of cardiac lipotoxicity. 
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Fig. 3.4 Palmitate induced cell death in neonatal cardiomyocytes (NCMs) is attenuated with treatments that 

reduce Il-6 expression. Graphs (AeB) demonstrate relative fluorescence (y-axes) from NCMs treated as indicated 

in x-axes, followed by staining with propidium iodide, which is excluded from live cells but taken up by dead/dying 

cells. * indicates p < 0.05 vs. BSA treated NCMs (control). # indicates p < 0.05 vs. palmitate treatment alone. 

 

Palmitate causes PPAR down-regulation A key finding of this current study was that 

palmitate induced PPAR activity at early time points but this activation was lost after 24 h. In 

contrast oleate, the non-toxic fatty acid resulted in persistent PPAR activation. Indeed it is 

conceivable that persistent PPAR activity is necessary for the cell to manage the high lipid load 

and that loss of this metabolic capacity results in accumulation of toxic metabolites and cell 

death. The observed early PPAR activation by palmitate suggests that palmitate can act as a 

PPAR ligand, but that it simultaneously activates other pathways that ultimately lead to PPAR 

degradation. Indeed we show that both PPAR-a and d are decreased in NCMs treated with 

palmitate for 24 h. The PPAR degradation results in decreased expression of genes responsible 

for b-oxidation of lipids thus allowing for the build-up of lipotoxic intermediates which 
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ultimately result in cell death. Several lines of evidence suggest that the increased cytokine 

expression could be responsible for the PPAR degradation. For instance, inflammation was 

suggested to be the cause of attenuated PPAR activity in hearts of diabetic mice [12]. More 

specifically, Il-6 has been shown to decrease PPAR-a and/or g activity and abundance in 

adipocytes and hepatocytes [34-38], but this has not been previously shown in cardiomyocytes. 

In addition, Tnf-a transgenic mice were shown to have decreased expression of PPAR-a and b-

oxidation genes in the heart, resulting in decreased fatty acid oxidation [39]. Interestingly, they 

found that Tnf-a didn't have any direct effects on oxidation in cultured cardiomyocytes, but 

instead they attributed the impairment in oxidation in the Tnf-a transgenic hearts to the 

activation of the Tgf-b-Smad3 pathway. Unfortunately they did not evaluate Il-6 levels in that 

study, but since both Tgf-b [40,41] and Tnf-a [42] have been shown to induce Il-6, this supports 

the hypothesis that Il-6 is the key inducer of PPAR degradation. It is also important to note that 

the Il-6 expression precedes PPAR degradation, further supporting it as a cause rather than a 

consequence of metabolic dysfunction. Future studies will be focused on the mechanism of 

PPAR degradation in lipotoxic environments. 

 

We also demonstrate that the loss of PPARs results in decreased Cpt1b protein levels, suggesting 

that PPAR down-regulation impairs oxidation through down-regulation of Cpt1b. The loss of 

Cpt1b protein after 24 h of palmitate exposure suggests that either Cpt1b protein half-life is very 

short and that protein levels mirror mRNA levels or that palmitate leads to the active degradation 

of Cpt1b protein. Importantly, although Acadl mRNA levels were down after 24 h; protein levels 

were unchanged, suggesting that this protein either has a longer half life than Cpt1b or that it is 

not specifically targeted for degradation. 
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Considering that our hypothesis revolves around the key beneficial role PPARs play in 

mitigating lipotoxicity, it is important to note the paradoxical finding that activation of PPAR-a 

by transgenic overexpression causes diabetic cardiomyopathy due to lipotoxicity. However it 

must be kept in mind that in these latter mice PPAR-a is expressed at supra-physiological levels 

(~50e100 fold) potentially leading to more lipid uptake than can be handled by the oxidative or 

storage capacities of hearts in these mice. Interestingly, PPAR-d overexpressing mice did not 

exhibit lipid accumulation or develop cardiomyopathy. Both PPAR-a and PPAR-d induce β-

oxidation, however the key difference is the fact that PPAR-a induces lipid uptake to a much 

greater degree than PPAR-d [43]. Thus perhaps the ratio of PPAR-a vs. d activity can also have 

an impact on lipid accumulation and hence lipotoxicity in the heart. 

 

Lipotoxicity induced cytokine expression, which was attenuated by oleate, AICAR and 

PPAR agonists Palmitate has been shown to induce the expression of cytokines in a variety of 

cell types, but this has not been previously shown in NCMs. Here we showed that palmitate 

robustly induced the expression of both TNF-a and Il-6. This is highly relevant considering the 

important role inflammation has in the pathology of diabetes. Interestingly, oleate has been 

shown to attenuate palmitate induced Il-6 release from skeletal muscle cells [44]. Indeed, we 

showed that the protection from cell death afforded by oleate, AICAR, and PPAR agonists were 

consistently associated with a reduction in Il-6, but not Tnf-a. This suggests that the primary 

pathological culprit involves Il-6 signaling. Further studies will be required to demonstrate the 

mechanism of Il-6 induction in lipotoxic conditions. 
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3.9 Supplementary data 

 

 

Supplemental Fig. S3.1: Acadl, Acsl, and Cpt1b are legitimate PPAR target genes in rat primary 

cardiomyocytes (NCMs). NCMs were treated with either 1 μM GW501516 or 60 μM Wy14643 in serum free 

media for 24 h. Control cells were only treated with serum free media. * indicates p < 0.05 vs. control. 
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Supplemental Fig. S3.2: Protein levels of Acadl and PPAR-α in NCMs treated with palmitate. (A) Western 

blot and associated ponceau staining of membrane demonstrate that Acadl protein remains relatively stable over 24 

h of palmitate exposure in NCMs. Graph at bottom represents quantification of data from 2 seperate experiments 

(B) Western blot and associated ponceau staining of membrane demonstrate that PPAR-α protein significantly 

decreases after 24 h of palmitate exposure in NCMs. Graph at bottom represents quantification of data from 3 

seperate experiments. In all cases Control cells were treated with BSA (the fatty acid vehicle) in serum free media 

for 24 h * indicates p < 0.05 vs. control. 
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4.2 Context 

 

 

PPARs are master regulators of fatty acid metabolism. Our previous study demonstrated that 

palmitate lipotoxicity inhibits PPAR expression and activity. CPT1B, an enzyme that catalyzes 

the rate-limiting step of fatty acid oxidation, is a PPAR target gene. Hence, we hypothesized 

that palmitate lipotoxicity is associated with inhibition of fatty acid oxidation. Indeed, our results 

show a clear inhibition of fatty acid oxidation in primary rat neonatal cardiomyocytes treated 

with 300uM palmitate. Oleate, a non-toxic fatty acid, does not inhibit fatty acid oxidation. 

Interestingly, inducing fatty acid oxidation by carnitine reduces palmitate lipotoxicity. On the 

other hand, inhibiting fatty acid oxidation by etomoxir causes oleate to become toxic.   
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4.3 Abstract 

 

 

A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate 

mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding 

of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid 

clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). 

 

We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate 

(monounsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) 

by measuring 14C eCO2 production. We evaluated carnitine palmitoyltransferase (Cpt1b) 

expression by western blotting and mitochondrial membrane potential by quantitative and 

qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically 

using etomoxir and genetically by knocking down its expression using LentiVector mediated 

transduction of siRNAs targeting the Cpt1b gene. 

 

We found that palmitate had a slower clearance rate from NCMs than oleate, and this was 

associated with a significant decrease in FAO. This impairment in FAO was not the result of 

either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or 

carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In 

contrast impairing FAO in oleate treated NCMs caused lipotoxicity. 
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Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic 

saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This 

has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit 

elevated lipid accumulation. 

 

 

4.4 Introduction 

 

 

Cardiac disease is the primary cause for morbidity and mortality in the diabetic population [1]. 

Diabetes is an independent risk factor for atherosclerosis and hypertension. However, Diabetes 

also causes cardiomyopathy independently of the latter vascular pathologies. This diabetic 

cardiomyopathy is due to excess lipid accumulation and the ensuing lipotoxicity [2-7]. To 

understand mechanisms of lipotoxicity mediated diabetic heart disease we need to further our 

understanding of how lipid metabolism is altered in the diabetic heart. 

 

Long chain fatty acids are made up of three main categories including saturated fatty acids (e.g. 

palmitate), mono-unsaturated fatty acids (e.g. oleate), and poly-unsaturated fatty acids (e.g. 

linoleate). Oleate and palmitate are the two most common fatty acids in the human diet. 

Importantly, in vitro studies have shown that lipotoxicity is due mainly to saturated fatty acids, 

whereas unsaturated fatty acids like oleate are non-toxic and can even be protective. 
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The importance of lipid metabolism in the heart is underscored by the fact that the heart derives 

~75% of its energy from fatty acids. However, this number increases to >90% in the diabetic 

setting. The diabetic heart is characterized as having an excess of intracellular lipid (also known 

as cardiac steatosis) [8-12]. Lipids accumulate in the heart because uptake exceeds lipid 

clearance. The two main pathways for lipid clearance are lipid export and fatty acid catabolism 

through oxidation. While lipid export does occur from cardiomyocytes [13], it is likely a small 

fraction of lipid clearance compared to oxidation. Interestingly, studies have shown that β-

oxidation is increased in models of diabetic cardiomyopathy despite the accumulation of lipid. 

The fact that diabetic hearts consistently exhibit elevated lipid accumulation suggests that either 

the increased b-oxidation is insufficient to handle the elevated uptake; or that the oxidation is 

incomplete. Indeed, β-oxidation represents only the first half of fatty acid oxidation (FAO). The 

second half being the oxidation of acetyl-CoA to CO2 in the citric acid cycle. Impaired citric 

acid cycle activity could lead to a build up of acetyl-CoA, which is converted to malonyl-CoA, 

a key substrate in fatty acid biosynthesis. 

 

Here we investigated the effect of palmitate, a saturated fatty acid, on FAO in primary 

cardiomyocytes. We found that palmitate impaired FAO, and that enhancing FAO attenuated 

palmitate mediated cell death. Conversely, impairing FAO induced cell death in primary 

cardiomyocytes treated with the non-toxic fatty acid oleate. 
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4.5 Methods 

 

 

Rat neonatal cardiomyocyte (NCM) harvest and culturing: NCMs were harvested from 1-

day-old Sprague-Dawley rat pups as previously described [15]. NCMs were fed daily with 

DMEM/F12 þ 2% iFBS þ 100 mM bromodeoxyuridine (Sigma). Cells were cultured for a 

minimum of six days before treated to promote differentiation. 

 

Fatty acid clearance assay: We evaluated the rate of fatty acid clearance by treating NCMs 

with 300 mM oleate or palmitate (275 mM cold fatty acid þ 25 mM hot 14C fatty acid). After 

24 h we measured CPMs using a Scintillation counter (Beckman LS6500). CPMs were 

normalized to total CPMs produced by 25 mM radiolabeled fatty acid not exposed to cells. 

 

Viability assays: We determined cell viability by the propidium iodide (PI) exclusion assay. 

Briefly, following treatment, NCMs were incubated with PI for 30 min at 37 °C. Fluorescence 

was measured (535 nm excitation/617 nm emission) using the Synergy2 fluorescence plate 

reader from Bio-Tek. Assays were done in triplicate. 

 

Fatty acid oxidation assays: NCMs were treated with non-radiolabelled BSA, oleate or 

palmitate for 8 h then with 25 mM radio-labelled 14C-oleate for 2 h. Media from treated NCMs 

were transferred to glass tubes containing center wells and stopper tops. NaOH soaked Whatman 

filter paper was placed in the center well after addition of the cell media. Concentrated HCL 

was added to the media to release the CO2 which was captured by the basic filter. Filter papers 
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were transferred to scintillation vials containing Aquasol II (Perkinelmer, NE9529). 

Radiolabelled CO2 was counted by the Scintillation counter (Beckman LS6500). 

 

Mitochondrial membrane potential assay: NCMs were incubated with warm Krebs-Ringer 

with HEPES buffer (KHR) containing 7.6 mM JC-1 (Sigma, cat# 1130-5) for 10 min. After 

incubation, cells were washed twice with warm KHR before reading the fluorescence (530 nm 

excitation/590 nm emission for red dye and 485 nm excitation/528 nm emission for green dye) 

using the Synergy2 fluorescence plate reader from Bio-Tek and a fluorescence microscope 

(Olympus IX83). 

 

Western blotting: Total cellular protein was harvested from NCMs using RIPA protein 

isolation buffer containing Proteinase inhibitor cocktail (ROCHE). Protein concentrationwas 

determined using the Bradford assay. Proteins were transferred to activated PVDF membranes 

and probed with Cpt1b antibody (Geneway, cat# GWB-MQ462C). Equal protein loading 

conditions were utilized and verified by Ponceau staining of the membrane. 

qRT-PCR: Total cellular RNA was isolated using RNEasy isolation kit (Qiagen) and cDNA 

synthesis was carried out using the Quantitect reverse transcription kit (Qiagen). Real-time RT-

PCR was carried out using the Eco illumina PCR cycler. Primers were designed using the NCBI 

primer BLAST tool. Exon/exon junctions were selected to prevent amplification of genomic 

DNA. PCR amplifications were done using the Bryt green master mix (Promega). Cpt1b was 

normalized to the housekeeping gene Rpl34 and quantification was carried out using the DDCt 

method. Primer sequences: rCpt1b-F, TCGAGTTCAGAAACGAACGC, rCpt1b-R, 
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GTGTGTCTCCTGGTCTCAGC, rRpl34-F, TGCTGTGAGACCCAAAGTCCTCA, rRpl34-R, 

TAAGGAAAGCCCGCTTGATCCTG. 

 

Knockdown studies: LentiVector mediated transduction of NCMs was carried out as 

previously described [14]. Briefly, HEK-T293 cells were transfected with plasmids expressing 

packaging proteins (psPAX2), envelope proteins (pMD2.G) and siRNA expressing plasmids 

(pLenti-siRNA, cat# i057517, ABMGood). 48 h after transfection cellular media containing 

virus were harvested and centrifuged to remove cells. NCMs were treated with 10 mg/ml 

polybrene for 90 min and then exposed to virus containing media for 21 h 6 days after 

transduction cells were treated as described below. 

 

Statistical analysis: Data are presented as the mean ± standard error. Student's Ttest was used 

for comparison of experiments with two groups. For three or more group comparisons we 

performed one-way ANOVA with the Tukey post-hoc test. P-values of <0.05 were considered 

statistically significant. 
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4.6 Results 

 

 

4.6.1 Palmitate impairs fatty acid oxidation in primary cardiomyocytes 

 

 

We previously demonstrated that palmitate led to a marked difference in the qualitative nature 

of lipid staining compared to oleate treated NCMs [15]. Indeed, palmitate caused a diffuse lipid 

staining pattern, while oleate produced canonical lipid droplet staining. To assess if this 

qualitative difference in lipid accumulation also exhibited quantitative differences we measured 

the amount of oleate or palmitate remaining after a 24-h period. Interestingly, there was a 

significant increase in palmitate remaining after 24 h compared to oleate (Fig. 4.1A) suggesting 

that palmitate was not oxidized with the same efficiency. In support of this, a previous report 

demonstrated that palmitate decreased fatty acid oxidation (FAO) following 20 h exposure [16]. 

However, from our own experience we knew that cell death was already rampant in NCMs 

treated with palmitate for 20 h [15]. Therefore, we aimed to evaluate if FAO was altered before 

the onset of cell death (i.e. after 8 h exposure of palmitate). Importantly, for all FAO 

experiments, cells were pre-treated with either palmitate or oleate and then the degree of CO2 

production was measured in both groups using only radiolabelled [14C]-oleate. Therefore 

differences in CO2 production were the result of pre-treatments and not an inherent difference 

in the cells ability to oxidize different fatty acids. Interestingly, we found that pre-treatment of 

NCMs with 300 mM palmitate for 8 h caused a marked decrease in FAO compared to oleate 
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(300 mM) pre-treated NCMs (Fig. 4.1B). Therefore, palmitate impairs FAO in cardiomyocytes 

which may contribute to lipid accumulation and hence lipotoxicity. 

