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Résumé

L’objectif principal de cette thèse est d’apprendre les représentations modulaires pour la tâche

de réponse visuelle aux questions (VQA). Apprendre de telles représentations a le potentiel de

généraliser au raisonnement d’ordre supérieur qui prévaut chez l’être humain. Le chapitre 1 traite

de la littérature relative à VQA, aux réseaux modulaires et à l’optimisation de la structure neuro-

nale. En particulier, les différents ensembles de données proposés pour étudier cette tâche y sont

détaillés. Les modèles de VQA peuvent être classés en deux catégories en fonction des jeux de

données auxquels ils conviennent. La première porte sur les questions ouvertes sur les images na-

turelles. Ces questions concernent principalement quelques objets/personnes présents dans l’image

et n’exigent aucune capacité de raisonnement significative pour y répondre. La deuxième catégorie

comprend des questions (principalement sur des images synthétiques) qui testent la capacité des

modèles à effectuer un raisonnement compositionnel. Nous discutons de différentes variantes ar-

chitecturales de réseaux de modules neuronaux (NMN). Finalement nous discutons des approches

pour apprendre les structures ou modules de réseau neuronal pour des tâches autres que VQA.

Au chapitre 2, nous décrivons un moyen d’exécuter de manière parcimonieuse un modèle CNN

(ResNeXt [110]) et d’enregistrer les calculs effectués dans le processus. Ici, nous avons utilisé un

mélange de formulations d’experts pour n’exécuter que les K meilleurs experts dans chaque bloc

convolutionnel. Le groupe d’experts le plus important est sélectionné sur la base d’un contrôleur

qui utilise un système d’attention guidé par une question suivie de couches entièrement connec-

tées dans le but d’attribuer des poids à l’ensemble d’experts. Nos expériences montrent qu’il est

possible de réaliser des économies énormes sur le nombre de FLOP avec un impact minimal sur la

performance.

Le chapitre 3 est un prologue du chapitre 4. Il mentionne les contributions clés et fournit une

introduction au problème de recherche que nous essayons de traiter dans l’article. Le chapitre 4

contient le contenu de l’article. Ici, nous nous intéressons à l’apprentissage de la structure interne
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des modules pour les réseaux de modules neuronaux (NMN) [3, 37]. Nous introduisons une nou-

velle forme de structure de module qui utilise des opérations arithmétiques élémentaires et la tâche

consiste maintenant à connaître les poids de ces opérations pour former la structure de module.

Nous plaçons le problème dans une technique d’optimisation à deux niveaux, dans laquelle le

modèle prend des gradients de descente alternés dans l’architecture et des espaces de poids. Le

chapitre 5 traite d’autres expériences et études d’ablation réalisées dans le contexte de l’article

précédent.

La plupart des travaux dans la littérature utilisent un réseau de neurones récurrent tel que LSTM

[33] ou GRU [13] pour modéliser les caractéristiques de la question. Cependant, les LSTM peuvent

échouer à encoder correctement les caractéristiques syntaxiques de la question qui pourraient être

essentielles [87]. Récemment, [76] a montré l’utilité de la modélisation du langage pour répondre

aux questions. Avec cette motivation, nous essayons d’apprendre un meilleur modèle linguistique

qui peut être formé de manière non supervisée. Dans le chapitre 6, nous décrivons un réseau ré-

cursif de modélisation de langage dont la structure est alignée pour le langage naturel. Plus tech-

niquement, nous utilisons un modèle d’analyse non supervisée (Parsing Reading Predict Network

ou PPRN [86]) et augmentons son étape de prédiction avec un modèle TreeLSTM [99] qui utilise

l’arborescence intermédiaire fournie par le modèle PRPN dans le but de un état caché en utilisant

la structure arborescente. L’étape de prédiction du modèle PRPN utilise l’état caché, qui est une

combinaison pondérée de l’état caché du TreeLSTM et de celui obtenu à partir d’une attention

structurée. De cette façon, le modèle peut effectuer une analyse non supervisée et capturer les

dépendances à long terme, car la structure existe maintenant explicitement dans le modèle. Nos

expériences démontrent que ce modèle conduit à une amélioration de la tâche de modélisation du

langage par rapport au référentiel PRPN sur le jeu de données Penn Treebank.

Mots clés : Réponse visuelle à une question, raisonnement visuel, réseaux modulaires, optimi-

sation de la structure neuronale, modélisation du langage

iv



Summary

The primary focus in this thesis is to learn modularized representations for the task of Visual

Question Answering. Learning such representations holds the potential to generalize to higher

order reasoning as is prevalent in human beings. Chapter 1 discusses the literature related to VQA,

modular networks and neural structure optimization. In particular, it first details different datasets

proposed to study this task. The models for VQA can be categorized into two categories based

on the datasets they are suitable for. The first one is open-ended questions about natural images.

These questions are mostly about a few objects/persons present in the image and don’t require

any significant reasoning capability to answer them. The second category comprises of questions

(mostly on synthetic images) which tests the ability of models to perform compositional reasoning.

We discuss the different architectural variants of Neural Module Networks (NMN). Finally, we

discuss approaches to learn the neural network structures or modules for tasks other than VQA.

In Chapter 2, we discuss a way to sparsely execute a CNN model (ResNeXt [110]) and save

computations in the process. Here, we used a mixture of experts formulation to execute only the

top-K experts in each convolutional block. The most important set of experts are selected based on

a gate controller which uses a question-guided attention map followed by fully-connected layers

to assign weights to the set of experts. Our experiments show that it is possible to get huge savings

in the FLOP count with only a minimal degradation in performance.

Chapter 3 is a prologue to Chapter 4. It mentions the key contributions and provides an in-

troduction to the research problem which we try to address in the article. Chapter 4 contains the

contents of the article. Here, we are interested in learning the internal structure of the modules for

Neural Module Networks (NMN) [3, 37]. We introduce a novel form of module structure which

uses elementary arithmetic operations and now the task is to learn the weights of these operations

to form the module structure. We cast the problem into a bi-level optimization technique in which

the model takes alternating gradient descent steps in architecture and weight spaces. Chapter 5
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discusses additional experiments and ablation studies that were done in the context of the previous

article.

Most works in the literature use a recurrent neural network like LSTM [33] or GRU [13] to

model the question features. However, LSTMs can fail to properly encode syntactic features of the

question which could be vital to answering some VQA questions [87]. Recently, [76] has shown

the utility of language modeling for question-answering. With this motivation, we try to learn a

better language model which can be trained in an unsupervised manner. In Chapter 6, we discuss a

recursive network for language modeling whose structure aligns with the natural language. More

technically, we make use of an unsupervised parsing model (Parsing Reading Predict Network

or PPRN [86]) and augment its prediction step with a TreeLSTM [99] model which makes use

of the intermediate tree structure given by PRPN model to output a hidden state by utilizing the

tree structure. The predict step of PRPN model makes use of a hidden state which is a weighted

combination of the TreeLSTM’s hidden state and the one obtained from structured attention. This

way it helps the model to do unsupervised parsing and also capture long-term dependencies as the

structure now explicitly exists in the model. Our experiments demonstrate that this model leads to

improvement on language modeling task over the PRPN baseline on Penn Treebank dataset.

Keywords: Visual Question Answering, Visual Reasoning, Modular Networks, Neural Struc-

ture Optimization, Language Modeling
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Introduction

Visual Question Answering is one of the most interesting tasks in machine learning. It involves

the twin challenges of understanding the two modalities involved i.e. language and vision, plus

understanding one in the context of the other. Human intelligence is remarkably proficient in

capturing the relationship between different objects in a scene and and being able to process this

information to answer questions in conversations. However, most neural-network based models of

this task have been susceptible to learning biases in datasets than perform actual reasoning [115]

and are thus prone to adversarial attacks. A plausible way to increase human trust in deploying

such models for practical applications is to make their decision making process explainable to

users. One way to achieve this would be to decompose the model into sub-modules which are

designed for specific functions. In Chapter 4, we address the task of learning the internal structure

of modules for VQA models for answering compositional reasoning based questions. In Chapter 2,

we try to learn a modularized version of ResNeXt CNN [110] model for the task of VQA. The key

contribution of this work is to efficiently train VQA models by sparsely executing the CNN sub-

network. Visual Question Answering models can benefit from language modeling for obtaining a

syntax-aware feature representation for the question and also for generating variable length answer

tokens. To this end, we propose a language model which can be trained in an unsupervised manner

and also capture long-term dependencies in Chapter 6.





Chapter 1

Background

1.1. Visual Question Answering

Visual Question Answering (VQA) has received considerable attention in the machine learning

community in recent years. This can be attributed to the fact that it is seen as an AI-complete

problem i.e. if given an image, a system is capable of answering any reasonable question, then any

vision task could be trivially broken into a set of questions about the subject image.

1.2. VQA Datasets

1.2.1. Natural Image datasets

The DAQUAR [63] is one of the first datasets which addresses VQA as its core learning task. It

is built on top of the NYU-Depth V2 dataset [71] which contains RGBD images of indoor scenes.

The questions comprise of both synthetic ones (generated automatically based on some templates

and then instantiated with facts from database) and the ones which are crowd-sourced from human

workers. It contains 6794 training and 5674 test question-answer pairs in total. The answer-set

contains 894 object categories, colors, numbers or sets of those. The main drawback of this dataset

is that the answers to the questions are biased towards certain objects like table or chair.

The COCO-QA [79] contains questions generated on the images of MS-COCO image dataset

[57]. The questions are generated synthetically by converting the image descriptions to questions.

It contains 78736 training and 38948 test question-answer pairs. The authors discarded the answers

which appear too frequently or too rarely resulting in a more balanced answer distribution.

Visual Genome [54] is one of the largest VQA datasets by size with over 1.77 million ques-

tion answer pairs. There are to sub-categories of questions - freeform QAs (which are based on



the entire image) and region-based QAs (based on selected regions of the image). This dataset

contains annotations for a large number of objects in images, scene graphs and region descriptions

in addition to question-answer pairs. It uses the images present in the intersection of YFCC100M

[103] and MS-COCO [57] datasets.

VQA-real [4] This is the most widely used VQA dataset for questions on natural images. The

images correspond to 123,287 training and validation images and 81,434 test images from the

Microsoft Common Objects in Context (MS COCO) dataset. The questions are crowd-sourced

from human annotators. It contains 614,163 questions and 10 answers per question from unique

workers. Each question can thus possibly have multiple correct answers. The main shortcoming

of this dataset is that given a question type, the answer distribution is highly skewed in certain

cases. For instance, the answer for 39% of counting questions is ‘2’ and ‘tennis’ is the answer for

questions like “What sport is” in 41% of the cases [26]. In order to alleviate such biases present in

the dataset, a second version of the dataset was proposed (called VQA v2 [26]). In this dataset, the

authors try to balance the questions by asking human annotators to create a new question (I
0
,Q,A

0
)

for an (image, question, answer) triplet (I,Q,A) such that I 6= I
0 and A 6= A

0 , but I is similar to

I
0 . In this way, I and I

0 are very close in visual feature space, so it is tough for the model to give

both answers correctly without properly understanding the visual modalities.

NLVR2 [92] This is a dataset based on web photographs in which each example consists of a

caption paired with two photographs. The task is to predict whether the caption is True or False.

This task requires complex reasoning which includes comparative, quantitative and spatial reason-

ing on the objects present in the images. This is similar to spirit to CLEVR [48] but the images

are natural images instead of synthetic ones and the captions are crowd-sourced from human anno-

tators. This dataset poses twin challenges of complex visual reasoning and understanding human

specified captions. It contains a total of 107,292 examples.

GQA [41] is a recently proposed dataset for visual reasoning and compositional question an-

swering on real-world images. It uses the images in Visual Genome dataset [54] that have scene

graph annotations to create a semantic ontology over the scene graph vocabulary. The questions are

created from 524 templates/patterns using the content present in scene graphs. It contains 22.6M

questions over 113K images. All the questions have their respective functional programs included

in the dataset. This dataset is strategically designed to mitigate the flaws of previous datasets which
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lead models to exploit different kinds of biases rather than perform actual reasoning to achieve good

accuracy.

