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Résumé
L’estimation du maximum de vraisemblance des modèles basés sur l’énergie est

un problème di�cile à résoudre en raison de l’insolubilité du gradient du logarith-
mique de la vraisemblance. Dans ce travail, nous proposons d’apprendre à la fois la
fonction d’énergie et un mécanisme d’échantillonnage approximatif amorti à l’aide
d’un réseau de générateurs neuronaux, qui fournit une approximation e�cace du
gradient de la log-vraisemblance. L’objectif qui en résulte exige la maximisation de
l’entropie des échantillons générés, que nous réalisons en utilisant des estimateurs
d’information mutuelle non paramétriques récemment proposés. Enfin, pour stabili-
ser le jeu antagoniste qui en résulte, nous utilisons une pénalité du gradient, centrée
en zéro, dérivée comme condition nécessaire issue de la littérature sur l’alignement
des scores. La technique proposée peut générer des images nettes avec des scores
d’Inception et de FID compétitifs par rapport aux techniques récentes de GAN, ne
sou↵rant pas d’e↵ondrement de mode, et compétitive par rapport aux techniques
de détection d’anomalies les plus récentes.

Le chapitre 1 introduit les concepts essentiels à la compréhension des travaux
présentés dans cette thèse, tels que les modèles graphiques fondés sur l’énergie, les
méthodes de Monte-Carlo par châınes de Markov, les réseaux antagonistes géné-
ratifs et l’estimation de l’information mutuelle. Le chapitre 2 contient un article
détaillant notre travail sur l’amélioration de l’entrâınement des fonctions d’éner-
gie. Enfin, le chapitre 3 présente quelques conclusions tirées de ce travail de thèse,
la portée des travaux futurs, ainsi que des questions ouvertes qui restent sans réponse.

môts-cles: apprentissage profond, apprentissage non supervisé, modèles généra-
tifs, modèles basés sur l’énergie
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Summary
Maximum likelihood estimation of energy-based models is a challenging problem

due to the intractability of the log-likelihood gradient. In this work, we propose lear-
ning both the energy function and an amortized approximate sampling mechanism
using a neural generator network, which provides an e�cient approximation of the
log-likelihood gradient. The resulting objective requires maximizing entropy of the
generated samples, which we perform using recently proposed nonparametric mutual
information estimators. Finally, to stabilize the resulting adversarial game, we use
a zero-centered gradient penalty derived as a necessary condition from the score
matching literature. The proposed technique can generate sharp images with Incep-
tion and FID scores competitive with recent GAN techniques, does not su↵er from
mode collapse, and is competitive with state-of-the-art anomaly detection techniques.

Chapter 1 introduces concepts that are crucial to understanding the work pre-
sented in the thesis, such as Energy-based graphical models, Markov Chain Monte
Carlo, Generative Adversarial Networks and Mutual Information Estimation. Chap-
ter 2 contains a detailed article about our work on improved training of energy
functions. Chapter 3 provides some conclusions drawn from this thesis work and
scope for future work and open questions that have been left unanswered.

Keywords: deep learning, unsupervised learning, generative models, energy-
based models
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1 Introduction

1.1 Overview

Machine learning is an important part of modern computer science with im-

portant applications across many industries including commerce, finance, logistics,

agriculture, and education. Many detailed references exist for deeply understanding

machine learning, such as [Bishop, 2006, Hastie et al., 2005, Murphy, 2012, Good-

fellow et al., 2016].

In this thesis, we present our work - Maximum Entropy Generators for

Energy-based Models (MEG), which focuses on advancing the state of art in

unsupervised learning and generative modeling. Unsupervised learning is regarded

as crucial for artificial intelligence because it promises to take advantage from

unlabelled data [Lake et al., 2017]. This work primarily focuses on improving a

particular class of algorithms to solve unsupervised learning called energy-based

modeling derived from the probabilistic graphical modeling literature. Our work uses

deep learning techniques with neural networks to perform function approximation.

This chapter strives to provide an overview of the pre-requisite concepts and

terminology required in order to understand the research work presented in this

thesis and its important contributions. We begin by first motivating the impor-

tance of advancing research in the topics of unsupervised learning and generative

modeling. Second, we provide a short introduction to the field of probabilistic gra-

phical modeling - which uses graphs to express conditional dependence structure

between random variables in a probabilistic model. Third, we discuss Markov Chain

Monte Carlo methods, which are a popular class of algorithms for sampling from

high-dimensional probability distributions. Next, we discuss a class of methods

for performing unsupervised learning called energy-based modeling, which is the
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core focus of this thesis. This section also provides a historical perspective on the

previous seminal works that serve as an inspiration for the research presented in

this thesis. Finally, we explain terminologies and short concepts from recent deep

learning literature, such as neural estimators of mutual information, generative

adversarial networks and evaluation metrics used for measuring quality of images.

1.2 Contributions

We propose a novel framework for training energy-based models called Maximum

Entropy Generators (MEG) to perform unsupervised learning. A key impediment

to train energy-based models has been the requirement to sample from the energy-

function during maximum likelihood estimation which requires running an expensive

Markov Chain Monte Carlo (MCMC) process in each step. In this work, we pro-

vide an alternate, fast and e�cient method for maximum likelihood training of

energy-based models using amortized neural generators and entropy maximization

techniques.

We show that the resulting energy function can be successfully used for anomaly

detection and strongly outperforms recently published results with energy-based

models. We show that MEG generates sharp images (with competitive scores in

quantitative evaluation metrics such as Inception and Fréchet Inception Distance)

and does not su↵er from the common mode-mixing issue of many maximum likeli-

hood generative models which results in blurry samples.

We also show that our model accurately captures more modes in the data

distribution than standard generative adversarial networks (GANs), thereby solving

the common mode collapse issue of state of the art GAN-based generative models.

We note that many terms in the above contributions may seem enigmatic to

an average reader. We hope that the following sections in the introduction help in

resolving the gap in knowledge that is required to understand the remainder of this

thesis.
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1.3 Unsupervised Learning

The focus of this research work broadly falls under the category of unsupervised

learning and generative modeling. This section provides a short introduction to

unsupervised learning, which is a sub-field of machine learning that is concerned

with learning without labeled data. Since our proposed model - MEG is also a type

of generative model, this section also explains the topic of generative modeling and

practical use-cases of generative models such as MEG.

Machine learning is typically divided into supervised and unsupervised lear-

ning. In predictive or supervised learning, the objective is typically to learn a

mapping from inputs x to labels y, given a labeled training datasetD = {(xi, yi)}Ni=1.

The input variables can be any complex structured object such as images, sentences,

audio, etc. The corresponding labels can be image categories, positive or negative

sentiment of text and speaker identity. If the output labels are categorical, the task

is known as classification. If the output labels are continuous, the task is known

as regression.

Unsupervised learning is interesting since it is closer to human and animal

learning. We are expected to deduce patterns from the sensory input we receive

from the physical world. It is also advantageous to not require human experts to

label the data. Unsupervised learning also has the potential learn more complex

models because there is more information in the input data than just a simple

mapping from the input to a single label.

In unsupervised learning, the objective is to discover interesting patterns in

the data using only the input dataset. A few common types of unsupervised learning

are:

1. Density estimation, in which the task is to recover the the data distribution

pdata. Having access to pdata is useful for a variety of purposes, such as

making predictions. Another popular application is anomaly detection. For

ex: a credit card company might suspect fraud if a purchase is very unlikely

given a model of a customer’s spending habits. Mixture of gaussians is a

popular example for density estimation model.
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2. Manifold learning, in which the learning algorithm tries to explain the data

as lying on a low-dimensional manifold embedded in the original space. A

few examples of such models are nonlinear principal components analysis

(PCA) and t-distributed stochastic neighbour embedding (t-SNE) [Maaten

and Hinton, 2008].

3. Clustering, in which the task is to discover a set of categories that the data

can be divided into neatly. For example: clustering speech data into groups

based on the number of speakers. Example of clustering algorithms include

k-means clustering and mean-shift clustering.

1.3.1 Generative Modeling

As defined in [Lake et al., 2017], generative modeling is concerned with learning

a model that specifies a probability distribution over the data. For instance, in a

classification task with examples X and class labels y, a generative model specifies

the distribution of data given labels P (X|y), as well as a prior on labels P (y), which

can be used for sampling new examples or for classification by using Bayes’ rule

to compute P (y|X). A discriminative model in contrast specifies P (y|X) directly,

possibly by using a neural network to predict the label for a given data point,

and cannot directly be used to sample new examples or to compute other queries

regarding the data.

The intuition is that, generative models try to capture how the data was genera-

ted in order to perform other downstream tasks such as classification, semi-supervised

learning, denoising, matrix completion, structured prediction etc. One important

advantage is that generative models do not require human annotated data and

labels. A good generative model captures the salient features and underlying factors

of variability from a large amount of unsupervised data. Additionally, a generative

model provides a mechanism for producing samples from the distribution learned

by the model. In contrast, discriminative models do not care about how the data

was generated and instead directly categorize the signal.