 

 

Fig. 4.1 Palmitate impairs fatty acid oxidation in primary rat neonatal cardiomyocytes (NCMs). (A) Graph 

demonstrating significantly increased palmitate remaining in NCMs 24 h after administration of either 300 mM 

oleate or 300 mM palmitate suggesting impaired clearance of palmitate compared to oleate. (B) Graph 

demonstrating significant decrease in the production of CO2 in palmitate compared to oleate pre-treated NCMs 

(300 mM each, 8-h treatment). (C) Western blot demonstrating that palmitate induces the time dependent decrease 

in Cpt1b protein levels but this occurs after the impairment of fatty acid oxidation. Ponceau staining of membrane 

demonstrates equal protein loading conditions. *indicates p < 0.05 vs. oleate treated NCMs. 

 

 

4.6.2 Impaired FAO is not due to loss of carnitine palmitoyltransferase (Cpt1b) or loss of 

mitochondrial integrity 

 

 

Cpt1b is the rate-limiting enzyme in FAO. We previously demonstrated that palmitate caused a 

marked loss of Cpt1b protein levels in NCMs after 24 h [17]. To determine if this was the cause 
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of the decreased FAO we performed a time-course analysis for Cpt1b protein levels in palmitate 

treated NCMs. Interestingly, we found that palmitate caused a time dependent decrease in Cpt1b 

protein levels but this began only after 14e16 h (Fig. 4.1C). Therefore the decrease in FAO was 

not the result of decreased Cpt1b levels. 

 

Next we considered that perhaps palmitate is resulting in loss of mitochondrial integrity. To test 

this we assessed mitochondrial membrane potential (MMP) in palmitate treated NCMs. Indeed, 

palmitate caused a loss of MMP after 16-h exposure to palmitate (Fig. 4.2A and B). However 

the MMP was unaffected by 8 h exposure to palmitate, suggesting that this was not the cause of 

impaired fatty acid oxidation. 

 

 

4.6.3 Enhancing fatty acid oxidation attenuates palmitate-mediated lipotoxicity 

 

 

If palmitate mediated impairment of FAO is contributory to the observed lipotoxicity then 

enhancing oxidation should attenuate palmitate induced cell death. We previously demonstrated 

that as little as 50 mM oleate can abolish lipotoxicity induced by 300 mM palmitate [15]. 

Therefore we tested the effect of 50 mM oleate on FAO in palmitate treated NCMs. Indeed, we 

found that pre-treating NCMs with 50 mM oleate + 300 mM palmitate significantly enhanced 

FAO compared to NCMs pre-treated with 300 mM palmitate alone (Fig. 4.3A).  
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Next we evaluated if addition of carnitine, a known inducer of Cpt1b could enhance FAO in 

palmitate treated NCMs. Indeed, NCMs pre-treated with 300 mM palmitate + 250 mM carnitine 

for 8 h exhibited significantly increased FAO compared to NCMs pretreated with palmitate 

alone (Fig. 4.3B). In support of the protective role FAO has against lipotoxicity, co-

administration of carnitine significantly attenuated palmitate mediated cell death in NCMs (Fig. 

4.3C). 

 

 

4.6.4 Impairing fatty acid oxidation causes lipotoxicity 

 

 

To verify that it is truly the impairment of FAO that is contributing to lipotoxicity we tested the 

effect of impairing FAO in cells treated with oleate, a non-toxic mono-unsaturated fatty acid. 

To impair FAO we treated NCMs with etomoxir, an irreversible inhibitor of Cpt1b, the rate 

limiting step in FAO. Specifically, NCMs were treated with either 300 mM oleate or 300 mM 

oleate + 300 mM etomoxir. We found that etomoxir significantly impaired FAO in oleate treated 

NCMs (Fig. 4.4A). Next we tested the effect of etomoxir on cell viability. Interestingly, neither 

oleate nor etomoxir caused cell death on their own but when combined they led to a significant 

degree of cell death (Fig. 4.4B). 

 

To complement this assay and to rule out the possibility of offtarget effects of etomoxir we 

assessed the effect of silencing Cpt1b expression on viability of oleate treated NCMs.We 

confirmed Cpt1b knockdown at both the mRNA and protein level (Fig. 4.4C and D). Similarly 
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to the etomoxir data, we found that Cpt1b KD only led to cell death in cells treated with oleate 

but not in BSA (vehicle control) treated NCMs (Fig. 4.4E). 

 

 

4.7 Discussion 

 

 

Diabetic hearts exhibit pronounced lipid accumulation. As such, a major contributor to the 

pathology of diabetic cardiomyopathy is lipotoxicity. Here we sought to further our 

understanding of the mechanisms of lipotoxicity by investigating a potential cause for lipid 

accumulation. We found that palmitate impairs fatty acid oxidation in NCMs. Importantly, we 

utilized NCMs, which spontaneously contract in culture and thus more closely mimic the high 

metabolic demands of the beating heart than do cell lines. We found that the palmitate-induced 

impairment of FAO was not due to loss of Cpt1b or mitochondrial integrity. We also 

demonstrated that enhancing FAO attenuated palmitate mediated lipotoxicity while decreasing 

FAO caused oleate, which is normally non-toxic, to induce cell death of NCMs. Therefore we 

provide strong evidence that lipotoxicity is due in part to impaired FAO. 

 

Here we found that significantly more palmitate remained in NCMs after 24 h compared to cells 

exposed to the molar equivalent of oleate. This suggests that palmitate clearance is slower than 

oleate. To test if this was due to impaired FAO we evaluated the degree of CO2 production in 

NCMs pre-treated with either oleate or palmitate for 8 h. This time-point is not associated with 

cell death from either fatty acid. We found that palmitate pre-treatment severely inhibited CO2 
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production from fatty acid oxidation. Importantly, we quantified CO2 production, which is a 

measure of complete fatty acid oxidation and not just b-oxidation. 

 

 

Fig. 4.2 Palmitate causes a time dependent loss of mitochondrial membrane potential in NCMs. (A) 

Fluorescent images of NCMs with either bovine serum albumin (BSA, 51 mM, vehicle control) or palmitate (300 

mM) for the indicated time points and then stained with JC-1 dye. Red staining indicates mitochondria with 

polarized membranes whereas green staining indicates loss of mitochondrial membrane potential. (B) Graphs 

demonstrating the quantification of the red and green fluorescence in JC-1 dye stained NCMs treated with either 

BSA (51 mM, vehicle control) or palmitate (300 mM) for the indicated time points. A decrease in the red/green 

fluorescence ratio is an indicator of loss of mitochondrial membrane potential. *indicates p < 0.05 vs. BSA treated 

NCMs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

 

Because we previously found that Cpt1b protein was decreased following 24 h exposure to 

palmitate [17], we evaluated Cpt1b protein levels and found that they only began to decrease 

after ~14-16 h palmitate, which is long after the time at which we saw severely impaired FAO 
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(i.e. 8 h). We also tested for mitochondrial integrity by measuring the MMP using the JC-1 dye. 

We found that palmitate caused a loss of MMP, however the loss of MMP only began after the 

observed decrease in FAO. The loss of FAO capacity results in decreased formation of citric 

acid cycle derived reducing equivalents, which in turn can lead to loss of the proton gradient 

across the inner mitochondrial membrane. Therefore this suggests that loss of FAO may actually 

be causing the loss of MMP. The loss of MMP will translate to loss of mitochondrial integrity, 

which may in turn explain the loss of Cpt1b protein levels. Indeed we see a close time correlation 

between the loss of MMP and decreases in Cpt1b levels. The cause of palmitate-induced 

impairment of FAO is currently unclear but could include inhibition of Cpt1b activity or perhaps 

impairments in the expression or activities of b-oxidation and/or citric acid cycle enzymes 

(discussed below). 

 

Next we tested the possibility that this impaired FAO might be causing toxicity. Indeed we found 

that increased FAO induced by either oleate or carnitine were both associated with attenuated 

palmitate mediated cell death. Interestingly, oleate abolished palmitate mediated lipotoxicity 

while carnitine only attenuated it. This is in line with the fact that oleate has multiple effects 

including increased fatty acid oxidation, anti-ER stress [15], and anti-inflammatory effects [17], 

while carnitine is only an inducer of increased FAO through activation of Cpt1b. 

 

We further supported the notion that lipotoxicity is due at least in part to impaired FAO by 

showing that oleate which is not only non-toxic, but actually protective against palmitate, can 

actually cause lipotoxic cell death if FAO is inhibited. We showed this with both a 

pharmacological and genetic approach, thus further validating our hypothesis. The exact 
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mechanism of cell death in oleate treated NCMs that have impaired FAO is still unclear, but 

likely involves an accumulation of lipotoxic intermediates such as diacylglyceride. 

 

The potential role of impaired FAO as a contributor to lipotoxicity in diabetic cardiomyopathy 

may have been overlooked thus far because many studies have shown that b-oxidation is 

increased in mouse models of diabetic cardiomyopathy. In fact, it has been suggested that the 

high b-oxidation leads to cardiac dysfunction through an elevated degree of oxidative stress. 

Indeed, PPAR-a transgenic mice, which overexpress PPAR-a specifically in the heart, exhibit 

increased b-oxidation, lipid accumulation, oxidative stress and cardiomyopathy [3], which 

resembles the pathology of the diabetic heart. Furthermore, some in vivo studies have shown 

benefit in cardiac function by inhibiting b-oxidation [18,19], likely through enhanced glucose 

oxidation and the consequent improvement in cardiac efficiency. Importantly, in vivo studies 

using inhibitors of fatty acid oxidation have been only short term, thereby ignoring the harmful 

effects of long-term inhibition of fatty acid oxidation (i.e. enhanced lipid accumulation). 

Moreover, the mere association of increased b-oxidation with cardiac dysfunction in PPAR-a 

transgenic mice does not necessarily indicate causality, especially in light of the overt lipid 

accumulation.  
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Fig. 4.3 Enhancing fatty acid oxidation attenuates palmitate mediated lipotoxicity in primary NCMs. (A) 

Graph demonstrating significantly increased [14C]eCO2 production and hence fatty acid oxidation in NCMs pre-

treated with 300 mM palmitate þ 50 mM oleate for 8 h compared to NCMs pre-treated with palmitate alone. (B) 

Graph demonstrating significantly increased [14C]eCO2 production and hence fatty acid oxidation in NCMs pre-

treated with 300 mM palmitate þ 250 mM carnitine for 8 h compared to NCMs pre-treated with palmitate alone. 

(C) Graph demonstrating significantly increased propidium iodide (PI) fluorescence (an indicator of cell death) in 

palmitate (300 mM for 24 h) treated NCMs that is significantly reduced by the co-administration of 250 mM 

carnitine. *indicates p < 0.05 vs. BSA control, #indicates p < 0.05 vs. palmitate alone. 

 



163 
 

 

Fig. 4.4 Inhibiting fatty acid oxidation causes cell death in NCMs. (A) Graph showing significantly reduced 

14CeCO2 production and hence fatty acid oxidation in NCMs pre-treated with 300 mM oleate þ 300 mM etomoxir 

(Eto) compared to NCMs pre-treated with oleate alone. (B) Graph demonstrating propidium Iodide (PI) 

fluorescence (y-axis) in NCMs treated as indicated in x-axis (BSA ¼ 51 mM; oleate ¼ 300 mM; Eto. ¼ 300 mM). 

Increased fluorescence indicates increased cell death. (C) Graph demonstrating the mRNA expression of Cpt1b 

relative to housekeeping gene Rpl34 as determined by qRT-PCR in NCMs transduced with LentiVectors expressing 

either scrambled siRNAs (neg. control) or siRNAs targeting Cpt1b. (D)Western blot demonstrating the protein 

expression of Cpt1b in NCMs transduced with LentiVectors expressing either scrambled siRNAs (neg. control) or 

siRNAs targeting Cpt1b. Ponceau shows equal loading. (E) Graph demonstrating PI fluorescence (y-axis) in NCMs 

treated as indicated in x-axis. Increased fluorescence indicates increased cell death.*indicates p < 0.05 vs. oleate 

alone. #indicates p < 0.05 vs. corresponding siScram control. 

 

On the other hand, a strong argument against the potential toxicity of enhanced fatty acid 

oxidation comes from 3 important studies involving genetic modulation of the PPAR receptors. 
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Indeed these studies have shown that enhanced fatty acid oxidation was actually associated with 

enhanced cardiac function and survival, while impaired fatty acid oxidation was associated with 

lipid accumulation and cardiomyopathy. Firstly, knockout of CD36/FAT (fatty acid 

translocase), the key fatty acid uptake protein in cardiomyocytes, significantly attenuates cardiac 

dysfunction and mortality in PPAR-a transgenic mice despite persistent elevated boxidation 

[20]. Secondly, PPAR-a knockout in mice with cardiac overexpression of PPAR-g caused 

elevated b-oxidation but enhanced cardiac function and survival, compared to mice with PPAR-

g overexpression alone [21]. Finally, PPAR-d knockout mice exhibit impaired fatty acid 

oxidation, lipid accumulation, and cardiomyopathy [22]. As such, it is possible that although 

diabetic cardiomyopathy is associated with elevated b-oxidation, it may not be elevated to its 

full potential. Indeed, there may be some factors that are driving increased FAO, while others 

are simultaneously inhibiting it. Therefore further elevation of FAO may theoretically decrease 

lipid accumulation and hence lipotoxicity. 

 

There also exists the possibility that the observed increase in β-oxidation in diabetic 

cardiomyopathy does not equate to an increased degree of complete oxidation, due to 

impairments in the citric acid cycle (CAC). The notion of an impaired CAC is supported by a 

study that demonstrated that while citrate levels were normal, isocitrate and a-ketoglutarate 

levels were decreased in the diabetic heart [23]. They demonstrated that the decrease in 

intermediates was due to an impaired aconitase activity, the enzyme responsible for the 

conversion of citrate to isocitrate. Another study has shown decreased levels of CAC enzymes 

in diabetic mouse hearts [24]. Finally, perhaps even more important than the decrease in lipid 

clearance resulting from an impaired CAC would be the loss of the proton gradient and ATP 
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synthesis. This would in turn cause loss of mitochondrial membrane potential, release of 

cytochrome C, and ultimately activation of the intrinsic apoptotic pathway. 

 

In conclusion, here we show that lipotoxicity is due at least in part to impaired FAO. Indeed 

palmitate a toxic saturated fatty acid impairs FAO and causes cell death. Enhancing FAO in 

palmitate treated cardiomyocytes attenuates cell death. Conversely, inhibition of FAO causes 

oleate to become a toxic fatty acid. This work thereby provides a stimulus for further 

investigation into the possibility of enhancing fatty acid oxidation in diabetic patients as a 

therapeutic modality. 
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5.2 Context 

 

 

Fatty acid oxidation is a three-step process. First, fatty acids are transported into mitochondria 

to be oxidized. Second, fatty acids enter β-oxidation and generate acetyl-CoA. Third, acetyl-

CoA enters the citric acid cycle to be further catabolized. CO2 is generated during the citric acid 

cycle. Our previous results show a decrease in CO2 production in palmitate-treated 

cardiomyocytes compared to oleate-treated cardiomyocytes. Hence, we examined each step in 

order to elucidate the mechanism of palmitate-mediated inhibition of fatty acid oxidation. 