1.2.2. Synthetic image datasets

SHAPES [3] is a dataset of synthetic images which emphasizes the understanding of spatial

and logical relations among multiple objects. It contains 244 unique questions, pairing each ques-

tion with 64 different images, resulting in a total of 15616 unique question-answer pairs.

The CLEVR [48] dataset proposed on similar lines as SHAPES, contains questions that test

visual reasoning abilities such as counting, comparison, logical reasoning based on 3D shapes

like cubes, spheres and cylinders of varied shades. Though it is in similar spirit to SHAPES, the

CLEVR dataset is much more complex than SHAPES both in terms of complexity and variety of

questions and images. Notably the number of questions in CLEVR dataset is around 1 million

(compared to 15K in SHAPES), which has contributed it to became a standard benchmark for a

variety of visual reasoning models.

VQA abstract scenes In order to make VQA systems focus on the task of visual reasoning

rather than recognition, a new dataset named VQA abstract scenes was proposed in [4] along with

the main natural image version. It contains scenes of paperdoll models in a variety of indoor and

outdoor scenes. The complexity of this dataset is enhanced by models of different ages, gender

and races, with different face expressions and pose variations. It contains a total of 50K scenes

and 150K questions. [26] introduces a complementary abstract scenes dataset such that in a given

example, the two scenes have opposite answers to the same boolean question. The motivation for

this dataset is to prevent the model from exploiting language biases for performance but instead

focus on visual reasoning.

NLVR The Cornell Natural Language Visual Reasoning (NLVR) [93] is a dataset aimed at test-

ing the ability of VQA systems to answer compositional questions using a visual context. Unlike

CLEVR [48] and SHAPES [3] which use synthetic questions, here the questions are crowd-sourced

from human annotators. The question is a description of the image and there are two images asso-

ciated with it. The description is true for only one of the given images and the task of the model

is to guess the correct image for the given description. It contains 3,962 unique descriptions and

92,244 examples.
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1.3. Evaluation metrics

Some VQA models like [64] output natural language answers to questions. For such models,

the evaluation is difficult as it amounts to paraphrase detection, which is itself a topic of active

research. [63] proposes the use of Wu-Palmer Set (WUPS) score. This is inspired from Fuzzy Sets

literature as many objects in the set of answers tend to be similar (e.g. ‘cup’ and ‘mug’), so all

incorrect (as per ground truth) answers should not be penalized equally. Here, WUP (a, b) [109]

represents the similarity between two words a and b based on their depth in the taxonomy tree. The

VQA-real dataset [4] contains answers from 10 human annotators for each question. A predicted

answer is deemed 100 % correct if 3 or more annotators gave that answer.

accuracy = min

✓
no. of annotators who gave that answer

3
, 1

◆

[41] introduces some new evaluation metrics like consistency, validity, plausibility and grounding

for measuring the coherent reasoning capabilities of VQA models.

1.4. Neural Architectures for VQA

1.4.1. Attention-based Neural Architectures

The span of attention-based neural architectures can be broadly classified into two categories,

mainly based on the datasets they are suitable for. The first category of architectures is designed pri-

marily for questions based on real images which are mostly crow-sourced from human annotators.

In such cases, the questions can be open-ended and mostly concern objects present in the image,

but the compositional reasoning ability required to answer questions present in such datasets, is

fairly limited. COCO-QA [79], DAQUAR [63], Visual Genome [54] and VQA-real [4] are some

examples in the first category. The second category of model architectures is primarily designed

for datasets containing questions which test the compositional reasoning ability of models and are

mostly synthetically generated. This category includes datasets like SHAPES [3], CLEVR [48]

and NLVR [93].

1.4.1.1. Models for Open-ended questions

CNN + BoW [118] is a very naive baseline model for VQA in which the question representa-

tion is obtained as a Bag of Words [81] of embeddings of individual question words. The visual

features are obtained from GoogLeNet [95].
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CNN + LSTM In this baseline model [63], the image features are encoded using a CNN like

VGGNet [88], ResNet [31] etc. The final hidden state of LSTM [33] which takes the question

word embeddings as input, is used for question representation. Both the image and question rep-

resentations are concatenated and then passed through an MLP to get the distribution over the

set of answers. [79] proposes an approach to handle answers of different word lengths in which

an encoder LSTM takes the concatenation of image and question feature vectors as input. A de-

coder LSTM decodes the encoder representation to produce a variable sized string of words for the

answer until a special token indicating the end of sentence is predicted.

Multimodal Compact Bilinear Pooling (MCB) [23] In this model, the question and image

features are obtained from LSTM and CNN respectively like previous models. It uses Multi-

modal Compact Bilinear pooling (MCB) [24] to fuse the two modalities instead of concatenation

or element-wise sum or product. This fusion takes place at each location of the spatial grid of

features obtained from the CNN. Subsequently, two convolutional layers followed by softmax are

used to predict the soft attention score for each location. The weighted sum of visual features

using the attention map is again fused with the question representation using MCB. The features

thus obtained are passed through an MLP followed by softmax to get the distribution over the set

of answers. Figure 1.1 illustrates the VQA architecture which uses MCB.
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Figure 1.1. Architecture diagram for Multimodal Compact Bilinear (MCB) with Attention

(adapted from [23]).
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Stacked Attention Networks (SAN) [111] In this model, the model first generates an attention

over the image pixels by fusing the spatial image features vI and question features vQ.

hA =tanh(WI,AvI � (WQ,AvQ + bA))

p
I =softmax(WPhA + bP )

where vI 2 Rd⇥m, vQ 2 Rd, WI,A, WQ,A 2 Rr⇥d, bA 2 Rr , WP 2 R1⇥r and bP 2 Rm.

p
I
2 Rm corresponds to the attention probability assigned to m image regions. Here, d denotes

the feature dimension of each image region in the final conv. layer and r is a hyper-parameter for

the size of a parameter matrix. � denotes a matrix-vector summation operation. The weighted sum

of visual features using the attention map (denoted by ṽI) is added to the question feature vector

vQ to form the query vector u.

ṽI =
X

i

pI
i
vi

u =ṽI + vQ

The attention process described above is repeated for K attention layers. The updated query vector

uk denotes the more fine-grained query in the multimodal space after the kth attention step.

h
k
A =tanh(W k

I,AvI � (W k
Q,Au

k�1 + b
k
A))

p
I,k =softmax(W k

Ph
k
A + b

k
P )

ṽ
k
I =

X

i

pI,k
i
vi

u
k =ṽ

k
I + u

k�1

The final query vector uK is fed to the classifier to predict the distribution over the set of answers.

1.4.1.2. Models for compositional reasoning based questions

Relational Networks [82] This model incorporates the explicit use of relational features be-

tween every pair of objects to predict the answer distribution.

vIQ =
X

i,j

g([vi,vj , q])

Here, q denotes the question representation, vi and vj denote the spatial features (obtained from

CNN) corresponding to the ith and jth image regions and g denotes an MLP. The feature represen-

tation vIQ is passed through a classifier to get the answer distribution. A schematic diagram for

the Relational Networks model architecture is shown in Figure 1.2.
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Figure 1.2. Relational Networks model architecture (adapted from [82])

Feature-wise Linear Modulation (FiLM) [75] uses Conditional Batch Normalization [17,

19] (CBN) conditioned on the question features to modulate the visual features for predicting the

answer. More specifically, FiLM learns the parameters of Batch Normalization of each channel as

affine functions of the GRU [15] representation of the question.

�i,c = fc(xi)

�i,c = hc(xi)

FiLM(Fi,c|�i,c, �i,c) = �i,cFi,c + �i,c

Here, xi denotes the ith input example’s question representation and (�i,c,�i,c) denotes the BN

parameters for the ith input and cth channel. The model architecture consists of a CNN (either pre-

trained or trained from scratch) followed by four residual blocks. Each residual block consists of a

1⇥1 convolution layer followed by a 3⇥3 convolution layer and a batch-normalization layer whose

(�,�) parameters are controlled by FiLM. The classifier (comprising of a 2-layer MLP followed

by softmax) uses the features output by FiLM network to output a distribution over the answers. A

schematic representation of different components of the FiLM model is shown in Figure 1.3.

Memory, Attention, and Composition (MAC) Network [40] The MAC network consists of

an input unit, a recurrent unit comprising of a number of MAC cells stacked together and an output

unit. A MAC cell consists of a control unit, read unit and write unit.

The input unit ingests the two modalities i.e. the question and image and converts them into

their respective distributed feature representations. For the question, a word-embedding is trained

from scratch and the features are obtained using a Bidirectional LSTM [33]. The model makes
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Figure 1.3. Schematic representation of FiLM based model architecture for Visual Reasoning

(adapted from [75]).

use of the LSTM outputs at each time-step of the question. For the image, a ResNet101 [32]

(pre-trained on ImageNet [18]) is used to extract conv-4 spatial features from the image.

The function of the control unit is to perform an attention on question words and subsequently

guide the reasoning operation. Let [cw1, cw2, ..., cwS] denote the output of Bi-LSTM at each

time-stamp of the input sequence of question words. Let q denote the concatenation of final hidden

state of Bi-LSTM during the forward and backward passes. qi denotes the question’s transformed

representation for the ith reasoning step. At first, qi and ci�1 are concatenated and combined

through a linear transform to form cq
i
. Then, ca i,s is computed as the similarity coefficient of cq

i

with the Bi-LSTM feature representation of question words. Finally, ci represents the weighted

feature representation of Bi-LSTM outputs obtained using these similarity values.

qi = W
d⇥2d
i

q + bd
i

cq
i
= W

d⇥2d [ci�1,qi] + b
d

cai,s = W
1⇥d(cq

i
� cws) + b1

cv i,s = softmax(cai,s)

ci =
SX

s=1

cv i,s · cw s
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The image features represent the knowledge base K
H⇥W⇥d = {k

d
h,w|

H,W

h,w=1,1} where d is the

number of output channels of the CNN. H and W denote the height and width of the visual feature

maps respectively. In the above equations, the superscript with the parameter tensors denotes their

dimension. The function of the read unit is to retrieve the information required for the ith reasoning

step. The function of the write unit is to compute the result of ith reasoning step and store it in the

memory state mi.

1.4.2. Modular Neural Architectures

Neural Module Networks [2] is a technique for answering complex questions which involve

spatial, set-theoretic reasoning and the ability to recognize attributes of shapes and objects. Each

“module” is a neural network whose structure is pre-specified in terms of layers and whose param-

eters are learnt during training. The universal dependency parse representation is obtained using

Stanford Parser [53]. Next, the set of dependencies is converted into structured queries each of

which consists of a function and a short word phrase which the function operates on. These func-

tions are then mapped to modules based on the location in the parse tree, of the node they operate

on. Thus, a custom layout of modules is obtained for each question. This model obtains excellent

results on SHAPES dataset (introduced in this paper only). The main contribution of this model

is that it uses the syntax tree efficiently to generalize well to complex questions involving compo-

sitional reasoning. The drawback is that the layout predictor is heavily hand-engineered for this

particular dataset and it has to be re-specified for use on other datasets.

