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RESUME

Le theme principal de cette thése est la rationalisation de nouveaux faits empiriques
mettant en €vidence les rendements d’actifs financiers et certaines variables macroéco-
nomiques. Les modeles d’évaluation d’actifs financiers supposent que les risques qui
affectent les opportunités d’investissement sont li€s a un ou plusieurs facteurs macroé-
conomiques et sont compensé€s par les rendements. Ces modeles cherchent dés lors a
déterminer les principiaux facteurs de risque auxquels les investisseurs portent le plus
d’attention. D’intéressantes propriét€s de la volatilité de la consommation en rapport
avec I’évaluation d’actifs financiers ont ét€ mises en exergue dans des études récentes,
mais elles ont €té principalement reli€es a la dimension temporelle des rendements. Une
contribution majeure de notre recherche sera de caractériser et de mesurer son impact
sur les rendements en coupe transversale.

Le premier chapitre documente des faits empiriques montrant I’existence d’une re-
lation robuste entre I’incertitude macroéconomique et les rendements d’actions. 11 met
en évidence le fait que les investisseurs de long terme s’intéressent non seulement a la
variation des niveaux futur et présent de la consommation (risque de long terme dans le
niveau de la consommation), mais aussi et peut-étre plus a la variation entre les niveaux
futur et présent de I’incertitude entourant cette croissance de la consommation (risque
de long terme dans la volatilité de la consommation). Nous montrons que les différences
entre les primes de risque de divers portefeuilles d’actions sont également dues a I’hé-
térogénéité dans leur exposition aux risques li€s a la volatilit€ de la consommation. Les
faits empiriques documentés dans ce chapitre suggerent que les risques li€s a la volatilité
de la consommation sont fortement corrélés aux primes de risque pour divers horizons
d’investissement, plus que les risques liés au niveau de la consommation pour des in-
vestissements longs et moins pour les investissements courts. En plus, le risque de long
terme 1i€ a la volatilité est valoris€ méme en présence du risque de long terme li€ au
niveau. Cette étude est théoriquement motivée par un modele d’évaluation d’actifs fi-
nanciers par équilibre dans lequel la consommation suit un processus affine a volatilité

stochastique. Un calibrage bien mené€ de ce modele d’équilibre général rationaliserait
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ces évidences empiriques.

Ensuite, nous analysons les problemes numériques, analytiques et statistiques qui af-
fectent certaines conclusions tirées de modeles existants d’évaluation d’actifs financiers.
Les modeles basés sur la consommation ont regagné de I’intérét avec de nouveaux liens
mis en évidence entre la volatilité du marché et les rendements, 1’évaluation des porte-
feuilles de long terme, ou la prévisibilité des rendements. Des liens sont établis entre les
primes de risque et différents types de préférences, ol la séparation entre 1’aversion au
risque et I’élasticité de substitution intertemporelle, et 1a formation d’habitude sont cen-
trales. Souvent, la solution & ces modeles nécessite une approximation et les quantités
d’intérét sont calculées par simulation.

Le deuxie¢me chapitre propose une modélisation qui permet d’obtenir des formules
analytiques pour de nombreuses statistiques habituellement calculées dans le but d’éva-
luer si un modele d’évaluation d’actifs financiers est capable de reproduire certains faits
empiriques. Le modele proposé€ est assez flexible pour capter les diverses dynamiques
de la consommation et des dividendes, aussi bien que les divers types de préférences
qui ont été adoptées dans les modeles bas€s sur la consommation. Il permet ainsi la
réévaluation dans un cadre commun des différentes méthodes de résolution et approxi-
mations usuelles dans les modeles d’équilibre général d’évaluation d’actifs financiers.
Ces formules analytiques nous font mieux comprendre les mécanismes économiques
qui sous-tendent les résultats empiriques et les limites de validité des approximations
usuelles.

Des progres récents dans la modélisation des rendements d’actions prouvent que les
moments d’ordre supérieur en général et I’asymétrie conditionnelle en particulier va-
rient 2 travers le temps. Finalement, le troisieme chapitre développe un modele affine
a facteurs multiples en temps discret et & composantes inobservables dans lequel la va-
riance et I’asymétrie conditionnelles des rendements sont stochastiques. De fagon impor-
tante et cohérente, nous distinguons la dynamique de la variance conditionnelle de celle
de I’asymétrie conditionnelle. Notre approche permet a la distribution des rendements
journaliers courants d’étre asymeétrique conditionnellement aux facteurs courants. Dans

notre modele, I’asymétrie conditionnelle est la résultante, d’une part des effets de levier,



et d’autre part de I’asymétrie de la distribution des rendements courants conditionnel-
lement aux facteurs courants. Nous dérivons des formules analytiques pour différentes
conditions de moments utiles pour I’inférence par la méthode des moments généralisée.
En appliquant notre approche aux rendements journaliers de plusieurs actions et indices
boursiers, nous montrons que la distribution des rendements journaliers courants condi-
tionnellement a la volatilité courante est positivement asymétrique et permet reproduire
des statistiques échantillonales telles que 1’asymétrie inconditionnelle et les corrélations
négatives entre rendements courants et carrés des rendements futurs. L’effet de levier est
significatif et négatif tandis que 1’asymétrie conditionnelle est positive, impliquant que
I’asymétrie de la distribution des rendements courants conditionnellement a la volatilité
courante domine l’éffet de levier dans la détermination de I’asymétrie conditionnelle.
Mots clés: Volatilité de la Consommation, Risque lié a 1a Volatilité, Rendements
en Coupe Transversale, Modele d’Evaluation d’Actifs Financiers par Equilibre,
Prime de Risque des Actions, Enigme du Taux sans Risque, Prévisibilité des Ren-
dements, Modeles Affines, Volatilité Stochastique, Asymétrie Stochastique, Effet de

Levier, Méthode des Moments Généralisée.



ABSTRACT

The main theme of this thesis is the rationalization of new stylized facts involving both
asset returns and relevant macroeconomic variables. Asset pricing models assume that
risks that affect investment opportunities are related to one or several macroeconomic
factors, and that these risks are compensated by appropriate returns. These models then
aim at determining the risk factors that investors care the most about. Interesting asset
pricing properties of consumption volatility have been put forward in earlier studies,
but they were mainly related to the time series dimension of asset returns. A major
contribution of our research will be to characterize and measure its impact in the cross-
sectional dimension.

The first chapter documents empirical facts showing the existence of a strong rela-
tionship between macroeconomic uncertainty and stock returns. It provides and sup-
ports the evidence that long-term investors care not only about variation between future
and present consumption level (long-run consumption level risk), but also and perhaps
mostly about variation between future and present macroeconomic uncertainty (long-
run consumption volatility risk). We show that differences in risk premia across stocks
are also due to the heterogeneity in their exposure to changes in consumption volaﬁlity.
Empirical facts documented in this chapter suggest that consumption volatility risk is
highly correlated to risk premium for various investment horizons, more than consump-
tion level risk for long-period investments and less for short-period investment in stocks.
Moreover, long-run volatility risk is priced even in the presence of long-run consumption
risk. This study is theoretically motivated by a reduced-form affine general equilibrium
model with stochastic volatility. A well-conducted calibration of such a model would
rationalize theses empirical findings.

Further, we shed light on numerical, analytical and statistical problems that affect
some conclusions of existing asset pricing models. Consumption-based equilibrium as-
set pricing models have regained some momentum with new insights about the con-
nections between stock market volatility and returns, the pricing of long-run claims, or

return predictability. Links are established between risk premiums and different types
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of preferences, where separation between the elasticity of intertemporal substitution and
risk aversion, and habit formation take center stage. Often, the solution of these models
necessitates an approximation and quantities of interest are computed through simula-
tions.

The second chapter proposes a model that delivers closed-form formulas for many
of the statistics usually computed to assess the ability of the models to reproduce styl-
ized facts. The proposed model is flexible enough to capture the various dynamics for
consumption and dividends as well as the different types of preferences that have been
assumed in consumption-based asset pricing models. It then offers a common setting
to re-evaluate various methods of resolution and usual approximations in asset pricing
general equilibrium models. The availability of closed-form formulas enhances our un-
derstanding of the economic mechanisms behind empirical results and of the limits of
validity for the usual approximations.

Recent developments in asset return modeling have shown evidence for time-variation
in conditional higher moments, especially skewness and leverage effects. Finally, the
third chapter develops a discrete time affine multifactor latent variable model of asset
returns which allows for both stochastic volatility and stochastic skewness (SVS model).
Importantly, we disentangle the dynamics of conditional volatility and conditional skew-
ness in a coherent way. Our approach allows the distribution of current daily returns
conditional on current volatility to be asymmetric. In our model, time-varying condi-
tional skewness is driven by the conditional leverage effect and the asymmetry of the
distribution of current returns conditional on current volatility.

We derive analytical formulas for various moment conditions that we use for GMM
inference. Applying our approach to several equity and index daily returns, we show
that the conditional distribution of current daily returns, conditional on current volatil-
ity, is positively skewed and helps to match sample return skewness as well as negative
cross-correlations between returns and squared returns. The conditional leverage effect
is significant and negative. The conditional skewness is positive, implying that the asym-
metry of the distribution of current returns conditional on current volatility dominates the

leverage effect in determining the conditional skewness.
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INTRODUCTION GENERALE

Cette these consiste en trois essais li€s I’évaluation empirique des actifs financiers.
Cette recherche comporte trois axes principaux. D’abord, elle s’intéresse a la rationalisa-
tion des nouveaux faits empiriques mis en €vidence sur la relation entre les rendements
des portefeuilles d’actions et certaines variables macroéconomiques. Ainsi, nous étu-
dions les implications de I’incertitude macroéconomique, mesurée par la volatilité de
la consommation, sur les rendements en coupe transversale. Ensuite, nous développons
des solutions analytiques aux problémes numériques, analytiques et statistiques qui se
posent dans le contexte des modeles d’évaluation d’actifs financiers. Enfin, cette these
s’intéresse au développement, a I’estimation et au diagnostic de nouveaux modeles de
séries temporelles des rendements, permettant a la fois d’évaluer analytiquement les ac-
tifs financiers et leurs produits dérivés, tout en tenant compte de nouveaux faits stylisés
liés & la variation temporelle des caractéristiques de dispersion, d’asymeétrie et d’aplatis-
sement de la distribution conditionnelle des rendements d’actions.

Les opportunités d’investissement sont variables dans le temps et les investisseurs
font face a de multiples sources de risques financiers et macroéconomiques dont ils
doivent se couvrir lorsqu’ils choisissent leurs portefeuilles intertemporellement. Les mo-
deles d’évaluation d’actifs financiers supposent que chacun de ces risques est li€ a un
facteur financier ou macroéconomique, et cherchent des lors a donner une réponse a la
question centrale suivante : " quels sont les principaux facteurs de risque auxquels les
investisseurs portent le plus d’attention ? "

Le premier chapitre de cette these, intitulé " Volatilité de la Consommation et Ren-
dements d’Actions en Coupe Transversale ", met en évidence et justifie de fagcon em-
pirique le fait que les investisseurs s’intéressent non seulement a la variation entre les
niveaux futur et présent de la consommation (risque de long terme dans le niveau de la
consommation), mais aussi et surtout a la variation entre les niveaux futur et présent de
I’incertitude macroéconomique (risque de long terme dans la volatilité de la consomma-
tion). Comme dans Bansal et Yaron (2004), incertitude macroéconomique fait référence

a la volatilité de la consommation agrégée. Nous répondons a la question suivante :



les différences entre les primes de risque d’actions sont-elles dues a I’hétérogénéité dans
leurs co-mouvements avec la volatilité de la consommation ? ". Nous montrons que les
portefeuilles ayant les primes de risque les plus €levées, ont également une plus grande
covariance négative avec la variation de long terme dans la volatilité de la consomma-
tion. Ce résultat est autant vrai pour les investissements de court terme dans les actions
(typiquement une période comme dans la plupart des modeles) que pour les investis-
sements de long terme. Il suggére ainsi que les investisseurs ne préférent pas disposer
d’actions dont la rentabilité est faible lorsqu’ils font face a une incertitude macroéco-
nomique future élevée relativement au présent. En conséquence, ils demandent une plus
grande compensation en termes de primes de risque pour posséder de tels actifs.

La majorité des études supposent que la consommation est homoscédastique. L’hy-
potheése critique que la volatilité de la consommation est variable dans le temps est cru-
ciale pour la présente étude. Plusieurs articles récents prouvent qu’il existe une relation
entre I’incertitude macroéconomique et les opportunités d’investissement et qu’elle est
déterminante pour comprendre la formation des prix d’actifs financiers (Bansal et Yaron
(2004) et Bansal, Khatchatrian et Yaron (2004)). Kandel et Stambaugh (1990) montrent
que la volatilité de la consommation varie en relation avec le cycle des affaires et qu’elle
est prévisible par trois variables financiéres dont le ratio prix/dividende du marché des
actions. Les modeles de Markov & changement de régime estimés avec les données de la
consommation soutiennent que la variance de la consommation n’est pas la méme a tra-
vers les différents régimes (Kandel et Stambaugh (1990), Bonomo et Garcia (1993), Let-
tau, Ludvigson et Wachter (2006)). De méme, d’autres articles ayant estimé des modeles
autorégressifs généraux a hétéroscédasticité conditionnelle avec ces mémes données sur
la consommation, corroborent I’hypothese d’une variance conditionnelle variable dans
le temps (Bansal, Khatchatrian et Yaron (2004)).

D’importants faits empiriques sur les rendements d’actions en coupe transversale ont
été établis par Fama et French (1992). Ces faits stipulent que les firmes dont le ratio va-
leur comptable/valeur boursiere est plus €levé, ont des rendements supérieurs a ceux des
firmes dont ce rapport est plus faible. De méme, les firmes a faible capitalisation bour-

siere ont des rendements plus €levés que les firmes a grande capitalisation boursiére. Le



modele standard d’évaluation d’actifs financiers bas€ sur la consommation n’a pas per-
mis de justifier ces différences dans les rendements des actions par des différences entre
les risques liés a la consommation. De nouveaux arguments ont alors émergé en fa-
veur de facteurs li€s aux caractéristiques gouvernant la distribution de la consommation
conditionnellement a I’information économique passée. C’est dans ce cadre que d’im-
portantes implications des modeles avec volatilité de la consommation variable ont été
mises en exergue dans des €tudes récentes, mais portent principalement sur la dimension
temporelle des rendements (Bansal et Yaron (2004), Tauchen (2005), Eraker (2006)).
Les implications de cette mesure de 1’incertitude macroéconomique pour les rendements
en coupe transversale n’ont pas encore €té examinées, et c’est dans cette derniere di-
mension que nous mettons 1’accent. Nous utilisons donc, non seulement I’information
économique contenue dans le niveau de la consommation courante, mais aussi et surtout
celle contenue dans I’incertitude sur le profil de la consommation future, dans le but
d’améliorer la performance du modele standard d’évaluation d’actifs financiers basé sur
la consommation, ce dernier n’ayant pas donné€ les résultats empiriques escomptés.

Alors que les études empiriques s’ intéressent principalement aux rendements d’ac-
tions pour des investissements courts (typiquement une période dans la plupart des
études), Bansal, Dittmar et Kiku (2005) montrent que la relation entre le risque et le
rendement varie beaucoup a mesure que I’horizon d’investissement augmente. Nous
considérons des investissements pour plusieurs horizons, ayant tous la caractéristique
que I’investisseur posséde un portefeuille risqué pendant les premieres périodes, puis
change ensuite pour un portefeuille sans risque qu’il détient jusqu’a I’horizon d’investis-
sement. Nous étudions la sensibilité des rendements de ces investissements par rapport
a la variation du niveau de la consommation d’une part, et par rapport a la variation
de la volatilité de la consommation d’autre paft, sur I’horizon d’investissement. Pour
la volatilité de la consommation, nous utilisons une mesure paramétrique provenant de
I’estimation d’un modele autorégressif général a hétéroscédasticité conditionnelle. Nous
utilisons la mesure standard du risque d’un portefeuille donnée par la covariance entre
les gains et le facteur de risque.

Nous représentons sur un graphique I’évolution du risque du portefeuille en fonc-
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tion de I’horizon d’investissement, nous trouvons qu’au fur et a mesure que 1’horizon
d’investissement augmente, il existe des différences significatives entre les risques liés
a la volatilité de la consommation, des portefeuilles avec plus faible ratio valeur comp-
table/valeur boursiére aux portefeuilles avec ratio valeur comptable/valeur boursiere plus
élevé, les derniers possédant des risques plus grands. Plus important encore, alors que les
investisseurs font face & la fois au risque li€ au niveau de la consommation et au risque li€
a la volatilité de la consommation, en utilisant les portefeuilles d’actions classés selon la
taille de I’entreprise et le ratio valeur comptable/valeur boursiére, nous montrons que la
relation entre la volatilit€ de la consommation et les rendements est surtout une relation
de long terme et qu’elle est assez stable. Les investissements longs sont plus sensibles
aux risques de long terme dans la volatilité de la consommation que les investissements
courts. Nous trouvons par ailleurs que les investissements longs sont moins sensibles
aux risques de long terme dans le niveau qu’aux risques de long terme dans la volatilité.

En utilisant la méthode des moments généralisée, nous estimons pour chaque horizon
d’investissement et pour chaque durée de détention des actions le modele linéaire reliant
la prime de risque a la covariance entre gains et variation dans le niveau d’une part, et a
la covariance entre gains et variation dans la volatilité d’autre part. Nous trouvons que le
prix du risque li€ a la volatilité de la consommation est négatif et significatif lorsqu’es-
timé avec les rendements de long terme. Ceci justifierait alors pourquoi les actions des
entreprises avec ratio valeur comptable/valeur boursiere plus élevé ont des rendements
plus élevés : c’est simplement parce que ces actions ont des gains procycliques.

Les deux facteurs macroéconomiques considérés dans cette étude (variation dans le
niveau et variation dans la volatilité de la consommation) ont une justification théorique.
Dans un modele d’équilibre général sous forme réduite dont 1’agent représentatif pos-
sede une fonction d’utilité récursive et dont la consommation suit un modele a volatilité
stochastique (comme dans Tauchen (2005)), nous montrons que 1’agent valorise les ac-
tifs financiers gréce a un taux marginal de substitution intertemporelle qui dépend a la
fois de la variation dans le niveau et de la Qariation dans la volatilité de la consommation.

Le premier chapitre est ainsi reli€ a trois littératures toutes récentes. La premiere lit-

térature est celle qui utilise la volatilité d’une variable d’intérét de I’investisseur comme



facteur de risque dans un modele d’évaluation d’actifs financiers. Alors que nous nous
intéressons a une mesure paramétrique de la volatilité de la consommation agrégée, Ang
et al. (2004) utilisent une mesure non paramétrique de la volatilit€ du marché des actions,
tandis qu’Adrian et Rosenberg (2006) utilisent une mesure paramétrique de la volatilité
du rendement agrégé du marché des actions.

La seconde littérature est celle qui examine si les actifs financiers sont évalués en
fonction de leur exposition aux risques de long terme. Bansal et Yaron (2004), puis
Bansal, Dittmar et Kiku (2005) montrent que les risques de long terme sont pris en
compte sur les marchés financiers. Parker et Julliard (2005) considzrent les risques de
long terme dans le niveau de 1la consommation pour €valuer les portefeuilles d’actions.
Nous examinons en plus le risque de long terme dans la volatilité€ de la consommation.

La troisieme et derniére littérature est celle qui examine les imp]icationé des mo-
ments d’ordre supérieur de la consommation dans la coupe transversale des rendements.
Jacobs et Wang (2004) montrent en utilisant des données microéconomiques, que la va-
riance interindividuelle de la consommation a le potentiel d’expliquer les différences
entre les primes de risque d’actions. Cette étude differe de 1a leur par le fait que ces
auteurs se focalisent sur les risques idiosyncratiques non assurés li€s a la consomma-
tion individuelle tandis que nous nous intéressons aux risques systématiques li€s a la
consommation agrégée. De plus, alors que leur facteur de risque peut étre vu comme
une mesure du degré d’hétérogénéité entre les individus, le notre représente plutdt une
mesure du degré d’imprécision qui affecte les prévisions des agents sur I’évolution du
niveau futur de la consommation totale.

Au cours des deux derniéres décennies, les économistes de la finance se sont ef-
forcés de résoudre deux principales énigmes a savoir, I’énigme de la prime de risque
d’action et I’énigme du taux sans risque. Le modele d’évaluation d’actifs financiers basé
sur la consommation, introduit par Lucas (1978) et Breeden (1989) a été modifiée par
de nouvelles spécifications des préférences des agents, plus 2 méme de justifier la forte
prime de risque des actions et le faible taux sans risque. Deux de ces modeles qui se
distinguent des autres par leur popularité sont le modele avec utilité récursive d’Epstein

et Zin (1989, 1991) et le modele de formation d’habitude externe de Campbell et Co-



chrane (1999). Récemment, ces modeles ont été utilisés pour reproduire de nouveaux
faits empiriques sur la relation entre volatilité du marché des actions et les rendements,
la valorisation des rentes de long terme, ou la prévisibilité des rendements (voir Ban-
sal et Yaron (2004), Bansal, Gallant et Tauchen (2004), Hansen, Heaton et Li (2004),
Lettau, Ludvigson et Wachter (2004)). Les efforts ont été centrés sur le choix de la dyna-
mique de la consommation et des dividendes. De nouveaux modeles pour la dynamique
conjointe de la consommation et des dividendes ont été expérimentés, alors qu’originel-
lement 1’égalité entre la consommation et les dividendes était souvent supposée. Géné-
ralement, la résolution de ces modeles nécessite une ou plusieurs approximations et les
quantités d’intérét sont calculées par simulation.

Dans le deuxieme chapitre de cette thése, intitulé " Un Cadre Analytique d’Eva-
luation des Modeles de Valorisation d’Actifs Financiers et de Prévisibilité des Rende-
ments ", nous proposons un modele qui permet d’obtenir des formules analytiques pour
de nombreuses statistiques habituellement calculées dans le but d’évaluer si un modele
d’évaluation d’actifs financiers est capable de reproduire certains faits empiriques. Le
modele proposé est assez flexible pour capter les diverses dynamiques de la consomma-
tion et des dividendes, aussi bien que les divers types de préférences qui ont été adop-
tées dans les modeles basés sur la consommation. Il permet ainsi la réévaluation dans
un cadre commun des différentes méthodes de résolution et approximations usuelles
dans les modeles d’équilibre général d’évaluation d’actifs financiers. Ces formules ana-
lytiques nous font mieux comprendre les mécanismes économiques qui sous-tendent les
résultats empiriques et les limites de validité des approximations usuelles.

Pour dériver les formules analytiques, nous supposons que les accroissements loga-
rithmiques de la consommation et des dividendes par téte suivent un processus bivarié
dont les coefficients du vecteur des moyennes et de la matrice de variances-covariances
varient selon une méme chaine de Markov stationnaire et homogene, s;, qui prend les
valeurs 1,...,N (si on admet que I’économie est caractérisée par N états de la nature).
Plusieurs modéies d’évaluation d’actifs financiers ont été fondés sur des versions sim-
plifiées de ce processus général, mais la principal raison est que ce processus permet

d’obtenir des formules analytiques pour de nombreuses statistiques que les chercheurs



ont essay€ de reproduire : la moyenne et la variance des rendements excédentaires et du
taux sans risque, la moyenne et la variance du ratio prix/dividende, le coefficient de dé-
termination de la régression des rendements, des rendements excédentaires, du taux de
croissance des dividendes, du taux de croissance de la consommation et de la volatilité
de la consommation sur le ratio prix/dividende et le ratio consommation/richesse, I’au-
tocorrélation négative des rendements et des rendements excédentaires a des horizons
longs. Nous utilisons aussi ce modele pour reproduire certains moments du processus
de la consommation et des dividendes impliqués par d’autres modeles. Cette derniere
approche est utilisée par Mehra et Prescott (1985) dans leur papier qui mit en avant
I’énigme de la prime de risque et des lors, fit école.

Dans les formules que nous développons pour les multiples statistiques, nous sup-
posons que nous avons déja résolu le modele donnant le prix de I’actif d’intérét ou le
rapport des gains de cet actif sur son prix. La structure du processus de la consomma-
tion et des dividendes implique qu’un tel rapport posseéde une valeur par régime, ce qui
permet d’obtenir des formules analytiques.

Le prix d’un actif quelconque est, bien entend, relié au facteur d’escompte stochas-
tique qﬁi a son tour dépendra du modele considéré. Nous calculons les prix dans une
économie a changement de régime markovien et avec préférences récursives (Epstein et
Zin (1989)) ainsi qu’avec formation d’habitude externe (Campbell et Cochrane (1999)).
Ces modeles délivrent deux types de rapport gains sur prix : le rapport de la consom-
mation sur le prix du portefeuille de marché et le rapport du dividende sur le prix de
I’action. Le premier rapport est inobservable mais Lettau, Ludvigson et Wachter (2001
a,b) ont proposé la contrepartie empirique d’un parent proche, le rapport consommation
sur richesse. Une fois que nous distinguons la consommation des dividendes, ces mo-
deles délivrent une mesure de cette importante statistique économique. En plus, dans le
cadre de I'utilité récursive, le rapport consommation sur richesse détermine le facteur
d’escompte stochastique. Une fois que les équations d’Euler non-linéaires définissant ce
rapport dans les différents régimes ont €té résolues, tous les autres prix d’actifs peuvent
étre obtenus analytiquement.

L’importance de dériver des formules analytiques ne doit en aucun cas étre pris a la



légere. Lettau, Ludvigson et Wachter (2004), qui précisément utilisent un modele a chan-
gement de régime markovien pour la consommation, font la remarque que leur modele a
deux états prend un temps tres long pour tre résolu et que le modele a trois états serait a
la limite numériquement insolvable. Ces auteurs utilisent un modele de mise & jour qu’ils
doivent résoudre a chaque date étant donné leur nouvelle évaluation des probabilités de
transition du processus de Markov. Nos formules peuvent étre adaptées a cette approche
et allegeront considérablement le processus numérique. Un autre gain en temps d’exé-
cution vient potentiellement des simulations que les chercheurs exécutent pour calculer
les régressions en vue des études de prévisibilité. La procédure usuelle est d’essayer de
répliquer les statistiques usuelles avec un nombre d’observations identique & celui de
I’échantillon aussi bien qu’avec un nombre d’observations beaucoup plus grand pour
s’assurer si le modele est capable de reproduire la prévisibilité en population. On évite-
rait ce dernier exercice, plus cofiteux en temps d’exécution, par I’utilisation de formules
analytiques que nous fournissons. Ceci s’applique également aux ratios de variances.

Une autre contribution, non pas la moindre, est d’utiliser nos formules analytiques
pour évaluer 1’'impact des approximations que les chercheurs appliquent a la résolution
des modeles. Une approximation omniprésente dans la littérature est la log-linéarisation
de Campbell et Shiller (1988). Nous produisons des formules pour plusieurs approxima-
tions des rapports gains sur prix dans le modele d’Epstein et Zin (1989).

Nous appliquons notre cadre analytique a deux articles saillants dus récemment a
Lettau, Ludvigson et Wachter (2004) et a2 Bansal et Yaron (2004). Tous font la promo-
tion du r6le important de I’incertitude macroéconomique lue a travers la volatilité de la
consommation, comme facteur de valorisation des actifs financiers. Le premier article
modélise le taux de croissance de la consommation comme un processus a changement
de régime markovien et utilise les préférences d’Epstein et Zin (1989), et par conséquent
correspond directement a notre cadre d’application. Le second article utilise les mémes
préférences mais modélise conjointement la consommation et les dividendes par un pro-
cessus autorégressif a volatilité stochastique. Pour ce dernier modele, nous proposons
une procédure qui fait correspondre les moments de ce processus avec ceux de notre

processus a changement de régime markovien. En inscrivant les deux modeles dans un



méme cadre, nous sommes en mesure de montrer leurs similitudes et leurs différences
en termes d’implications pour 1’évaluation d’actifs financiers et la prévisibilité des ren-
dements. Nos formules analytiques nous permettent d’explorer un plus vaste ensemble
de parametres de préférence que dans les articles originels, ce qui permet de mieux
comprendre le réle de ces parametres dans la détermination des statistiques financieres
d’intérét. Nous faisons également correspondre un modéle a changement de régime mar-
kovien au processus spécifié par Campbell et Cochrane (1999) pour le rapport du surplus
sur la consommation, puis nous fournissons les résultats analytiques pour plusieurs sta-
tistiques calculées par simulation dans le papier originel.

Nous étendons considérablement les formules analytiques de Bonomo et Garcia
(2004) pour le modele d’évaluation d’actifs financiers basé€ sur la consommation de
Lucas (1978). Récemment, deux articles ont proposé de développer des formules ana-
lytiques pour des modeles d’évaluation d’actifs financiers. Abel (2005) calcule expli-
citement la prime de risque, la prime de long terme et la prime pour certaines actions
dérivées dans un cadre qui inclut les modeles de formation d’habitude et d’externali-
tés sur la consommation. Les formules sont dérivées sous I’hypothese de log-normalité,
d’indépendance et de distribution identique des taux de croissances de la consommation
et des dividendes. Nous supposons également la log-normalité, mais conditionnellement
aun certain nombre d’états, et notre variable d’état capte la dynamique des taux de crois-
sance. Eraker (2006) produit des formules analytiques pour les prix d’actions et d’obliga-
tions dans un modele d’évaluation d’actifs financiers par équilibre avec des préférences
d’Epstein et Zin (1989), sous I’hypothese que les taux de croissances de la consomma-
tion et des dividendes suivent un processus affine. Cependant, il adopte I’approximation
de Campbell et Shiller (1988) indispensable pour obtenir ces formules.

Une grande partie des travaux empirique dans le domaine de la finance justifient
le fait que, non seulement la variance conditionnelle des rendements change a travers
le temps, mais aussi les rendements ont une distribution conditionnelle non-normale
dont I’asymétrie varie également en fonction du temps. Ces deux caractéristiques des
rendements sont cruciales étant donné que les variations de la variance et de I’asymé-

trie conditionnelles a travers le temps influencent le comportement des investisseurs et
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par conséquent leurs choix de portefeuille a travers le temps. Des évidences empiriques
montrent 1’existence de risques financiers liés a la volatilité et a I’asymétrie des rende-
ments et justifient la prise en compte de ces risques lors de la valorisation des actifs
financiers par les investisseurs. En effet, les investisseurs demandent une plus grande
prime de risque pour disposer d’actifs dont les gains sont plus volatiles et dont les gains
extrémement faibles sont plus réguliers que les gains extrémement élevés. La variation
temporelle de la variance et de I’asymétrie conditionnelles peuvent alors expliquer les
prix d’actifs. |

Le troisieéme et dernier chapitre de cette these, intitulé " Modeles Affines 2 Asymé-
trie Stochastique ", développe un modéle affine a facteurs multiples en temps discret et
a composantes inobservables dans lequel la variance et I’asymétrie conditionnelles des
rendements sont stochastiques. Plus important encore, dans le cas du modéle a deux fac-
teurs, le vecteur constitué par rendements, la volatilité et I’asymétrie suit un processus af-
fine. La variation temporelle dans ]a volatilité des rendements trouve son origine dans les
modeles autorégressifs a hétéroscédasticité conditionnelle (ARCH, Engle (1982)) ou ses
extensions (GARCH, Bollerslev (1986), et EGRACH, Nelson (1991)). Alors que dans
les modeles ARCH et GARCH la volatilité des rendements est compleétement déterminée
par I’historique des rendements observés, une approche alternative, devenue populaire
dans la littérature récente, est le modele a volatilité stochastique (SV), dans lequel la
volatilité des rendements est une composante inobservable qui subit des chocs de source
différente de celle générant les chocs sur les rendements. La plupart des applications
des modeéles GARCH et SV supposent que la distribution conditionnelle des rendements .
est symétrique. Mé&me si cette hypothese permet de générer les queues épaisses obser-
vées pour la distribution inconditionnelle des rendements, il reste encore a expliquer la
variation temporelle et le signe des asymétries conditionnelles (asymétrie et effets de le-
vier) et les queues de la distribution conditionnelle des rendements (voir Hansen (1994)).
Les asymétries conditionnelles sont importantes car, pour la valorisation des options par
exemple, I’hétéroscédasticité conditionnelle uniquement ne suffit pas a expliquer ce fait
empirique important qui dans la littérature est qualifiée de sourire des options.

Au premier plan, nous développons un modele semi-affine a facteurs multiples, a
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volatilité stochastique dont les innovations sur les rendements sont asymétriques. Chris-
toffersen, Heston et Jacobs (2006) étudieht également un modele semi-affine des rende-
ments avec asymétrie variable dans le temps. Cependant, I’asymétrie conditionnelle dans
leur modele est liée de fagon déterministe a la variance conditionnelle, ce qui est égale-
ment le cas pour le modele a un facteur dans notre cas. Cependant, la volatilité et I’asy-
métrie conditionnelles dans leur modele subissent les mémes chocs que les rendements
puisqu’il s’agit d’une variante des modeéles GARCH. Au contraire, notre modéle a un
facteur est une variante des modeles a volatilité stochastique, qui nouvellement peuvent
étre étudiés dans un cadre affine ne supposant pas la normalité conditionnelle des ren-
dements. Mieux encore, dans notre cas a deux facteurs ou plus, nous brisons le lien
déterministe entre la volatilité et I’asymétrie conditionnelles qui se comportent dés lors
comme deux facteurs linéairement indépendants caractérisant de maniéres différentes la
dynamique temporelle des rendements et subissant des chocs de sources différentes de
celle générant les chocs sur les rendements.

Harvey et Siddique (1999) considérent également une distribution conditionnelle
asymétrique des rendements dont la volatilité et I’asymétrie conditionnelles sont deux
facteurs linéairement indépendants avec des dynamiques de type GARCH. Leur asymé-
trie conditionnelle autorégressive est une fagon simple de modéliser I’asymétrie condi-
tionnelle et fournit également une méthodologie d’estimation de I’asymétrie condition-
nelle qui est facile & mettre en oeuvre précisément par 1’applicabilité du maximum de
vraisemblance. Cependant, un défaut d’application, et non pas le moindre, de la mo-
délisation de Harvey et Siddique (1999) est que leur modele est non-affine et devient
couteux en temps d’exécution pour la résolution des modeles d’évaluation d’actifs fi-
nanciers, précisément a cause de la non-existence de formules analytiques entrainant
une résolution numeérique ou par simulations. Notre modele est une alternative conve-
nable au modele de Harvey et Siddique (1999). Nous modélisons I’asymétrie par une
combinaison affine de facteurs stochastiques linéairement indépendants. L’existence de
la fonction génératrice des moments offre un cadre de résolution analytique des modeles
d’évaluation d’actifs financiers permettant de gagner énormément en temps d’exécution.

Nous montrons aussi comment cette fonction génératrice des moments permet d’estimer
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le modele par la méthode des moments généralisée en se basant sur des conditions de
moments exactes. Dans notre cadre a facteurs stochastiques, nous distinguons I’infor-
mation de I’agent économique de celui de I’économétre et fournissons explicitement les
équivalents GARCH de la volatilité, de I’asymétrie et des effets de levier conditionnels.

