
Université de Montréal

Empirical Study and Multi-task Learning Exploration for

Neural Sequence Labeling Models

par

Peng Lu

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures et postdoctorales

en vue de l’obtention du grade de

Maître ès sciences (M.Sc.)

en informatique

April, 2019

c© Peng Lu, 2019

Université de Montréal

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Ce mémoire intitulé

Empirical Study and Multi-task Learning Exploration for Neural Sequence Labeling
Models

Présenté par

Peng Lu

A été évalué par un jury composé des personnes suivantes

Jian-Yun Nie
Président-rapporteur

Philippe Langlais
Directeur de recherche

Pascal Vincent
Membre du jury

Sommaire

Les modèles de réseau de neuronaux ont attiré une attention considérable pour l’étique-

tage de séquence. Comparés aux modèles traditionnels, les modèles neuronaux offrent de

meilleures performances avec moins ou pas d’ingénierie de traits caractéristiques. Cepen-

dant, en raison de la sensibilité du cadre expérimental, il est toujours difficile de reproduire

et de comparer l’efficacité de différents modèles dans des conditions identiques. Et même

si ces modèles peuvent être appliqués à différentes tâches d’étiquetage de séquence, telles

que la reconnaissance d’entités nommées (NER), la segmentation de texte et l’étiquetage

morphosyntaxique (POS), les travaux antérieurs ne donnent pas de meilleures performances

quand ils sont placés dans un processus d’apprentissage multitâche (MTL) que d’apprendre

chaque tâche individuellement.

Nous étudions les principaux facteurs d’influence sur la performance des systèmes

d’étiquetage de séquences neuronaux en réimplémentant douze modèles d’étiquetage des

séquences, qui incluent la plupart de systèmes état de l’art, en effectuant une comparaison

systématique sur trois tâches (NER, segmentation de texte et POS). Grâce à la comparaison

et à l’analyse empirique, nous obtenons plusieurs conclusions pratiques dans chacune des

tâches.

Ensuite, nous essayons de construire un système capable d’apprendre trois tâches d’é-

tiquetage séquentiel et d’améliorer la précision de chaque tâche. Nous proposons donc un

réseau de mémoire partagée, Shared Cell Long-Short Term Memory network (SCLSTM),

pour l’étiquetage multi-tâche de séquences et comparons notre modèle avec deux modèles

partagés d’étiquetage.

En détenant un ensemble de paramètres partagés, l’état de la cellule de notre modèle

SCLSTM peut être supervisé à partir de trois tâches, tandis qu’ il comporte un composant

indépendant spécifique à la tâche pour apprendre les informations privées de chaque tâche.

iii

Les résultats expérimentaux sur trois ensembles de données d’étiquetage de séquence de

référence montrent l’efficacité de notre modèle SCLSTM pour les tâches de NER, de seg-

mentation de texte (text chunking) et l’étiquetage morphosyntaxique (POS tagging).

iv

Summary

Neural-based models have attracted considerable attention for automatic sequence labeling.

Compared to the traditional models, neural-based models achieve better performance with

less or no hand-craft feature engineering. Due to the sensitivity of the experimental setting, it

is always hard to reproduce and compare the effectiveness of different models in an identical

condition. Moreover, even these models can be applied on different sequence labeling tasks,

like Name Entity Recognition (NER), Text Chunking, and Part of Speech tagging (POS),

previous works fail to give better performance under a multi-task learning (MTL) setting

than when learning each task individually.

We study the main factors affecting the performance of neural sequence labeling systems,

by re-implementing sequence labeling models based on different neural architectures, which

include most of the state-of-the-art methods, and run a systematic model comparison on

three benchmarks (NER, Chunking, and POS tagging). Through the empirical comparison

and analysis, we get several practical conclusions in such sequence labeling tasks.

Then we attempt to build a system that can learn three sequential tagging tasks at the

same time improve the accuracy of each task. We propose a Shared Cell Long-Short Term

Memory network (SCLSTM) for multi-task sequence labeling and compare our model with

two shared-encoder sequential tagging models.

By holding a set of shared parameters, the cell state of our SCLSTM can get supervision

from three tasks, while our SCLSTM model has independent task-specific components to

learn private information of each task. Experimental results on three benchmark sequence

labeling datasets demonstrate the effectiveness of our SCLSTM for NER, text chunking, and

POS tagging tasks.

v

Contents

Sommaire . iii

Summary . v

List of Tables. xi

List of Figures. xiii

List of Abbreviations . xv

Acknowledgements . xvii

INTRODUCTION . 1

Motivation. 1

Contribution. 3

Organization. 3

Chapter 1. BASICS . 5

1.1. Benchmark Tasks . 5

1.1.1. Named Entity Recognition (NER). 5

1.1.2. Chunking . 7

1.1.3. Part-of-Speech tagging (POS) . 7

1.1.4. Evaluation Metrics . 8

1.2. Neural Network Basics . 9

1.2.1. Fully Connected Neural Networks . 10

1.2.2. Recurrent neural networks (RNNs) . 11

vii

1.2.3. Convolutional Neural Networks (CNNs) . 13

1.2.4. Optimization for Training Neural Models . 14

1.2.5. Regularization for Training Neural Models . 15

1.3. Multi-Task Learning . 16

Chapter 2. MODELS . 19

2.1. Neural Tagger Systems. 19

2.1.1. Word-level Representations . 20

2.1.2. Character-level Representations . 20

2.1.3. Inference Layers . 23

2.2. Multi-task Learning for Sequence Labeling . 23

2.2.1. Two Shared-encoder Methods . 24

2.2.2. Shared Cell based LSTM (SC-LSTM) . 25

2.2.3. Training objective and procedure. 28

Chapter 3. EXPERIMENTS WITH SINGLE-TASK LEARNING 31

3.1. Datasets . 31

3.2. Implementation details for twelve neural models . 32

3.3. Results on three tasks. 33

3.3.1. NER. 33

3.3.2. Chunking . 34

3.3.3. POS . 34

3.4. Comparisons of neural tagger models . 35

Chapter 4. EXPERIMENTS WITH MULTI-TASK LEARNING 43

4.1. Implementation details . 43

4.2. LSTM-s, LSTM-d versus SC-LSTM . 45

viii

4.3. SC-LSTM versus state-of-the-art . 46

4.4. Analysis of SC-LSTM. 48

4.4.1. Convergence Analysis . 49

4.4.2. Effect of Different Task Combinations . 51

Chapter 5. CONCLUSION. 53

Bibliography . 55

ix

List of Tables

1.1 Examples of three Tasks (NER, Chunking and POS) . 6

1.2 This is an example confusion matrix for 4 labels: A,B,C and O. 9

2.1 Neural Tagger Systems, models without CRF are using Softmax classifiers 24

3.1 The statistics of three datasets used in chapter 3 and chapter 4 31

3.2 Hyper-parameters of twelve neural based models . 33

3.3 Hyper-parameters of word encoding layers (left) and character encoding layers

(right). 33

3.4 F1-scores on the CoNLL03 NER dataset. 34

3.5 F1-score on the CoNLL00 Chunking dataset. 35

3.6 Accuracy on the UD POS dataset. 35

4.1 Models with different input components. 44

4.2 Hyper-parameters of SC-LSTM-LM-CNN . 44

4.3 Results of models being trained in STL or MTL mode. For all MTL models,

we report the best performance via a small grid search over combinations of the

hidden size [100, 200, 300, 400] and the number of layers [1, 2, 3]. The best

performance of each MTL model was obtained with hidden size 300 and 3 layers. 45

4.4 F1-score on the CoNLL03 NER dataset. Models with ♣ use both train and dev

splits for training.. 47

4.5 F1-score on the CoNLL00 chunking dataset. Configurations with a † sign are

approaches we reimplemented. 48

xi

4.6 Accuracy on the Universal Dependency English POS dataset. Configurations with

a † sign are approaches we reproduced.. 49

xii

List of Figures

1.1 Illustration of a one hidden layer fully connected neural network. 10

1.2 The structure of a LSTM.. 12

1.3 The illustration of convolution calculation. Weights of the same colour are

identical. The computation can be performed in parallel by directly replicating

weights and calculate across the sub-region of the entire input simultaneously. . . 13

2.1 Word level representation models. The input of both models can be

a concatenation of word embedding , character-level representation and

contextualized representation of the token. The classifier of both models can be a

softmax layer or a CRF layer . 21

2.2 Character level representation models. The input of both models are a series of

character embeddings of the tokens. The dashed line in (b) means maxpooling

operation. 22

2.3 Overview of three shared encoder MTL tagging system: (a) LSTM-s (b) LSTM-d

(c) our SC-LSTM based system. 26

2.4 Structure of an SC-LSTM cell. The dashed delimited box depicts the task-specific

cell. For clarity reasons, we only show one such cell, while in practice there is one

task-specific cell for each task. 26

3.1 Influence of pre-trained embeddings on three tasks. 37

3.2 Influence of optimizers on three tasks. 38

3.3 Influence of tagging schemes on NER and chunking. 39

xiii

4.1 The change of F1-score/Accuracy on the development datasets at different epochs

for SC-LSTM (red solid line), LSTM-s (blue dotted line) and LSTM-d (green

dashed line) baselines. (a) reports results with NER, chunking and POS; (b)

results with NER and POS; (c) results with chunking and POS; and (d) results

with NER and chunking. All models were trained using the Adam optimizer with

the same setting, and the mini-batch size was set to 10. 50

4.2 Results of different task groups on each test set: (a) NER, (b) chunking, and (c)

POS. Horizontal lines show results for single-task models (NER: 89.39, Chunking:

94.44 and POS: 95.46). 52

xiv

List of Abbreviations

NLP Natural Language Processing

NER Name Entity Recognition

POS Part of Speech

MTL Multi-Task Learning

RNN Recurrent Neural Network

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

Bi-LSTM Bi-directional Long Short-Term Memory

MEMM Maximum Entropy Markov Model

CRF Conditional Random Fields

SC-LSTM Shared-Cell Long Short-Term Memory

SGD Stochastic Gradient Descent

xv

Acknowledgements

First, my greatest thanks go to my advisor Philippe Langlais. He is a kind, caring

and supportive advisor. He always behaves patiently and gives insightful views about my

research, which helped me get results of better quality. I am also grateful to the members of

my committee for their patience and support in overcoming numerous obstacles I have been

facing through my research.

I would like to thank my friends for accepting nothing less than excellence from me. Last

but not least, I would like to thank my family: my parents, my uncle and aunt for supporting

me spiritually throughout writing this thesis and in my life in general.

xvii

INTRODUCTION

Motivation

Sequence labeling tasks, such as named entity recognition (NER), text chunking and

part of speech tagging (POS) are all fundamental natural language processing (NLP) tasks

that have attracted much attention for years. Sequence labeling is one of the first stages

in language understanding for text mining problems, such as question answering, summa-

rization, knowledge graph construction, and information retrieval. Its importance has been

well recognized in the NLP community. In addition to the traditional sequence labeling

models, e.g. Maximum Entropy Markov Model (MEMM) [37] and Conditional Random

Fields (CRF) [27], in recent years, neural network based models have achieved impressive

results in sequence labeling tasks with less or no hand-crafted features. With advances in

deep learning, neural-based models have achieved many state-of-the-art results on different

sequence labeling tasks.

On the other hand, Convolution Neural Network (CNN) has also been used to achieve

the same purpose with the advantage of being efficient in parallel computation. Despite the

impressive results in this research literature, reproducing reported results of neural models

sometimes can be difficult, even if the codes are open source, and the datasets are under

public licenses. The comparison among various neural-based models is challenging, as it is

hard to deal with the sensitivity in different experimental settings. In order to conduct a

systematic comparison between different models, it is advisable to re-implement these models

and compare the performance under identical experiment setting.

Besides, most of the models in previous studies are learned separately based on single-task

supervised objectives, which ignores the relation in different tasks of sequence labeling [22,

54, 23, 35]. The strongly related semantics information would benefit each other tasks of

sequence labeling by being trained in a multi-task scenario [56, 20]. For example, the basic

technique used for entity recognition is chunking, which segments and labels multi-token

sequences, and the components of multi-token sequences in chunking are related to word-

level tokens learned from part of speech tagging. Such mutual influence in different tasks of

sequence labeling would benefit each other if being utilized in a unified joint learning model.