Some popular examples of generative models are gaussian mixtures models

[Titterington et al., 1985], hidden Markov models [Rabiner, 1989], variational auto-
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encoders [Kingma and Welling, 2013], generative adversarial networks [Goodfellow

et al., 2014a], etc. Popular examples of discriminative models are support vector

machines [Cortes and Vapnik, 1995], k-nearest neighbours [Altman, 1992], conditio-

nal random fields [La↵erty et al., 2001], etc.

Recently, generative models have been utilized for purposes such as representation

learning and semi-supervised learning [Radford et al., 2015, Odena et al., 2017,

Salimans et al., 2016], domain adaptation [Ganin et al., 2016, Tzeng et al., 2017],

text to image synthesis [Reed et al., 2016], speech recognition [Graves et al., 2013],

speech synthesis [Oord et al., 2016], image compression [Theis et al., 2017], super

resolution [Ledig et al., 2017], inpainting [Pathak et al., 2016, Yeh et al., 2017],

image enhancement [Zhang et al., 2019] , style transfer and texture synthesis [Gatys

et al., 2016, Johnson et al., 2016], image-to-image translation [Isola et al., 2017, Zhu

et al., 2017], and video generation and prediction [Vondrick et al., 2016].

1.4 Graphical Model

MEG is an energy-based model, which is a type of undirected graphical model,

derived from the probabilistic graphical modeling literature. In this section we pro-

vide a background on probabilistic modeling using graphs. Specifically, we motivate

the use of graphs to express conditional independence structure between random

variables, explain graph terminology and discuss two major types of graphical

models - directed and undirected. We also show a particular form of undirected

graphical models which serves as the foundation for energy-based models.

Probabilistic modeling attempts to answer the core questions of how to com-

pactly represent the joint distributions of multiple correlated random variables such

as words in a document, pixels in an image, genes in a micro-array, etc [Murphy,

2012]. Related set of questions that are relevant to probabilistic modeling are infer-

ring a set of variables given another and inferring the parameters of a distribution

given a reasonable amount of data.
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By the chain rule of probability, we can always represent a joint distribution

as follows, using any ordering of the variables:

p(x1:V ) = p(x1)p(x2|x1)p(x3|x2,x1)...p(xV |x1:V�1) (1.1)

They key to e�ciently represent large joint distributions is to make assumptions

about their conditional independences (CI), where two random variables X and

Y are conditionally independent given Z (denoted X ? Y |Z) if and only if (i↵)

p(X, Y |Z) = p(X|Z)p(Y |Z). A graphical model (GM) is a way to represent a

joint distribution by making CI assumptions. In particular, the nodes in the graph

represent random variables, and the (lack of) edges represent CI assumptions.

Terminology

A graph G = (V , E) consists of a set of nodes or vertices, V = 1, ..., V and a

set of edges, E = {(s, t) : s, t 2 V}. A graph can be represented by an adjacency

matrix where G(s, t) = 1 is used to denote that s! t is an edge in the graph. If

G(s, t) = 1 i↵ G(t, s) = 1, we say that the graph is undirected, otherwise it is

directed. It is also assumed that the graph has no self loops, i.e. G(s, s) = 0.

For a directed graph, the parents of a node is the set of all nodes that feed into

it: pa(s) , {t : G(t, s) = 1}. Correspondingly, the children of a node is the set of

all nodes that feed out of it: ch(s) , {s : G(t, s) = 1}.

1.4.1 Directed Graphical Models

In directed graphical models (DGMs), probability distributions over the random

variables are represented using a directed acyclic graph (DAG). The directed edges

are used to represent the conditional independences exhibited by the probability

distribution. The key property of DAGs is that the nodes can be ordered such

that parents come before children (topological ordering). Given such an order, the

ordered Markov property is defined to be the assumption that a node only

depends on its immediate parents, not on all predecessors in the ordering, i.e.,

xs ? xpred(s)\pa(s)|xpa(s) (1.2)

6



where pa(s) are the parents of the node s and pred(s) are the predecessors of the

node s in the ordering.

In general, the joint probability distribution represented by the graph can be

written as:

p(x1:V ) =
VY

t=1

p(xt|xpa(t)) (1.3)

where p(xt|xpa(t)) denotes a non-negative function of the variables normalized such

that
R
p(xt|xpa(t))dxt = 1.

In recent works, directed versions of graphical models have been used to synthesize

sensory data through a sampling process which often converts a simple distribution

over latent (or hidden) variables 1 that models causes in the sensory data, into

complex distributions over the data distribution. The hidden variables often represent

quantities of interest, such as the identity of the word that someone is currently

speaking. The observed variables are what we measure, such as an acoustic waveform.

These models can also be used to analyze sensory data by computing the posterior

distribution over latent variables given data. An early instantiation of this idea was

the Helmholtz machine [Dayan et al., 1995], in which the analysis was performed

by a recognition model and the synthesis was performed by a separate generative

model, and the two were trained together to maximize the marginal probability

of the data. Popular example of directed graphical modeling include the hidden

Markov models (HMMs) [Rabiner, 1989] and the more recent work on variational

auto-encoders (VAE) [Kingma and Welling, 2013, Rezende et al., 2014].

1.4.2 Undirected Graphical Models

In undirected graphical models (UGMs), also called Markov random fields,

the probability distribution over the random variables is represented using an undi-

rected graph, which is more natural for certain problems such as image analysis and

spatial statistics. From Murphy [2012], UGMs define CI relationships via simple

graph separation as follows: for sets of nodes A, B, and C, we say xA ?G xB | xC

i↵ C separates A from B in the graph G. This means that, when we remove all

1. In statistics, latent variables (as opposed to observable variables), are variables that are not

directly observed but are rather inferred (through a mathematical model) from other variables

that are observed (directly measured)[Wikipedia, 2019a].
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the nodes in C, if there are no paths connecting any node in A to any node in B,

then the CI property holds. This is called the global Markov property for UGMs.

The set of nodes that renders a node t conditionally independent of all the other

nodes in the graph is called t’s Markov blanket ; denote by mb(t). Formally, the

Markov blanket satisfies the following property:

t ? V \ cl(t)|mb(t) (1.4)

where cl(t) , mb(t) [ {t} is the closure of node t. In a UGM, a node’s Markov

blanket is its set of immediate neighbours. This is called the undirected local

Markov property. From the local Markov property, we can also easily see that

two nodes are conditionally independent given the rest if there is no direct edge

between them. This is called the pairwise Markov property.

Unlike DGMs which associate a conditional probability distribution (CPD)

with each node in the graph (of the form p(xs|xpa(s)), UGMs associate potential

functions or factors with each maximal clique in the graph. The potential function

for clique c is given by  c(xc|✓c) where ✓c denotes the parameters of the potential

function for clique c. The potential function can be any non-negative function of its

arguments. The joint distribution is then defined to be proportional to the product

of clique potentials:

p(x|✓) = 1

Z(✓)

Y

c2C

 c(xc|✓c) (1.5)

where C is the set of all maximal cliques in the graph G and Z(✓) is the partition

function given by:

Z(✓) ,
X

x

Y

c2C

 c(xc|✓c) (1.6)

Note that the partition function ensures that the overall distributions sums to 1.

Hence it is also called the normalization constant.

Drawing inspiration from the Gibbs distribution in statistical physics, the
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potential function or clique potential can also be represented as an energy function

E(xc) > 0 which denotes the energy associated with the variables in clique c:

 c(xc|✓c) = exp(�E(xc|✓c)) (1.7)

It can be seen that high probability states correspond to low energy configurations

and low probability states correspond to high energy configurations. Models of this

form are known as energy based models.

In recent work, these methods model the data as the stationary distribution of

a stochastic process (e.g. various Boltzmann machines ; Salakhutdinov and Hinton

[2009]). Sampling under this method corresponds to a potentially powerful iterative

process of repeatedly applying a fixed stochastic operator that can gradually turn

simple initial distributions over data into complex stationary distributions over

data. However a key impediment to this approach is the mixing time problem: if

the stationary distribution has multiple modes, the sampling process can take a

long time to mix, or reach the stationary distribution, due to the excessive time

sampling methods can take to jump between modes.

1.5 Markov Chain Monte Carlo Inference

In this section, we explain the topic of Monte Carlo approximations and also

inference using Markov Chain Monte Carlo (MCMC). Monte Carlo approximations

are omnipresent in deep learning literature since the optimization of neural networks

is typically performed using mini-batch stochastic gradient descent (which uses

a stochastic (Monte Carlo) estimate of the true batch gradient across the entire

dataset). Additionally, energy-based models such as MEG also use Monte Carlo

approximations of the log-likelihood gradient (explained in detail in the energy-based

models section).