Treating cardiomyocytes with palmitate for eight hours was enough to significantly attenuate 

fatty acid oxidation but not long enough to inhibit CPT1B activity. Our results suggest that 

palmitate-mediated inhibition of fatty acid oxidation is downstream of CPT1B. Interestingly, 

we found that acetyl-CoA levels, the final product of β-oxidation, are decreased in palmitate-

treated cells. Simultaneously, isocitrate dehydrogenase activity and net aconitase activity (two 

enzymes that catalyze two steps of CAC) were impaired in palmitate-treated cells. 
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5.3 Abstract 

 

 

Background/Aims: Diabetic hearts exhibit intracellular lipid accumulation. This suggests that 

the degree of fatty acid oxidation (FAO) in these hearts is insufficient to handle the elevated 

lipid uptake. We previously showed that palmitate impaired the rate of FAO in primary rat 

neonatal cardiomyocytes. Here we were interested in characterizing the site of FAO impairment 

induced by palmitate since it may shed light on the metabolic dysfunction that leads to lipid 

accumulation in diabetic hearts. Methods: We measured fatty acid oxidation, acetyl-CoA 

oxidation, and carnitine palmitoyl transferase (Cpt1b) activity. We measured both forward and 

reverse aconitase activity, as well as NAD+ dependent isocitrate dehydrogenase activity. We 

also measured reactive oxygen species using the 2’, 7’-Dichlorofluorescin Diacetate (DCFDA) 

assay. Finally we used thin layer chromatography to assess diacylglycerol (DAG) levels. 

Results: We found that palmitate significantly impaired mitochondrial β-oxidation as well as 

citric acid cycle flux, but not Cpt1b activity. Palmitate negatively affected net aconitase activity 

and isocitrate dehydrogenase activity. The impaired enzyme activities were not due to oxidative 

stress but may be due to DAG mediated PKC activation. Conclusion: This work demonstrates 

that palmitate, a highly abundant fatty acid in human diets, causes impaired β-oxidation and 

citric acid cycle flux in primary neonatal cardiomyocytes. This metabolic defect occurs prior to 

cell death suggesting that it is a cause, rather than a consequence of palmitate mediated 

lipotoxicity. This impaired mitochondrial metabolism can have important implications for 

metabolic diseases such as diabetes and obesity. 
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5.4 Introduction 

 

 

Cardiac disease is the primary cause for morbidity and mortality in the diabetic population [1]. 

Since diabetes impairs glucose uptake and oxidation there is a compensatory increase in fatty 

acid uptake. This in turn leads to cardiac lipid accumulation and ensuing lipotoxicity. Several 

studies have pointed to the role of lipotoxicity in diabetic cardiomyopathy [2-7]. Furthermore, 

several studies have shown a correlation between the degree of lipid accumulation and cardiac 

dysfunction in human diabetic hearts [8-11]. 

 

Lipids accumulate in the diabetic heart because uptake exceeds lipid clearance. Lipid clearance 

in the heart is primarily dependent on fatty acid oxidation (FAO). FAO begins by carnitine 

palmitoyl transferase (Cpt1b) mediated FA uptake into mitochondria. Once inside the 

mitochondrion fatty acids are oxidized by the progressive removal of 2 carbons with each cycle 

of β-oxidation. The resultant 2-carbon acetyl-CoA is fed into the citric acid cycle (CAC) where 

it is oxidized to CO2 with the consequent production of reducing equivalents, including NADH 

and FADH2. The reducing equivalents are then fed into the electron transport chain (ETC), 

which drives oxidative phosphorylation. 

 

Some models of diabetic cardiomyopathy including leptin or leptin receptor deficient mice have 

shown that β-oxidation is actually increased in the diabetic heart [12, 13]. However studies in 

other models show either no change [14, 15] or decreased oxidation [16, 17]. These 

discrepancies might be explained by differences in species, concentration of fatty acid used to 
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measure oxidation, and/or animal age. For instance, two studies evaluating diabetic humans as 

well as a study of a porcine model of diabetes all showed decreased FAO with diabetes [18-20], 

possibly indicating a difference between rodents and higher order mammalians. Another study 

showed that diabetic rat hearts exhibited significantly enhanced FAO at low concentrations of 

FA, but FAO was significantly depressed at high concentrations [21]. This is important because 

serum FA levels are generally higher in diabetics. Finally, age and associated pathological 

sequelae may be an important determinant of FAO in diabetics as older diabetic rats exhibited 

significant reductions in FAO compared to both age matched controls and younger diabetic rats 

[22]. Another potentially limiting factor is that many of these studies only measured β-oxidation, 

which is merely the first half of FAO and does not take into consideration downstream steps 

including acetyl-CoA oxidation in the CAC nor the components of the electron transport chain 

(ETC). Thus it is interesting that several studies show impaired mitochondrial function in the 

heart of diabetic humans and animals as evidenced by decreased fatty acid driven respiration 

[20, 23-27]. These latter studies implicate potential deficiencies in either events upstream of β-

oxidation, such as mitochondrial uptake (i.e. Cpt1b activity) or downstream events including 

citric acid cycle flux or the electron transport chain. In support of the notion that diabetes causes 

metabolic derangements downstream of β-oxidation, Lin et al. found an impairment in net 

aconitase enzyme activity in the diabetic rat heart [28]. Aconitase is a key CAC enzyme 

responsible for the conversion of citrate to isocitrate. 

 

It should be noted that an increase in β-oxidation without a concomitant increase in citric acid 

cycle flux would nonetheless compromise metabolism of the heart by impairing energy 

production and/or by providing a surplus of substrates for re-synthesis of fatty acids. Regardless 
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of whether or not fatty acid oxidation is increased in diabetic hearts, the fact remains that diabetic 

hearts accumulate lipid suggesting that the degree of FAO, whatever it may be, is not sufficient 

in the face of elevated FA uptake. This leads to the question as to whether increasing FAO would 

attenuate lipotoxicity in diabetic cardiomyopathy. 

 

Interestingly, we have shown that increasing fatty acid oxidation is associated with attenuated 

lipotoxicity in primary cardiomyocytes [29]. Specifically we previously showed that palmitate, 

a lipotoxic FA, impaired fatty acid oxidation in primary rat neonatal cardiomyocytes (NCMs) 

and that enhancing fatty acid oxidation attenuated palmitate-mediated lipotoxicity. In contrast, 

we also demonstrated that impairing fatty acid oxidation induced lipotoxicity. Here we aimed 

to determine how palmitate impairs FAO in primary cardiomyocytes. We found that palmitate 

impairs both β-oxidation and citric acid cycle flux, but not the uptake of FA into mitochondria. 

 

 

5.5 Materials and Methods 

 

 

Rat neonatal cardiomyocytes (NCM) culture: NCMs were isolated from hearts of 1-day-old 

rats. Hearts were isolated and tissue was washed several times in digestion buffer containing 

137 mM NaCl, 5.36 mM KCl, 0.81mM MgSO4, 5.55 mM dextrose, 0.44 mM KH2PO4, 0.34 

mM Na2HPO4, 20 mM HEPES, and 50 μg/ml gentamicin. Tissue was then incubated in 

digestion buffer with collagenase (50units/ml). Cells in suspension resulting from the tissue 

digestion were transferred to ice cold FBS every 10-20 min. This step was repeated until all 
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tissue was digested. Cells in FBS were pelleted and then re-suspended in DMEM containing 

10% FBS. Cells were plated in petri dish for 1h at 37 ˚C to allow fibroblasts to adhere. The non-

adherent cardiomyocytes were then plated at a density of ~40,000 cells/cm2. NCMs were 

cultured in DMEM/F12 + 2% FBS + 100 μM bromodeoxyuridine for a minimum of 7 days prior 

to treatments to allow for maturation and the switch from primarily glucose oxidation to 

primarily fatty acid oxidation. 

 

Fatty acid preparation: Oleate (Sigma, O7501) was solubilized in anhydrous methanol while 

palmitate (Sigma, P9767) was solubilized in 150 mM NaCl by heating to 70˚C. Both fatty acids 

were then complexed to bovine serum albumin (BSA) in a 6:1 ratio as previously described [29]. 

 

Fatty acid oxidation (FAO) assay: Cells were pretreated with 300 μM oleate or 300 μM 

palmitate for 8 h. Media was removed and cells were washed 2 times with warm PBS. 

Radiolabelled oleate (American Radio-chemicals, ARC 0297) or palmitate (American Radio-

chemicals, ARC 0172A) were solubilized in non-bicarbonate assay buffer (114 mM of NaCl, 

4.7 mM of KCl, 1.2 mM of KH2PO4, 1.2 mM of MgSO4, 0.5% fatty acid free BSA) and cells 

were incubated with 0.4μCi of 14C- oleic acid or 14C- palmitic acid for 2 hours. To determine 

CO2 production 6N HCl was added to cell media and CO2 was captured by a filter paper soaked 

in 2M NaOH. The filter paper was then added to a scintillation vial with scintillation fluid and 

radioactivity was read with the Beckman LS6500 scintillation counter. 

 

To obtain acid soluble metabolites (ASM) cardiomyocytes were collected by trypsinization and 

re-suspended in 1M perchloric acid and then homogenized using 25G gauge needle. Samples 
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were centrifuged at 17,000g and the supernatant was added to scintillation fluid and counted 

using Beckman LS6500 scintillation counter. 

 

To obtain water soluble metabolites (WSM), cardiomyocytes were re-suspended in 250M 

sucrose/ 50M tris buffer and homogenized with 25G gauge needle. Water saturated butanol was 

added to each sample and butanol/water phases were separated by centrifugation at 1000g for 5 

min. The water phase was added to scintillation fluid and counted using Beckman LS6500 

scintillation counter. The radioactivity from samples was normalized to radioactivity of loading 

control for each radiolabelled fatty acid (i.e. 14C-oleate and 14C- palmitate) and to protein 

concentration. Data are expressed as picomols/μg protein/min. 

 

Acetyl-CoA oxidation assay: This assay was done identically to the fatty acid oxidation assay 

described above except cells were exposed to 14C-Acetate for 1 hour (American Radio-

chemicals, ARC0101) instead of radiolabelled fatty acids. Radioactivity from samples was 

normalized to radioactivity of loading control and to protein concentration. Data are expressed 

as picomols/μg protein/min. 

 

Aconitase activity assay: Aconitase reverse activity was measured by quantifying the synthesis 

rate of cis-aconitate (Abcam, ab109712). Briefly, crude mitochondria were isolated from 

cardiomyocytes using buffer containing 10 μM tris-Mops, 1 μM EGTA/tris and 200 μM sucrose. 

50 μg of crude mitochondria were re-suspended in aconitase preservation buffer with isocitrate. 

Cis-aconitate level was measured by reading the absorbance at 240 nm for 30 min at 37 ˚C. 

Aconitase forward activity was carried out identically however citrate was used as substrate in 
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place of isocitrate. Data are presented as change (Δ) in absorbance from baseline to the end of 

the experiment. 

 

Isocitrate dehydrogenase (IDH) activity assay: IDH activity was measured (Abcam, 

ab102528). Briefly, cardiomyocytes were treated with oleate or palmitate for 8 h then isolated 

by trypsinization. Cells were re-suspended in supplied buffer containing NAD+ and NADH 

formation was determined by measuring the absorbance at 450 nm for 30 minutes at 37 ˚C. Data 

are presented as change (Δ) in absorbance from baseline to the end of the experiment. 

 

Carnitine palmitoyl transferase (Cpt1b) activity assay: Cpt1b activity assay was carried out 

as previously described [30]. Briefly, cardiomyocytes were treated with 300 uM palmitate or 

300 uM oleate for 8 h followed by [1-C14] Carnitine for 30min. Radiolabeled acyl-carnitine 

was separated from radiolabeled carnitine using butanol-water phase separation. Acyl-carnitine 

levels, indicating cpt1b activity, were measured by a scintillation counter (Beckman LS6500). 

Specifically, organic phase radioactivity was normalized to loading control radioactivity and 

protein concentration and expressed as picomol/μg protein /min. 

 

2’, 7’-Dichlorofluorescin Diacetate (DCFDA) assay: The DCFDA assay was carried out as 

previously described with slight modifications [31]. Briefly, cardiomyocytes were treated with 

oleate or palmitate for 8 h and then cells were washed twice with Krebs- Ringer HEPES buffer 

then incubated with 10 μM DCFH-DA. Fluorescence was read (485 nm excitation and 530 nm 

emission) for 30 min at 37 ˚C using the Synergy2 microplate reader. Data are presented as 

change (Δ) in fluorescence from baseline to the end of the experiment. 
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Thin Layer Chromatography (TLC): Lipid samples were isolated by the Bligh and Dyer 

method then spotted on a silica gel plate. The silica plate was then placed in a TLC tank allowing 

the lipids to migrate with the mobile phase by capillary action. The TLC tank was equilibrated 

with 150ml of 75:75:1.5 Chloroform: DiethylEther: Acetic acid. Lipid spots were then 

visualized on silica plate by rhodamine labeling. Mono-, Di-, & Triglyceride Mix (Sigma, 1787- 

1AMP) was used as standard. 

 

Western blotting: Western blotting was carried out as previously described, [29, 32] with the 

anti-IDH3a antibody (1/200 dil. Santa Cruz biotechnology, SC-514358), 4-HNE antibody 

(1/1000, Abcam, ab46545) Histone H3 antibody (Santa Cruz biotechnology, SC-10809), and 

the α-tubulin (Santa Cruz biotechnology, SC-23948). 

 

Fatty acid uptake assay: Cardiomyocytes were pre-treated with either 300 μM oleate or 

palmitate for 8 hours. Following this cardiomyocytes were exposed to 0.5UCi/ml of radiolabeled 

oleate or palmitate (in a buffer containing 114 mM of NaCl, 4.7 mM of KCl, 1.2 mM of 

KH2PO4, 1.2 mM of MgSO4) for 15 min. Cells were then washed twice in ice-cold PBS and 

then isolated by trypsinization. Uptake of radiolabelled fatty acids was measured by scintillation 

counter (Beckman LS6500) and normalized to protein abundance. 

 

Statistical analysis: All data are presented as mean ± standard error. Statistics were carried out 

with StatGrapher software. Students T-test was used for two-group comparisons. Multiple 

groups were compared using one-way ANOVA with Tukey post-hoc test. Data involving 



180 
 

multiple groups and multiple conditions (e.g. TLC analysis) were analysed by two-way ANOVA 

with Tukey post-hoc test. 

 

 

5.6 Results 

 

5.6.1 Palmitate impairs complete FAO but not Cpt1b activity  

 

 

Here we demonstrated that an 8-hour treatment of 300 μM palmitate impaired complete FAO in 

primary neonatal cardiomyocytes (NCMs) compared to cells treated with an equivalent time and 

dose of oleate (Fig. 5.1A). Specifically, NCMs treated with palmitate had a marked decrease in 

CO2 production compared to oleate treated cells. A similar degree of impairment was observed 

in cells treated with palmitate + carnitine compared to cells treated with oleate + carnitine (Fig. 

5.1B). To verify that the difference was not due to altered uptake rates between cells pre-treated 

with oleate compared to those pre-treated with palmitate, we evaluated uptake rates of 

radiolabelled oleate or palmitate following 8 hour pre-treatment of either 300 μM oleate or 300 

μM palmitate, respectively. We found no difference in uptake rates between the two different 

pre-treatments (Fig. 5.1D). 
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Fig. 5.1 Palmitate impairs complete fatty acid oxidation in primary neonatal cardiomyocytes (NCMs). (A) 

Graph showing significantly decreased CO2 production in NCMs treated with 300 μM palmitate for 8 hours 

compared to those treated with 300 μM oleate. (B) Graph showing significantly decreased CO2 production in NCMs 

treated with 300 μM palmitate + 250 μM carnitine for 8 hours compared to those treated with 300 μM oleate + 250 

μM carnitine. (C) Graph showing no difference in Cpt1b activity (measured as acyl-carnitine production) between 

NCMs treated with 300 μM palmitate compared to NCMs treated with 300 μM oleate for 8 hours. (D) Graph 

showing no difference in uptake of radiolabelled oleate or palmitate in NCMs pre-treated with either 300 μM oleate 

or 300 μM palmitate for 8 hours, respectively. 
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Fig. 5.2 Palmitate impairs ß-oxidation in primary neonatal cardiomyocytes (NCMs). (A) Graph showing 

significantly decreased water soluble metabolites (WSMs) from NCMs treated with 300 μM palmitate for 8 hours 

compared to those treated with 300 μM oleate. (B) Graph showing significantly decreased WSMs from NCMs 

treated with 300 μM palmitate + 250 μM carnitine for 8 hours compared to those treated with 300 μM oleate+ 250 

μM carnitine. 