In many such studies, though, neural network models are trained toward a single task in

a supervised way by making use of relatively small annotated training material. Jointly

learning multiple tasks can reduce the risk of over-fitting to one task, and many attempts

have been made at doing so for sequence labeling tasks [7, 11, 12]. Results so far are not

conclusive.

Many works have focussed on jointly learning two tasks, often with one being considered

as the main task, the other being the auxiliary one [56, 6, 3]. For instance, chunking,

combinatory categorical grammar supertagging, NER, super senses (SemCor), or multiword

expression + supersense will be taken as the main task, while POS is the auxiliary task

in [56]. Exceptions to this line of work include Collobert et al. [12] that evaluates four

tasks: POS, chunking, NER and semantic role labeling; Kiperwasser and Ballesteros [26]

consider a machine translation task with POS and dependency parsing; Niehues and Cho

[40] consider machine translation with POS and NER tasks; Zhang and Weiss [67] show

that jointly learning a POS tagger and a dependency parser is effective. Miwa and Bansal

[38] jointly train models for entity detection and relation extraction in the field of relation

extraction. Other works are trying to leverage language models to improve the performance of

sequence labeling tasks. In [30], they propose a model which uses a neural language model to

learn character-level knowledge, and conducts sequence labeling to guide the language model

towards specific tasks. In works [45, 46, 14], they use neural language models pre-trained

on a large unlabeled corpus to learn context-sensitive representations of words, and leverage

this representation into the sequence labeling model.

More related to the present work are studies that analyze the effectiveness of different

combinations of sequence labeling tasks in a multi-task learning. In particular, Changpinyo,

Hu, and Sha [8] conduct an investigation on 11 sequence labeling tasks, while Alonso and

Plank [3] evaluate 5 tasks but report signifiant gains for only one task.

2

Jointly learning multiple tasks in a way that benefit all of them simultaneously can

increase the utility of multi-task learning (MTL). In order to do so, we propose a new LSTM

cell which contains both shared parameters that can learn from all tasks, and task-specific

parameters that can learn task specific information.

Contribution

Our contributions in this thesis are as follows:

• We re-implement 12 neural sequence labeling models and compare the performance

under identical experiment settings. We also analyze several important factors by

running experiments under different random seeds.

• We also propose a novel multi-task learning model: Shared Cell based LSTM (SC-

LSTM), which can jointly learn the interplay information of different tasks by a

shared cell in sequence labeling problems. Experimental results on three sequence

labeling benchmark demonstrate the effectiveness of our SC-LSTM for the NER, text

chunking, and POS tagging tasks. This work has been published in [33].

Organization

Chapter 1 provides an overview of three sequence labeling tasks, i.e. name entity recog-

nition (NER), chunking and part of speech (POS) and introduce the basics of neural net-

works, including recurrent neural network (RNN) and its variant Long-Short Term Memory

(LSTM), convolutional neural network (CNN), and several optimization algorithms etc. In

the last part of this chapter, we will introduce briefly the multi-task learning methods.

Chapter 2 introduces methods that encode word-level sequence and character-level se-

quence and two inference methods. Then we present two kinds of shared-encoder models for

Multi-task sequence labeling and analyze their advantages and disadvantages. Finally we

introduce our method for tackling issues in these MTL approaches. We propose a shared cell

LSTM, to leverage the supervision of different tasks into the cell state of LSTM. This method

enables the model to learn shared and task-specific representations at the same time. Finally,

we introduce the training algorithm and training objective used for multi-task learning.

Chapter 3 describes our experimental settings and results for analyzing effect of different

components of neural tagger system in single task learning and gives a series of analysis of

3

those results. We will investigate the different sequence encoding methods, and then eval-

uating the influence of different external factors, i.e. pre-trained embeddings, optimization

methods and tagging schemes.

Chapter 4 provides experiments and discussions for multi-task learning methods. In this

chapter, we will first compare our methods with two widely used shared-encoder methods.

And then we will compare our methods with different results of current state-of-the-art

models. Finally we will further do an analysis for the effect of our method by exploring the

convergence and influence of various task groups.

Chapter 5 concludes the work briefly.

4

Chapter 1

BASICS

In this chapter, we first introduce the used three sequence labeling tasks, Named Entity

Recognition (NER), Chunking, and Part-of-Speech tagging (POS) briefly, and give a short

explanation of the evaluation metrics1. Then we introduce several basics of neural networks,

including RNN, LSTM and CNN. We will also introduce some important aspects for

training neural networks like optimization algorithms (i.e. SGD, Adam and Nadam) and

regularization approaches (i.e. Dropout, Weight Decay). In the last part of this chapter, we

will also introduce the basics of multi-task learning briefly.

1.1. Benchmark Tasks

The goal of sequence labeling is to assign tags to words, or more generally, to give discrete

labels to discrete elements in a sequence. In this work, we focus on three sequence tagging

tasks: Named Entity Recognition (NER), Chunking, and Part-of-Speech tagging (POS).

1.1.1. Named Entity Recognition (NER)

Named Entity Recognition (NER) is a subtask of information extraction that aims at

labeling named entity mentions in unstructured texts, like person names, locations, organi-

zation names, time expressions, monetary values. As the first example shown in table 1.1,

each token of the input sentence is labelled with its corresponding category. Since a named

entity may consist of several tokens, the model should recover the spans of tokens, such as

1We will present how to compute typically considered evaluation metrics (F1-score, recall, precision and

token accuracy) later in this section.

Task Input/Output

NER
Tunbridge Wells : Nottinghamshire 214 (P. Johnson 84 ; M. McCague 4-55) , Kent 108-3 .

B-LOC I-LOC O B-ORG O O B-PER I-PER O O B-PER I-PER O O O B-ORG O O

Chunking
Those activities generated $ 26.1 million in operating profit last year .

B-NP I-NP B-VP B-NP I-NP I-NP B-PP B-NP I-NP B-NP I-NP O

POS
The US troops fired into the hostile crowd , killing 4 .

DET PROPN NOUN VERB ADP DET ADJ NOUN PUNCT VERB NUM PUNCT

Table 1.1. Examples of three Tasks (NER, Chunking and POS)

Tunbridge Wells. We accomplish this by using a tagging scheme, for instance, a BIO tag-

ging scheme. Each token at the beginning of a name span is labeld with a B-prefix; each

token within a name span is labeled with an I-prefix. The entity type follows the prefix, e.g.

B-PER for the start of a person name, and I-LOC for the inside of a location. Tokens not

belonging to any parts of spans will be labeled as O. Using different tagging schemes has

different influence on the accuracy of model. We will investigate this factor by comparing

BIO notation and BIOES2 [48] notation schemes in chapter 3.

In this work, we choose the CoNLL2003 benchmark3 to evaluate the performance of

our models on the NER task. We follow the CoNLL2003 setup [61], whose sentences are

from the Reuters Corpus [29]. This dataset has been annotated for the CoNLL2003 shared

task. It contains training, development and test data. In this dataset, named entities are

categorized in the four categories (person names, locations, organizations and miscellaneous).

The performance measurement adopts the macro F1 score which is the harmonic mean of

the precision and recall for all named entities; see section 1.1.4 for details.

Current state-of-the-art performance under this setup is 93.09% F1-score [2]; Model of [14,

46] achieves 92.8% and 92.22%, respectively. All three works leverage different pre-trained

contextualized representations into their models to boost performance. These pre-trained

representations are contextualized by their surrounding text, meaning that the same word can

2The BIOES tag scheme has S tag for number of token span equels to 1 and E for the last token in a

multiple token span. For instance, in the sentence: Tom likes shopping, Tom will be labeled as S-Person

instead of B-Person; in sentence: Michael Joseph Jackson was an American singer, Jackson will be labeled

as E-Person instead of I-Person
3The statistic details of dataset will be present in chapter 3.

6

have different embeddings depending on its context. These powerful pre-training embeddings

have shown powerful ability in various natural language processing tasks. The model of [10]

achieves 92.61% by proposing a Cross-View training method. Their model designs extra

auxiliary prediction modules having a restricted view of input to match the predictions of

the full model seeing the whole input. By joint training a language model, Peters et al.

[45], Liu et al. [30] achieves 91.93% and 91.24% respectively. Ghaddar and Langlais [15]

achieves 91.73% by designing robust lexical features for NER.

1.1.2. Chunking

Chunking seeks to tag segments of a sentence with syntactic constituents like noun or

verbal phrases. As in the NER task, each word is assigned a single tag, so a tagging scheme

is also used to denote the beginning and the end of phrasal segments. We evaluate our

model using the CoNLL2000 shared task3 [60]. In this setup, sections 15-18 of the Wall

Street Journal are taken as training set, section 20 as the testing set. We randomly choose

1000 sentences from training set as development set, this follows setups in [30, 45]. The

performance measurement is computed using the F1-score as well.

The current state-of-the art performance under this setup is 96.72% F1-score [2]. By

introducing a joint many-task model and designing a strategy for successively growing depth

of model to solve increasingly complex tasks, Hashimoto et al. [20] achieves 95.77%. By

placing different tasks into different layers, Søgaard and Goldberg [56] achieves 95.57%.

Suzuki and Isozaki [59] achieves 95.15% by proposing a semi-supervised discriminative model

for handling large scale unlabeled data.

1.1.3. Part-of-Speech tagging (POS)

Part-of-Speech tagging seeks to tag each token with a label indicating its syntactic role

in the sentence, i.e. noun, verb, adj. and so on. We choose universal dependency (UD)

POS dataset 1.3 version to evaluate our model on POS task. Sentences in the UD dataset

are selected from the English Web Treebank [5]. This dataset is annotated by the Universal

Dependency Project [41]. For the POS task, as each token in the sentence has it own

syntactic meaning, we do not need a tagging scheme for it.

There are not many reported results on UD dataset version 1.3. The best reported result

is 95.67% in [6]. We also find some results on UD POS dataset version 1.2. But these

7

works all make use of extra techniques to improve performance. The current state-of-the-art

performance is 96.73% F1-score [64] by utilizing adversarial training. By introducing an

auxiliary loss function which accounts for rare words into a Bi-LSTM model, this method

achieves 96.40% [47]. By joint learning POS Tagging and graph-based dependency parsing,

this model achieves 95.55% [39].

Most works report their results on CoNLL2003 NER [61] and PTB POS [36] datasets [12,

23, 35], while others give their results on the NER dataset only [9, 28, 58]. Besides, most

works use development set for selecting hyper-parameters [28, 35], while some papers combine

training set and development set for training [9, 45]. There are other setups like [23], where

the authers use a different data split for POS dataset. In other words, these results are

somehow difficult to compare, and it is necessary to reproduce their models and compare

corresponding results in an unified setting, which we will do in the chapter 3.

1.1.4. Evaluation Metrics

As a multi-class classification problem, the F1-score is used as the evaluation metrics for

NER and chunking; Token accuracy is used to evaluate the performance of POS taggers. For

NER and Chunking tasks, we first compute the percentage of detected entities or phrases

that are correct (precision); and the percentage of entities or phrases in the data that were

found by the model (recall); then the F1-score based on these two values. For POS, it

contains no "O" label, all kinds of label are taken into account, so we use token accuracy for

its evaluation. The precision, recall, F1-score and accuracy are calculated as follow:

precision =
TP

TP + FP
, (1.1.1)

recall =
TP

TP + FN
,

F1− score = 2 ∗ precision ∗ recall
precision+ recall

,

accuracy =
TP + TN

TP + TN + FP + FN

8

where the term true positives (TP) is the number of examples being correctly labeled

except for "O" label; false positives (FP) is the number of detected examples being incorrectly

labeled; false negative (FN) is the number of data with gold label being incorrectly labeled;

True negatives (TN) is numbers of data with "O" label being correctly labeled.

We give a simplified example for calculating precision and recall for a multi-classification

problem with labels A, B, C and O, where A, B and C are labels our models aim to detect

while O stands for the out of span label we do not count. First, we generate a confusion

matrix shown in Table 1.2. Second, we compute each value based on it.

GoldLabel A GoldLabel B GoldLabel C GoldLabel O TotalPredicted #

Predicted A 30 20 10 30 90

Predicted B 40 20 10 10 80

Predicted C 20 10 60 20 110

Predicted O 10 50 20 40 120

TotalGold 100 100 100 100

Table 1.2. This is an example confusion matrix for 4 labels: A,B,C and O.