MCMC is the most popular method for sampling from high-dimensional distri-

butions and was placed in the top 10 most important algorithms of the 20th century.
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MCMC methods are relevant in the context of energy-based modeling since it is re-

quired to sample from the energy-function during the maximum likelihood training of

EBMs (explained in detail in the following section). Specifically in our work on MEG,

we use a popular MCMC method called Metropolis-adjusted Langevin algorithm

(MALA) [Wikipedia, 2019b] to generate high quality samples from our energy-model.

In general, Monte Carlo approximations use the principle that computing

the distribution of a function f of a random variable X can be expensive to

compute using the change of variables formula. Instead, we can approximate the

distribution of f(X) using the empirical distribution of the samples {f(xs)}S
s=1,

where x1
, ...,xS ⇠ p(X). Thus, we can use Monte Carlo to approximate the expected

value of any function of a random variable as follows:

E[f(X)] ⇡ 1

S

SX

s=1

f(xs) (1.8)

However, drawing samples x1
, ...,xS ⇠ p(X) might be non-trivial in practical use-

cases when p(X) is a very high-dimensional probability distribution. This motivates

the necessity for algorithms that can draw samples from high-dimensional probabi-

lity distributions. Markov Chain Monte Carlo is a popular class of algorithms that

attempt to solve this problem.

From Murphy [2012], the basic idea behind Markov Chain Monte Carlo is

to construct a Markov chain on the state space X whose stationary distribution is

the target density p
⇤(x) of interest (this may be a prior or a posterior). That is, we

perform a random walk on the state space, in such a way that the fraction of time

we spend in each state x is proportional to p
⇤(x). By drawing (correlated !) samples

x0
,x1

,x2
, ... , from the chain, we can perform Monte Carlo integration wrt p⇤.

1.5.1 Gibbs Sampling

Gibbs sampling is one of the most popular MCMC algorithms and is also the

most widely used algorithm for sampling from energy-based models.

The basic idea of Gibbs sampling is that each variable is sampled in turn,
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conditioned on the values of all the other variables in the distribution. That is, given

a joint sample xs of all the variables, we generate a new sample xs+1 by sampling

each component in turn, based on the most recent values of the other variables. An

example of a Gibbs sampling step with 3 variables:

xs+1
1 ⇠ p(x1|xs

2,x
s

3)

xs+1
2 ⇠ p(x2|xs+1

1 ,xs

3)

xs+1
3 ⇠ p(x3|xs+1

1 ,xs+1
2 )

The expression p(xi|x�i) is called the full conditional of the variable i. If p(x) is

represented as a graphical model, the full conditional for variable i will reduce to

the Markov blanket of i, which are its neighbours in the graph.

The shortcoming of Gibbs sampling is that it is typically slow and sequential

since each Gibbs step requires D steps where D is the number of variables in the

graph.

1.5.2 Metropolis Hastings algorithm

Although Gibbs sampling is simple, it is restrictive in terms of the class of

models to which it can be applied, such as when the corresponding graphical model

has no useful Markov structure. In addition, Gibbs sampling can be slow as men-

tioned above. Metropolis Hastings (MH) algorithm is a more general algorithm

that can alternatively be used to sample from high-dimensional probability distri-

butions. This topic is specifically relevant in context to our work, since we use a

variant of the Metropolis Hastings algorithm to draw samples from our energy model.

The basic idea of MH algorithm as defined in Murphy [2012] is, in each step,

first a proposal is made to move to a new state x0 from state x with probability

q(x0|x), where q is known as the proposal distribution. Next, the proposal to move

to state x0 is accepted or rejected depending on a formula that ensures that the

fraction of time spent on each state x is proportional to p
⇤(x) (necessary since we

want the stationary distribution of the Markov chain to be p
⇤(x)). If the proposal

is accepted, the new state is x0, else the new state is the same as the current state
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x. If the proposal distribution is symmetric, so q(x0|x) = q(x|x0), the acceptance

probability of MH is given by:

r = min
�
1,

p
⇤(x0)

p⇤(x)

�
(1.9)

It can be seen that if x0 is more probable than x, we definitely move there (since
p
⇤(x0)
p⇤(x) > 1), but if x0 is less probable, we may still move there anyway, depending

on the relative probabilities. So instead of greedily moving to only more probable

states, we occasionally allow ”downhill” moves to less probable states. We direct the

reader to [Murphy, 2012] for proof that this procedure ensures that the fraction of

time we spend in each state x is proportional to p
⇤(x).

If the proposal distribution is asymmetric, i.e q(x0|x) 6= q(x|x0), the Hastings

correction is used to compute the acceptance probability:

r = min(1,↵) (1.10)

↵ =
p
⇤(x0)q(x|x0)

p⇤(x)q(x0|x) (1.11)

Intuitively, it can be seen that this correction is required to fix the bias introduced

by the proposal distribution that might itself favor certain states.

The most important reason why MH is a useful algorithm is that, the calculation

of the acceptance probability ↵ only requires to know the target density p
⇤(x) up

to a normalization constant. For example, supposed p
⇤(x) = 1

Z
p̃(x) where Z is the

normalization constant, then:

↵ =
(p̃(x0)/Z)q(x|x0)

(p̃(x)/Z)q(x0|x) (1.12)

It can be seen that the Z’s cancel. Therefore we can sample from the target

distribution p
⇤ even if Z is unknown. This will be especially important to sample

from unnormalized graphical models such as energy-based models.
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1.6 Energy Based Models

Our work on MEG is primarily an energy-based model. This section provides

a background into energy-based modeling. Having provided a short introduction to

energy-based models in the previous section on undirected graphical models, we

further elucidate the topic in this section followed by a short description of seminal

works such as Boltzmann machines and restricted Boltzmann machines (RBMs). We

also discuss important impediments in this class of methods to motivate research

in this direction and also explain prior attempts at alleviating these shortcomings

such as contrastive divergence. We also shortly describe promising alternatives to

contrastive divergence such as persistent MCMC and score matching. MEG uses a

variant of score matching as one of the objectives to train the energy-function.

Additionally, we revisit the topic of Markov Chain Monte Carlo (MCMC)

methods for sampling from EBMs. MCMC sampling is crucial for energy-based

modeling since it is required in the training process and also useful for visualizing

what the model has learned. Obtaining good samples can be a task of its own as

well, for example - the task of unconditional generative modeling of music, speech or

images. In this task, the objective is to synthesize new images after learning a model

on a dataset of images. Much like standard EBMs, MEG uses MCMC algorithms

(specifically, the MALA algorithm) to visualize samples from the energy-function

Energy-based models (EBMs) capture dependencies by associating a scalar

value (called energy) to each configuration of the variables of interest [LeCun

et al., 2006, LeCun and Huang, 2005, Boureau et al., 2007]. Learning corresponds to

carving the energy function so that its shape has desirable properties. For example:

we would like plausible (observed) configurations to have low energy and unobserved

configurations to have high energy. Inference corresponds to clamping the value

of the observed variable and finding configurations of the remaining variables that

minimize the energy. Loss functional - minimized during learning, is used to measure

the quality of the available energy functions.

Probabilistic models must be properly normalized, which may require evaluating

intractable integrals over the space of all possible variable configurations. Since
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EBMs have no requirement for proper normalization, this problem is naturally

circumvented. EBMs therefore provide considerably more flexibility in the design of

architectures and training criteria than approaches requiring explicit probability

computations.

Energy-based probabilistic models define a probability distribution through an

energy function E(x), as follows:

P (x) =
e
�E(x)

Z
, (1.13)

ie., energies operate in the log-probability domain.

The normalization factor Z is called the partition function by analogy with

physical systems,

Z =
X

x

e
�E(x) (1.14)

An energy-based model can be learnt by performing (stochastic) gradient descent

on the empirical negative log-likelihood of the training data

L(✓,D) = � 1

N

X

x(i)2D

log p(x(i)) (1.15)

where �@ log p(x(i))
@✓

is the stochastic gradient and ✓ represents the parameters of the

energy function.