L’ autre objectif est de développer et d’implémenter un algorithme pour le calcul ana-
lytique des moments inconditionnels exacts de la variable observable, dans un modele
semi-affine général en temps discret a facteurs multiples qui englobe notre modele. Une
étude similaire a été conduite par Jiang et Knight (2002) dans le cadre des processus
affines en temps continu. Ces auteurs dérivent de mani¢re analytique la fonction caracté-
ristique inconditionnelle conjointe du processus de diffusion vectoriel. Cependant, cette
question, bien que d’une importance & ne pas sous-estimer, n’a pas été examinée pour
les processus affines en temps discret. Premic¢rement, les formules analytiques pour les
moments inconditionnels permettent d’évaluer I’impact direct des parametres du modele
sur des moments inconditionnels critiques tels que r asymétrie, |’aplatissement excéden-
taire, I’autocorrélation des carrés des rendements et les corrélations croisées entre les
rendements et les carrés des rendements. Deuxieémement, les moments inconditionnels
en population peuvent €tre directement comparés a leurs contreparties empiriques. En,
cette évaluation s’avere indispensable dans un exercice de calibrage ou les parametres
du modele sont fixés de sorte a reproduire les valeurs échantillonales de certains de ces
moments inconditionnels. Plus important encore, cette comparaison entre moments en
populations et moments empiriques permet la mise en oeuvre d’une procédure d’esti-
mation du modele par la méthode des moments généralisée avec I’avantage inqualifiable
de se baser sur des conditions de moments exactes. Cette technique d’estimation permet
également d’évaluer I’habileté du modéle a répliquer les faits empiriques connus tels
que la persistance dans la volatilité des rendements a travers 1’autocorrélation des carrés
des rendements, I’absence d’autocorrélation des rendements, les effets de levier néga-
tifs a travers les corrélations croisées entre les rendements et les carrés des rendements,
I’aplatissement excédentaire positif et I’asymétrie négative. Chacun de ces faits stylisés
est pris en compte par une ou plusieurs conditions de moments particulieres faisant partie

du vecteur des conditions de moments utilisé pour I’estimation du modele.
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Nous appliquons cette nouvelle procédure d’estimation des modéles semi-affines
pour notre modeéle a un facteur, en utilisant les séries de rendements journaliers de plu-
sieurs portefeuilles d’actions et d’indices boursiers. Pour estimer les facteurs stochas-
tiques, nous appliquons une variante du filtre de Kalman pour les modéles non-linéaires.
Les paramétres du modele sont tous significatifs et les implications du modele sont frap-
pantes. D’abord, la distribution des rendements journaliers courants conditionnellement
a la volatilité courante est positivement asymétrique. De plus, cette asymétrie positive est
nécessaire pour reproduire des statistiques €échantillonales significatives telles que 1’asy-
métrie inconditionnelle et les corrélations négatives entre rendements courants et carrés
des rendements futurs. Ensuite, cette distribution positivement asymétrique engendre
€galement une asymétrie positive de la distribution des rendements courants condition-
nellement aux rendements passés. Ce résultat est contraire a certaines conclusions d’une
large partie de la littérature existante (Forsberg et Bollerslev (2002)). Finalement, lorsque
la distribution des rendements journaliers courants conditionnellement a la volatilité cou-
rante est contrainte a la normalité, alors le modele engendre une asymétrie négative de
la distribution des rendements courants conditionnellement aux rendements passés, ce
qui corrobore la littérature existante. Cependant, sous cette hypothése, le modele ne re-
produit plus I’asymeétrie et les effets de levier inconditionnels. En plus, les tests de res-
trictions sur-identifiantes rejettent le modéle contraint aux niveaux conventionnels tandis
que ces tests ne rejettent pas le modele non contraint générant une asymétrie condition-
nelle positive de la distribution des rendements courants conditionnellement aux rende-

ments passés.



CHAPTER 1

CONSUMPTION VOLATILITY AND THE CROSS-SECTION OF STOCK
RETURNS

Abstract

Interesting asset pricing properties of consumption volatility have been put forward
in studies, but they are mainly related to the time series dimension of asset returns. In
this chapter we characterize and measure consumption volatility and its impact-in the
cross-section of asset returns. Motivated by a reduced-form consumption-based general
equilibrium model with stochastic volatility, we document a strong relation between
macroeconomic uncertainty and stock returns. Our findings suggest that consumption
volatility risks are highly correlated with short and long horizon risk premia. Moreover,
these risks account for differences in risk premia across size and book-to-market sorted
portfolios. We find that long-run consumption volatility risk is economically important
even in the presence of long-run consumption level risk. In particular, we find that value
stocks pay high average returns because they covary more negatively with long-horizon
variation in consumption volatility than what other stocks do. We argue that long-run

volatility risk is relevant for interpreting differences in risk compensation across assets.

1.1 Introduction

The question what do (or should) investors care about? is central in Asset Pricing
and a variety of models continue to provide alternative answers. Investors face time-
~ varying investment opportunities and multiple sources of financial and macroeconomic
risks that they should hedge themselves against when constructing financial portfolios.
This chapter provides and supports the evidence that investors care not only about vari-
ation between future and present consumption levels, but also and perhaps mostly about
variation between future and present macroeconomic uncertainty. As in Bansal and

Yaron (2004), macroeconomic uncertainty refers to the volatility of aggregate consump-
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tion. We answer the following question: Are differences in risk premia across stocks due
to the heterogeneity in their exposure to consumption volatility risk? We find that port-
folios with high risk premia have high negative covariances with long-horizon variation
in consumption volatility. This is true for short-period investments as well as for long-
period investments. Therefore, this finding suggests that investors dislike assets paying
less for higher future macroeconomic uncertainty relative to the present. Consequently,
investors will demand a higher risk premium for holding such assets.

The critical consideration that consumption volatility varies over time is central in
this study. A recent literature emphasizes that the relationship between macroeconomic
uncertainty and investment opportunities is crucial to understand the behavior of asset
prices (see, for example, Bansal and Yaron (2004)). Kandel and Stambaugh (1990) find
that consumption volatility varies over the business cycle and is predicted by three finan-
cial variables.! That is, consumption volatility tends to be larger at the end of recessions
or immediately after them. Markov-Switching models estimated on consumption data
support that consumption growth volatility varies across different regimes (Kandel and
Stambaugh (1991), Bonomo and Garcia (1993), Lettau, Ludvigson and Wachter (2006)).
Modelling consumption volatility as a GARCH process, Bansal, Khatchatrian and Yaron
(2004) find a significant ARCH effect. They also show that this measure of consumption
volatility is predicted by the price-dividend ratio.

As choosing a portfolio is equivalent to buying various types of risks, asset pricing
models aim at identifying relevant ﬁnancial and macroeconomic risks that are priced, and
at determining if these risks justify the observed pattern across historical asset returns.
In other words, they investigate if a relationship between a group of asset returns and the
corresponding asset risks is monotonic, has the right sign and is economically significant.
Roughly speaking, these models try to explain the size and the value premia. The size

premium comes from the fact that stocks of firms with small capitalization (small stocks)

'Kandel and Stambaugh (1990) regress consumption volatility at the quarter ¢ on (a) the difference at
the end of quarter t — 1 between Moody’s average yield on bonds rated Baa and bonds rated Aaa, (b) the
difference at the end of quarter t — 1 between the Aaa yield and the yield on a U.S. Treasury bill with ma-
turity closest to one month, and (c) the dividend-price ratio at the quarter ¢ — 1 for the value-weighted port-
folio of NYSE stocks. The chi-squared statistic does not reject the hypothesis that consumption volatility
does not depend on the predictive variables.
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have historically paid higher average returns than those of firms with large capitalization
(large stocks). On the other hand, stocks of firms with a high ratio of book value to
market value (value stocks) have historically paid higher average returns than those of
firms with a low ratio of book value to market value (growth stocks): the difference is
known as the value premium.

Since a cross-sectional model with the level of consumption itself has a weak perfor-
mance in justifying differences across stock returns, a part of the literature continues to
deal with consumption by motivating higher moments of consumption as possible priced
factors. The volatility of consumption can provide additional information about con-
sumption that should be taken into account in consumption-based cross-sectional mod-
els. However, while some useful asset pricing implications of models involving time-
varying consumption volatility were put forward in earlier studies (Bansal and Yaron
(2004), Tauchen (2005), Eraker (2006)), the implications of this measure of macroeco-
nomic uncertainty have not been investigated for the cross-section of stock returns, and
then constitute the focus of this study.

Empirical studies of asset pricing .mode]s typically examine the cross-sectional im-
plications of macroeconomic factors for short-period investments by focusing only on
one-period returns. However, Bansal, Dittmar and Kiku (2005) show that the risk-return
relationship varies extensively as the investment horizon increases. We consider multi-
horizon investments where the investor stays in stocks from the beginning, then switches
to the safe asset and stays on it until the end of the investment period. We then study
how returns on such investments react to the variation in consumption level as well as the
variation in consumption volatility between the end and the beginning of the investment
period. We use a parametric measure of consumption volatility inferred from a GARCH
specification. We examine cross-sectional implications of each of these macroeconomic
factors for short and long-period holding returns. We use the standard measure of the
asset risk, the covariance between an asset’s payoff and the risk factor.

Plotting volatility risks against horizon across multihorizon portfolios sorted on book-
to-market, dividend-to-price, earnings-to-price and cash flows-to-price ratios, we find

that, for various stock holding periods, there is a significant difference between portfolio
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risks as the investment horizon increases. Moreover, these risks exhibit a pattern that
generally matches that of risk premia across these dimensions. This means that growth
stocks have a lower volatility risk than value stocks and the volatility risk of the mar-
ket portfolio lies between these extreme risks. Moreover, for most of the investment
horizons, consumption volatility risk is more correlated with multiperiod returns on the
Fama and French size and book-to-market sorted portfolios than consumption level risk.
As we show that portfolios with high risk premia covary more negatively with variations
in consumption volatility, we further ask whether this explains their higher average re-
turns. We estimate linear models which link risk premia to covariances of returns with
factors and find that the price of long-horizon volatility risk is negative and significantly
estimated in the cross-section of multiperiod returns.

The two macroeconomic factors that we consider in this chapter are theoretically
motivated by a consumption-based model with a representative investor who values its
payoffs through a stochastic discount factor that depends log-linearly on both variations
in consumption level and variations in consumption volatility. We further show that it is
the case in an affine reduced-form general equilibrium model with stochastic volatility
as in Bansal and Yaron (2004) and Tauchen (2005). While the logarithm of the stan-
dard SDF of the power utility only depends on changes in consumption level, that of
the recursive utility depends additionally on changes in consumption volatility through
consumption valuation ratios.

This chapter belongs to the recent literature that examines whether stock returns can
be priced by their exposure to long-run risks. Long-run risks appear to be a key concern
in asset markets (Bansal and Yaron (2004), Bansal, Dittmar and Kiku (2005)). Parker and
Julliard (2005) consider long-run consumption risk, showing that ultimate consumption
risk of assets, measured by the covariance between returns and the long-horizon con-
sumption growth, can account for the value premium. In addition, we consider long-run
volatility risk, measured by the covariance of returns with the ‘long-horizon volatility
variation. We show that this risk is priced in financial markets and can also account for
the value premium.

This chapter also relates to the growing literature that includes volatility factors in
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cross-sectional asset pricing models. The volatility of the aggregate stock market return,
as well as the volatility of aggregate consumption, provides a measure of macroeco-
nomic uncertainty through the link between financial markets and the real économy.
However, it is not directly related to macroeconomic fundamentals. Ang et al. (2006)
show that a nonparametric proxy of market volatility is a cross-sectional stock pricing
factor.? In a parametric approach, Adrian and Rosenberg (2006) model the market return
as a GARCH process and decompose its volatility into a short and a long-run compo-
nent. They find that these volatility components have negative and significant prices
of risk in the cross-section of stock returns. Their work can be viewed as using addi-
tional information provided by state variables in the market return process to improve
the CAPM, while we use additional information provided by state variables in the con-
sumption growth process to improve a cross-sectional consumption-based asset pricing
model.

Finally, this chapter builds on work that examines the implications of higher mo-
ments of consumption for the cross-section of asset returns. Using household consump-
tion data, Jacobs and Wang (2004) find that the variance of the cross-sectional distri-
bution of consumption growth has some potential to explain asset risk premia. Their
result points out that assets with high negative covariance with consumption dispersion
also have high returns. We depart from the work of Jacobs and Wang (2004) in that
we examine the risk of the volatility of aggregate consumption whereas they focus on
the risk of the dispersion in idiosyncratic consumption. Second, as they use microdata to
construct risk factors, we use macrodata in this chapter. Third, factors differ in what they
refer to. While the variance of the cross-sectional distribution of consumption growth
is mostly a degree of heterogeneity across individuals, consumption volatility is mostly
the degree of the imprecision that affects agents’s expectations about future consump-
tion. Fourth as we mention earlier, our factors incorporate long-run risks in consumption
volatility. Finally, their work relates to the literature on market incompleteness, whereas

our setup rests upon the complete markets assumption that underlies the representative

2To proxy innovations in aggregate market volatility, Ang et al. (2006) use changes in the VIX index
from the Chicago Board Options Exchange (CBOE).
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agent framework.

The rest of the chapter is organized as follows. Section 1.2 motivates and discusses
the cross-sectional risk-return relationship involving different investment horizons and
stock holding periods. Section 1.3 presents the data, establishes relevant empirical facts
and discusses empirical risk-return relationships through cross-sectional correlations be-
tween mean excess returns and volatility risks. Section 1.4 estimates risk prices and pro-
vides additional empirical findings and diagnostics. Section 1.5 rationalizes the results

from the perspective of existing asset pricing equilibrium models. Section 1.6 concludes.

1.2 Moetivating Consumption Volatility Risk in the Cross-Section of Asset Premia

The standard consumption-based asset pricing theory states that an investor cares
only about the level of its consumption at each period in time and should then invest
in stocks in consequence. However, empirical tests show that the comovement between
one-period asset payoffs and one-period consumption growth fails to explain differences
in one-period average returns across assets. The literature has grown so far to address
the issue of improving the ability of consumption-based models in understanding risk
compensations from asset exposures to good and bad news about consumption. These
news can be related either to the consumption level or to time-varying consumption

moments.

1.2.1 An Underlying Economic Model

To explain the aggregate stock market behavior and asset pricing puzzles, Bansal
and Yaron (2004) provide a version of the reduced form general equilibrium model in
which investors have concerns about risks from the level of consumption growth, from
changes in consumption growth forecasts and from changes in consumption volatility.
This induces a time-varying equity risk premium which is associated with conditional
covariances of return with innovations in these state variables. In their model, if the rep-
resentative agent prefers early resolution of uncertainty, has both the coefficient of risk

aversion and the elasticity of intertemporal substitution greater than one, then volatility
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carries a positive risk premium. This adds to the growing set of asset pricing properties
of consumption volatility which have so far been mainly established in the time series
dimension of asset returns.

We assume a modified version of the Bansal and Yaron (2004) model where agents
have concern about consumption level and consumption volatility only. This follows
the literature that assumes a long-term investor with recursive preferences (Kreps and
Porteus (1978), Epstein and Zin (1989) and Weil (1990)) and specify the dynamics of
economic endowments. The current continuation value of investor’s utility evolves ac-

cording to:

Vi = {(1—6)63_-%+6[<%’,(v,+1)]“$}"w if y# 1 (1.1)

= )" R V)P ity=1, (1.2)

1

where Z; (V1) = [E (Vt:y) | %] ™7 and #: is the information set of the investor at
time ¢. The parameter of risk aversion is 7, the elasticity of intertemporal substitution
(EIS) is y, the subjective discount factor is & and the parameter 6 = (1—7) (1—y~!) -
helps for many interpretations.

Epstein and Zin (1989) show that for such an investor, consumption and portfolio
choice induces a restriction on the gross return on any asset i that is given by the Euler
equation:

'E[Mt,t+1Ri,t+1 | /t] = 1, (1.3)

where M, ;1 is the standard SDF that values consumption as well as any financial payoff

one period ahead and is given by:

o\ 1 e

[
M =82 . 1.
41 ! ( C, Rurrt (1.4)

Ry, ;11 is the gross return to the total consumption claim. The logarithm of the Epstein-
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Zin SDF is given by:
0
My = 6Ind — EAC,+] - (1 - e) Fuwit+1,

where ry; 1 =InR,,; 1. The log-linearization of the investor’s budget constraint, de-

fined by the Campbell and Shiller (1988)’s approximation of the log-return around a

suitable benchmark is:
1
Tyt 41 =P0+EX: — X1 +Acy, (1.5)

where x; = InC, — InW, is the log consumption-wealth ratio.?

The standard SDF of the power utility does not depend on consumption volatil-
ity even if consumption growth dynamics contains time-varying volatility. It only de-
pends on the level of consumption growth. On the contrary, an investor with recursive
preferences cares about consumption volatility. For such an investor, the intertemporal
marginal rate of substitution depends on consumption valuation ratios whose movements
can be related to that of consumption volatility (see Bansal, Khatchatrian and Yaron
(2004)).

According to (1.4), since consumption growth is observable and the return to total
wealth is not, any state variable that is suspected to have a power to price asset returns
and consistently with the general equilibrium framework should be linked to the un-
observable return. In order to establish this link, researchers assume that equilibrium
consumption together with such state variables follow an exogenous model. Here we

assume that consumption growth has the following dynamics:

Aciy1 = Ue+ & (b — 1y) + \/}Ttutﬂ (1.6)
b1 = (1= ) Uy + Ophy + G141, (1.7)

3The constant py is given by:

o (Lo22) 1m0 e
P P1
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where (441, n,+1)T ~ AN . Z.9(0,I). The gaussian dynamics (1.7) for the volatility of
aggregate consumption is also considered by Bansal-and Yaron (2004). To the contrary,
we do not treat expected consumption growth as a separate state variable in our speci-
fication since it is likely to capture similar long-run risks in consumption level that are
already captured by consumption growth,* and given that we essentially wish to maintain
a balance between level and volatility risk sources.

Since shocks to consumption and consequently to total investor’s wealth and its
marginal rate of substitution are governed by only one state variable which is the con-
sumption volatility, then the log consumption-wealth ratio has the form x; = ®g + O,k

and the logarithm of the SDF (1.8) becomes,

h
ny 1 =P — PclACi 11— Pa (hr—H - —t>, (1.8)
e, e

where py =0Ind —(1—-6) (po + (1 — pl)pf]d)o) is a constant with no special interest
at this stage’. The discount coefficient p; has many asset pricing interpretations, among
which those found in Campbell and Shiller (1988), Campbell (1993, 1996) and Campbell
and Vuolteenaho (2004). These papers highlight the link of the coefficient p; to the
average consumption-wealth ratio generated by a portfolio strategy of a mutual-fund
investor who saves a fraction of his mutual fund every period to finance its consumption.

Since p; /2 | as the frequency becomes high, the term (h,+1 —pl_]h,) will behave as
Ah; . and the logarithm of the SDF will be linear in consumption growth and changes in
consumption volatility, where p. = ¥ is the standard price of level risk measured by the
risk aversion parameter, and py = — (1 — 8) @y is the price of volatility risk. The loading

of the consumption-wealth ratio on consumption volatility and the price of volatility risk

“Note that expected consumption growth is usually empirically proxied by a weighted combination of
the lags of consumption growth (see also Bansal, Dittmar and Lundblad (2004)), for example if consump-
tion growth is an ARMA(I,1).

5The constant @y is given by:

P 1 B o 1,
@) = T—pr {Po-l-lnﬁ-i-(l W)(Hc Ocn) — (1 ¢h)#h¢h+260hq)%|~
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are given by:

& =P (1-3) [+ 30-9)] (19)
ph=(1_”+¢h)(y—lw) [¢c+%(1—7)}- (1.10)

In the asset pricing literature, authors seem to agree that Y > 1, whereas there is still
no consensus on Y > 1 and y~! < 7. Then, the sign of the parameter 6 and its position
with respect to one are still crucial for asset pricing results. Bansal, Khatchatrian and
Yaron (2004) argue that a rise in economic uncertainty leads to a fall in asset prices. In
particular the total investor’s wealth will fall due to an increase in consumption volatility.
To capture a positive relation between consumption volatility and consumption-wealth
ratio, the coefficient @ that drives this effect should be positive. On the other hand,
only the condition y~! < 7 is required for the volatility risk price to be negative and
this can still be the case if y < 1. When the EIS is equal to one, @}, is equal to zero
and the consumption-wealth ratio is constant. In this case, the Campbell and Shiller’s
approximation is exact with p; = & and x, = In (1 — §).%

While this reduced-form general equilibrium model suggests that consumption volatil-
ity could be a cross-sectional pricing factor, the question of how it affects the cross-
section of expected returns have received less attention. Stocks with different sensitiv-
ities to the volatility of aggregate consumption should have different expected returns
as changes in macroeconomic uncertainty induce changes in investment opportunities.
Investors’ expectations about future consumption are imprecise, and the degree of that
imprecision is measured by consumption volatility. Since consumption is the claim on
total investor wealth, the imprecision about expected future consumption also reflects

the uncertainty about future wealth. In that sense, movements in consumption volatility

The logarithm of the risk-free rate implied by the model is given by rfi+1 = 41 — qiphy where:

1
g1 = —p1 + pe (e — Octn) + (1 — ¢p) pupy — 50;%172

1 1
qn = (p—l - ¢h) pr+ EPZ-
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provide additional news about consumption that are likely to influence investment de-
cisions. For this reason, consumption volatility is suspected as empirically relevant for
explaining asset returns.

An investor chooses intertemporally its portfolios to face as better as he can bad
states of the economy. As well as such an investor dislikes low consumption levels,
he also dislikes high uncertainty on future consumption levels. We examine these two
concerns of investors by analyzing empirical risk-return relationships involving asset

returns and both consumption level and consumption volatility risks.

1.2.2 Valuing Multiple-Horizon Payoffs in the Cross-Section

The failures of the standard consumption-based asset pricing theory in empirical tests
brought to researchers to examine relationship between multiperiod returns rather than
one-period returns, or long-horizon changes in macroeconomic variables rather than one-
horizon changes. Parker and Julliard (2005) show that differences in exposure of one-
period stock returns to long-horizon consumption growth account for cross-sectional
differences in stock risk premia. They argue that slow adjustment of consumption to
return data is a reason of why contemporaneous consumption risk fails to explain ex-
pected one-period stock returns. While empirical studies typically deal with one-period
returns, Bansal, Dittmar and Kiku (2005) study the relation between consumption risk
and stock return when the stock holding period is the same as the investment horizon.
They show that this risk-return relationship varies extensively by investment horizon,

’ and that consumption risk almost converges to the long-run relation between dividend
and consumption as the horizon increases. We also vary the investment horizon and
work directly with returns.

We cohsider that N stocks denoted i = 1,..,N and the safe asset f are traded in the
economy. The one-period return of investing the asset i from ¢+ j — 1 to ¢ + j is denoted
R;;1j,j > 1. The total investment horizon is denoted S. An S-period investment in this
study starts with a one-period investment in the first period and payoffs are reinvested at
the beginning of each of the (§— 1) subsequent periods. We are interested in risk-return

relationships involving returns on long-horizon investments which consist in investing
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in the same stock for the first periods and then reinvesting payoffs in the safe asset
for the remaining periods. Given an investment horizon S, the gross return on such an

investment can be written:

k S
Riks = [T Risrj TT Rpsxj (1.11)
Jj=1 Jj=k+1

Rit,k

and defines the S-period gross return formed by investing from time ¢ in the asset i for
the first k periods, and then reinvesting its payoffs from date ¢ 4 k in the safe asset, for
the remaining (S — k) periods.

The excess return with respect to the return on the investment which consists in
staying in the safe asset for the whole period is defined by th,k, s = Rit ks — Rpr 5. Note
that R, g is not the return on a bond that bought at time ¢ will deliver a unit consumption
at time ¢ +S. An investor who buys at time ¢ an S-horizon investment plan consisting to
stay in the safe asset for the whole period is now making a risky decision if § > 1, since
future one-period risk-free rates Ry, ;, j > 1 are not known at time ¢ and are affected by
macroeconomic factors during the investment period. Ry, s is unknown at time ¢ and is
not the S-period risk-free rate from 7 to ¢ + S.

The single horizon Euler condition (1.3) implies the multiple horizon Euler condi-

tion:
E M +sRixs| 2] =1 (1.12)

where M; s = lg[M,+j_1,,+j is the multiperiod SDF and R; ;s a compound long-
horizon return defTHde in (1.11). The subscript of M, s indicates that it is pricing S-
period holding returns from time ¢ to time ¢ + S.

Because what guides investors seems to be the comovement between asset payoffs
and risk factors, it is appealing to measure the risk for holding an asset as the covariance
between the payoff and the risk factor. The sign of this covariance indicates if the asset

and the factor move in the same or opposite direction, whereas its magnitude quantifies
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the degree of this comovement. One can already observe that the logarithm of M, ;. s,

my s =logM, s =~ Sp1 — pcAcys — prlhy s, (1.13)

features two main horizon-dependent macroeconomic risk factors.

The first factor,

S
Acys =cris—c = Z Aci+ j,
j=1

is the variation in the level of consumption between the end and the beginning of the
investment period and also equals the future S-horizon consumption growth. The co-
variance of this factor with an asset return measures the S-level risk, or the ultimate
consumption risk of the asset if k = 1, as termed in Parker and Julliard (2005). These au-
thors argue that ultimate consumption risk is a better asset risk measure than the standard
consumption risk in the CCAPM, for example if consumption reacts with lags to stock
returns. Alternatively, the link between returns and future long-horizon consumption
growth can be simply due to the fact that investors are concerned with long-run risks in
consumption. For a given §, the cross-section of S-level risks for k-period holding stocks

is defined by the vector:

-
Cov (Ac,,s,Rﬁ’k’S) = (Cov (Ac,,s,R‘f,kS) - - - Cov (AC!,S’RJCMS)) . (1.14)

An investor would dislike an asset which the excess return has a positive covariance
with the variation in the level of consumption. Such an asset pays less in bad states of
the economy characterized by low future consumption level relative to the present, and
the investor will require a relatively high premium for holding that asset. On the other
hand, the investor will dislike the asset i; more than the asset i; in a situation where both
covariances are positive, and the covariance of asset i; has the low magnitude. All other
things being equal, asset i; will have a more higher required level risk premium than
asset ij.

By a similar reasoning, an investor would prefer an asset which the excess return

has a negative covariance with the variation in the level of consumption. Such an asset
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pays more in bad states of the economy characterized by low future consumption level
relative to the present, and-the investor will be able to give up a relatively high premium
for holding that asset. On the other hand, the investor will prefer the asset i more than
the asset i5 in a situation where both covariances are negative, and the covariance of asset
i1 has the high magnitude. All other things being equal, asset i, will have a more lower
given up level risk premium than asset i;.
The second factor, S
Aht,S =hs—h = z Aht+j:
j=1

is the change in the volatility of consumption between the end and the beginning of
the investment period. By similarity with the consumption level case, we define its
covariance with an asset return as the S-volatility risk of the asset. The S-horizon volatil-
ity variation is relevant if investors have concerns about long-run risks in consumption
volatility. Furthermore, if consumption level reacts with lags to returns, to some ex-
tent it should also be the case for consumption volatility. In this case, as S increases,
the S-volatility risk would provide the better measure of the volatility risk embodied
in asset payoffs. The innovation of this chapter is to show that, in addition to long-
horizon consumption growth, long-horizon variation in consumption volatility captures
the cross-sectional dispersion of stock returns as well, and that long-run volatility risk is
economically important even in the presence of long-run consumption risk. For a given
S, the cross-section of S-volatility risks for k-period holding stocks is defined by the

vector:

.
Cov(Aht,s,R,e“k’s):(Cov(Aht,s,Rﬁt’k’s) C e Cov (M5B i)) o (119)

An agent who faces an increase in macroeconomic uncertainty would fear the reper-
cussion on its future wealth and then, he would like to increase precautionary savings.
This investor would dislike an asset which the excess return has a negative covariance
with the variation in the volatility of consumption. Such an asset pays less in bad states of

the economy characterized by high future consumption volatility relative to the present,
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and the investor will require a relatively high premium for holding that asset. On the
other hand, the investor will dislike the asset i, more than the asset i; in a situation
where both covariances are negative, and the covariance of asset i1 has the low magni-
tude. All other things being equal, asset i, will have a more higher required volatility
risk premium that asset ij.

By a similar reasoning, an investor would prefer an asset which the excess return
has a positive covariance with the variation in the volatility of consumption. Such an
asset pays more in bad states of the economy characterized by high future consumption
volatility relative to the present, and the investor will be able to give up a relatively
high premium for holding that asset. On the other hand, the investor will prefer the
asset i1 more than the asset i in a situation where both covariances are positive, and the
covariance of asset i1 has the high magnitude. All other things being equal, asset iy will
have a more lower given up volatility risk premium that asset i;.

The risk premium that an investor will require to stay the first k periods in the stock
i and the remaining (S — k) periods in the safe asset, instead of staying in the safe asset
for the whole period, is defined by the expectation of the corresponding excess return:
E [ ft,k,s]' For a given S, as the risk-free rate part is common for all returns Ry  s,i =
1,..,N, the cross-section of average k-period stock holding returns can be defined by the

vector:

ERs) = (B[R] -+ E[Riuss]) (1.16)

1.2.3 Level and Volatility Risk-Return Relations

We measure the risk-return relationship at each investment horizon S and for each
stock holding period k, through cross-sectional correlations between the vector (1.16) of

k-period stock risk premia and the vectors of S-level and S-volatility risks, (1.14) and
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(1.15) respectively. These cross-sectional correlations are denoted:

pre (S,k) = Corr (E [Rf’,,k’S] Cov (Ac,,S,Rf’,,k,S)) (1.17)

pri(8,) = Corr (E RS 5] Cov (Ah,,S,Rf’,’k,S)) (1.18)

According to the theory, the average return of an asset is higher the more positively it co-
variates with variations in consumption level, and the more negatively it covariates with
variations in consumption volatility. Moreover, the more negatively asset payoff covari-
ates with variations in consumption level, and the more positively it covariates with vari-
ations in consumption volatility, the lower will be the asset risk premium. Thus, p,. (S,k)’
and p,;, (S, k) are expected to be respectively positive and negative, and their magnitudes
will assess how important are relationships between k-period holding stock returns and
S-horizon variationé in consumption level and in consumption volatility respectively. An
empirical analysis of these cross-sectional correlations is provided in Section 3.5.

Since the square of the correlation between the explained and the explicative vari-
ables measures the R-squared of the projection of the former onto the latter, we note that
[0rn (S,k)]2 also measures the proportion of variations in risk premium across stocks,
which is explained solely by consumption volatility risk. Similarly, [p,c (S,k)]* also
measures the proportion of variations in risk premium across stock, which is explained
solely by consumption level risk.

Since equation (1.12) is also equivalent to:

M iyis

E[R 5| =Cov| —n s Reus |0 (1.19)
[Mt,t+s]

one can use equation (1.19) to derive the horizon-dependent relationship between risk

premium and covariances between returns and the two main macroeconomic factors

motivated by our underlying model. It suffices to replace the SDF M, ;s by one of its
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log-linear approximations ﬂtjt_f_ s where:

Misis

—_— =] + +e—F - . 1.20
E [Mz,t~4-S] BS (mt,t S [mr,r f S’]) ( )

The approximated SDF has the same mean as the true SDF and the coefficient Sg would

be positive to ensure a positive relationship between the SDF and its approximation.’
Substituting (1.20) in (1.19) yields:

E[RS 1] = pesCov (Encs5:Ross) + PhsCov (BanrsiRogs)  (123)

where &5, s = Ac; s — E [AC;)S} and Eppy s = Ay s — E [Ah;}g} are respectively the de-
meaned S-horizon variations in consumption level and in consumption volatility, and

Pc,s and pj s are cross-sectional level and volatility risk prices given by:

Pe,s =YPs and pys = pufs. (1.24)

These prices are respectively positive and negative, and constant across horizons if By is
a positive constant. From (1.10) it is straightforward that the magnitude of volatility risk
price increases for a more risk-averse investor and/or a more persistent volatility process.

Equation (1.23) postulates that investors demand or give up both multihorizon con-
sumption and volatility risk premia to invest in stocks. Each premium is the product of
the quantity of the associated risk with a parameter that measures the price (or the com-

pensation) for a unit risk. Since investors require a positive risk premium to hold assets

"The special case Bs = 1 is simalar to the SDF approximation of Yogo (2005). Two other special cases
are given by:

1 Var M, ) ~
b= i Var[[m”':j]} if Var [M,},H] = Var M, ;.5] (1.21)
N t,t
Cov(M, ~ 2
Bs = E[Ml - ov‘(]a;,[z;smi;ij) if \/E Ir(M[JJ,_S_M,[J,_s) J is minimum. (1.22)
.+ t .+

It can be shown that the values of s in special cases (1.21) and (1.22) are greater than one so that the
magnitudes of cross-sectional level and volatility risk prices are respectively greater than the magnitudes
of the risk aversion y and the loading pj.
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that they dislike and are able to require a negative risk premium (give up a positive risk
premium) to hold asset that they prefer as discussed earlier in this section, from an eco-
nomic point of view, the price of the volatility risk should therefore be negative and the
price of the level risk positive. Intuitively, the coefficients p. s and pj, 5 are expected to
be positive and negative respectively. In an empirical study, Section 1.4 provides details
for estimating S-level and S-volatility risk prices in the two-factor cross-sectional lin-
ear covariance model (1.23). It then analyzes the estimation results and provides some
conclusions.

Parker and Julliard (2005) assume an investor whose intertemporal marginal rate of
substitution depends solely on the level of consumption and they essentially investigate
cross-sectional relations like (1.23), with £k = 1 and without S-volatility risk. Bansal,
Dittmar and Kiku (2005) also deal with similar cross-sectional relations which do not
involve S-volatility risk, but in the case k = S. However, they decompose the S-level
risk into a trend risk and a business cycle risk, which they show are compensated by ap-
propriate multiperiod returns. In addition, since the volatility of aggregate consumption
varies in relation with the business cycle, as stated in Kandel and Stambaugh (1990), it
could be said that the S-horizon variation in consumption volatility appears to be a busi-
ness cycle risk factor, as well as the S-horizon variation in consumption level as shown in
Parker and Julliard (2005). This issue is also empirically investigated in the next section.

At this stage, S-volatility risks cannot be computed in an empirical study since con-
sumption volatility is unobservable. To measure this risk from the data, we use a para-
metric measure of consumption volatility provided by a GARCH of Heston and Nandi
(2000) with no leverage parameter. That is, we extract consumption volatility from the

following dynamics:

Aciyr = He+0c (b — )+ v/t (1.25)
bt = (1= 0p) i+ Ok + op (w2 — 1) (1.26)
where u, 1 ~ A £ 2(0,1). We further denote by 7 the vector 7t = (U, ¢c, Un, On, 0';,)T

and let @y, = (1 — ¢y) Uy — Op.
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This GARCH specification, although considered for empirical purposes because of
its easy estimation and filtering, shares some properties with the stochastic volatility in
the underlying equilibrium model that motivates this study. Both volatility dynamics
lead to an affine model and are such that the conditional leverage effect is zero and the

volatility of volatility is constant.

1.3 Cross-sectional Empirical Facts

1.3.1 Consumption and Return Data

We use quarterly déta for consumption of nondurable and services from 1947:1 to
2005:2, taken from the NIPA tables available from the Bureau of Economic Analysis.
The associated PCE deflator is further used to convert nominal returns into real returns.
We estimate the Heston and Nandi (2000) GARCH(1,1) for consumption growth.? Esti-
mation results for this GARCH fit over the entire sample and over the subsample starting
in 1963:3 are displayed in Table 1.1. The GARCH and ARCH coefficients of the dy-
namics are both significant and corroborate the central assumption that consumption
volatility is time-varying. Bansal, Khatchatrian and Yaron (2004) estimate a standard
GARCH(1,1) for consumption growth and find similar conclusions.

We further use parameter estimates and the extracted consumption volatility to com-
pute estimates of demeaned consumption and volatility factors.” The time series of
long-horizon changes in consumption volatility is plotted in Figure 1.1 for horizons of
four and twelve quarters, corresponding to one-year and three-year changes. The fig-

ure shows that during business cycle recessions, long-horizon changes in consumption

8We estimate the model with ¢, = 0. The estimation of ¢, leads to a negative and insignificant estimate.
We notice however that this does not influence the empirical facts documented in this section.
We compute empirical volatility risk factors Ak, s () from the recursion:

ho (%) = i, and ¥t >0, (1.27)

= N ~\2
(AC,»+] — ﬁc - ¢C (h" (7[) - Juh))
h (7)

by () = (1 = 5;.) i+ Oxh: (%) + O -1 (1.28)

where 7 is the consistent maximum likelihood estimator of x.
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Table 1.1: GARCH Fit of Consumption Growth.
This table presents results for the estimation of model (1.26) over two samples considered in
previous studies.

He L On O
M 2 3) “ &)
A. Sample 1947:2 - 2005:2
Estimate 0.00544 2.698E-5 0.87552 4.430E-6
Std.dev. 0.00031 5.888E-6 0.05799 1.340E-6
B. Sample 1963:3 - 2005:2
Estimate 0.00568 1.954E-5 0.82368 3.502E-6
Std.dev. 0.00034 4.308E-6 0.09328 1.202E-6

volatility increase as macroeconomic uncertainty becomes more and more higher for the
future relatively to the present. Figure 1.2 shows a similar plot for long-horizon changes
in the level of aggregate consumption and confirms a permanent fall in the long-run
economic growth throughout recessions.

We also use return data constituted with four groups of 5 portfolios sorted on divi-
dend yield, book-to-market, earnings-to-price, and cash flows-to-price ratios, as well as
the 25 Fama and French size and book-to-market sorted portfolios. Returns are monthly
and span the period 1946:4 to 2005:8. They are aggregated to obtain quarterly returns.
The attractiveness of these sets of portfolios in empirical studies is due to the fact that
stocks show significant differences in their average excess returns.

Following Parker and Julliard (2005), we stop the sample of single-period returns
at 1999:4, so that the horizon § in multiperiod returns and consumption and volatility
factors can vary up to five years while maintaining the same sample of returns for the
study as we vary S. That is, we use all available consumption and volatility data up to the
fourth quarter of 1999 plus § quarters, with § = 23 corresponding to the second quarter
of 2005. For all portfolios, we compute sample measures of mean returns and level and
volatility risks defined in Section 1.2.2.% For brevity we present these measures only
for representative portfolios and horizons.