For this example, the TP is the sum of values of predicted A, B and C in the diagonal

(30+ 20+ 60 = 110); The FP is equal to the sum of the rest of prediced values of A, B and

C (60 + 60 + 50 = 170); The FN is equal to the sum of the rest of GoldLabel values of A, B

and C (70 + 80 + 40 = 190). So the recall is 110
110+1900

≈ 0.37 and precision is 110
110+170

≈ 0.39.

1.2. Neural Network Basics

In this section, we will introduce all basic components of neural network based sequence

labeling models, including recurrent neural network (RNN) and its variations (Long short-

term memory (LSTM) and bidirectional LSTM), as well as convolutional neural networks

(CNN). RNN and CNN are commonly used in neural-based sequence tagging models, both

of them serve the same purpose: transforming a sequence of continuous vector representa-

tion x1, ..., xn ∈ Rd, into a sequence of latent vector representation s1, ..., sn ∈ Rh containing

sequence dependency information. Besides, we will describe several optimization and reg-

ularization methods typically used in the training of such networks. The last part of this

9

section introduces the two kinds of inference approaches for sequence labeling, the softmax

classifier and conditional random field classifier (CRF) .

1.2.1. Fully Connected Neural Networks

Figure 1.1. Illustration of a one hidden layer fully connected neural network.

Neural Networks receive an input (a single vector) and transform it through a series of

hidden layers. Each hidden layer is made up of a set of neurons, where each neuron is fully

connected to all neurons in the previous layer, and where neurons in a single layer are entirely

independent and do not share any connections. The last fully-connected layer is called the

“output layer”, and in classification settings it represents the class scores. Formally, a one

hidden-layer can be represented as a function f : RD ⇒ RL, where D is the dimension of

input vector x and L is the dimension of output vector f(x). The hidden representation

h(x) ∈ RH is computed as:

h(x) = σ(W(1)x+ b(1)) (1.2.1)

where W(1) ∈ RH×D is the weight matrix, b(1) ∈ RH is the bias vector, σ is a logistic sigmoid

function:

sigmoid(x) =
1

1 + exp(−x)
(1.2.2)

which performs non-linear transformation to the hidden state. There are many kinds of

non-linear functions, typical choices including tangent function :

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

(1.2.3)

10

or the Rectified Linear Unit (ReLU) function [17] :

ReLU(x) =

x if x > 0

0 if x <= 0
(1.2.4)

.

1.2.2. Recurrent neural networks (RNNs)

Recurrent neural networks (RNNs) are a family of neural networks for processing sequen-

tial data [18]. RNNs take a sequence of inputs and compute a hidden state vector based on

the current input and the previous hidden state at each time step. The hidden representation

ht ∈ RH is computed recursively as the following equation:

ht = σ(Wht−1 +Uxt) (1.2.5)

where xt ∈ RD is the vectorized representation of input at time step t, ht is the hidden

state at time step t, W ∈ RH×D and U ∈ RH×D are weight matrices, and σ is a nonlinear

activation function such as ReLU or tanh. For sequence labeling task, neural models take

the hidden state as the representation of current input token. Vanilla RNN easily suffers

gradient vanishing problem. To solve this issue, we can use gated recurrent neural networks.

In particular, Long Short-Term Memory networks [22] and its variant bidirectional Long

Short-Term Memory (Bi-LSTM) [54] are widely used in sequence labeling tasks [12, 23, 35,

55, 30, 68, 31]. Here, we mainly revisit the structure of Bi-LSTM.

Each unit in LSTM is made up of four functional gate units: a forget gate controlling

what information to remove from the candidate cell of the last time step, an input gate

controlling what information to add to the current candidate cell, an output gate controlling

what information to release from current candidate cell, and a candidate gate to calculate

11

the current candidate state. All computation are calculated as follows:

ft = σ(Wfht−1 +Ufxt), (1.2.6)

it = σ(Wiht−1 +Uixt),

ot = σ(Woht−1 +Uoxt),

ĉ = tanh(Wcht−1 +Ucxt),

ct = it ∗ ĉ+ ft ∗ ct−1,

ht = ot ∗ tanh(ct),

where xt is the input vector4 at time step t and , ht−1 is the hidden vector at time step t−1,

and ht−1 is the output vector of time step t− 1. ft is the forget gate, it is the input gate, ot

is the output gate, σ is the sigmoid function, ĉ is the new candidate state, ct is the updated

candidate cell, which encodes information of current input and history information, and ∗

indicates the element-wise product. Wf ,Uf ,Wi,Ui,Wo,Uo,Wc,Uc are weight matrices.

Figure 1.2. The structure of a LSTM.

Bi-LSTM is a combination of two LSTM with their own parameters: one encodes the

input sequence in the forward direction, the other encodes the input sequence in the backward
4The input vector is from a look-up table that maps raw texts to vector representations like word

embeddings

12

direction. It returns two hidden vectors
←−
h t and

−→
h t at time step t. We represent the hidden

states ht of Bi-LSTM by making a concatenation of two hidden states, which captures both

previous and future information in the sequence.

ht =
←−
h t ⊕

−→
h t, (1.2.7)

where ⊕ is the concatenation operation.

1.2.3. Convolutional Neural Networks (CNNs)

Convolutional networks (CNNs) are a family of neural networks dedicated to processing

data with grid topology. For example, time series data, which can be considered as a one-

dimensional grid sampled at regular intervals, as well as image data, can be considered as a

two-dimensional pixel grid. In CNN, each filter f is replicated across the entire input field.

These shared filters use the same set of parameters (weight matrix and bias). In this way,

the shared filters allow local features to be identified regardless of their position in the input.

Furthermore, making weight shared can increases the computation efficiency by reducing the

number of independent parameters being learned [18]. In this work, we use CNN to process

sequential data, i.e. word-level sequence and character-level sequence to get the hidden

representation of each token.The CNN achieves this purpose by using f kernels and sliding

them over the input sequence. Each kernel performs local convolution on the sub-sequences

of the input to obtain a set of feature maps (scalars), then a global max-pooling-over-time

is performed to obtain a scalar. These scalars from the f filters are then concatenated into

the sequence representation vector [18]. This process is shown in figure 1.3.

Figure 1.3. The illustration of convolution calculation. Weights of the same colour are

identical. The computation can be performed in parallel by directly replicating weights and

calculate across the sub-region of the entire input simultaneously.

13

We have described different neural-based architectures. Neural models always involve a

huge amount of parameters, which make it is difficult to train these models efficiently. As

this issue is so crucial and so expensive, a specialized set of optimization techniques have

been developed for solving it. Next, we will present some optimization methods for neural

network training.

1.2.4. Optimization for Training Neural Models

Typically, the goal of a machine learning algorithm is to find the optimal set of parameters

of a model by reducing the expected generalization error given by the equation 1.2.8.

J∗(θ) = E(x,y)∼pdataL(f(x; θ), y) (1.2.8)

where L(f(x; θ), y) is the loss function designed based on our tasks. f(x; θ) is the neural

model parameterized by θ, pdata is the data distribution.

The most used optimization algorithm to estimate θ parameters which minimize a cost

function J(θ) is the stochastic gradient descent algorithm. The SGD algorithm is an iterative

optimization method that modifies the set of parameters until the cost function on the

training data converges to one optimal solution [18]. At each time step, we move one step in

the opposite direction towards the gradient of the cost function so that J moves to a local

minimal. When a neural model contains huge amount of parameters, vanilla SGD algorithm

tends to find local minimal points with bad quality and becomes time consuming. Since the

rise of deep learning, several SGD variants have been developed to accelerate or improve

the learning process. Our objective is not to make a full summary of these optimization

algorithms, so we present only the one we used in our experiments to investigate its influence

on the models. A thorough comparison of these learning methods is made in [51], using

adaptive momentum based optimizors can accelerate the training greatly. Here, we introduce

two widely used adaptive methods Adam and Nadam.

Adam: Adaptive Moment Estimation (Adam) [25] is a method that computes adaptive

learning rates for each parameter. It stores an exponentially decaying average of previous

squared gradients vt, and it also keeps an exponentially decaying average of previous gradients

mt, which is similar to momentum. mt and vt estimate the first momentum and second

momentum of the gradients respectively. The parameters of models are updated as follows:

14

gt = 5J(θt−1), (1.2.9)

mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)g2t ,

m̂t =
mt

1− βt
1

,

v̂t =
vt

1− βt
2

,

αt = α

√
(1− βt

2)

1− βt
1

,

θt = θt−1 − αt
m̂t

∗
√
v̂t + ε

,

where α is the initial learning rate, β1 and β2 are hyper-parameters that control the expo-

nential decaying rate of mt and vt. The authors recommend initializing hyper-parameters to

the following values; α = 0.001, β1 = 0.9, β2 = 0.999 and ε= 10e-8.

Nadam: Nesterov-accelerated Adaptive Moment Estimation (Nadam) incorporates Nes-

terov accelerated gradient (NAG) into Adam optimizer. NAG aims to update parameters

with momentum step before computing the gradient. In practice, using NAG in gradient

calculation only needs to modify the momentum mt−1 of time t− 1 to the momentum mt of

time t.

The parameters of a model will be updated as follows:

θt+1 = θt −
α√
v̂t + ε

(β1m̂t +
(1− β1)gt
1− βt

1

) (1.2.10)

The neural models are powerful to memorize the whole training data [66], leading to

over-fitting on training set, which is not what we want. In order to make the neural model

to generalize better, there are many regularizing techniques to help avoiding over-fitting.

Next, we will introduce three commonly used regularization approaches.

1.2.5. Regularization for Training Neural Models

In machine learning settings, regularization can prevent the model from over-fitting the

training data by adding some penalty.

15

Dropout: Dropout [57] is one of the powerful regularizing methods. Practically, during

the training process of neural models, individual units of the model will be either dropped

out of the system with probability 1−p or activated with probability p, while during testing,

the net will activate all units, but reduces the weight of them by a factor p to offset the

missing activations during training.

Weight-decay: One popular regularization method in deep learning is to include a

weight decay term during updating. In practice, the weight decay is equal to add an L2

regularization term to the loss function. Then the optimization target becomes:

w∗ = argminw(L+ λ‖w‖22) (1.2.11)

where the w stands for the parameters of the model, L is the original loss function (e.g. cross

entropy), and λ is a hyper-parameter that controls how much to regularize.

Gradient Clipping: Gradient clipping is mostly used in recurrent neural networks.

When training recurrent neural networks with the full gradient, the derivatives will become

excessively large as the input time steps increase. This problem known as "Exploding Gra-

dients" can cause unstable training process.[19] To solve such issue, we utilize a technique

called "gradient clipping" that rescales the loss derivative before propagating it backward

through the network. This method uses normalized gradients to update the parameters of

model to prevent underflow or overflow weights.[18]

We also explore to boost the performance of the neural models on sequence labeling tasks

by using Multi-task learning. Here, we introduce some basics of multi-task learning.

1.3. Multi-Task Learning

Multi-Task Learning (MTL) has been used successfully across many applications of ma-

chine learning field, from computer vision [16] and speech recognition [13] to natural language

processing [11]. MTL can get implicit data augmentation which effectively increases the size

of training samples for our model. Besides, some useful features K might be hard to learn

in task A, while easy to learn from task B. Thereby joint learning task A and task B can

allow the model to learn these kind of features. Furthermore, MTL make the model to learn

representations that other tasks also prefer [51]. This helps the model to generalize better

to new tasks in the future. Finally, MTL can be considered as a way of regularization as it

reduces the risk of over-fitting to a single task during training.

16

In a general MTL setup, the model will be trained jointly on multiple tasks. The purpose

is to achieve a better generalization across different tasks on unseen data. In the next

chapter, this work will introduce two popular MTL frameworks for sequence labeling tasks.

Motivated by the success of multi-task learning [7, 11, 12, 32], in which multiple related tasks

can simultaneously improve the performance of a single task. We design a novel unit with a

shared cell in Bi-LSTM to leverage the mutual beneficial information in other tasks for the

target task prediction, and meanwhile, utilize the task-specific cell to maintain the specific

information in the target task.