 

We previously showed that Cpt1b protein content was not altered under these conditions [33]. 

Therefore, here we assessed if palmitate decreased Cpt1b activity rather than expression. We 

evaluated Cpt1b activity by measuring the production of acyl-carnitines in NCMs pre-treated 

with either oleate or palmitate. We found that Cpt1b activity was not altered by palmitate (Fig. 

5.1C). This is supported by the observation that co-administration of carnitine increases FAO to 

the same degree in either oleate or palmitate treated cells (i.e. both ~2 fold over basal levels of 

each respective fatty acid without carnitine, data not shown). This suggests that palmitate 

mediated impairment of FAO occurs downstream of Cpt1b. 



183 
 

 

Similar results were found in H9C2 cardiomyoblasts. Indeed, palmitate significantly reduced 

CO2 production but did not have any effect on Cpt1b activity (data not shown). 

 

 

5.6.2 Palmitate impairs β-oxidation 

 

 

To test the effect of palmitate on β-oxidation we quantified acid soluble metabolites (ASM), an 

established technique for assessing the degree of β-oxidation by quantifying the production of 

fatty acid metabolites with 6 or less carbons. Because the radiolabelled fatty acid contains the 

label on the first carbon, measured ASM metabolites should represent acetyl-CoA produced by 

β-oxidation of fatty acids and/or intermediates of the citric acid cycle derived from said acetyl-

CoA. We found that pre-treatment with palmitate led to a small non-significant decrease in ASM 

production compared to cells pre-treated with oleate (data not shown) suggesting that β-

oxidation may be impaired by palmitate. However, we found that etomoxir only partially 

prevented radioactivity in ASM samples. Indeed, ASM samples from cells treated with etomoxir 

only had a ~2 fold reduction in radioactivity (data not shown). In contrast, etomoxir nearly 

abolished the production of radioactive CO2 (~10 fold decrease, data not shown). Because 

etomoxir is an inhibitor of Cpt1b, it prevents fatty acids from entering mitochondria and thus 

prevents mitochondrial β-oxidation. Therefore, the presence of high radioactivity in the ASM 

samples from cells treated with etomoxir suggests that oleate and palmitate are being oxidized 

to a significant degree in peroxisomes or alternatively, that full–length fatty acids are partially 
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soluble in 1 M perchloric acid. This data implies that in our hands, ASM analysis is not entirely 

specific for mitochondrial β-oxidation. 

 

 

Fig. 5.3 Palmitate impairs citric acid cycle (CAC) flux in primary neonatal cardiomyocytes (NCMs). (A) 

Graph showing significantly decreased CO2 production from radiolabelled acetyl-CoA in NCMs treated with 300 

μM palmitate for 8 hours compared to those treated with 300 μM oleate. (B) Graph showing no significant 

difference in forward aconitase activity in NCMs treated with 300 μM palmitate for 8 hours compared to those 

treated with 300 μM oleate. (C) Graph showing significantly increased reverse aconitase activity in NCMs treated 

with 300 μM palmitate for 8 hours compared to those treated with 300 μM oleate. (D) Graph showing significantly 

decreased isocitrate dehydrogenase (IDH) activity in NCMs treated with 300 μM palmitate for 8 hours compared 

to those treated with 300 μM oleate. (E) Western blot showing no difference in IDH3a protein levels in NCMs 

treated with 300 μM palmitate for 8 hours compared to those treated with 300 μM oleate. Histone was used as 

loading control. 
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Therefore we established a novel technique in which we measured water-soluble metabolites by 

separating full-length fatty acids in an organic phase while measuring water-soluble metabolites 

(WSMs) in the aqueous phase. WSMs include acetyl-CoA produced by β-oxidation of fatty 

acids as well as any of the downstream citric acid cycle intermediates derived from the latter 

acetyl-CoA. We were able to nearly abolish radioactivity in WSM samples from cells treated 

with etomoxir suggesting that this technique is much more specific for measuring mitochondrial 

β-oxidation (data not shown). Interestingly, we found that treating NCMs with 300 μM palmitate 

for 8 hours led to a significant decrease in WSMs compared to NCMs treated with 300 μM 

oleate for the same time (Fig. 5.2A), suggesting that palmitate impairs β-oxidation in NCMs. 

Co-administration of carnitine did not rescue the palmitate mediated decrease in WSM 

production (Fig. 5.2B). Similar results were found in H9C2 cardiomyoblasts. Indeed, palmitate 

significantly reduced WSM production in H9C2s (data not shown). 

 

 

Fig. 5.4 300 μM oleate or palmitate for 8 hours induces increased ROS generation but not overt oxidative 

stress in primary neonatal cardiomyocytes (NCMs). (A) Graph showing significantly increased DCFDA flu-

orescence in NCMs treated with 300 μM oleate or 300 μM palmitate for 8 hours compared to those treated with 
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BSA. (B) Western blot showing no difference in 4-HNE immunoreactivity in NCMs treated with BSA, 300 μM 

oleate, or 300 μM palmitate for 8 hours. Tubulin was used as loading control. 

 

 

5.6.3 Palmitate impairs citric acid cycle flux 

 

 

To assess if palmitate had any effect on the citric acid cycle (CAC) we measured the rate of 

acetyl-CoA oxidation. Acetyl-CoA is oxidized by the citric acid cycle which is downstream of, 

and thus independent of β-oxidation. Therefore acetyl-CoA oxidation is a measure of citric acid 

cycle flux. Interestingly, we found a significant decrease in acetyl-CoA oxidation in 300μM 

palmitate treated NCMs compared to NCMs treated with 300 μM oleate (Fig. 5.3A) suggesting 

that palmitate also impairs citric acid cycle flux. 

 

Aconitase is a key proximal CAC enzyme that has been previously shown to be differentially 

regulated in diabetic hearts [28], therefore we were interested in evaluating if palmitate had any 

effect on this enzyme. Aconitase catalyzes the conversion of citrate to isocitrate through the 

intermediate formation of aconitate. We measured both forward activity (citrate to aconitate) 

and reverse activity (isocitrate to aconitate) in NCMs treated with either oleate or palmitate for 

8 hours. We found that there was no significant difference in forward activity between oleate 

and palmitate treated NCMs (Fig. 5.3B). In contrast, palmitate led to a significantly enhanced 

reverse activity (Fig. 5.3C). This increased reverse activity consequently causes a net decrease 

in isocitrate levels thus contributing to decreased CAC flux. 
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Next we evaluated IDH activity because it is widely considered the rate-limiting step of the 

CAC [34]. We found that there was a significant decrease in IDH activity in palmitate treated 

NCMs compared to oleate treated NCMs (Fig. 5.3D). To determine if the attenuated IDH 

activity was due to decreased protein levels, we performed a western blot to assess levels of 

IDH3, the mitochondrial isoform. Not surprisingly considering the short exposure time of 

palmitate (i.e. 8 hours), there was no decrease in IDH protein levels in palmitate treated NCMs 

compared to oleate treated NCMs (Fig. 5.3E). Therefore this indicates that palmitate negatively 

regulates IDH activity but not expression. 

 

 

5.6.4 Palmitate does not impair FAO through oxidative stress 

 

 

Several reports indicate that oxidative stress has deleterious effects on mitochondrial enzymes 

[35-38], therefore we assessed if this might be the causal mechanism for palmitate induced FAO 

impairment. To test this we measured ROS generation using the redox sensitive dye DCFDA 

[31]. Interestingly we found that pre-treatment with either oleate or palmitate caused significant 

increases in ROS generation compared to control cells treated with BSA alone (Fig. 5.4A). To 

evaluate if this increased degree of ROS generation translated into oxidative stress we evaluated 

the degree of 4-Hydroxynonenal (4-HNE) protein adduct formation in cells treated with either 

BSA, oleate or palmitate. Interestingly there was no increase in 4-HNE protein adducts in either 

oleate or palmitate treated cells (Fig. 5.4B), indicating that the observed increase in ROS 
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generation was not sufficient to overcome the cells’ endogenous antioxidant system and 

suggests that this increase in ROS is not the cause of palmitate mediated FAO impairment. 

 

 

Fig. 5.5 Palmitate induces increased 1,2 diacylglycerol (DAG) in primary neonatal cardiomyocytes (NCMs). 

(A) Image of representative silica plate spotted with lipids isolated from cells treated with either BSA, 300 μM 

oleate or 300 μM palmitate for 24 hours. (B) Graph showing significantly increased 1,2 DAG in NCMs treated 

with 300 μM palmitate compared to those treated with either BSA or 300 μM oleate. Graph also shows significantly 

increased TAG in NCMs treated with 300 μM oleate compared to NCMs treated with either BSA or 300 μM 

palmitate. * indicates p < 0.05 vs. BSA treated NCMs. # indicates p < 0.05 vs. NCMs treated with 300 μM oleate. 

 

 

5.6.5 Palmitate causes the accumulation of sn1,2 Diacylglycerol (1,2 DAG) 

 

 

Here we showed that aconitase is differentially regulated in the same manner as observed in 

diabetic hearts by Lin et al. [28]. That is, they found that aconitase exhibited significantly 

enhanced reverse activity without a difference in forward activity just as we have reported here 

for palmitate treated NCMs. In that study they attributed this differential regulation to PKC-β 
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mediated phosphorylation of aconitase. Because PKC is a conventional isoform, which is 

activated by DAG, we were interested in assessing if palmitate induced an increase in 

intracellular DAG compared to BSA (control) or oleate treated NCMs. Interestingly, we found 

that palmitate exhibited significantly more 1,2 DAG than BSA and oleate treated NCMs (Fig. 

5.5A-B). On the other hand both oleate and palmitate induced an increase in 1, 3 DAG compared 

to BSA control cells. 

 

Together this data shows that palmitate significantly impairs both β-oxidation and the citric acid 

cycle, but does not affect Cpt1b activity. This has important implications for diabetic 

cardiomyopathy because impairment in FAO can lead to lipid accumulation and lipotoxicity. 

 

 

5.7 Discussion 

 

 

We previously demonstrated that palmitate lipotoxicity in cardiomyocytes was associated with 

impaired FAO and that enhancing FAO decreased lipotoxicity [33]. In addition, we also 

previously showed that inhibiting FAO by blocking Cpt1b either pharmacologically or 

genetically caused oleate, which is normally non-toxic, to induce cell death. This latter work 

suggests that impaired FAO can contribute to lipotoxicity likely by promoting the accumulation 

of toxic lipid intermediates. This led us to investigate which steps of FAO palmitate impairs. 

Here we showed that palmitate significantly impaired β-oxidation and citric acid cycle flux, with 

no effects on Cpt1 activity. Cpt1b catalyzes the rate-limiting step in FAO. As such it is a key 
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site for regulation of FAO. However, we found that Cpt1b activity was not different between 

oleate and palmitate treated NCMs suggesting that this is not the site of palmitate induced 

impairment. In support of this, we found that addition of carnitine increased oleate and palmitate 

oxidation to equivalent degrees (i.e. both were induced ~2 fold compared to basal levels of each 

respective fatty acid without carnitine). 

 

Since Cpt1b activity was not affected by palmitate, we next evaluated the degree of β-oxidation 

in NCMs treated with either oleate or palmitate. To this end we measured the abundance of acid 

soluble metabolites in cells treated with oleate and palmitate (as described in methods). We 

found a small reduction in ASM levels from NCMs treated with palmitate compared to those 

treated with oleate. However, as described in the results above, we found that ASM analysis 

may not be entirely specific for mitochondrial β-oxidation. To overcome this limitation we 

adapted the protocol used for Cpt1b activity assay in which free carnitine is separated from 

acylated carnitine through the use of organic/aqueous phase separation. By separating cell 

components into an aqueous phase and an organic phase we can separate full length fatty acids 

in the organic phase from acetyl-CoA and other water soluble metabolites (such as intermediates 

of the citric acid cycle) in the aqueous phase. Indeed this assay appears to be more specific for 

mitochondrial β-oxidation since we nearly abolish the production of WSMs in NCMs treated 

with oleate + etomoxir. Through the WSM analysis we were able to confirm a significant 

decrease in β-oxidation in NCMs treated with palmitate compared to those treated with oleate. 

This has important implications for lipotoxicity of the heart. Indeed we have previously 

demonstrated that impairing FAO causes toxicity in NCMs treated with non-toxic oleate. 
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Therefore inhibition of β-oxidation may be an important cause for palmitate-mediated 

lipotoxicity. 

 

The mechanism of palmitate-mediated inhibition of β-oxidation is currently unknown but may 

be related to palmitate mediated post-translational modifications (PTMs). Indeed fatty acids 

have been shown to induce PTMs in mitochondrial proteins [39]. These PTMs include 

phosphorylations, acetylations and palmitoylations [28, 40, 41]. Currently there is a strong 

debate as to whether post-translational acetylation increases or decreases β-oxidation enzyme 

activity. Indeed studies have shown that acetylation decreased LCAD activity and that Sirt3, a 

deacetylase could restore function [42, 43]. On the other hand β-hydroxyacyl CoA 

dehydrogenase (HADH) has been shown to be activated with acetylation [44]. Which enzymes 

are post-translationally modified and what types of PTMs are regulating these enzymes will be 

the focus of future studies. 

 

Next we assessed citric acid cycle flux in NCMs by measuring oxidation of acetyl- CoA. 

Interestingly, we found that palmitate significantly impaired oxidation of acetyl- CoA compared 

to oleate. Because acetyl-CoA is the product of β-oxidation, its oxidation is dependent only on 

citric acid cycle activity and not mitochondrial β-oxidation activity. Therefore this indicates that 

palmitate also inhibits the citric acid cycle. The citric acid cycle is a central hub for cellular 

metabolism. Indeed it is responsible for oxidation of acetyl- CoA not only from FAs but also 

from glucose derived pyruvate. The reducing equivalents produced through the latter oxidation 

of acetyl-CoA are necessary to maintain mitochondrial membrane potential and therefore drive 

oxidative phosphorylation. Also it is an important source of substrates for a variety of 
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biosynthetic pathways. Therefore any impairment in this cycle can have profound effects on 

cellular metabolism. Interestingly, we found that reverse aconitase activity was significantly 

enhanced while forward activity was unchanged in NCMs treated with palmitate compared to 

those treated with oleate. The increase in reverse activity (i.e. production of aconitate from 

isocitrate) reduces the isocitrate levels necessary for the downstream isocitrate dehydrogenase 

(IDH). This reduction in substrate for IDH thus can reduce CAC flux leading to decreased 

oxidation of acetyl-CoA and decreased reducing equivalents. This not only impairs energy 

production by decreasing NADH levels necessary for ETC activity and oxidative 

phosphorylation but also potentially results in increased levels of substrates for de novo fatty 

acid synthesis. 

 

The finding of palmitate induced increase in reverse aconitase activity with unchanged forward 

activity is actually very relevant to in vivo diabetic cardiomyopathy. Indeed Lin et al. [28] 

actually found the same phenomenon in hearts of diabetic rats. Indeed they found that diabetic 

rats exhibited significantly increased reverse aconitase activity with normal forward activity and 

that this was due to PKC-β mediated phosphorylation of aconitase. PKC-β is a conventional 

PKC isoform which is activated by diacylglycerol (DAG). Therefore we evaluated if palmitate 

induced an increase in DAG compared to oleate. Interestingly, we found that palmitate resulted 

in significantly less TAG but significantly more DAG than oleate in NCMs. Moreover we found 

that the real difference was in the levels of the sn1,2 DAG isomer and not the sn1,3 DAG isomer. 