Panel A of Table 1.2 shows sample estimates of mean excess returns, covariance

10We provide sample estimates of E [y,] where y, is Rl s (R‘”k’S —E [Rf’k,s]) (Aci s — E[Ac5]) and

!
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Figure 1.1: Changes in Consumption Volatility and NBER Recessions.
This figure displays time series of changes in consumption volatility. The dashed line displays
Ah; s for S > 1, the solid line displays Ah, ;. Also displayed are overall trends of these changes

during NBER recessions.
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Figure 1.2: Changes in Consumption Level and NBER Recessions.
This figure displays time series of changes in consumption level. The dashed line displays Ac; s

for § > 1, the solid line displays Ac; ;. Also displayed are overall trends of these changes during
NBER recessions.
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between excess returns and changes in consumption level and covariance between excess
returns and changes in consumption volatility, for single-period investment in stocks and
for the growth (labeled L), the neutral (labeled 3) and the value (labeled H) stocks sorted
across the earnings-to-price dimension. Panel B shows the same estimates for the same
portfolios sorted across the cash flows-to-price dimension. For each set of portfolios,
estimates of the difference between these statistics for the two extreme portfolios are
also displayed (in rows labeled H-L).

The data evidence comparable spreads across the two portfolio characteristics; a
single-period investment in the highest earnings-to-price firms over height periods pays
on average a real quarterly excess returns of 2.65%, whereas in the lowest earnings-to-
price firms it pays on average 1.67% per quarter. The highest earnings-to-price firms
have more positive covariances of returns with changes in consumption level, and more
negative covariances of returns with changes in consumption volatility than the lowest
earnings-to-price firms. Except for average excess returns of these portfolios and level
risk for the value portfolio, these statistics are at most slightly significant for single-
period returns whereas it is the contrary regarding multiperiod returns over the same
sample. Table 1.3 shows the same estimates as for Table 1.2 for multiperiod investment
in stocks (full-period). In addition to observed positive spreads for average excess returns
and level risk on one hand, and negative spread for volatility risk on the other hand
between extreme portfolios, estimates of these spreads are significant for excess returns
and volatility risk for various horizons considered in the table. This may announce at this
stage the importance of explaining differences in stock returns at horizons more than one
quarter.

We finally present average excess returns and risk measures for less aggregate port-

(Rf.k.s —-E [Rfks} ) (Ahy s — E [Ahy g]). Inference is conducted via the central limit theorem:

r s
ﬁ(;;y,—m]) o (0, 5 efon-ebon-en))

f=—o

and estimates of asymptotic covariance matrices are calculated using the Newey-West procedure with §
lags. While the error in the estimates of the second and the third occurrences of y, are affected by the
error in the mean, we do not account for in the inference. Indeed, this effect is negligible if the mean is
well-estimated, meaning that the corresponding error is small enough.



Table 1.2: Estimates of Excess Returns and Level and Volatility Risks for Single-Period Growth and Value Portfolios.
The entries of the table are sample estimates of E[y,] where y, is successively Rf s, (Rf’lgs —E [Rf,l,s]) (Acy.s —E[Acs]) and

10* (Rf’hs —-E [Rf’lgs] ) (Ah, s — E [Ah, 5]). Standard errors are given below the estimates and calculated using the Newey-West procedure
with S lags.

S=1 ' S=4 S$=38 S=12 S=16
R Rx. REn R REn REM R RN REM R RE. REy R RGN R°Emn
Panel A. Earnings-to-Price Sorted Portfolios.

L 154 0.0061 0.034 1.57 0.0203 -0.028 1.62 0.0236 0.093 1.66 0.0151 0.035 170 0.0049 -0.013
0.80 0.0037 0.045 0.77 0.0104 0.076 0.69 0.0137 0.103 0.64 0.0118 0.114 0.64 0.0125 0.150
3 1.61 0.0046 0.046 1.64 0.0128 -0.052 1.70 0.0250 0.044 174 0.0218 -0.019 1.79 0.0151 0.009
0.65 0.0031 0.043 0.62 0.0082 0.072 0.58 0.0109 0.075 0.55 0.0112 0.090 0.53 0.0117 0.105
H 2.60 0.0070 0.053 265 0.0214 -0.170 2.71 0.0386 -0.101 2.78 0.0406 -0.118 2.85 0.0282 -0.115
0.76 0.0034 0.047 0.73 0.0098 0.107 0.68 0.0131 0.112 065 00122 0.118 063 0.0135 0.112
H-L 1.07 0.0009 0019 1.08 0.0011 -0.143 1.09 0.0150 -0.194 1.12 0.0255 -0.153 1.15 0.0232 -0.101
0.54 0.0027 0.037 0.61 0.0077 0.068 063 00118 0.067 0.64 0.0100 0.070 0.63 0.0128 0.098

Panel B. Cash Flows-to-Price Sorted Portfolios.
L 1.68 0.0061 0.045 1.72 0.0210 -0.036 1.77 0.0255 0076 181 0.0191 0.035 185 0.0094 -0.035
0.81 0.0037 0.047 0.78 0.0105 0.081 0.71 0.0138 0.109 0.69 0.0118 0.119 069 0.0128 0.151
3 1.82 0.0048 0.049 1.86 0.0149 -0.044 192 0.0276 0.049 198 0.0248 0.001 2.03 0.0152 0.001
0.68 0.0031 0.041 0.67 0.0091 0.067 0.62 0.0127 0.079 0.58 0.0132 0.091 0.59 0.0132 0.110
H 266 0.0076 0.037 270 0.0217 -0.120 2.77 0.0343 -0.025 2.83 0.0329 -0.084 2.89 0.0227 -0.085
0.67 0.0029 0.040 0.65 0.0084 0.092 0.59 0.0111 0.088 0.54 0.0112 0.098 0.52 0.0128 0.089
H-L. 099 0.0015 -0.008 0.99 0.0007 -0.084 099 0.0089 -0.101 1.02 0.0139 -0.118 1.04 0.0134 -0.050
0.51 0.0024 0.030 0.57 0.0076 0.067 0.60 0.0116 0.071 0.61 0.0104 0.080 0.61 0.0123 0.100

LE



Table 1.3: Estimates of Excess Returns and Level and Volatility Risks for Full-Period Growth and Value Portfolios.

The entries of the table are sample estimates of E[y;] where y, is successively Rf¢g, (Rf’S:S—E [Rf,s,s]) (Ac s —E[Acs]) and

104 (Rf’S’S —-E [Rre.s,s]) (Ah; s — E [Ah, 5]). Standard errors are given below the estimates and are computed using the Newey-West pro-

cedure with S lags.

S=4 S=8 S=12 S=16 S$=20

R®  R¢¢p.  RCan R® Ry, Réa R® REn.  REan R®  R°6r.  REpn R®  Réx Ran

Panel A. Earnings-to-Price Sorted Portfolios. '
L 593 0.0417 0.123 10.18 0.0558 0458 1393 0.0104 0.277 1799 -0.0100 0.018 23.38 -0.0960 -0.331
243 0.0366 0.165 4.07 0.0755 0321 641 0.1037 0428 950 0.1322 0634 1280 0.1949 0.810
3 6.45 0.0335 -0.034 13.16 0.0524 -0.074 19.84 0.0253 -0.581 27.33 0.0361 -1.003 36.28 -0.0291 -1.445
2.05 0.0276 0.143 3.87 0.0563 0334 6.15 0.0860 0425 9.04 0.1495 0650 11.88 0.2327 0.761
H 10.63 0.0606 -0.253 2226 0.1493 -0.981 34.69 0.1911 -1.927 48.40- 02784 -2.709 64.00 0.1906 -3.493
245 0.0322 0234 485 0.0806 0508 7.49 0.1300 0.587 1043 0.2133 0.875 13.383 0.2945 1.098
H-L 470 0.0189 -0375 12.08 0.0934 -1439 20.76 0.1807 -2.204 3041 0.2884 -2.727 40.62 0.2866 -3.162
2.16 0.0244 0.227 45 0.0820 0.523 6.67 0.1378 0.666 830 0.1773 0.882 9.59 0.2150 1.083

Panel B. Cash Flows-to-Price Sorted Portfolios.

L 6.60 0.0444 0.123 11.87 0.0682 0497 16.72 0.0367 0.351 21.92 0.0352 0.043 28.21 -0.0493 -0.432
249 0.0366 0.156 449 0.0790 0314 735 0.1160 0499 1094 0.1480 0.674 1475 0.2082 0.810
3 738 0.0345 -0.004 1492 0.0407 -0.216 2273 -0.0169 -0.758 31.87 -0.0505 -1.296 43.15 -0.1770 -1.852
224 0.0311 0.157 401 0.0635 0363 6.55 0.1034 0.500 1003 0.1804 0.788 13.77 0.2816 1.001
H 10.86 0.0680 -0.156 22.54 0.1752 -0.624 34.67 0.2398 -1.500 48.18 0.3524 -2.221 63.49 0.3349 -2.840
2.17 0.0276 0.215 408 0.0693 0462 6.18 0.1139 0456 870 02017 0.734 10.84 0.2800 0.896
H-L 426 0.0236 -0.279 10.67 0.1070 -1.121 17.94 0.2031 -1.851 26.26 03172 -2.264 35.28 0.3843 -2.408
2,02 0.0231 0.188 430 0.0780 0475 6.64 0.1345 0.623 8.89 0.1707 0.804 1091 0.2141 1.014

8¢
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Table 1.4: Estimates of Excess Returns and Level and Volatility Risks for Single-
Period Size and Book-to-Market Sorted Portfolios.
The entries of the table are sample estimates of E[y,] where y, is successively

Rel,S’

r

(Re\s—E [Re\s]) (Acis — ElAcis)) and 10* (R, 5= B[RS, ] ) (Ahys — E [As]). Standard
errors are given below the estimates and calculated using the Newey-West procedure with $ lags.

S=1 §=8 §=12 §=16

R® REn. REn  RE REM R REN RENM  REN REa

Panel A. Small Portfolios.
11 131 00137 0.040 0.0492 -0.074 1.39 0.0318 -0.121 0.0102 -0.192
1.31 0.0060 0.076 0.0279 0.177 1.22 0.0312 0.204 0.0325 0.216
13 2.64 0.0103 0.027 0.0511 -0.137 2.84 0.0449 -0.157 0.0265 -0.186
1.04 0.0049 0.061 0.0200 0.149 0.90 0.0206 0.162 0.0204 0.170
15 3.61 0.0114 0.052 0.0575 -0.176 3.84 0.0527 -0.194 0.0361 -0.203
1.06 0.0053 0.077 0.0204 0.154 090 0.0226 0.156 0.0247 0.157
15-11 230 -0.0023 0.012 0.0083 -0.102 245 0.0209 -0.073 0.0259 -0.011
0.62 0.0028 0.034 0.0168 0.078 0.77 0.0198 0.097 0.0213 0.096

Panel B. Medium-Sized Portfolios.

31 1.81 0.0069 0.062 0.0276 0.007 1.96 0.0096 -0.042 -0.0062 -0.099
1.07 0.0050 0.067 0.0215 0.137 0.77 0.0202 0.157 0.0175 0.177
33 224 0.0066 0.051 0.0414 -0.068 2.41 0.0405 -0.114 0.0295 -0.131
0.80 0.0039 0.059 0.0147 0.110 066 0.0151 0.114 0.0161 0.125
35 3.01 0.0070 0.058 0.0425 -0.078 3.21 0.0376 -0.099 0.0256 -0.134
0.85 0.0040 0.055 0.0153 0.112 066 0.0165 0.119 0.0178 0.118
35-31 119 0.0001 -0.005 0.0149 -0.085 1.25 0.0280 -0.057 0.0319 -0.035
0.65 0.0031 0.043 0.0159 0.092 0.62 0.0144 0.105 0.0141 0.100

Panel C. Large Portfolios.
51 1.79 0.0056 0.039 0.0278 0.087 1.94 0.0239 0.026 0.0170 -0.022
0.75 0.0033 0.043 0.0130 0.104 0.74 0.0132 0.114 0.0141 0.146
53 1.60 0.0059 0.044 0.0164 0.069 1.72 0.0149 -0.001 0.0068 0.032
0.60 0.0026 0.033 0.0093 0.065 0.56 0.0093 0.081 0.0109 0.086
55 2.02 0.0059 0.034 0.0320 -0.022 2.18 0.0297 -0.055 0.0186 -0.035
0.67 0.0027 0.034 0.0100 0.095 0.57 0.0127 0.114 0.0143 0.103
55-51 0.23 0.0003 -0.006 0.0043 -0.109 0.24 0.0057 -0.081 0.0016 -0.012
0.57 0.0027 0.031 0.0110 0.069 0.62 0.0119 0.080 0.0132 0.085
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Table 1.5: Estimates of Excess Returns and Level and Volatility Risks for Full-
Period Size and Book-to-Market Sorted Portfolios.

The entries of the table are sample estimates of E[y,] where y, is successively Rfqq,
(Ress—E[Ress)) (Acis — Elacs)) and 10 (Res s~ E [Re 5] ) (A,s — E[Ahs]). Standard
errors are given below the estimates and calculated using the Newey-West procedure with S lags.

S=4 S=8 S=12 S=16
R Rx. REy R REpn R¢ REx.  REp R¢Ep.  RéEp

Panel A. Small Portfolios.
11 558 0.0844 0.076 0.2152 -0.184 1001 0.3560 -0.848 0.5818 -0.322
4.57 0.0551 0409 0.1405 0942 13.81 03079 1422 0.5942 1.913
13 11.18 0.0740 -0.250 0.1659 -1.203 3592 0.2060 -2.383 0.2956 -2.228
352 0.0426 0.270 0.0946 0.647 10.17 0.1647 1.025 0.3182 1.383
15 14.79 0.0976 -0.301 0.2418 -1.704 4981 0.3230 -3.607 0.4524 -4.086
344 0.0409 0345 0.1127 0.851 11.47 0.2195 1.192 04352 1.584
15-11 921 0.0132 -0.377 0.0266 -1.520 3980 -0.0331 -2.759 -0.1295 -3.765
272 0.0323 0.296 0.1024 0.815 886 0.2031 1291 03095 1.565
Panel B. Medium-Sized Portfolios.
31 680 0.0399 0.162 0.0620 0.179 15.02 0.0207 -0.472 -0.0051 -0.633
3.02 0.0451 0250 0.0872 0.568 7.04 0.1376 0.755 0.2312 1.085
33 915 0.0579 -0.203 0.1342 -0.832 28.68 0.1485 -1.902 0.1839 -2.397
2.55 0.0320 0.211 0.0734 0515 7.15 0.1250 0.647 02173 0.928
35 12.44 0.0648 -0.357 0.1403 -1.422 42.01 0.1454 -2.696 0.2080 -3.427
2.64 0.0323 0.295 0.0814 0.675 7.89 0.1328 0.865 0.2431 1.200
35-31 5.64 0.0249 -0.519 0.0783 -1.601 2698 0.1247 -2.224 0.2131 -2.795
221 0.0351 0.330 0.0904 0.701 5.85 0.1401 0.873 0.1864 1.136
Panel C. Large Portfolios.
51  7.21 0.0420 0.142 0.0710 0.548 20.26 0.0505 0.433 0.0752 -0.066
2.51 0.0354 0.155 0.0867 0.363 9.05 0.1421 0.668 0.1835 0.788
53  6.49 0.0434 -0.002 0.0745 -0.104 1988 0.0611 -0.599 0.0643 -1.121
2.00 0.0285 0.160 0.0653 ° 0.340 6.45 0.1090 0.422 0.1854 0.677
55 827 0.0436 -0.312 0.0989 -0.924 2582 0.0895 -1.960 0.1026 -2.768
223 0.0270 0.190 0.0713 0455 7.14 0.1407 0.600 0.2615 0.956
55-51  1.06 0.0016 -0.454 0.0278 -1472 5.56 0.0391 -2.393 0.0274 -2.703
209 0.0271 0.199 0.0815 0.554 7.10 0.1382 0.771 0.1723 0.817
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folios in Tables 1.4 and 1.5. Portfolios are picked among the 25 size and book-to-market
sorted portfolios and each two-digit label xy in the first column of the tables represents
one portfolio. The first digit x refers to the size quintiles (1 indicating the smallest firms,
5 the largest), and the second digit y refers to book-to-market quintiles (1 indicating the
portfolio with the lowest book-to-market ratio, 5 the highest). We present results for the
growth (y=1), the neutral (y=3) and the value (y=5) for small (x=1), medium-sized (x=3)
and large (x=5) firms. Except for growth stocks, average excess returns and level risk
are significantly estimated for all portfolios in single-period investment in stocks over
horizons up to twelve quarters as shown in Table 1.4. Evidences for positive spreads in
average returns and level risk and for a negative spréad in volatility risk between value
and growth portfolios are well-related in each size group as the investment horizon in-
creases. The story remains true for multiperiod investments in stocks as shown in Table
1.5 whereas significant volatility risk is more often observed, together with signiﬁcaﬁt
average excess returns.

We plot the pattern of S-level and S-volatility risks across book-to-market sorted
portfolios, and also across dividend-to-price, earnings-to-price and cash flows-to-price
sorted portfolios. The figures are similar to those of Hansen, Heaton and Li (2005) which
show the pattern of S-level risk across 5 dividend-to-price sorted portfolios especially
when the stock holding period is one quarter. Next, we describe how consumption level
and consumption volatility risks are correlated with short and long-period returns, and

analyze the pattern of these risks across value and growth portfolios.

1.3.2 Patterns of Level and Volatility Risks

In this subsection, we describe the pattern of consumption volatility risk across
stocks. As S varies, we describe how S-volatility risk ranks portfolios from the less to the
more riskier, and we compare this ranking to that based on the risk premium. We also
compare the ranking by consumption volatility risk to the ranking by consumption level
risk. We focus on one-period (k = 1) and full period (k = S) returns as this makes our
findings comparable to results of previous studies (Parker and Julliard (2005), Bansal,

Dittmar and Kiku (2005)). We will say that volatility or level risk rank stocks well if the
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more riskier is a portfolio, the more higher is its volatility or level risk.

Panel A of Figure 1.3 shows the pattern of consumption volatility risk by investment
horizon when stocks are hold for one quarter at the beginning of the investment period.
At each investment horizon, the top point represents the less riskier stock and the bottom
point the more riskier. It can be observed that difference between volatility risks for the
extreme value and the extreme growth portfolios is not apparent for S = 1 and S = 2.
However, for § > 2, there is a significant gap between volatility risks of these portfolios,
with the value line on the bottom and the growth line on the top, which shows that value
assets are more riskier than growth assets when investments are exposed to variations in
consumption volatility. Because value stocks covariate highly and negatively with varia-
tions in the volatility of aggregate consumption and more so than other stocks, this means
that their payoffs are lower than those of other stocks when macroeconomic uncertainty
becomes higher in the future relatively to the present. Then value stocks are disliked
more than other stocks and investors require a more higher premium to hold them. Not
surprisingly in Panel A of Figure 1.3, the market risk (covariance between aggregate
stock market return and variations in consumption volatility) lies between extreme risks
(value risk and growth risk).

Panel B of Figure 1.3 shows the pattern of consumption level risk by investment
horizon when stocks are hold for one quarter at the beginning of the investment period.
Contrarily to the pattern of consumption volatility risk across stocks, at each investment
horizon, the top point represents the more riskier stock and the bottom point the less
riskier. Compared to the pattern of consumption volatility risk, one can observe that
for smaller investment horizons where volatility risk sorts stocks as they are ordered ac-
cording to risk premium, level risk does worst in this sort. Growth assets appear to be
more riskier than other assets when exposed to relatively short variations in consumption
level, and this clearly appears for § < 6 in Panel B of Figure 1.3. However, consistent
with a similar pattern plotted in Hansen, Heaton and Li (2005) and with the results of
Parker and Julliard (2005), as the investment horizon increases, differences in consump-
tion level risk across stocks become significant, with portfolios ranked as they are sorted

according to their risk premium, that is value stocks are more riskier than growth stocks
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Figure 1.3: Volatility and Level Risks for Single-Period Growth and Value Portfo-
lios.

This figure presents the pattern of S-volatility and S-level Risks across growth and value
portfolios when k = 1. Risks are computed as covariances of returns with changes in
consumption volatility in Panel A, and with changes in consumption level in Panel B.
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Figure 1.4: Volatility and Level Risks for Full-Period Growth and Value Portfolios.
This figure presents the pattern of S-volatility and S-level Risks across long-horizon growth
and value portfolios (k = §). Risks are computed as covariances of returns with changes
in consumption volatility in Panel A, and with changes in consumption level in Panel B.
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when investment are exposed to long-horizon variations in 'consumption level.

Panel A of Figure 1.4 shows the pattern of consumption volatility risk by investment
horizon when stocks are hold for the full invesfment period. This pattern clearly shows
that the ranking between asset risks is the same between assets as the horizon increases,
value stocks having a more pronounced negative covariance with volatility variations
than growth stocks. Once again and not surprisingly, the long-horizon market portfolio
risk lies between extreme portfolio risks. Since value stocks also have higher mean
returns than growth stocks, one can expect that projecting full period stock returns in
stock S-volatility risks will give a negative slope coefficient.

Panel B of Figure 1.4 shows the pattern of consumption level risk by investment
horizon when stocks are hold for the full investment period. Compared to the similar
pattern of volatility risk, one can observe that consumption level risk fails to rank well
with the semi-growth portfolio which in all dimensions is riskier than the extreme growth
portfolio. In addition, the extreme growth appears to be more riskier than the medium
in dividend-to-price and cash flow-to-price dimensions, and even more riskier than the
semi-value in the dividend-to-price dimension.

We also plot the pattern of S-volatility and S-level risks for book-to-market sorted
portfolios at a less aggregate level, that is when assets are first sorted according to the
firm size, and then according to the firm book-to-market in each size group. Correspond-
ing figures are shown in Appendix I. Figures 1.2 and 1.4 show the pattern of consumption
volatility risk for one-period (k = 1) and full period (k = S) holding stock returns respec-
tively. Figures 1.3 and 1.5 display similar patterns of consumption level risk. All confirm

that the findings at the aggregate level also hold in each size group.

1.3.3 Analyzing the Risk-Return Relationship

While the pattern of volatility and level risks across stocks inform how portfolios
are ranked from the less to the more riskier (or from the less to the more preferred),
we cannot still assess the strength of the relationship between these risks and the total
risk premium that investors require to invest in stocks instead of the safe asset. Even

if portfolios are well-ranked by volatility risk at horizons §; and S5, the strength of the
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Table 1.6: Correlations of Returns with Level and Volatility Risks.
This table presents correlations of the mean excess k-period returns on the 25 Fama and French
portfolios with the S-level and S-volatility risks. Risks are computed as covariances of returns
with changes in consumption volatility and with changes in consumption level. For each horizon
S, the top line represents correlations with S-level risk and the bottom line shows correlations
with S-volatility risk. Consumption volatility satisfies the Heston and Nandi (2000) dynamics
specified in equation (1.26).

k
S 1 2 4 8 12 16 20
1 032
0.23
2 030 054
-0.38 -0.03

4 045 056 0.70
-0.77 -0.74 -0.76

8 070 077 0.76  0.68
-0.72  -0.79 -0.86 -0.88

12 080 0.84 0.8 0.82 059
-0.68 -0.70 -0.82 -0.87 -0.88

16 076 0.79 082 086 073 054
-0.63 -0.70 -0.84 -0.87 -0.87 -0.90

20 077 0.83 085 086 081 0.67 045
-0.50 -0.53 -0.72 -0.84 -0.84 -091 -0.89

relationship between risk premium and consumption volatility risk at these horizons can
differ widely. In section 1.2.3 we defined this strength through cross-sectional corre-
lations between the two business cycle risks and risk premium. In the following, we
compute the sample cross-sectional correlation of each risk with average excess return
across the 25 Fama and French size and book-to-market sorted portfolios, in order to
assess how strong high excess returns are associated with high level or volatility risk.
As discussed previously, the square of this correlation also measures the fraction of the
cross-sectional dispersion in mean average excess returns explained by level or volatility
risk.

This section examines cross-sectional correlations between risk premium and con-

sumption volatility risk. As § varies for given k, we analyze the strength of the rela-
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tionship between volatility risk and return at lower investment horizons to the strength
at longer horizons. At each horizon, we also compare the relationship between volatility
risk and return to the relationship between level risk and return. On the other hand, as k
varies for given S, we analyze the strength of the relationship between volatility risk and
return, and also oppose volatility risk-return relationship to level risk-return relationship.

Table 1.6 shows correlations between risk premium and consumption level and con-
sumption volatility risks when both the total investment horizon § and the stock holding
period k equal one and two quarters, then one, two, three, four and five years. The sec-
ond column of the table measures how much one-period returns are correlated to vari-
ations in consumption volatility, but also in consumption level as in Parker and Julliard
(2005). One can observe that one-period stock risk premium is weakly and positively
correlated to one-horizon consumption volatility risk and this is not consistent with the
theory that, when exposed to variations in consumption volatility, riskier investments
should have higher average excess returns. Moreover, while volatility risk-return corre-
lation becomes negative from the horizon of two quarters, it remains weak. However the
volatility risk-return correlation grows as the investment horizon increases.

The second column of Table 1.6 also shows the known weak correlation between
contemporaneous consumption risk (here the level risk at the horizon of one quarter) and
risk premium. This correlation is 0.32 and means that contemporaneous consumption
risk explains only about 10% of variations in average stock returns. The level risk-return
correlation is still weak at the investment horizon of two quarters, then grows as the
horizon increases. If the weak performance of shorter variations in consumption level to
explain differences in average stock returns is due to the slow adjustment of consumption
to returns as argued by Parker and Julliard (2005), then we argue that the same reason
could explain why shorter variations in consumption volatility also performs weakly in
explaining differences across average stock returns.

The diagonal line of Table 1.6 measures how much full-period returns are correlated
to changes in consumption volatility, and also in consumption level as in Bansal, Dittmar
and Kiku (2005). It shows that consumption volatility risk is highly and negatively

correlated to full-period stock risk premium, and so more than single-period stock risk
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Figure 1.5: Volatility Risk-Return and Level Risk-Return Relations by Investment
Horizon.

This figure presents the pattern of p,. (S, k) (dashed lines) and that of p, (S, k) (solid lines) for k =
1 and &k = § in Panel A, and when & is fixed to 4, 8 and 12 in Panel B, while S varies from 1 to 20.
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premium. In contrast consumption level risk is more correlated to one-quarter stock
risk premium than to full period stock risk premium. On the other hand, correlation of
average excess S-period retums with S-volatility risk dominates that with S-level risk
at all horizons S > 2. Since the former is quite constant for all investment horizons, it
seems that there is a stable long-run ré]ationship between stock returns and variations in
consumption volatility. A correlation of —0.88 would also mean that more than 75% of
heterogeneity in average long-period stock returns come from the heterogeneity in their
exposure to permanent movements in consumption volatility.

The latter facts are well illustrated in Panel A of Figure 1.5 which plots consumption
volatility risk-return relationship versus consumption level risk-return relationship for
one-quarter and full period holding stocks. The figure shows that average one-quarter
returns are more correlated to short-horizon volatility risk than to short-horizon level
risk. While this correlation is greater than 0.75 with volatility risk for horizons 2 < § <7,
it is smaller than 0.55 for level risk for the same horizons. In contrast, average one-
period returns are more correlated to long-horizon consumption level risk than to long-
horizon consumption volatility risk. With long-horizon consumption volatility risk, this
correlation has a downward trend from the horizon § = 8, where it is worth —0.72, to
the horizon § = 20, where it is worth —0.50. On the other hand, with long-horizon
consumption level risk, this correlation is close to about 0.80 from the horizon S = 9 to
the horizon S = 20, both of where it is worth 0.77.

Panel A of Figure 1.5 also illustrates that average full-period returns are more cor-
related to consumption volatility risk than to consumption level risk, with a complete
domination of the volatility risk-return relationship in the long run. While the volatility-
risk return correlation is close to about —0.90 from the horizon § = 7 to the horizon
§ = 20, the level risk-return relationship declines from 0.70 to 0.45 for the same hori-
zons. ’

Finally, Panel B of Figure 1.5 and Figure 1.1 in Appendix 1 illustrate that changes
in consumption volatility are at least as correlated to other multiple-period returns as
changes in consumption level, and much more for short investment horizons relatively

to the stock holding period.
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1.4 Pricing Consumption Volatility Risk in the Cross-Section

The striking pattern of S-volatility risk across stocks and its high correlation with
expected excess returns motivates our investigation of how this risk is priced in financial
markets, especially when S-level risk is also taken into account. We inquire how much
of the cross-sectional differences in stocks is explained by both S-level and S-volatility
risks, and this is important since variations in consumption level are uncorrelated to vari-
ations in consumption volatility from our GARCH specification. Estimating the volatil-
ity risk price in a two-factor model, and evaluating the amount of premium coming from
volatility variations will also determine how important are long-run volatility risks in the

presence of long-run consumption risks.

1.4.1 Estimation Methodology

Following recent empirical studies of cross-sectional asset pricing (see for example,
Cochrane (1996), Jagannathan and Wang (1996), and Jacobs and Wang (2004)), we use
the generalized method of moment (GMM, Hansen (1982)) to evaluate the significance
of consumption volatility factors. Cochrane (2001, Chapter 15) demonstrates that the
GMM approach works well for linear asset pricing models. The cross-sectional model

(1.23) satisfies a moment condition of the form:

E[—lb+(1—§T(n)p)R] =0 (1.29)

where £ (1) is the vector of demeaned factors, R is the vector of excess returns, p is the
vector of risk prices and b is the constant term introduced to measure by how much the
cross-sectional model fails to predict returns. Demeaned factors depend on the param-
eter vector & that governs the processes (1.25) and (1.26) of consumption growth and
consumption volatility. The vector t is of same length as R and has all its components
equal to one. The moment condition (1.29) holds for a given date and a given horizon.
We avoid subscripts in variables and parameters to simplify notations in this section. The

vectors & (1) and p have two components each.
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Equation (1.29) is also equivalent to:
Ur = 1b+Zpe (m)p (1.30)

where (g = E [R] and Zgs (1) = E [RE T ()] are respectively the vector of mean excess
returns and the covariance matrix of excess returns with factors. The latter depends on

the parameter vector 7 of consumption and volatility processes through & (7).

Two-Step Estimation With Prespecified Weighting Matrix. If the parameter vector
7 were known, then the constant b and the factor rigk prices p could be consistently
estimated by GMM based on the moment condition (1.29), by minimizing the distance
between average actual returns [ig and average predicted returns b + §R§ (m) p with
respect to a positive definite matrix W. Hg and ng (m) are the sample counterparts of
the mean vector g and the covariance matrix Zge (7).

Minimizing the distance:

- S T - =
dist (b, p) = \/ (Br—tb Sz (m)p) W (fin—tb—Zpe (x) p) (1.31)
with respect to b and p gives:
N -1 A R
b(m) = (lTWl) R [uR —Zge (n)p(n)] (1.32)
- - -1 R
, p(m) = [Ber(m)ASrs (m)]  Sen(m)Afin (1.33)

-1 . .
where A=W — W1 (lTWl) 1 "W. For these solutions, the vector of pricing errors and

the minimum distance value are given by:

e(r) = WT'B(n)fir (1.34)
d(m) = \JeT(mwe(n) = /0 B(n)ix (1.35)

~ ~ ~ -~ -1
where B(7) = A — AZge () [ZéR (m)AZge (n)] Zgg(m)A. We then compute the ad-
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justed central R-squared through the formula:

N—1 & (m)Aé(n)
N—K—1 []Afig

Ri(m)=1- (1.36)
where N and X are respectively the number of portfolios and the number of factors. If W
is the identity matrix, then the formula (1.36) gives the adjusted central R-squared cal-
culated as if we were doing a linear regression of the average returns on risks measured
by covariances between returns and factors. In this case, di (m) /\/N is the square root of
the weighted average of the squared pricing errors and measures how much the expected
return based on the fitted model is off for a typical portfolio

The matrices A and B(r) have the property that AW~ 'A Aand B(m)W~'B(n) =
B(m). Let £ () and pr (7) be the variances of these estimators. In general, E(n),
p(n), py (%), fpp(n'), &(m) and d (m) are continuous functions of m. Then, if 7 is
unknown and if 7 is a consistent estimator of 7, it will hold that b (%), p(%), Zps (%)
and pr( ) are also consistent estimates of b, p, L, and Z,,. Even if this method of
estimation is consistent, the uncertainty in the estimation of & leads to a larger asymp-
totic variance than when 7 is known. We have consistently estimated 7 by maximum
likelihood in Section 1.3. We now use this estimate to compute the estimates b = b (%),
P =pR), Zpp =T (%) and pr = pr( 7), and also the pricing errors & (7), the mini-
mum distance d (%) and the R-squared R? (7).

One-Step Estimation With Prespecified Weighting Matrices. Let f (7; Ac) denotes the
density function of u in the model (1.26) satisfied by consumption growth and consump-
tion volatility. In the two-stage estimation procedure, L(7m;Ac) = Y Inf (m;Ac) is first
maximized to find an estimator of 7 that is further plugged into the cross-sectional esti-
mation to obtain estimates of factor risk prices. With the one-step estimation procedure,
we estimate the parameter 7, simultaneously with the cross- sectional factor risk prices

in a full single-stage GMM system. Let £(7) = (&T( )3 dlnf ) . In addition to the
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moment condition (1.29) we consider the moment condition:

Eft(m)] =0=p (7). (1.37)

We perform the GMM estimation by placing the weighting matrices W and }‘ie_el (m)
respectively on the moments (1.29) and (1.37), and a null matrix on any product of these
moments. This one-step estimation can be seen as practically equivalent to the two-step

estimation. In the first step, we choose 7 to minimize
e’ (m)We A (M) (0§
& (M)W (m)+ 1] ()5 (n) e ()

where 1ip (1) is the sample counterpart of u, (1), and where &(7) is defined as in (1.34).
In the second step, we plug 7 into (1.32) and (1.33) to obtain b and p. The number A
is large enough to ensure that estimates fit well the consumption growth and volatility
processes, match factor conditional or unconditional means, as well as minimize the gap

between actual and fitted returns (See also Yogo (2005) and Parker and Julliard (2005)). .

Choosing the Prespecified Weighting Matrix. As weighting matrix, we use the sec-
ond moment matrix of returns W = f,;,i. Hansen and Jagannathan (1997) advocate the
use of this matrix instead of the optimal weighting matrix. It has two main economi-
cally important features. First, it provides estimates that minimize the distance between
a stochastic discount factor that depends in a simple linear way on variations in both
consumption level and consumption volatility, and the space of true stochastic discount
factors. Second, as well as the optimal weighting matrix, the second moment matrix
will make the objective function (1.31) invariant to the initial choice of intertemporal
portfolios.!! The portfolios used for the estimation are formed on economically inter-
esting characteristics (size and book-to-market ratio). The second moment matrix will
also form economically interesting combinations of these portfolios instead of unusual

ones as the optimal matrix will do, and is more likely to provide small pricing errors

1TKandel and Stambaugh (1995) argue that results of several important asset pricing model tests are
portfolio-dependent. .
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(Cochrane 2001, Chap. 11).

The R-squared (1.36) when W = EE}% is not interpretable as explanatory power of
initial stock risk premia by level and volatility risks. Risk-return correlations in Sec-
tion 1.3.2 were computed giving each portfolio equal weight. For this reason, only the
R-squared (1.36) based on the identity matrix W = I that puts equal weight on initial
portfolios, can be used to compare horizon-dependent models since they are all based on
equally weighted pricing errors. This R-squared is interpretable in terms of explanatory
power of level and volatility risks and is related to squared correlations between risk

premium and risks.

1.4.2 Estimation Results

This section will ask whether variations in consumption level and in consumption
volatility are statistically significant, as well as if model tests of overindentifying restric-
tions reject the complete explanation of average stock returns by these factors. How-
ever, beyond these econometric issues, we are also and perhaps mostly interested in the
economical significance of consumption level and consumption volatility risks for the
cross-section of average stock returns. This economical significance contains two major
points. Are the prices of the consumption level and consumption volatility risks respec-
tively positive and negative as will be expected from the facts established in Section 1.3
and consistently with the theory? Do these risks explain a sizable percentage of variation
in average stock returns?

We perform the estimation of the cross-sectional linear covariance model (1.23) for
five values of S, corresponding to investment horizons of one quarter, then one, two, three
and four years (S =1, 4, 8, 12 and 16). We rely results based on two-step estimation
since one-step estimation results are similar. These results are shown in Tables 1.7 and
1.8. We report the R-squared based on the identity matrix as well as the associated
minimum distance between actual and fitted returns.