17

Chapter 2

MODELS

In this chapter, we first present the neural tagger system and how to implement its com-

ponents in detail. We introduce and compare two methods for encoding word-level inputs,

two methods for encoding character-level inputs and two inference methods. Next, we intro-

duce two shared-encoder frameworks for sequence learning tasks with multi-task learning,

and analyze the advantage and disadvantage of these two approaches. Then we propose a

SC-LSTM for MTL and SC-LSTM based system for sequence labeling.

2.1. Neural Tagger Systems

A neural tagger system is a neural network based model which takes a sentence as input

and outputs the corresponding target label of each token in the sentence. Neural tagger

systems consist of three components, a look-up table which maps raw text input to its

corresponding vector representation (i.e. word embeddings), an encoder which converts the

input word to a hidden representation and an inference layer (Softmax or CRF) that labels

the current input based on the hidden representation.

There are many works on the encoder part [23, 35, 28, 12, 6, 58]. First, the most pop-

ular method is using LSTM to extract word-level information from the input sequence, as

recurrent networks can handle sequential dependences. The bidirectional LSTM (Bi-LSTM)

can encode forward and backward dependences in the sequence. Leveraging character-level

information into the input often improves the richness of hidden representations. By con-

sidering words as a character sequences, like Panda as P, a, n, d, a. Utilizing RNN or CNN

to extract char-level features is helpful for the accuracy. Third, most of the recent works

found that contextualized features can significantly boost many supervised tasks, so there

are many attempts to combine language models into sequence labeling problems. Finally,

there are several works exploring transfer learning or multi-task learning methods to improve

the performance, but some of them fail to improve all used tasks.

2.1.1. Word-level Representations

We can model word sequences through LSTM or CNN structures. Both of two methods

are widely used to encode sequential information: Lample et al. [28], Ma and Hovy [35], Chiu

and Nichols [9] and Huang et al. [23] make use of the LSTM cells to encode the word-level

information and achieve good performance. Others’ work [12, 58, 53, 52] choose CNN as

the word-level encoder due to the fact that convolution calculations can be computed on the

input sequence in parallel.

Word RNN As figure 2.1(a) shows word representations are fed into a forward and back-

ward LSTM respectively, and then the hidden states of the forward and backward LSTMs

are concatenated at each word to capture the global information of the whole sequence.

Word CNN As figure 2.1(b) shows the structure of word-level CNN extractor. For each

convolution layer, a kernel of size three slides along the sequence of vector representations

to extract local features on the input words and apply a ReLU function. In our experiment,

we use a four-layer CNN as [58].

2.1.2. Character-level Representations

As many natural language processing tasks, rare and unknown words can influence the

final performance: if a word is not in the training data, then we can not find obvious choice for

its word embedding. Besides, character-level features like prefix, suffix and capitalization play

an important role in sequence tagging task. These morphological properties were considered

in feature-based models. In neural-based models, these properties can be represented by

embedding methods through a human-defined look-up table, or by using neural networks

without hand-craft features. In this work, we concentrate on two neural character sequence

methods without hand-engineered information. There were many works utilizing RNN or

CNN to encoding character-level sequential information. In our experiments, we choose the

same structures as [28] and [35].

Character RNN: As figure 2.2(a) shows, to encode the whole sequential information of

a word "PANDA", we make use of a bi-directional LSTM on the character sequence of each

20

(a) Word LSTM model

(b) Word CNN model

Figure 2.1. Word level representation models. The input of both models can be a concate-

nation of word embedding , character-level representation and contextualized representation

of the token. The classifier of both models can be a softmax layer or a CRF layer

word, then concatenating the forward final hidden state
−→
h t and the backward final hidden

state
←−
h t as the final representation of character sequence. This method takes all characters

of the token into account and is position sensitive. Therefore, it can distinguish the different

characters at the beginning, in the middle, or at the end of a token.

Character CNN: Figure 2.2(b) shows, in order to encode the word "PANDA", we

utilize one layer CNN to extract local features and then feed these features to a max-pooling

21

(a) Char RNN model

(b) Char CNN model

Figure 2.2. Character level representation models. The input of both models are a series

of character embeddings of the tokens. The dashed line in (b) means maxpooling operation.

layer to capture the character-level representations. To create a vector representation with

suitable dimension, we need to add padding tokens at the beginning and end of the character

sequence before feeding the input to the embedding layer. In our experiment, we choose to

use one layer CNN with kernel size of three1. This approach takes trigrams into account and

is position independent. Therefore, it will not be able to tell the difference between trigrams

at the start and at the end of the word.

1This is achieved by doing a grid search from 1 to 5 to find the best filter size

22

So the learned character-level representation and the word embedding are concatenated

and are fed to word-level encoder which outputs the word-level representation. The learned

word-level representation will be used as the input for an inference layer.

2.1.3. Inference Layers

In this work, we evaluate two kinds of inference layers for sequence labeling tasks. The

softmax function has widely been used in multi-class classification problems, it takes a vector

of arbitrary real-valued scores z ∈ RN and squashes it to a vector of values between zero

and one which sums to one. It is computed as follow:

softmax(z) =
exp(zj)∑N
i=1 exp(zi)

, for j = 1, ..., N (2.1.1)

By using the softmax inference layer, the loss function will be cross-entropy. In sequence

tagging, tags can depend on their neighbours, for instance in POS, a verb is likely to appear

after a noun, while not appear after an article. CRF (conditional random field) can consider

the dependence of tags, hence it is commonly utilized in sequence labeling tasks. By using

CRF inference layer, we will optimize the conditional probability:

p(y1, ..., ym|x1, ..., xm) =
exp(

∑m
j=1w · φ(x1, ..., xm, sj−1, sj, j)∑

s1...sm
exp(

∑m
j=1w · φ(x1, ..., xm, sj−1, sj, j)

(2.1.2)

where, yj is the tag, xj is the input token and sj is the possible state. φ(x, s) is a potential

function that can be defined in various ways.

There are many neural tagger systems based on above components. These previous works

shown in Table 2.1 can be classified based on different combinations of three components :

(a) word-level inputs encoder; (b) character-level inputs encoder; (c) inference layer.

2.2. Multi-task Learning for Sequence Labeling

In a multi-task learning (MTL) setup, the model is trained jointly for more than a single

task. Multi-task learning for neural networks has a long history[7]. The goal of MTL is to

help model learn parameters or representations that generalize well over various tasks and

to achieve better generalization on unseen data. In this work, we concentrate on shared

encoder methods for multi-task learning.

23

No Char Char-LSTM Char-CNN

Word-LSTM [35] [65] [47] [28] [35]

Word-CNN [58] - -

Word-LSTM + CRF [23] [28] [49] [64] [35] [9] [45]

Word-CNN + CRF [12] - [6]

Table 2.1. Neural Tagger Systems, models without CRF are using Softmax classifiers

In this section, we will introduce two popular shared-encoder methods for sequence la-

beling with Multi-task Learning, and analyze the advantage and disadvantage of these two

approaches, then propose a novel LSTM unit, called Shared Cell LSTM (SC-LSTM) and SC-

LSTM based system for sequence labeling. This SC-LSTM contains shared parameters that

can learn from multiple tasks, and parameters that can learn from task-specific knowledge.

2.2.1. Two Shared-encoder Methods

There are two kinds of neural-based MTL methods. The first one — LSTM-s hereafter

— uses an identical representation for all tasks. This is illustrated in Figure 2.3 (left), where

the three-layer of LSTMs are being stacked.2 This three layers LSTM can be considered as

an encoder. We take the hidden state h(3)
t of the outermost layer as the representation of the

current input xt. This hidden state h
(3)
t is passed to different downstream task classifiers.

Within the encoder, the first layer computes h
(1)
t based on current input xt and the last

time step hidden state h
(1)
t−1 of the 1st layer. Then h

(1)
t will be taken as input for the second

layer and history information for 1st layer at next time step. The 2nd and 3rd layers will

do similar computations, respectively. As all tasks share the same hidden state h
(3)
t , the

error derivative will be passed through it to update all parameters of the encoder during the

training process. While the different tasks directly interact with all parameters of the model,

this increases the risk of optimization conflicts when gold-standard labels from different tasks

have no significant correlation.

The second class of multi-task architectures is depicted in the middle part of Figure 2.3,

and is named LSTM-d hereafter. In this configuration, each LSTM layer feeds a task-specific

2This typically delivers better performance than having just one. In practice also, LSTM layers are

replaced by bi-LSTM ones.

24

classifier and serves as input to the next stacked LSTM layer [56]. The 1st layer outputs

hidden state h
(1)
t of time step t, and h

(1)
t will be taken as the representation of input xt for

task classifier 1; it also serves as the input of 2nd layer and the history information of 1st layer

at next time step. Similar computations will be done respectively on the 2nd and 3rd layer to

give h(2)
t and h

(3)
t . The underlying assumption is that tasks may be ordered in such a way that

easier tasks are learned first, the target tasks being the latest one considered, thus benefiting

the hidden state of the lower layers. One drawback, however, is that one must decide which

task to consider first, a decision which may impact the overall performance. Furthermore,

using the hidden state of lower layers increases the limitation of learning representation for

that task.

We believe that one reason for the lack of consistent benefits of MTL in the labelling

literature is that the proposed models share all or part of the parameters for extracting

hidden states, which leads to optimization conflicts when different tasks require task-specific

features. We believe it will be helpful if we give the model ability to learn a task-specific

representation [4, 42, 26] at the same time. This observation led us to design a new LSTM cell

called shared cell LSTM (SC-LSTM)3 which allows at almost no additional computation cost

to efficiently train a single RNN-based model, where task-specific labelers clearly outperform

their singly-tasked counterparts. Actually, by training our model on NER, chunking and POS

tagging, we report state-of-the-art (or highly competitive) results on each task, without using

external knowledge (such as gazetteers that has been shown to be important for NER), or

hand-picking tasks to combine. Our SC-LSTM based system can be understood as replace

original LSTM cell at each layer with our SC-LSTM. At the outermost layer, SC-LSTM

outputs three representation s1t , s2t and s3t for three tasks respectively. Each of them is a

combination of task-invariant and task-specific features learned by neural networks. We will

present the details of SC-LSTM in the next section.

2.2.2. Shared Cell based LSTM (SC-LSTM)

The overall structure of our cell is depicted in Figure 2.4. On top of a standard LSTM

cell, we add one cell per task with its own parameters. The standard LSTM cell is thus

shared among the K task-specific cells, therefore the name we choose for this new cell, which
3This part concerned with SC-LSTM has been published as a conference paper at 2019 Annual Conference

of the North American Chapter of the Association for Computational Linguistics.

25

Figure 2.3. Overview of three shared encoder MTL tagging system: (a) LSTM-s (b) LSTM-

d (c) our SC-LSTM based system.

Figure 2.4. Structure of an SC-LSTM cell. The dashed delimited box depicts the task-

specific cell. For clarity reasons, we only show one such cell, while in practice there is one

task-specific cell for each task.

stands for Shared-Cell LSTM [33].

The shared LSTM cell outputs a cell state ct and a hidden state ht taken as task-invariant

representation. This is because the parameters of the Shared LSTM cell can be updated by

the gradients of all tasks involved, its output gate will select global information from the

26

internal memory ct. Next, we calculate the task-specific representation qk
t for the task k.

First, we run a sigmoid layer which decides what parts of the cell state to output based on

current input xt and task-specific hidden representation qk
t−1 of last time step. The qk

t−1

contains the history information for task k only, thereby the sigmoid layer can be considered

as a filter to select useful information only for task k. Then, we pass the cell state through

tanh function (to push the values to be between -1 and 1) and multiply it by the output

of the sigmoid layer, so that the task-specific part (dashed box in Figure 2.4) outputs the

parts qk
t only related with task k. Task-specific cells are each parametrized by an output

gate ok
t which learns to select the useful information from the shared internal memory ct

and outputs qk
t . This is formally described in Equation 2.2.1, where Wk and Uk are two

extra weight matrices that parametrize the kth task, and qk
t has to be understood as a task-

specific hidden representation since parameters of kth task-specific cell are only updated by

supervision from task k.

ok
t = σ(Wkq

k
t−1 +Ukx

k
t) (2.2.1)

qk
t = ok

t ∗ tanh(ct)

In order to make use of both shared and task-specific information [24, 44, 21], for the

kth task, we concatenate the output of the shared cell ht and of the task-specific one qk
t to

generate the final latent representation, as noted in Equation 2.2.2, where ⊕ is the concate-

nation operation. In practice, we stack SC-LSTM layers. The top-most layer uses skt as a

representation of the current input, while cells in lower layers pass the current shared hidden

state ht to the upper SC-LSTM cell.

skt = qk
t ⊕ ht (2.2.2)

The parameters of the shared cells will be updated by the loss of different tasks, respec-

tively. So the output of it will preserve useful information across multiple tasks. The final

representation of current input contains shared and private features. During the training

process, the SC-LSTM preserves a parametrized output gate for each task that learn pri-

vate features for that task. This task can update parameters of the output gate to filter

task-specific information. In the multi-task learning setup, the model is trained jointly for

27

three tasks in a random manner. In the following part, we first present the training objective

function and then describe the training procedure.