This is of utmost importance because previous studies have shown that it is the 1,2 and not the 

1,3 DAG isomer that is responsible for PKC activation [45]. Together this data shows that CAC 
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flux is impaired by palmitate at least in part by a net decrease in aconitase mediated isocitrate 

production and that this may be occurring through PKC mediated phosphorylation of aconitase. 

 

Next we assessed if isocitrate dehydrogenase activity was affected by palmitate. Interestingly 

we found that palmitate significantly attenuated IDH activity as well. Importantly, the decrease 

in IDH activity in palmitate treated cells was independent of the altered aconitase activity 

because the IDH activity assay measured the formation of α-ketoglutarate from supplied, not 

endogenous, isocitrate. To verify that this was not due to targeted protein degradation, we 

assessed IDH protein levels. Not surprisingly, considering the short 8-hour incubation time, we 

found no difference in protein levels. Reduced IDH activity has a major impact on CAC flux as 

it catalyzes an irreversible reaction producing both CO2 and NADH. The mechanism of IDH 

inhibition by palmitate is currently unknown. 

 

Oxidative stress is a major contributing factor to diabetic cardiomyopathy and several studies 

have shown that oxidative stress is deleterious to mitochondrial enzyme function [35-38]. 

Therefore we assessed ROS generation using the DCFDA assay and oxidative stress by 

determination of 4-HNE immunoreactivity. 4-HNE immunoreactivity is a marker for oxidative 

stress because lipid peroxidation by ROS leads to increased levels of 4-HNE adducts on cellular 

proteins [46]. Interestingly we found that palmitate significantly increased ROS generation. 

However, this is unlikely the cause of IDH inhibition for 2 reasons. Firstly, the degree of ROS 

generation was equivalent to oleate induced ROS generation. Since IDH activity was decreased 

in palmitate compared to oleate treated NCMs yet both oleate and palmitate induced ROS 

generation to similar degrees, it is unlikely that this as a cause for inhibition. Secondly we found 
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no evidence of oxidative stress in oleate or palmitate treated cells (as determined by 4-HNE 

immunoreactivity) compared to control (BSA treated) cells indicating that the elevated ROS 

observed did not overwhelm the cells endogenous anti-oxidant potential. This is supported by a 

previous study which showed that palmitate mediated cell death was not due to ROS [47]. 

Together this data demonstrates that palmitate attenuates both β-oxidation and citric acid cycle 

flux likely in part through DAG mediated PKC activation. The fact that palmitate is one of the 

most abundant fatty acids in human diets suggests that this may be a contributing factor to the 

lipotoxicity observed in diabetic cardiomyopathy. 

 

 

5.8 Acknowledgements  

 

 

This work was supported by the Heart and Stroke foundation of Canada (G14-0005849) and the 

Montreal Heart Institute Foundation. 

 

Disclosure Statement: No conflict of interest. 

 

 

 

 

 



195 
 

5.9 References 

 

 

1    Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith 

      SC, Jr., Sowers JR: Diabetes and cardiovascular disease: a statement for healthcare 

      professionals from the American Heart Association. Circulation 1999;100:1134-1146.  

2    Ussher JR: The role of cardiac lipotoxicity in the pathogenesis of diabetic cardiomyopathy. 

      Expert Rev Cardiovasc Ther 2014;12:345-358.  

3    Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, Gross RW, Kelly 

      DP: A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic 

      cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci USA 

      2003;100:1226-1231.  

4    Basu R, Oudit GY, Wang X, Zhang L, Ussher JR, Lopaschuk GD, Kassiri Z: Type 1 

      diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by 

      lipotoxicity and diastolic dysfunction with preserved systolic function. Am J Physiol Heart 

      Circ Physiol 2009;297:H2096-2108.  

5    van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P: Lipotoxicity in type 2 diabetic 

      cardiomyopathy. Cardiovasc Res 2011;92:10-18.  

6    Kok BP, Brindley DN: Myocardial fatty acid metabolism and lipotoxicity in the setting of 

      insulin resistance. Heart Fail Clin 2012;8:643-661.  

7    Pulinilkunnil T, Kienesberger PC, Nagendran J, Waller TJ, Young ME, Kershaw EE, 

      Korbutt G, Haemmerle G, Zechner R, Dyck JR: Myocardial adipose triglyceride lipase 

      overexpression protects diabetic mice from the development of lipotoxic cardiomyopathy. 



196 
 

      Diabetes 2013;62:1464-1477.  

8    Gaborit B, Kober F, Jacquier A, Moro PJ, Cuisset T, Boullu S, Dadoun F, Alessi MC, 

      Morange P, Clement K, Bernard M, Dutour A: Assessment of epicardial fat volume and 

      myocardial triglyceride content in severely obese subjects: relationship to metabolic 

      profile, cardiac function and visceral fat. Int J Obes (Lond) 2012;36:422-430.  

9    Rijzewijk LJ, van der Meer RW, Smit JW, Diamant M, Bax JJ, Hammer S, Romijn JA, de 

      Roos A, Lamb HJ: Myocardial steatosis is an independent predictor of diastolic 

      dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 2008;52:1793-1799.  

10   Utz W, Engeli S, Haufe S, Kast P, Hermsdorf M, Wiesner S, Pofahl M, Traber J, Luft FC, 

       Boschmann M, Schulz- Menger J, Jordan J: Myocardial steatosis, cardiac remodelling and 

fitness in insulin-sensitive and insulin-resistant obese women. Heart 2011;97:1585-1589.  

11   Korosoglou G, Humpert PM, Ahrens J, Oikonomou D, Osman NF, Gitsioudis G, Buss SJ, 

Steen H, Schnackenburg B, Bierhaus A, Nawroth PP, Katus HA: Left ventricular diastolic 

function in type 2 diabetes mellitus is associated with myocardial triglyceride content but 

not with impaired myocardial perfusion reserve. J Magn Reson Imaging 2012;35:804-811.  

12   Mazumder PK, O'Neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, Boudina S, 

       Abel ED: Impaired cardiac efficiency and increased fatty acid oxidation in insulin 

       resistant ob/ob mouse hearts. Diabetes 2004;53:2366-2374.  

13   Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ, Cooksey RC, 

       Litwin SE, Abel ED: Reduced cardiac efficiency and altered substrate metabolism precedes 

the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin 

resistance and obesity. Endocrinology 2005;146:5341-5349.  

14   Turcotte LP, Swenberger JR, Zavitz Tucker M, Yee AJ: Increased fatty acid uptake and 



197 
 

       altered fatty acid metabolism in insulin-resistant muscle of obese Zucker rats. Diabetes 

2001;50:1389-1396.  

15   Holloway GP, Snook LA, Harris RJ, Glatz JF, Luiken JJ, Bonen A: In obese Zucker rats, 

lipids accumulate in the heart despite normal mitochondrial content, morphology and long-

chain fatty acid oxidation. J Physiol 2011;589:169-180.  

16   Chen V, Ianuzzo CD, Fong BC, Spitzer JJ: The effects of acute and chronic diabetes on 

       myocardial metabolism in rats. Diabetes 1984;33:1078-1084.  

17   Young ME, Guthrie PH, Razeghi P, Leighton B, Abbasi S, Patil S, Youker KA, 

       Taegtmeyer H: Impaired long-chain fatty acid oxidation and contractile dysfunction in the 

obese Zucker rat heart. Diabetes 2002;51:2587-2595.  

18   Hartvig P, Waldenstrom A, Wikstrom G, Zielinski T, Martinussen HJ, Carslsten J, 

       Voipio-Pulkki LM, Lundqvist H, Bjurling P, Nagren K, et al.: The diabetic heart: a 

       porcine model evaluated with positron emission tomography using 1-11C-palmitate and 3- 

       11C-pyruvate.  Diabetes Res 1989;12:1-5. 

19   Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD: Substrate 

       specific derangements in mitochondrial metabolism and redox balance in the atrium of the 

       type 2 diabetic human heart. J Am Coll Cardiol 2009;54:1891-1898.  

20   Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, Potelle C, El Arid 

       JM, Mouton S, Sebti Y, Duez H, Preau S, Remy-Jouet I, Zerimech F, Koussa M, Richard 

V, Neviere R, Edme JL, Lefebvre P, Staels B: Myocardial contractile dysfunction is 

associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in 

obese patients. Circulation 2014;130:554-564.  

21   Chatham JC, Gao ZP, Forder JR: Impact of 1 wk of diabetes on the regulation of 



198 
 

       myocardial carbohydrate and fatty acid oxidation. Am J Physiol 1999;277:E342-351.  

22   Murthy VK, Jameson M, Todd GL, Shipp JC: Effects of chronic non-ketotic diabetes and 

       aging on myocardial function and fatty acid oxidation. J Diabet Complications 1990;4:26-

34.  

23   Kuo TH, Moore KH, Giacomelli F, Wiener J: Defective oxidative metabolism of heart 

       mitochondria from genetically diabetic mice. Diabetes 1983;32:781-787.  

24   Pierce GN, Dhalla NS: Heart mitochondrial function in chronic experimental diabetes in 

       rats. Can J Cardiol 1985;1:48-54.  

25   Tanaka Y, Konno N, Kako KJ: Mitochondrial dysfunction observed in situ in 

       cardiomyocytes of rats in experimental diabetes. Cardiovasc Res 1992;26:409-414.  

26   Flarsheim CE, Grupp IL, Matlib MA: Mitochondrial dysfunction accompanies diastolic 

       dysfunction in diabetic rat heart. Am J Physiol 1996;271:H192-202.  

27   Croston TL, Thapa D, Holden AA, Tveter KJ, Lewis SE, Shepherd DL, Nichols CE, Long 

       DM, Olfert IM, Jagannathan R, Hollander JM: Functional deficiencies of subsarcolemmal 

mitochondria in the type 2 diabetic human heart. Am J Physiol Heart Circ Physiol 

2014;307:H54-65.  

28   Lin G, Brownsey RW, MacLeod KM: Regulation of mitochondrial aconitase by 

       phosphorylation in diabetic rat heart. Cell Mol Life Sci 2009;66:919-932.  

29   Haffar T, Berube-Simard FA, Tardif J-C, Bousette N: Saturated fatty acids induce 

       endoplasmic reticulum stress in primary cardiomyocytes. Endoplasm Reticul Stress Dis 

DOI:10.1515/ersc-2015-000453-66.  

30   He L, Kim T, Long Q, Liu J, Wang P, Zhou Y, Ding Y, Prasain J, Wood PA, Yang Q: 



199 
 

       Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac 

hypertrophy caused by lipotoxicity. Circulation 2012;126:1705-1716.  

31   Wang H, Joseph JA: Quantifying cellular oxidative stress by dichlorofluorescein assay 

       using microplate reader. Free Radic Biol Med 1999;27:612-616.  

32   Haffar T, Berube-Simard FA, Bousette N: Cardiomyocyte lipotoxicity is mediated by Il-6 

       and causes down-regulation of PPARs. Biochem Biophys Res Commun 2015;459:54-59.  

33   Haffar T, Berube-Simard F, Bousette N: Impaired fatty acid oxidation as a cause for 

       lipotoxicity in cardiomyocytes. Biochem Biophys Res Commun 

DOI:10.1016/j.bbrc.2015.10.162  

34   Cupp JR, McAlister-Henn L: NAD(+)-dependent isocitrate dehydrogenase. Cloning, 

       nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae. J 

Biol Chem 1991;266:22199-22205.  

35   Yan LJ, Levine RL, Sohal RS: Oxidative damage during aging targets mitochondrial 

       aconitase. Proc Natl Acad Sci USA 1997;94:11168-11172.  

36   Bulteau AL, Ikeda-Saito M, Szweda LI: Redox-dependent modulation of aconitase 

       activity in intact mitochondria. Biochemistry 2003;42:14846-14855.  

37   Kanski J, Behring A, Pelling J, Schoneich C: Proteomic identification of 3nitrotyrosine- 

       containing rat cardiac proteins: effects of biological aging. Am J Physiol Heart Circ Physiol 

2005;288:H371-381.  

38   Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J: Upregulation of Nox4 by hypertrophic 

stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res 

2010;106:1253-1264.  

39   Pougovkina O, te Brinke H, Ofman R, van Cruchten AG, Kulik W, Wanders RJ, Houten 



200 
 

       SM, de Boer VC: Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid 

oxidation. Hum Mol Genet 2014;23:3513-3522.  

40   Marquez J, Lee SR, Kim N, Han J: Post-Translational Modifications of Cardiac 

       Mitochondrial Proteins in Cardiovascular Disease: Not Lost in Translation. Korean Circ J 

2016;46:1-12.  

41   Kostiuk MA, Corvi MM, Keller BO, Plummer G, Prescher JA, Hangauer MJ, Bertozzi 

       CR, Rajaiah G, Falck JR, Berthiaume LG:    Identification of palmitoylated mitochondrial 

       proteins using a bio orthogonal azido-palmitate analogue. FASEB J 2008;22:721-732. 

42   Bharathi SS, Zhang Y, Mohsen AW, Uppala R, Balasubramani M, Schreiber E, Uechi G, 

       Beck ME, Rardin MJ, Vockley J, Verdin E, Gibson BW, Hirschey MD, Goetzman ES: 

Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating 

conserved lysines near the active site. J Biol Chem 2013;288:33837-33847.  

43   Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, 

       Harris C, Biddinger S, Ilkayeva OR, Stevens RD, Li Y, Saha AK, Ruderman NB, Bain JR, 

Newgard CB, Farese RV, Jr., Alt FW, Kahn CR, Verdin E: SIRT3 regulates mitochondrial 

fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010;464:121-125.  

44   Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, 

       Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan 

KL: Regulation of cellular metabolism by protein lysine acetylation. Science 

2010;327:1000-1004.  

45   Rando RR, Young N: The stereospecific activation of protein kinase C. Biochem 

       Biophys Res Commun 1984;122:818-823.  

46   Poli G, Biasi F, Leonarduzzi G: 4-Hydroxynonenal-protein adducts: A reliable 



201 
 

       biomarker of lipid oxidation in liver diseases. Mol Aspects Med 2008;29:67-71.  

47   Hickson-Bick DL, Sparagna GC, Buja LM, McMillin JB: Palmitate-induced apoptosis in 

       neonatal cardiomyocytes is not dependent on the generation of ROS. Am J Physiol Heart 

       Circ Physiol 2002;282:H656-664. 

 

 

 

 

 

 

 

 

 

    

   

     

 

 

 

 

 

 

 

 



202 
 

Chapter 6: Overexpression of Cpt1b reduces both ER stress and 

oxidative stress in STZ/HFD mice and in palmitate treated T293 

 

 

 

6.1 Context 

 

Our previous studies accentuate the detrimental effect inhibiting fatty acid oxidation has on 

cardiac cell function. Since diabetic cardiomyopathy is associated with lipotoxicity and cardiac 

steatosis, we wanted to investigate the relationship between FAO and diabetic cardiomyopathy 

using a diabetic mice model. These mice were injected with streptozotocin to induce diabetes 

and fed a high fat diet. Subsequently, mitochondria were isolated from the heart tissue and the 

rate of fatty acid oxidation was measured. Our results show that the chronic feeding of a high 

fat diet impaired the fatty acid oxidation of diabetic mice, leading to cardiac dysfunction.  

 

 

6.2 Introduction  

 

 

Diabetes is a major risk factor for multiple disorders including microvascular disease 

(neuropathy, nephropathy and retinopathy) and macrovascular disease (coronary artery disease, 

stroke). Additionally, diabetic patients with cardiovascular disease have poorer prognosis 
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compared to non-diabetic patients with cardiovascular disease (1). Diabetic patients are at high 

risk to develop diabetic cardiomyopathy (2, 3). Diabetic cardiomyopathy is defined by cardiac 

dysfunction without coronary artery disease, hypertension. Several metabolic pathways and 

mechanisms have been hypothesized as the cause for DCM however an increasingly popular 

theory is pointing toward cardiac lipid accumulation and lipotoxicity (4, 5). Diabetic patients 

exhibit hyperlipidemia (6) which predispose to increase lipid uptake  and cardiac lipid overload 

known as cardiac steatosis (7). Unresolved cardiac steatosis eventually leads to lipotoxicity (8). 

lipotoxicity is defined by cellular dysfunction caused by lipid overload. Therefore, reducing 

fatty acid accumulation in the heart can be a therapeutic target. 