1.6.1 EBMs with Hidden Units

Usually, we want to introduce some non-observed (latent) variables to increase

the expressive power of the model. So we consider an observed part x and a hidden

part h:

P (x,h) =
e
�E(x,h)

Z
and P (x) =

X

h

e
�E(x,h)

Z
(1.16)
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To map to a formulation similar to (1.13), the notation of free energy F(x) is

introduced and defined as follows:

P (x) =
e
�F (x)

Z
where Z =

X

x

e
�F(x) (1.17)

F(x) = � log
X

h

e
�E(x,h) (1.18)

The free energy is just a marginalization of energies in the log-domain. The data

log-likelihood gradient then has a particularly interesting form. Starting from (1.17),

we obtain:

�@ logP (x)

@✓
=
@F (x)

@✓
+

1

Z

@Z

@✓
(1.19)

=
@F (x)

@✓
+

1P
x̃ e

�F(x̃)

X

x̃

@e
�F(x̃)

@✓
(1.20)

=
@F (x)

@✓
� 1

Z

X

x̃

e
�F(x̃)@F(x̃)

@✓
(1.21)

=
@F (x)

@✓
�
X

x̃

P (x̃)
@F(x̃)

@✓
(1.22)

The average log-likelihood gradient over the training set D is:

Ex⇠D


� @ logP (x)

@✓

�
= Ex⇠D


@F(x)

@✓

�

| {z }
positive phase

�Ex⇠P


@F(x)

@✓

�

| {z }
negative phase

(1.23)

The terms positive and negative do not refer to the sign of each term in the

equation, but rather reflect their e↵ect on the probability density defined by the

model. The first term increases the probability of training data (by reducing the

corresponding free energy), while the second term decreases the probability of

samples generated by the model.

Therefore, if we could sample from P and compute the free energy tractably,

we would have a Monte Carlo method to obtain a stochastic estimator of the

log-likelihood gradient. Thus, Markov Chain Monte Carlo (MCMC) methods

are very important for energy-based models since the log-likelihood gradient requires
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sampling from P.

1.6.2 Boltzmann Machines

The Boltzmann machine is a particular type of energy-based model with hidden

variables. The energy function is a general second-order polynomial:

Energy(x,h) = �b0x� c0h� h0
Wx� x0

Ux� h0
V h. (1.24)

The parameters bi and ci are o↵sets, and Wij , Uij and Vij are weight matrices. The

parameters are collectively denoted ✓.

The gradient of the log-likelihood can be written as:

@ logP (x)

@✓
= �

X

h

P (h|x)@E(x,h)

@✓
+
X

x̃,h

P (x̃,h)
@E(x̃,h)

@✓
(1.25)

Similar to (1.23), in the positive phase x is clamped to the observed input vector

and we sample h given x ; and in the negative phase both x and h are sampled from

the model itself. In general, only approximate sampling can be achieved tractably,

by using an iterative procedure that constructs an MCMC. Gibbs sampling, as

explained in the previous sections, is a popular MCMC procedure used with RBMs

[Hinton et al., 1986, Ackley et al., 1985].

Drawback of general Boltzmann Machines: Since an MCMC chain is

required both for the positive phase and the negative phase for each example x, the

computation of the gradient can be very expensive, and training time very long.

1.6.3 Restricted Boltzmann Machines

RBMs are undirected probabilistic graphical models containing a layer of obser-

vable variables and a single layer of latent variables. RBMs may be stacked (one on

top of the other) to form deeper models.

16



Figure 1.1 – Undirected graphical model of a Restricted Boltzmann Machine (RBM). There are

no links between units of the same layer, only between input (or visible) units xj and hidden units

hi, making the conditionals P (h|x) and P (x|h) factorize conveniently.

From Figure 1.1 it can be seen that hi are independent of each other when

conditioning on x and the xj are independent of each other when conditioning on

h (It is a bipartite graph, with no connections permitted between any variables

in the observed layer or between any units in the latent layer). Since the graph is

bipartite in an RBM, U = 0 and V = 0 from (1.24). i.e., the only interaction terms

are between a hidden unit and a visible unit, but not between units of the same

layer. As a consequence, the energy function is bilinear:

E(x,h) = �b0x� c0h� h0
Wx. (1.26)

In RBMs, factorization can be utilized to tractably compute the Free Energy and the

conditional probabilities P (h|x) and P (x|h) required in the log-likelihood gradient

(1.23). Thus:

F (x) = �b0x�
X

i

log
X

hi

e
hi(ci+Wix) (1.27)

P (h|x) =
Y

i

P (hi|x) (1.28)

P (x|h) =
Y

i

P (xi|h) (1.29)

The visible units x and hidden units h are typically modeled as bernoulli or gaussian

units. For detailed derivation of the above equations, refer [Bengio, 2009].
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1.6.4 Sampling in RBMs

Sampling from RBMs is useful for several reasons. First, it is useful in learning

algorithms to get a stochastic estimator of the log-likelihood gradient. Second, it is

also useful in sampling from the RBMs used as a generative model, or for visual

inspection and to get an idea of what the model has captured about the data

distribution.

Since RBMs enjoy the factorization introduced by the conditional independence

structure, it brings two major benefits: First, we do not have to sample in the

positive phase since free energy can be computed in closed form. Second, the set of

variables in (x,h) can be sampled in only two sub-steps in each step of the Gibbs

chain (as opposed to N sub-steps in Boltzmann machines). First we sample all the

hi given x in parallel, and then all the new xj in parallel given h. This type of

Gibbs sampling in general is called Blocked Gibbs Sampling.

Figure 1.2 – Illustration of Blocked Gibbs Sampling in RBMs. As t!1, sample (x(t), h(t)
) are

guaranteed to be samples of P (x,h)

Figure 1.2 shows an illustration of t steps of the blocked Gibbs chain for sampling

from RBMs. Typically, the chain is seeded using an example from the training

set. This makes sense because, as the model captures the training data better,

the model distribution and training distribution become more similar. In theory,

each parameter update in the learning process would require running one such

chain to convergence. This would be computationally expensive. Several algorithms

have been devised for RBMs in order to e�ciently sample from P (x,h) during the

training process.
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1.6.5 Contrastive Divergence

Contrastive Divergence is an approximation of the log-likelihood gradient that

has been found to be a successful update rule for training RBMs.

The first approximation replaces the average over all possible inputs (second

term in (1.23)) by a single example. This is justified since we typically update

parameters using stochastic or mini-batch gradient updates. The extra variance

introduced from one or few MCMC samples instead of the complete summation

might be partially cancelled during the online gradient updates, over consecutive

parameter updates. The additional variance introduced by this approximation might

not hurt much if it is comparable or smaller than the variance due to online gradient

descent.

The second approximation combats the issue of running a long MCMC chain

which is expensive. The idea of k-step Contrastive Divergence (CD-k) [Hinton, 1999,

2002] is to run the MCMC chain for only k steps (x1
,x2

, ...,xk+1) starting from the

training example x1 = x. The bias introduced by this approximation vanishes when

k !1. However a surprising empirical result was that k = 1 (CD-1) works well

[Carreira-Perpinan and Hinton, 2005].

An intuitive interpretation of the Contrastive Divergence algorithm is that it

approximates the log-likelihood gradient locally around the training example x1.

The stochastic reconstruction x̃ = xk+1 (for CD-k) has a distribution centred around

the training point x1 and spreads around as k increases. The CD-k update decreases

the free energy of the training point x1 and increases the free energy of x̃ in the

neighbourhood of x1, thus ”shoveling” energy elsewhere. Thus, the Contrastive

Divergence algorithm is fueled by the contrast between the statistics collected when

the input is a real training example and when the input is a chain sample since what

is required by a training algorithm for an energy-based model is that it makes the

energy of observed inputs smaller, shoveling energy elsewhere, and most importantly

in areas of low energy (locally around the training example, here).
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1.6.6 Alternative to Contrastive Divergence

Persistent MCMC [Salakhutdinov and Hinton, 2009, Tieleman, 2008b] This

idea is to use a background (persistent) MCMC chain to obtain the negative phase

samples, instead of running a new short chain as in CD-k. The approximation

made is that we ignore the fact that parameters are changing as we move along the

chain. However this approximation works very well in practice usually giving rise

to better log-likelihood than CD-k probably because the parameters vary slowly

during training.

Score Matching [Hyvärinen, 2005, Vincent, 2011] This is a general approach to

energy-based model training in which energy can be computed tractably but not

the normalization constant Z. The score function of a density P (x) is  = @ logP (x)
@x .

The basic idea is to match the score function of the model with the score function

of the empirical density. This idea exploits the fact that the score function does not

depend on the normalization constant.

1.7 Recent Deep Learning Methods

The research work presented in this thesis lies at the intersection of deep learning

and energy-based graphical modeling. MEG is an energy-based model that uses deep

neural network based function approximators to model the energy-function. Having

given a background on graphical models in the previous sections, this section strives

to inform the reader about the various concepts popular in the recent deep learning

literature. Specifically, we explain the recent methods to estimate mutual informa-

tion using neural networks. This concept was instrumental in performing entropy

maximization of the energy-function, that arises from the theoretical framework

provided by MEG. We also provide a concise description of generative adversarial

networks (GANs) [Goodfellow et al., 2014a] since the training of the energy-function

in our method draws parallels with the adversarial training of GANs. Further,

we also explain some of the evaluation metrics used in our paper for measuring

the quality of generated image samples, such as Inception Score (IS) and Fréchet
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Inception Distance (FID).