2.2.3. Training objective and procedure

In MTL setting, we concentrate on two or more tasks and train a model jointly over a

combined loss of each task.

ε =
K∑
k=1

λkL(yk, ŷk) (2.2.3)

The objective function ε we minimize is a linear combination of task-specific loss func-

tions, where the weighting coefficients (λk in Equation 2.2.3) are hyper-parameters. As the

numbers of training data of various tasks are different, we need λk to balance the weight of

loss in the objective function; K is the number of tasks and L(yk, ŷk) is the loss of task k.

We seek to minimize cross-entropy of the predicted and true distributions, therefore

task-specific loss functions are defined according to Equation 2.2.4.

L(yk, ŷk) = −
nk∑
i=1

mi∑
j=1

yk
i,j log ŷk

i,j (2.2.4)

where ŷk
i,j ∈ RTk is the predicted vector of the kth softmax classifier parametrized by a

projection matrix Wk ∈ Rh×Tk and a bias vector bk ∈ RTk ; Tk is the number of tags for task

k and h is the dimension of hidden state ski,j.

ŷk
i,j = softmax(Wkski,j + bk) (2.2.5)

where the hidden state ski,j encodes the jth token of the ith sequence for task k. In an SC-

LSTM cell with k tasks, we will add k matrices and k bias vectors, compared with a vanilla

LSTM cell, which increases the capacity of thew resulting model. This extra calculation

is conducted in parallel with the original LSTM computations. The softmax function is a

normalized exponential function:

softmax(z) =
ezi∑N
j=1 e

zj
for i = 1, ..., N and z = (z1,...,zN) ∈ RN (2.2.6)

The training material available may be gathered from different datasets Sk which means

that input sequences differ from one task to another. Therefore in practice we build K

28

dataloaders, and the training is achieved in a stochastic manner by looping over the tasks at

each epoch, as detailed in Algorithm 1.

Algorithm 1 Stochastic training procedure
1: procedure Training

2: for each epoch do

3: Randomly choose a task k.

4: Randomly choose a training example not yet considered in the dataset Sk

5: Update the parameters for this task by taking a gradient step based on this

example.

6: Go to step 3 until using all examples.

7: end for

8: end procedure

29

Chapter 3

EXPERIMENTS WITH SINGLE-TASK LEARNING

We split our experiments into two parts. The first part concentrates on single-task learning,

namely, all results in chapter3 are from models trained on a single task. The second part in

chapter 4 will focus on multi-task learning. All experiments in these two chapters utilize the

same datasets and identical setups. For convenience, we only present the detail of datasets

in chapter 3.

3.1. Datasets

Dataset Train Dev Test Tag #

NER

Sent # 14,987 3,644 3,486

4Token # 205k 52k 47k

Entity # 23,523 5,943 5,654

Chunking

Sent # 8,936 - 2,012

10Token # 212k - 47k

Chunk # 107k - 24k

POS
Sent # 12,543 2,002 2,077

17
Token # 204k 25k 25

Table 3.1. The statistics of three datasets used in chapter 3 and chapter 4

We test several neural tagging systems on three sequence tagging tasks: the

CoNLL2003 [61] for named entity recognition, the CoNLL2000 [60] and the universal

dependency dataset for part of speech tagging [41]. We conformed to the pre-defined splits

into train/dev/test except for chunking that does not contain a validation set. For chunking,

sections 15-18 of the Wall Street Journal are used for training, and we randomly sampled

1000 sentences in the training set as the development set, and section 20 is used for tests

following recent works [45, 30]. Table 3.1 presents the main characteristics of the training,

development and test sets we used.

Most work uses the development set to choose optimal hyper-parameters [28, 35, 58], while

others combine development set into the training set to improve the performance [9, 45]. In

our work, development datasets are used to select the optimal model among all epochs, and

we report scores of the selected model on the test dataset. To reduce the volatility of the

system, we conduct each experiment 5 times under different random seeds and report the

mean, and standard deviation for each model. All models are implemented using the Pytorch

library [43]

3.2. Implementation details for twelve neural models

We analyze neural sequence tagger systems on three benchmarks in an identical setting:

these systems can be considered as different combinations of three components: (a) word-level

inputs encoder; (b) character-level inputs encoder; (c) inference layer. Previous works can

cover 9 kinds of these models shown in table 2.1. Here, we have to point out that the results

reported by these papers cannot be compared directly since some papers utilize different

handcrafted features [35, 65, 47, 23], some of them are evaluated on different datasets [28,

49, 64, 35, 45] and some of them are trained on the combination of training and development

sets [9, 45] or utilizes different data split [23]. In order to make fair comparisons, we build

a unified framework to produce the results of twelve neural sequence tagging systems. Our

implemented models can give better or comparable results on reproducing reported works.

We report the hyper-parameters used by all models in table 3.2. And we report the hyper-

parameter settings for word-level and char-lavel encoding layers in table 3.3 left part and

table 3.3 right part respectively. All models are implemented using the Pytorch library [43].

32

Layer Parameter

Word Embedding
type GloVe

dimension 100

Character-level Embedding dimension 30

Dropout rate 0.5

Table 3.2. Hyper-parameters of twelve neural based models

Layer Parameter

Word-LSTM
hidden size 256

layer# 2

Word-CNN

kernel size 3

padding 1

stride 1

channel 50

layer# 4

Layer Parameter

Char-LSTM
hidden size 50

layer# 1

Char-CNN

kernel size 3

padding 1

stride 1

channel 50

layer# 1

Table 3.3. Hyper-parameters of word encoding layers (left) and character encoding layers

(right).

3.3. Results on three tasks

3.3.1. NER

In Table 3.4, we show results of our models and reported by others on NER task. We

need to mention that it is hard to reproduce their best results. Five of eighth of our models

achieve better results than their corresponding models. For the other three models, we can

give competitive results for Word-LSTM + CRF and Word-LSTM + CRF + Char-CNN, the

difference is −0.03 and −0.1, respectively. We fail to reproduce comparable result of Strubell

et al. [58]. In our experiments, we observe that i) Word-LSTM models get better results than

Word-CNN models; ii) Models using character representations outperform models with no

character representations; iii) CRF layer increases the accuracy consistently for all models.

33

F1-score
NER

No Char Char-LSTM Char-CNN

Word-LSTM
Reported 87.00 [35] 89.15 [28] 89.36 [35]

Ours (Mean±std) 88.55 ± 0.15 90.63 ± 0.12 90.60 ± 0.22

Word-CNN
Reported 89.97 [58] - -

Ours (Mean±std) 88.45 ± 0.11 90.35 ± 0.21 90.33 ± 0.11

Word-LSTM + CRF
Reported 90.10 [23] 90.94 [28] 91.21 [35]

Ours (Mean±std) 89.98 ± 0.09 91.04 ± 0.10 91.11 ± 0.25

Word-CNN + CRF
Reported 89.59 [12] - -

Ours (Mean±std) 89.65 ± 0.11 90.47 ± 0.21 90.57 ± 0.11

Table 3.4. F1-scores on the CoNLL03 NER dataset.

3.3.2. Chunking

In Table 3.5, we show results of our models and reported by others on chunking task.

Compared with six reported results, we can get better or competitive results. We need to

mention that directly comparing our results with reported results is not fair, as for chunking

task, several works use different setups. Again, in our experiments, we observe that i)

Word-LSTM models get better results than Word-CNN models; ii) Models using character

representations outperform models with no char; iii) The CRF layer can increase the accuracy

consistently for all models.

3.3.3. POS

Table 3.6 shows the accuracy of POS task. We first need to mention that in [47, 64, 6],

they report results evaluated on UD POS dataset v1.2, and Bjerva et al. [6] further test their

model on v1.3 and we use this result. The best reported result is 96.73%, as they utilize

adversarial training to boost the performance. Plank et al. [47] add an auxiliary loss during

his training and gets 96.4%. This makes it unfair to compare the results directly. In our

experiments, we find that i) Word-LSTM models also get better results than Word-CNN

models; ii) Models using character representations outperform models with no char; iii) the

34

F1-score
Chunking

No Char Char-LSTM Char-CNN

Word-LSTM
Reported 94.13 [65] - -

Ours (Mean±std) 94.39 ± 0.12 94.55 ± 0.05 94.56 ± 0.10

Word-CNN
Reported - - -

Ours (Mean±std) 94.25 ± 0.06 94.42 ± 0.02 94.43 ± 0.02

Word-LSTM + CRF
Reported 94.46 [23] 93.15 [49] 95.00 [45]

Ours (Mean±std) 94.61 ± 0.09 94.87 ± 0.10 94.93 ± 0.05

Word-CNN + CRF
Reported 94.32 [12] - -

Ours (Mean±std) 94.41 ± 0.16 94.65 ± 0.09 94.6 ± 0.13

Table 3.5. F1-score on the CoNLL00 Chunking dataset.

Accuracy
POS

No Char Char-LSTM Char-CNN

Word-LSTM Reported 96.40 [47] - -

Ours (Mean±std) 95.21 ± 0.25 95.54 ± 0.13 95.41 ± 0.11

Word-CNN Reported - - -

Ours (Mean±std) 95.13 ± 0.09 95.32 ± 0.15 95.26 ± 0.07

Word-LSTM + CRF Reported - 96.73 [64] -

Ours (Mean±std) 95.22 ± 0.11 95.67 ± 0.12 95.53 ± 0.10

Word-CNN + CRF Reported - - 95.67 [6]

Ours (Mean±std) 95.08 ± 0.14 95.44 ± 0.10 95.35 ± 0.13

Table 3.6. Accuracy on the UD POS dataset.

CRF layer has positive influence on POS, but the effect is not as strong as for NER and

chunking. We will analyze this in the next section for the three tasks together.

3.4. Comparisons of neural tagger models

Word Representation Methods: For each task, we compute the average difference of

performance of models based on two encoding approaches (Word-LSTM and Word-CNN).

35

Compared with Word-CNN, we observe that Word-LSTM achieves +0.2, +0.1 and +0.1

on NER, chunking and POS task respectively. We conclude that LSTM models are more

effective than CNN models in most cases, which is also consistent with results reported in

previous papers shown in Table 3.4, 3.5, 3.6. And the best reported results of three tasks

(NER:91.21, chunking:95.0 and POS: 95.67) are all based on Word-LSTM. This suggests

that global word context information is necessary for sequence labeling.

Character Representation Methods: We first inspect the effectiveness of character

representations by comparing results with or without character representations. In our ex-

periments, character representations can obviously boost both Word-LSTM and Word-CNN

based models. Word-LSTM models get a promotion of +1.58, +0.23 and +0.32 on NER,

chunking and POS respectively, and Word-CNN models get an improvement of +1.37, +0.20

and +0.20 on NER, chunking and POS respectively. We conclude that character-level repre-

sentations can improve the performance significantly in three sequence labeling tasks. Next

we compare the effect of Char-LSTM and Char-CNN. In our experiments, the Char-LSTM

can improve the performance by +1.57, +0.21 and +0.29 on average for NER, chunking and

POS, while Char-CNN give +1.58, +0.19 and +0.26, the difference is small, so we conclude

that both Char-LSTM and Char-CNN methods have similar effects on the improvement of

performance, while the difference between Char-LSTM and Char-CNN is not significant. In

most cases, Char-LSTM and Char-CNN tend to give comparable results under different set-

tings and different tasks. Char-CNN gives the best NER result under the Word-LSTM+CRF

framework, while Char-LSTM gets better NER results in all other configurations. For chunk-

ing and POS tagging, Char-LSTM consistently outperforms Char-CNN under all settings,

while the difference is statistically insignificant.