End-to-End Module Networks for Visual Question Answering (N2NMN) [37] This model

builds upon the approach of Neural Module Networks (NMNs) but improves it in many ways. The

layout predictor is not hand-engineered but a policy network with a sequence-to-sequence RNN

which outputs a sequence of tokens (denoted by
�
m(t)

 
) corresponding to the Reverse Polish

notation [10] of the syntax tree of modules. The input question (of T words) is encoded using an

encoder LSTM to obtain a set of encoder states [h1,h2, · · · ,hT ]. The decoder is an Attentional

Recurrent Neural Network [5]. At timestep t, the decoder predicts attention weights corresponding

11



to each word of the input sequence:

uti = v
T tanh(W1hi +W2h

0

t
)

↵ti =
exp(uti)P
T

j=1 exp(utj)

ct =
TX

i=1

↵tihi

Here, h0
t

denotes the hidden state of decoder LSTM at timestep t, ct denotes the context vector

and q denotes the question representation. v, W1 and W2 are learnable parameter tensors. The

probability of the next token of the layout sequence is predicted as:

p(m(t)
|m(1), · · · ,m(t�1), q) = softmax(W3ht +W4ct)

The probability of a particular layout l in the space of layouts can be written as

p(l|q) =
Y

m(t)2l

p(m(t)
|m(1), · · · ,m(t�1), q)

xtxt =
TX

i=1

↵tihi

The policy samples a high probability layout according to the probability p(l|q) and a network of

modules is thus assembled. At test time, the maximum probability layout is selected using beam-

search. The neural modules take 0, 1 or 2 attention maps as input along with visual features xvis and

textual features xtxt. The implementation details of these modules are shown in Table 1.1. The xvis

is obtained from the conv-4 layer of ResNet-101 (similar to MAC network). The textual feature for

module m is computed as the weighted combination of embedding vectors of the question words,

weighted by attention vector ↵ti computed by the decoder LSTM. Since the layout sampling is

non-differentiable, it is trained using a combination of backpropagation and policy gradient.

Stack-NMN Stack-NMN [36] is an end-to-end differentiable version of Neural Module Net-

works. It eliminates the major limitation of previous approaches in this direction [2, 37] that hand

engineer the layout or learn it by policy gradient. It uses soft program execution to train the entire

model and gradually makes the layout hard towards the end of training by adding an entropy loss

term. Please refer to Section 4.2 for more details on this model.

Transparency by Design network [65] builds upon the End-to-End Module Networks [37] but

makes an important change in that the proposed modules explicitly utilize attention maps passed

12



Module name Att-inputs Features Output Implementation details

find (none) xvis, xtxt att aout = conv2 (conv1(xvis)�Wxtxt)

relocate a xvis, xtxt att aout = conv2 (conv1(xvis)�W1sum(a� xvis)�W2xtxt)

and a1, a2 (none) att aout = minimum(a1, a2)

or a1, a2 (none) att aout = maximum(a1, a2)

filter a xvis, xtxt att aout = and(a, find[xvis, xtxt]())

[exist,

count]

a (none) ans y = W Tvec(a)

describe a xvis, xtxt ans y = W T

1 (W2sum(a� xvis)�W3xtxt)

[eq_count,

more, less]

a1, a2 (none) ans y = W T

1 vec(a1) +W T

2 vec(a2)

compare a1, a2 xvis, xtxt ans y = W T

1 (W2sum(a1 � xvis)�W3sum(a2 � xvis)�W4xtxt)

Table 1.1. Implementation details of neural modules (adapted from [37])

as inputs instead of learning whether or not to use them. This results in more interpretability of the

modules since they perform specific functions. It improves the state of art on the CLEVR CoGenT

dataset. [48].

Neural Compositional Denotational Semantics for Question Answering [29] constructs a

parse-chart over the entire space of parse trees by using a parser similar to CRF-based PCFG parser

which uses the CYK algorithm [30, 49, 113]. Each node in the parse chart represents a span of the

question. Each token in the question can be an entity, relation, ungrounded semantic type, a truth

value or a semantically vacuous word. The composition modules transform the input semantic

types into output tokens. It reports good accuracy on CLEVRGEN, a new dataset over CLEVR

images which specifically tests semantic operators like conjunction, negation, count etc.

ReasonNet [42] uses two types of modules: visual classification modules and visual attention

modules, similar to [37]. The modules are hand-engineered to output specific visual features e.g.

object detection, object classification, scene classification, face detection etc. It uses a bilinear

model [100] to pool the module’s representation and the question representation.

1.5. Neural Structure Optimization

Neural Architecture Search (NAS) is a technique to automatically learn the structure and con-

nectivity of neural networks rather than training human-designed architectures. In [120], a recur-

rent neural network (RNN) based controller is used to predict the hyper-parameters of a CNN such

as number of filters, stride, kernel size etc. They used REINFORCE [108] to train the controller
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with validation set accuracy as the reward signal. Among other approaches that use reinforcement

learning to perform architecture search, [121] uses proximal policy optimization (PPO) [83] in-

stead of REINFORCE. In [117], Q-learning [106] is used to construct network blocks which are

then stacked together to form the complete network. As an alternative to reinforcement learn-

ing, evolutionary algorithms [91] have been used to perform architecture search in [77, 68, 60,

78]. Recently, [59] proposed a differentiable approach to perform architecture search and reported

success in discovering high-performance architectures for both image classification and language

modeling.

1.6. Modular Networks for other tasks

[52] proposes an EM style algorithm to learn black-box modules and their layout for image

recognition and language modeling tasks. [1] proposes an approach called modular meta-learning

to learn modules (parameterized as MLPs) and a compositional scheme to compose these modules

in order to re-use them for new tasks. Progressive Module Networks [50] is a model for multi-

task learning for a variety of visual reasoning tasks such as image captioning, counting and visual

question answering. It builds modules which are compositional i.e. utilize lower-level modules to

produce their output. [116] makes use of modules for training Generative Adversarial Networks

(GANs) [25]. The main advantage of this is that modules can be re-used and composed to form

GANs for generating images in a specific domain at test time.
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Chapter 2

Learning Sparse Mixture of Experts for Visual Question

Answering

2.1. Introduction

Deep learning has enabled commendable progress in many machine learning tasks. The ability

to train bigger networks (in terms of parameters) with improved infrastructure has enhanced the

performance in several tasks like object recognition, object detection, machine translation, face

recognition, question-answering etc. However, this poses a serious challenge in terms of huge

computational resources that are required to train and deploy such huge models. We aim to tackle

this issue for the specific task of Visual Question Answering (VQA). A Convolutional Neural

Network (CNN) is an integral part of the visual processing pipeline of a VQA model (assuming

the CNN is trained along with entire VQA model). In this project, we propose an efficient and

modular neural architecture for the VQA task with focus on the CNN module. Our experiments

demonstrate that a sparsely activated CNN based VQA model achieves comparable performance

to a standard CNN based VQA model architecture.

2.2. Related Work

Mixture of Experts Mixture of Experts [45] is a formulation in machine learning which em-

ploys the divide-and-conquer principle to solve a complex problem by dividing the neural network

into several expert networks. In the Mixture of MLP Experts (MME) method [105, 72, 21], a gat-

ing network is used to assign a weight gi to the output of the corresponding expert network. The



final output of the ensemble is a weighted sum of outputs of each of the individual expert networks.

O =
NX

i=1

oigi

Here, there are are total of N experts and oi denotes the output of the ith expert. The gating network

is an MLP followed by softmax operator. [47] uses a mixture of experts for visual reasoning tasks

in which each expert is a stack of residual blocks.

Conditional Computation Conditional Computation is the technique of activating only a sub-

portion of the neural network depending on the inputs. For instance, if a visual question answering

system has to count the number of a specified object vs if it has to tell the color of an object, the

specific features needed to give the correct answer in either case are different. Hence, there is a

potential to reduce the amount of computation the network has to perform in each case, which can

be especially useful to train large deep networks efficiently. The use of stochastic neurons with bi-

nary outputs to selectively turn-off experts in a neural network has been explored in [8]. [16] uses

a low-rank approximation of weight matrix of MLP to compute the sign of pre-nonlinearity activa-

tions. In case of ReLU activation function, it is then used to optimize the matrix multiplication for

the MLP layer. [7] uses Policy gradient to sparsely activate units in feed-forward neural networks

by relying on conditional computation. [85] proposes Sparsely-Gated Mixture-of-Experts layer

(MoE) which uses conditional computation to train huge capacity models on low computational

budget for language modeling and machine translation tasks. It makes use of noisy top-K mech-

anism in which a random noise is added to gating weights and then top-K weights are selected.

Another line of work makes use of conditional computation in VQA setting. DPPNet [73] makes

use of a dynamic parameter layer (fully-connected) conditioned on the question representation for

VQA. ABC-CNN [11] predicts convolutional kernel weights using an MLP which takes question

representation as input. Here, the advantage is that the question conditioned convolutional kernels

can filter out unrelated image regions in the visual processing pipeline itself.

Computationally efficient CNNs [39] proposes Multi-Scale Dense Convolutional Networks

(MSDNet) to address two key issues in (i) budgeted classification- distribute the computation bud-

get unevenly across easy and hard examples, (ii) anytime prediction: the network can output the

prediction result at any layer depending on the computation budget without significant loss in ac-

curacy. The optimization of computational complexity of CNNs at inference-time has been studied

in [9] in which an adaptive early-exit strategy is learned to by-pass some of the network’s layers in
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order to save computations. MobileNet [34] uses depth-wise separable convolutions to build light

weight CNNs for deployment on mobile devices.

CNN architectures The invention of Convolutional Neural Networks (CNNs) has led to a re-

markable improvement in performance for many computer vision tasks [55, 61, 80]. In recent

years, there has been a spate of different CNN architectures with changes to depth [89], topology

[32, 96], etc. The use of split-transform-merge strategy for designing convolutional blocks (which

can be stacked to form the complete network) has shown promise for achieving top performance

with a lesser computational complexity [96, 97, 98, 110]. The ResNeXt [110] CNN model pro-

poses cardinality (size of set of transformations in a convolutional block) as another dimension

apart from depth and width to investigate, for improving the performance of convolutional neural

networks. Squeeze-and-Excitation Networks [35] proposes channel-wise attention in a convolu-

tional block and helped improve the state of art in ILSVRC 2017 classification competition.

Grouped Convolution In grouped convolution, each filter convolves only with the input fea-

ture maps in its group. The use of grouped convolutions was first done in AlexNet [55] for training

a large network on 2 GPUs. A recently proposed CNN architecture named CondenseNet [38]

makes use of learned grouped convolutions to minimise superfluous feature-reuse and achieve

computational efficiency.

2.3. Model Architecture

Our main goal is to optimize the convolutions performed by the Convolutional Neural Network

(CNN) in a conditional computation setting. We use an off-the-shelf neural architecture for both

VQA v2 [26] and CLEVR [48] datasets and just replace the CNN with a modularized version of

the ResNeXt [110] CNN as we describe below. The details of convolutional architecture used in

the VQA v2 model and CLEVR model are illustrated in Table 2.1 and Table 2.2 respectively. For

VQA v2, we used the model architecture proposed in [102]. A schematic diagram to illustrate the

working of this model is given in Figure 2.1. For CLEVR dataset, we use the Relational Networks

[82] model because it is one of the few models which is fully-supervised and trains the CNN in the

main model pipeline. A diagram to illustrate the working of this model is shown in Figure 2.2.
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Figure 2.1. Model architecture for VQA v2 dataset (adapted from [102])
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Figure 2.2. Model architecture for Relational Networks (adapted from [82])

2.3.1. Bottleneck convolutional block

The architecture of a residual block of ResNeXt-101 (32 ⇥ 4d) is shown in Figure 2.3. Using

algebraic manipulations, it can be shown that Figure 2.3(a), (b) and (c) are equivalent in terms of

the function computed by it. Using grouped convolution (with number of groups=32), Figure 2.3(c)

is an optimum way of implementing it in standard libraries. We introduce a gating mechanism to

assign weights to each of the paths (which equal 32 in the example shown). We treat each path as

a convolutional module which should potentially be used for a specific function. The gate values

are normalized to sum to unity and are conditioned on the LSTM based feature representation of

the question. The working of gate controller is detailed in section 2.3.2.