Table 1.7 shows that, both S-level and S-volatility risk prices are estimated insignif-
icantly at all horizons, in the cross-section of one-period holding stock returns. Esti-

mates of volatility risk price are even positive at horizons of three and four years. How-
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Table 1.7: Estimation of the Price of Volatility Risk in the Cross-Section of Single-
Period Stock Returns.

This table presents results from the two-step estimation described in Section 1.4.1 and based
on the weighting matrix W = )AZEI%. The entries of the table are the total investment horizon
S, the horizon & of the investment in stocks, estimates of the constant term ’b\,,,_g, of the price ‘
of the S-level risk p. s and of the price of the S-volatility risk pj s (to be multiplied by 1074,
the model J-statistics Jr, the cross-sectional R-squared R? and the square root of the weighted
average of square pricing errors d| (). The two latter statistics are also provided for the identity
weighting matrix, namely R2 () and d (I). The numbers below the estimates are standard errors
and below the J-statistics is the p-value. Covariance matrices are calculated using the Newey-
West procedure with § lags.

k S  byg Pes  Phs Jr R d R*(I) 4d(I)

1 1 1.90 13.09 343 60.52 -0.08 0.69 0.11 0.54
(0.52) (37.82) (3.51) [0.000]

1 4 1.94 18.51 048 109.03 -0.07 0.69 056 0.39
(0.66) (19.86) (2.51) [0.000]

1 8 2.06 987 -1.58 14640 -0.06 0.69 050 042
0.65) (13.54) (2.25) [0.000]

1 12 2.06 7.82 0.58 22544 -008 0.69 060 0.38
(0.68) (9.95) (2.03) [0.000]

1 16 2.12 6.86 0.23 28295 -0.08 070 0.63 0.38
(077) (10.92) (2.08) [0.000]

ever, while consumption level and volatility risks appear not statistically significant, they
show some economic significance in explaining the cross-section of average one-period
stock risk premiums. Both of these risks explain 60% of variations in average one-
period returns at the horizon of three years, and 63% of these variations at the horizon
of four years. This percentage is 11% at the horizon of one quarter and reflects the well-
documented weakness of contemporaneous consumption risk in explaining differences
in stock returns. As discussed in Parker and Julliard (2005), the fact that the cross-
sectional model does not perform as this horizon can be related to the low adjustment
of consumption to returns. However, the fact that it behaves well for longer horizons, as
we can see an increase in the R-squared from the horizon of one quarter, can not only be
related to the fact that consumption and consequently volatility have had time to adjust

to returns. It also reflects the concerns that investors have about long-run risks both in
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Table 1.8: Estimation of the Price of Volatility Risk in the Cross-Section of Full-
Period Stock Returns.

This table presents results from the two-step estimation described in Section 1.4.1 and based
on the weighting matrix W = f,;,é. The entries of the table are the total investment horizon
S, the horizon k of the investment in stocks, estimates of the constant term Zu_'_g, of the price
of the S-level risk p. s and of the price of the S-volatility risk pj s (to be multiplied by 1074,
the model J-statistics Jr, the cross-sectional R-squared R? and the square root of the weighted
average of square pricing errors di (). The two latter statistics are also provided for the identity
weighting matrix, namely R? (I) and di (I). The numbers below the estimates are standard errors
and below the J-statistics is the p-value. Covariance matrices are calculated using the Newey-
West procedure with S lags.

k S bys Pes  Dhs Jr  R* d R() d4d(I)

1 1 1.90 13.09 3.43 60.52 -0.08 0.69 0.11 0.54
(0.52) (37.82) (3.51) [0.000]

4 4 3.36 66.28 -2.51 6746 005 1.52 072 1.29
2.74) (21.26) (4.01) [0.000]

8 8 -2.52 37.85 591 7574 004 251 0.76 2.89
(3.51) (17.52) (2.29) [0.000]

12 12 -1.16 3722 -5.50 13985 006 305 075 5.04
(2.67) (13.35) (1.85) [0.000]

16 16 12.84 28.78 -5.21 19895 0.00 396 080 6.67
(5.56) (10.65) (2.13) [0.000]

consumption level and in consumption volatility.

Table 1.8 shows that, both S-level and S-volatility risk prices are estimated signifi-
cantly at longer horizons, in the cross-section of full-period holding stock returns. The
price of the S-volatility risk is everywhere negative but the first horizon. Note from the
diagonal of Table 1.6 that a positive rather than a negative correlation between volatility
risk and return was reported for this horizon. Note also that the estimated magnitude
of the price of volatility risk is almost the same for longer horizons. Consistent with
the results of related studies the price of the S-level risk is almost everywhere positive
and significantly estimated. Consumption level and consumption volatility risks explain
72% of variations in average full-period holding stock returns at the horizon of one year.
This explanatéry power increases for longer horizons and reaches 80% at the horizon

of four years. Most of this variability may come from S-volatility risk since it is more
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correlated to long-period risk premia than S-level risk. The RSSE!?, which also mea-
sures the distance between the vector of actual returns and the vector of fitted returns,
increases from short to long horizons. It shows that the fitted one-period risk premium
departs in average from the actual by 0.32% to 0.42% per quarter.

Estimated positive and negative signs for consumption level and consumption volatil-
ity risk respectively confirms that these risks are correctly priced, in the sense that port-
folios with higher positive covariances of returns with variations in consumption level,
and high negative covariances of returns with variations in consumption volatility, will
have high average excess returns. Small R%s from the estimation based on W = f,;,é,
mean that with respect to the square root of the second moment matrix, the combination
of S-level risks and the combination of S-volatility risks across stocks are not economi-
cally important in explaining the combination of average stock returns. This highlights
the fact that the cross-sectional R? and the corresponding distance between actual and
fitted returns are not invariant to portfolio formation (Cochrane (2006), Roll and Ross
(1994), Kandel and Stambaugh (1995)) and depend a lot on the estimation method.!3
However, this does not change the fact that S-level risk and S-volatility risks themselves
are economically important in explaining the cross-section of average stock returns. The
constant term is generally insignificant in all models with k = S. The J-statistics for the
different estimation exercises vary widely. While it is tempting to interpret these differ-
ences, such an interpretation is not possible since the model at a given horizon does not
nest that of the previous or the next horizon. We can only conclude that almost all test
statistics indicate rejection of the null hypothesis at conventional levels of significance.

Figure 1.6 plots the ratio of fitted to realized expected one-quarter excess returns for
the 25 Fama and French size and book-to-market sorted portfolios against the portfolios
themselves. Fitted values and pricing errors are generated using the GMM with identity
weighting matrix. Figure 1.7 shows similar plots using full-period returns. The statistics
for investment horizons S = 1,8 and 16 are displayed both for one-factor models involv-

ing level and volatility risks separately and for the two-factor model involving both risks.

- 12Root Sum Squared Errors
13R? is only well-defined for the estimation with the identity weighting matrix when estimates are
equivalent to OLS estimates.
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Figure 1.6: Fitted/Realized Ratio of Portfolio Average Single-Period Excess Returns.
This figure presents the fitted/realized ratio of average one-period excess returns for the 25 Fama
and French size and book-to-market sorted portfolios (k = 1). Fitted values are based on the
model estimates with the identity weighting matrix.
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Figure 1.7: Fitted/Realized Ratio of Portfolio Average Full-Period Excess Returns.
This figure presents the fitted/realized ratio of average multiperiod excess returns for the 25
Fama and French size and book-to-market sorted portfolios (k = 5). Fitted values are based on
the mode] estimates with the identity weighting matrix.
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Figure 1.8: Portfolio Level and Volatility Risk Premia.

This figure presents the percentage of average excess return that represent level and volatility risk
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If the model fit is perfect, all the points in the corresponding panel of the figure would
lie along the horizontal line Y = 1. The first panel of the figures shows clearly that few
do, both for one-factor and two-factor models, corroborating the failure of the traditional
CCAPM. All models have almost comparable fits in the three panels of Figure 1.6. In
the first panel (S = 1), pricing errors are the highest for portfolios 11 and 42 as fitted val-
ues are more than 50% higher than realized values. Portfolio 11 remains poorly priced
by all models in the second and the third panels of Figure 1.6 while the pricing error
for portfolio 42 reduces for § = 8,16. Except for growth portfolios (11, 21, 31 and 42),
volatility risk prices very well one-period returns in each size group and performs better
on returns on large firms for long investment horizons. The two last panels of Figure
1.7 confirms that overall, the volatility risk model has a better fit for long-period returns
than the level risk model. Finally, Figure 1.8 plots level and volatility risk premiums for
multiperiod investments in stocks and for different investment horizons. One can notice
that, overall for portfolios with both positive level and volatility risk premiums, level
risk premium is more important than volatility risk premium for at short horizons while,
in the contrary, the volatility risk premium dominates the level risk premium at longer

horizons.

1.5 Rationalizing the Empirical Evidence

This section examines whether evidences documented previously are consistent with
the implications of existing parametric general equilibrium models. We adopt the recur-
sive preferences and the consumption dynamics assumed in Section 1.2.1 and we specify
the dynamics of dividends. We follow previous studies by choosing reasonable param-
eter values which calibrate the model such that it reproduces importént features of asset
markets. Then we further examine its implications for the cross-section of stock returns.
We want the model to produce as possible portfolios whose return cross-section mimic
that of the observed portfolios. However, since the model does not account for the size

dimension, we further concentrate on large portfolios to illustrate the empirical findings
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and choose parameters to match usual statistics.'4

1.5.1 Actual Dividend and Share

For each portfolio, quarterly price and dividend series are constructed in the same

manner as in Bansal, Dittmar and Lundblad (2005). We observe the monthly nominal

return series!’

computed with and without dividend, R/ and R*°%. Asset price and

dividend series are then computed as:

Py = RIUE (138)
Diyi = (R - R P, (139)

with Py = 1. Since the initial price is normalized to 1, these measures represent the actual
price and dividend up to a multiplicative constant. Monthly prices are averaged within
each quarter to obtain quarterly prices and monthly dividends are summed within each
quarter to obtain quarterly dividends. There is no evidence of a seasonal component in
quarterly prices. On the contrary, quarterly dividends have strong seasonalities that are
removed by taking as measure of dividends in quarter ¢, an average of the dividends in
quarter ¢ and over the previous three quarters t — 3, t —2 and ¢t — 1. Price and dividend
series are then converted into real using the PCE deflator. Dividend-price ratios are
then computed. Annualized empirical means and standard deviations for excess returns,
dividend growths and dividend-price ratios of the 25 Fama and French size and book-
to-market sorted portfolios as well as for the market return, the risk-free rate and the
consumption growth are shown in Table 1.9. Log shares are also constructed as the
log ratio of dividend to consumption and represent the actual shares up to an additive

constant. These log shares are plotted in Figure 1.9.1

14The model can account for the book-to-market dimension since it does for the dividend-to-price di-
mension which is similar. As this type of model performs well in explaining the aggregate stock market
behavior (Bansal and Yaron (2004), Eraker (2006)), it is also likely to perform well in the class of large
portfolios.

15We take return data from: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

16Each label SxBy in the figure represents one portfolio. The first digit x refers to the size quintiles (1
indicating the smallest firms, 5 the largest), and the second digit y refers to book-to-market quintiles (1
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Table 1.9: Descriptive Statistics for Size and Book-to-Market Sorted Portfolios.
This table presents the annualized descriptive statistics of asset returns from 1963:3 to 2005:2.
mean and standard deviation of excess returns and dividend-price ratios are in percentage.

1963:3-2005:2
Asset E[RY] o(RY] E[Ad] oad] E[5] ol%]
(1) 2 3) “) 5 (6) )
11 513 3375 -554 2926 060 0.46
12 11.04 28.10 4.60 25.07 1.38 0.83
13 11.65 2442 565 1470 200 096
14 1418 2297 7.37 16.16 235 1.04
15 15.89 25.42 9.74 21.88 1.95 093
21 6.00 2646 -296 3858 099 0.63
22 897 21.36 258 1478 203 1.02
23 1179 20.83 502  12.61 2.72 1.19
24 1264 20.63 493 1382 333 1.39
25 13.88 21.04 722 2000 292 1.29
31 6.02 2312 -099 19.53 1.27 0.75
32 957 1943 321 1435 2.32 1.11
33 940 1740 312, 1484 322 1.34
34 11.21 19.66 499 1273 376 1.50
35 13.48 20.07 6.79 19.78 3.64 1.42
41 7.5 2038 1.06 26.19 1.62 0.77
42 676 17.17 085 1814 273 1.13
43 940 16,51 417 1658  3.53 1.44
44 11.14 18.3] 346 13.99 4.20 1.57
45 11.57 18.62 516 12,19 396 1.38
51 5.61 18.00 251 1164 214 081
52 6.06 15.47 193 1190 334 1.18
53 632 1444 1.29 7.70  4.06 1.52
54 7.22 15.16 090 1050  4.65 1.73
55 773 18.12 045 17.02 4.89 1.87
MKT 6.10 16.14
RF 179 1.14
CONS 222 1.32
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Figure 1.9: Log Shares for Size and Book-to-Market Sorted Portfolios.
This figure presents the pattern of log shares for the 25 Fama and French size and book-to-market
sorted portfolios.
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1.5.2 Model Consumption Shares, Dividends, Price-Dividend Ratios and Returns

Here we describe how we generate portfolio returns in the economy. Lettau and
Wachter (2006) provide a model where benchmark assets are zero-coupon equities pay-
ing the aggregate dividend. Here we extend benchmark assets to zero-coupon securities
paying dividends on long-lived assets. Let Py, the price at date ¢ of the zero-coupon se-
curity paying n periods later from ¢, the dividend on an arbitrary long-lived asset a. The
arbitrary long-lived asset a can be any long-lived primitive asset, any long-lived portfolio
or the consumption claim. The Euler equation that requires the no-arbitrage condition

for zero coupon securities is given by:

Pl =E[M Py | 2, (1.40)

with the trivial boundary condition F§, = D{. Equation (1.40) can also be written:

F Sty Gt Pr i
M EM ] =+l 7 nm, 1.41
D;I H+1 S;I CI Dta_H |jf » ( )
with the boundary condition:
B _
Dta ?

and where S7 denotes the dividend share of total consumption of the asset a up to a
multiplicative constant.

Equation (1.41) is the same for all long-lived assets, and its solution depends on the
dynamics of the dividend shares. Log dividend shares are usually modeled as station-
ary processes (see for example Menzly, Santos and Veronesi (2004)). This assumption
has two main critical implications in discrete time setting. First, all asset dividends are
cointegrated with consumption, with the same normalized cointegration vector (1, —1).
Second and more importantly, the stationarity of dividend shares implies that all divi-

dends grow at the same rate as consumption.

indicating the portfolio with the lowest book-to-market ratio, 5 the highest).
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We assume instead that dividends are cointegrated with consumption and an asset
specific random walk variable driven by consumption volatility, and that the cointegra-
tion vector is also specific to the asset. Furthermore, we assume that the right hand
side of cointegration equations are linear combinations of a deterministic trend and a
common stationary and persistent variable that helps capturing the predictable part of

dividend growth. Formally, we write:

il —(1+28) e =V = A§t+ A2z (1.42)

241 = 02t + O/ I (1.43)

Ve = e+ AL (h — ) + 08/l (1.44)
1 0 poO
0100

where(u,+1,n,+1,8,+1,u§‘+1)T~</1/ 0, with p > 0.

p 010
000 1

Even if the choice of such a process can be justified on various grounds, the first rea-
son why we depart from the common specification of stationary dividend share is an em-
pirical one. Consumption growth and portfolio dividend growth series are very different
in terms of mean as well as variance and other moments. Cointegration tests often reject
the hypothesis of a cointegration between dividends and consumption (Hahsen, Heaton
and Li (2005)). However, if the cointegration is strongly assumed, it seems therefore
empirically sound to choose a model that does not impose the same cointegration vec-
tor between consumption and all dividends as the majority of models do. The pattern
of the log shares of the 25 Fama and French size and book-to-market sorted portfolios
plotted in Figure 1.9 show the evidence of a trend either in variables or the cointegration
equation. Table 1.9 confirms that mean dividend growths are very different across these

portfolios.!”

1"Equation (1.42) denotes the cointegration equation of asset a up to an additive constant and specifies
that the dividend share of the asset is stationary if and only if Af =0, A? =0, A7 =0 and o7 =0.
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The implied dynamics of the asset’s dividend growth is given by:

AdP =25+ (1+A) pe = A7 (1= @)z + (A7 + (1 +A0) @] (he — 1)
+Vh [T+ A ury + A2 0610 + 00Ul ] (1.45)

Our model can then generate predictable dividend growths with different means, thanks
to the cointegration coefficients of dividend and consumption. Moreover, if A% = 0,
AZ =0, ?L,‘,’ = 0 and 6? = 0, then the dividend share is identified by z; up to an additive
and a multiplicative constant. In this case, equation (1.45) implies that the dividend
share captures the predictable component of the dividend growth. This last point is
consistent with the view expressed in Lettau and Ludvigson (2005) that, if consumption
follows a random walk like (1.6) and if the consumption-dividend ratio is stationary,
then the consumption-dividend ratio captures the predictable component of the dividend
growth.!8

On the other hand,

ifp=1thenz, =0, Y ¢/ (Aci—j— ). (1.46)
j=0

Then, in this particular case of our setting, the process z; almost plays a similar role

as expected consumption growth in the Bansal and Yaron (2004)’s model in predicting

the dividend growth using a variable that depends on past consumption levels. The

coefficients A, and A, are negative so that dividends will increase following an increase

in expected consumption growth and/or a fall in macroeconomic uncertainty.

Lettau and Wachter (2006) advocate the fact that if primitive assets are long-lived,
then it is not easy to model their dividend shares stochastically in a discrete time setting,
in a way similar to the continuous time setting of Menzly, Santos and Veronesi (2004),
because of the difficulty to keep the shares between zero and one as well as their sum

to one. However, equation (1.41) shows that we don’t need to model the dividend share

'8In general, a model that aims at explaining only the aggregate market behavior will not require addi-
tional ingredients as for the complete cross-section of asset returns.



68

itself in order to compute the price-dividend ratio of a long-lived asset or portfolio. It is
just sufficient to model the share up to a multiplicative constant. This constant is of no
particular interest unless we need to completely characterize asset prices and not only
asset valuation ratios (such as price-dividend ratios in our case). The fact is that when the
shares are known up to a multiplicative constant, dividends and prices are also known up
to the same multiplicative constant and that does not affect the price-dividend ratio since
the constant simplifies. For this reason, we drop the constant term in the cointegration
- equation (1.42) such that s measures the share up to this constant in our study.!”

For solving for zero-coupon security valuation ratios in this model, one conjectures
that:
% =exp (A% (n) + A2 (n)z; + A% (n)hy) . (1.48)

1

The solution (1.48) for zero-coupon security valuation ratios then holds with:

A% (n) = p1 + (e — Qb)) (1 + A8 = pe) + A& — A2+ (1 — @) s [AZ (n— 1) — p4]

+%o,3 A2 (n—1)— pp)? +A% (n—1) (1.49)
A7 (n) = —A (1 - @)+ A7 (n—1) (1.50)

1 1 1
AZ(n) = A+ (1422 = po) o5 (02) 4+ 5 (14+A8 = po)? + 502 [A2 +A2 (n— 1))

1
+p(1+28=p) 0 12 +420= )] + (=00 ) Pt 083 0= 1), 151

where A% (0) = 0, A? (0) = 0 and A} (0) = 0. The A (-) functions of all long-lived assets
have the same recursion and differ only through the asset’s specific parameter values A4,
AZ, A2, A and o7

We further assume that ¢ = 0. The parameters AZ and A are constrained by the

9Formally, if & is the set of all primitive long-lived assets, then there are positive constants 89 such
that:
Y Bt <1. (1.47)
acq’
The complement to one of the sum in (1.47) can then account for the shares of short-lived primitive assets
as well as the share of labor income.
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equation:

(14+A8)+poAf = x*°

where y%€ is the ratio of the covariance between consumption growth and the dividend
growth of the asset a to the mean of consumption volatility. This ensures that, increasing
A2 will rise the asset premium by reducing the price-dividend ratio, so that value stocks
will be assets with high magnitude of AZ.

The price P? of the asset a at date ¢ is the sum of prices of zero coupon securities
paying future dividends on asset a. Then, the asset price-dividend ratio is given by the
formula: .

ﬁ Z p (A% (n) + A2 (n)z, +AS (n) k), (1.52)

where the A (-) functions are defined in (1.49), (1.50) and (1.51). The formula (1.52) is a
nice way to compute the price-dividend ratio without a further analytical approximation
of the asset return to asset a, similar to the approximation (1.5) of the return on the claim

to the aggregate consumption.?’ The gross return on asset a is then given by:

1:+1 DH—I 1:+1 1: e :1+1
R, =1 ‘T _— +1 _t 1.53
o+ P,a ) f 1 Df’ Df’ ’ ( )

where the price-dividend ratio is given by (1.52) and the dividend growth by (1.45).

To understand how consumption volatility risks affect the more complex long-lived
asset a, we follow Lettau and Wachter (2006) by concentrating on how these risks in-
fluence simple zero-coupon securities paying future dividends on the asset a. Let Rn el
denote the one-period return on the zero-coupon security with the price P, at the date ¢,

that is:
—1
R, = L _ L (f’_ﬁ) VD?+1_ (1.54)
nt+ PI‘III D:I_H D;z D?

20The coefficients of the Campbell and Shiller (1988)’s approximation depend on preference parameters
and empirical studies do not usually address this point. Garcia, Meddahi and Tedongap (2006) show
how this approximation can affect some asset pricing statistics and their framework provide closed-form
formulas of the Campbell and Shiller’s coefficients.
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Consumption level and consumption volatility risks of this zero-coupon security at one

horizon are given by:

Cov (rﬁ,,ﬂ — rf,,H,Ac,H) = [x”’c—i-pO'ZA? (n— l)] i (1.55)
2
g,

Cov (rmsi1 —rfei1, Bk i1) = [Af (n— 1) +Af (n) — A — qu] 1+h¢h- (1.56)

These equations also defined the term structure of one-horizon consumption level and
consumption volatility risks of zero-coupon securities. Increasing the magnitude of Al
rises the volatility risk. Increasing the magnitude of AZ will increase both consumption
level and consumption volatility risks. Assets with high magnitude of A? will then have
high risk premia. These assets with high risk premia will also be value stocks since
increasing the magnitude of A7 also lowers the price-dividend ratio. This is consistent .
with an empirical result from Bansal, Dittmar and Lundblad (2005) that the coefficient of
the projection of the dividend growth into an empirical proxy of expected consumption
growth explains differences in risk compensation across assets.

Since we find that consumption volatility is economically rele.vant as well for the
cross-section, the innovation here is that to take macroeconomic uncertainty into ac-
count, the dividend growth can be projected into both an empirical proxy'of expected
consumption growth and that of consumption volatility. In addition to the coefficient A2,
the resulting coefficient A7 then gives the possibility to explain cross-sectional differ-
ences in asset returns with further information about consumption which is provided by

consumption volatility.

| 1.5.3 Model Calibration and Implications for Stock Returns

We calibrate the model at the quarterly frequency. Our value of the mean of the
consumption growth corresponds to its sample counterpart g, = 0.00555.2! To calibrate

the consumption volatility s, we convert the monthly volatility of Bansal and Yaron

21 Assuming ¢, = 0 makes consumption growth unpredictable. Models with ¢, < 0 and ¢, > 0 may lead
to different asset pricing implications and we leave this issue to a further and more elaborated investigation.
The estimation of ¢, in Section 1.3.1 led to a negative and insignificant estimate.



71

Table 1.10: Simulation: Parameter Values and Model Implied Statistics for Large
Book-to-Market Sorted Portfolios. '

This table presents portfolio parameters as well as the annualized statistics of asset returns
from simulated samples. Mean and standard deviation of excess returns, dividend growths and
dividend-price ratios are in percentage.

Parameters Statistics

Ave KA & & o EF] o EBd oA ETZ 0%

M @ & @& OB © @) 8 ® a9 an az

51 -0006 116 -16 -330 4.16 4593 2272 2,53 1239 1.81 0.54
52 -0.013 216 -24 -370 4.21 6.16 24.50 1.92 1288 3.26 1.06
53 -0.015 222 -25 -460 238 6.69 26.70 1.35 9.73 3.82 1.49
54 -0.018 2.69 -28 -475 352 7.7 28.16 0.88 12,19  4.38 1.74
55 -0.023 334 -32 -485 6.06 8.07 3184 0.51 18.19 4.60 1.84

RF 200 029
CONS 222 2.67

(2004) into a quarterly volatility, and use the corresponding parameter values.?? The
resulting parameters for the consumption volatility are ¢, = 0.962, 0, = 1.18 x 10~ and
fy, = 1.83 x 1074, We use p = 1 so that the process z is a weighted combination of past
consumption growth levels. Since in the Bansal and Yaron (2004)’s model demeaned
expected consumption growth captures the predictable component of dividend growth,
we convert it into a quarterly process and use the corresponding parameter values to
calibrate the process z that then plays a similar role in our model as we argue earlier.
The procedure is similar to what we follow for the consumption volatility. The resulting
parameters are ¢, = 0.938 and o, = 0.129.

Our values of preference parameters are ¥ = 20 for the risk aversion and y = 1 for
the EIS. These values are also used by Hansen, Heaton and Li (2005). We use 6 = 0.997
and this quarterly value of the subjective discount factor corresponds to a monthly value

of 0.999 also considered in previous studies. The parameters of the volatility process

22To do so, we first represent monthly consumption volatility with a two-state Markov chain as in
Garcia, Meddahi and Tedengap (2006). Then, we convert the menthly chain into a quarterly one by
multiplying conditional mean and variance by three and compounding three times the transition probability
matrix. Finally, we determine the coefficients of the AR(1) process represented by the quarterly Markov
chain.
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are higher than those estimated in the data. Higher values of the mean and the standard
deviation of consumption volatility are necessary to generate actual risk premia as stated
in Eraker (2006). The preference parameters considered in this study were not able to
generate an annual equity premium larger than 1% using volatility parameters estimated
in the data. Table 1.10 displays the complete parameter values used for the calibration
assessment and the model implied statistics. The reported statistics are based on 1,000
Monte Carlo experiments, each with 252 quarterly observations. Increasing the size of
the Monte Carlo makes little difference in the results.

We start with the analysis on implications for zero-coupon securities. Zero-coupon.
securities guaranteeing dividends on different assets have the same behavior but with
different intensity since this intensity depends on the specific parameters of any asset. We
illustrate the implications in the case of zero-coupon securities paying future dividends
on the large value portfolio.

Figure 1.10 displays the pattern of the A (-) functions characterizing the price-dividend
ratio of a zero-coupon security. The function A (n) is positive and increasing, and con-
verges to —A7. The intuition behind this behavior is that higher levels of z; correspond
to higher expected dividend growth, hence the price of the security that pays the as-
set dividend in the future will also be higher. The function A} (n) is negative so that a
rise in macroeconomic uncertainty induces a fall in asset prices, and decreasing as well
as the function A% (n) so that zero-coupon security prices diminish when the maturity
increases. The decreasing and the convergence to —eoo of the function A% (n) also consti-
tutes a necessary condition for the convergence of the price-dividend ratio (1.52). Since
zero-coupon securities with higher fnaturities have low prices, they are similar to value
stocks and should be more riskier.

The term structure of consumption level and consumption volatility risks plotted in
Figure 1.11 confirms that risks are higher for longer maturities. Volatility risks are neg-
ative and decreasing so that long-maturity securities have higher negative covariances
with variations in consumption volatility, as well as higher positive covariances with
variations in consumption level than short-maturity securities. The model can then ex-

plain the differences in volatility risk premia across short-lived low-price securities and



73

Figure 1.10: Plot of the A (-) Functions
This figure presents the pattern of the A (-) functions for the case of the large value portfolio.
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Figure 1.11: Term Structure of Consumption Level and Consumption Volatility
Risks.

This figure presents the term structure of consumption level and consumption volatility risks for
zero-coupon security paying future dividends on the large value portfolio.
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Figure 1.12: Simulation: Volatility Risk for Large Book-to-Market Sorted Portfolios
(k=1).

This figure presents the pattern of volatility risks across large book-to-market sorted portfolios.
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Figure 1.13: Simulation: Volatility Risk for Large Book-to-Market Sorted Portfolios
(k=S9).

This figure presents the pattern of volatility risks across large book-to-market sorted portfolios.
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high-price securities in the maturity dimension.

We now examine the ability of the model to explain differences in volatility risk
premia across long-lived low price-to-dividend stocks and high price-to-dividend stocks.
We illustrate the implications in the set of large book-to-market sorted portfolios. While
the overall fit of the statistics of these portfolios is reasonable as shown in Table 1.10, -
the model produces returns that are more volatile than in the data. This arise because the
larger is the magnitude of the parameter A2, the larger is the return and its volatility. It
is possible to simplify the model by setting the parameter A7 to zero for all assets. This
will lower returns and their volatility and either a more higher parameter of risk aversion

or elasticity of intertemporal substitution, or a more higher magnitude of the parameter
AZ will be necessary for the model to generate actual returns. In consequence, it will
produce low price-dividend ratios than in the data.?3

Figure 1.12 shows the pattern of volatility risks computed via simulation across large
book-to-market sorted portfolios and for one-period holding returns. Figure 1.13 shows
the same pattern for full-period returns. S-volatility risks for one-period and full-period
holding stocks respectively are negative with a downward trend as the horizon increases,
a pattern observed in Figures 1.2 and 1.4 which plots the similar measure of volatility risk
in the data. On the other hand, S-volatility risk for full-period portfolios computed from
the model is negative and displays a similar pattern as the same measure computed from
the data.

An important point illustrated in Figure 1.13 is the gap between volatility risks for
the extreme value and the extreme growth portfolios. The large value is more riskier as
in the data. The slightly difference between the data and the model occurs for the semi-
growth and the semi-value portfolios. Their volatility risks are more closer to that of the
extreme value portfolio than in the data. However, as in the dafa, there is just a little gap
between these risks. The more pronounced trend of all these patterns in the model are

explained with the fact that consumption volatility is more persistent in the model than

23The results of Bansal and Yaron (2004) also suggest that increase the magnitude of the risk aversion
lowers the price-dividend ratio and rises the equity premium. With a risk aversion parameter of 7.5 in their
model, they report a price-dividend ratio of 25.02 and an equity premium of 4.01 for the aggregate stock.
With a risk aversion parameter of 10, the reported values are respectively 19.98 and 6.84.
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in the data. However, the overall message is clear and states that the model replicates the
findings in the data that consumption volatility risk accounts for the differences in risk

premia across portfolios sorted from growth to value.

1.6 Conclusion

Investors have concerns about consumption volatility because they fear the repercus—
sion of macroeconomic uncertainty on their future wealth. Motivated by an affine gen-
eral equilibrium model with stochastic volatility, we have documented empirical facts
supporting a strong relation between stock returns and changes in consumption volatil-
ity. We found that short-period returns are correlated with short-horizon changes in
consumption volatility and with long-horizon changes in consumption level, and more
so than long-period returns. On the other hand, long-period returns are more correlated
with long-run changes in consumption volatility than with long-run changes in consump-
tion level.

The uncertainty on macroeconomic growth as measured by consumption volatility
displays a business cycle pattern and has the potential to explain differences in risk pre-
mia across the 25 Fama and French size and book-to-market sorted portfolios, even in the
presence of long-run consumption risk. The estimation of long-run consumption volatil-
ity risk price in the cross-section of long-period returns provides a significant estimate
with a negative sign.

A further issue will be to check whether a well-calibrated reduced form consumption-
based general equilibrium model, similar to those considered in previous studies for ex-
plaining the aggregate stock market behavior, can also rationalize our empirical findings.

An attempt to this rationalization leads to promising results.
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CHAPTER 2

AN ANALYTICAL FRAMEWORK FOR ASSESSING ASSET PRICING
MODELS AND PREDICTABILITY

Abstract

Consumption-based equilibrium asset pricing models have regained some momen-
tum with new insights about the connections between stock market volatility and returns,
the pricing of long-run claims, or return predictability. Links are established between
risk premiums and different types of preferences, where separation between the elastic-
ity of intertemporal substitution and risk aversion, and habit formation take center stage.
Often, the solution of these models necessitates an approximation and quantities of in-
terest are computed through simulations. We propose a model that delivers closed-form
formulas for many of the statistics usually computed to assess the ability of the models to
reproduce stylized facts. The proposed model is flexible enough to capture the various
dynamics for consumption and dividends as well as the different types of preferences
that have been assumed in consumption-based asset pricing models. The availability of
closed-form formulas enhances our understanding of the economic mechanisms behind

empirical results and of the limits of validity for the usual approximations.

2.1 Introduction

In the last twenty years or so, financial economists have devoted a lot of energy to
solving two unyielding puzzles, the equity premium puzzle and the risk-free rate puz-
zle. The specification of preferences in the basic consumption CAPM model introduced
by Lucas (1978) and Breeden (1979) has been modified to accommodate a large equity
premium and a rather low risk-free rate. The two most popular models are without a
doubt the recursive utility model of Epstein and Zin (1989, 1991) and the external habit
model of Campbell and Cochrane (1999). Recently, these models have been used to re-

produce new facts about the connections between stock market volatility and returns, the
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pricing of long-run claims, or return predictability (see in particular Bansal and Yaron,
2004, Bansal, Gallant and Tauchen, 2004, Hansen, Heaton and Li, 2004, Lettau, Lud-
vigson and Wachter, 2004). The effort then has been centered on the specification of the
endowment process. New joint dynamic models have been proposed for consumption
and dividend growth, while at the beginning the equality of consumption and dividend
was often assumed. Often, the solution of these new full-fledged models necessitates an
approximation and quantities of interest are computed through simulations.

In this chapter we propose a model that delivers closed-form formulas for many of
the statistics usually computed to assess the ability of the models to reproduce stylized
facts. The proposed model is flexible enough to capture the various dynamics for con-
sumption and dividends as well as various types of preferences that have been postulated
in consumption-based asset pricing models. ‘

To derive analytical formulas, we assume that the logarithms of real per capita con-
sumption and dividend growth follow a bivariate process where both the means, vari-
ances and covariances change according to a Markov variable s, which takes the values
1,...,N (if N states of nature are assumed for the economy), where s, is a stationary
and homogenous Markov chain. Several asset pricing models have been built with con-
strained versions of this general process, but the main reason of this choice is that it
leads to closed-forms formulas for many of the statistics that researchers have attempted
to reproduce: the first and second moments of the equity premium and of the risk-free
rate, the mean of and the volatility of the price-dividend ratio, the predictability of re-
turns and excess returns by the dividend-price ratio, the predictability of consumption
volatility by the dividend-price ratio and the consumption-wealth ratio, and the negative
autocorrelation of returns and excess returns at long horizons. We also use this model to
match some moments of the consumption and dividend processes implied by other dy-
namic models. This is the approach taken by Mehra and Prescott (1985) in their seminal
paper that puts forward the equity premium puzzle.

In the formulas we will develop for the various statistics we will assume that we have
solved the model for the price of the asset of interest or a ratio of the payoff of the asset to

its price. As we will see, the structure of the endowment process implies that there will
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be one such payoff-price ratio per regime and this will help in computing closed-form
analytical formulas. |

Of course the price of any asset is dependent upon the stochastic discount factor
which will be model-dependent. We solve for the prices in a Markov-switching economy
with recursive preferences (Epstein and Zin, 1989) and with external habit (Campbell
and Cochrane, 1999). These models deliver two fundamental payoff-price ratios: the
consumption-market portfolio price ratio and the dividend-equity price ratio. The first
ratio is unobservable but Lettau and Ludvigson (2001 a,b) have proposed a close parent
with the consumption-wealth ratio. Once we differentiate consumption and dividends,
these models deliver a measure of this important economic quantity. Moreover, in the
recursive utility framework, the consumption-price ratio enters the stochastic discount
factor. Once a solution to the nonlinear Euler set of equations defining this ratio in the
various states is found, all other asset prices can be obtained analytically.

The importance of deriving closed-form formulas should not be underestimated. Let-
tau, Ludvigson and Wachter (2004), who use precisely a Markov-switching model for
their endowment, remark that their two-state model takes very long to solve and that a
three-state model would be computationally infeasible. They use a learning model that
they must solve at each time period given their new assessment of the transition proba-
bilities of the Markov process. Our formulas can be adapted to this approach and will
ease considerably the process. Another considerable saving of processing time comes
potentially from the simulations researchers run to compute predictability regressions.
The usual procedure is to try to replicate the actual statistics with the same number of
observations as in the sample as well with a much larger number of observations to see
if the model can produce predictability in population. The last exercise, the most costly
in computing time, is avoided by using the formulas we provide. The same is true for
the variance ratios.