1.7.1 Neural Estimators of Mutual Information

Definitions

Entropy is a quantity that measures the unpredictability of a random variable.

Entropy of a discrete random variable X with probability mass function (PMF)

p(x) is:

H(X) = �
X

x

p(x) log p(x) = �E[log p(x)] (1.30)

The entropy measures the expected uncertainty in X.

The di↵erential entropy of a continuous random variable X with support X
and probability density function (PDF) f(x) is:

h(X) = �
Z

f(x) log f(x)dx = �E[log(f(x))] (1.31)

Mutual information (MI) is a quantity that measures a relationship between

two random variables. In particular, it quantifies the ”amount of information” (in

units such as Shannons, commonly called bits) obtained about one random variable

through observing the other random variable. Mutual information captures non-

linear statistical dependencies between variables, and thus can act as a measure

of true dependence [Kinney and Atwal, 2014]. Mutual Information quantifies the

dependence between random variables X and Z as :

I(X;Z) =

Z

X⇥Z

log
dPXZ

dPX ⌦ dPZ

dPXZ . (1.32)

where PXZ is the joint probability distribution, and PX =
R
Z
dPXZ and PZ =

R
X
dPXZ are the marginal distributions and ⌦ denotes the Cartesian product.

Mutual information can be equivalently expressed as the Kullback-Leibler diver-

gence (KL divergence) between the joint and the product of the marginal probability
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distributions:

I(X;Z) = DKL(PXZ || PX ⌦ PZ) (1.33)

KL Divergence (KLD) between two discrete probability distributions P and

Q defined on the same probability space can be defined as:

DKL(P ||Q) = �
X

x2X

P (x) log

✓
Q(x)

P (x)

◆
(1.34)

Jensen-Shannon Divergence (JSD) is a smoothed and symmetrized version

of the KL divergence DKL(P ||Q) defined as:

JSD(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M),where M =

1

2
(P +Q) (1.35)

Methods

Mutual Information Neural Estimator (MINE) [Belghazi et al., 2018] uses

the the Donsker-Varadhan dual representation of the KL-divergence [Donsker and

Varadhan, 1975] to exploit the bound:

I(X;Z) � sup
✓2⇥

EPXZ [T✓]� log(EPX⌦PZ [e
T✓ ]). (1.36)

where T✓ : X ⇥ Z ! R is the family of functions parametrized by a neural network

with parameters ✓ 2 ⇥.

DeepInfoMax (DIM) [Hjelm et al., 2018] uses the Jensen-Shannon MI estimator

following the recent formulation of f-divergences by [Nowozin et al., 2016]. DIM

showed more stable results for MI maximization using the Jensen-Shannon MI

estimator, due to its bounded nature. MINE on the other hand leads to an unbounded

estimate, rendering it unsuitable for MI maximization without tricks to adaptively

clip the gradients during training.
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1.7.2 Generative Adversarial Network

Generative Adversarial Network (GAN) [Goodfellow et al., 2014a] is a framework

in which two networks - Discriminator (D) and Generator (G) are pitted against

each other. The Discriminator attempts to determine whether a sample is from

the model distribution or the data distribution. The Generator attempts to ge-

nerate samples that are indistinguishable from the original data by the Discriminator.

Formally, let pdata(x) denote the data distribution, pz(z) denote the prior dis-

tribution on the noise variables z and pg denote the Generator’s distribution. The

Discriminator and Generator networks in GANs are trained to optimize the following

objective function:

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1.37)

It has been shown in Goodfellow et al. [2014a] that GANs optimize the Jensen-

Shannon divergence (JSD) between the distributions pdata(x) and pg.

Wasserstein GAN

A serious problem with GAN training as noted by [Arjovsky et al., 2017a] and

in the original formula [Goodfellow et al., 2014a] is that on complex problems, it is

di�cult to select a generator that has overlapping support with the data distribution

without adding noise. When the generator and the data distribution do not have

overlapping support, KL divergence is undefined and the Jensen-Shannon divergence

is discontinuous at these points. Wasserstein GAN (WGAN) solves this problem

by providing a statistical divergence that is continuous and di↵erentiable even when

the supports do not overlap.

[Arjovsky et al., 2017a] thus provides a formulation of the GAN objective which

corresponds to optimizing the Earth Mover’s distance or the Wasserstein metric.

The Wasserstein distance (or EM distance) can be intuitively thought of as the

minimum amount of e↵ort required to move mass distributed according to one

distribution to match another distribution. WGAN uses the Kantorovich-Rubinstein
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dual formulation for the EM distance:

W (Pr,Pg) = sup
||f ||L1

✓
Ex⇠Pr [f(x)]� Ex⇠Pg [f(x)]

◆
, (1.38)

where the condition under the supremum indicates that it is over all 1-Lipschitz

functions D : X ! R. In practice, the Lipschitz constraint was maintained by

clipping the weights within a specific range after each update. [Gulrajani et al., 2017]

instead proposed to use a penalty on the norm of the gradient of the discriminator’s

output with respect to its inputs. This achieved significantly better results in terms

of the quality of samples and training stability over the weight clipping approach.

1.7.3 Evaluation Metrics

In our work, sample quality of generated images is a useful metric to evaluate

the generative model. If the model has successfully modeled the data distribution (of

images) really well, it should be possible to sample new images that are perceptually

consistent and of high quality. Although we can qualitatively evaluate it by visual

examination, quantitative metrics are useful to objectively compare competing

models. We use two popular methods for this purpose, Inception Score [Salimans

et al., 2016] and Fréchet Inception Distance [Heusel et al., 2017].

Inception Score

From Xu et al. [2018], Inception Score proposed by [Salimans et al., 2016] uses

an image classification model M, the Google Inception network [Szegedy et al.,

2016], pre-trained on the ImageNet [Deng et al., 2009] dataset, to compute:

IS(Pg) = exp(Ex⇠Pg [KL(pM(y|x) || pM(y)]) (1.39)

where Pg denotes the generator network’s distribution, pM(y|x) denotes the

label distribution of x as prediction by M and pM(y) =
R
x pM(y|x)dPg, i.e. the

marginal of pM(y|x) under the probability measure Pg. The expectation and the

integral in pM(y|x) can be approximated with i.i.d samples from Pg.

It can be seen that IS is high when pM(y|x) is close to a point mass, which

happens when the Inception network is very confident that the image belongs to a
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particular ImageNet category, and pM(y) is close to uniform, i.e. all categories are

equally represented. This suggests that the generative model has both high quality

and diversity. [Salimans et al., 2016] show that the Inception Score has a reasonable

correlation with human judgment of image quality.

Fréchet Inception Distance

From Borji [2019], FID embeds a set of generated samples into a feature space

given by a specific layer of Inception Net (or any CNN). Viewing the embedding

layer as a continuous multivariate Gaussian, the mean and covariance are estimated

for both the generated data and the real data. The Fréchet distance between these

two Gaussians (a.k.a Wasserstein-2 distance) is then used to quantify the quality of

generated samples, i.e

FID(Pr, Pg) = ||µr � µg||22 + Tr(⌃r + ⌃g � 2(⌃r⌃g)
1
2 ) (1.40)

where µr, µg and ⌃r,⌃g represent the mean and covariances of the real and generated

distributions respectively.
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2.1 Introduction

Unsupervised learning promises to take advantage of unlabelled data, and is

regarded as crucial for artificial intelligence [Lake et al., 2017]. Energy-based mo-

deling (EBMs, LeCun et al. [2006]) is a family of unsupervised learning methods

focused on learning an energy function, i.e., an unnormalized log density of the

data. This removes the need to make parametric assumptions about the data distri-

bution to make the normalizing constant (Z) tractable. However, in practice, due

to the very same lack of restrictions, learning high-quality energy-based models is

fraught with challenges. To avoid explicitly computing Z or its gradient, Contras-

tive Divergence [Hinton, 2000] and Stochastic Maximum Likelihood [Younes, 1998,

Tieleman, 2008a] rely on Markov Chain Monte Carlo (MCMC) to approximately

sample from the energy-based model. However, MCMC-based sampling approaches

frequently su↵er from long mixing times for high-dimensional data. Thus, training

of energy-based models has not remained competitive with other unsupervised

learning techniques such as variational auto-encoders [Kingma and Welling, 2014]

and generative adversarial networks or GANs [Goodfellow et al., 2014b].

In this work, we propose Maximum Entropy Generators (MEG), a framework in

which we train both an energy function and an approximate sampler, which can

either be fast (using a generator network G) or uses G to initialize a Markov chain

in the latent space of the generator. Training such a generator properly requires

entropy maximization of the generator’s output distribution, for which we take

advantage of recent advances in nonparametric mutual information maximization

[Belghazi et al., 2018, Hjelm et al., 2018, Oord et al., 2018, Poole et al., 2018].