Inference Methods: We compute the performance difference for three tasks between

models with a CRF layer and corresponding models with a softmax layer and get +0.65

+0.25 +0.06 for NER, chunking and POS, respectively. As for NER and chunking, the

promotions are more important than for POS. Besides, for NER and chunking tasks,

models with a CRF layer outperform models with a softmax layer under all configurations

consistently, while it is not always the case for the POS task. In most cases, the POS task

gets slight improvements. This shows that considering the dependence of labels is still

helpful for the POS task. We conclude that CRF always performs better than softmax

36

Random GloVe SENNA
80

82

84

86

88

90

92

F1
- S

co
res

83.24

90.63
89.75

83.54

90.6
89.77

F1 Scores on CoNLL2003 NER task

Word-LSTM + Char-RNN Word-LSTM + Char-CNN

(a)

Random GloVe SENNA
80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

F1
- S

co
res

84.11

94.55 94.15

84.29

94.56 94.2

F1- Scores on CoNLL2000 Chunking task

Word-LSTM + Char-RNN Word-LSTM + Char-CNN

(b)

Random GloVe SENNA
80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

rac
y

86.11

95.54

93.25

86.35

95.41

93.27

Accuracy on UD English POS task

Word-LSTM + Char-RNN Word-LSTM + Char-CNN

(c)

Figure 3.1. Influence of pre-trained embeddings on three tasks.
37

SGD Adam Nadam
80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

F1
- S

co
res 90.63 90.45 90.490.6 90.3 90.26

F1- Scores on CoNLL2003 NER task

Word-LSTM + Char-RNN Word-LSTM + Char-CNN

(a)

SGD Adam Nadam
90

92

94

96

98

100

F1
- S

co
res 94.55 94.35 94.3394.56 94.49 94.4

F1- Scores on CoNLL2000 Chunking task

Word-LSTM + Char-RNN Word-LSTM + Char-CNN

(b)

SGD Adam Nadam
90

92

94

96

98

100

Ac
cu

rac
y 95.54 95.5 95.3695.41 95.44 95.39

Accuracy on UD POS task

Word-LSTM + Char-RNN Word-LSTM + Char-CNN

(c)

Figure 3.2. Influence of optimizers on three tasks.
38

BIOES BIO
80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

F1
- S

co
res 90.75 90.6390.71 90.6

F1- Scores on CoNLL2003 NER task

Word-LSTM + Char-RNN Word-LSTM + Char-CNN

(a)

BIOES BIO
80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

F1
- S

co
res

94.68 94.5594.6 94.56

F1- Scores on CoNLL2000 chunking task

Word-LSTM + Char-RNN Word-LSTM + Char-CNN

(b)

Figure 3.3. Influence of tagging schemes on NER and chunking.

classifier for NER and chunking, while CRF fails to give an obvious gain for POS. The

reason maybe that by using a tagging scheme, the labels of NER and chunking task tends

to contain more information and constrains than POS. As compared to the softmax layer,

the process of CRF inference is more time-consuming algorithms (i.e. viterbi algorithm),

therefore for a task without tag scheme, we might choose a softmax based model to save time.

In the end, we conclude that LSTM based models outperform CNN based models

for encoding word-level information; Both LSTM and CNN based methods can encode

39

character-level information which improves performance for all sequence labeling tasks;

while the improvement varies slightly according to different tasks. The CRF inference

approach performs better on NER and Chunking than on the POS task.

Besides different neural components in the tagger system, previous works endeavour to

make use of different extra resources like pre-trained word embeddings or different optimiza-

tion algorithms to achieve best accuracy. Such external factors can significantly influence

model performance. To make an empirical analysis, we examine three factors (pre-trained

embeddings, optimizers, and tagging schemes). These comparisons are based on two kinds

of models Word-LSTM + Char-LSTM and Word-LSTM + Char-CNN. To simplify the ex-

perimental setting and save time, we do not consider Word-CNN based models and CRF

layers. The hyper-parameters are kept same as in Table 3.2 and 3.3 except when we test

different pretrained embeddings.

Pretrained embedding. We examine two models on NER, chunking and POS tasks by

using random initialization and two different pre-trained embeddings (GloVe and SENNA).

Results are shown in Figure 3.1(a)(b)(c). Models with pre-trained embeddings achieve con-

siderable gains over models with random initialization. In our experiments, the GloVe em-

beddings always give higher accuracy than SENNA on both models, while the difference

is not significant for the chunking task. For NER and POS, GloVe embeddings performs

much better than SENNA embeddings. Here we have to mention that we used the available

resource of GloVe and SENNA1 directly. The dimension of SENNA embedding is 50, while

GloVe is 100. Retraining these embeddings will introduce extra efforts and more uncontrol-

lable factors, which further complifies the comparison. Even if results are consistent with the

analysis in [35, 62], we further find it is hard to compare the results in a fair setting, as Ma

and Hovy [35] gets about +0.9% and +0.1% gains on NER and POS respectively, Yang et al.

[62] gets + 0.46% on NER. We all report the Glove embeddings perform better, but the gains

can be influenced by different settings. For the two remaining factors, such issues still exist,

so we will only focus on qualitative analysis rather than quantitative analysis.

1The embedding files glove6B and SENNA are available at https://nlp.stanford.edu/projects/

glove/ and https://ronan.collobert.com/senna/download.html

40

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://ronan.collobert.com/senna/download.html

Optimizer: We compare the results by training our models under three types of opti-

mizers including SGD, Adam and Nadam on three datasets. We also measure number of

epochs that the model needs to converge for each optimizer. In our experiments, to achieve

the accuracy reported, SGD optimizer needs 70 epochs on average, while Adam and Nadam

optimizer only need less than 30 epochs. Our results in Figure 3.2 show that SGD optimizer

always produce better performance than other two optimizers on three tasks. The difference

between Nadam and Adam is not significant. For single task learning models, we conclude

SGD tends to achieve best results. This observation is consistent with [9, 28, 35], while in

[50] they report opposite result.

Tagging scheme. As Figure 3.3 shows, we examine two models NER and chunking

tasks by using two different tag schemes on : BIO and BIOES. The experimental results

show that models with BIOES are better than BIO on NER and chunking tasks, while

the gain on chunking is not significant. Our observation that BIOES can give obvious

improvement over BIO on NER task is consistent with [48, 62], while Reimers and Gurevych

[50] report the difference is not considerable between BIO and BIOES.

In the end, we conclude that pre-trained word embeddings boost the performance of

sequence labeling tasks greatly; and the pre-trained GloVe embeddings outperform SENNA

ones. For optimization methods, SGD gives slightly better results than Adam and Nadam

methods, while it consumes much longer training time to converge. For tagging scheme,

BIOES has a positive influence on NER and Chunking.

41

Chapter 4

EXPERIMENTS WITH MULTI-TASK LEARNING

This chapter investigates the neural sequence labeling models in the multi-task learning

setting. We first compare our proposed SC-LSTM based models with two shared encoder

methods: LSTM-s and LSTM-d; Next, we compare our best models with other state-of-the-

art methods. Finally, we analyze the influence of original LSTM and SC-LSTM on training

in MTL setting.

4.1. Implementation details

Our experiments are based on the results shown in the previous chapter. In this chapter,

all models are based on bidirectional LSTM or SC-LSTM. The input of these models can

consist of four components: word embedding (GloVe), capitalization features1, character-

level representations and contextual representations. In section 4.2, the inputs of models

are word embeddings with capitalization features. In section 4.3, we test two additional

variants of the SC-LSTM based model: i) SC-LSTM-CNN-CRF takes the concatenation of

the GloVe embedding and the character-level representation of the current token as input.

ii) The input of SC-LSTM-LM-CNN is the concatenation of ELMo embeddings, GloVe and

character-level representation.

Our best model is SC-LSTM-LM-CNN which gives our best results for three tasks and is

used to compare with other state-of-the-art methods. We used mainly the configuration ad-

vocated in [46] except for the hidden size of SC-LSTM, which we report in Table 4.2. During

the training, we further weighted the NER task in the objective function of Equation 2.2.3 to

1Eight features encode capitalization patterns, such as AllUpper, InitialUpper, etc.

GloVe Cap. feat. Char. Rep, ELMo

LSTM (STL) X X

LSTM-s X X

LSTM-d X X

SC-LSTM X X

SC-LSTM-CNN-CRF X X

SC-LSTM-LM-CNN X X X

Table 4.1. Models with different input components.

3 (λNER), the weights of the other tasks where set to 1.2 We trained this model SC-LSTM-

LM-CNN using the Adam optimizer [25] as a default setting. Such a model spends typically

less than 30 epochs to converge. We choose the mini-batch size of 10 and used the gradient

clipping threshold 5. All models are implemented using the Pytorch library [43].

For chunking and NER tasks, there are several tagging schemes. As our purpose is not

to investigate the influence of such a factor, we choose the most commonly used BIO one.

Layer Parameter

Word Embedding dimension 100

Character-level Embedding dimension 16

Character-CNN

kernel size 3

padding 1

stride 1

channel 128

SC-LSTM
hidden size 256∗3

layer 3

Contextual Embedding (ELMo) dimension 1024

Dropout rate 0.5

Table 4.2. Hyper-parameters of SC-LSTM-LM-CNN

2We found the loss of the NER task to be around 1/3 of the loss of the chunking and POS tasks.

44

4.2. LSTM-s, LSTM-d versus SC-LSTM

In this section, we compare MTL approaches based on LSTM or SC-LSTM. The results

are shown in Table 4.3. We first train Bi-LSTM models in a single task learning manner

(STL) and put corresponding results at line 1 in Table 4.3; the rest of results in Table 4.3

are data in multi-task learning manner.

For LSTM-s and LSTM-d, we regard one task as the main task and the others as auxiliary

tasks; a setting consistent with Søgaard and Goldberg [56]. Because LSTM-s and LSTM-d

always fail to achieve stable and competitive results on the three tasks we considered at the

same time, we report the best performance we could obtain for each task (line 2 and 3)

specifically. On the contrary, our SC-LSTM model is trained once jointly on all tasks, and

only one model is being tested in the end, which is much easier and more realistic of a real

deployment (line 4).

The results show that our SC-LSTM model improves the performance of the three tasks

simultaneously compared with LSTM (STL), and outperforms the other two MTL methods.

By jointly learning three tasks, both LSTM-s and LSTM-d can boost the chunking task sig-

nificantly, but both fail to improve NER and POS tasks. This is consistent with observations

made in [12, 56]. We also observe that our SC-LSTM model also benefits the chunking task

the most. We will further analyze the reason later in this chapter. Here we need to mention

that the results of LSTM(STL) in Table 4.3 are different from previous chapter, as we use

another set of hyper-parameters.

POS chunking NER

LSTM (STL) 95.46 94.44 89.39

LSTM-s 95.45 95.12 89.35

LSTM-d 95.44 95.24 89.37

SC-LSTM 95.51 96.04 89.96

Table 4.3. Results of models being trained in STL or MTL mode. For all MTL models,

we report the best performance via a small grid search over combinations of the hidden size

[100, 200, 300, 400] and the number of layers [1, 2, 3]. The best performance of each MTL

model was obtained with hidden size 300 and 3 layers.

45

4.3. SC-LSTM versus state-of-the-art

To further demonstrate the effectiveness of our SC-LSTM model, we compare different

variants with state-of-the-art approaches, that we classify into three broad categories:

• Single sequence labeling where models are trained without the supervision of other

tasks. Specifically, we compare our results to the LSTM-CRF model of [28] and the

LSTM-CNN-CRF one [35], since those are state-of-the-art singly tasked sequence

labelers. LSTM-CRF uses bi-LSTM for encoding character-level information; while

LSTM-CNN-CRF uses CNN for same purpose. Both two approaches use bi-LSTM

to encode word-level information and CRF for inference.

• Multi-tasked sequence labeling where models leverage the supervision of other

tasks. We compare our model with the representative approaches of [34, 56, 11, 12].

• Models with language model. Recently, several studies in using contextualized

word embeddings achieved great success in a number of tasks. Some recent stud-

ies [45, 49, 46, 14] are particularly considered.