 

We have previously shown that attenuating fatty acid accumulation by inducing Fatty Acid 

Oxidation (FAO) in rat neonatal cardiomyocytes is protective against palmitate mediated 

lipotoxicity (12). FAO occurs in peroxisomes and mitochondria. Small, medium and long chain 

fatty acids are oxidized in mitochondria, while the peroxisomal system is much more active on 

very long chain fatty acids. Oxygen is the final electron acceptor in both mitochondria and 

peroxisome however one difference between the peroxisomal and mitochondrial oxidation 

pathways is that the former produces H2O2 while the latter produces H2O. H2O2 is a strong 

oxidant therefore the ratio of mitochondrial to peroxisomal FAO can have an important impact 

on the degree of oxidative stress in the cell. 

 

To be oxidized in mitochondria, fatty acids need to be attached to carnitine by Carnitine 

palmitoyl transferase 1 (Cpt1). Three isoforms of Cpt1 are currently known: cpt1a, cpt1b and 

cpt1c. Cpt1b is mainly found in muscle and in the heart. Cpt1b catalyzes the rate limiting step 
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for FAO. We have previously shown that inducing Cpt1b activity with carnitine (a cpt1b co-

factor) elevates FAO and protects rat neonatal cardiomyocytes from palmitate lipotoxicity (12). 

Additionally, we previously found that inhibiting Cpt1b activity with etomoxir inhibits FAO 

and induces steatosis and cell death (12). The protective role of FAO was further validated in 

diabetic rat models (13, 14). Palmitate complete oxidation in muscle tissue was reduced by 70% 

in streptozotocin (STZ) injected rats compared to control (13). Interestingly, AMP-activated 

protein kinase (AMPK) induced muscle FAO in STZ rats (13) and prevented Zucker Diabetic 

Fatty (ZDF) diabetic rats from developing diabetes (14).  

 

Here we aim to investigate the role of cardiac FAO in the setting of diabetic cardiomyopathy 

using an in vivo model of DCM (STZ/HFD mice). Since Cpt1b catalyzes the rate limiting step 

for FAO in cardiomyocytes, we overexpressed it in C57BL/6 mice using AAV9. We found that 

overexpressing Cpt1b in STZ/HFD mice is associated with attenuation of ER stress and 

oxidative stress. We also observed similar results in T293 cell line where inducing FAO by 

overexpressing Cpt1b protects T293 from palmitate lipotoxicity. 

 

 

6.3 Methods 

 

 

Diabetes was induced in C57BL/6j Mice by injecting streptozotocin (S0130, sigma) 

(intraperitoneal injections) for 5 consecutive days (40g/kg). on the 6th day, diabetes was 

confirmed by measuring blood glucose after 4h of fasting. Mice were considered diabetic if 
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fasting glucose was higher than 13mM. diabetic mice were then fed a regular chow diet (control 

mice) or fed with high fat / high carbohydrate diet (D12079B, research diets) for 4 weeks (acute 

mice) or 16 weeks (chronic mice). 4 weeks before sacrifice, mice were injected with either 

AAV9 GFP or AAV9 Cpt1b.   

 

AAV9 GFP and AAV9 Cpt1b were prepared using pds GFP (company) and AAV Cpt1b vectors 

(AAV0007511, abm) respectively. Briefly, T293 cell line (derived from the Human Embryonic 

Kidney 293 cell line) was transfected with GFP or AAV cpt1b plasmid for 48h and virus were 

isolated from the cells by freezing and thawing (3 cycles). AAV9 virus released from cells were 

overlaid on a gradient of iodixanol (25%, 40% and 60%) then separated from contaminant by 

ultracentrifugation at 103000g for 3h at 4 °C. AAV9 virus collected from the 40% iodixanol 

was further concentrated using concentrator tubes (UFC905024, Millipore). AAV9 

concentration was determined by coomassie staining and by PCR and each mouse was injected 

50billion virus particle through intravenous tail injection. 

 

Serum glucose levels: isolated blood was left on the counter without shaking for 10 minutes 

before centrifuging for 10 minutes at 200g at 4 °C. Serum which is the upper serum was 

extracted then glucose levels were measured using OneTouch Ultra 2 glucose measuring system. 

 

Serum TAG levels: serum was isolated from mice as described previously then TAG levels were 

measured using an adipogenesis kit (K610-100, biovision). Briefly, TAG are hydrolyzed to 

glycerol were glycerol is detected by fluorescence (excitation 535nm / emission 587nm). 
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FAO: hearts were isolated from diabetic and control mice then homogenized in STE buffer 

(0.25M sucrose, 10mM Tris-HCl and 1mM EDTA) on ice using a douncer. Homogenates were 

transferred to 15ml tubes containing tissue oxidation buffer (100mM sucrose, 10mM Tris-HCl, 

5mM KH2PO4, 0.2mM EDTA, 80mM KCl, 1mM MgCl2, 0.1mM Malate, 0.05mM CoA, 1mM 

DTT, 2mM Carnitine, 2mM ATP, 297uM oleate and 3uM radiolabeled oleate C14). FAO was 

set off by transferring the reaction mixture into 37 °C water bath. After 2h, FAO was terminated 

by transferring the tubes to ice. A whatman #1 filter paper soaked with NaOH 2N was suspend 

in the tube using center wells and stopper top. 1.5ml of 6N HCl was injected into the reaction 

and CO2 released was trapped by the filter papers. Filters were transferred to 20ml vials then 

dissolved in Aquasol and CPM was counted using Beckman LS6500 scintillation counter. 

 

DCFDA: cells were transfected using PEI with pscram or AAV cpt1b for 24 hours. Following 

transfection, cells were treated with BSA or 300uM palmitate for 1h or 16h. cells were washed 

with Krebs- Ringer HEPES (KHR) buffer then incubated with 5uM of DCFHDA. Fluorescence 

was read for 30min at 485nm excitation and 530nm emission using synergy plate reader. 

JC1: cells transfected with pscram or AAV cpt1b and 24h post transfection cells were treated 

with BSA or 300uM palmitate. Cells were washed with KHR buffer then incubated with 7.5uM 

JC-1 (sigma, cat# 1130-5) for 10min.  After incubation, cells were washed twice with warm 

KHR before reading the fluorescence (530 nm excitation /590 nm emission for red dye and 485 

nm excitation /528 nm emission for green dye) using the Synergy2 fluorescence plate reader 

from Bio-Tek. 
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Western blot:  proteins were harvested from T293 cells using RIPA buffer (50mM tris-HCl, 1% 

NP-40, 0.5% Na-deoxycholate, 0.1% SDS, 150mM NaCl, 2mM EDTA and proteinase inhibitor 

cocktail (Roche)) or from heart homogenates using lysis buffer (250mM Sucrose, 50mM Tris, 

1μM PMSF (protease inhibitor), 1μM DTT, and Proteinase inhibitor cocktail). Protein 

concentrations were determined using Bradford assay and they were probed with the following 

antibodies: ATF6 (SC-22799, Santa Cruz, 1/400), Chop (SC-7351, Santa Cruz 1/400), Tubulin 

(SC-23948, Santa Cruz, 1/400) Nitrotyrosine (SC-32757, Santa Cruz, 1/400), GAPDH (SC-

30317, Santa Cruz, 1/400) and Cpt1b (GWB-MQ462C, Geneway, 1/2000). 

 

Viability assays: Cells were treated with oleate or palmitate then incubated with 2.5uM 

propidium iodide for 30 minutes. Fluorescence was measured (535 nm excitation / 617 nm 

emission) using the Synergy2 fluorescence plate reader from Bio-Tek. 

 

PCR: RNA was isolated from heart homogenates using triazol. cDNA was synthesized using 

5X All-In-One RT MasterMix (G390, abcam). qPCR was performed using SYBR Green Master 

mix from Qiagen and the Eco Ilumina real-time qPCR system. Data was analyzed using the 2-

ΔΔCt method. Results represent the expression of the gene of interest relative to endogenous 

control (Rpl34) normalized to the control group, and are presented as mean ± standard error 

(SE). Primers were designed to span exon-exon regions to avoid amplification of contaminating 

DNA and primer specificity was verified by blasting all sequences using the NCBI Primer-

BLAST tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Statistical analysis: All data are presented as mean ± standard error. Statistics were carried out 

with StatGrapher software. Students T-test was used for two-group comparisons. Multiple 

groups were compared using one-way ANOVA with Tukey post-hoc test. Data involving 

multiple groups and multiple conditions were analysed by two-way ANOVA with Tukey post-

hoc test. P-values of <0.05 were considered statistically significant. 

 

 

 

6.4 Results 

 

6.4.1 STZ mice exhibit hyperglycemia, hyperlipidemia, ER stress and oxidative stress.  

 

 

The pathogenesis of diabetic cardiomyopathy is complex and multifactorial therefore each 

mouse model used to study DCM have its advantages and disadvantages. Here we wanted to 

confirm the efficacy of STZ injection followed with HFD feeding to induce DCM in mice. Since 

diabetic cardiomyopathy is associated with hyperglycemia, hyperlipidemia, ER stress and 

oxidative stress we evaluated these traits in our STZ/HFD model. here We demonstrate elevated 

levels of serum glucose in STZ/HFD mice compared to control mice fed with normal chow diet 

(fig 6.1A). Additionally, TAG serum concentration was also elevated in STZ/HFD mice 

compared to control mice (fig 6.1B).  To assess if this increase in serum lipid levels is associated 

with intramyocellular lipid accumulation, we evaluated lipid droplet abundance and found 

elevated levels in cardiomyocytes of STZ/HFD mice compared to control mice (fig 6.1C & fig 
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6.1D). Since steatosis is associated with ER stress we measured 2 key cardiac ER stress 

mediators, ATF6 and Chop, by western blot (fig 6.1E). Atf6 cleavage (an indicator of Atf6 

activity) and Chop protein expression were induced in cardiomyocytes of STZ/HFD mice. 

Cleaved Atf6 is significantly elevated in STZ/HFD mice compared to control (fig 6.1 F). 

Additionally Chop levels are increased significantly in STZ/HFD compared to control mice (fig 

6.1G). Oxidative stress is a common pathological marker in diabetic cardiomyopathy, therefore 

we measured nitrotyrosine protein expression in STZ/HFD and control mice by western blot (fig 

6.1H). We found higher nitrotyrosine protein expression in STZ/HFD model compared to 

control model (fig 6.1I). 
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Figure 6.1: High-fat diet feeding (HFD) leads to hyperglycemia, hyperlipidemia, ER stress and oxidative 

stress in STZ mice.  (A) Graph demonstrating significantly elevated fasting serum glucose in STZ/HFD mice 

compared to saline injected controls (B) Graph demonstrating significantly elevated serum TAG levels in STZ/HFD 

mice compared to saline injected controls. (C-D) Images of BODIPY493/503 stained cardiac sections from control 

and STZ/HFD mice showing increased lipid deposition (bright green spots) in STZ/HFD mice. (E) Western blots 

demonstrating expression of proteins involved in ER stress (Atf6 and Chop). (F-G) Graphs demonstrating qRT-

PCR results for mRNA expression levels of genes involved in ER stress (Atf6 and Chop). (H) western blot depicting 

protein levels of Nitro-Tyrosine (a marker of oxidative stress) in control and STZ/HFD mice. (I) Graph 

demonstrating quantification of Nitro-Tyrosine protein levels in control and STZ/HFD mice.  
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6.4.2 Fatty acid oxidation is impaired in chronic STZ/HFD mice models.  

 

 

Mitochondrial fatty acids oxidation is altered in many cardiac pathologies including diabetic 

cardiomyopathy. Therefore we aimed to assess FAO in our STZ/HFD model. Feeding STZ mice 

with high fat diet for 4 weeks (acute mice) was not enough to see significant reduction of cardiac 

FAO (fig 6.2b). Interestingly, chronic feeding of High fat diet for 18 weeks (chronic) caused a 

significant decrease in FAO compared to control mice (fig 6.2a). 

 

 

 

 

Figure 6.2: Chronic feeding of high-fat diet causes a significant decrease of Fatty acids oxidation in STZ 

mice. (A) Graph showing the level of complete FAO (CO2 production) in mitochondria isolated from control and 

STZ/HFD mice. (B) Graph showing equal production of CO2 in mitochondria isolated from control and STZ/HFD 

mice.    
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6.4.3 Cpt1b overexpression is protective in STZ/HFD mice.  

 

 

Cpt1b is an enzyme responsible for the rate limiting step of FAO therefore we aimed to regulate 

Cpt1b protein expression using AAV9 vectors. we selectively overexpressed Cpt1b in mice 

hearts by injecting them, 4 weeks before sacrifice, with AAV9 GFP (control) or AAV9 Cpt1b. 

Successful AAV9 transfections were confirmed by measuring Cpt1b protein expression in 

cardiac tissue lysates by western blot (fig 6.3a). We showed increased cardiac Cpt1b protein 

expression in STZ-Cpt1b mice compared to STZ-GFP mice (fig 6.3a). Interestingly, AAV9 

Cpt1b rescued mice from STZ/HFD induced FAO inhibition (fig 6.3b) and restored FAO to 

levels equal to control. Rescuing FAO by AAV9 Cpt1b was associated with downregulation of 

nitrotyrosine post-translational modification of proteins (fig 6.3c) suggesting a protective effect 

against oxidative stress. 

 

 

 

6.4.4 Palmitate induces ER stress and oxidative stress in T293 cells.  

 

 

Here we aim to support our in vivo data in T293 cells treated with palmitate. Consistent with 

our previous data, we found that palmitate induces cells death (fig 6.4a) which was associated 

with oxidative stress (fig 6.4b) and ER stress (Figure 6.4C, 6.4D, 6.4E, 6.4F). Additionally, 

palmitate inhibits FAO in T293 cells compared to cells treated with oleate (fig 6.4g). 
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Figure 6.3: Overexpressing Cpt1b using AAV9 Cpt1b rescued mice from STZ/HFD induced FAO inhibition. 

(A) Western blot demonstrating increased expression of Cpt1b in cardiac tissue from mice injected with AAV9-

Cpt1b compared to mice injected with AAV9-GFP. (B) Graph demonstrating decreased FAO (CO2 production) in 

mitochondria isolated from STZ/HFD mice compared to control. FAO was restored by increasing Cpt1b 

expression. (C) western blot showing increased Nitro-Tyrosine expression in STZ-GFP mice compared to control. 

Nitro-Tyrosine protein expression was reduced in following tail-vein injection of AAV9-Cpt1b in STZ mice.  
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6.4.5 Overexpressing Cpt1b protects against palmitate induced lipotoxicity.  