In order to optimize the computation of a ResNeXt residual block, we execute just the top-k

(out of 32) paths and zero out the contribution of others. This is based on the hypothesis that the

gate controller shall determine the most important modules (aka paths) to execute by assigning

higher weights to more important modules. Figure 2.4 (a-d) shows the transformation of modular-

ized ResNeXt-101 (32⇥4d) block to its grouped convolution form. This technique is similarly ap-

plicable for the convolutional block used for CLEVR dataset (shown in Table 2.2). In our efficient
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Figure 2.3. Architecture of a sample block of ResNeXt-101 (32⇥ 4d)

stage output Description

conv1 112⇥112 7⇥7, 64, stride 2

conv2 56⇥56

3⇥3 max pool, stride 2
2

666664

1⇥1, 128

3⇥3, 128, C=32

1⇥1, 256

3

777775
⇥3

conv3 28⇥28

2

666664

1⇥1, 256

3⇥3, 256, C=32

1⇥1, 512

3

777775
⇥4

conv4 14⇥14

2

666664

1⇥1, 512

3⇥3, 512, C=32

1⇥1, 1024

3

777775
⇥23

conv5 7⇥7

2

666664

1⇥1, 1024

3⇥3, 1024, C=32

1⇥1, 2048

3

777775
⇥3

Table 2.1. Modular CNN for VQA v2

model

stage output Description

conv1 64⇥64 3⇥3, 64, stride 2

conv2 32⇥32

3⇥3 max pool, stride 2
2

666664

1⇥1, 48

3⇥3, 48, C=12

1⇥1, 48

3

777775
⇥1

conv3 16⇥16

2

666664

1⇥1, 48

3⇥3, 48, C=12

1⇥1, 48

3

777775
⇥1

conv4 8⇥8

2

666664

1⇥1, 48

3⇥3, 48, C=12

1⇥1, 48

3

777775
⇥1

conv5 8⇥8
1⇥ 1 conv. layer

with 24 o/p channels

Table 2.2. Modular CNN for Relational

Networks Model

implementation, we avoid executing the groups which don’t fall in top-k. More technically, we ag-

gregate the non-contiguous groups of the input feature map, which fall in top-k, into a new feature
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Figure 2.4. Architecture of corresponding block of conditional gated ResNeXt-101 (32 ⇥ 4d)

assuming we choose to turn ON paths with top � k gating weights. Here i1, · · · ,ik denote the

indices of groups in top� k.

map. We perform the same trick for the corresponding convolutional and batch-norm weights and

biases.

Computational complexity of the ResNeXt convolutional block (in terms of floating point

operations) ⇤=

⇤. No. of FLOPS of a convolutional block (no grouping) = Cin ⇤ Cout ⇤ p ⇤ p ⇤ Ho ⇤Wo, No. of FLOPS of a

convolutional block (with grouped convolution) = Cin⇤Cout⇤p⇤p⇤Ho⇤Wo

k
where Cin, Cout, p, k, Ho, Wo denote the

number of input channels, no. of output channels, kernel size, no. of groups, output feature map height and width

respectively
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= complexity(conv-reduce) + complexity(conv-conv)+

complexity(conv-expand) + complexity(bn-reduce, bn, bn-expand)

= feature-dim ⇤ (k ⇤ d) ⇤ 1 ⇤ 1 ⇤H1
o
⇤W 1

o
+

(k ⇤ d) ⇤ (k ⇤ d) ⇤ 3 ⇤ 3

k
⇤H2

o
⇤W 2

o

+ (k ⇤ d) ⇤ feature-dim ⇤ 1 ⇤ 1 ⇤H3
o
⇤W 3

o
+O(k)

= k ⇤ d ⇤ feature-dim ⇤H1
o
⇤W 1

o
+ k ⇤ d ⇤ feature-dim ⇤H3

o
⇤W 3

o

+ 9 ⇤ d2 ⇤ k ⇤H2
o
⇤W 2

o
+O(k)

Notation: conv-reduce, conv-conv and conv-expand denote the 1⇥1, 3⇥3 and 1⇥1 convolutional

layers in a ResNeXt convolutional block (in that order).

Here, d denotes the size of group in group convolution (equals 4 for Figure 2.4) and ‘feature

dim’ denotes the no. of channels in the feature map input to the convolutional block. The imple-

mentation of modularized ResNeXt block is more efficient than the regular implementation in the

case when k < 32. The overhead of the gate controller can be minimized by appropriate selection

of hyper-parameters. The comparison of FLOPS with varying values of the hyper-parameter k is

shown in Table 2.3 for the VQA v2 model and Table 2.4 for the CLEVR model.

2.3.2. Gate controller

The gate controller takes as input the LSTM based representation of the question and the inter-

mediate convolutional map which is the output of the previous block. Given the image features vI

and question features vQ, we perform the fusion of these features, followed by a linear layer and

softmax to generate the attention p
I over the pixels of the image feature input.

ṽI =
X

i

pI
i
vi

uquery = ṽI + vQ

g = Wguquery + bg

g
0
=

ReLU(g)

||ReLU(g)||1

Notation: WI 2 RA⇥B, WI,A 2 RC⇥B, WQ,A 2 RB⇥C , WP 2 R1⇥C , bP 2 R1⇥D,

Wg 2 RB⇥E , bg 2 RB⇥1, A = Feature dim. of each img. region in final conv. layer, B =

question feature dim. (from LSTM/GRU), C = Hidden layer dim., D = No. of img. regions,
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E = No. of modules/residual blocks. We add an additional loss term which equals the square

of coefficient of variation (CV) of gate values for each convolutional block.

CV (g
0
) =

�(
P

N

i=1 g
0
i,·)

µ(
P

N

i=1 g
0
i,·)

In the above equation, g0
i,· 2 RE denotes the gating weight vector for the ith batch example. This

helps to balance out the variation in gate values [85] otherwise the weights corresponding to the

modules which get activated initially will increase in magnitude and this behavior reinforces itself

as the training progresses.

2.4. Experiments

2.4.1. VQA v2 dataset

We use the Bottom-up attention model for VQA v2 dataset as proposed in [101] as our base

model and replace the CNN sub-network with our custom CNN. The corresponding results are

shown in Table 2.3. The results show that there is a very minimal loss in accuracy from 0%

sparsity to 50% sparsity. However, with 75% sparsity †, there is a marked 3.62% loss in overall

accuracy.

2.4.2. CLEVR dataset

We use the Relational Networks model [82] and replace the Vanilla CNN used in their model

with our modularized CNN and report the results on the CLEVR v1 dataset. The CNN used for

this model has four layers with one residual ResNeXt block each followed by a 1⇥1 convolutional

layer. The results for these experiments are shown in Table 2.4. The results show that with a slight

dip in performance, the model which uses 50% sparsity has comparable performance with the one

which doesn’t have sparsity in the convolutional ResNeXt block.

†. Here, 75% sparsity means that 75% of the modules/paths in the ResNeXt convolutional block are turned off.
‡. The FLOPS calculation assumes an input image of size 224⇥ 224⇥ 3

§. The baseline model doesn’t use R-CNN based features, so the accuracy is not directly comparable with state of

the art approaches.
¶. The FLOPS calculation assumes an input image of size 128⇥ 128⇥ 3
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Architecture for CNN FLOPS (CNN) ‡ Accuracy (%)

ResNeXt-32 (101 x 32d) (baseline) § 156.04E+09 54.51

Modular ResNeXt-32 (101 x 32d) k = 32 (0 % sparsity) 181.39E+09 54.90

Modular ResNeXt-32 (101 x 32d) k = 16 (50 % sparsity) 77.72E+09 54.47

Modular ResNeXt-32 (101 x 32d) k = 8 (75 % sparsity) 45.94E+09 51.28

Table 2.3. Results on VQA v2 validation set

CNN Model description FLOPS (CNN) ¶ Val. Acc. (%)

Modular CNN, k=12 (baseline) 5.37E+07 94.05

Modular CNN, k=6, 50 % sparsity 3.21E+07 92.23

Table 2.4. Results on CLEVR v1.0 validation set (Overall accuracy)

2.5. Conclusion

We presented a general framework for utilizing conditional computation to sparsely execute a

subset of modules in a convolutional block of ResNeXt model. The amount of sparsity is a user-

controlled hyper-parameter which can be used to turn off the less important modules conditioned

on the question representation, thereby increasing the computational efficiency. Future work may

include studying the utility of this technique in other multimodal machine learning applications

which support use of conditional computation.
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Chapter 3

Prologue to First Article

3.1. Article details

Learning Neural Modules for Visual Question Answering by Vardaan Pahuja, Jie Fu,

Sarath Chandar, Christopher Pal was submitted to Association for Computational Linguistics

(ACL) 2019 conference and is currently under review.

Personal Contribution: The initial idea for the alternating optimization of module structure

and module parameters was jointly proposed by Vardaan Pahuja and Jie Fu. I was responsible

for coming up with the generalized module structure and the idea of using elementary arithmetic

operations to form the module operations. The idea of using Integrated Gradients [94] for mea-

suring module sensitivity and other post-analysis techniques were suggested by me. The initial

draft of the paper was written by me. I was also responsible for the entire code implementation

in PyTorch [74] library and running different experiments related to training, post-analysis and

hyper-parameter optimization.

Contribution of other authors: Jie Fu and Prof. Christopher Pal helped in initial brainstorm-

ing about the project and model structure in particular. Sarath Chander helped to accelerate the

progress by giving insights on appropriate selection of hyper-parameters. He also suggested the

idea of adding a sparsity loss to get a sparse set of module weights at each node in module. Finally,

everyone contributed to improving the draft of the paper.

3.2. Context

In this paper, we are interested in the task of Visual Reasoning, which is an important compo-

nent of Visual Question Answering. Section 1.4.1.2 discusses monolithic black-box architectures



for visual reasoning like FiLM [75], Relational Networks [82] and MAC Network [40]. The sec-

ond class of architectures [3, 37] (mentioned in Section 1.4.2) consist of modules which are neural

networks (trained from scratch) specialized to perform a particular function.

3.3. Contributions

A major limitation of the modular neural architectures discussed in the previous section is that

the modules being used were hand-engineered. In this work, we try to learn the structure of mod-

ules in terms of elementary arithmetic operations. Our results show that we achieve comparable

performance as the model with hand-designed modules. We present a detailed analysis of the

degree to which each module influences the prediction function of the model, the effect of each

arithmetic operation on overall accuracy and the analytical expressions of the learned modules.
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Chapter 4

Learning Neural Modules for Visual Question Answering

Abstract
Visual question answering involves both visual recognition and reasoning grounded in language.

Broadly speaking, there are two popular neural approaches to this problem domain. One family of ap-

proaches tends to be based on more black-box architectures that perform the fusion of vision and language

through multiple steps of attention. Another family of approaches involves human-specified neural modules,

each specialized in a specific form of reasoning, where the order of execution of the underlying modules is

sometimes learned. In this work, we further expand the second approach and learn the underlying internal

structure of modules in terms of simple and elementary arithmetic operators. Our results show that one is

indeed able to simultaneously learn both internal module structure and module sequencing, without extra su-

pervisory signals for module execution sequencing. With this approach, we report performance comparable

to the models using hand-designed modules.

4.1. Introduction

Visual question answering requires a learning model to answer sophisticated queries about

visual inputs. Such reasoning is considered the hallmark of human intelligence and allows us

to interpret and draw plausible inferences from our daily interaction with objects present in the

environment. Significant progress has been made in this direction to design neural networks which

can answer queries about images. However, recent studies [10, 11] have shown that the neural

networks tend to exploit biases in the datasets without learning how to actually reason.

There are two broad classes of approaches proposed in the literature for the task of visual

reasoning. The first class of approaches propose end-to-end black-box architectures. Examples

include FiLM [18] and MAC [8] where the fusion of representations of the two modalities (image

and text) is performed by using a variety of neural network architectures. The second class of



approaches are modular networks where each module is designed to focus on a sub-component of

the reasoning process.

[2] propose Neural Module Network (NMN) where they compose neural network modules

(with shared parameters) for each input question based on the layout predicted by the syntactic

parse of the question. The modules take as input the images or the attention maps and return

attention maps or labels as output. In [7], the layout prediction is relaxed by learning a layout policy

with a sequence-to-sequence RNN. This layout policy is jointly trained along with the parameters

of the modules. The model proposed in [6] avoids the use of reinforcement learning to train

the layout predictor, and uses soft program execution to jointly learn both layout and module

parameters.