NER: Results for the CoNLL 2003 dataset are reported in Table 4.4. We observe

that our SC-LSTM-LM-CNN model outperforms all approaches but Devlin et al. [14]

and Akbik, Blythe, and Vollgraf [1]. The latter work is using the development set as training

material, which avoids a direct comparison. The former model (BERT) is achieving great

success by leveraging a huge amount of unannotated data as well as a lot of computation

resources we could not afford in this study. We are however pleased that our model is

leveraging contextual embeddings with 0.38 absolute F1 improvement over the results of [46].

Chunking: We compared a number of models on the CoNLL2000 chunking dataset.

A few of them [35, 28, 46] where not tested on this benchmark, and we reimplemented

them. We also trained the companion toolkits of those models, but (as detailed in the next

section) got slightly lower results for some reasons. Table 4.5 reports the performance of the

many approaches we tested. We observe that our SC-LSTM-LM-CNN architecture achieves

a new state-of-the-art F1 score, with over 1 absolute point over the competitive approach

of Peters et al. [45], and an improvement of 0.4% over the current state-of-the-art method [10].

46

Model F1-score(mean)

Collobert et al. [12] 89.59†

Chiu and Nichols [9] ♣ 91.62

Huang et al. [23] 88.83

Ma and Hovy [35] 91.21

Lample et al. [28] 90.94

Shen et al. [55] 90.89

Yang, Salakhutdinov, and Cohen [63] 91.20

Rei [49] 86.26

Liu et al. [30] 91.71

Peters et al. [45] 91.93

Zhang et al. [68] 91.2

Liu et al. [31] 91.95

SC-LSTM 89.96

SC-LSTM-CNN-CRF 91.37

SC-LSTM-LM-CNN 92.60

Table 4.4. F1-score on the CoNLL03 NER dataset. Models with ♣ use both train and dev

splits for training.

POS:We conducted experiments on the Universal Dependency POS English dataset and

present the results in Table 4.6. The only study we found that reports results on the UD

v1.3 benchmark we used here is [6], and we report the results they published. For Liu et al.

[30], Peters et al. [46] we used the available companion toolkits3 that we trained ourself with

the default settings. We re-implemented the other approaches.

Again, we observe that SC-LSTM-LM-CNN outperforms all other approaches we tested.

The absolute improvement in F1 score over the current state-of-the-art of Peters et al. [46]

is 0.21%.

3https://github.com/LiyuanLucasLiu/LM-LSTM-CRF and https://github.com/allenai/allennlp

47

https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
https://github.com/allenai/allennlp

Model F1-score(mean)

Collobert et al. [12] 94.32†

Huang et al. [23] 94.13

Ma and Hovy [35] 94.81†

Lample et al. [28] 94.68†

Hashimoto et al. [20] 95.77

Søgaard and Goldberg [56] 95.56

Shen et al. [55] 93.88

Yang et al. [63] 94.66

Liu et al. [30] 95.96

Peters et al. [45] 96.37

Liu et al. [31] 96.13

Akbik et al. [2] 96.72

Clark et al. [10] 97.00

SC-LSTM 96.04

SC-LSTM-CNN-CRF 96.41

SC-LSTM-LM-CNN 97.40

Table 4.5. F1-score on the CoNLL00 chunking dataset. Configurations with a † sign are

approaches we reimplemented.

In order to further validate our implementations, we also ran the toolkits of Ma and Hovy

[35] and Lample et al. [28] and obtained slightly lower results4.

4.4. Analysis of SC-LSTM

We conducted a number of investigations in order to understand better why our multi-

task learning model is effective. We first concentrate on the training process to investigate

how the combinations of different tasks influence on the optimization process; then we study

the compatibility of different tasks in MTL.

4We obtained 95.7% for the toolkit we took from https://github.com/XuezheMax/NeuroNLP2 and

95.6% for the one at https://github.com/glample/tagger.

48

https://github.com/XuezheMax/NeuroNLP2
https://github.com/glample/tagger

POS Accuracy

Collobert et al. [12] 95.41†

Huang et al. [23] 95.63†

Ma and Hovy [35] 95.80†

Lample et al. [28] 95.78†

Bjerva et al. [6] 95.67

Alonso and Plank [3] 94.54

Changpinyo et al. [8] 95.4

Liu et al. [30] 95.95†

Peters et al. [46] 96.62 †

SC-LSTM 95.51

SC-LSTM-CNN-CRF 95.83

SC-LSTM-LM-CNN 96.83

Table 4.6. Accuracy on the Universal Dependency English POS dataset. Configurations

with a † sign are approaches we reproduced.

4.4.1. Convergence Analysis

We report in Figure 4.1 the convergence of different MTL models on the development

set. To obtain those curves, we collected the F1-score on the NER and chunking tasks as

well as the accuracy of the POS task, and averaged them after each epoch.

We clearly see that the SC-LSTM model converges faster than other ones. It achieves

higher performance after the first epoch, and after about ten epochs, it shows a smooth

performance curve, while LSTM-s and LSTM-d models still fluctuate. This indicates that

our model can learn the hidden representation of multiple tasks in a faster and smoother

way than the other two methods.

Besides, we observe in Figure 4.1c and 4.1d that combinations of tasks involving

chunking typically show a smooth training curve, on the contrary to Figure 4.1b where NER

and POS tasks are combined. The fact that the training regimen fluctuates in the latter

case for both LSTM-s and LSTM-d suggests that conflicts with those two tasks happen

during optimisation, which we do not observe for our model. Also, Figure 4.1a illustrates

49

5 10 15
(a)

0.92

0.94

F
1/

A
C

C
NER & Chunking & POS

2.5 5.0 7.5 10.0 12.5
(b)

0.91

0.92

0.93

0.94

F
1/

A
C

C

NER & POS

0 5 10 15 20
(c)

0.93

0.94

0.95

0.96

F
1/

A
cc

Chunking & POS

5 10 15
(d)

0.90

0.92

0.94
F

1

NER & Chunking

Figure 4.1. The change of F1-score/Accuracy on the development datasets at different

epochs for SC-LSTM (red solid line), LSTM-s (blue dotted line) and LSTM-d (green dashed

line) baselines. (a) reports results with NER, chunking and POS; (b) results with NER

and POS; (c) results with chunking and POS; and (d) results with NER and chunking. All

models were trained using the Adam optimizer with the same setting, and the mini-batch

size was set to 10.

that combining the three tasks altogether leads to comparably better performance of our

model over LSTM-s and LSTM-d.

By tracking the performance of models on development sets, we have shown that the

combinations of different tasks have a great influence on the training process in MTL setting.

In the following part, we report the corresponding results on test sets to further analyze the

50

effect of grouping different tasks under various multi-task settings. Additionally, this also

helps us to better understand the reason why a task can get a higher promotion than another

in MTL setting.

4.4.2. Effect of Different Task Combinations

We analyzed which task is benefited or harmed by others under the three MTL settings

we considered and present results in Figure 4.2.

We find that by jointly learning with NER or POS leads to better chunking for all MTL

models (see in Figure 4.2b). This is in particular the case of our SC-LSTM model which

records the largest gain, especially when all tasks are being trained on.

Figure 4.2c shows results obtained on POS. Only our SC-LSTM model achieves a mean-

ingful improvement. We however observe that the NER task tends to hurt the performance

of POS, since in most cases, the performance of POS+NER is lower than the one obtained

with POS+chunking.

For NER, Figure 4.2 shows that POS hurts LSTM-s and LSTM-d models, while the

chunking task is beneficial for all MTL methods.

Clearly, the combination of different tasks has a different effect on the final performance of

each task. The chunking task seems compatible with NER and POS tasks, and it boosts the

other two tasks in all three MTL settings, which is consistent with the results of Changpinyo

et al. [8]. Directly jointly training on POS and NER datasets tends to reduce the performance

in LSTM-s and LSTM-d, which is also consistent with the conclusion in [56, 8]. In conclusion,

all of the results show that our SC-LSTM model is effective at capturing the mutual benefits

of all combined tasks. Since it performs consistently better in various settings, we believe

our model to be more robust.

51

NER + POS NER + Chunk NER + Chunk + POS
(a)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

F1
-sc

ore 89.14 89.43 89.3589.26 89.51 89.3789.6 89.77 89.96

NER
LSTM-s
LSTM-d
SC-LSTM

Chunk + NER Chunk + POS Chunk + POS + NER
(b)

85.0

87.5

90.0

92.5

95.0

97.5

100.0

102.5

105.0

F1
-sc

ore 94.12 93.94 94.1294.32 94.12 94.24
96.12 95.99 96.26

Chunking
LSTM-s
LSTM-d
SC-LSTM

POS + NER POS + Chunk POS + Chunk + NER
(c)

92

93

94

95

96

97

98

99

100

Ac
cu

rac
y

95.34 95.31 95.3595.37 95.41 95.3495.36 95.55 95.51

POS
LSTM-s
LSTM-d
SC-LSTM

Figure 4.2. Results of different task groups on each test set: (a) NER, (b) chunking, and

(c) POS. Horizontal lines show results for single-task models (NER: 89.39, Chunking: 94.44

and POS: 95.46).

52

Chapter 5

CONCLUSION

In this work, we focus on neural based approaches for sequence labeling tasks. First, We

introduce and investigate the different characteristics of three basic components of neural

tagger system (word level encoder, character level encoder, and inference layer) and then

evaluate them in a unified framework.

We re-implemented and compared recent neural tagger models with different configura-

tions under a unified experimental setting. We first investigate the effect on which LSTM and

CNN impact word-level and character-level encoders. Empirical experiments show that mod-

els with LSTM encoding perform better than those with CNN encoding. The disadvantage of

word LSTM based methods is taking longer decoding time than CNN based approaches. Be-

sides, the experiments show that character-level information is crucial for sequence labeling

tasks. We observe that the character information helps to improve performance obviously.

Even the character LSTM and character CNN encoding methods capture different structure

information in character sequence, in most cases, these two methods will make comparable

impacts on results. As the latter one is more efficient in computation, it is better to choose

it in practice. Finally, we compare the effects of two inference structures (Softmax layer and

CRF layer). The results show that the CRF method outperforms Softmax on NER and text

chunking tasks, while it gives comparable results on POS tagging.

External factors such as pre-trained embeddings, tagging schemes, and optimizers have

significant influence to the performance. So besides model structures studied above, we also

evaluate a set of external factors on the three tasks. We conclude that using pre-trained

word embeddings like GloVe and SENNA can greatly improve performance, and that the

GloVe embedding has better effect. And for single task learning, SGD is the best optimizer

which only need to sacrifice more time during training. The BIOES tagging scheme is also

helpful, especially for NER.

Second, we target to solve three sequential tagging by joint training. Despite many

successful applications, there are several issues about the effectiveness of MTL for sequence

labeling. If we can jointly learn more tasks and benefit them together, we can raise the

utility of MTL significantly. There are several avenues of this work we would like to address.

We analyze and compare two widely used shared-encoder frameworks for sequence labeling

and propose a simple but novel SC-LSTM to tackle the weaknesses of them. We hypothesize

that by giving models the capacity to jointly learn task-specific knowledge and task-invariant

knowledge can improve the performance. So we propose an LSTM cell that preserves shared

parameters and task-specific parameters and allows efficient multi-task training for sequential

labeling. We conducted extensive experiments to compare both single-task learning and

multi-task learning models. Experiments demonstrate the effectiveness of our model for

sequence labeling tasks. Our SC-LSTM model outperforms the other two shared-encoder

models when using data of all three tasks to train models. Compared with the current state-

of-art results, our best SC-LSTM-LM-CNN model can achieve better results on chunking

and POS and gets a comparable result on NER. Furthermore, we conducted analysis to

show the effect of our method. Results show that the SC-LSTM model converges faster than

others. In most cases, it achieves higher performance after the first epoch and gets smooth

while other two shared-encoder methods still fluctuate, which indicates that our model can

learn the hidden representation of multiple tasks in a faster and smoother way than the

other two methods. The combination of different tasks has a different effect on the final

performance of each task. By grouping different tasks together for training, the results show

that our SC-LSTM model can efficiently avoid suffering the negative influence introduced by

incompatible tasks. Our model is more robust and performs consistently better in various

settings.