 

 

Since we found that Cpt1b was protective in STZ/HFD mouse model, we wanted to 

investigate the mechanism of Cpt1b mediated protection in T293 cells. We overexpressed 

Cpt1b in HEK-293T cells by plasmid transfection (Figure 6.5A-B). Interestingly, Cpt1b 

overexpression protected against palmitate mediated cell death (Figure 6.5C). additionally, 

Cpt1b OE significantly reduced palmitate mediated ROS generation (Figure 6.5D) and this 

was associated with a trend for decreased ER stress gene expression (Atf6, Chop, sXbp1) 

(supplementary Figure 2).  Finally, Cpt1b overexpression significantly enhanced FAO in 

palmitate treated cells (Figure 6.5E). 
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Figure 6.4: Palmitate induces ER stress and oxidative stress in T293 cells. (A) significantly increased PI 

fluorescence (a marker of cell death) in palmitate treated T293 cells compared to cells treated with 300uM oleate 

of BSA. (B) graph showing an increased oxidative stress in palmitate treated cells compared to control. (C-F) 

Graphs demonstrating qRT-PCR results for mRNA expression levels of genes involved in ER stress (Atf6, Chop, 

GRP78 and sXbp1). (G) Palmitate impairs complete FAO (CO2 production) in T293 cells compared to oleate 

treated cells.  
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Figure 6.5: Enhancing fatty acid oxidation attenuates palmitate mediated lipotoxicity in T293 cells. (A) 

Graphs demonstrating significantly elevated Cpt1b mRNA (relative to the housekeeping gene Rpl34) in Cpt1b OE 

T293 cells. (B) Western blot demonstrating elevated Cpt1b protein levels in T293 cells transfected with Cpt1b 

plasmid. (C) Graph demonstrating that Cpt1b OE significantly attenuates cell death induced by 300μM palmitate. 

Cell death was measured by propidium iodide fluorescence and normalized to control cells. (D) Graph showing the 

level of oxidative stress in T293 cells treated with BSA or 300uM palmitate and transfected with control plasmid 

or Cpt1b plasmid. (E) Graphs demonstrating significant increase in the production of CO2 in T293 transfected with 

Cpt1b plasmid. † indicates p<0.05 vs. T293 cells transfected with pGFP. * indicates p<0.05 vs. T293 cells treated 

with 300uM palmitate and transfected with control plasmid. # indicates p<0.05 vs. T293 cells treated with BSA 

and transfected with control plasmid. 
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6.5 Supplementary data 

 

 

 

Supplemental figure S6.1: Cardiac mitochondria isolated from STZ/HFD mice are sensitive to etomoxir and 

carnitine. (A) Graph demonstrating significantly decreased [14C]-CO2 production and hence fatty acid oxidation 

in mitochondria isolated from cardiac tissue and treated with etomoxir (B) Graph demonstrating significantly 

increased [14C]-CO2 production and hence fatty acid oxidation in mitochondria isolated from cardiac tissue and 

treated with carnitine. 
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Supplemental figure S6.2: Overexpressing Cpt1b attenuates Atf6, Chop and sXbp1 genes expression. Graphs 

demonstrating the mRNA levels of 3 key markers and mediators of ER stress in T293 cells transduced with AAV 

GFP plasmid or AAV Cpt1b plasmid. 
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Chapter 7: Discussion and conclusion 

 

7.1 Discussion 

 

Lipotoxicity in cardiomyocytes isolated from rats and diabetic mice is the general theme 

presented in this thesis. The five studies used in this thesis aim to characterize the sequential 

molecular events in which lipotoxicity leads to diabetic cardiomyopathy. In the first four studies, 

we have used an in-vitro model, where primary cardiomyocytes were isolated from neonatal rats 

and mice. These cells mimic the behavior of their in-vivo counterparts, since they contract 

spontaneously and are hence characterized by the same high-energy demand seen in beating 

hearts. Therefore, these cells are more advantageous to cell line cultures such as H9C2 and 

AC16, which rarely contract under our conditions. In the last study, an in-vivo model is 

employed that consists of streptozotocin-induced diabetic mice fed a high fat diet for four weeks 

(acute) or 18 weeks (chronic). 

 

We decided to investigate lipotoxicity as a potential pathogenic mechanism for diabetic 

cardiomyopathy, since the hearts of diabetic patients are characterized by steatosis (249, 251). 

Additionally, hyperlipidemia seen in the blood vessels supplying the heart likely contributes to 

atherosclerosis and other cardiovascular events. Therefore, lipotoxicity and the accumulation of 

fatty acids in diabetic hearts is likely the main culprit for cardiac diseases seen in the diabetic 

population, such as cardiomyopathy and heart failure. To investigate lipotoxicity in diabetic 

hearts we used palmitate, a well-known toxic fatty acid. Palmitate and oleate are the two most 
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abundant fatty acids in the human diet. Contrary to palmitate, oleate was shown to be neutral in 

many cell types. 

 

One clear difference between rat neonatal primary cardiomyocytes treated with oleate or 

palmitate is the shape of lipid droplets seen after staining these cells with BODIPY. Oleate leads 

to clear and distinct lipid droplets while palmitate leads to faint and diffuse lipid droplets. 

Palmitate-treated cells also display abnormal and irregular-shaped staining that is far removed 

from the shape of lipid droplets. Interestingly, adding oleate to cardiomyocytes treated with 

palmitate protected these cells from palmitate lipotoxicity. This was associated with changes of 

BODIPY staining where lipid droplets became more clear and distinct. The main constituent of 

lipid droplets is TAG. TAG is considered a neutral lipid, while DAG is well known for its 

toxicity in many cell types. BODIPY binds to TAG. The qualitative and quantitative increase of 

BODIPY staining in cardiomyocytes co-treated with oleate and palmitate compared to 

cardiomyocytes treated with palmitate alone indicates an increase of TAG levels, which might 

explain the protective mechanism of oleate on palmitate-treated cells. Indeed, other studies have 

suggested that oleate protects against palmitate lipotoxicity by inducing TAG synthesis and thus 

sequestering palmitate into a neutral lipid (110). This reduces the bioavailability of palmitate to 

be incorporated into toxic lipids such as DAG and ceramides.  

 

Since the first steps of lipid droplet synthesis occur in the ER, and since our previous results 

indicate the lack of clear staining of lipid droplets in palmitate-treated cells, we decided to 

investigate the possibility of lipid accumulation in the ER. Accumulation of lipids in the ER 

disrupts ER function and thus triggers ER stress. Previous studies done by other researchers 
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show that ER stress is induced in palmitate-treated cells (275, 278, 474-476). Consistently, we 

show that palmitate leads to robust ER stress in primary rat neonatal cardiomyocytes. This ER 

stress was associated with cell death and altered lipid staining.  

 

ER stress is a common pathological process found in diabetic cardiomyopathy (368, 477). ER 

stress leads to the activation of the unfolded protein response (UPR). UPR aims to restore ER 

homeostasis by ensuring proper protein folding. Therefore, ER stress is activated when unfolded 

proteins accumulate in the ER. ER stress can also be stimulated through other pathways, such 

as perturbation of calcium homeostasis and disruption of ER membrane structure (278, 478, 

479). In our first study, we demonstrated clear activation of ER stress in cardiomyocytes isolated 

from mice and rats and treated with palmitate. More precisely, we demonstrated significant 

increase of cleaved Atf6 and spliced Xbp1. In addition, we showed a significant increase of 

GRP78, Atf4, and Atf6 mRNA levels. This increase caused by palmitate incubation was time- 

and dose-dependent. 

 

Unresolved ER stress promotes cell death. The mechanism likely involves Chop expression and 

activation (480). Our results support this, since we found significant increase of Atf6 and Chop 

expression and activation in cardiomyocytes treated with palmitate. Chop induces cell death by 

upregulating the expression of pro-apoptotic proteins and by downregulating the anti-apoptotic 

proteins (481, 482). This is in accordance with our results, where we showed increased protein 

expression of caspase-3 at sixteen hours, which preceded cell death. These results indicate that 

palmitate-mediated cell death is at least partially due to apoptosis. 
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It important to note that UPR is a compensatory mechanism that aims to restore ER homeostasis. 

Hence, upregulation of chaperon molecules such as GRP78 is considered a protective 

mechanism during ER stress (483, 484). Interestingly, we found that palmitate significantly 

increases the expression of GRP78 at the mRNA level but not the protein level. This indicates 

the existence of post-transcriptional or post-translational mechanism impeding the expression 

of GRP78 proteins in palmitate-treated cardiomyocytes. Indeed, we identified the ubiquitination 

of GRP78 in cardiomyocytes incubated with palmitate suggesting that GRP78 is specifically 

degraded by the ubiquitin proteasome pathway. We found the loss of this chaperone contributes 

to palmitate-mediated cell death. The activation of the ubiquitin proteasome pathway by 

palmitate is probably done in a PKC-dependent manner, since other studies have shown this in 

hepatocytes and we have demonstrated in subsequent studies that cardiomyocytes treated with 

palmitate are characterized by increased levels of DAG, a known inducer of PKC (485).  

 

PPARs are key metabolic regulators of fatty acid metabolism. Since fatty acids are natural 

ligands of PPARs, we set to examine the effect of palmitate and oleate on PPAR expression and 

activity. Additionally, we have investigated the effect of these two fatty acids on cytokine levels, 

considering that PPARs modulate the inflammatory response.  

 

One of the key findings of this thesis is that palmitate induces the activity of PPAR receptors in 

cardiomyocytes for a relatively short duration. This activation does not persist for longer times 

and is lost after the twenty-four-hour time point. In contrast, oleate induction of PPAR activity 

persisted beyond the twenty-four hours. This accentuates the difference between palmitate 

lipotoxicity and oleate’s neutral, and even protective, effect. Indeed, some of PPAR’s target 
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genes are implicated in fatty acid catabolism, and inducing PPAR activity by oleate improves 

the cell’s ability to clear intracellular fatty acids and hence lipid accumulation. However, treating 

cardiomyocytes with palmitate inhibits PPAR activity at the twenty-four-hour time point and 

contributes to intramyocellular lipid accumulation, resulting in the accumulation of toxic fatty 

acids and lipotoxicity. 

 

The fact that palmitate increases PPAR activity at early time points suggests that palmitate is a 

ligand for PPAR. It appears also that other mechanisms occur simultaneously that hinder 

palmitate-mediated activation of PPAR at later time points. Indeed, we found that the expression 

of PPARα and PPARδ proteins are downregulated after prolonged incubation of cardiomyocytes 

with palmitate.  

 

CPT1B is a key enzyme in fatty acid oxidation that catalyzes the rate-limiting step of β-

oxidation. CPT1B is a PPAR target gene in cardiomyocytes. We found that the degradation of 

PPAR proteins in cells treated with palmitate is associated with decreased levels of CPT1B 

mRNA and decreased expression of CPT1B proteins. Contrary to CPT1B , ACADL retains 

elevated protein levels despite the inhibition of ACADL mRNA expression. This suggests that 

PPARs-mediated inhibition of fatty acid oxidation occurs through downregulation of CPT1B. 

 

Our previous findings accentuate the protective role of PPARs in mitigating myocardial lipid 

accumulation and lipotoxicity by upregulating the oxidation of fatty acids. It is important to note 

that our findings might seem contradictory to the results of other research groups. For instance, 

Finck et al. found that the hearts of PPARα transgenic mice exhibit cardiac steatosis and 
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cardiomyopathy. However, the level of PPARα in these transgenic mice is 50 to 100 times 

higher compared to normal physiological levels. These abnormal levels may be the cause of 

cardiac dysfunction and steatosis seen in these transgenic hearts. Indeed, PPARα is known to 

induce both fatty acid uptake and fatty acid oxidation (436). The supra-physiological level of 

PPARα in these transgenic mice is likely causing the uptake of fatty acids to a higher degree 

than fatty acid oxidation. PPARδ, in contrast, induces fatty acids oxidation to a higher degree 

than fatty acid uptake, and over-expressing PPARδ in mice hearts did not predispose them to 

heart failure.    

      

It has been shown that palmitate induces the expression of cytokine in several cell types 

including cardiomyocytes. Additionally, several reports have indicated that cytokines lead to 

PPARs protein degradation. First, inflammation causes PPARs downregulation in diabetic 

hearts (486). Second, IL6 was the main culprit of PPARα and PPARγ inhibition in adipocytes 

and hepatocytes; however, this was not confirmed in cardiomyocytes (487-490). Interestingly, 

TNFα transgenic mice exhibit reduced activity of PPARα receptors and reduced ability to 

oxidize fatty acids (491). The authors did not confer this effect to TNFα, but rather attributed 

the impairment of fatty acid oxidation in the heart of these transgenic mice to the Tgfβ-Smad3 

pathway. The authors did not examine the level of IL6 in these transgenic hearts, but other 

studies have shown that TNFα and TGFβ induces IL6 expression (492, 493). Therefore, we 

sought to investigate the effect of palmitate on IL6 and TNFα levels. We found a robust increase 

of both IL6 and TNFα levels in palmitate-treated cells. Additionally, this increase was dose-

dependent. Another key finding of this thesis is that oleate and other anti-inflammatory 

molecules reduced palmitate-mediated cell death by only reducing IL6 and not TNFα. Indeed, 
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oleate, AICAR, WY-14643, and GW-501516 all reduced cell death, while the level of IL6 had 

a varying effect on TNFα. Therefore, our results indicate that IL6, rather than TNFα, is the main 

culprit for palmitate-mediated inhibition of PPAR expression and cell death, a finding that is in 

accordance with the studies mentioned before. Furthermore, the increase of IL6 levels occurs 

before the degradation of PPAR proteins, further supporting our hypothesis that IL6s play a key 

role in antagonizing palmitate-mediated lipotoxicity.  

 

The prominent decrease of PPARs activity and Cpt1b expression led us to investigate the effect 

of palmitate on fatty acid oxidation in rat neonatal cardiomyocytes. The inability of fatty acids 

to be catabolized through oxidation likely prompt fatty acids to accumulate in cytosol, causing 

steatosis. Therefore, we measured intracellular fatty acids in cardiomyocytes treated with oleate 

or palmitate, finding that palmitate leads to a significant increase in intracellular fatty acids 

compared to oleate. This suggests that palmitate clearance was diminished, in contrast to oleate.  

 

Next, we measured the rate of complete fatty acid oxidation in cardiomyocytes incubated with 

oleate and palmitate for eight hours. We chose this time point since it is not associated with cell 

death. We found that palmitate, in contrast to oleate-treated cells, significantly impaired fatty 

acid oxidation.  

 

Since we have previously shown that CPT1B protein expression is downregulated after twenty-

four-hour exposure to palmitate, we wanted to see if this impairment of FAO at an eight-hour 

time point is also associated with impaired CPT1B expression. We found that CPT1B protein 

expression begins to decrease after fourteen to sixteen hours of palmitate exposure. We also 
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tested the integrity of the mitochondrial membrane using the JC-1 dye and found that the loss 

of the mitochondrial membrane’s potential occurs simultaneously with the loss of CPT1B 

expression after the impairment of FAO. This indicates that the decrease of CPT1B proteins is 

likely a secondary effect of mitochondrial membrane damage. Moreover, the impairment of 

FAO and the depletion of the citric acid cycle-derived reducing equivalents is probably the cause 

of mitochondrial membrane damage, since it precedes it. 

 

The fact that FAO impairment occurs before cell death and mitochondrial damage in palmitate-

treated cells lead us to hypothesize that upregulating FAO protects cardiomyocytes from 

palmitate lipotoxicity. Indeed, co-treating cardiomyocytes with palmitate and oleate or palmitate 

and carnitine increased the rate of FAO and protected these cells from palmitate-mediated cell 

death. Interestingly, oleate completely abolished palmitate-mediated cell death, while carnitine 

significantly attenuated it. This is in line with the fact that carnitine only induces FAO, while 

oleate has pleotropic effects, such as induction of FAO, attenuation of ER stress, and attenuation 

of inflammation (51, 274). 