Another useful contribution is to use these formulas to assess the impact of approx-
imations that researchers apply to solve models. One pervasive approximation in asset
pricing is the log-linearization of Cémpbell and Shiller (1988). We provide formulas

for several approximations of the payoff-price quantities in the Epstein and Zin (1989)
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model.

We apply our analytical framework to two prominent recent papers by Lettau, Lud-
vigson and Wachter (2004) and Bansal and Yaron (2004). Both promote the role of
macroeconomic uncertainty measured by the volatility of consumption as a determining
factor in the pricing of assets. The first paper models consumption growth as a Markov
switching process and uses Epstein and Zin (1989) preferences, and so fits directly our
framework. The second paper uses the same preferences but models the consumption-
dividend endowment as an autoregressive process with time-varying volatility. For this
model, we propose a moment-matching procedure with our Markov-switching process.
By putting the two models in the same framework, we are able to point out their simi-
larities and differences for asset pricing implications and predictability. Our analytical
formulas allow us to explore a much wider set of preference parameters than in the orig-
inal papers and thus to better understand their role in determining the financial quantities
of interest. We also match the consumption surplus dynamics specified by Campbell
and Cochrane (1999) with a Markov switching model and provide analytical results for
many of the quantities generated by simulation in the original paper.

This chapter extends considerably the closed-form price-dividend formulas provided
in Bonomo and Garcia (1994) for the Lucas (1978) CCAPM model. Recently, two pa-
pers have also proposed to develop analytical formulas for asset pricing models. Abel
(2005) calculates exact expressions for risk premia, term premia, and the premium on
levered equity in a framework that includes habit formation and consumption external-
ities (keeping up or catching up with the Joneses). The formulas are derived under
lognormality and an i.i.d. assumption for the growth rates of consumption and divi-
dends. We also assume lognormality but after conditioning on a number of states and
our state variable capture the dynamics of the growth rates. Eraker (2006) produces ana-
lytic pricing formulas for stocks and bonds in an equilibrium CCAPM with Epstein-Zin
preferences, under the assumption that consumption and dividend growth rates follow
affine processes. However, he uses the Campbell and Shiller (1988) approximation to
maintain a tractable analytical form of the pricing kernel.

The rest of the chapter is organized as follows. Section 2 describes the Markov-
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switching model for consumption and dividend growth. Section 3 enumerates several
empirical facts and provides analytical formulas for the statistics reproducing these styl-
ized facts. In Section 4, we solve for the price-dividend ratio in asset pricing models.
Section 5 provides applications to several asset pricing models for the US post-war econ-

omy. Section 6 concludes. Appendix II collects the proofs of main propositions.

2.2 A Markov-Switching Model for Consumption and Dividends

We follow the approach pioneered by Mehra and Prescott (1985) by specifying a
stochastic process for the endowment process and solving the model for the prices of
the market portfolio, an equity and the risk-free asset in the economy. The goal in this
branch of the empirical asset pricing literature is to determine if equilibrium models with
reasonable preferences are able to reproduce some stylized facts associated with returns,
consumption and dividends.

Contrary to the original model in Lucas (1978)), we make a distinction between
consumption and dividends. Consumption is the payoff on the market portfolio while
dividends accrue to equity owners. This distinction is nowadays almost always made
(see Bansal and Yaron, 2004, Hansen, Heaton and Li (2004) and Lettau, Ludvigson and
Wachter (2005) among others), but was introduced originally by Tauchen (1986) and
pursued further by Cecchetti, Lam and Mark (1993) and Bonomo and Garcia (1994,
1996). !

The main reason for disentangling the consumption and dividend processes is first
and foremost an empirical one: the series are very different in terms of mean, variance,

and other moments.

1 Abel (1992) formulates a model with production, but where the labor supply is inelastic and the stock
of capital is fixed and does not depreciate, and randomness comes from technology shocks. Then, con-
sumption is equal to the total income of the economy, which is the sum of dividends - the capital income
- with labor income. The disentanglement of consumption and dividends appears naturally in an asset
pricing model of a production economy. However, usually total income is different from consumption,
since there is investment, and although the Euler condition for asset returns still involves discounting the
return by the intertemporal marginal rate of substitution in consumption, the latter depends also on leisure
(see Brock, 1982, and Danthine and Donaldson, 1995). In Abel’s (1992) simple version, labour supply is
fixed and there is no investment. Thus, his version of a production economy fits perfectly our empirical
framework.
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We postulate that the logarithms of consumption and dividends growth follow a bi-

variate process where both the means, variances and covariances change according to a

Markov variable s, which takes the values 1,...,N (if N states of nature are assumed for

the economy). The sequence {s;} of Markov variables evolves according to the follow-

ing transition probability matrix P.

We assume that )
(1,0,0,...,0)" whens, =1

(0,1,0,...,0)T whens, =2

&

.

(0,0,0,...,1)T whens, =N

\

where s, is a stationary and homogenous Markov chain. We also assume

Xep+1 =log(Cri1) —log(C) = ¢ —¢r = Ii(,:rgt + (w.;rgt)l/z Ect+1
X4+t =log(Dyyy) —log(Dy) =dyy —dr = ui &+ (0] §)'? Ed s+,

where
E,-
i ‘ U(SC,Tjed,TJTSt;Cm,mGZ)
Ed1+1
0 1 p'G
~ N , .
0 p'& 1
We define the matrix P by

P"=pijh<ijen: pij=Pls=Jls=1i).

(2.1
(2.2)

(2.3)

(2.4)

We assume that the Markov chain is stationary with an ergodic distribution I, IT €
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R, ie.,
M=E[G]. (2.5)

We have
E[6:¢] = Diag(T1,,...,TIy) and Var[§] = Diag(ITy,...,Tly) —TIIT . (2.6)

Bonomo and Garcia (1994, 1996) use the specification (2.1,2.2) with constant cor-
relations for the joint consumption-dividends process to investigate if an equilibrium
asset pricing model with different types of preferences can reproduce various features
of the real and excess return series. 2 The heteroscedasticity of the endowment process
measures economic uncertainty as put forward by Bansal and Yaron (2004).

In the following, we adopt the notation:
Vue RN, A(u) = Diag(exp(u)),...,exp(uy))P. (2.7)

L =0Dr1<1t), s=0(Dy,51,7<t)=0(Dr, {7, 7 <1). (2.8)

We also note

P" =[P, ;(M)]1<i,j<n-

The vector e denotes the N x | vector whose all components equal one, while e; denotes

the vector whose i-th component equals zeros and the others equal zero , i.e.,
e=(1,,,,1)T,e,=(1,0,...,0)7, e2=(0,1,0,...,0)T, ..., and ey = (0,...,0,1) 7. (2.9)

Finally, © denotes the element by element multiplication operator, i.e.,

XoY = (xly],...,xNyN)T, where X = ()cl,...,)cN)T andY = (y],...,yN)T

’

2Cecchetti, Lam, and Mark (1991) use a two-state homoskedastic specification of (11) for the endow-
ment and similar preferences to try to match the first and second moments of the return series. The authors
use two models, one with a leverage economy, another with a pure exchange economy without bonds. In
both instances, they are unable to replicate the first and second moments taken together.
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and for any real number ¢, X9 = (x,...,x%)7.

2.3 Analytical Formulas for Statistics Reproducing Stylized Facts

In this section we start by recalling a series of stylized facts that researchers have
tried to reproduce with consumption-based equilibrium models. In the formulas we will
develop for the various statistics we will assume that we have solved the model for the
price of the asset of interest or a ratio of the payoff of the asset to its price. As we will
see, the structure of the endowment process implies that there will be one such payoff-
price ratio per regime and this will help in computing closed-form analytical formulas.
Of course these prices are model-dependent and in the next section we will solve for
the prices in a Markov-switching economy with recursive preferences (Epstein and Zin,
1989).

2.3.1 The Stylized Facts

In his survey on consumption-based asset pricing Campbell (2002) enumerates a
number of stylized facts about the stock market and its relation to short-term interest
rates and consumption growth. We report these stylized facts and others computed with
a post-war data set of quarterly consumption, dividends and returns data for the US
economy (1947:1 to 2002:4). The empirical predictability results for the quarterly US
data from 1947 to 2002 are reported in table 2.1.

1. The average return on stock is high (7.43% per year).
2. The average riskless real interest rate is low (1.20% per year).
3. Real stock returns are volatile (standard deviation of 16.93% per year).

4. The real interest rate is much less volatile (standard deviation of 2.28% per year)
and much of the volatility is due to short-run inflation risk. Note however that

there might be regimes as shown in Garcia and Perron (1996).

5. Real consumption growth is very smooth (standard deviation of 1.33% per year).

°
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11.

12.

13.
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. Real dividend growth is extremely volatile at short horizons because of seasonality

in dividend payments (annualized quarterly standard deviation of 22.50%). At
longer horizons it is intermediate between the volatility of stock return and the

volatility of consumption growth.

. Quarterly real consumption growth and real dividend growth have a very weak

correlation of 0.15 but the correlation increases at lower frequencies.

. Real consumption growth and real stock returns have a quarterly correlation of

0.16. The correlation increases at 0.31 at a 1-year horizon and declines at longer

horizons.

Quarterly real dividend growth and real stock returns have a very weak correlation

of 0.11, but correlation increases dramatically at lower frequencies.

Real US consumption growth not well forecast by its own history or by the stock
market. The first-order autocorrelation of the quarterly growth rate of real non-
durables and services consumption is 0.22. The log price-dividend ratio forecasts
less than 4.5% of the variation of real consumption growth at horizons of 1 to 4

years.

Real US dividend growth has some short-run forecastability arising from the sea-
sonality of dividend payments (autocorrelation of -0.44). But it is not well forecast
by the stock market. The log price-dividend ratio forecasts no more than 1.5% of

the variation of real dividend growth at horizons of 1 to 4 years.

The real interest rate has some positive serial correlation; its first-order autocor-
relation is 0.63. However the real interest rate is not well forecast by the stock

market.

Excess returns of US stock over Treasury bills are highly forecastable. The log
price-dividend ratio forecasts 10% of the variance of the excess return at a 1-year

horizon, 19% at a 3-year horizon and 26% at a 5-year horizon. Real returns exhibit




91

a lower predictability, also increasing with the horizon (9% at a 1-year horizon,

15% at a 3-year horizon and 22% at a 5-year horizon).

To reproduce these stylized facts one needs three main types of formulas: formulas
for expected returns, formulas for variance ratios of returns, formulas for predictability
of returns.

2.3.2 Formulas for Expected Returns

2.3.2.1 Expected Returns on a Dividend-Producing Asset

We define the return process R, | as

g D
Riyy = =20 (2.10)
1
while the aggregated return over % periods is given by
h
Rijiurn= D Riyj (2.11)
j=1 A
We define the return process Ry, on the (unobservable) market portfolio as
P +C,
R (2.12)
M.t

One important property that we will use in deriving our analytical formulas is the
Markov property of the model. We will show that the variables P, /D;, Py, /C; and Pr,/1
(where the Pr; is the price of a bond), are (non-linear) functions of the state variable ;.
On the other hand, the state {; takes a finite number of values. Consequently, any real
non-linear function g(-) of & is a linear function of {;. The reason is the following: the

function g({;) takes the values g in state 1, g in state 2,..., gn in state N; hence,

g(g) :gTCI where g_ = (g17g27""7gN)T'

This property will allow us to characterize analytically the variables P, /Dy, Py, /C; and
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Pr,/1 while other data generating processes need either linear approximations or numer-
ical models to solve the model.

In the rest of the chapter, we will adopt the following notation:

P

5‘{ =A' &, (2.13)

Py,

Ttt = Aer, (2.14)
1

Rpypi=——=b"¢. (2.15)

Observe also that one can write

D . _ -
Ft :A/ZTCI with 2,2 :(2,“],...,2,”\))1—, where 2,1 = (l]],...,l]]v)-r. (216)
t
Likewise,
-G . - _
ﬁ =2An g with A = (A7), AT, where Ale = (Aict, - lien) - (2.17)
iy

In Section 4, we will use the asset pricing models to characterize the vectors 4, A,
A1c, and b as functions of the parameters of the consumption and dividend growth dy-
namics and the utility function of the representative agent. In the rest of this section,
we will characterize the predictability of the returns and excess returns as well as some
other population moments by assuming that A;, A,, A, and b are known. These formu-
las depend only on the previous vectors and the dynamics of the dividend growth and
the Markov chain.

In order to study the predictability of the returns and excess returns, we need to con-
nect them to the state variable {, and to the dividend growth. We show in the appendix

that

Ris1= (A §)exp(xas+1)(A3 Ga1) with A3 =21, +e, (2.18)

where the vectors A; and e are defined in (2.13) and (2.9) respectively. Finally, we denote



the excess return by R} e 1€,

R ) =Riy1 — Rrq11.
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(2.19)

Proposition 2.3.1. Characterization of the Expected Values of Returns and Excess

Returns.
We have

E[Ri 1 |J]= (/L)_TCI) exP(I-‘;Ct '+'(D,;'|—CI/2) A'3TPCI = WTCH

where W = (Y1, ..., yn) | and

Vi = Ay exp(la, + @4,/2) A3 Pei, i=1,...,N.
Likewise, |
E[RSyy | 1] =(w-b)T¢
Consequently, Yj > 2
ERyjlJ] = y P/7'¢ and ER,; /] = (y—b)TP7'¢,.
Finally,
ERiviysn | ] = ‘V};rgr and E[R, ., in | Je] = (Wn —bh)TCt

where
-

.
oo hoo

v, = (ZPJ“‘) v and by, = (ZPH) b.
j=1 j=1

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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2.3.2.2. Expected Risk-Free Rate

In the sequel, we will also compute in the application section the frequency with
which models produce negative interest rates. The probability that the risk-free rate is

negative is given by
PRt < 1) =E g, oy =E[e76] =M, (2.26)

T
where g = (1{b|<]}7“"1{bN<1}) .

2.3.3 Variance Ratios for Returns

In this section we provide variance formulas for the dividend price ratio as well as
some covariance formulas between this ratio and the returns at various horizons. We
conclude by a formula for the variance ratio that measures the autocorrelation in returns.
Cecchetti, Lam and Mark (1990) were the first to reproduce the autocorrelation in returns
with a Lucas-type model where the growth rate of the endowment process (represented
either by consumption, income or dividends) followed a two-state Markov-switching
model in the mean. Bonomo and Garcia (1994) showed that a two-state model with one
mean and two variances is closer to the data but cannot reproduce the autocorrelation in

returns.

Proposition 2.3.2. Some Population Parameters.

D
Var [Ft[

} — 2, Var(t); and Var {%] —VarlGlhe  27)

?
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In addition, we have

Cov (R,wh,%) =y Var(§)a, 228)
Cov (Revrasn ) = i Var(Ca., 2.29)
Cov (R ik ) = (Wn— bn) "Var($) 22, (2.30)
Cov ( 1+ B ) = (Wh—bh)Tva’(Cth- (2.31)

We also have

Var[Rys1aen] = h67 E | 64T | PT6s.

+h(61©61) EG G IPT (A3 0 As) — 2 (8) E[G,4 TP A3)°

(2.32)
h
+23 (h—j+1)0E[GLTIPT (A0 (P2 T(810 (PTA)))),
j=2

where

01 = 22 ® (exp(Ma, + @4,1/2),-...exp(Han + Wan/2)) T, (2.33)

6 = (0,06, (exp(@y);....exp(yn) ) = (6,06)), (2.34)

63 = A30A3. (2.35)
Likewise,

WW[RﬁtH%]thJE[ggT]PT%
+h ((6, ©6) E [C,C,T} PT(M®M)-2(6,0b)E [C,C,T} PTA3)

+h(b@byrn-4ﬁ(eIE[ggﬁ]PTa,—an)z

h
+22(h—j+1)Qj
j=2

(2.36)
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where

=T T i (0 (00 (7))
_6]E [c, c,T] PT (Ag o ((PH)Tb)) 2.37)
—bTE (68T (P (010 (PT2s) ) +4TE 6T (P Te,

Observe that by using (2.32), one gets the variance ratio of aggregate returns which

is given by
lVar[R,H:Hh]

ti = .
Ratio(h) A VarResrest]

(2.38)

One also gets a similar formula for the excess returns by using (2.36).

2.3.4 Predictability of Returns: An Analytical Evaluation

As mentioned in the previous section on stylized facts there appears to be a strong
predictability of returns by the dividend-price ratio, which increases with the horizon.
It is important to establish if this predictability measured inevitably in finite samples
is reproduced in population by the postulated model. Therefore, we provide below the
formulas for the population coefficients of the regressions of aggregated returns over
a number of periods on the price-dividend ratio. In the section on applications below
we will investigate by simulation to what extent some models produce predictability
in finite samples but not in population. Several papers proposed models to reproduce
predictability in returns. Bonomo and Garcia (1994) showed by simulation that a model
with disappointment averse preferences (a recursive utility model with a Chew-Deckel
certainty equivalent, see Epstein and Zin, 1989) and a Markov switching endowment for
consumption and dividends was able to reproduce predictability in finite samples. More
recently, Bansal and Yaron (2004) also reproduced this predictability with a recursive
utility model with a Kreps and Porteus certainty equivalent.

It is common in the asset pricing literature to predict future (excess) returns by the
dividend-price ratio. In doing so, one computes the regression of the aggregate returns

onto the dividend-price ration and a constant. In the following, we will use the analytical
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formulas derived above in order to study these predictive ability in population.
When one does the linear regression of a variable, say y,;.,44, onto by another one,

say x;, and a constant, one gets

Yertat+h = ay1 (h) + by 1 (B)x; + 1y 1 144 (R)

where
bo: = Cov(yt+1:t+h7xt)
w1 Var(x,]

while the corresponding population coefficient of determination denoted R? is given by

R? (COV()’t+1:t+h7xt)))2

B Var(y,+1.+nVar(x] ‘

We will use these formulas in the following Proposition in order to characterize the

predictive ability of the dividend-price ratio.

Proposition 2.3.3. Regression of the Aggregated Returns onto the Dividend-Price Ra-
tio and a Constant. ‘

Define the population regressions

D D
Rit1a4n = ay(h) + b1 (h) _P’ +Ni+4(h) and RY, 1, = af(h) + b‘i(h)—P’ + 07 n(R). (2.39)
! !

Denote the population coefficients of determination by R*(h,D/P) and R?(h,D/P). Then,

e D,
Cov (Rt+1:t+h’ P, )

D, ’
Var [F]

D
Cov (Rt+1:t+ha ﬁ)

D,
Var [F]

bi(h) =

, bi(h) =

(2.40)

2 2
Cov{ Ryt 1:4+h, 2: Cov (R7 . W B
Mmmm:( ( PP,@mmmz( (”*+”P,(mn
Var|R,;14+4)Var [ﬁ’] Var[R¢ ., ,IVar [F’]

where Cov (R,HH;,, %), Cov (Rf+]:t+h’ %’),Var [%’], Var[R 1.+4) and Var[RS ., .,

are given in (2.28), (2.30), (2.27), (2.32) and (2.36) respectively.
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The following Proposition characterizes the predictive ability of the consumption-

price ratio:

Proposition 2.3.4. Regression of the Aggregated Returns onto the Consumption-Price
Ratio and a Constant.

Define the population regressions

C C
Rittan= ale(h) ‘H’lr:(h) —— + Thc,r+h(h)-, Rf+|:r+h = atlzc(h‘) +b?c(h) — + nfc,r+h (h) (2.42)
PM,r PM,r
Denote the population coefficients of determination by R*(h,C/Py) and R*(h,C/Py).
Then,

G C
=t =
Cov (RH-IH-HH P ’I) Cov (Rf lit+h? P .')

bio(h) = - ¢ (h) = . , 243)
Var [P—L} Var [P—’]
My M.t
( 2) (Risvion ).
Cov (RH-I:H-haﬁ)) (CDV Rf+1;,+hyﬁ;_,>)
R*(h,C/Py) = o R2(h,C/Py) = o, (249
Var{RyiyoVar | =] Var[Re,  plVar | - |
where Cov (R,+|;,+;,, }%‘—,) Cov (Rf+|:1+h= %),Var {Ffﬂ Var[Riyi41x] and Var[R¢_ .. ,] are

given in (2.29), (2.31), (2.27), (2.32) and (2.36) respectively.

The two previous propositions characterize the predictive ability of the dividend-
price and consumption-price ratios. However, it is common in the literature to use jointly
these two variables in the predictive regressions. The following proposition characterizes
the joint predictive ability of the dividend-price and consumption-price ratios. However,

we do not study in this chapter the empirical counterpart of these joint predictive ability.

Proposition 2.3.5. Regression of the Aggregated Returns onto the Dividend-Price and
Consumption-Price Ratios and a Constant.

Define the population regressions

N D G\ - 3
Rt+l:t+h = ﬂl(h) + (—t: —t) bl (h) +Th,r+h(h)7
Fr Puas (2.45)
D, C '

R, 1o = (1) + (— —) B (h) 4+ 71, ().
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Denote the coefficients of determination by R*(h,D/P,C/Py) and R2(h,D/P,C/Py).

Then,
3 D, C, \\ " ;
bi(h) =Q" : (COV (Rt+] t+-hs ) Cov (Rr+1 dt4-hs )) ) (2.46)
Iy P
3 ~ D, G \\ '

b?(’l) = Q ! (COV (R’+1 Y Thr P ) COV (R[+] [+h’PA;’)) , (2.47)

TQb be(h)T Qb (4
R(h,D/P.C/Py) = 118 Q0E) gy 1 ipcrpy) = ( )_QbiR) ) 48

Var[Ry1.4h] [Rt+] r+h]

where Cov (R,H th r) Cov (R,_H > Py ) Cov (Rf+1 b PM ) Var[ ] Var[ ]
Var(Ry1. 4] and Var(R? .., | are given in (2.28), (2.29), (2.30), (2.31), (2.27), (2.27),

(2.32) and (2.36) respectively, while the matrix S is defined by

Var[2 Cov|FH,
Q= D[ P]C # C”Mf] (2.49)
Cov[, gl Var[pt]
where
D, C
Cov [J, ’] = A Var[{] Az (2.50)
P Py,

2.3.5 Predictability of Consumption Volatility and Growth Rates

Bansal and Yaron (2004) provide empirical evidence for fluctuating consumption
volatility. They also provide some evidence that realized consumption volatility predicts
and is predicted by the price- dividend ratio.

We start this subsection by characterizing some moments and then we will study the
predictability of the aggregate consumption volatility in a subsequent proposition. The

consumption variance 6 defined in (2.1) equals @, .

Proposition 2.3.6. We have

D
COV( c?l+] tths P’) = a);l,—,Var[C,]ﬂQ (2.51)

C
Cov( T ) = oVar[§] A, (2:52)
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where
h T
Weh = (Z PJ) . (2.53)

In addition,

Var [Gcz,t—f-l:t—i-h] = a)CTVar (&4 1:044] @O (2.54)

where

h
Var [§1:44n) = (h1+2 z (h—j+ l)PJ_l) Var[§]. (2.55)
j=2
We are now able to study the predictability of the aggregate consumption volatility.
Proposition 2.3.7. Regression of Aggregate Consumption Volatility onto Dividend-

Price Ratio.

Define the population regression

D
02 1apn = a3 (h) +b3 () = + N34 (), (2.56)

P,

and denote the population coefficient of determination by R* (h, 0'(:2, %). Then,

Cov [ 02 Lit+h? b
by (h) (%% I’)'+ ) 2.57)
Var [ﬁ’]
2
2 D,
D (COV(O', 1: h’_f))

R? (h,of, —) — el i) (2.58)

P Var [G{itHHh] Var [%’]
where Cov (Gcz,H-l:t—f-h’ %’), Var [Gcz,t-i—l:t—i—h]’ and Var[%’] are given by (2.51), (2.54), and

(2.27) respectively.

We can also characterize the predictive ability of the consumption-price ratio:
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Proposition 2.3.8. Regression of Aggregate Consumption Volatility onto Consumption-
Price Ratio.

Define the population regression

G
°'c2,t+1 yqh = a3¢c (h) +b3e (h) Pus + N3ce4h (), (2.59)

and denote the population coefficient of determination by R? (h, o2, PQ) Then,

C,
i
Cov ( ct+1i+h PM,)

Var [Wtr]

b3, (h) =

(2.60)

R-z (h, ) C) _ (Cov( Ocr+1: t+h’P,))2 2.61)

Oy =
P D
M Var | [ Ct+1: t+h] Var [_P,L]

where Cov( c2t+1 1k Py ) Var[ Ofrt1: t+h] and Var[%] are given by (2.52), (2.54),
and (2.27) respectively.

The two previous propositions characterize the predictive ability of the dividend-
price and consumption-price ratios in forecasting aggregate volatility. We now char-
acterize the moments through which we will study the predictability of aggregate con-
sumption and dividend growths in a subsequent proposition.

Aggregate consumption and dividend growth rates over A periods are defined by:
h h
Aciiigsn = Y, Acryjand Ady1ppn = Y, Adyyj.

j=1 j=1

The expected values of these multi-period growth rates are given by:

E[Aciirain | J) = 1hG and E[Adyy 104 | J] = 13,6
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where

R\ R\ "
pen= 2P| peandpg={ Y. P | a4
j=1

j=1

Proposition 2.3.1. We have

D C v
Cov <A0,+|:,+;,, FI) =y Var|&) Az and Cov (Ac,.H:,H,,, #) =y Var [§] Az, (2.62)
1 it

D C ,
Cov (Ad,+1;,+;,,—') =y Var[] Az and Cov (Ad,ﬂ:,ﬁ,—’) =uVar(f]Az. (2.63)

P, Py
In addition,
Var [ACH-I:H-h] = #CTVar[C:::+h—1]Hc+hGJCTH (2-64)
Var [Ad,1.44) = ﬂl;rvar[Ct:Hh—l] Uq +hw¢;rn (2.65)

where Var [ n_1] = Var[§41:.04n) given by (2.55).

These formulas allow us to study the predictability of growth rates which are char-

acterized in the following propositions.

Proposition 2.3.2. Regression of Aggregate Consumption Growth onto Dividend-Price
and Consumption-Price Ratios.

Define the population regressions

: D :

Acii14+h = ag (h) + by (h) Ft + Na+n (h) (2.66)
3

C .

Acii1y4h = aac (h) +bac (h) ﬁ + Nac,e+h (h) (2.67)
!

and denote the coefficients of determination by R* (h, Ac, %) and R* (h, Ac, P%) respec-
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tively. Then,

D)2
(COV (Act+1:t+h7 #))

Var [Ac+1.+4) Var [%]

Cov (Act+1:t+h> QL) D
ba (h) = i ) and R? (h,Ac,;) -
Var [TJTL]

(2.68)

2
Cov (ACr+1:r+h, —C‘—) (COV (ACH-I:H-ha i))
bac (h) = 1/ and R? (h,Ac, i) - Py (2.69)

Var [7,%‘7] Pu Var [Aci+14+4) Var [%]

where Cov (AC,+1:t+h, IT(;;L,) Cov (AC,+1;,+;,, %) and Var[Ac, 1. +n) are given in (2.62),

(2.62) and (2.64) respectively.

Proposition 2.3.3. Regression of Aggregate Dividend Growth onto Dividend-Price and
Consumption-Price Ratios.

Define the population regressions

D .
Ady 14+ = as(h) + bs (h) Ft + N5 14 (h) (2.70)
t
C
Ady 14 +n = ase (h) + bs. () ﬁ + Nscy+n (B) (2.71)
)

and denote the coefficients of determination by R? (h, Ad, %) and R? (h, Ad, %) respec-
tively. Then,

D 2
(COV (AdH-l:H-h? ﬁ))

Cov (Adt+1:t+ha %) 2 D
bs (h) = and R (h,Ad, —) - 2.72)
Var [%’} P Var[Ad, 1,+1|Var [%’}
Cov (Adt+1 t+h -CL) C (COV (Adtﬂ t+h —C‘—))2
E ) P : Y Py,
bs. (h) = 1) and R2 (h,Ad, —) = = (2.73)
Pu)  Var|Ad,,i.4en]Var

G
Var [FM‘—!}

—

G
Puy

where Cov (Adz+1:z+h, %), Cov (Ad,H;,Jrh, %’) and Var[Ad, ; 1.,+p) are given in (2.63),
(2.63) and (2.65) respectively.
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2.4 Solving Asset Pricing Models

The benchmark model for equilibrium consumption-based asset pricing is the Lucas
(1978) model. We will reserve below the acronym CCAPM for this model. It will appear
as a particular case of the so-called Epstein and Zin (1989) model that we will analyze
in depth in this chapter. In fact this model is a particular case of the general recursive
specification used by Epstein and Zin (1989) in which a representative agent derives his
utility by combining current consumption with a certainty equivalent of future utility
through an aggregator. Depending on how this certainty equivalent is specified, the re-
cursive utility concept can accommodate several classes of preferences. A class that is
used extensively in empirical work is the so-called Kreps-Porteus, where the certainty
equivalent conforms with expected utility for ranking timeless gambles, but with a dif-
ferent parameter than the aggregator’s parameter. This is what it is usually called the
Epstein and Zin (1989) model. We will keep below with this tradition.?

Another very influential model is the Campbell and Cochrane (1999) model which
extends the basic external habit formation literature. In habit formation models, an in-
vestor derives utility not from the absolute level of consumption but from its level relative
to a benchmark which is related to past consumption.* When this reference level depends
on past aggregate per capita consumption, the cartching up with the Joneses specification
of Abel (1990), or on current per capita consumption, the keeping up with the Joneses
of Abel (1999)°, it captures the idea that the individual wants to maintain his relative
status in the economy. Campbell and Cochrane (1999) specify a slow-moving habit and
impose a nonlinear dynamics on the surplus consumption with respect to the habit.

The main goal of this section is to characterize the vectors A1, A;. and b defined in

(2.13), (2.14) and (2.15) as function of the parameters describing the dynamics of the

3Epstein and Zin (1989) go further by integrating in a temporal setting a large class of atemporal non-
expected utility theories, in particular homogeneous members of the class introduced by Chew (1985) and
Dekel (1986). The certainty equivalent is then defined implicitly. It includes in particular a disappointment
aversion specification, see Bonomo and Garcia (1994).

4See among others Abel (1990, 1996), Campbell and Cochrane (1999), Constantinides (1990), Ferson
and Constantinides (1991), Heaton (1995), and Sundaresan (1989).

31t generalizes Gali’s (1994) specification of consumption externalities whereby agents have prefer-
ences defined over their own consumption as well as current per capita consumption in the economy.
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consumption and dividend growths and the utility function of the representative agent.
We provide analytical formulas for these quantities for the three models just described
: CCAPM (Lucas, 1978), Epstein and Zin (1989) and Campbell and Cochrane (1999).

Solutions for the latter model are provided in appendix IIL.

24.1 The CCAPM
24.1.1 Consumption Equals Dividend

We start by assuming that the consumption equals the dividend as in Lucas (1978),
which implies
Ue=Ug, Oc=0y, p=(1,1,...,1)7. (2.74)

Proposition 2.4.1. Characterization of the Asset Prices.
We have

g’, = e [1d—8A((1 = Vtta+ (1 - 1 2u/2)] " exp ((1 — Mg+ (1- y)zwd/wc,) &,
2.75)
where the matrix A(-) is defined in (2.7). Consequently, the i-th component, i=1,...,N, of
the vector A, defined in (2.13) are given by

Ai=0exp((1-y)pq;i+(1 —}')261),1,,-/2))eT [Id— SA((1—y)pg+(1— y)za)d/Z)]_le,-. (2.76)

In addition, A1, = A while the i-th component of the vector b defined in (2.15) is given
by

bi=6""exp(yuc,i— ;wc,i)- (2.77)

The formulas in the previous proposition are not new. Cecchetti, Lam and Mark
(1990) derived them for homoskedastic models while Bonomo and Garcia (1993) did it

for the same model as us. It is also worth noting that the matrix

[1d = SA((1 - Y)ug + (1 - 1)’ w4/2)]

might be singular or leads to negative prices for some parameters (of the consumption
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growth and utility function). Such cases happen when the maximization problem does
not admit a solution. We will see in the results that such examples happen and that
one can detect them. Note however that an approximation of the model (e.g., log-
linearization) may lead to different results, for instance, provide prices that make sense
while the true maximization problem does not admit a solution. The discussion of this

issue in more details will follow in papers derived from this chapter.

24.1.2 Consumption and Dividend Are Different

Here, we still consider the CCAPM model but we assume that consumption and

dividend are different. Henceforth, we use the vectors f.4, W.q4, Uee and w,. defined by

Hea = —VHe + Uy Qg =V Oc + Qg — 27 (p ®(w)?* e (wd)1/2> (2.78)

pee = (1 =) e, @ec =(1- ?’)2 0% (2.79)

Proposition 2.4.2. Characterization of the Asset Prices.

The i-th component, i=1,...,N, of the vector A\ defined in (2.13) is given by

A1 ; =8 exp(ed,i + @cai/2))e" [1d — SA(Uea + @ea/2)] ' e, (2.80)

where A(-) is defined in (2.7). In addition, the i-th component, i=1,...,N, of the vector ;.
defined in (2.14) is given by

Ao = Soxp ((I—Y)ﬂc,i+ (1 2Y) ww,) T []d—SA ((1 —Y) e+ (a 2Y) wc)] ei

(2.81)
Finally, the components of the vector b defined in (2.15) are given by

b,‘ = 6_] exp(yucy,' — ;a)c,,'). (2.82)



107

2.4.2 The Recursive Utility Model

The representative agent has recursive utility defined over consumption flow C; as

follows:

1

1

Vi = {(1—5)Ct]_V+6[92,(V1+1)]“\%}"W if v+ 1 (2.83)
= BV ify=1, (2.84)

1
where V, is the current continuation value of investor utility, %, (Vi41) = (E [Vt:y | J,] ) =
is the certainty equivalent of the next period continuation value of investor utility, ¥ is
the coefficient of relative risk aversion, ¥ is the elasticity of intertemporal substitution,

0 is the subjective discount factorand 6 = (1 —y) /(1 —1/y).

When y # 1, it is proved that the stochastic discount factor is given by:

-1
— M.+1
C1\ 7 C.
M,1=0 ( G ) 6’;7 , (2.85)

where the market price-consumption ratio is given by:

1
Py g1 )9 (Cz+1 ) 1=y e
’ +1 J, . (2.86)
( Ci+1 G &

If 6 = 1, one remarks that (2.85) corresponds to the stochastic discount factor of an

Py, '
—= =6E
G

investor with time-separable utility and constant relative risk aversion. Also, if the elas-
ticity of intertemporal substitution is different from unity, the ratio of the continuation

value to consumption is related to the market price-consumption ratio as follows:

ﬁ PM[ ﬁ
L=(1-8)"" < 1 v, (2.87)

t

On the other hand, when y = 1, the benchmark case considered by Hansen, Heaton
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and Li (2005), the stochastic discount factor is given by:

]_
v! '

C -Y _tl
M= 6( ’*') SRS (2.88)

“ @

where the utility-consumption ratio is given by:

S
1-y

1-y _
1 vl 1-y
()@ ])" e

whereas the market price-consumption ratio is constant and equal to §/(1 — §). In the

rest of the paper, we will also adopt the notation:
==20, (2:90)

2.4.2.1 Market Price-Consumption Ratio

We start our analysis by characterizing the vector A;. defined in (2.14) that char-
acterizes the consumption price ratio. The characterization of this vector is the main
difference between Epstein-Zin and CCAPM models. We will show below that when
one has the vector A;., one gets the vectors dividend price ratio (i.e. the vector A;)
and the risk-free rate (i.e., the vector b) as for the CCAPM. The following proposition

characterizes the vector A4,.

Proposition 2.4.3. When the EIS is different from one, the components A, zi, i =

1,..,N, of the vectors Ay, and z are the solution of the following equations:

1

N o 1- 1-7)?

llc,i=5(ZPij (llc,j+1)6) CXP(( GY)MC,PF( 29},) ;i | - (2.91)
=

1 1

2= (1—8)"V (Mg +1)V. (2.92)

Instead, if the EIS is equal to one, the components of the vector A, and 7 are given



109

(2.93)

[

S(1— N _ -y
amen (a5 00) (£ 7). o
=1

Equations (2.91) and (2.94) are highly nonlinear, respectively when 8 # 1, that is,
when Epstein-Zin model is not the CCAPM, and when & # 1, that is when the investor
subjectively has a preference for the present relatively to the future. However, it is easy
to solve these equations numerically by using numerical algorithms. We did by using
thé nonlinear equation solver in GAUSS.