To evaluate the e�cacy of the proposed technique, we compare against other

state-of-the-art techniques on image generation, accurate mode representation, and

anomaly detection. We demonstrate that the proposed technique is able to generate

CIFAR-10 samples which are competitive with WGAN-GP [Gulrajani et al., 2017]

according to the Fréchet Inception Distance [Heusel et al., 2017] and Inception

Score [Salimans et al., 2016], and is able to generate samples of all the 104 modes of

4-StackedMNIST at the correct data frequencies.
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Figure 2.1 – Left: Traditional maximum likelihood training of energy-based models. Right:
Training of maximum entropy generators for energy-based models

We demonstrate that our technique trains energy functions useful for anomaly

detection on the KDD99 dataset [Lichman et al., 2013], and that it performs as well

as state-of-the-art anomaly detection techniques which were specially designed for

the task. Further it vastly outperforms other energy-based and generative models

for anomaly detection.

To summarize our contributions, we propose maximum entropy generators

(MEG), a novel framework for training energy-based models using amortized neural

generators and mutual information maximization. We show that the resulting energy

function can be successfully used for anomaly detection, and outperforms recently

published results with energy-based models. We show that MEG generates sharp

images – with competitive Inception and FID scores – and accurately captures more

modes than standard GANs, while not su↵ering from the common mode-mixing issue

of many maximum likelihood generative models which results in blurry samples.

2.2 Background

Let x denote a sample in the data space X and E✓ : X ! R an energy function

corresponding to the negative logarithm of an unnormalized estimated density

density function

p✓(x) =
e
�E✓(x)

Z✓

/ e
�E✓(x) (2.1)
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where Z✓ :=
R
e
�E✓(x)dx is the normalizing constant or partition function. Let pD be

the training distribution, from which the training set is drawn. Towards optimizing

the parameters ✓ of the energy function, the maximum likelihood parameter gradient

is

@Ex⇠pD [� log p✓(x)]

@✓
= Ex⇠pD


@E✓(x)

@✓

�
� Ex⇠p✓(x)


@E✓(x)

@✓

�
(2.2)

where the second term is the gradient of logZ✓, and the sum of the two expectations

is zero when training has converged, with expected energy gradients in the positive

phase (under the data pD) matching those under the negative phase (under p✓(x)).

Training thus consists in trying to separate two distributions: the positive phase

distribution (associated with the data) and the negative phase distribution (where

the model is free-running and generating configurations by itself). This observation

has motivated the pre-GAN idea presented by Bengio [2009] that “model samples

are negative examples” and a classifier could be used to learn an energy function

if it separated the data distribution from the model’s own samples. Shortly after

introducing GANs, Goodfellow [2014] also made a similar connection, related to

noise-contrastive estimation [Gutmann and Hyvarinen, 2010]. One should also re-

cognize the similarity between Eq. 2.2 and the objective function for Wasserstein

GANs or WGAN [Arjovsky et al., 2017b].

The main challenge in Eq. 2.2 is to obtain samples from the distribution p✓

associated with the energy function E✓. Although having an energy function is

convenient to obtain a score allowing comparison of the relative probability for

di↵erent x’s, it is di�cult to convert an energy function into a generative process.

The commonly studied approaches for this are based on Markov Chain Monte Carlo,

in which one iteratively updates a candidate configuration, until these configura-

tions converge in distribution to the desired distribution p✓. For the RBM, the most

commonly used algorithms have been Contrastive Divergence [Hinton, 2000] and

Stochastic Maximum Likelihood [Younes, 1998, Tieleman, 2008a], relying on the

particular structure of the RBM to perform Gibbs sampling. Although these MCMC-

based methods are appealing, RBMs (and their deeper form, the deep Boltzmann

machine) have not been competitive in recent years compared to autoregressive

models [van den Oord et al., 2016], variational auto-encoders [Kingma and Welling,
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2014] and generative adversarial networks or GANs [Goodfellow et al., 2014b].

What has been hypothesized as a reason for poorer results obtained with energy-

based models trained with an MCMC estimator for the negative phase gradient

is that running a Markov chain in data space is fundamentally di�cult when the

distribution is concentrated (e.g, near manifolds) and has many modes separated

by vast areas of low probability. This mixing challenge is discussed by Bengio et al.

[2013] who argue that a Markov chain is very likely to produce only sequences of

highly probable configurations: if two modes are far from each other and only local

moves are possible (which is typically the case when performing MCMC), it becomes

exponentially unlikely to traverse the “desert” of low probability that can separate

two modes. This makes mixing between modes di�cult in high-dimensional spaces

with strong concentration of probability mass in some regions (e.g. corresponding

to di↵erent categories) and very low probability elsewhere.

2.3 Maximum Entropy Generators for

Energy-Based Models

We thus propose using an amortized neural sampler to perform fast approximate

sampling to train the energy model. We begin by replacing the model distribution

p✓ in in Eq. 2.2 by a neural generator G parametrized by w. We define PG as the

distribution of the outputs G(z) for z ⇠ pz where pz is a simple prior distribution

such as a standard Normal distribution.

@LE

@✓
= Ex⇠pD


@E✓(x)

@✓

�
� Ex⇠pG(x)


@E✓(x)

@✓

�
(2.3)

To minimize the approximation error, pG must be close to p✓. To do so, we tune

G to minimize the KL divergence KL(pG||p✓), which can be rewritten in terms of

minimizing the energy of the samples from the generator while maximizing the
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entropy at the output of the generator:

KL(pG||p✓) = �H[pG]� EpG [log p✓(x)] (2.4)

= �H[pG] + EpG [E✓(x)] + logZ✓ (2.5)

When taking the gradient of KL(pG||p✓) with respect to the parameters w of

the generator, the log-partition function logZ✓ disappears and we can optimize w

by minimizing

LG = �H[pG] + Ez⇠pzE✓(G(z)) (2.6)

where pz is the prior distribution of the latent variable of the generator.

In order to approximately maximize the entropy H[pG] at the output of the

generator, we use one recently proposed nonparametric mutual information maxi-

mization techniques [Belghazi et al., 2018, Oord et al., 2018, Hjelm et al., 2018].

Poole et al. [2018] show that these techniques can be unified into a single framework

derived from the variational bound of Barber and Agakov [2003]. Since the generator

is deterministic, mutual information between inputs and outputs reduces to simply

entropy of the outputs, since the conditional entropy of a deterministic function is

zero:

I(X,Z) = H(X)�H(X|Z) = H(G(Z))�⇠⇠⇠⇠⇠⇠⇠:0
H(G(Z)|Z)

In particular, we use the estimator from Hjelm et al. [2018], which estimates the

Jensen-Shannon divergence between the joint distribution (p(x, z)) and the product

of marginals (p(x)p(z)). We refer to this information measure as IJSD(X,Z). We

found that the JSD-based estimator works better in practice than the KL-based

estimator (which corresponds to the mutual information).

The estimator of Hjelm et al. [2018] is given by

IJSD(X,Z) = sup
T2T

Ep(X,Z)[�sp(�T (X,Z))]� Ep(X)p(Z)[sp(T (X,Z))] (2.7)

where sp(a) = log(1 + e
a) is the softplus function. The supremum is approximated

31



using gradient descent on the parameters of the discriminator T .

With X = G(Z) the output of the generator, IJSD(G(Z), Z) is one of the terms

to be maximized in the objective function for training G, which would maximize

the generator’s output entropy H(G(Z)).

Thus the final training objective to be minimized for the generator G and the

energy function E is

LG = �IJSD(G(Z), Z) + Ez⇠pzE✓(G(z)) (2.8)

LE = Ex⇠pDE✓(x)� Ez⇠pzE✓(G(z)) (2.9)

where Z ⇠ pz, the latent prior (typically a N(0, I) Gaussian).

2.3.1 Improving training stability

As can be seen from the above equations, the generator and the energy function

are in an adversarial game, similar to generative adversarial networks [Goodfellow

et al., 2014b]. This makes optimization via simultaneous gradient descent challenging

since the gradient vector field of such an optimization problem is non-conservative

as noted by Mescheder et al. [2017]. This is particularly accentuated by the use of

deep neural networks for the generator and the energy function. In particular, we no-

ticed that during training the magnitude of the energy function values would diverge.

To help alleviate this issue we look towards another technique for learning

energy-based models called score matching proposed by Hyvärinen [2005]. Score

matching estimates the energy function by matching the score functions of the data

density and the model density, where the score function  is the gradient of the

log density with respect to the sample  (x) = @ log p(x)
@x . If  D(x) and  E(x) are the

score functions under the data distribution and model distribution respectively, the

score matching objective is given by

JSM = Ex⇠PD

⇥
k D(x)�  E(x)k22

⇤
.