A fundamental limitation of these previous modular approaches to visual reasoning is that the

modules need to be hand-specified. This might not be feasible when one has limited knowledge

of the kinds of questions or associated visual reasoning required to solve the task. In this work,

we present an approach to learn the module structure, along with the parameters of the modules

in an end-to-end differentiable training setting. Our proposed model, Learnable Neural Module

Network (LNMN), learns the structure of the module, the parameters of the module, and the way to

compose the modules based on just the regular task loss. Our results show that we are able to learn

the structure of the modules automatically and still perform comparable to hand-specified modules.

We would like to highlight the fact that our goal in this paper is not to beat the performance of the

hand-specified modules since they are specifically engineered for the task. Instead, our goal is to

explore the possibility of designing general purpose reasoning modules in a completely data-driven

fashion.

4.2. Background

In this section, we describe the working of the Stack-NMN model [6] as our proposed LNMN

model uses this as the base model. The Stack-NMN model is an end-to-end differentiable model for

the task of Visual Question Answering and Referential Expression Grounding [21]. It addresses a

major drawback of prior visual reasoning models in literature that compositional reasoning is im-

plemented without need of supervisory signals for composing the layout at training time. It consists

of several hand-specified modules (namely Find, Transform, And, Or, Filter, Scene, Answer, Com-

pare and NoOp) which are parameterized, differentiable, and implement common routines needed
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in visual reasoning and learns to compose them without strong supervision. The implementation

detail of these modules is given in Appendix (see Table 4.B.1). The different sub-components of

the Stack-NMN model are described below.

4.2.1. Module Layout Controller

The structure of the controller is similar to the one proposed in [8]. The controller first encodes

the question using a bi-directional LSTM [5]. Let [h1,h2, ...,hS] denote the output of Bi-LSTM

at each time-step of the input sequence of question words. Let q denote the concatenation of final

hidden state of Bi-LSTM during the forward and backward passes. q can be considered as the

encoding of the entire question. The controller executes the modules iteratively for T times. At

each time-step, the updated query representation u is obtained as:

u = W2[W
(t)
1 q + b1; ct�1] + b2

where W
(t)
1 2 Rd⇥d, W2 2 Rd⇥2d, b1 2 Rd, b2 2 Rd. ct�1 is the textual parameter from the

previous time step. The controller has two outputs viz. the textual parameter at step t (denoted

by ct) and the attention on each module (denoted by vector w(t)). The controller first predicts an

attention on each of the words of the question and then uses this attention to do a weighted average

over the outputs of the Bi-LSTM.

cvt,s = softmax(W3(u� hs))

ct =
SX

s=1

cvt,s · hs

where, W3 2 R1⇥d. The attention on each module w(t) is obtained by feeding the query represen-

tation at each time-step to a Multi-layer Perceptron (MLP).

w
(t) = softmax(MLP (u; ✓MLP ))

4.2.2. Operation of Memory Stack for storing attention maps

In order to answer a visual reasoning question, the model needs to execute modules in a tree-

structured layout. In order to facilitate this sort of compositional behavior, a differentiable memory

pool to store and retrieve intermediate attention maps is used. The memory stack (with length

denoted by L) stores H ⇥ W dimensional attention maps, where H and W are the height and

width of image feature maps respectively. Depending on the number of attention maps required as
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input by the module, it pops them from the stack and later pushes the result back to the stack. The

model performs soft module execution by executing all modules at each time-step. The updated

stack and stack pointer at each subsequent time-step are obtained by a weighted average of those

corresponding to each module using the weights w(t) predicted by the module controller. This is

illustrated by the equations below:

(A(t)
m
, p(t)

m
) = run-module(m,A(t), p(t))

A(t+1) =
X

m2M

A(t)
m

· w(t)
m

p(t+1) = softmax(
X

m2M

p(t)
m

· w(t)
m
)

Here, A(t)
m and p(t)m denote the stack and stack pointer respectively, after executing module m at

time-step t. A(t) and p(t) denote the stack and stack pointer obtained after the weighted average

of those corresponding to all modules at previous time-step (t � 1). The working of module

layout controller and its interfacing with memory stack is illustrated in Algorithm 1. The internal

functioning of a module is shown in Appendix (see Algorithm 3).

4.2.3. Final Classifier

At each time-step of module execution, the weighted average of output of the Answer modules

is called memory features (denoted by f (t)
mem =

P
m2ans. module o

(t)
m w(t)

m ). Here, o(t)m denotes the

output of module m at time t. The memory features are given as one of the inputs to the Answer

modules at the next time-step. The memory features at the final time-step are concatenated with

the question representation, and then fed to an MLP to obtain the logits.

4.3. Learnable Neural Module Networks

In this section, we introduce Learnable Neural Module Networks (LNMNs) for visual reason-

ing, which extends Stack-NMN. However, the modules in LNMN are not hand-specified. Rather,

they are generic modules as specified below.

4.3.1. Structure of the Generic Module

The cell (see Figures 4.1, 4.2) denotes a generic module which can span all the required mod-

ules for a visual reasoning task. Each cell contains a certain number of nodes. The function of

a node (denoted by O) is to perform a weighted sum of outputs of different arithmetic operations
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Data: Question (string), Image features (I)

Encode the input question into d-dimensional sequence [h1,h2, ...,hS] using Bidirectional

LSTM.

A(0)
 Initialize the memory stack (A; p) with uniform image attention and set stack the

pointer p to point at the bottom of the stack (one-hot vector with 1 in the 1st dim.).

for each time-step t = 0, 1, ...., (T-1) do

u = W2[W
(t)
1 q + b1; ct�1] + b2;

w
(t) = softmax(MLP (u; ✓MLP ));

cvt,s = softmax(W3(u� hs));

ct =
P

S

s=1 cvt,s · hs

for every module m 2M do
Produce updated stack and stack pointer:

(A(t)
m , p(t)m ) = run-module(m,A(t), p(t), ct, I);

end

A(t+1) =
P

m2M A(t)
m · w(t)

m ;

p(t+1) = softmax(
P

m2M p(t)m · w(t)
m )

end
Algorithm 1: Operation of Module Layout Controller and Memory Stack.

applied on the input feature maps x1 and x2. Let ↵0
= �(↵) denote the output of softmax function

applied to the vector ↵ such that

↵
0

i
= �(↵)i =

exp(↵i)P6
j=1 exp(↵j)

O(x1,x2) = ↵
0

1 ⇤min(x1,x2) + ↵
0

2 ⇤max(x1,x2) + ↵
0

3 ⇤ (x1 + x2)

+ ↵
0

4 ⇤ (x1 � x2) + ↵
0

5 ⇤ choose1(x1,x2) + ↵
0

6 ⇤ choose2(x1,x2)

The last two non-standard functions are defined as below:

choose1(x1,x2) = x1

choose2(x1,x2) = x2

We consider two broad kinds of modules: (i) Attention modules which output an attention map

(ii) Answer modules which output features to be stored in memory. Among each of these two
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categories, there is a finer categorization:

4.3.1.1. Generic Module with 3 inputs

This module type receives 3 inputs (i.e. image features, textual parameter, and a single attention

map) and produces a single output. The first node receives input from the image feature (I) and the

attention map (popped from the memory stack). The second node receives input from the textual

parameter followed by a linear layer (W1ctxt), and the output of the first node.

Figure 4.1. Attention Module schematic diagram (3 inputs).

Figure 4.2. Attention Module schematic diagram (4 inputs).
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4.3.1.2. Generic Module with 4 inputs

This module type receives 4 inputs (i.e. image features, textual parameter and two attention

maps) and produces a single output. The first node receives the two attention maps, each of which

are popped from the memory stack, as input. The second node receives input from the image

features along with the output of the first node. The third node receives input from the textual

parameter followed by a linear layer, and the output of the second node.

For the Attention modules, the output of the final node is converted into a single-channel atten-

tion map using a 1 ⇥ 1 convolutional layer. For the Answer modules, the output of the final node

is summed over spatial dimensions, and the resulting feature vector is concatenated with memory

features of previous time-step and textual parameter features, fed to a linear layer to output mem-

ory features. The schematic diagrams of the Answer modules are given in the Appendix section

(see Figures 4.A.1, 4.A.2).

4.3.2. Overall structure

The structure of our end-to-end model extends Stack-NMN in that we specify each module in

terms of the generic module (defined in Section 4.3.1). We experiment with three model ablations

in terms of number of modules for each type being used. See Table 4.1 for details ⇤. We train

the module network parameters (denoted by ↵ =
n
↵m,k

i

o6

i=1
for kth node of module m) and the

weight parameters (W) by adopting alternating gradient descent steps in architecture and weight

spaces respectively. For a particular epoch, the gradient step in weight space is performed on

each training batch, and the gradient step in architecture space is performed on a batch randomly

sampled from the validation set. This is done to ensure that we find an architecture corresponding

to the modules which has a low validation loss on the updated weight parameters. This is inspired

by the technique used in [15] to learn monolithic architectures like CNNs and RNNs in terms of

basic building blocks (or cells). Algorithm 2 illustrates the training algorithm. Here, Ltrain(W ,↵)

and Lval(W ,↵) denote the training loss and validation loss on the combination of parameters

(W ,↵) respectively. For the gradient step on the training batch, we add an additional loss term

to initially maximize the entropy of w(t) and gradually anneal the regularization coefficient (�w)

to opposite sign (which minimizes the entropy of w(t) towards the end of training). The value of

�w varies linearly from 1.0 to 0.0 in the first 20 epochs and then steeply decreases to �1.0 in next

⇤. 1 NoOp module is included by default in all ablations.
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10 epochs. The trend of variation of �w is shown in Appendix (see Figure 4..5). For the gradient

steps in the architecture space, we add an additional loss term ( l2
l1

= k�(↵)k2
k�(↵)k1

)[9] to encourage the

sparsity of ↵ parameters after softmax activation.

Model

Attn.

modules

(3 input)

Attn.

modules

(4 input)

Ans.

modules

(3 input)

Ans.

modules

(4 input)

LNMN (9) 4 2 1 1

LNMN (11) 4 2 2 2

LNMN (14) 5 4 2 2

Table 4.1. Number of modules of each type for different model ablations.

while not converged do

1. Update weights W by descending rw

h
Ltrain(W ,↵)� �w

T

TP
t=1

H(w(t))
i

2. Update architecture ↵ by descending

r↵

h
Lval(W ,↵)� �op

MP
m=1

pP
k=1

k�(↵m,k)k
2

k�(↵m,k)k
1

i

end
Algorithm 2: Training Algorithm for LNMN Modules. Here, ↵ denotes the collection of module

network parameters i.e.
n
↵m,k

i

o6

i=1
for kth node of module m, W denotes the collection of weight

parameters of modules and all other non-module parameters.

4.4. Experiments

We train our model on the CLEVR visual reasoning task. CLEVR [11] is a synthetic dataset

for visual reasoning containing around 700K examples, and has become the standard benchmark

to test visual reasoning models. It contains questions that test visual reasoning abilities such as

counting, comparing, logical reasoning based on 3D shapes like cubes, spheres, and cylinders of

varied shades. A typical example question and image pair from this dataset is given in Appendix

(see Figure 4..4). The results on CLEVR test set are reported in Table 4.2. Some ablations of the

model are shown in Table 4.3. We use the pre-trained CLEVR model to fine-tune the model on
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Model CLEVR Count Exist Compare Query Compare CLEVR

Overall Numbers Attribute Attribute Humans

Human [12] 92.6 86.7 96.6 86.5 95.0 96.0 -

Q-type baseline [12] 41.8 34.6 50.2 51.0 36.0 51.3 -

LSTM [12] 46.8 41.7 61.1 69.8 36.8 51.8 36.5

CNN+LSTM [12] 52.3 43.7 65.2 67.1 49.3 53.0 43.2

CNN+LSTM+SA+MLP [11] 73.2 59.7 77.9 75.1 80.9 70.8 57.6

N2NMN* [7] 83.7 68.5 85.7 84.9 90.0 88.7 -

PG+EE (9K prog.)* [12] 88.6 79.7 89.7 79.1 92.6 96.0 -

PG+EE (18K prog.)* [12] 95.4 90.1 97.3 96.5 97.4 98.0 66.6

PG+EE (700K prog.)* [12] 96.9 92.7 97.1 98.7 98.1 98.9 -

CNN+LSTM+RN‡ [22] 95.5 90.1 97.8 93.6 97.9 97.1 -

CNN+GRU+FiLM [18] 97.7 94.3 99.1 96.8 99.1 99.1 75.9

CNN+GRU+FiLM [18] 97.6 94.3 99.3 93.4 99.3 99.3 -

MAC [8] 98.9 97.1 99.5 99.1 99.5 99.5 81.5

Stack-NMN (9 modules)†[6] 91.41 81.78 95.78 85.23 95.45 95.68 68.06

LNMN (9 modules) 89.88 84.28 93.74 89.63 89.64 94.84 66.35

LNMN (11 modules) 90.52 84.91 95.21 91.06 90.03 94.97 65.68

LNMN (14 modules) 90.42 84.79 95.52 90.52 89.73 95.26 65.86

Table 4.2. CLEVR and CLEVR-Humans Accuracy by baseline methods and our models. (*)

denotes use of extra supervision through program labels. (‡) denotes training from raw pixels. †

Accuracy figures for our implementation of Stack-NMN. The original paper reports 93% validation

accuracy, test accuracy isn’t reported.