As stated earlier, one of the objectives of this paper is to assess the errors due to
using some approximations of the price-consumption ratio instead of the formula (2.91),
given that these approximations are often considered for models with an EIS different
from one. The first simple approximation is to linearize this function around A*e where
A* is a positive number. It leads to

N 5N
(21 pij (e j+ 1)9) e Z]Pij (Aiej+1). (2.95)
j=

J:

Consequently, one gets fori =1,..,N,

2 2 -1
Aros = Sexp ((1 7,4+ 020 w) ;7 []d— 54 (“ 1), 4 1D a))]
(2.96)

The second approximation is the log-linearization of Campbell and Shiller (1988)

for the market return, which leads to:

st = INRag et ~ ko + kv ]G — v G + Ay, (2.97)
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where v, denotes the logarithm of the price-consumption ratio. Consequently, one gets:

A~ exp(viey), i=1,..,N

(1-7) (1-7y)?
T Heit e

1
Vici= (Iné +ko) + i + gln [Z pijexp (levlcj)} . (2.98)

i
Notice that although the coefficient k; is exogenously specified in previous studies,
it is an endogenous coefficient which depends on preference parameters as well. The

value of coefficients k| and kg are given by the formulas:

1
T 1+exp(-ITl,

) and ko= —Ink; — (1—k;)In (1—1), (2.99)

ki

where [ = (]nllc,l,,.,lnﬁ,lcyN)T and Ay ;, i =1,..,N are given by (2.91).

Since the coefficients k; and k¢ depend on the mean log price-consumption ratio ¥,
then the vector v{, whose components are given by equation (2.98) is also a function of
V1, that is, vi, = v (¥)¢). In an alternative method to find model-consistent coefficients
of the Campbell and Shiller log-linearization, Bansal, Kiku and Yaron (2007) solve for
V1. through the nonlinear equation which equalizes the mean of the ]ogarith‘m of the exact
model-implied price-consumption ratio with the mean of its log-linear approximation. In

our case, this equation is given by:
1= v (F1e), (2.100)
and

1
and ko= —Ink; — (1—k;)In (k——l). 2.101)

- 1 +CXP(—1—1]C) 1

The third approximation has been recently considered by Hansen, Heaton and Li
(2005). Log-linearizing the market return around the endogenous price-consumption
ratio and specifying exogenous values for the parameters of this log-linearization has the

practical drawback of using, almost surely, wrong parameters to evaluate asset market
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implications of the asset pricing model. Instead, these authors log-linearize the stochastic
discount factor around the unitary elasticity of intertemporal substitution.

We further consider the following notation:

= Ct-—l;-lFCta

(2.102)

v om 1
=In{ =), Dy =1i '~ =h'g and Dm!,,, = li Lhk
Vi n ( ) y Vg 1m v Ct an mt,H—l lyl—vlnl 8(1/1;/)

where v, is the logarithm of the utility-consumption ratio (2.87) and Dv] is its derivative
with respect to 1/y and evaluated at 1/y = 1, my ;1 is the logarithm of the SDF (2.85)
and Dm,‘,, 1 is its derivative with respect to 1/ and evaluated at 1/y = 1.

Hansen, Heaton and Li (2005) establish that the derivative Dv/ is given by the recur-

sion:
_ Vl 1~y
Dv}:_g(v})%al; (’“)1 Dv. | ], (2.103)
20 E[(VL)' 1]

from which it follows that the components 4;, i = 1,..;N of the vector h characterizing

this derivative in our model are given by the equation:

h,~:—12_65g 1 1._7(((122)T)®((21_7)TP))[Id—6A**(0)]_1ei, (2.104)

j=1

where z;, i = 1,..,N are given by (2.94), [, = (Inzy, ..,lnzN)-r and:

1-y 1—y
. Z Z
A** (u) = Dlag exp (ul) ]Vl—l 5., EXP (HN) # P, Yu e RN
> pijz;”” > pnjz; !
j=1 j=1

(2.105)
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They also establish that the derivative Dm[]’[ 4+ 1s given by the equation:

1 1 "rl 1 (V[]-‘r-l)l_y
Dmy, =V — 3 +(1=7) | Dy —E

D, |
1—-y t+1 {
E[WL) 1]

V] —7)Dv) — -0
:(v,1+1+(l—Y)Dv,]+1)”’( +(157) )_(1 };)égzl )(11)2,

(2.106)

from which it follows that the elements f;;, 1 <i, j <N of the matrix F T characterizing

this derivative are given by:

fiy=(Inz;+(1=y)h;) - (lnzi+(;_7)hi) 4 —};)5(21 —0)

(Inz)*  (2.107)

where h;, z;, i = 1,..,N are given by (2.104) and (2.94) respectively.
Hansen, Heaton and Li (2005) consider the first order Taylor expansion of the SDF

(2.85) around the unitary elasticity of intertemporal substitution, that is:

My 1 =exp (mt,t+l)

1
Mige1 ml o + (G —~ 1) Dm/ ., (2.108)
Let Py denotes the matrix defined by P, = [py,ij],; ;< such that:
|
Py.ij = Pijexp ((u—, - 1) fij) : (2.109)

Given the Hansen, Heaton and Li (2005)’s approximation (2.108), the components
Ale,i, i =1,..,N of the vector A, characterizing the market price-consumption ratio are

given by the following formula:

.
Mei=0 (%) 7exp (e + “’%) (@) Ry) [1d -84y (pec+ “’T)} e
“ (2.110)
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where z;, i = 1,..,N are given by (2.94) and

Ay (u) = Diag (zsl_l/‘s)(I—Y) exp (u;), ..,zs_]/a)(l—}') exp(uN)) Py, Vu e R".
(2.111)

The approximations (2.96), (2.98) and (2.110) can also serve to obtain starting values
for a numerical algorithm.
2.4.2.2 Equity Price-Dividend Ratio

Interestingly, when one has the price-consumption ratio, i.e., the vector A;., one gets

analytically the equity price-dividend ratio.

Proposition 2.4.4. When the EIS is different from one, the components Ay;, i=1,..,N, of

the vector Ay characterizing the equity price-dividend ratio are given by the following

formula:
A= ( 3 exp (1eai+ 2224 ( (o —I—e)e_l)TP [1a—84. (1 d+%)]’le-
i llc,i cd,i ) c * c 2 i

(2.112)

where

6-1 0-1
A, (u) = Diag (5M—CI-+—1> exp(u1),..., <6M) exp(un) | P, Vu € RV,
Ale,i MeN

(2.113)

and Ayci, i =1,..,N are given by (2.91).

Instead, if the EIS is equal to one, the components of the vector A are given by:

-
Ai=0 (zl%) yexp (,licd’i+ w;d’i) ((ZI—Y)TP) [Id—5A1 (,ucd—l-%c—d)]_] e

' (2.114)



114
where z;, i = 1,..,N are given by (2.94) and
A (u) = Diag (41—1/6)(1—7) exp(ul),..,z,(vl_]w)(]_)’) exp (uN)) P,YueRN,

consistently with the notation (2.111).

Likewise, one can also use the log-linearization method to get the price-dividend

ratio. The log-linearization of the equity return is given by:
Feet = INRep ) R ko + ki v] G —v] G +Adyy . (2.115)

Also, although the coefficient k,,; has often been exogenously specified in empirical
studies, it is an endogenous coefficient which depends on preference parameters as well

as k. The value of coefficients k,,; and ko are given by the formulas:

kin

1
and ko= —Inky — (1 —kp1)ln (k——l) (2.116)

ml

' Texp (071

where [} = (lnlll,..,lnlw)T and Ay;, i=1,..,N are given by (2.112).

We present below the formulas when one uses the log-linearization for the equity
return (simple log-linearization) and one uses the log-linearization for both the market
and equity returns (double log-linearization).

In the double log-linearization, one gets:

l],’ zexp(v”), i=1,..,N

1
vii=0Ind+(0—1)ko+kmuo— (60— l)vlc,i+ucd,,~+—2-a)cd,,-

N
+In | Y pijexp((8 — kivie,j +kmivij) | - (2.117)
j=1

where vi.;, i = 1,..,N are given by (2.98).
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In contrast, the simple log-linearization leads to:

Ali=exp(vy),i=1,.,N

: 1
Vii= 8106 +kpo + leqi + icocd,i+ln

J

N e i+1)\2!
Pij( l;:fF ) exp(kle]j) .
=] o
(2.118)

where vy, i = 1,..,N are given by (2.98). ,

The coefficients k,,; and k., also depend on the mean log price-dividend ratio vj.
Then, the vector vi whose components are given by equation (2.117) or (2.118) is also
a function of ¥, that is, v = v; (¥;). Bansal, Kiku and Yaron (2007) also solve for v;
through the nonlinear equation which equalizes the mean of the logarithm of the exact
model-implied price-dividend ratio with the mean of its log-linear approximation. In our

case, this equation is given by:
171 :ﬂTv] (171), (2.119)

and

1
 T+exp(—¥i)

km]

1
and kmo = — Inkm; — (1 —ky1)In (k——l). (2.120)
ml

Alternatively, the approximation (2.108) due to Hansen, Heaton and Li (2006) leads

to the following formula for the price-dividend ratio:

-
Ai=6 (ZTI/E) e (Hoai+ 2522 (1) Py} 1= 8y (s + “52)] e

' (2.121)
where z;, i = 1,..,N are given by (2.94) and A in defined in (2.111).

24.2.3 Risk-Free Rate

The following proposition characterizes the components of the vector b in 2.15.
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Proposition 2.4.5. When the EIS is different from one, the components b;, i=1,..,N, of

the vector b characterizing the risk-free rate are given by the following formula:

1 I N M+ 1)
;—6exp(—wc,,~+5y2wc,,-)zpij (6 — ) . @I2)

i j=1

Y

where Aici, i=1,..,N are given by (2.91).

Instead, if the EIS is equal to one, the components of the vector b are given by:

% = dexp (—uc,,- - % (1-2y) wc,i) . (2.123)

4

Based on approximations, the risk-free rate with the Campbell and Shiller’s log-

linearization of the market return is given by the formula:
1 0 1 N
b = 8" exp((6 — 1) (ko — vic,i)) exp _YUC,i"‘EYzwc,i Y. pijexp((8 — Dkyvic;), (2.124)
1 j=1

where vy, i = 1,..,N are given by (2.98).
Alternatively, the risk-free rate with the Hansen, Heaton and Li’s Taylor expansion

of the true SDF is given by the formula:

1 1 j=
b= dexp (—uC,i ~3 (1-2y) a)c,,-) — (2.125).

]

where z;, i =1,..,N are given by (2.94) and py;; i, j = 1,..,N are defined in (2.109).

2.5 Applications to Models of the Post-War US Economy

In this section, we apply the derived formulas in three contexts. First, we estimate a
Markov-switching model directly on the quarterly growth rates of real consumption and
dividend per capita for the US postwar period. Then we can apply the formulas derived
in the two previous sections for the CCAPM and the Epstein-Zin model. In a second

application, we analyze the Markov-switching model with Epstein and Zin (1989) pref-
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erences proposed by Lettau, Ludvigson and Wachter (2004). In the last application, we
calibrate a Markov-switching model in order to match the endowment process used by
Bansal and Yaron (2004). The goal is to easily compute population values for several
statistics that have been obtained by numerical techniques or by simulation, as well as to
produce results for a larger parameter set than the one in the last two papers. This way
we will hopefully better understand the economic intuition behind results and assess

robustness to changes in the values of preference and endowment parameters.

2.5.1 A Two-State Markov Switching Model with Epstein-Zin Preferences

We start with a simple model, a two-state Markov switching model in both means
and variances previously estimated by Bonomo and Garcia (1994, 1996) with annual
secular data on consumption and dividends. The estimated parameters are reported in
Table 2.2. The first state is a low-mean high-variance state for consumption. Dividend
growth is also low in this state while variance is not very different from the variance in
the high state. Both states have about the same degree of persistence and consequently
the unconditional probabilities are close to 0.5.

In Table 2.3, we report the asset pricing implications of this endowment when the
agent has Epstein-Zin preferences. As expected, a high risk aversion is needed to ar-
rive at equity premium values comparable to what is observed in the data. The equity
premium increases in both risk and intertemporal substitution, while the risk-free de-
creases sharply with the elasticity of intertemporal substitution. The reduction of the
interest rate may come either from the variance of the market portfolio if 8 is negative
or from the variance of consumption if 8 is positive. To see that, it is easier to look at
the Euler condition in a model with jointly lognormal and homoskedastic asset returns
and consumption, where the risk-free interest is given by:

Tferl = —logd + %E, [Ac+1] + (7] ; 1 0'3} - 23,2 o‘c2 (2.126)

The sign of 0 is determined, for a given 7, by the value of y. If y is less than one, 6

is positive, if it is greater than one, 0 is negative.




Table 2.1: Predictability of Returns and Growth Rates: Data.
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This table shows estimates of slope coefficients, and R-squared of regressions y, {44 = ay (h)+
by (h) %L + Ny+4 (h), where the variable y is return, excess return, consumption growth rate or
dividend growth rate. Standard errors are Newey and West (1987) corrected using 10 lags. Lines
6 and 11 show variance ratios of aggregate returns and aggregate excess returns respectively.
The horizon k is quarterly in regressions and converted into annual in the table. Estimates and
standard deviations of slope coefficients are multiplied by 10~ in the table.

h 1 2 3 4 5
Returns
Estimate 0.1416  0.2415 0.3027 03747 0.5128
Std. Dev. 0.0502  0.0930 0.1166  0.1277  0.1498
R-squared  9.0192 13.5480 15.1060 17.5200 22.3720
Var. Ratio 1.0271 09623 0.8660 0.8209 0.9199
Excess Returns
Estimate 0.1527 02617 0.3247 03875 0.5126
Std. Dev. 0.0458 0.0858 0.1066 0.1156 0.1354
R-squared 10.9800 17.1750 19.5180 21.8600 26.2010
Var. Ratio 1.0028 09105 0.7880 0.7189  0.8017
" Consumption Growth
Estimate -0.0047 -0.0058 -0.0117 -0.0163 -0.0214
Std. Dev. 0.0041 0.0073 0.0098 0.0117 0.0136
R-squared 1.6140 1.0546 2.6146  3.6245 4.6223
Dividend Growth
Estimate 0.0045 0.0184 0.0233 0.0370  0.0623
Std. Dev. 0.0176  0.0337 0.0431 0.0503 0.0536
R-squared  0.0488 04107 04435 09214 23147
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Table 2.2: Parameters of a Two-State Markov-Switching Model for Quarterly US
Data on Consumption and Dividends - 1947:3-2002:4.

This table shows parameters of a two-state Markov-Switching Model estimated on ac-
tual data. p. and p, are conditional means of consumption and dividend, @, and @,
are conditional variances of consumption and dividend. p is the conditional correlation
between consumption and dividend shocks. PT is the transition matrix across differ-

ent regimes and IT is the vector of unconditional probabilities of regimes. Means and
standard deviations are in percent.

State 1  State 2
w 1.647  2.798
p)  -12.075 13.868

1
(o)? 2669 1.587
1
() 16976 19.369
p’ 0.003  0.003
PT

State 1 0.687 0.313
State 2  0.301  0.699
' 0490 0.510
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Table 2.3: Asset Pricing Implications of the Two-State Markov Switching Model.
The entries are model population values of asset prices. The price-consumption ratio is given in
2.91 and the price-dividend ratio in 2.112. The input parameters for the model are given in Table
2.2. The expressions E [R,, — Rs| and E [Ry| are respectively the annualized equity premium
and mean risk-free rate. The expressions 6 (R,), 6 (Ry), 0 (%) and o (5) are respectively the
annualized volatilities of market return, risk-free rate, consumption-price ratio and dividend-price
ratio. The subjective factor of discount § is set to 0.98.

v v ERa—R] ER] o o®) E[Z EZ (5 o0
10.0 0.5 1.38 6.04 26.90 1.56 24.52 3479 0.044 0.553
100 0.7 1.56 4.80 27.25 1.14 3438 57.20 0.014 0.350
100 1.3 1.79 3.38 27.69 0.66 63.41 210.88 0.004 0.100
10,0 1.5 1.83 3.16 27.77 0.59 7291 359.03 0.005 0.059
200 0.5 3.42 5.37 26.58 1.93 26.67 2321 0.047 0.790
20.0 0.7 3.73 4.23 26.96 1.43 36.12 29.39 0.015 0.653
200 1.3 4.12 2.93 27.44 0.86 60.53 4198 0.005 0.481
200 1.5 4.19 2.73 27.52 0.78 67.57 4494 0.006 0.453
300 0.5 5.50 474 26.09 2.31 29.52 17.04 0.048 0.996
30.0 0.7 5.94 3.68 26.45 1.72 38.26 19.35 0.016 0.924
30,0 1.3 6.48 2.47 26.93 1.06 57.63 22.83 0.006 0.829
300 1.5 6.57 2.28 27.01 0.96 62.51 23.48 0.008 0.813
400 0.5 7.21 4.13 25.49 2.70 33.39 14.02 0.047 1.090
400 0.7 7.77 3.14 25.83 202 40.88 15.11 0.016 1.074
400 1.3 8.44 2.01 26.28 1.25 54.81 16.56 0.007 1.045
400 1.5 8.55 1.84 26.35 1.13 57.85 16.80 0.009 1.040
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It is interesting to note that the expected price-dividend ratio takes very large values
when ¥ is 10 and v is greater than one. These values reflect a lack of convergence. The
matrix [/d — 8A. (Ueqd + @q/2)] in (2.112) becomes nearly singular and this inflates the
value of the price-dividend ratio.

The value of the volatility of the dividend-price ratio appears to be very high for all
preference parameter pairs and it increases with the risk aversion.

We compute the R? of the regressions of multiperiod future returns on the current
dividend-price or consumption-price ratio but we do not find any significant predictabil-
ity at any horizon for any‘pair of preference parameters. Neither can this model repro-
duce the negative autocorrelation observed in both returns and excess returns as reported
in Table 2.1.

In the next two sections we will look at two models that have been proposed recently
by Bansal and Yaron (2004) and Lettau, Ludvigson and Wachter (2005) to advocate the
determining role of economic uncertainty (volatility of consumption) in the formation of
asset prices. The latter model uses a Markov-switching endowment process and Epstein-
Zin preferences. It is therefore a direct application of our framework and we will be
able to compute directly all quantities of interest analytically. In the former model,
the endowment follows an autoregressive process, but the preferences are also based on
Epstein and Zin (1989). We will see how to set this model in our framework by matching

the autoregressive endowment process with a Markov-switching process.

2.5.2 The Lettau, Ludvigson and Wachter (2005) Model

The endowment process in Lettau, Ludvigson and Wachter (2005) is a constrained
version of the general process (2.1), (2.2). They assume a consumption process (2.1)
where the mean and the variance are governed by two different Markov chains. For the
dividend process they simply assume that D, = (C;)*. Therefore the mean and the stan-
dard deviation of dividend growth is simply A times the mean and the standard deviation
of consumption growth, and the correlation parameter is one. We report in table 2.4 the
corresponding values of the resulting four-state Markov chain based on the estimates

reported in their paper.
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Table 2.4: Parameters of the Four-State Quarterly Markov-Switching Model of Let-
tau, Ludvigson and Wachter (2006). .

In this table, we report the parameters of the Markov-Switching Model (2.1), (2.2) with N =
4, constructed using estimates reported in Lettau, Ludvigson and Wachter (2006). p. and py
are conditional means of consumption and dividend, w, and @, are conditional variances of
consumption and dividend. p is the conditional correlation between consumption and dividend
shocks. P is the transition matrix across different regimes and IT is the vector of unconditional
probabilities of regimes. Means and standard deviations are in percent.

State 1 State2 State 3 State 4
o 0.62 062 032 -032
™ 2.80 280 -145 -145

0.75 0.40 0.75 0.40

3.36 1.82 3.36 1.82
PT

State 1 0.960 0.006 0.034 0.000

State2 0.009 0957 0.000 0.034

State 3 0.205 0.001 0.789  0.005

State4 0.002 0.204 0.007 0.787

n’ 0.515 0.343  0.085 0.057

In their model, they assume that investors do not know the state they are in but they
know the parameters of the process. Therefore at each period they update their estimate
of the probability of being in a state given their current information. In other words they
compute filtered probabilities. Based on the latter, they compute numerically the price-
consumption and price-dividend ratios that are solutions of the Euler conditions of the
equilibrium model. We have seen that given the parameters of the endowment process
we could calculate the price-consumption ratio by solving a nonlinear equation and the
price-dividend ratio analytically in the Epstein-Zin model. Following this procedure at
each point in time by using the filtered probabilities for the Markov chain along the way,
we can reproduce easily the full trajectory of the price-dividend ratio. We also intend to
carry out this exercise in future research following this chapter. Instead we will assume
that investors know the state and compute the various statistics corresponding to the
stylized facts we presented earlier. |

Since Lettau, Ludvigson and Wachter (2005) focused on the trajectory of the price-
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dividend ratio and its relationship with consumption volatility, they did not report the
values for these statistics and the sensitivity of the various quantities to the values of
preference parameters. We include a large set of preference parameters to see how the

various economic and financial quantities change as a function of preference parameters.

2.5.2.1 Asset Pricing Implications for the LLW Model

We report in table 2.5 the values of the first two moments of the equity premium and
the risk-free rate, as well as the means of the price-dividend and the price-consumption
ratios and the standard deviations of the consumption-price and the dividend-price ratios.
We have limited the risk aversion parameter 7 to this range of values because for values
below 15 we obtain negative prices for large ¥ values and for values above 30 we start
having problems solving the nonlinear system for the price-consumption ratios.

Several comments can be made. While the equity premium can be matched with a
risk aversion of 25 to 30, the risk-free rate remains high. Negative prices appear with a
7 of 15 and even at 20 convergence problems occur. The expected value of the price-
dividend ratio takes very large values. At around a maximum of 11 percent, the volatil-
ity of the equity premium is low compared to the data, but the volatility of the risk-free
rate matches well the actual value. A comparison with the previous two-state model
is instructive. While a higher risk aversion is needed to increase the equity premium
it matches better the level of the risk-free rate and the volatility of the equity premium
and produces less convergence problems at similar levels of risk aversion. The key pa-
rameters to understand these differences are the mean and volatility of dividend growth.
Limited at 13.5 percent in the high-volatility state (a direct result of setting A to 4.5), the
volatility is much lower than the 20 percent estimated with the dividend data. Moreover
it falls at around 7 percent in the low volatility state. In the two-state model it remained
at 16 percent. For the mean, it is the same multiple of the mean of consumption growth
in low and high states. This does not seem to be coherent with the data, especially in the
high mean state. This state is the most frequently visited with an overall probability of
86 percent. We will come back to these remarks later when we analyze the Bansal and

Yaron (2004) model. It will be also a four-state model but the parameters of the dividend
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The entries are model population values of asset prices. The input parameters of the MS model
are given in Table 2.4. The expressions E [R¢] and E [Ry] are respectively the annualized equity

premium and mean risk-free rate. The expressions & (R), 0 (Ry), O'(

C

Py

) and 0'(%) are re-

spectively the annualized volatilities of equity return, risk-free rate, consumption-price ratio and
dividend-price ratio. The quarterly subjective factor of discount is set to 0.9925.

vy v E[R] ER] o(R) oR) E[%] E[}] o(£) o(B)
15 0.5 2.74 6.93 8.42 1.27 21.77 243.31 0.036 0.013
15 0.6 3.01 6.22 8.96 1.07 ° 24.59 -1428.28 0.022 0.003
15 0.7 3.21 570 9.38 092 27.08 -243.94 0.013 0.016
15 1.3 3.83 426 10.69 0.53 37.54 -75.01 0.005 0.067
15 14 3.89 414 10.81 0.50 38.78 -70.99 0.006 0.072
15 1.5 3.94 4,03 1091 047 39.92 -67.84 0.007 0.077
20 0.5 411 6.99 8.69 1.26 2273 55.92 0.038 0.062
20 0.6 4,51 6.23 9.25 1.07 2540 72.17 0.023 0.054
20 0.7 4.81 569 9.69 092 27.72 90.73 0.014 0.046
20 1.3 5.70 414 11.00 0.53 36.89 296.39 0.006 0.017
20 14 5.78 401 11.12 0.50 37.93 363.52 0.007 0.014
20 1.5 5.85 390 11.22 047 38.87 451.93 0.008 0.012
25 0.5 5.57 7.11 8.71 1.28 23.93 30.16 0.038 0.116
25 06 6.11 6.29 9.27 1.08 26.40 33.49 0.023 0.116
25 0.7 6.50 5.69 9.69 0.93 28.47 36.30 0.014 0.115
25 1.3 7.68 4.01 10.96 0.53 36.20 46.92 0.006 0.106
25 14 7.78 3.87 11.07 050 37.02 48.06 0.008 0.105
25 1.5 7.87 375 11.17 047 37.77 49.10 0.009 0.104
30 0.5 6.92 7.27 8.49 1.32  25.38 20.77 0.038 0.163
30 0.6 7.60 6.37 9.01 1.10 27.56 22.00 0.024 0.170
30 0.7 8.09 572 9.40 0.95 29.32 22.95 0015 0.174
30 1.3 9.54 3.87 10.60 0.53 35.49 25.99 0.007 0.182
30 1.4 9.67 3.72 10.70 049 36.11 26.28 0.008 0.182
30 1.5 9.78 3.58 10.80 0.46 36.67 26.53 0.009 0.183
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process will be based on the data.

2.5.2.2 Asset Returns and Consumption Volatility Predictability in the LLW Model

We report the R? values of the regression of future returns on the current consumption-
price ratio in table 2.6 and the same regression on the current dividend-price ratio in
table 2.7. Before we compare the results with the data, it is important to emphasize that
the statistics we compute in a quarterly model is the predictability of future returns at
several horizons (in the table we report 1 to 20 years) based on the current quarterly
price-dividend ratio, that is computed with the dividend of the current quarter. In the
regressions we carried out in the data and reported in table 2.1, the independent variable
was a price-dividend ratio with dividends cumulated over a year. This adds persistence
to the regressor and increases the R? of the regression. However this difference will not
affect our ability to detect the ability of a model to generate predictability. To say it in
a few words, the models do not seem to produce predictability at any horizon for any
parameter configuration.

It is not the case with excess returns. We also report the R? values of the regression
of future excess returns on the current consumption-price ratio in table 2.6 and the same
regression on the current dividend-price ratio in table 2.7. Even if it is not very high,
there is a non-negligible predictability; which increase with risk aversion. The fact that
dividends are perfectly correlated with consumption plays certainly a role in the higher
predictability for excess returns than for returns.

The other important predictability concerns the volatility of consumption, which
plays a key role in explaining asset prices in both Lettau, Ludvigson and Wachter (2005)
and Bansal and Yaron (2004). We also report the R? values of the regression of future
consumption volatilities on the current consumption-price ratio in table 2.6 and the same
regression on the current dividend-price ratio in table 2.7. As expected in this model,
consumption volatility is highly predictable since both regressors depend only on the
consumption states. It is more predictable by the dividend-price ratio since there is more

variability in this ratio than in the consumption-price ratio.



Table 2.6: Predictability by the Consumption-Price Ratio: LLW
This table shows the R-squared of the regression yyi141n = a2 (h) + b2 (h) Fff‘_r + 12,444 (h), where y is return, excess return, consumption
volatility, consumption growth or dividend growth. The horizon 4 is quaterly in the regression and converted into annual in the table. The

input parameters of the MS model are given in Table 2.4. The quarterly subjective factor of discount is set to 0.9925.

h
Y oy Returns Excess Volatility Consumption Dividend
1 3 S 1 3 5 1 3 5 1 3 5 1 3 S

15 05 097 046 021 1.06 1.14 1.03 99 9.16 848 26.13 1352 796 2613 13.52 7.96
15 06 028 011 003 122 128 1.14 1058 978 906 2593 1341 7.89 2593 1341 7.89
15 07 005 001 000 132 138 122 11.11 1028 952 2576 1333 7.84 2576 13.33 7.84
15 1.3 030 035 033 161 166 143 1285 11.89 11.01 2522 13.05 7.68 2522 13.05 7.68
15 1.4 037 041 039 163 1.68 145 13.02 12.04 11.15 2517 13.02 7.67 2517 13.02 7.67
15 1.5 043 047 043 165 1.70 146 13.17 12.18 11.27 2513 13.00 7.65 2513 13.00 7.65
20 05 040 0.12 002 176 208 202 15.89 1470 13.60 2428 12.56 7.40 2428 12.56 740
20 0.6 0.04 0.00 0.02 195 226 215 1670 1545 1430 2403 1243 7.32 2403 1243 732
20 0.7 0.01 007 0.12 207 238 224 1733 16.02 1483 2384 1234 726 23.84 1234 7.26
20 1.3 070 0.83 081 237 268 247 1927 17.82 1649 2324 12.03 7.08 2324 1203 7.08
20 14 079 092 089 240 271 249 1944 1798 16.65 23.19 12.00 7.06 23.19 12.00 7.06
20 1.5 088 1.01 096 242 272 250 1960 18.13 1678 23.14 11.97 7.05 23.14 1197 7.05
25 0.5 024 0.03 000 220 289 3.00 2211 2045 1893 2236 11.57 681 2236 11.57 6.81

25 0.6 000 003 0.11 235 303 310 2288 21.16 19.59 2213 1145 674 2213 1145 6.74
25 0.7 005 0.18 029 245 3.12 315 2345 21.68 2007 2195 11.36 668 2195 1136 6.68
25 1.3 087 1.13 1.18 269 332 326 2514 2325 21.53 2143 11.09 6.53 2143 11.09 6.53
25 14 097 124 127 270 333 327 2529 2339 21.65 2138 11.06 6.51 2138 11.06 6.51

25 1.5 1.06 134 1.36 272 334 327 2542 2351 21.77 2134 11.04 6.50 2134 11.04 6.50
30 0.5 029 0.02 001 223 334 376 2821 2609 2415 2048 10.59 6.24 2048 1059 6.24
30 0.6 0.02 004 0.16 232 338 373 28.77 2661 2463 2031 1051 6.18 2031 10.51 6.18
30 0.7 003 0.18 036 237 339 370 29.18 2699 2499 20.18 1044 6.15 20.18 1044 6.15
30 1.3 074 112 128 248 339 358 3036 28.08 2599 19.82 1025 6.03 1982 10.25 6.03
30 14 083 123 138 249 338 357 3046 28.17 2608 1979 10.24 6.03 19.79 1024 6.03

30 1.5 092 132 147 249 338 356 30.54 2825 26.15 1976 1022 6.02 19.76 10.22 6.02

9C1



Table 2.7: Predictability by the Dividend-Price Ratio: LLW.
This table shows the R-squared of the regression Y1414 = a2 (h) + b2 (h) % + N24+4 (h), where y is return, excess return, consumption
volatility, consumption growth or dividend growth. The horizon 4 is quarterly in the regression and converted into annual in the table. The
input parameters of the MS model are given in Table 2.4. The quarterly subjective factor of discount is set to 0.9925.

h
Y v Returns Excess Volatility Consumption Dividend
1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

15 05 038 008 000 1.15 1.64 180 4199 38.83 3595 1620 838 493 1620 838 493
15 0.6 007 0.00 003 123 170 1.83 4254 3934 3642 1602 829 488 1602 829 4288
15 07 000 0.04 0.11 128 173 1.84 4330 40.05 3707 1577 816 480 1577 8.16 4.80
15 13 034 052 061 138 1.81 187 4692 4339 40.17 14.63 757 445 1463 7.57 4.45
15 14 039 058 0.66 139 181 1.87 4732 4376 4051 1450 750 442 1450 7.50 442
15 1.5 044 064 071 139 1.82 187 47.67 4409 4082 1439 744 438 1439 7.44 438
20 05 0.10 0.00 0.05 1.81 272 3.08 4526 41.86 3875 15.18 7.85 4.62 1518 785 4.62
20 0.6 000 0.08 020 190 276 3.04 4457 4122 3816 1539 796 4.69 1539 796 4.69
20 07 006 023 038 197 278 3.02 4433 41.00 3796 1545 799 471 1545 1799 4.71
20 1.3 070 1.01 1.12 211 284 297 4460 4125 3819 1534 794 4.67 1534 794 4.67
20 14 077 1.09 120 212 285 297 4468 4132 3825 1532 792 4.66 1532 792 4.66
20 1.5 084 1.17 1.27 213 285 296 4475 4138 3831 1529 791 4.66 1529 791 4.66
25 05 0.04 0.02 0.15 227 3.63 423 4692 4339 40.17 14.67 1759 4.47 1467 759 4.47
25 06 001 0.18 037 234 359 4.08 4529 41.88 3877 1516 785 4.62 1516 7.85 4.62
25 07 012 038 059 239 356 398 4436 41.02 3798 1545 17.99 470 1545 799 4.0
25 13 0.88 131 148 252 3.52 376 4256 39.36 3643 1598 827 4.87 1598 827 4.87
25 14 097 141 1.57 252 351 374 4245 39.26 3634 1601 829 488 1601 829 4.88
25 1.5 1.05 150 1.65 253 351 373 4236 39.17 3626 16.04 830 4.88 1604 830 4.88
30 05 0.07 003 020 240 4.19 5.13 4949 4577 4237 1388 7.18 423 13838 7.18 4.23
30 06 0.00 0.18 042 240 4.01 479 47.13 4359 4035 14.60 755 4.45 1460 7.55 4.45
30 0.7 0.08 037 065 241 389 457 4571 4227 3913 1503 778 458 1503 7.78 4.58
30 1.3 078 1.29 155 243 3.63 406 4260 3940 3647 1598 827 487 1598 827 4.87
30 1.4 086 139 1.64 243 3.61 4.02 4239 3920 3629 16.04 830 4.88 16.04 830 4.88
30 1.5 094 148 1.73 243 359 399 4221 39.04 36.14 1609 833 490 16.09 833 490

LTI
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Table 2.8: Variance Ratios of Aggregate Returns: LLW

VarRirissn anq YR iin yhere the horizon  is quarter]
RVar(R11) WVar(Re,,) * q y

and converted into annual in the table. The price-consumption ratio is given by (2.91) and the
price-dividend ratio by (2.112). The input parameters for the model (2.1)-(2.2) are given in table
2.4. The quarterly subjective factor of discount is set to 0.9925.

This table shows the variance ratios

h
Y v Returns Excess

1 2 3 4 5 1 2 3 4 5
15 05 1.118 1.206 1.255 1.284 1.303 0.937 0.890 0.863 0.847 0.837
15 0.6 1068 1.118 1.146 1.162 1.173 0.927 0.872 0.842 0.823 0.811
15 0.7 1035 1061 1.075 1.083 1.088 0.921 0861 0.827 0.807 0.793
15 13 0960 0928 0911 0.899 0.891 0.905 0.833 0.792 0.767 0.750
15 14 0954 0919 0.899 0.886 0.878 0.904 0.831 0.789 0.764 0.747
15 1.5 0950 0911 0.889 0.875 0.866 0.903 0.829 0.787 0.761 0.744
20 05 1.090 1.157 1195 1.217 1231 0.923 0.865 0.833 0.814 0.802
20 0.6 1.042 1.073 1.089 1.099 1.105 00912 0.846 0.810 0.788 0.773
20 0.7 1.010 1.018 1.022 1.023 1.024 0.905 0.834 0.794 0.770 0.754
20 1.3 0939 0.892 0.865 0.849 0.838 0.889 0.804 0.756 0.727 0.709
20 14 0934 0.883 0.854 0.837 0.825 0.887 0.802 0.754 0.724 0.705
20 1.5 0929 0.876 0.845 0.826 0.814 0.886 0.800 0.751 0.722 0.702
25 05 1.086 1.150 1.186 1.207 1.221 0.921 0.863 0.831 0.813 0.802
25 0.6 1.038 1066 1081 1.090 1.096 0.910 0843 0.807 0.785 0.772
25 0.7 1.007 1.012 1014 1.015 1016 0.903 0831 0791 0.767 0.752
25 1.3 0935 0.886 0.858 0.841 0.830 0.886 0.800 0.752 0.723° 0.705
25 14 0930 0.877 0.847 0.829 0817 0.885 0.798 0.749 0.720 0.701
25 1.5 0926 0869 0.838 0.818 0.805 0.884 0.796 0.747 0.718 0.698
30 05 1.107 1.187 1.232 1.259 1277 0933 0.884 0.859 0.845 0.838
30 06 1.057 1.100 1.124 1.138 1.148 0.922 0.865 0.835 0.817 0.807
30 0.7 1.025 1.043 1054 1.060 1.064 0.915 0853 0.819 0.799 0.787
30 1.3 0949 0911 0889 0.876 0.868 0.899 0.823 0.781 0.756 0.740
30 1.4 0944 0901 0.877 0.863 0853 0.898 0.820 0.778 0.753 0.737
30 1.5 0939 0.893 0.867 0.852 0842 0.897 0.819 0.776 0.750 0.734




129

2.5.2.3 Variance Ratios in the LLW Model

The last point we analyzed is the capacity of the models to produce the negative
autocorrelation at long horizons. The variance ratios of returns and excess returns on
the. stock are reported in table 2.8. When y is greater than one, the models are able to
produce variance ratios less than one, declining with the horizon, for both returns and
excess returns. For excess returns there is negative autocorrelation even for values of y

less than one, but it is more pronounced above one.