While the score function for the data distribution is typically unknown and would
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require estimation, Theorem 1 in Hyvärinen [2005] shows that with partial integra-

tions, the score matching objective can be reduced to the following objective which

does not depend on the score function under the data distribution:

JSM = Ex⇠PD

X

i

@i i(x) +
1

2
 i(x)

2

�

= Ex⇠PD

X

i

�@
2
E(x)

@2xi

+
1

2

✓
�@E(x)

@xi

◆2�

= Ex⇠PD


1

2

����
@E(x)

@x

����
2

2

+
X

i

�@
2
E(x)

@2xi

�
(2.10)

The above objective is hard to optimize when using deep neural networks because

of the di�culty in estimating the gradient of the Hessian diagonal, so we use the

first term in our objective, i.e. the zero-centered gradient penalty, pushing the data

points to sit near critical points (generally a local minimum) of the energy function.

This term is also similar to the gradient penalty regularization proposed by

Gulrajani et al. [2017] which however is one-centered and applied on interpola-

tions of the data and model samples, and is derived from the Lipschitz continuity

requirements of Wasserstein GANs [Arjovsky et al., 2017b].

2.3.2 Improving sample quality via latent space MCMC

Since MEG simultaneously trains a generator and a valid energy function, we

can improve the quality of samples by biasing sampling towards high density regions.

Furthermore, doing the MCMC walk in the latent space should be easier than in

data space because the transformed data manifold (in latent space) is flatter than

in the original observed data space, as initially discussed by Bengio et al. [2013].

The motivation is also similar to that of the “truncation trick” used successfully by

Brock et al. [2018]. However, we use an MCMC-based approach for this which is

applicable to arbitrary latent distributions.

We use the Metropolis-adjusted Langevin algorithm (MALA, Girolami and

Calderhead [2011]), with Langevin dynamics producing a proposal distribution in

the latent space as follows:
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z̃t+1 = zt � ↵
@E✓(G!(zt))

@zt

+ ✏

p
2 ⇤ ↵, where ✏ ⇠ N (0, Id)

Next, the proposed z̃t+1 is accepted or rejected using the Metropolis Hastings

algorithm, by computing the acceptance ratio:

r =
p(z̃t+1)q(zt|z̃t+1)

p(zt)q(z̃t+1|zt)
(2.11)

p(z̃t+1)

p(zt)
= exp

�
� E✓(G!(z̃t+1)) + E✓(G!(zt))

 
(2.12)

q(z̃t+1|zt) / exp

✓
�1
4↵

����z̃t+1 � zt + ↵
@E✓(G!(zt))

@zt

����
2

2

◆
(2.13)

and accepting (setting zt+1 = z̃t+1) with probability r.

The overall training procedure for MEG is detailed in Algorithm 1.

2.4 Related Work

Early work on deep learning relied on unsupervised learning [Hinton et al., 2006,

Bengio et al., 2007, Larochelle et al., 2009] to train energy-based models [LeCun

et al., 2006], in particular Restricted Boltzmann Machines, or RBMs. Hinton [2000]

proposed k-step Contrastive Divergence (CD-k), to e�ciently approximate the ne-

gative phase log-likelihood gradient. Subsequent work have improved on CD-k such

as Persistent CD [Salakhutdinov and Hinton, 2009, Tieleman, 2008b]. Hyvärinen

[2005] proposed an alternative method to train non-normalized graphical models

using Score Matching, which does not require computation of the partition function.

Kim and Bengio [2016] and Dai et al. [2017] also learn a generator that approxi-

mates samples from an energy-based model. However, their approach for entropy

maximization is di↵erent from our own. Kim and Bengio [2016] argue that batch

normalization [Io↵e and Szegedy, 2015] makes the hidden activations of the generator

network approximately Gaussian distributed and thus maximize the log-variance for
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Algorithm 1 MEG Training Procedure Default values: Adam parameters
↵ = 0.0001, �1 = 0.5, �2 = 0.9;� = 0.1 ; n' = 5

Require: Score penalty coe�cient �, # of ✓ updates per generator update n' , # of

training iterations T , Adam hyperparameters ↵, �1 and �2.
Require: Energy function E✓ with parameters ✓, entropy statistics function T� with

parameters �, generator function G! with parameters !, minibatch size m,

for t = 1, ..., T do
for 1, ..., n' do

Sample minibatch of real data {x(1), ...,x(m)} ⇠ PD.

Sample minibatch of latent {z(1)0 , ..., z(m)
0 } ⇠ Pz.

x̃ G!(z)

LE  1
m

P
m

i
E✓(x(i)

)�
P

m

i
E✓(x̃(i)

) + �
mX

i

����rx(i)E✓(x
(i)
)
����2
�

✓  Adam(LE , ✓,↵,�1,�2)
end for
Sample minibatch of latent z = {z(1), ..., z(m)} ⇠ Pz.

Per-dimension shu✏e of z, yielding {z̃(1), ..., z̃(m)}.
x̃ G!(z)

LH  
1

m

mX

i

�

log �(T�(x̃

(i), z(i)))� log
�
1� �(T�(x̃

(i), z̃(i)))
��

LG  
1

m

 mX

i

E✓(x̃
(i)
)

�
+ LH

!  Adam(LG,!,↵,�1,�2)
� Adam(LH ,�,↵,�1,�2)

end for

each hidden activation of the network. Dai et al. [2017] propose two approaches to

entropy maximization. One which minimizes entropy of the inverse model (pgen(z|x))
which is approximated using an amortized inverse model similar to ALI [Dumoulin

et al., 2016], and another which makes isotropic Gaussian assumptions for the data.

In our work, we perform entropy maximization using a tight mutual information

estimator which does not make any assumptions about the data distribution.

Zhao et al. [2016] use an autoencoder as the discriminator and use the recons-

truction loss as a signal to classify between real and fake samples. The autoencoder

is highly regularized to allow its interpretation as an energy function. However Dai

et al. [2017] prove that the EBGAN objective does not guarantee the discriminator

to recover the true energy function. The generator diverges from the true data
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distribution after matching it, since it would continue to receive training signal

from the discriminator. The discriminator signal does not vanish even at optimality

(when PG = PD) if it retains density information, since some samples would be

considered ”more real” than others.

2.5 Experiments

To understand the benefits of MEG, we first visualize the energy densities learnt

by our generative model on toy data. Next, we evaluate the e�cacy of our entropy

maximizer by running discrete mode collapse experiments to verify that we learn all

modes and the corresponding mode count (frequency) distribution. Furthermore, we

evaluate the performance of MEG on sharp image generation, since this is a common

failure mode of models trained with maximum likelihood which tend to generate

blurry samples [Theis et al., 2015]. We also compare MCMC samples in visible

space and our proposed sampling from the latent space of the composed energy

function. Finally, we run anomaly detection experiments to test the application of

the learnt energy function.

We’ve released open-source code 1 for all the experiments.

2.5.1 Visualizing the learned energy function

Generative models trained with maximum likelihood often su↵er from the pro-

blem of spurious modes and excessive entropy of the trained distribution, where the

model incorrectly assigns high probability mass to regions not present in the data

manifold. Typical energy-based models such as RBMs su↵er from this problem partly

because of the poor approximation of the negative phase gradient, as discussed

above, and the large price paid in terms of log-likelihood for not putting enough

probability mass near data points (i.e. for missing modes).

To check if MEG su↵ers from spurious modes, we train the energy-based model

on synthetic 2D datasets (swissroll, 25gaussians and 8gaussians) and visualize the

1. https://github.com/ritheshkumar95/energy_based_generative_models
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(a) (b) (c)

Figure 2.2 – Top: True data points for three popular toy dataset (a) 25-gaussians, (b) swiss roll,

and (c) 8-gaussians. Bottom: Corresponding probability density visualizations using the learned

energy function. Density was estimated using a sample based approximation of the partition

function.

energy function. From the probability density plots on Figure 2.2, we can see that

the energy model doesn’t su↵er from spurious modes and learns a sharp distribution.

2.5.2 Investigating Mode Collapse

GANs are notorious for having mode collapse issues wherein certain modes

of the data distribution are not represented by the generated distribution. Since

the generator is trained to minimize its KL divergence with the energy model

distribution (which is trained via maximum likelihood), we expect the generator to

faithfully capture all the modes of the data distribution. Our theory requires we

maximize entropy of the generated distribution, which we believe is instrumental in

ensuring full mode capture.

To empirically verify MEG captures all the modes of the data distribution, we

follow the same experimental setup as [Metz et al., 2016] and [Srivastava et al.,

2017]. We train our generative model on the StackedMNIST dataset, which is a

synthetic dataset created by stacking MNIST on di↵erent channels. The number

of modes are counted using a pretrained MNIST classifier, and the KL divergence
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is calculated empirically between the generated mode distribution and the data

distribution.