CLEVR-Humans dataset. The latter is a dataset of challenging human-posed questions based on

a much larger vocabulary on the same CLEVR images. The corresponding results are shown in

Table 4.2 (see last column).
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Model Overall Count Exist
Compare

number

Query

attribute

Compare

Attribute

Original setting

(T = 5, L = 5,map_dim = 384)
89.78 84.54 93.46 88.70 89.59 94.87

Use hard-max for operation weights

(for inference only)

(T = 5, L = 5,map_dim = 384)

87.99 81.53 94.11 87.70 88.27 91.55

T = 9, L = 9,map_dim = 256 89.96 84.03 93.45 89.98 90.75 93.10

Concatenate all inputs

followed by conv. layer
47.03 42.5 61.15 68.64 38.06 49.43

Table 4.3. Model Ablations for LNMN (CLEVR Validation set performance). The term

‘map_dim’ refers to the dimension of feature representation obtained at the input or output of each

node of cell.

We use Adam [13] as the optimizer for the weight parameters with a learning rate of 1e�4,

(�1, �2) = (0.9, 0.999) and no weight decay. For the module network parameters, we use the same

optimizer with a different learning rate 3e�4, (�1, �2) = (0.5, 0.999) and a weight decay of 1e�3.

The value of �op is set to 1e�1. We uploaded the code for implementation of our model in the

supplementary material.

4.4.1. Results

The comparison of CLEVR overall accuracy shows that our model (LNMN (9 modules)) re-

ceives only a slight dip (1.53%) compared to the Stack-NMN model. We also experiment with

other variants of our model in which we increase the number of Answer modules (LNMN (11

modules)) and/or the Attention modules (LNMN (14 modules)). The LNMN (11 modules) model

performs better than the other two ablations (0.89% accuracy drop w.r.t. the Stack-NMN model).

For the ‘Count’ and ‘Compare Numbers’ sub-category of questions, all of the 3 variants perform

consistently better than Stack-NMN model. In case of CLEVR-Humans dataset, the accuracy drop
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Module ID Module type min max sum product choose_1 choose_2

0 Attn. (3 input) 6.26E+04 2.73E+04 3.63E+04 1.07E+05 5.10E+04 1.56E+04

1 Attn. (3 input) 4.37E+04 1.80E+04 6.17E+04 1.43E+04 2.85E+04 1.66E+05

2 Attn. (3 input) 7.01E+04 3.28E+04 3.85E+04 1.13E+05 5.22E+04 1.47E+04

3 Attn. (3 input) 8.61E+03 6.15E+04 1.74E+04 1.80E+04 4.73E+04 2.96E+04

4 Attn. (4 input) 4.46E+04 3.19E+04 7.65E+04 1.71E+04 3.55E+04 2.06E+05

5 Attn. (4 input) 1.14E+05 5.62E+05 2.27E+05 8.55E+03 2.81E+04 1.84E+05

6 Ans. (3 input) 2.13E+06 4.25E+06 4.42E+06 8.32E+06 2.26E+06 4.89E+05

7 Ans. (4 input) 1.15E+05 5.78E+04 1.72E+05 5.19E+03 1.04E+05 4.51E+05

Table 4.4. Analysis of gradient attributions of ↵ parameters corresponding to each module

(LNMN (9 modules)), summed across all examples of CLEVR validation set.

Operator

Name
Overall Count Exist

Compare

number

Query

attribute

Compare

Attribute

min 86.64 77.98 86.79 87.89 88.77 93.10

max 45.54 35.92 55.25 63.66 40.52 51.83

sum 82.67 69.89 80.25 85.22 87.69 90.05

product 34.65 14.55 51.49 48.79 30.31 49.92

choose_1 89.74 84.24 93.81 89.02 89.59 94.67

choose_2 79.45 64.77 76.07 82.96 86.78 84.94

Original Model 89.88 84.28 93.74 89.63 89.64 94.84

Table 4.5. Analysis of performance drop with removing operators from a trained model (LNMN

9 modules) on CLEVR validation set.

is a modest 1.71%. This clearly shows that the modules learnt by our model (in terms of elemen-

tary arithmetic operations) perform approximately as well as the ones specified in the Stack-NMN

model (that contains hand-designed modules which were tailor-made for the CLEVR dataset). The
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results from the ablations in Table 4.3 show that a naive concatenation of all inputs to a module

(or cell) results in a poor performance (around 47 %). Thus, the structure we propose to fuse the

inputs plays a key role in model performance. When we replace the ↵ vector for each node by a

one-hot vector during inference, the drop in accuracy is only 1.79% which shows that the learned

distribution over operation weights peaks over a specific operation which is desirable.

4.4.2. Measuring the role of individual arithmetic operators

Each module (aka cell) contains nodes which involve use of six elementary arithmetic oper-

ations (i.e. min, max, sum, product, choose_1 and choose_2). We zero out the contribution to

the node output for each of the arithmetic operations for all nodes in all modules and observe the

degradation in the CLEVR validation accuracy †. The results of this study are shown in Table 4.5.

The trend of overall accuracy shows that removing max and product operators results in maximum

drop in overall accuracy (⇠ 50%). Other operators like min, sum and choose_1 result in minimal

drop in overall accuracy.

4.4.3. Measuring the sensitivity of modules

We use an attribution technique called Integrated Gradients [24] to study the impact of module

structure parameters (denoted by
n
↵m,k

i

o6

i=1
for kth node of module m) on the probability distribu-

tion in the last layer of LNMN model. Let F (image, question,↵) denote the function that assigns

the probability corresponding to the correct answer index in the softmax distribution. Let Ij and qj

denote the (image, question) pairs for the jth example. ↵m,k

i
denotes the module network parameter

for the ith operator in kth node of module m. Then, the attribution of [↵m

1 ,↵
m

2 ,↵
m

3 ,↵
m

4 ,↵
m

5 ,↵
m

6 ]

(summed across all nodes k = 1,...,p for a particular module m) is defined as:

IG(↵m

i
) =

NX

j=1

pX

k=1


(↵m,k

i
� (↵m,k

i
)
0
)⇥

Z 1

⇠=0

@F (Ij, qj, (1� ⇠)⇥ (↵m,k

i
)
0
+ ⇠ ⇥ ↵m,k

i
)

@↵m,k

i

�

=
NX

j=1

pX

k=1


↵m,k

i
⇥

Z 1

⇠=0

@F (Ij, qj, ⇠ ⇥ ↵m,k

i
)

@↵m,k

i

�

Please note that attributions are defined relative to an uninformative input called the baseline. We

use a vector of all zeros as the baseline (denoted by (↵m,k

i
)
0). Table 4.4 shows the results for this

†. The CLEVR test set ground truth answers are not public, so we use the validation set instead. However, Table 4.2

shows results for CLEVR test set (evaluated by the authors of CLEVR dataset).
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experiment. The network parameters (↵ parameters) of the Answer modules have their attributions

to the final probability around 1-2 orders of magnitudes higher than rest of the modules. The higher

influence of Answer modules can be explained by the fact that they receive the memory features

from the previous time-step and the classifier receives the memory features of the final time-step.

The job of Attention modules is to utilize intermediate attention maps to produce new feature maps

which are used as input by the Answer modules.

4.4.4. Visualization of module network parameters

In order to better interpret the individual contributions from each of the elementary operators

to the modules, we plot them as color-maps for each type of module. The resulting visualizations

are shown in Figure 4.3 for LNMN (11 modules). It is clear from the figure that the operation

weights (or ↵0 parameter) are approximately one-hot for each node. This is necessary in order to

learn modules which act as composition of elementary operators on input feature maps rather than

a mixture of operations at each node. The corresponding visualizations for LNMN (9 modules)

and LNMN (14 modules) are given in Figure 4.C.1 and Figure 4.C.2 respectively (all of which

are given in the Appendix section). The analytical expressions of modules learned by LNMN (11

modules) is shown in Table 4.6. The diversity of modules as given in their equations indicates that

distinct modules emerge from training.

4.5. Related Work

Visual Reasoning Models: Among the end-to-end models for the task of visual reasoning,

FiLM [18] uses Conditional Batch Normalization (CBN) [3, 4] to modulate the channels of in-

put convolutional features in a residual block. [8] obtain the features by iteratively applying a

Memory-Attention-Control (MAC) cell that learns to retrieve information from the image and ag-

gregate the results into a recurrent memory. [22] constructs the feature representation by taking

into account the relational interactions between objects of the image. With regards to the modular

approaches, [2] propose to compose neural network modules (with shared parameters) for each in-

put question based on layout predicted by syntactic parse of the question. [1] extends this approach

to question-answering in a database domain. In [7], the layout prediction is relaxed by learning a

layout policy with a sequence-to-sequence RNN. This layout policy is jointly trained along with
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Module type Module implementation

Attention

(3 inputs)

O(img, a, ctxt) = conv2(choose2(conv1(I), a)�W1ctxt) = conv2(a�W1ctxt)

O(img, a, ctxt) = conv2(choose2(choose1(conv1(I), a),W1ctxt)) = conv2(W1ctxt)

O(img, a, ctxt) = conv2(choose2(min(conv1(I), a),W1ctxt)) = conv2(W1ctxt)

O(img, a, ctxt) = conv2(max(conv1(I), a) +W1ctxt))

Attention

(4 inputs)

O(img, a1, a2, ctxt) = conv2(choose1(max(a1, a2), conv1(I))�W1ctxt))

= conv2(max(a1, a2)�W1ctxt)

O(img, a1,a2,ctxt) = conv2(max(choose2(a1, a2), conv1(I))�W1ctxt))

= conv2(max(a2, conv1(I))�W1ctxt))

Answer

(3 inputs)

O(img, a, ctxt) = W2[
P

min(conv1(I), a)�W1ctxt,W1ctxt, fmem]

O(img, a, ctxt) = W2[
P

min((conv1(I)� a),W1ctxt),W1ctxt, fmem]

Answer

(4 inputs)

O(img, a1, a2, ctxt) = W2[
P

min((min(a1, a2)� conv1(I)),W1ctxt),W1ctxt, fmem]

O(img, a1, a2, ctxt) = W2[
P

((min(a1, a2) + conv1(I))�W1ctxt),W1ctxt, fmem]

Table 4.6. Analytical expression of modules learned by LNMN (11 modules). In the above equa-

tions,
P

denotes sum over spatial dimensions of the feature tensor.

the parameters of modules. In [12], the modules are residual blocks (convolutional), they learn the

program generator separately and then fine-tune it along with the modules.