2.5.3 Reproducing the Bansal and Yaron (2004) Model with a Markov-Switching
Model

The model of Bansal and Yaron (2004) for the endowment is:

Xt = (1= o) e+ Puxs + Qe Huer 1 (2.127)
byt = (1=v)) 6%+ Vih +Cuwiy (2.128)
Xert1 = X+Vhmg (2.129)
Xdrel = Mxd +0 (0 — M) + Qg N (2.130)

with e, 1, Wr i1, Nev1, Uy ~ N.1.i.D.(0,1).

Our goal here is to characterize a Markov Switching (MS) model described in Sec-
tion 2 that has the same features than the endowment model chosen by Bansal and Yaron
(2004). The main characteristics of the later endowments are: 1) The expected means of
the consumption and dividend growth rates are a linear function of the same autoregres-
sive process of order one denoted x;. 2) The conditional variances of the consumption
and dividend growth rates are a linear function of the same autoregressive process of or-
der one denoted A;. 3) The variables x,1 and h;4 are independent conditionally to their
past. 4) The innovations of the consumption and dividend growth rates are independent

given the state variables.
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2.5.3.1 Characterizing the Matching Markov-Switching Model

In the MS case, the first characteristic of Bansal and Yaron (2004) Model implies
that one has to assume that the expected means of the consumption and dividend growth
rates are a linear function of the same Markov chain with two states given that a two-
state Markov chain is an AR(1) process. Likewise, the second one implies that the
conditional variances of the consumption and dividend growth rates are a linear function
of the same two-state Markov chain. The third characteristic implies that the mean and
variance Markov chains should be independent. Consequently, we should assume that
the Markov chain described in Section 2 has 4 states, two states for the means and two
states for the variances and that the transition matrix P is restricted such as the means
and variance states are independent; see Table 4. Finally, the last characteristic implies
that the vector p defined in (2.3) equals zero.

In the rest of this subsection, our goal is to approximate an AR(1) process, say z,
like x; or h; by a two-state Markov chain. Without loss of generality, we assume that the
Markov chain y, takes the values O (first state) and 1 (second state) while the transition
matrix P, is given by

pT _ Py 1 —py1i
y
l1—py2 Py

The stationary distribution is

_ 1—pyii
2~ py11 —Py22

_ 1—py2»
2—py11— Py’

1 = P(y=0) M =Ply=1) (2.131)

In addition, we assume that z; = a + by,. Without loss of generality, we assume that
b > 0, that is, the second state corresponds to this high value of z,. Our goal is to char-
acterize the vector 8 = (py, 11, py,zz,a,b)T that matches the characteristic of the process
z;. The first characteristics that we want to match are the mean, the variance and the first
order autocorrelation of the process z, denoted L1, 0'22 and p, respectively. Given that the
dirhcnsion of @ is four, another restriction is needed. For instance, Mehra and Prescott

(1985) assumed py 11 = py22. In contrast, we will focus on matching the kurtosis of the
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process z; denoted ;. We will show below that matching the mean, variance, kurto-
sis and first autocorrelation does not fully identify the parameters. However, knowing
the sign of the skewness of z; (denotes sk;) and the other four characteristics will fully

identify the vector 6.

Proposition 2.5.1. Moments of a two-state Markov chain.
We have

M, =a+bu,=a+bm,, (2.132)
o; =b’o; = b’ my, M,

1 : .
sk, = sky = ———— (—E + ﬂ)

Vy a7y 2 Tyr  Ty2
2 2
e ”.v,l ny,Z

Pz=pPy=pyn+pyr— 1

The previous proposition, combined with (2.131), characterizes the moments of a
Markov chain in terms of the vector 8. As pointed out above, Mehra and Prescott (1985)
assumed that p, 1 = py 22, which implies sk; = 0 and x; = 1. The empirical evidence
reported in Cecchetti, Lam and Mark (1990) suggests that the kurtosis of the expected
consumption growth is higher than one and that its skewness is negative.®
We will now invert this characterization, that is, we will determine the vector 0 in

terms of the moments of z;:

Proposition 2.5.2. Matching an AR(1) process by a two-state Markov chain.
We have

. 1+ 1— k,—1 1+ 1— k,—1
L T e e e CED)

. 1+p; 1-p; [k—1 I+p;, 1-p; [k,—1
fsk,>0,p,11 = = - 2.134
i sk, >0, py 1 > + > kz+3,Py,22 > > k13 ( )

8Strictly speaking, the process x here is the expected mean of the consumption growth and not the
growth. Therefore, the skewness and kurtosis of these two processes are different but connected.
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and

O;

b= —2
V1702

,a= i, —bm,, (2.135)

where T, 1 and T, are connected to py 11 and py2; through (2.131).

We will now characterize the moments of the process x; and h; of the Bansal and

Yaron (2004) model.

Proposition 2.5.3. Moments of the Bansal and Yaron (2004)Model.
The mean |, and the first autocorrelation py of x; are given in (2.127). The variance,

skewness and kurtosis of x; are given by

242 2\2 2 2
2 ¢, 0 (l—px) Py Vi Oy
o =——,8=0,K,=3—"—|[1+2 — . (2,136
L R Py I Gy e e ppve) A
Likewise,
o.2
=07, Of = ——, sk =0, k5, =3, pp = V1. (2.137)

1

Observe that the skewness of the expected mean of the growth consumption equals
zero in Bansal and Yaron (2004) model as in Mehra and Prescott (1985) model. In
contrast, in order to generate a kurtosis higher than one, the Markov switching needs
some skewness. Given that the skewness of consumption growth is empirically negative,
we will take this identification assumption, that is, we will use (2.133) to identify the
transition probabilities py 11 and py 2.

Likewise, the skewness of the variance process is zero in Bansal and Yaron (2004)
model which is somewhat unrealistic given that the variance is a positive random vari-
able. A popular variance model is the Heston (1993) model where the stationary distri-
bution of the variance process is a Gamma distribution. Given that the skewness of a
Gamma distribution is positive, we make the same assumption on k4, and we therefore
use (2.134) to identify the transition probabilities pj, 1) and py25.

We do have now the two independent Markov chains that generate the expected mean

and variance of consumption growth. Putting together these two processes leads to a
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four-state Markov chain (low mean and low variance, low mean and high variance, high
mean and low variance, high mean and high variance) whose transition probability ma-

trix is given by

Px,11Pn11 Px,11Ph12 Px,12Ph11 Px,12Ph,12

Px,11Pn21  Px,11Pn22 Px,12Ph21 Px,12Ph22 (2.138)

Px21Ph11  Px21Ph12 Px22Ph11  Px,11Ph,12

Px21Ph21 Px21Ph22 Px22Ph21 Px22Ph22

where p. 12 =1—p. 11 and p. 21 = 1 — p. 5, while the vectors (., @, {4, and @, defined
in (2.1) and (2.2) are given by

He = (ac,ac,ac+be,ac+be) "
@: = (ap,an+bp,an,ap+by)"
Ha = (Haad — Olx)e + Pl

g = Q3 .

(2.139)

2.5.3.2 Reproducing the Stylized Facts

The parameters of the resulting Markov-switching model are given in Table 2.9.
We are now able to reproduce some stylized facts that were considered in Bansal and
Yaron (2004), that is the first two moments of the equity premium and the risk-free rate
and some statistics about the price-dividend ratio, predictability of returns by the price-
dividend ratio, predictability of the variance of consumption by the price-dividend ratio

and the ratio of variances.

2.5.3.2.1 Asset Pricing Implications The set of statistics reproduced by Bansal and
Yaron (2004) is given in Table 2.10. We present an equivalent table generated with the
analytical formulas reported in the previous sections and the parameter values of the
matching MS process in Table 2.9. We include a larger spectrum of preference param-
eters than in Bansal and Yaron (2004) to better understand the variation of economic

and financial quantities as a function of preference parameters. To gauge the useful-
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Table 2.9: Parameters of the Markov-Switching Model.

This table shows parameters of the Markov-Switching Model calibrated to match the model of
Bansal and Yaron (2004). Calibration is made such that unconditional variance and kurtosis of
MS mean and volatility of consumption matched similar moments in the BY model, whereas
the implied skewness of MS mean is negative and that of MS volatility is positive. L. and uy
are conditional means of consumption and dividend, @, and @, are conditional variances of
consumption and dividend. PT is the transition matrix across different regimes and IT is the
vector of unconditional probabilities of regimes. Means and standard deviations are in percent.
The model is calibrated at the monthly frequency. The correlation vector p is set to zero.

State 1 State2 State 3 State 4
g -0.181 -0.181 0.236 0.236
udT -0.843 -0.843 0.407 0.407

(w')? 0731 0941 0731 0.941

(w/)? 3.289 4233 3289 4.233
PT

State 1 0981 0.003 0.017 0.000

State2 0.010 0973 0.000 0.017

State3 0.004 0.000 0.993  0.003

State4 0.000 0.004 0.010 0.985

m’ 0.162 0.043 0.627 0.168

NI— M=

Table 2.10: Asset Pricing Implications: Table IV of Bansal and Yaron (2004)
The entries are model population values of asset prices. The expressions E [r,, — ry] and E [ry]
are respectively the annualized equity premium and mean risk-free rate. The expressions & (r,,),
o (rs), and o (p —d) are respectively the annualized volatilities of market return, risk-free rate
and price-dividend ratio. The monthly subjective factor of discount is set to 0.998 and the elas-
ticity of intertemporal substitution to y =1.5.

Data Model
Variable Estimate  Std.dev. ¥=75 y=10
Returns
E[rm—ry] 6.33 (2.15) 4.01 6.84
E[ry] 0.86 (0.42) 1.44 0.93
O [rm] 19.42 (3.07) 17.81 18.65
olryl 0.97 (0.28) 0.44 0.57
Price-Dividend Ratio

Eexp(p—d)] 26.56  (2.53) 2502 19.98
clp—d 029  (0.04) 0.18 021
AC1[p—d] 0.81  (0.09) 080  0.82
AC2[p—d] 064  (0.15) 065  0.67
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ness of analytical formulas it is essential to remember that in the case of the Bansal and
Yaron’s model, finding these quantities means either solving the model numerically for
each configuration of the preference parameters or computing these quantities by simu-
lation. Numerical solutions take time to achieve a reasonable degree of precision. For
simulations, long trajectories are needed to obtain population parameters. Determin-
ing which length is appropriate is not a trivial issue, especially when coupled with time
considerations.

Table 2.11 is based on the value of 0.998 chosen by Bansal and Yaron (2004) for
the time discount parameter. We observe that the values for the first two moments of
the equity premium are close to the values found by Bansal and Yaron with their model
reported in Table 2.10, but the average risk-free rate is higher. Several interesting obser-
vations can be made from this table. First and foremost, the table shows clearly that it
is through values greater than 1 for the y parameter that the equity premium puzzle is
solved. The expected value of the equity return is about equal (around 9%) at ¥ = 10 for
all values of y. However, the risk-free rate drops five points of percentage when y goes
from 0.5 to 1.5. At a low risk aversion, the magnitude of the drop is less pronounced.
In fact, at y = 10 the expected value of the price-consumption ratio decreases in a sig-
nificant way. A second observation concerns the price-dividend ratio. At low values of
the risk aversion parameter Yy the expectation of the price-dividend ratio increases sig-
nificantly with the elasticity of intertemporal substitution y, while the volatility of the
price-dividend does not change much. At low values of the risk aversion parameter 7 it
is exactly the opposite.

Thanks to analytical formulas it is immediate to reproduce the same table for a
slightly larger & of 0.999. The results are presented in Table 2.12. Again several instruc-
tive conclusions can be drawn. Looking only at the moments, one does not see much
difference with the previous table, except maybe for the fact that the expected risk-free
rate decreases, which is an expected result. However a look at the left side of the table
shows that the expected values for the price-consumption ratio and the price-dividend
change drastically and take in certain configurations of the preference parameters very

large implausible values.
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The entries are model population values of asset prices.The price-consumption ratio is given
in 2.91 and the price-dividend ratio in 2.112. The input parameters for the monthly model are
given in Table (2.9). The expressions E [R,, — Ry] and E [Ry] are respectively the annualized
equity premium and mean risk-free rate. The expressions 0 (R,.), 6 (Ry), 0 (%) and o (2) are
respectively the annualized volatilities of market return, risk-free rate, consumption-price ratio
and dividend-price ratio. The monthly subjective factor of discount is set to 0.998.

Y v ERa—R] ER] o) o®) E[Z] E[Z] o(5) old)
25 02 1.10 10.05 15.95 3.17 1223 1258 0.544 0.283
25 0.5 0.13 5.89 13.32 1.16 25.48 30.11 0.080 0.074
25 0.8 0.65 4.55 15.62 0.72 3591 46.28 0.015 0.093
2.5 1 0.92 4.06 16.72 0.58 41.58 56.09 0.000 0.091
25 1.2 1.13 3.73 17.55 0.49 46.46 65.15 0.008 0.087
25 1.5 1.37 3.38 18.47 0.40 52.61 77.52 0.015 0.081
5 02 0.00 10.58 16.07 2.92 16.24 13.56 0.459 0.268
5 05 1.05 6.11 13.68 1.14 29.89 2277 0.074 0.115
5 0.8 2.36 4.49 16.16 0.72 3795 2708 0.016 0.174

5 1 2.92 3.88 17.27 0.58 41.58 28.82 0.000 0.191

5 12 3.33 346  18.09 0.49 44.37 30.09 0.009 0.201
5 1.5 3.78 3.02 18.96 0.40 4751 3144 0.018 0.210
75 02 -1.66 12.11 16.60 2.89 30.50 14.00 0.268 0.279
75 0.5 1.82 6.60 13.26 1.21 37.51 17.51 0.060 0.122
7.5 0.8 3.83 4.49 15.18 0.75 4046 18.87 0.015 0.210
7.5 1 4.63 3.70 16.05 0.59 41.58 19.39 0.000 0.239
75 1.2 5.19 3.15 16.68 0.48 4237 19.74 0.010 0.257
75 1.5 5.79 2.58 17.36 0.36 43,19 20.11 0.019 0.276
10 0.2 -485 15.14 18.08 3.24 33063.74 14.88 0.000 0.307
10 0.5 1.86 7.26 12.73 1.34 4886 1542 0.045 0.089
10 0.8 4.62 4.51 14.05 0.78 4294 1590 0.013 0.187
10 1 5.65 3.52 14.70 0.59 41.58 16.09 0.000 0.222
10 1.2 6.37 2.83 15.19 0.45 40.80 16.22 0.009 0.245
10 1.5 712 2.12 15.73 0.32 40.11 1636 0.019 0.268
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The entries are model population values of asset prices. The price-consumption ratio is given
in 2.91 and the price-dividend ratio in 2.112. The input parameters for the monthly model are
given in Table 2.9. The expressions E [R,, — Ry] and E [Ry] are respectively the annualized eq-
uity premium and mean risk-free rate. The expressions ¢ (Rn), 0 (Ry), 6 (%) and o (3) are
respectively the annualized volatilities of market return, risk-free rate, consumption-price ratio
and dividend-price ratio. The monthly subjective factor of discount is set to 0.999.

Y v ERa—R] ER] o) o®) E[Z] E[R] o(5) o(®)
25 0.2 1.19 8.75 16.20 3.18 14.35 14.88 0.479 0.248
25 0.5 0.15 4.69 13.40 1.16 36.97 4698 0.058 0.050
25 0.8 0.72 3.35 15.95 0.72 63.48 99.86 0.009 0.046
2.5 1 - 1.02 2.86 17.17 0.58 83.25 156.54 0.000 0.035
25 1.2 1.26 2.52 18.10 0.49 104.88 24874 0.004 0.024
25 1.5 1.53 2.16 19.12 0.40 141.35 589.05 0.006 0.011
5 02 0.00 9.37 16.34 2.92 20.89 16.29 0.373 0.232

5 0.5 1.17 4.97 13.80 1.14 48.38 29.78 0.048 0.092

5 0.8 2.62 3.31 16.49 0.72 70.92 36.55 0.009 0.136

5 1 3.24 2.68 17.69 0.58 83.25 39.36 0.000 0.147

5 1.2 3.70 2.23 18.56 0.49 93.86 41.43 0.005 0.153

5 1.5 4.19 1.77 19.51 0.40 107.21 43.66 . 0.008 0.159
75 0.2 -1.87 11.18 17.00 2.90 63.01 1677 0.136 0.244
75 0.5 1.92 5.57 13.24 1.22 75.51 20.89 0.031 0.102
75 0.8 4.12 3.33 15.22 0.75 81.12 22.55 0.008 0.177
1.5 1 4,98 2.49 16.11 0.58 83.25 23.17 0.000 0.202
75 1.2 5.60 1.91 16.77 0.47 84.75 23.61 0.005 0.218
75 1.5 6.25 1.30 17.48 0.36 86.31 24.06 0.010 0.234
10 0.2 473 13.38 18.30 3.18 34090.34 19.68 0.000 0.237
10 0.5 1.81 6.32 12.67 1.37 147.73 18.15 0.015 0.071
10 0.8 4.83 3.37 13.99 0.79 92.11 18.59 0.006 0.157
10 1 5.95 2.31 14.65 0.59 83.25 18.78 0.000 0.188
10 1.2 6.73 1.58 15.15 0.45 78.57 1891 0.005 0.208
10 1.5 7.53 0.82 15.70 0.31 74.61 19.05 0.011 0.229
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Table 2.13: Asset Pricing Implications: Log-linearization 6 = 0.999

The entries are model population values of asset prices. The price-consumption ratio is given
by (2.98) and the price-dividend ratio by (2.118). The input parameters for the monthly model
are given in Table 2.9. The coefficient k; in the log-linearization (2.97) is set to 0.997 and the
coefficient k,, in the log-linearization (2.115) is set to 0.996. The expressions E [R,, — Ry] and
E [Ry] are respectively the annualized equity premium and mean risk-free rate. The expressions
o (Rm), 0 (Ry), 0 (%) and o (2) are respectively the annualized volatilities of market return,
risk-free rate, consumption-price ratio and dividend-price ratio. The monthly subjective factor of
discount is set to 0.999.

Y ¥ ERu—R] ERJ] oRw) o) E[f] E[f] o(5) o(3)

25 0.2 1.90 852 16.63 324 1032 14.07 0.724 0277
25 05 076 469 1323 1.16 3536 36.28 0.058 0.059
25 0.8 1.78 334 1514 0.72 4856 4631 0.011 0.085
25 1.2 254 253 1659 049 58.00 53.10 0.006 0.095
25 1.5 2.8 219 1725 040 6229 56.09 0.012 0.098
25 1.8 3.12 196 17.71 034 6532 5819 0.015 0.100
5 02 029 937 16.56 292 19.12 1567 0416 0.248

5 05 1.29 488 13.65 1.14 41.19 2932 0.053 0.089

5 038 274 326 1596 0.72 5044 3456 0.011 0.132

5 1.2 374 227 1767 049 5654 3794 0.007 0.152

5 1.5 4.19 1.85 1844 040 5921 3939 0013 0.159

5 1.8 4.50 1.57 18.97 0.34 61.05 4037 0.017 0.164
7.5 0.2 -1.54 1075  17.06 2.88 3715 17.06 0214 0.242
75 0.5 1.89 526 1340 1.20 48.63 2259 0.045 0.103
7.5 0.8 3.91 3.24 1552 0.74 5258 2442 0011 0.173
75 1.2 5.26 198 17.14 048 5500 2553 0.007 0.212
75 1.5 5.85 144 17.87 0.37 56.02 2599 0.014 0.227
75 1.8 -6.25 1.08  18.38 030 56.71 2633 0019 0.237
10 0.2 -4.05 1253 17.87 3.09 66.74 19.99 0.114 0.225
10 0S5 2.07 575  12.87 1.30 56.37 1932 0.037 0.084
10 0.8 484 324 144 077 5456 1930 0.010 0.173
10 1.2 6.63 1.67 15.74 046 53.66 1931 0.007 0.228
10 1.5 7.39 1.00 16.35 033 5332 1933 0.014 0.251

10 1.8 792 055 1677 024 53.10 1934 0.019 0.266
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Table 2.14: Coefficients of the Campbell and Shiller (1988)’s log-linearization.
The entries are model implied coefficients of the Campbell and Shiller (1988)’s log-linearization.
The price-consumption ratio is given by (2.98) and the price-dividend ratio by (2.118). The input
parameters for the monthly model are given in Table 2.9.

Y

v

6 = 0.998

6 =0.999

k

ko

km]

kmO

ko

kml

2.5
2.5
2.5
2.5
2.5
2.5

5

(SR, RV, B |

7.5
1.5
7.5
1.5
1.5
10
10
10
10
10
10

0.2
0.5
0.8

1
1.2
1.5
0.2
0.5
0.8

1
1.2
1.5
0.2
0.5
0.8

1
1.2
1.5
0.2
0.5
0.8

1
1.2
1.5

0.9930
0.9967
0.9977
0.9980
0.9982
0.9984
0.9946
0.9972
0.9978
0.9980
0.9981
0.9983
0.9971
0.9978
0.9979
0.9980
0.9980
0.9981
1.0000
0.9983
0.9981
0.9980
0.9980
0.9979

0.0419
0.0220
0.0164
0.0144
0.0131
0.0118
0.0334
0.0192
0.0156
0.0144
0.0136
0.0129
0.0198
0.0158
0.0148
0.0144
0.0142
0.0140
0.0000
0.0126
0.0140
0.0144
0.0147
0.0149

0.9934
0.9972
0.9982
0.9985
0.9987
0.9989
0.9938
0.9963
0.9969
0.9971
0.9972
0.9973
0.9940
0.9953
0.9956
0.9957
0.9958
0.9958
0.9543
0.9946
0.9948
0.9948
0.9949

'0.9549

0.0399
0.0191
0.0133
0.0113
0.0099
0.0085
0.0375
0.0242
0.0210
0.0200
0.01593
0.0186
0.0366
0.0301
0.0284
0.0278
0.0275
0.0271
0.0349
0.0335
0.0327
0.0325
0.0323
0.0321

0.9940
0.9977
0.9987
0.9590
0.9992
0.9994
0.9958
0.9983
0.9988
0.9590
0.9991
0.9592
0.9986
0.9989
0.9950
0.9950
0.9950
0.9950
1.0000
0.99%4
0.9991
0.9590
0.9989
0.9989

0.0368
0.0160
0.0100
0.0079
0.0065
0.0050
0.0272
0.0127
0.0091
0.0079
0.0071
0.0063
0.0107
0.0086
0.0081
0.0079
0.0078
0.0077
0.0000
0.0048
0.0072
0.0079
0.0083
0.0087

0.9944
0.9982
0.9992
0.9955
0.9997
0.9999
0.9949
0.9972
0.9977
0.9979
0.9980
0.9981
0.9950
0.9960
0.9963
0.9964
0.9964
0.9965
0.9957
0.9954
0.9955
0.9956
0.9956
0.9956

0.0348
0.0130
0.0068
0.0046
0.0031
0.0014
0.0322
0.0193
0.0163
0.0153
0.0147
0.0141
0.0315
0.0260
0.0245
0.0240
0.0236
0.0233
0.0277
0.0292
0.0287
0.0285
0.0284
0.0282
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Table 2.15: Asset Pricing Implications: Log-linearization with 6 = 0.999 and Ana-
lytical Coefficients

The entries are model population values of asset prices. The price-consumption ratio is given
by (2.98) and the price-dividend ratio by (2.118). The input parameters for the monthly model
are given in Table 2.9. For each combination of preference parameters, the coefficients k; and
ko in the log-linearization (2.97), and the coefficients k,,; and &, in the log-linearization (2.115)
are given in Table 2.14. The expressions E [R°] and E [Ry] are respectively the annualized eq-

uity premium and mean risk-free rate. The expressions o (R), 6 (R¢), & (%) and o (2) are

respectively the annualized volatilities of equity return, risk-free rate, consumption-price ratio
and dividend-price ratio. The monthly subjective factor of discount is set to 0.999.

v v ER] ER] o) o®) E[%] E[}] o(£) o(3)
25 02 1.17 8.84 16.04 3.16 13.73 14.65 0483 0.246
25 0.5 0.15 4.69 1341 1.16  36.83 46.89 0.058 0.050
25 08 0.73 3.35 1597 0.72 63.46 98.99 0.009 0.046
25 1.2 1.27 2.52 18.12 049 104.87 244.58 0.004 0.025
25 1.5 1.54 216 19.13 0.40 141.27 575.37 0.006 0.012
25 1.8 1.73 1.92 19.86 0.34 183.42 5256.19 0.006 0.001

5 02 0.06 9.37 16.19 2.92 19.20 16.08 0.392 0.230
0.5 1.18 496 13.82 1.14  48.00 29.73 0.048 0.093
0.8 2.69 3.30 16.60 0.72 70.88 35.90 0.009 0.140
1.2 3.81 2.23 18.75 0.49 93.83 40.14 0.005 0.161
1.5 4.33 1.77 19.74 0.40 107.09 42.04 0.008 0.169

5 18 4.69 1.45 " 20.43 033 117.96 43.37 0.010 0.173
75 02 -173 11.11 16.79 2.90 54.33 16.47 0.156 0.243
75 05 1.95 5.55 13.26 1.22  74.69 20.83 0.032 0.103
75 038 422 3.33 15.31 0.75 81.06 22.13 0.008 0.184
75 1.2 5.77 191 16.95 0.47 84.72 22.85 0.005 0.231
75 1.5 6.46 1.30 17.69 0.35 86.20 23.14 0.010 0.250
75 1.8 6.93 0.88 18.22 0.28 87.19  23.33 0.013 0.262
10 02 -499 13.67 19.20 3.26 oo 20.15 0.000 0.249
10 0.5 1.83 6.31 12.68 1.37 146.07 18.12 0.015 0.072
10 0.8 491 3.37 14.03 079 92.04 18.36 0.006 0.162
10 1.2 6.87 1.58 15.24 0.45 78.54 18.47 0.005 0.217
10 1.5 7.71 0.82 15.80 0.30 74.52 18.50 0.011 0.240
10 1.8 8.29 0.31 16.21 0.21 72.15 18.53 0.015 0.256

W b




Table 2.16: Asset Pricing Implications: 6 = 0.998
The entries are model population values of asset prices.The price-consumption ratio is given in
(2.91) and the price-dividend ratio in (2.112). The input parameters for the monthly model are
given in Table (2.9). The expressions E [R°] and E [Ry] are respectively the annualized equity
premium and mean risk-free rate. The expressions o (R), 0 (Ry), o (%) and o (2) are respec-
tively the annualized volatilities of market return, risk-free rate, consumption-price ratio and
dividend-price ratio. The monthly subjective factor of discount is set to 0.998.

y v EF] ER] o® o(k) _E[F[ E[l o(5) o(3)
5 0.1 8.08 13.81 45.20 7.01 10.97 892 1423 1.238
5 0.125 3.56 13.05 30.69 5.16 12.07 10.02 1.007 0.815
5 0.2 0.00 10.58 16.07 2.92 16,24 13.56 0.459 0.268
5 0.25 -0.26 936 13.36 2.29 19.01 15.67 0.308 0.120
5 0.5 1.05 6.11 13.68 1.14 29.89 2277 0.074 0.115
5 0.75 2.19 4.68 15.82 0.77 36.86 26.54 0.021 0.168
5 1 2.92 3.88 17.27 0.58 41.58 28.82 0.000 0.191
5 1.25 3.42 3.37 18.26 0.47 4497 3035 0.011 0.203

"5 1.5 3.78 3.02 18.96 0.40 47.51 3144 0.018 0.210
5 2 4.26 2.56 19.90 0.30 51.07 32.89 0.025 0.219
5 3 4.77 2.08 20.90 0.21 55.12 3444 0.031 0.226
5 4 5.04 1.83 21.43 0.16 57.37 3526 0.034 0.230
10 0.1 0.00 17.04 64.86 5.85 19730.89 27.59 0.001 0.523
10 0.125 -420 17.23 3823 473 2283697 19.05 0.001 0.518
10 02 -485 1514 18.08 3.24 33063.89 14.88 0.000 0.307
10 025 -336 13.05 14.51 2.66 120.56 14.78 0.052 0.190
10 0.5 1.86 726 1273 1.34 48.86 1542 0.045 0.089
10 0.75 4.29 4,83 13.86 0.85 4345 1584 0.017 0.176

10 1 5.65 3.52 14.70 0.59 41.58 16.09 0.000 0.222

10 1.25 6.52 2.69 15.30 0.43 40.66 1625 0.011 0.249

10 1.5 7.12 2,12 15.73 0.32 40.11 1636 0.019 0.268

10 2 7.89 1.40 16.30 0.18 3950 16.51 0.029 0.291

10 3 8.68 0.66 1691 0.05 38.96 16.66 0.040 0314

17.23 0.05 3871 16.74 0.046 0.326

10 4 9.09 028

141



Table 2.17: Asset Pricing Implications: 6 = 0.999
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The entries are model population values of asset prices. The price-consumption ratio is given in
(2.91) and the price-dividend ratio in (2.112). The input parameters for the monthly model are
given in Table 2.9. The expressions E [R¢] and E [Ry| are respectively the annualized equity pre-
mium and mean risk-free rate. The expressions o (R), o (R), o (%) and o (2) are respectively
the annualized volatilities of market return, risk-free rate, consumption-price ratio and dividend-
price ratio. The monthly subjective factor of discount is set to 0.999.

y v ER] ER] o® o(F) E[F] E[E o(5) o(3)
5 0.1 8.78 12.14 4764 7.10 12.83 1011 1.277 1.134
5 0125 3.88 11.60 32.03 5.19 1443 11.53 0.881 0.734
5 0.2 0.00 937 16.34 292 20.89 16.29 0373 0.232
5 0.25 -0.28 8.20 1343 2.29 25.61 1926 0.239 0.102
5 0.5 1.17 497 13.80 1.14 48.38 29.78 0.048 0.092
5 0.75 2.43 3.51 16.13 0.77 67.52 3568 0.012 0.132
5 1 3.24 2.68 17.69 0.58 83.25 39.36 0.000 0.147
5 1.25 3.79 2.14 18.75 0.47 96.28 41.86 0.005 0.155
5 1.5 4.19 1.77 19.51 0.40 107.21 43.66 0.008 0.159
5 2 4.73 1.29 20.52 0.30 12448 46.08 0.011 0.164
5 3 5.30 0.78 21.59 0.20 147.63 4871 0.012 0.169
5 4 5.60 0.52 22.16 0.15 16240 50.11 0.013 0.170
10 0.1 0.00 15.82 71.61 5.84 23003.85 58.87 0.001 0.263
10 0.125 -4.35 15.78 40.74 471 24500.36 29.25 0.001 0.355
10 02 -473 1338 1830 3.18 34090.76 19.68 0.000 0.237
10 025 -349 1181 14.65 2.65 33799.49 1854 0.000 0.157
10 0.5 1.81 6.32 12.67 1.37 147.73 18.15 0.015 0.071
10 0.75 4.47 3.72 13.79 0.86 9570 18.54 0.008 0.147
10 1 5.95 2.31 14.65 0.59 83.25 18.78 0.000 0.188
10 1.25 6.89 1.43 15.26 0.42 7772 1894 0.006 0.213
10 1.5 7.53 0.82 15.70 0.31 7461 19.05 0.011 0229
10 2 8.37 0.05 16.29 0.16 71.25 1920 0.017 0.250
10 3 9.23 -0.75 16.92 0.03 68.35 19.36 0.024 0.271
10 4 967 -1.15 17.24 0.07 67.05 1944 0.027 0.281
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Table 2.18: Asset Pricing Implications: CS Log-linearization with Exogenous Coef-
ficients, 6 = 0.999

The entries are model population values of asset prices. The price-consumption ratio is given
by (2.98) and the price-dividend ratio by (2.117). The input parameters for the monthly model
are given in Table 2.9. Coefficients k; and k,,1 in log-linearizations (2.97) and (2.115) are set
to 0.997. The expressions E [R] and E [R] are respectively the annualized equity premium
and mean risk-free rate. The expressions o (R), o (Ry), o (£) and o (3) are respectively the
annualized volatilities of market return, risk-free rate, consumption-price ratio and dividend-
price ratio. The monthly subjective factor of discount is set to 0.999.

Y v EW] ER] o® o) E[E] E[Z o(5) o)
5 0.1 3393 1033 225.04 7.52 6.38 99999.00 3.055 0.000
5 0.125 13.68 10.98 38.09 5.29 9.62 6.55 1467 1.484
5 0.2 1.25 9.37 16.95 2.92 19.12 13.79 0.416 0.294
5 0.25 0.12 8.20 13.54 2.29 24.49 17.97 0.248 0.115
5 0.5 1.11 4.88 13.78 1.14 41.19 31.13  0.053 0.088
5 0.75 2.31 3.45 15.96 0.77 49.31 37.57 0.015 0.122
5 1.25 3.57 2.19 18.32 0.47 57.07 4379 0.008 0.142
5 1.5 3.93 1.85 18.99 0.40 59.21 4548 0.013 0.146
5 2 4.40 1.43 19.87 0.31 62.00 4771 0.019 0.150
5 3 4,90 0.98 20.80 0.21 64.94 50.06 0.025 0.155
5 4 5.15 0.76 21.28 0.16 66.47 51.29 0.027 0.156
10 0.1 0.56 15.82 63.24 5.84 104.15 2935 0.175 0.483
10 0.125 -3.59 15.46 39.32 4.69 84.92 24.64 0.157 0.409

10 02 -402 1253 1829 309 66.74 20.19 0.114 0.232
10 025 -266 1078 1451 254 62.62 19.18 0.093 0.147
10 05 257 575 1292 130 56.37 17.65 0.037 0.097
10 075 516 354 1437 0.83 5475 17.24 0.013 0.190
10 125 7.57 1.54 16.14 0.43  53.59 16.94 0.008 0.277
10 1.5 821 1.00  16.67 033 5332 16.90 0.014 0.300
10 2 905 031 1736 0.20  52.99 16.82 0.021 0.330
10 3 993 -040 18.10 0.06 52.67 16.74 0.029 0.361
10 4 1038 -076 18.49 0.03 5251 16.69 0.033 0.377
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Table 2.19: Endogenous Coefficients of the Campbell and Shiller (1988)’s log-

linearization.

The entries are model implied coefficients of the Campbell and Shiller (1988)’s log-linearization
given in (2.99) and (2.116). The input parameters for the monthly model are given in Table 2.9.