Table 2.1 – Number of captured modes and Kullback-Leibler divergence between the training

and samples distributions for ALI [Dumoulin et al., 2016], Unrolled GAN [Metz et al., 2016],

VeeGAN [Srivastava et al., 2017], WGAN-GP [Gulrajani et al., 2017]. Numbers except MEG and

WGAN-GP are borrowed from Belghazi et al. [2018]

(Max 10
3
) Modes KL

Unrolled GAN 48.7 4.32

VEEGAN 150.0 2.95

WGAN-GP 959.0 0.7276

MEG (ours) 1000.0 0.0313

(Max 10
4
) Modes KL

WGAN-GP 9538.0 0.9144

MEG (ours) 10000.0 0.0480

From Table 1, we can see that MEG naturally covers all the modes in that data,

without dropping a single mode. Apart from just representing all the modes of the

data distribution, MEG also better matches the data distribution as evidenced by

the significantly smaller KL divergence score compared to the baseline WGAN-GP.

Apart from the standard 3-StackMNIST, we also evaluate MEG on a new dataset

with 104 modes (4 stacks) 2 which is evidence that MEG does not su↵er from mode

collapse issues unlike state-of-the-art GANs like WGAN-GP.

2.5.3 Modeling Natural Images

While the energy landscapes in Figure 2.2 provide evidence that MEG trains

energy models with sharp distributions, we next investigate if this also holds when

learning a distribution over high-dimensional natural images. Energy-based models

trained with existing techniques produce blurry samples due to the energy function

not learning a sharp distribution.

2. The 4-StackedMNIST was created in a way analogous to the original 3-StackedMNIST

dataset. We randomly sample and fix 128⇥ 10
4
images to train the generative model and take

26⇥ 10
4
samples for evaluations.
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We train MEG on the standard benchmark 32x32 CIFAR10 [Krizhevsky et al.,

2009] dataset for image modeling. We additionally train MEG on the 64x64 cropped

CelebA - celebrity faces dataset [Liu et al., 2015] to report qualitative samples from

MEG. Similar to recent GAN works [Miyato et al., 2018], we report both Inception

Score (IS) and Fréchet Inception Distance (FID) scores on the CIFAR10 dataset

and compare it with a competitive WGAN-GP baseline.

Table 2.2 – Inception scores and FIDs with unsupervised image generation on CIFAR-10. We

used 50000 sample estimates to compute Inception Score and FID.

Method Inception score FID

Real data 11.24±.12 7.8

WGAN-GP 6.81 ± .08 30.95

MEG (Generator) 6.49 ± .05 35.02

MEG (MCMC) 7.31 ± .06 33.18

From Table 2.2, we can see that in addition to learning an energy function, MEG-

trained generative model produces samples comparable to recent GAN methods

such as WGAN-GP [Gulrajani et al., 2017]. Note that the perceptual quality of the

samples improves by using the proposed MCMC sampler in the latent space. See

also Figure 2.3 for an ablation study which shows that MCMC on the visible space

does not perform as well as MCMC on the latent space.

2.5.4 Anomaly Detection

Apart from the usefulness of energy estimates for relative density estimation

(up to the normalization constant), energy functions can also be useful to perform

unsupervised anomaly detection. Unsupervised anomaly detection is a fundamental

problem in machine learning, with critical applications in many areas, such as

cyber-security, complex system management, medical care, etc. Density estimation

is at the core of anomaly detection since anomalies are data points residing in low

probability density areas. We test the e�cacy of our energy-based density model for

anomaly detection using two popular benchmark datasets: KDDCUP and MNIST.

KDDCUP We first test our generative model on the KDDCUP99 10 percent

dataset from the UCI repository [Lichman et al., 2013]. Our baseline for this task is
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Deep Structured Energy-based Model for Anomaly Detection (DSEBM) [Zhai et al.,

2016], which trains deep energy models such as Convolutional and Recurrent EBMs

using denoising score matching [Vincent, 2011] instead of maximum likelihood, for

performing anomaly detection. We also report scores on the state of the art DAGMM

[Zong et al., 2018], which learns a Gaussian Mixture density model (GMM) over

a low dimensional latent space produced by a deep autoencoder. We train MEG

on the KDD99 data and use the score norm ||rxE✓(x)||22 as the decision function,

similar to Zhai et al. [2016].

Table 2.3 – Performance on the KDD99 dataset. Values for OC-SVM, DSEBM values were

obtained from Zong et al. [2018]. Values for MEG are derived from 5 runs. For each individual

run, the metrics are averaged over the last 10 epochs.

Model Precision Recall F1

Kernel PCA 0.8627 0.6319 0.7352

OC-SVM 0.7457 0.8523 0.7954

DSEBM-e 0.8619 0.6446 0.7399

DAGMM 0.9297 0.9442 0.9369

MEG (ours) 0.9354 ± 0.016 0.9521 ± 0.014 0.9441 ± 0.015

From Table 2.3, we can see that the MEG energy function outperforms the

previous SOTA energy-based model (DSEBM) by a large margin (+0.1990 F1 score)

and is comparable to the current SOTA model (DAGMM). Note that DAGMM is

specially designed for anomaly detection, while MEG is a general-purpose energy-

based model.

MNIST Next we evaluate our generative model on anomaly detection of high

dimensional image data. We follow the same experiment setup as [Zenati et al.,

2018] and make each digit class an anomaly and treat the remaining 9 digits as

normal examples. We also use the area under the precision-recall curve (AUPRC)

as the metric to compare models. From Table 4, it can be seen that our energy

model outperforms VAEs for outlier detection and is comparable to the SOTA

BiGAN-based anomaly detection methods for this dataset [Zenati et al., 2018]

which train bidirectional GANs to learn both an encoder and decoder (generator)

simultaneously and use a combination of the reconstruction error in output space
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Table 2.4 – Performance on the unsupervised anomaly detection task on MNIST measured by

area under precision recall curve. Numbers except ours are obtained from [Zenati et al., 2018].

Results for MEG are averaged over the last 10 epochs to account for the variance in scores.

Heldout Digit VAE MEG BiGAN-�

1 0.063 0.281 ± 0.035 0.287 ± 0.023

4 0.337 0.401 ± 0.061 0.443 ± 0.029

5 0.325 0.402 ± 0.062 0.514 ± 0.029

7 0.148 0.29 ± 0.040 0.347 ± 0.017

9 0.104 0.342 ± 0.034 0.307 ± 0.028

as well as the discriminator’s cross entropy loss as the decision function.

Our aim here is not to claim state-of-the-art on the task of anomaly detection

but to demonstrate the quality of the energy functions learned by our technique, as

judged by its competitive performance on anomaly detection.

2.5.5 MCMC Sampling in visible vs latent space

To show that the Metropolis-Adjusted Langevin Algorithm (MALA) performed

in latent space produces good samples in observed space, we attach samples from

the beginning (with z sampled from a Gaussian) and end of the chain for visual

inspection 2.3. From the attached samples, it can be seen that the MCMC sampler

appears to perform a smooth walk on the image manifold, with the initial and final

images only di↵ering in a few latent attributes such as hairstyle, background color,

face orientation, etc. Note that the MALA sampler run on E✓ in visible space 2.3

did not work well and tends to get attracted to spurious modes (which G eliminates,

hence the advantage of the proposed pEG sampling scheme).
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Figure 2.3 – Samples from the beginning and end of the MCMC in visible space (top) and

latent space (bottom) using the MALA proposal and acceptance criteria. MCMC in visible space

has poor mixing and gets attracted to spurious modes, while MCMC in latent space seems to

change semantic attributes of the image, while not producing spurious modes.
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3 Conclusion
We proposed MEG, an energy-based generative model that produces energy

estimates using an energy model and a generator that produces fast approximate

samples. This takes advantage of novel methods to maximize the entropy at the

output of the generator using a nonparametric mutual information lower bound

estimator. We have shown that our energy model learns good energy estimates

using visualizations in toy 2D datasets and through performance in unsupervised

anomaly detection. We have also shown that our generator produces samples of high

perceptual quality by measuring Inception Scores and Fréchet Inception Distance

and shown that MEG is robust to the respective weaknesses of GAN models (mode

dropping) and maximum-likelihood energy-based models (spurious modes).

This work has made an important step towards the training of energy-based

models. The future work in this direction involves more careful understanding of

the explosion of the temperature of the energy-function during training, which

seems closely related to the Lipschitz constraints in the Wasserstein GAN literature.

This work also notices that MCMC performed in visible space gets attracted to

spurious modes and also doesn’t mix between modes very well. This is an important

problem that still needs to be addressed. More e↵ort devoted towards better entropy

maximizers in neural networks might be worth the e↵ort as well, since entropy

maximization is fundamental to prevent mode collapse in generative models as well

as maximum entropy policies in Reinforcement Learning, etc.
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