 

Another piece of evidence pointing towards the protective effect of oleate against palmitate 

lipotoxicity through increasing FAO comes from the following experiments. We inhibited FAO 

pharmacologically and genetically in cardiomyocytes treated with oleate. As expected, oleate, 

which is non-toxic, became toxic under these circumstances. This further confirms our 

hypothesis that palmitate lipotoxicity is mainly due to the inhibition of FAO. The exact events 

causing oleate to become toxic following FAO inhibition are still not clear, but they likely 

involve the accumulation of toxic intermediates such as DAG. 
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Our results indicating that increasing FAO protects against lipotoxicity might seem inconsistent 

with other studies where the heart of diabetic mouse models exhibit increased β-oxidation, 

which is associated with oxidative stress, cardiac dysfunction, and cardiomyopathy. Indeed, the 

hearts of PPARα transgenic mice are characterized by increased β-oxidation, cardiac steatosis, 

and cardiomyopathy, which resembles the pathology of diabetic hearts (494). Furthermore, other 

in-vivo studies demonstrated that inhibiting β-oxidation improved glucose oxidation which is 

beneficial in some diabetic mouse models (495, 496). However, these studies were only short-

term and the authors did not investigate the long-term effects of inhibiting cardiac FAO on heart 

function. Additionally, the association between increased β-oxidation and cardiomyopathy in 

PPARα transgenic mice does not necessarily mean causality, especially since these mice exhibit 

cardiac steatosis. 

 

On the other hand, results confirming the beneficial effects of increasing FAO in diabetic hearts 

come from three studies that modulated PPARs in mice. Indeed, these studies demonstrated that 

improving FAO was inversely associated with diabetic cardiomyopathy, while inhibiting FAO 

was associated with intramyocardial lipid accumulation and cell death. First, a knockout of 

CD36 in PPARα transgenic mice was associated with improved cardiac function, despite 

elevated β-oxidation (449). Second, overexpressing PPARγ in mice hearts while simultaneously 

knocking out PPARα caused increased β-oxidation and reduced lipid accumulation, which was 

associated with improved cardiac function (448). Third, PPARδ-deficient mice exhibit cardiac 

steatosis, cardiomyopathy, and an increased rate of β-oxidation (448). Therefore, it seems that 

the increase of β-oxidation is not the cause but rather a consequence of intramyocardial lipid 



228 
 

accumulation in diabetic mouse models. Additionally, these results suggest that the increase of 

β-oxidation is not reaching its full potential in preventing cardiac steatosis. 

 

Another notion, that β-oxidation does not equate to complete fatty acid oxidation, is often 

ignored. Indeed, the rate of FAO depends on fatty acid uptake into mitochondria, the rate of β-

oxidation, and the rate of CAC. Inhibition of FAO is set to happen if one of these steps is 

downregulated. Therefore, if the CAC is downregulated, an increase of β-oxidation does not 

necessarily mean an increase of FAO. In accordance with this, Baseler et al. found that CAC 

enzymes are downregulated in diabetic mice (497). Additionally, Lin et al. found that isocitrate 

and α-ketoglutarate levels were decreased in diabetic hearts, despite the normal level of citrate 

indicating an impairment of energy metabolism and the CAC in these hearts (498). 

 

After demonstrating that palmitate-mediated lipotoxicity at least partially occurs by inhibiting 

FAO, our next aim was to determine which step of FAO is impaired by palmitate. We showed 

that palmitate had no effect on CPT1B activity; however, it impaired β-oxidation and the CAC 

in primary rat neonatal cardiomyocytes. As a matter of fact, we measured CPT1B activity in 

cardiomyocytes treated with oleate and palmitate for eight hours and found no significant 

difference between these two conditions. We chose an eight-hour time point since we found 

previously that it was long enough for palmitate to inhibit complete fatty acid oxidation. 

 

Following the uptake of fatty acids into the mitochondria, fatty acids enter β-oxidation to yield 

acetyl-CoA. Since we wanted to measure the rate of β-oxidation in palmitate- and oleate-treated 

cells, we measured “acid soluble metabolites.” Hypothetically, acetyl-CoA are soluble in acid, 
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while long-chain fatty acids such as oleate and palmitate are not supposed to be soluble in acid. 

However, this was not the case in our experimental conditions, where the acids’ soluble 

metabolites were contaminated with oleate and palmitate. Fortunately, acetyl-CoA and fatty 

acids can be separated using an aqueous/organic separation method. Acetyl-CoA is water 

soluble, while fatty acids are soluble in the organic phase. In our hands, fatty acid contamination 

of the water phase was insignificant. Therefore, we used the water/organic separation method to 

measure the level of acetyl-CoA, which was correlated with the rate of β-oxidation. 

Interestingly, we found that β-oxidation was inhibited in palmitate-treated cells, in contrast to 

oleate-treated cells. This is important since it demonstrates that palmitate lipotoxicity is 

mediated by the inhibition of β-oxidation. As a side note, inhibiting β-oxidation with etomoxir 

nearly abolished the detection of acetyl-CoA in the aqueous phase, confirming the specificity of 

the aqueous/organic separation method. 

 

The molecular mechanism of β-oxidation inhibition by palmitate is still unknown, but there is a 

strong line of evidence pointing towards post-translational modification (PTM) (499). Indeed, 

palmitate induces the acetylation, phosphorylation, and palmitoylation of mitochondrial proteins 

(498, 500, 501). However, whether post-translational acetylation of enzymes implicated in β-

oxidation increases or decreases their activity is still under debate. For example, acetylation of 

long-chain acyl-CoA dehydrogenase (LCAD) inhibits its activity, while Sirt3, a deacetylase, 

restores its function (502, 503). On the other hand, acetylation of β-hydroxyacyl-CoA 

dehydrogenase (HADH) increases its activity (504). 
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Acetyl-CoA produced from β-oxidation enters the CAC to be further oxidized. Reducing 

equivalents such as NADH and FADH2 are some by-products created during the CAC. These 

reducing equivalents are critical for oxidative phosphorylation, and, hence, they maintain 

mitochondrial membrane potential. An inhibition of the CAC can lead to disastrous 

consequences on oxidative phosphorylation, mitochondrial membrane integrity, and 

mitochondrial function. Additionally, acetyl-CoA produced from glucose oxidation enters the 

CAC to be further oxidized. Hence, an inhibition of the CAC impedes energy metabolism and 

promotes cardiomyocytes’ dysfunction, since the energy demand of these cells is high. We 

found that cardiomyocytes incubated with palmitate have reduced acetyl-CoA oxidation 

compared to cells incubated with oleate, indicating that palmitate inhibits the CAC. Indeed, we 

found that palmitate-treated cells have increased aconitase reverse activity while the aconitase 

forward activity is not altered. Therefore, since the level of isocitrate, the product of aconitase 

activity (both forward and reverse), is reduced in these cells, a reduced level of substrates for 

isocitrate dehydrogenase is indicated.  

 

Our results are in line with other studies done on diabetic cardiomyopathy. Line et al. found that 

aconitase forward activity was unchanged in diabetic mouse hearts, while aconitase reverse 

activity was increased (498). They attributed this increase to PKCβ-mediated phosphorylation 

of the aconitase enzyme. PKCβ is one of the conventional isoforms of PKC and is activated by 

DAG. We measured the ratio of DAG/TAG in palmitate-treated cardiomyocytes and found it 

higher compared to oleate-treated cardiomyocytes. Additionally, PKCβ is activated by one 

isoform of DAG (1,2 DAG), which interestingly was the isoform elevated in our cardiomyocytes 
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incubated with palmitate (505). Taken together, our data shows that the CAC is inhibited by 

palmitate, an event at least partially caused by PKC-mediated inhibition of aconitase activity. 

 

Next, we measured isocitrate dehydrogenase (IDH) activity in palmitate-treated 

cardiomyocytes. We found its activity is inhibited in these cells when contrasted to 

cardiomyocytes treated with oleate. It is important to note that our method of measuring IDH 

activity is independent of aconitase activity and the level of endogenous isocitrate, since we 

supplement these cells with exogenous isocitrate. This further confirms findings that palmitate 

inhibits the CAC, since the step catalyzed by IDH is irreversible. To verify if IDH activity is 

reduced because of IDH protein degradation, we measured IDH protein expression in 

cardiomyocytes incubated with palmitate for eight hours. We found that eight hours of palmitate 

incubation was not enough to achieve results, indicating the existence of another mechanism to 

explain IDH reduced activity.  

 

IDH activity might be downregulated by oxidative stress. Several studies have demonstrated 

that mitochondrial proteins can be damaged through oxidative stress (506-508). Additionally, 

oxidative stress has been suggested to play a role in pathophysiology of diabetic 

cardiomyopathy. Therefore, we measured ROS using the DCFDA assay and measured oxidative 

stress by determining the immunoreactivity of 4-HNE. 4-HNE is a marker of oxidative stress 

because lipid peroxidation by reactive oxygen species leads to elevated 4-HNE adducts on 

proteins (509). Interestingly, we found that ROS levels are elevated in palmitate-treated cells 

when contrasted to the control. However, this is unlikely to be the mechanism for IDH reduced 

activity, since oleate and palmitate elevated ROS to similar levels. Additionally, there was no 
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evidence for oxidative stress in oleate- or palmitate-treated cardiomyocytes, indicating that 

increased levels of ROS were not enough to overtake the endogenous anti-oxidative system. 

This is in line with other studies where palmitate lipotoxicity was shown to be independent of 

ROS (510). Altogether, we demonstrated that palmitate inhibits the CAC, which is at least 

partially due to DAG-mediated activation of PKC. This is important, since palmitate is a major 

constituent of fatty acids in the human diet and thus a likely cause of lipotoxicity seen in diabetic 

cardiomyopathy. 

 

 

Figure 7.1: Diagram summarizing the results of this thesis. The black arrows represent pathways associated with 

lipotoxicity. The red arrows represent pathways associated with attenuation of lipotoxicity 

 

Finally, our in-vitro results led us to investigate the alteration of mitochondrial fatty acid 

oxidation in a diabetic mouse model. We have used an STZ/HFD model since it contains many 
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advantages for studying DCM in Type 2 diabetes. STZ causes the destruction of pancreatic β-

cells, which leads to hypoinsulinemia. This causes the heart to be less dependent on glucose and 

more dependent on fatty acids as an energy source. Additionally, hypoinsulinemia causes the 

release of fatty acids from adipose tissue, since insulin is an inhibitor of adipose triglyceride 

lipase (511). This predisposes the heart to hyperlipidemia and further advances cardiac steatosis. 

Cardiac steatosis is an independent risk factor for DCM. It is important to note that we use 

multiple low-dose STZ injections, which have low levels of toxicity on the liver and kidney and 

therefore no secondary effect on the heart. An additional advantage of our model is that we feed 

our STZ mice with a high-fat diet to ensure higher dependency on fatty acids and to induce 

steatosis. 

 

We confirmed that our diabetic mouse model exhibits hyperglycemia, a key characteristic of 

T2DM, and hyperlipidemia, which is highly prevalent in T2DM. ER stress and oxidative stress 

are implicated in the pathophysiology of several cardiovascular diseases, including DCM. 

Indeed, oxidative stress is a major risk factor for DCM, and several studies have showed a clear 

association between oxidative stress and heart failure (512, 513).  We measured ROS levels 

using DCFDA fluorescent staining. We also measured oxidative stress by semi-quantifying 

nitrotyrosine’s post-translational modification of proteins. We found a significant increase of 

ER stress and oxidative stress in our STZ/HFD mice compared to control mice. Since our in-

vitro results show a clear association between lipotoxicity and the inhibition of FAO, we 

measured the rate of FAO in mitochondria isolated from the heart of STZ/HFD mice. 

Interestingly, we found that mice who have been diabetic for 18 weeks and chronically fed an 

HFD during that time exhibit a significant reduction of complete FAO in cardiac cells. It has 
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been suggested that induction of FAO is protective in diabetic settings (514, 515). Since CPT1B 

catalyzes the rate-limiting step of β-oxidation, overexpressing CPT1B should theoretically 

increase FAO. We found that overexpressing CPT1B is protective and was associated with 

attenuation of ER stress and oxidative stress in our diabetic mouse model. To verify if the 

protective effect of CPT1B is through increasing FAO, we overexpressed CPT1B in a T293 cell 

line. We chose this cell line since it is easy to use to modulate CPT1B expression. Interestingly, 

overexpressing CPT1B in T293 cells induced FAO and protected these cells from palmitate 

lipotoxicity. Therefore, our results suggest that overexpressing CPT1B and enhancing FAO is a 

potential remedy for DCM.  

The exact molecular mechanism elucidating the protective effect of enhancing FAO is not fully 

elucidated. However, it has been suggested that inducing FAO promotes lipid clearance, causing 

lipids to be channeled away from other metabolic pathways that increase toxic metabolites, such 

as DAG and ceramides. Indeed, inhibiting FAO with etomoxir resulted in the accumulation of 

muscle DAG in C57bl6 mice (516). This is supported by another study that found increasing the 

export of lipids from the heart by overexpressing apolipoprotein B was protective in diabetic 

settings (517).  

 

Other research groups found that STZ mice exhibit higher rates of β-oxidation, which might 

seem to contradict our results. However, two things need to be taken into consideration. First, 

an increase in β-oxidation is not equal to an increase in total FAO. Our method quantifies the 

rate of FAO by measuring the production of CO2 from the citric acid cycle. Therefore, even if 

the rate of β-oxidation is increased, complete FAO will be inhibited if the citric acid cycle is 

impaired. Indeed, we have previously shown that palmitate inhibits FAO at least partially due 
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to its inhibition of the CAC (287). This is supported by others who have found that the CAC is 

impaired in several settings of lipotoxicity and diabetes (518-520). Second, an increase in β-

oxidation may be due to an increase of the availability of substrates (lipids) and not due to an 

intrinsic increase in mitochondrial metabolism. Indeed, this was demonstrated in db/db mice 

(521). This might explain the difference between the results found in our preparations, which 

involve using isolated mitochondria, and the preparations of others, which involve perfusing 

working hearts. 

 

An important feature of our in-vivo study is that we divided our STZ/HFD mice into two 

different groups: acute and chronic. Acute mice were fed an HFD for four weeks, while chronic 

mice were fed an HFD for 18 weeks. In this way, we took into consideration two distinct stages 

of DCM progression. We found a clear difference between acute and chronic mice, where four 

weeks of high-fat feeding was not enough to induce ER stress, oxidative stress, or to inhibit 

FAO. In our settings, therefore, the time needed to induce highly prevalent characteristics of 

DCM was higher than four weeks. This is important because our long-term experiment, which 

lasted 18 weeks and showed that STZ/HFD mice exhibit decreased FAO, is critically different 

from the short-term experiments done by other research groups, which found that STZ mice 

exhibit increased rates of β-oxidation. Indeed, the increase of β-oxidation at early time points of 

diabetes is likely a physiological response, while the decrease of fatty acid oxidation is a 

pathological effect of prolonged diabetes. 
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7.2 Conclusion 

 

In conclusion, the results presented in this thesis identify new molecular mechanisms of 

lipotoxicity in primary neonatal rat cardiomyocytes, in primary neonatal mouse cardiomyocytes, 

and in cardiac tissue of diabetic mice. These results help explicate the mechanism of lipotoxicity 

in diabetic hearts and shed new light on saturated fatty acids as major a contributor in the 

pathophysiology of diabetic cardiomyopathy. 

 

We found that palmitate induces intracellular lipid accumulation, ER stress, and cell death. 

Additionally, palmitate inhibits PPAR activity, which was associated with IL6 and TNFα 

induction and the inhibition of fatty acid oxidation. A key finding in this thesis is that palmitate 

toxicity is attenuated by inducing fatty acid oxidation, while oleate becomes toxic by inhibiting 

fatty acid oxidation. Furthermore, we demonstrated that palmitate likely impairs β-oxidation and 

the citric acid cycle through DAG-mediated PKC activation. This is important, since it might 

explain how the western diet, which is high in saturated fats, can contribute to the lipotoxicity 

observed in diabetic cardiomyopathy. In accordance with this, we found that the hearts of 

diabetic mice that were chronically fed a high-fat diet exhibit oxidative stress and reduced 

capacity to oxidize fatty acids. 

 

Unfortunately, this project is far from being able to elucidate the exact mechanism of lipotoxicity 

in diabetic cardiomyopathy. However, I hope it will be a stepping stone for future studies that 

focus on impaired fatty acid oxidation as a cause for lipotoxicity in diabetic cardiomyopathy.      
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