Neural Architecture Search: Neural Architecture Search (NAS) is a technique to automati-

cally learn the structure and connectivity of neural networks rather than training human-designed

architectures. In [26], a recurrent neural network (RNN) based controller is used to predict the

hyper-parameters of a CNN such as number of filters, stride, kernel size etc. They used RE-

INFORCE [25] to train the controller with validation set accuracy as the reward signal. As an

alternative to reinforcement learning, evolutionary algorithms [23] have been used to perform ar-

chitecture search in [19, 17, 16, 20]. Recently, [15] proposed a differentiable approach to perform

architecture search and reported success in discovering high-performance architectures for both

image classification and language modeling. [14] proposes an EM style algorithm to learn black-

box modules and their layout for image recognition and language modeling tasks.
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Figure 4.3. Visualization of module structure parameters (LNMN (11 modules)). For each mod-

ule, each row denotes the ↵
0
= �(↵) parameters of the corresponding node.

4.6. Conclusion

We have presented an approach to automatically learn the modules needed in a visual reasoning

task. With this approach we obtain results comparable to an analogous model in which modules

are hand-specified for a particular visual reasoning task. In addition, we present an extensive

analysis of the degree to which each module influences the prediction function of the model, the

effect of each arithmetic operation on overall accuracy and the analytical expressions of the learned

modules. In the future, we would like to benchmark this generic learnable neural module network

with various other visual reasoning and visual question answering tasks.
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Appendix for First Article (Chapter 4)

procedure RUN-MODULE(m,A, p, ct, I)

a1  
P

L

i=1 Ai · pi // Read from stack

p 1D-conv(p, [0, 0, 1]) // decrement the stack pointer

if no. of inputs==4 then
a2  

P
L

i=1 Ai · pi // Read from stack

p 1D-conv(p, [0, 0, 1]) // decrement the stack pointer

om  m(I, ct, a1, a2)

end

else
om  m(I, ct, a1)

end

p 1D-conv(p, [1, 0, 0]) // increment the stack pointer

for i = 1,...,L do
A A · (1� pi) + om · pi // Write to stack
end

return A, p
Algorithm 3: Operation of a module



Figure 4..4. Q1: What number of cylinders are gray objects or tiny brown matte objects? A: 1

Q2: Is the number of brown cylinders in front of the brown matte cylinder less than the number of

brown rubber cylinders? A: no

Figure 4..5. Plot of variation of �w with epochs.

4.A. Answer Module schematic diagrams
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Figure 4.A.1. Answer Module schematic diagram (3 inputs)

Figure 4.A.2. Answer Module schematic diagram (4 inputs)

4.B. Hand-crafted modules of Stack-NMN
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module input output implementation details

name attention type (x: image feature map, c: textual parameter)

Find (none) attention aout = conv2 (conv1(x)�Wc)

Transform a attention aout = conv2 (conv1(x)�W1

P
(a� x)�W2c)

And a1, a2 attention aout = minimum(a1, a2)

Or a1, a2 attention aout = maximum(a1, a2)

Filter a attention aout = And(a, Find()), i.e. reusing Find and And

Scene (none) attention aout = conv1(x)

Answer a answer y = W T

1 (W2

P
(a� x)�W3c)

Compare a1, a2 answer y = W T

1 (W2

P
(a1 � x)�W3

P
(a2 � x)�W4c)

NoOp (none) (none) (does nothing)

Table 4.B.1. Neural modules used in [36]. The modules take image attention maps as inputs,

and output either a new image attention aout or a score vector y over all possible answers (� is

elementwise multiplication;
P

is sum over spatial dimensions).

4.C. Visualization of module structure parameters
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Figure 4.C.1. Visualization of module structure parameters (LNMN (9 modules)). For each mod-

ule, each row denotes the ↵
0
= �(↵) parameters of the corresponding node.

49



Figure 4.C.2. Visualization of module structure parameters (LNMN (14 modules)). For each

module, each row denotes the ↵
0
= �(↵) parameters of the corresponding node.
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Chapter 5

Additional Experiments for Learning Neural Modules for Visual

Question Answering

5.1. Experiments for a different variant of model structure

In this section, we introduce a different version of the cell structure. The cell structure shown

in Figures 5.1 and Figure 5.2, for 3 input and 4 input cases respectively, is designed to be more

expressive in terms of the type of modules it can learn. For n inputs to a module, it forms nC2

combinations of pairs of inputs and fuses them at one node each. The resultant features are then

subject to linear combinations at two additional nodes to form the final output. All the modules

in Table 4.B.1 can be realised as special cases of weight initializations of this cell structure (see

Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7 and A.8 in Appendix A for details). The new model

which uses v2 modules is referred to as LNMN v2. The version of cell structure in the article is

now referred to as LNMN v1. The results for this model are shown in Table 5.1.

5.2. Experiments for sparsity at node level

The aim of these experiments is to induce sparsity in the operation vector (↵ 2 Rk where

k = 6). Our goal is to make the ↵
0 vector approximately one-hot towards the end of training. The

different model variations for this task are described below:

(a) Baseline Model: The baseline model uses no special transformation function on the ↵

vector.

↵
0
= ↵



MUX

Min| Max| Dot| 
Sum|choose_1|choose_2

a_1 conv_1(x)W c

Stores all outputs 
of 2nd layer

Linear 
Combination 1

Linear 
Combination 2

Linear 
Combination 3

Inputs

Final Output

Input 1 Input 2

Final 
Output

Node

Enlarged structure of each node

Figure 5.1. Attention Module schematic diagram version 2 (3 inputs).

MUX

Min| Max| Dot| 
Sum|choose_1|choose_2

a_1 img(x)c_txta_2

Stores all outputs 
of 2nd layer

Linear 
Combination 1

Linear 
Combination 2

Linear 
Combination 3

                                                                                              Inputs

Final Output

Structure of each node

Input 1 Input 2

Final 
Output

Node

Figure 5.2. Attention Module schematic diagram version 2 (4 inputs).

O(x1,x2) = ↵
0

1 ⇤min(x1,x2) + ↵
0

2 ⇤max(x1,x2) + ↵
0

3 ⇤ (x1 + x2)

+ ↵
0

4 ⇤ (x1 � x2) + ↵
0

5 ⇤ choose1(x1,x2) + ↵
0

6 ⇤ choose2(x1,x2)

(b) Straight-Through (ST) Gumbel Softmax with temperature=1.0: In this variation, we

use the Straight-Through (ST) Gumbel Softmax estimator [46] to make ↵
0 one-hot in the
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forward pass whereas in the backward pass we use a differentiable approximation with ⌧

(=1.0) as the temperature parameter.

↵
0
= one-hot(argmax

i
(gi + log(↵i)))

gi ⇠ Gumbel(0,1)

For the backward pass, we use the continuous and differentiable approximation to argmax

(with a temperature parameter).

↵
0
i =

exp((log(↵i) + gi)/⌧)P
k

j=1 exp((log(↵j) + gj)/⌧)

Here, ⌧ is fixed to 1.0

(c) Straight-Through (ST) Gumbel Softmax with learned temp.: This model ablation is

same as Straight-Through (ST) Gumbel Softmax with temperature=1.0 except for the

fact that temperature is a learnt parameter, which receives gradients from the final loss

term.

(d) Straight-Through (ST) Gumbel Softmax with annealing: It also uses the Gumbel

(straight through) formulation and the value of ⌧ varies linearly from 1.0 to 0.1 from epoch

1 to 21.

⌧ = max(0.1, (1.0� 0.9 ⇤ n

20)) for the nth epoch where n is zero initially.

(e) Softmax with annealing: In this variation, we use softmax with temperature ⌧ and anneal

the value of ⌧ in order to make ↵
0
i more peaky towards the end of training.

↵
0
i =

exp(↵i/⌧)P
k

j=1 exp(↵j/⌧)

The value of ⌧ varies linearly from 1.0 to 0.1 from epoch 1 to 21. ⌧ = max(0.1, (1.0 �

0.9 ⇤ n

20)) for the nth epoch where n is zero initially.

(f) Softmax normalization with annealing: In this variation, we apply softmax on the L1

normalized version of ↵. The value of ⌧ is annealed as in previous approaches.

↵
0
i =

exp( 1
⌧

↵i
k↵k1

)
P

k

j=1 exp(
1
⌧

↵j

k↵k1
)
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The rationale behind L1 normalization is that even if the absolute magnitude of ↵ de-

creases, the L1 normalization restores it and now the temperature parameter ⌧ can give the

desired level of sparsity.

(g) Mix of soft and hard attention (sampling): In this variation, we sample from either

soft attention (softmax) and hard attention (Gumbel softmax). The sampling probability

varies such that soft attention is chosen most often initially and gradually it changes to

hard attention towards the end of training.

↵
0
i = ⇡ ⇤

✓
exp(↵i)P
k

j=1 exp(↵j)

◆
+ (1� ⇡) ⇤ (one-hot(argmax

i
(gi + log(↵i))))

⇡ ⇠ Bernoulli(p)

For the nth epoch, p = 1p
1+n

(where n is zero initially).

(h) Weighted Softmax with mix of soft and hard attention: In this variation, we use a

weighted mixture of soft attention (softmax) and hard attention (Gumbel softmax). The

coefficient varies such that soft attention gets most weight initially and it gradually changes

to hard attention towards the end of training.

↵
0
i = ⇡ ⇤

✓
exp(↵i)P
k

j=1 exp(↵j)

◆
+ (1� ⇡) ⇤ (one-hot(argmax

i
(gi + log(↵i))))

⇡ = max(0, (1.0� 0.9 ⇤ n

20)) for the nth epoch where n is zero initially.

(i) Softmax with l
2

l1
loss term: In this variation, we apply softmax on ↵ and add an additional

loss term ( l2
l1
(↵)) for sparsity.

↵
0
i = �(↵) =

exp(↵i)P
k

j=1 exp(↵j)

l2

l1
(↵) =

k�(↵)k2
k�(↵)k1

5.3. Results

The results for the new version of cell structure (Table 5.1) show a significant reduction

(⇠ 10%) in overall validation accuracy. This could be attributed to the presence of two different

kinds of parameters present in the module structure - the node weights (↵) and the linear com-

bination weights. In our training procedure, both of these parameters are treated at par in terms
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of learning rate and initialization. However, the linear combination weights may benefit from a

different training strategy.

The experiments for inducing sparsity in node weights (Table 5.2) show that the model variation

corresponding to softmax with annealing and softmax with
l
2

l1
loss term perform well in terms

of overall accuracy. The model variations which uses ST Gumbel Softmax suffer from reduced

accuracy mainly because of the randomness in ↵
0 parameters introduced by adding the Gumbel

noise. The trend of mean entropy of the node weights (↵0) for these two variations and the baseline

model is shown in Figure 5.1. Though the entropy decreases for softmax with annealing, it is

not sufficient to make the node weights one-hot. A more fine-grained analysis shows that the

absolute magnitude of the ↵ scalars reduces during the course of training which negates the effect

of reduced temperature, so that the weights don’t turn one-hot. On the other hand, the l
2

l1
loss term

works perfectly in giving the desired level of sparsity throughout the course of training. Hence, we

chose this option for our experiments in the article.

Model CLEVR Count Exist Compare Query Compare

Overall Numbers Attribute Attribute

LNMN v2 (9 modules) 79.24 67.56 84.11 76.53 86.50 77.94

LNMN v1 (9 modules) 89.78 84.54 93.46 88.70 89.59 94.87

Table 5.1. CLEVR Accuracy (val. set) for different versions of LNMN models
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Model CLEVR Count Exist Compare Query Compare

Overall Numbers Attribute Attribute

Baseline 89.36 84.23 95.02 84.65 89.36 94.27

Softmax with annealing 87.05 79.81 91.94 83.32 88.71 91.50

Softmax normalization with annealing 55.84 47.65 69.26 70.09 54.97 51.22

ST Gumbel Softmax (T=1.0) 51.35 45.63 65.82 68.51 45.84 50.47

ST Gumbel Softmax with temp. learned 51.42 46.69 65.80 68.69 45.48 50.11

ST Gumbel Softmax with annealing 64.17 54.42 72.33 71.18 69.24 57.33

Mix of soft and hard attention 54.93 49.03 67.16 67.85 52.57 51.79

Softmax normalization with annealing 67.57 52.32 71.04 69.20 82.64 54.27

Softmax with l
2

l1
loss term 89.78 84.54 93.46 88.70 89.59 94.87

Table 5.2. CLEVR Accuracy (val. set) for different versions of LNMN models for node sparsity

Figure 5.1. Comparison of variation of mean entropy of ↵0
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Chapter 6

Learning a recursive network whose structure aligns with

natural language

6.1. Introduction and Related Work

Most visual question answering models use sequence based recurrent models like LSTM [33]

or GRU [13] to obtain a feature representation for the question [63, 23]. However, [87] shows

that a naive bag of words or a custom feature representation which aggregates word embeddings

trained on language modeling tasks, can outperform LSTM based models on VQA. [76] shows

the utility of language modeling for zero-shot transfer to natural language processing tasks like

reading comprehension, summarization and question-answering. In this ongoing work, our goal

is to learn a language model which trains in an unsupervised manner and also captures long-term

dependencies effectively. This has the potential to encode syntactic features of question which can

improve the performance of VQA models.