54

Bibliography

[1] Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings for

sequence labeling. In Proceedings of the 27th International Conference on Computational

Linguistics, pages 1638–1649. Association for Computational Linguistics, 2018.

[2] Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings for

sequence labeling. In Proceedings of the 27th International Conference on Computational

Linguistics, pages 1638–1649, 2018.

[3] Hector Martinez Alonso and Barbara Plank. When is multitask learning effective?

semantic sequence prediction under varying data conditions. In EACL 2017-15th Con-

ference of the European Chapter of the Association for Computational Linguistics, pages

1–10, 2017.

[4] Waleed Ammar, George Mulcaire, Miguel Ballesteros, Chris Dyer, and Noah A Smith.

Many languages, one parser. Transactions of the Association for Computational Lin-

guistics, 4:431–444, 2016.

[5] Ann Bies, Justin Mott, Colin Warner, and Seth Kulick. English web treebank. Linguistic

Data Consortium, Philadelphia, PA, 2012.

[6] Johannes Bjerva, Barbara Plank, and Johan Bos. Semantic tagging with deep residual

networks. arXiv preprint arXiv:1609.07053, 2016.

[7] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[8] Soravit Changpinyo, Hexiang Hu, and Fei Sha. Multi-task learning for sequence tagging:

An empirical study. arXiv preprint arXiv:1808.04151, 2018.

[9] Jason PC Chiu and Eric Nichols. Named entity recognition with bidirectional lstm-cnns.

arXiv preprint arXiv:1511.08308, 2015.

[10] Kevin Clark, Minh-Thang Luong, Christopher D Manning, and Quoc V Le.

Semi-supervised sequence modeling with cross-view training. arXiv preprint

arXiv:1809.08370, 2018.

[11] Ronan Collobert and Jason Weston. A unified architecture for natural language pro-

cessing: Deep neural networks with multitask learning. In Proceedings of the 25th

international conference on Machine learning, pages 160–167. ACM, 2008.

[12] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and

Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine

Learning Research, 12(Aug):2493–2537, 2011.

[13] Li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep neural network

learning for speech recognition and related applications: An overview. In 2013 IEEE

International Conference on Acoustics, Speech and Signal Processing, pages 8599–8603.

IEEE, 2013.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[15] Abbas Ghaddar and Phillippe Langlais. Robust lexical features for improved neural

network named-entity recognition. In COLING 2018, 27th International Conference on

Computational Linguistics, pages 1896–1907, 2018.

[16] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on

computer vision, pages 1440–1448, 2015.

[17] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural net-

works. In Proceedings of the fourteenth international conference on artificial intelligence

and statistics, pages 315–323, 2011.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[19] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850, 2013.

[20] Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. A joint

many-task model: Growing a neural network for multiple nlp tasks. arXiv preprint

arXiv:1611.01587, 2016.

[21] Daniel Hershcovich, Omri Abend, and Ari Rappoport. Multitask parsing across seman-

tic representations. In Proceedings of the 56th Annual Meeting of the Association for

56

http://www.deeplearningbook.org

Computational Linguistics (Volume 1: Long Papers), volume 1, pages 373–385, 2018.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-

tion, 9(8):1735–1780, 1997.

[23] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence tagging.

arXiv preprint arXiv:1508.01991, 2015.

[24] Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya. Frustratingly easy neural domain

adaptation. In Proceedings of COLING 2016, the 26th International Conference on

Computational Linguistics: Technical Papers, pages 387–396, 2016.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[26] Eliyahu Kiperwasser and Miguel Ballesteros. Scheduled multi-task learning: From syn-

tax to translation. arXiv preprint arXiv:1804.08915, 2018.

[27] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. 2001.

[28] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,

and Chris Dyer. Neural architectures for named entity recognition. arXiv preprint

arXiv:1603.01360, 2016.

[29] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark

collection for text categorization research. Journal of machine learning research, 5(Apr):

361–397, 2004.

[30] Liyuan Liu, Jingbo Shang, Frank Xu, Xiang Ren, Huan Gui, Jian Peng, and Jiawei

Han. Empower sequence labeling with task-aware neural language model. arXiv preprint

arXiv:1709.04109, 2017.

[31] Liyuan Liu, Xiang Ren, Jingbo Shang, Jian Peng, and Jiawei Han. Efficient contextu-

alized representation: Language model pruning for sequence labeling. arXiv preprint

arXiv:1804.07827, 2018.

[32] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang.

Representation learning using multi-task deep neural networks for semantic classification

and information retrieval. 2015.

[33] Peng Lu, Ting Bai, and Philippe Langlais. Sc-lstm: Learning task-specific representa-

tions in multi-task learning for sequence labeling. In Proceedings of the 2019 Conference

57

of the North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, Volume 1 (Long and Short Papers), pages 2396–2406, 2019.

[34] Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Zaiqing Nie. Joint entity recognition

and disambiguation. In Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, pages 879–888, 2015.

[35] Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional lstm-

cnns-crf. arXiv preprint arXiv:1603.01354, 2016.

[36] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large

annotated corpus of english: The penn treebank. 1993.

[37] Andrew McCallum, Dayne Freitag, and Fernando CN Pereira. Maximum entropy

markov models for information extraction and segmentation.

[38] Makoto Miwa and Mohit Bansal. End-to-end relation extraction using lstms on se-

quences and tree structures. arXiv preprint arXiv:1601.00770, 2016.

[39] Dat Quoc Nguyen, Mark Dras, and Mark Johnson. A novel neural network

model for joint pos tagging and graph-based dependency parsing. arXiv preprint

arXiv:1705.05952, 2017.

[40] Jan Niehues and Eunah Cho. Exploiting linguistic resources for neural machine trans-

lation using multi-task learning. arXiv preprint arXiv:1708.00993, 2017.

[41] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajič,

Christopher D Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Sil-

veira, et al. Universal dependencies v1: A multilingual treebank collection. In Tenth

International Conference on Language Resources and Evaluation (LREC 2016), 2016.

[42] Robert Östling and Jörg Tiedemann. Efficient word alignment with markov chain monte

carlo. The Prague Bulletin of Mathematical Linguistics, 106(1):125–146, 2016.

[43] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In NIPS-W, 2017.

[44] Hao Peng, Sam Thomson, and Noah A Smith. Deep multitask learning for semantic

dependency parsing. In Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), volume 1, pages 2037–2048, 2017.

58

[45] Matthew Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power. Semi-

supervised sequence tagging with bidirectional language models. In Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), volume 1, pages 1756–1765, 2017.

[46] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Proc.

of NAACL, 2018.

[47] Barbara Plank, Anders Søgaard, and Yoav Goldberg. Multilingual part-of-speech tag-

ging with bidirectional long short-term memory models and auxiliary loss. arXiv preprint

arXiv:1604.05529, 2016.

[48] Lev Ratinov and Dan Roth. Design challenges and misconceptions in named entity

recognition. In Proceedings of the thirteenth conference on computational natural lan-

guage learning, pages 147–155. Association for Computational Linguistics, 2009.

[49] Marek Rei. Semi-supervised multitask learning for sequence labeling. In Proceedings of

the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), volume 1, pages 2121–2130, 2017.

[50] Nils Reimers and Iryna Gurevych. Optimal hyperparameters for deep lstm-networks for

sequence labeling tasks. arXiv preprint arXiv:1707.06799, 2017.

[51] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.

[52] Cicero D Santos and Bianca Zadrozny. Learning character-level representations for

part-of-speech tagging. In Proceedings of the 31st International Conference on Machine

Learning (ICML-14), pages 1818–1826, 2014.

[53] Cicero Nogueira dos Santos and Victor Guimaraes. Boosting named entity recognition

with neural character embeddings. arXiv preprint arXiv:1505.05008, 2015.

[54] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11):2673–2681, 1997.

[55] Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov Kronrod, and Animashree

Anandkumar. Deep active learning for named entity recognition. arXiv preprint

arXiv:1707.05928, 2017.

59

[56] Anders Søgaard and Yoav Goldberg. Deep multi-task learning with low level tasks

supervised at lower layers. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), volume 2, pages 231–235,

2016.

[57] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[58] Emma Strubell, Patrick Verga, David Belanger, and Andrew McCallum. Fast

and accurate entity recognition with iterated dilated convolutions. arXiv preprint

arXiv:1702.02098, 2017.

[59] Jun Suzuki and Hideki Isozaki. Semi-supervised sequential labeling and segmentation

using giga-word scale unlabeled data. Proceedings of ACL-08: HLT, pages 665–673,

2008.

[60] Erik F Tjong Kim Sang and Sabine Buchholz. Introduction to the conll-2000 shared

task: Chunking. In Proceedings of the 2nd workshop on Learning language in logic

and the 4th conference on Computational natural language learning-Volume 7, pages

127–132. Association for Computational Linguistics, 2000.

[61] Erik F Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared

task: Language-independent named entity recognition. In Proceedings of the seventh

conference on Natural language learning at HLT-NAACL 2003-Volume 4, pages 142–

147. Association for Computational Linguistics, 2003.

[62] Jie Yang, Shuailong Liang, and Yue Zhang. Design challenges and misconceptions in

neural sequence labeling. arXiv preprint arXiv:1806.04470, 2018.

[63] Zhilin Yang, Ruslan Salakhutdinov, and William W Cohen. Transfer learning for se-

quence tagging with hierarchical recurrent networks. arXiv preprint arXiv:1703.06345,

2017.

[64] Michihiro Yasunaga, Jungo Kasai, and Dragomir Radev. Robust multilingual part-of-

speech tagging via adversarial training. arXiv preprint arXiv:1711.04903, 2017.

[65] Feifei Zhai, Saloni Potdar, Bing Xiang, and Bowen Zhou. Neural models for sequence

chunking. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

60

[66] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning requires rethinking generalization. arXiv preprint

arXiv:1611.03530, 2016.

[67] Yuan Zhang and David Weiss. Stack-propagation: Improved representation learning for

syntax. In Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), volume 1, pages 1557–1566, 2016.

[68] Yuan Zhang, Hongshen Chen, Yihong Zhao, Qun Liu, and Dawei Yin. Learning tag

dependencies for sequence tagging. In Proceedings of the Twenty-Seventh International

Joint Conference on Artificial Intelligence, IJCAI-18, pages 4581–4587. International

Joint Conferences on Artificial Intelligence Organization, 7 2018. doi: 10.24963/ijcai.

2018/637. URL https://doi.org/10.24963/ijcai.2018/637.

61

https://doi.org/10.24963/ijcai.2018/637

	Sommaire
	Summary
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgements
	INTRODUCTION
	Motivation
	Contribution
	Organization

	Chapter 1. BASICS
	1.1. Benchmark Tasks
	1.1.1. Named Entity Recognition (NER)
	1.1.2. Chunking
	1.1.3. Part-of-Speech tagging (POS)
	1.1.4. Evaluation Metrics

	1.2. Neural Network Basics
	1.2.1. Fully Connected Neural Networks
	1.2.2. Recurrent neural networks (RNNs)
	1.2.3. Convolutional Neural Networks (CNNs)
	1.2.4. Optimization for Training Neural Models
	1.2.5. Regularization for Training Neural Models

	1.3. Multi-Task Learning

	Chapter 2. MODELS
	2.1. Neural Tagger Systems
	2.1.1. Word-level Representations
	2.1.2. Character-level Representations
	2.1.3. Inference Layers

	2.2. Multi-task Learning for Sequence Labeling
	2.2.1. Two Shared-encoder Methods
	2.2.2. Shared Cell based LSTM (SC-LSTM)
	2.2.3. Training objective and procedure

	Chapter 3. EXPERIMENTS WITH SINGLE-TASK LEARNING
	3.1. Datasets
	3.2. Implementation details for twelve neural models
	3.3. Results on three tasks
	3.3.1. NER
	3.3.2. Chunking
	3.3.3. POS

	3.4. Comparisons of neural tagger models

	Chapter 4. EXPERIMENTS WITH MULTI-TASK LEARNING
	4.1. Implementation details
	4.2. LSTM-s, LSTM-d versus SC-LSTM
	4.3. SC-LSTM versus state-of-the-art
	4.4. Analysis of SC-LSTM
	4.4.1. Convergence Analysis
	4.4.2. Effect of Different Task Combinations

	Chapter 5. CONCLUSION
	Bibliography
	Page vierge
	Page vierge