The use of LSTM [33] has become ubiquitous in many natural language processing tasks like

machine translation [13, 6], image caption generation [104], speech recognition [28], etc. [58]

investigates the ability of LSTM to capture the structural dependencies in sentences by proposing

a Number Prediction task, which involves predicting whether the verb corresponding to the main

subject is singular or plural. Their results show that although LSTMs perform fairly well for

sentences from Wikipedia corpus, the baseline LSTM model which takes as input only the nouns

of the sentence (devoid of any syntactic structure) also achieves 95% accuracy. They further show

that increase in the number of attractors (nouns intervening between the subject and the verb)

resulted in some deterioration in accuracy (17.6% error rate). This shows that sequential models

like LSTM can capture structure-sensitive dependencies to a certain degree. [56] shows that LSTM



can perform quite well on number agreement task given enough capacity. [56] shows that language

models which use syntactic structure to determine model structure like [20] perform much better

than LSTMs on the number agreement task (even with multiple attractors). This is supported

by the fact that RNNGs [20] use RNNs conditioned on syntactic clues to determine actions for

transition-based parsing.

Recursive models like [99, 90] use syntactic tree structure from external parsers to produce

sentence representations and show improved results on sentiment classification and semantic relat-

edness tasks. Latent tree learning models [112, 62, 14] learn a parse tree for the sentences using

indirect supervision from a downstream task like sentiment classification or natural language in-

ference. RRNet [44] creates a tree on-the-fly while reading the input sentence and trains it using

either explicit supervision or policy gradient. However, the grammar learned by these models is

not consistent with recognized syntactic principles [107].

In this work, our aim is to learn a parser for natural language in an unsupervised manner

which can also capture long-term dependencies effectively. We use an Parsing-Reading-Predict

Network (PRPN) [86] as the unsupervised parser in conjunction with a model that can leverage

the intermediate syntactic structure to produce the hidden representation at the next time-step. We

choose TreeLSTM [99] for this purpose.

6.2. Overview of PRPN model

The PRPN model [86] induces a tree structure for the input set of tokens x0, · · · ,xn. Let {yi}

denote the set of non-leaf nodes of the latent tree structure learned by the model. The node yj

represents the meaning of all the leaf nodes in its subtree xl(yj), · · · ,xr(yj), where l(·) and r(·)

denote the leftmost descendent leaf and rightmost descendent leaf respectively. Let the latent

variable lt represent the structural context of xt. If xt is not the left-most child of any subtree, then

lt is xt’s left-most sibling. Otherwise, if xt is the left-most child of subtree rooted at yi, then lt is

the left-most child in the subtree rooted at the left-most sibling of yi. The gates which control skip

connections are defined as:

gt
i
=

8
><

>:

1, lt  i < t

0, 0 < i < lt

Overall, the PRPN model is composed of the Parsing Network, Reading Network and Predict

Network. The function of Parsing Network is to infer the tree structure (represented by {gt
i
}) using
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the syntactic distance. The syntactic distance is output by applying a convolutional kernel over

the embeddings of a set of consecutive previous tokens. The function of Reading Network is to

summarize the previous recurrent states using structured attention and then perform a recurrent

update of the hidden and cell states. The function of Predict Network is to predict the probability

distribution of the next word using the hidden states and the gates {gt
i
}.

Next, we discuss the 3 sub-networks which represent the components of this model, in detail.

(a) Parsing Network The latent variable lt is modelled as a stick-breaking process [22, 84].

p(lt = i|x0, ...,xt) = (1� ↵t

i
)

t�1Y

j=i+1

↵t

j

Let the latent variable di denote the syntactic distance between adjacent words (xi�1, xi).

↵t

i
is parameterized as:

↵t

j
=

hardtanh ((dt � dj) · ⌧) + 1

2
(6.2.1)

where hardtanh(x) = max(�1,min(1, x)) and ⌧ is a temperature parameter. The expec-

tation of gate value is given as (see [86] for details):

gt
i
= P(lt  i) =

t�1Y

j=i+1

↵t

j
(6.2.2)

The syntactic distance di between a token ei and the previous token ei�1 is calculated by

applying a convolutional kernel over the embeddings of the corresponding tokens:

hi = ReLU(Wc

2

666666664

ei�L

ei�L+1

...

ei

3

777777775

+ bc)

di = ReLU (Wdhi + bd)

Here, Wc, bc, Wd and bd are convolutional kernel parameters. L denotes the lookback

range i.e. how many previous tokens the model should consider while calculating the

syntactic distance. The tree structure can be inferred from the syntactic distances (see

Appendix C in [86] for details).
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(b) Reading Network The reading network uses structured attention [86, 12] to model the

dependency relations. The structured intra-attention weight s̃t
i

is calculated as:

kt = Whht�1 +Wxxt

s̃t
i
= softmax(

hik
T
t

p
�k

)

Here, �k denotes the dimension of the hidden state hi. The structured intra-attention weight

s̃t
i

is then modulated by the gate gt
i
:

st
i
=

gt
i
s̃t
iP

i
gt
i

The Reading Network maintains a list of the last Nm hidden states and cell states similar

to [12]. The memory state mi is a tuple of the hidden state and cell state (hi, ci)). A

weighted sum of the hidden states corresponding to previous timesteps is computed using

the structured intra-attention weights st
i

as follows:
2

64
h̃t

c̃t

3

75 =
t�1X

i=1

st
i
·mi =

t�1X

i=1

st
i
·

2

64
hi

ci

3

75

The final hidden states for the reading network (ht, ct) are obtained from an LSTM [33]

update on xt with (h̃t, c̃t) as the initializations for the hidden and cell states respectively.

2

666666664

it

ft

ot

ĉt

3

777777775

=

2

666666664

�

�

�

tanh

3

777777775

W · [h̃t, xt]

ct = ft � c̃t + it � ĉt

ht = ot � tanh(ct)

(c) Predict Network The function of the Predict network is to predict the probability of next

token xt+1. An approximation of the syntactic distance dt+1 is done by applying a convo-

lutional kernel over the hidden state ht.

d
0
t+1 = ReLU(W 0

dht + b
0
d)
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The values of {↵t+1
} and {gt+1

i
} are then calculated using Eqn.(6.2.1) and Eqn.(6.2.2)

respectively. The probability of the next token conditioned on previous tokens is given by:

p(xt+1|x0,...,xt) ⇡ p(xt+1; f(m0,...,mt,g
t+1
0 ,...,gt+1

t
))

Here, the function f is modelled as:

f(m0,...,mt,g
t+1
0 ,...,gt+1

t
) = f̂([hl:t�1,ht]) (6.2.3)

where hl:t�1 is the collection of hidden states obtained from the structured attention in the

reading network and f̂ is an MLP.

6.3. Proposed Model

PRPN [86] learns an unsupervised parser for natural language sentences in using a soft tree

based learning scheme. TreeLSTM [99] uses the tree structures obtained from external parsers

to learn syntax-aware representations for sentences. In our proposed model, at each intermediate

time-step of PRPN model, the TreeLSTM model uses the intermediate tree structure (obtained

from the {di}) to compute a hidden representation for the next time-step.

Let (ht, ct) denote the final hidden states obtained from the reading network. Let htree

t
denote

the hidden representation at root of intermediate parse tree obtained from the TreeLSTM model.

Our proposed model uses a weighted combination of ht and h
tree

t
to get the hidden representation

which is utilized by the predict step in Eqn.(6.2.3). The rationale behind this modification is to

enable the direct use of syntactic structure to predict the next token as long-term dependencies are

better captured if structure explicitly exists in the model.

h
0

t
= ↵ ⇤ ht + (1� ↵) ⇤ htree

t

Here, ↵ is a hyper-parameter which is annealed from 1.0 to 0.5 during the first 10 epochs. In the

beginning of training, the contribution of the TreeLSTM’s hidden state is small but it is gradually

increased so that both models have equal influence on the prediction of the next token.

6.4. Experiments

We test our model on word-level language modeling task on Penn Treebank dataset [70]. A

pre-trained PRPN model is used to initialise the common weights of the proposed model. The
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corresponding results are shown in Table 6.1. The training curve showing the trend of validation

perplexity is given in Figure 6.1.

Model Perplexity

RNN-LDA + KN-5 + cache [69] 92.0

LSTM [114] 78.4

Variational LSTM [51] 78.9

CharCNN [51] 78.9

Pointer Sentinel-LSTM [67] 70.9

LSTM + continuous cache pointer [27] 72.1

Variational LSTM (tied) + augmented loss [43] 68.5

Variational RHN (tied) [119] 65.4

NAS Cell (tied) [120] 62.4

4-layer skip connection LSTM (tied) [66] 58.3

PRPN [86] 61.98

PRPN + TreeLSTM(Ours) 59.88

Table 6.1. Perplexity on the Penn Treebank test set
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Figure 6.1. Training curve for PRPN + TreeLSTM model

6.5. Conclusion

We presented a model for unsupervised parsing which seeks to take advantage of explicit dis-

crete structure to better model long-term dependencies. Our experiments show that it leads to

improvements over the PRPN baseline in a word-level language modeling task. The future work

will include analysis of performance of this model on other datasets for language modeling and

other natural language tasks which benefit could from the syntactic structure present in sentences

and incorporating this language model to construct better question feature representations for VQA

models.
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General Conclusion

In this thesis, we study different aspects of Visual Question Answering (VQA) which has

gained considerable traction in the machine learning community recently. In Chapter 2, we present

a method to optimize the computation in a CNN while training a VQA model. The proposed

approach leads to significant savings in no. of floating point operations (or FLOPS) with a minimal

degradation in performance.

In Chapter 4, we address the issue of learning the internal structure of modules used in Neural

Module Networks (NMNs) and its variants. This is important because hand-specifying modules

can work well for certain datasets for which the attributes of different objects and the relations

between them are already known. Our proposed algorithm is a bi-level optimization algorithm in

which the module structure and module parameters are optimized alternately. Taking a cue from the

the hand-crafted modules, we propose a general module structure which makes use of elementary

arithmetic operations to build complex modules. Our model is able to perform comparably with

the one using hand-designed modules while learning the structure of these modules at the same

time. Future work in this direction would involve exploring the transferability of these modules to

other tasks that involve visual reasoning.

The question feature representation plays a key role in a VQA system. However, most works in

literature make use of LSTM/GRU to encode the question features which is not always sufficient

to model the syntactic structure of the question. We try to address this issue by learning a better

language model so as to learn better question feature representations. In Chapter 6, we build

upon an existing language model (PRPN) and augment it with a TreeLTSM in order to explicitly

incorporate syntactic structure in its prediction step. Our results shows that it helps the model

improve over the PRPN baseline on a word-level language modeling task.
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Appendix A

Figures showing realization of basic modules using v2 of cell

structure
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Figure A.1. Schematic diagram for realization of Find Module.
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Figure A.2. Schematic diagram for realization of Compare Module.
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Figure A.3. Schematic diagram for realization of Filter Module.
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Figure A.4. Schematic diagram for realization of And Module.
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Figure A.5. Schematic diagram for realization of Or Module.
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Figure A.6. Schematic diagram for realization of Scene Module.
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Figure A.7. Schematic diagram for realization of Transform Module.
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Figure A.8. Schematic diagram for realization of Answer Module.
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