Y 5=0.998 5 =0.999
ki ko km1 ko kq ko ki1 kmo
5 0.1 0.9905 0.0537 0.9896 0.0580 0.9917 0.0480 0.9907 0.0527
5 0.125 0.9921 0.0462 0.9912 0.0503 0.9933 0.0404 0.9923 0.0450
5 0.2 09946 0.0334 0.9938 0.0375 0.9958 0.0272 0.9949 0.0322
5 025 0.9955 0.0288 0.9947 0.0331 0.9967 0.0224 0.9957 0.0278
5 0.5 09972 0.0192 09963 0.0242 0.9983 0.0127 0.9972 0.0193
5 0.75 09977 0.0160 0.9968 0.0213 0.9988 0.0095 0.9977 0.0166
5 1 09980 0.0144 09971 0.0200 0.9990 0.0079 0.9979 0.0153
5 1.25 0.9982 0.0135 0.9972 0.0191 0.9991 0.0070 0.9980 0.0146
5 1.5 0.9983 0.0129 0.9973 0.0186 0.9992 0.0063 0.9981 0.0141
5 2 09984 0.0121 0.9974 0.0179 0.9993 0.0056 0.9982 0.0135
5 3 09985 0.0113 09975 0.0173 0.9994 0.0048 0.9983 0.0129
5 4 0998 0.0110 09976 0.0170 0.9995 0.0044 0.9983 0.0126
10 0.1 1.0000 0.0001 09963 0.0243 1.0000 0.0001 0.9982 0.0130
10 0.125 1.0000 0.0001 0.9952 0.0303 1.0000 0.0001 0.9969 0.0213
10 0.2 1.0000 0.0000 0.9943 0.0349 1.0000 0.0000 0.9957 0.0277
10 0.25 09993 0.0059 0.9944 0.0348 1.0000 0.0000 0.9955 0.0288
10 0.5 09983 0.0126 09946 0.0335 0.9994 0.0048 0.9954 0.0292
10  0.75 0.9981 0.0139 0.9948 0.0328 0.9991 0.0070 0.9955 0.0288
10 1 09980 0.0144 0.9948 0.0325 09990 0.0079 0.9956 0.0285
10 1.25 0.9980 0.0147 09949 0.0322 0.9989 0.0084 0.9956 0.0283
10 1.5 09979 0.0149 0.9949 0.0321 09989 0.0087 0.9956 0.0282
10 2 09979 0.0151 09949 0.0319 0.9988 0.0091 0.9956 0.0281
10 3 09979 0.0153 0.9950 0.0317 09988 0.0094 0.9957 0.0279
4 0.9979 0.0154 0.9950 0.0316 0.9988 0.0096 0.9957 0.0278

10
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Table 2.20: Asset Pricing Implications: CS Log-linearization with Endogenous
Coefficients, 6 = 0.999

The entries are model population values of asset prices. The price-consumption ratio is given by
(2.98) and the price-dividend ratio by (2.117). The input parameters for the monthly model are
given in Table 2.9. Coefficients k| and k,, in log-linearizations (2.97) and (2.115) are given in
Table 2.19. The expressions E [R¢] and E [Ry| are respectively the annualized equity premium

P
annualized volatilities of equity return, risk-free rate, consumption-price ratio and dividend-price

ratio. The monthly subjective factor of discount is set to 0.999. We report 99999 for values of
the price-consumption ratio greater than 10°.

and mean risk-free rate. The expressions o (R), 6 (Rf), © (%) and o (%) are respectively the

vy v E[R] ER] o®) o®) E[%] E[5] o(£) o(3)
5 0.1 8.18 1327 4205 6.85 9.56 8.64 1.510 1.212
5 0.125 3.83 12,02 2994 5.12 11.81 10.57 0991 0.756
5 0.2 0.06 9.37 16.19 2.92 19.20 16.08 0.392 0.230
5 0.25 -0.26 8.18 1341 2.29 24.28 19.26 0.247 0.101
5 0.5 1.18 496 13.82 1.14 48.00 29.72 0.048 0.093
5 0.75 2.49 3.51 16.22 0.77 67.46 35.11 0.012 0.136
5 1.25 3.91 2.14 18.95 0.47 96.24 40.57 0.005 0.163
5 1.5 432 1.77 19.73 0.40 107.09 42.04 0.008 0.169
5 2 4.88 1.28 20.79 0.30 124.18 44.07 0.011  0.175
5 3 5.47 0.78 21.91 0.20 146.97 46.24 0.012 0.182
5 4 5.79 0.51 2249 0.15 161.47 47.38 0.013 0.184
10 0.1 0.62 15.82 68.97 5.84 99999.00 39.44 0.000 0.382
10 0.125 290 16.85 73.08 6.05 99999.00 23.75 0.000 0.660

10 02 539 1841 7199 6.18 99999.00 13.86 0.000 1.119
10 025 675 1947 70.12 6.23 99999.00 10.79 0.000 1.409
10 05 1.83 631 12.68 1.37 146.07 18.12 0.015 0.072
10 075 454 372 13.82 0.86 95.58 18.33 0.008 0.151
10 125 17.04 143 1534 042 77.69 18.46 0.006 0.222
10 1.5 77 0.82 15.80 0.31 74.52 18.50 0.011 0.240
10 2 859 004 1642 0.16 71.04 18.54 0.017 0.264
10 3 950 -0.76 17.08 0.03 68.01 18.57 0.024 0.288
10 4 996 -1.17 1743 0.07 66.63 18.58 0.027 0.301




Table 2.21: Asset Pricing Implications: HHL Taylor Expansion, 0 =0.998
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The entries are model population values of asset prices. The price-consumption ratio is given
by (2.110) and the price-dividend ratio by (2.121). The input parameters for the monthly model
are given in Table 2.9. The expressions E [R¢] and E [Ry] are respectively the annualized equity

premium and mean risk-free rate. The expressions o (R), 6 (Rf), ©

C

Py

P

) and o (2) are re-

spectively the annualized volatilities of equity return, risk-free rate, consumption-price ratio and
dividend-price ratio. The monthly subjective factor of discount is set to 0.998.

y v E[R] ER] o(R) o(R) E[%] E[}] o(£) o(3)
5 0.1 14.44 6.04 53.50 8.90 13.09 12.03 1.264 1.036
5 0.125 6.13 9.14 33.58 5.85 13.38 12.27 0.933 0.718
5 0.2 0.32 9.69 16.31 2.99 16.74 14.78 0.448 0.254
5 0.25 -0.17 8.95 13.41 2.31 19.32 16.54 0.304 0.117
5 0.5 1.04 6.08 13.68 1.14 2993 2295 0.074 0.114
5 0.75 2.19 4,68 15.82 0.77 36.87 26.56 0.021 0.168
5 1 2.92 3.88 17.27 0.58 41.58 28.82 0.000 0.191
5 1.25 3.42 3.37 18.26 0.47 4497 30.36 0.011  0.203
5 1.5 3.78 3.02 18.96 0.40 4752 3147 0.018 0.210
5 2 4.25 2.56 19.91 0.30 51.09 3297 0.025 0.218
5 3 4.76 2.08 20.91 0.21 55.17 34.61 0.031 0.225
5 4 5.02 1.84 21.44 0.16 57.42 35.48 0.034 0.229
10 0.1 -3.19 21.23 65.68 6.06 -12.01  23.72 2414 0.613
10 0.125 -597 19.72 38.91 4.92 -22.84 1747 0.734 0.572
10 02 -496 1526 18.07 3.25 -764.53 14.87 0.011 0.307
10 0.25 -3.38 13.05 14.50 266 12462 14.79 0.050 0.189
10 0.5 1.86 725 12.73 1.34 4891 15.42 0.045 0.089
10 0.75 4.29 4.83 13.86 0.85 4345 15.84 0.017 0.176
10 1 5.65 3.52 14.70 0.59 41.58 16.09 0.000 0.222
10 1.25 6.52 2.69 15.30 0.43 40.66 16.25 0.011 0.249
10 1.5 7.12 2.12  15.73 0.32 40.12 16.36 0.019 0.268
10 2 7.89 1.40 16.30 0.18 39.51 16.51 0.029 0.291
10 3 8.69 0.65 1691 0.05 38.97 16.66 0.040 0.314
10 4 9.09 0.27 17.23 0.05 38.72 16.74 0.046 0.326




Table 2.22: Asset Pricing Implications: HHL Taylor Expansion, 6 = 0.999
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The entries are model population values of asset prices. The price-consumption ratio is given
by (2.110) and the price-dividend ratio by (2.121). The input parameters for the monthly model
are given in Table 2.9. The expressions E [R¢] and E [Ry]| are respectively the annualized equity

premium and mean risk-free rate. The expressions o (R), o (Ry), 0'(

C

Py

) and 0'(%-) are re-

spectively the annualized volatilities of equity return, risk-free rate, consumption-price ratio and
dividend-price ratio. The monthly subjective factor of discount is set to 0.999.

vy v E[R] ER] o(®) o(®) E[%] E[5] o(£) o(B)
5 0.1 16.31 3.10 58.06 9.32 16.40 15.13 1.072 0.873
5 0.125 6.86 7.08 35.58 5.98 16.72 15.22 0.785 0.607
5 0.2 036 . 8.34 16.61 2.99 21.88 18.39 0.358 0.212
5 025 -0.19 773 13.47 2.31 26.28 20.80 0.233  0.097
5 0.5 1.15 494 13.80 1.14 48.53 30.13 0.048 0.091
5 0.75 2.42 3.50 16.13 0.77 67.55 3574 0.012 0.131
5 1 3.24 2.68 17.69 0.58 83.25 39.36 0.000 0.147
5 1.25 3.79 2.14 18.75 0.47 96.29 41.88 0.005 0.154
5 1.5 4.19 1.77 19.51 040 107.26 _ 43,73 0.008 0.159
5 2 4,72 1.29 20.52 0.30 124.63 46.26 0.011 0.164
5 3 5.28 0.78 21.61 0.20 14798 49.06 0.012 0.167
5 4 5.58 0.52 22.18 0.15 16292 50.57 0.013 0.169
10 0.1 -443 2132 7272 6.15 -8.23 4385 4,203 0.357
10 0.125 -7.19 19.66 41.89 502 -13.53 2454 1.344 0.431
10 0.2 -575 14.87 18.78 3.34 -46.18 18.35 0.188 0.264
10 025 -395 1251 14.84 273 -102.07 17.89 0.064 0.169
10 0.5 1.82 6.31 12.68 1.37 148.34 18.15 0.015 0.071
10 075 447 3.72 13.79 0.86 95.72 18.54 0.008 0.147
10 1 5.95 231 14.65 0.59 83.25 18.78 0.000 0.188
10 1.25 6.89 143 15.26 0.42 7773 18.94 0.006 0.213
10 1.5 7.53 0.82 15.70 0.31 74.63 19.05 0.011 0.229
10 2 8.37 0.05 16.29 0.16 71.27 19.20 0.017 0.250
10 3 923 -0.75 16.92 0.03 68.39 19.36 0.024 0.271
10 4 968 -1.16 17.25 0.07 67.11 1944 0.027 0.281
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Another interesting issue is the effect of log-linearizing the returns on the market
portfolio (equation (2.98)) and on the equity (equation (2.117)). We present two sets of
results. First, in table 2.13, we choose reasonable yet arbitrary values for the k parame-
ters in the approximating formulas. Second, in Table 2.15, we set for the k parameters
the values implied by the preference parameters. Indeed, in the Campbell and Shiller
approximation, the parameter k is a function of the parameters and cannot be set arbi-
trarily 7. With arbitrary values, the very large values present in Table 2.12 disappear
and one may think that the model is acceptable for all configurations of the preference
parameters. However, when we compute the statistics with the k values corresponding
to the preference parameters (reported in Table 2.14), the values obtained for all mo-
ments are close to the analytical values shown in Table 2 12. This illustrates the fact that
log-linearizations must be conducted very carefully. One major obstacle is to compute
the k parameters when one does not have analytical formulas for the price-payoff ratios.
When the model is solved numerically the values have to be chosen by successive trials.
The exact way to proceed and the stopping rule remain unclear to us. Therefore, even
if one does not want to model the endowment with a Markov-switching structure, the
values obtained with this modeling strategy for these crucial parameters could definitely
help for finding the right values of the k parameters.

We also compare the log-linearization of Campbell and Shiller (1988) to the Taylor
expansion of Hansen, Heaton and Li (2005). Tables 2.17, 2.20 and 2.22 show that the
log-linearization with endogenous coefficients is as well as accurate as the Taylor expan-
sion for values of the EIS around the unity (typically between 0.5 and 1.5). Tables 2.17,
2.18 and 2.22 show that the log-linearization with exogenous coefficients is in general
less accurate than the Taylor expansion. When the EIS is low, typically less than 0.25
inclusive, the Taylor expansion can considerably lower the risk-free rate for low risk
aversion (then exaggerating the equity premium) and considerably increase the risk-free
rate for high risk aversion (then deteriorating the equity premium). The log-linearization

with endogenous coefficients seems to be worst when the EIS is low and the risk aver-

"The formula for kg is given by: ko = —log(ki) — (1 — k)log(1/k; — 1) where k; = 1/(1 +
exp({¢; — pt)), with (¢; — p;)) the mean log consumption-price ratio. The expressions for k,,0 and &y
are similar but for the dividend-price ratio instead of the consumption-price ratio
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sion is high. In general, for high values of the EIS, the Taylor expansion does well
compared to the log-linearization. Finally, results not reported here have also shown that
the approach of Bansal, Kiku and Yaron (2007) is comparable to the log-linearization
with éndogenous coefficients.

An important message of Bansal and Yaron (2004) concerns the role played by time-
varying volatility in consumption, a proxy for economic uncertainty. To gauge the sensi-
tivity of the results to time-varying volatility we recompute the same moments by keep-
ing the volatility constant in the Markov;switching model. We now have a two-state
model with the parameters reported in Table 2.23. The corresponding asset return mo-
ments are given in Table 2.24. We find that they are almost identical to the results we
obtained with time-varying volatility reported in Table 2.11. This result is different from
the result reported in Bansal and Yaron (2004) and suggests that the action is more in the

time-varying mean than in the variance. This point deserves further investigation.

2.5.3.2.2 Predictability of Returns Bansal and Yaron (2004) computed by simula-
tion the R? of regressions of the cumulative excess returns from ¢ to £ + 4 on the dividend-
price ratio at t. They found that their model with a risk aversion parameter of 10 and
an elasticity of intertemporal substitution of 1.5 was able to reproduce some of the pre-
dictability observed in the data. The simulation was run with 840 observations as in their
data sampling period.

We have derived analytically the R? of the same regreSsion in population. In table
(2.25) we report the corresponding results with the same configurations of preference
parameters that we selected before for asset pricing implications.

The first striking result is the total lack of predictability of excess returns by the
dividend-price ratio. This is in contrast with the predictability found in Bansal and Yaron
(2004). They report R? of 5, 10 and 16 percent at horizons of 1, 3 and 5 years respec-
tively. To identify the source of the difference between these results, we first reproduce
by simulation the same statistics both for the original Bansal and Yaron model (2004)
and the matching Markov-switching model we have built. Another word of caution is

in order before we look at the results. The regression that we run has as a dependent
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Table 2.23: Parameters of the Markov-Switching Model with Constant Volatility.
This table shows parameters of the Markov-Switching Model calibrated to match the model of
Bansal and Yaron (2004). Calibration is made such that unconditional variance and kurtosis
of MS mean of consumption matched similar moments in the BY model, whereas the implied
skewness of MS mean is negative. The MS volatility of consumption is constant as in Case I
of Bansal and Yaron (2004). . and py are conditional means of consumption and dividend,
. and w, are conditional variances of consumption and dividend. PT is the transition matrix
across different regimes and IT is the vector of unconditional probabilities of regimes. Means
and standard deviations are in percent. The model is calibrated at the monthly frequency. The
correlation vector p is set to zero.

State 1 State 2
u.  -0.181 0.236
p;  -0.843  0.407

0.780  0.780

(w/)* 3.510 3.510
PT

State 1 0.983 0.017

State2  0.004 0.996

m’ 0.205 0.795

= =

Table 2.24: Asset Pricing Implications: Constant Volatility & — 0.998
The entries are model population values of asset prices. The price-consumption ratio is given
in 2.91 and the price-dividend ratio in 2.112. The input parameters for the monthly model are
given in Table 2.23. The expressions E [R,, — Ry] and E [Ry] are respectively the annualized
equity premium and mean risk-free rate. The expressions o (R,), 0 (Ry), © (%) and o (%) are
respectively the annualized volatilities of market return, risk-free rate, consumption-price ratio
and dividend-price ratio. The monthly subjective factor of discount is set to 0.998.

Y ¥ ERn—R] ER;] o(Rw) o(R;) E[z] E[5] o(3) o(3)

25 05 0.13 5.89  13.30 1.16 2548 30.09 0.080 0.073
25 1.5 1.37 338 1846 040 52,61 7734 0015 0.08]
5 05 1.06 6.11 13.65 1.14 2988 2273 0.074 0.114
5 15 3.78 3.02 1895 040 4752 3138 0.018 0210
75 05 1.83 6.60 13.23 1.21 3749 1747 0.060 0.119
75 1.5 5.79 258 1734 036 43.19 2007 0019 0.276
10 0.5 1.88 7.25 12.68 1.34 4878 1536 0.045 0.082

10 15 7.13 2.13 1570 032 40.13 1631 0.019 0.267
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variable the cumulative monthly returns over yearly periods (1 to 20) and the monthly
dividend-price ratio as an independent variable. In Bansal and Yaron (2004) it is a yearly
dividend (cumulated monthly dividends over twelve months). Cumulating the dividends
will certainly increase the R? but would not change the evidence over the actual presence
of predictability.

In Table 2.26, we can see that there is strong predictability both in the original Bansal
and Yaron (2004) model and the matching Markov switching, so it is not due to a per-
verse effect of our matching procedure. These results seem to point strongly towards a
small sample explanation. Predictability appears in finite sample due to the presence of a
very persistent variable on the right hand side® but disappears in population regressions.
Abel (2005) also finds little or no predictability of excess returns by the dividend-price
ratio in a model of preferences with a benchmark level of consumption (habit formation
or consumption externalities such as keeping up or catching up with the Joneses) and
i.i.d. growth rates of consumption and dividends®. However Abel (2005) finds that the
return on stock is predictable by the dividend-price ratio.

Table 2.25 reports the analytical R? of the regression of returns on equity on the
dividend-price ratio for the matching MS model. There seems to be some predictability
for values of the elasticity of interle;npora] substitution (y parameter) below one, but
that it disappears for values above one. This is true for all values of the risk aversion
parameter 7, the only difference being that predictability increases with ¥ for all values
of y. This result about the pivotal value of one for y is the opposite of what was found
in the previous section for asset pricing implications. The asset return moments were
better reproduced for values of y greater than one.

To contrast these regression results in population with the finite sample results, we
simulate the Markov-switching model over periods of 840 observations, the sample

length in Bansal and Yaron (2004), and compute the R? of the same regression. The

8cite literature on problems in predictability regressions.

9 Abel (2005) finds that the dividend-price ratio cannot predict the excess rate of return on stock relative
to one-period riskless bills, when the excess rate of return is defined as the ratio of the gross rates of return
on the two assets. He finds a very small R? for plausible values of the preference parameters when the
excess rate of return is defined as the arithmetic difference between the rates of return on stocks and
one-period riskless bills.



Table 2.25: Predictability by the Dividend-Price Ratio: 6 = 0.998
This table shows the R-squared of the regression y;1.,4s = a2 (h) + b2 (h) %’ + TM2,4+4 (h), where y is return, excess return, consumption
volatility, consumption growth or dividend growth. The horizon 4 is monthly in the regression and converted into annual in the table. The
price-consumption ratio is given by (2.91) and the price-dividend ratio by (2.112). The input parameters for the monthly model are given
in Table 2.9. The monthly subjective factor of discount is set to 0.998.

h

Y v Returns Excess Volatility Consumption Dividend
1 3 5 1 3 5 1 3 5 1 3 5 1 3 5
25 02 2885 4654 4596 022 039 042 074 060 050 29.13 35.78 31.14 1596 23.26 21.78
25 05 585 909 879 0.00 0.01 001 208 170 141 28.69 3524 30.66 1572 2290 21.44
25 08 123 210 214 0.08 0.16 0.17 058 048 040 29.18 35.84 31.19 1599 2330 21.81
25 1 047 083 087 0.15 0.28 031 043 035 029 2923 3591 31.25 1602 23.34 21.85
25 1.2 017 031 033 020 039 044 035 029 024 2926 3594 31.27 16.03 2336 21.87
25 1.5 002 005 005 027 053 060 029 024 020 29.28 3596 31.29 16.04 2337 21.88
5 02 2834 4607 4571 0.00 0.00 0.00 1.68 138 1.15 2882 3539 30.80 1579 23.00 21.54
05 433 689 675 0.11 021 023 224 1.84 1.53 28.63 3517 30.60 1569 22.86 21.40
08 056 09 103 038 075 084 0.63 051 043 29.17 3582 31.17 1598 2328 21.80
1 011 020 022 051 101 114 045 037 030 2923 3590 31.24 16.01 23.33 21.85
1.2 001 001 001 060 119 136 036 030 025 2925 3593 31.27 16.03 2335 21.87
5 1.5 003 006 007 070 140 160 030 024 020 2928 3596 31.29 16.04 2337 21.88
7.5 0.2 2805 4640 4652 0.04 007 008 272 223 185 2847 3497 3043 1560 2273 21.28
75 05 552 861 834 0.05 009 009 445 3.65 3.03 2790 3427 2982 1529 2228 20.86
75 08 120 205 210 0.14 027 030 1.05 086 072 29.03 3565 31.02 1590 23.17 21.70
7.5 1 046 082 086 0.18 035 039 072 059 049 29.14 3579 31.14 1596 23.26 21.78
75 12 017 032 034 021 040 045 057 046 038 29.19 3585 31.20 1599 2330 21.82
75 15 003 005 005 023 045 050 045 037 031 2923 3590 31.24 16.01 2333 21.85
10 0.2 2735 4726 48.65 0.01 0.02 002 351 288 238 2820 34.64 30.14 1545 2251 21.08
10 05 746 1122 1065 0.00 0.00 0.00 14.47 11.87 9.84 2459 3021 26.29 1347 19.63 18.38
10 08 294 480 478 001 0.03 003 229 188 156 2861 3515 30.58 15.68 22.84 21.39
10 1 169 285 28 002 0.04 004 144 118 098 2890 3549 30.88 1583 23.07 21.60
10 1.2 105 182 1.87 002 0.04 005 109 089 074 2902 3564 31.01 1590 23.16 21.69
10 1.5 057 101 106 003 005 005 083 0.68 056 29.10 3574 31.10 1594 23.23 21.75

(VBN B, R |
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Table 2.26: Predictability of Returns by the Dividend-Price Ratio: Simulation with S = 1000 and T = 840.
This table shows the R-squared of the regression yi 1444 = a1 (h) + by (h) %’ + M1 444 (), where y is return or excess return. The horizon
h is monthly in the regression and converted into annual in the table. The entries are based on 1000 simulations of consumption and
dividend processes, each with 840 monthly observations. The parameter configuration for the MS model is given in Table 2.9. The price-
consumption ratio is given by (2.91) and the price-dividend ratio by (2.112). The monthly subjective factor of discount is set to 0.998.

Y v Excess MS Excess BY Returns MS
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
25 05 173 296 395 477 539 140 256 350 434 508 579 825 924 937 9.10
25 08 270 434 553 646 7.10 149 274 372 457 531 298 461 554 599 6.18
25 12 345 546 685 7.89 858 154 282 382 468 542 297 468 573 635 6.71
25 15 379 596 746 856 9.28 155 284 386 472 546 321 506 621 691 733
5 05 202 340 448 537 6.03 138 253 347 430 503 469 684 782 8.06 795
5 08 323 517 656 7.62 835 147 271 3.69 455 528 274 432 529 583 6.12
5 1.2 403 638 801 921 1000 153 280 381 467 540 312 495 611 682 7.27
5 1.5 437 689 862 988 10.71 154 283 385 471 545 348 551 679 760 8.11
75 05 175 3.02 407 492 559 136 251 346 430 502 560 803 903 921 9.00
75 08 261 423 544 639 705 147 271 370 457 530 283 442 536 583 6.05
75 12 318 5.06 640 742 811 153 281 383 470 544 272 433 535 596 634
75 15 341 541 681 785 855 155 284 387 475 549 290 462 572 640 6.83
10 05 146 262 3.63 448 517 135 250 346 431 504 750 1043 1145 11.51 11.13
10 08 191 320 420 500 558 147 272 374 462 536 374 562 658 693 698
10 12 231 373 476 556 610 153 283 388 477 552 274 431 526 574 598
10 1.5 249 397 502 582 634 156 287 393 483 558 262 416 512 566 596

€Sl



Table 2.27: Predictability by the Consumption-Price Ratio: 6 = 0.998
This table shows the R-squared of the regression yy 1.4 = @2 (h) + b2 (h) FS,", + M2,444 (h), where y is return, excess return, consumption
volatility, consumption growth or dividend growth. The horizon 4 is monthly in the regression and converted into annual in the table. The
price-consumption ratio is given by (2.91) and the price-dividend ratio by (2.112). The input parameters for the monthly model are given
in Table 2.9. The monthly subjective factor of discount is set to 0.998.

h

Y v Returms Excess Volatility Consumption Dividend
1 3 5 1 3 5 1 3 5 1 3 5 1 3 5
25 02 29.05 46.85 4627 022 039 042 001 0.01 001 2938 36.08 31.40 1609 2345 21.96
25 05 602 935 9.04 000 001 0.01 0.0l 00! 001 2938 3608 31.40 1609 2345 2196
25 08 124 212 217 008 0.16 0.18 0.0l 001 001 2938 3608 3140 1609 2345 2196
25 1 000 0.00 000 000 0.00 000 000 000 000 000 000 000 000 0.00 0.00
25 12 017 032 034 020 040 044 001 001 001 2938 3608 3140 1609 2345 21.96
25 1.5 002 005 005 027 053 0.60 001 001 0.00 2938 36.08 3140 1609 2345 2196
5 0.2 2873 46.68 4630 0.00 0.00 0.00 006 0.05 004 2936 3606 3138 1608 23.43 21.94
05 450 7.6 7.02 0.11 021 023 005 004 003 2936 3606 3138 1609 2344 21.95
08 057 101 1.05 039 075 085 005 004 003 2936 3606 3138 1609 2344 2195
1 000 000 0.00 000 0.00 000 000 000 000 000 000 000 000 000 0.00
1.2 001 0.01 001 060 120 137 0.05 004 0.03 2936 36.07 3138 1609 2344 2195
5 1.5 003 006 006 070 140 160 0.05 0.04 0.03 2936 36.07 31.38 1609 2344 2195
7.5 02 2861 4729 4738 0.04 007 0.08 020 0.17 0.14 2931 36.00 31.32 1606 23.40 2191
75 05 59 931 9.03 005 009 0.10 0.14 0.12 0.10 2933 36.03 31.35 1607 2341 21.92
75 08 123 212 218 0.14 0.28 031 0.13 0.11 009 2933 36.03 3135 1607 2342 2193
7.5 1 000 000 000 000 000 000 0.00 000 000 000 000 000 000 000 0.00
75 12 018 033 035 021 040 045 0.12 0.10 008 2934 3603 31.36 1607 2342 2193
75 15 003 005 006 023 045 051 0.12 0.10 0.08 2934 36.03 31.36 16.07 23.42 2193
10 02 2798 4829 4966 001 0.02 002 0.54 044 037 29.19 3585 31.20 1599 2330 21.82
10 05 939 1419 1353 000 0.01 001 032 027 022 2927 3595 3129 1604 2337 21.88
10 0.8 310 508 506 001 003 003 029 024 020 2928 3597 3130 16.04 2338 21.89
10 1 000 000 000 000 000 0.00 0.00 0.00 000 000 000 000 000 0.00 0.00
10 1.2 1.09 1.8 195 002 004 005 027 022 0.19 2929 3597 3130 1605 2338 21.89
10 1.5 060 105 110 003 005 005 027 022 018 2929 3598 3131 16.05 2338 21.89

Wb Lhh Lh a

12!



Table 2.28: Asset Pricing Implications: MS Matching BY, high y
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The entries are model population values of asset prices. The price-consumption ratio is given by
(2.91) and the price-dividend ratio by (2.112). The input parameters for the model (2.1)-(2.2)
are given in Table 2.9. The expressions E [R,, — Ry] and E [Ry] are respectively the annualized
equity premium and mean risk-free rate. The expressions & (R,), 6 (Ry), 0 (%) and o (2) are
respectively the annualized volatilities of market return, risk-free rate, consumption-price ratio
and dividend-price ratio. The monthly subjective factor of discount is set to 0.998.

Y ¥ ER.—Rj] ERJ] o(Rw) o(Ry) E[c] E[5] o(5) o(5)
5 02 0.00 1058 1607 292 1624 13.56 0459 0.268
5 05 105 611 1368 114 2989 2277 0074 0.115
5 08 236 449 1616 072 3795 2708 0016 0.174
5 1 292 388 1727 058 4158 2882 0.000 0.191
5 12 333 346 1809 049 4437 3009 0.009 0201
5 15 378 302 1896 040 4751 3144 0018 0210
10 0.2 485 1514 1808 324 3306374 14.88 0.000 0.307
10 0.5 1.86 726 1273 134 4886 1542 0045 0.089
10 08 462 451 1405 078 4294 1590 0013 0.187
10 1 565 352 1470 059 4158 1609 0000 0222
10 1.2 637 283 1519 045 4080 1622 0.009 0.245
10 1.5 712 212 1573 032 40.11 1636 0.019 0.268
15 0.2 1074 1773 1890  3.82 36788.63 29.68 0.000 0.169
15 0.5 069 849 1247 162 8661 1518 0022 0.053
15 0.8 509 451 1302 085 4708 1444 0010 0.127
15 1 661 315 1339 059 4158 1425 0000 0.161
15 12 763 223 13.69 041 3874 1415 0008 0.185
15 1.5 867 129 1403 024 3638 1405 0018 0210
20 0.2 1586 19.47 1874 430 3430058 76891 0.000 0.007
20 0.5 080 937 1254 185 18133 1676 0.009 0.060
20 0.8 503 443 1273 091 5044 1464 0.008 0.095
20 1 6.96 278 1295 059 4158 1413 0000 0.123
20 1.2 8.25 1.68 13.14 0.38 3742 1383 0.008 0.144
20 15 953 058 1336 0.18 3414 1356 0.017 0.167




Table 2.29: Predictability of Excess Returns by the Dividend-Price Ratio: MS Matching BY, high y
This table shows the R-squared of the regression y, 1444 = az (h) + b2 (h) %’ + M2+ (h), where y is return, excess retum, consumption
volatility, consumption growth or dividend growth. The horizon 4 is monthly in the regression and converted into annual in the table. The
price-consumption ratio is given by (2.91) and the price-dividend ratio by (2.112). The input parameters for the monthly model are given
in Table 2.9. The monthly subjective factor of discount is set to 0.998.

h
Y v Returns Excess Volatility Consumption * Dividend
1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

5 02 2834 46.07 4571 0.00 000 000 168 138 1.15 2882 3539 3080 1579 23.00 21.54

5 05 433 68 675 0.11 021 023 224 184 153 2863 3517 3060 1569 2286 21.40

5 08 05 09 103 038 075 084 063 051 043 29.17 3582 31.17 1598 23.28 21.80

5 1 011 020 022 051 101 1.14 045 037 030 2923 3590 3124 16.01 2333 21.85

5 12 001 001 001 060 1.19 136 036 030 025 2925 3593 31.27 16.03 2335 21.87

5 15 003 006 007 070 140 160 030 024 020 2928 3596 3129 1604 2337 21.88
10 02 2735 4726 4865 001 002 0.02 351 288 238 2820 34.64 30.14 1545 2251 21.08
10 05 7.46 11.22 1065 0.00 0.00 0.00 14.47 11.87 9.84 2459 3021 2629 13.47 19.63 18.38
10 08 294 480 478 001 003 003 229 18 156 2861 3515 30.58 1568 22.84 21.39
10 1 169 285 28 002 004 004 144 1.18 098 2890 3549 30.88 15.83 23.07 21.60
10 1.2 105 182 187 002 004 005 1.09 089 074 29.02 3564 3101 1590 23.16 21.69
10 1.5 057 101 106 003 005 005 083 068 056 2910 3574 31.10 1594 2323 21.75
15 0.2 23.82 43.17 4589 1.16 195 198 857 703 583 2648 3253 2830 1451 21.14 19.79
15 05 093 131 118 000 000 0.00 79.65 6534 5419 308 378 329 169 246 230
15 08 6.02 925 888 063 1.13 120 1005 824 684 2605 3200 27.84 1427 20.80 1947
15 1 466 735 7.16 102 180 188 548 449 373 2756 3385 2946 15.10 22.00 20.60
15 1.2 372 597 588 129 225 232 379 3.11 258 2812 3454 30.06 1541 2245 21.02
15 15 283 464 462 157 268 275 268 220 1.82 2849 3499 3045 15.61 2274 21.29
20 0.2 19.67 3645 3941 3.64 551 526 1925 1579 13.10 2287 28.09 2444 1253 18.26 17.09
20 05 077 121 122 0.00 0.01 0.01 87.69 7193 59.65 043 052 046 023 034 032
20 08 587 875 825 091 1.61 1.69 2795 2292 19.01 20.14 2474 2152 11.03 16.08 15.05
20 1 590 899 858 195 336 344 1491 1223 10.15 2444 30.02 26.12 1339 1951 1827
20 1.2 536 829 799 275 460 465 999 820 6.80 26.07 32.02 27.86 1428 20.81 19.48
20 1.5 462 728 708 357 583 579 6.81 559 463 27.12 3331 2898 14.86 21.65 20.27

9¢1
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Table 2.30: Variance Ratios of Aggregate Returns: 6 = 0.998
This table shows the variance r‘atios Y,‘:—",%E—:—Tg’), where the horizon 4 is monthly anq converted
into annual in the table. The price-consumption ratio is given by (2.91) and price-dividend ratio
by (2.112). The input parameters for the monthly model are given in table 2.9. The monthly

subjective factor of discount is set to 0.998.

Y v Returns Excess
1 2 37 4 5 1 2 3 4 5
25 02 111 1.21 129 136 143 1.02 104 106 1.07 1.09
25 05 1.14 127 138 148 156 1.00 100 100 0.99 0.99
25 08 106 1.12 117 121 124 099 098 097 096 096
25 1 1.04 1.07 110 113 115 098 097 096 0.95 0.94
25 12 1.02 1.04 106 107 109 098 096 095 0.93 0.92
25 15 1.01 1.02 102 103 1.03 098 09 094 092 0091
5 02 110 1.20 128 134 140 1.00 1.00 1.00 1.00 1.00
05 112 123 132 140 147 099 098 098 097 097
08 1.04 108 111 113 1.16 098 096 094 0.92 091
1 102 103 1.05 106 107 097 09 092 091 0.89
1.2 100 101 1.01 1.01 101 097 094 092 0.89 088
5 1.5 099 098 098 097 097 0.97 093 091 088 0.86
75 02 1.09 1.17 124 130 135 099 098 098 097 0.97
75 05 1.13 126 137 146 154 1.00 099 099 098 0.98
75 08 1.06 1.11 116 120 123 099 097 096 095 0.95
75 1 1.04 107 110 112 1.14 098 097 096 0.94 0.94
75 1.2 102 104 106 1.07 1.08 098 096 095 094 093
75 1.5 101 1.02 1.02 103 1.03 098 09 095 093 092
10 02 106 111 1.15 119 122 101 101 1.01 102 1.02
10 05 1.17 132 145 157 166 1.00 1.00 1.00 1.00 1.00
10 0.8 1.09 118 126 132 138 1.00 1.01 1.01 101 1.02
10 1 107 113 119 124 128 1.01 1.01 1.01 1.02 1.02
10 1.2 105 110 1.15 118 121 1.01 1.01 1.02 1.02 1.02
10 1.5 1.04 108 111 113 1.15 1.01 1.01 1.02 102 1.03
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Table 2.31: Variance Ratios of Aggregate Returns: Simulation with § = 1000 and T = 840

Y v h

1 2 3 4 5 6 7 8 9 10 15 20
25 05 1.11 1.19 127 133 137 141 143 145 145 146 140 1.26
25 08 1.04 1.07 109 1.11 112 1.13 113 113 113 1.12 105 093
25 12 101 1.01 1.01 1.00 1.00 1.00 099 098 097 096 088 0.77
25 1.5 1.00 099 098 097 096 095 094 092 091 090 0.81 0.71
50 05 1.09 1.16 122 127 130 133 135 136 136 136 130 1.17
50 08 102 1.03 1.04 105 105 105 105 104 1.04 1.03 095 0.84
50 1.2 099 098 097 095 094 093 092 090 0.89 088 0.79 0.69
50 1.5 098 096 094 092 091 089 087 086 0.84 083 074 0.64
7.5 05 1.10 1.19 126 131 136 139 141 142 143 144 138 1.24
75 08 104 1.06 1.08 110 1.11 112 1.12 112 1.11 110 1.03 092
7.5 1.2 101 1.00 1.00 1.00 1.00 099 098 097 096 095 0.87 0.76
75 1.5 1.00 098 097 096 096 095 093 092 091 0.89 081 0.71
100 05 1.13 124 133 141 146 151 154 156 1.57 158 1.53 138
100 08 107 1.12 1.16 120 122 124 125 126 126 126 1.19 1.07
100 12 1.03 105 1.07 109 110 1.10 110 1.10 1.09 1.09 1.01 0.90
100 1.5 1.02 1.03 1.04 105 105 1.05 1.05 1.04 1.03 102 095 0.84

8C1
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results are reported in Table 2.26. The R? of the finite sample regressions are not too
different from the analytical R? for y = 0.5. As the value of the elasticity of intertem-
poral substitution increases the gap between the population and finite sample statistics
increases'?. Therefore, for some values of the preference parameters, predictability ap-
pears to be a finite sample phenomenon while for some others it seems to be a feature of
the model.
Lettau and Ludvigson (2001a,b) have put forward that a measure of consumption
over wealth has a greater predicting power than the dividend-price ratio. We present in
‘Table 2.27 results of the regression of cumulative returns on the consumption-price ratio
in the Epstein-Zin economy. Indeed, we find higher predictability for all preference
parameter pairs. In particular, for ¥ = 10 and y = 0.5 the R? for the consumption-
price ratio is equal to 9.39, 14.19 and 13.53 for 1, 3 and 5 years, as opposed to 7.46,
11.22 and 10.65 for the dividend-price ratio. The remarks made above about the finite
sample results for the dividend-price ratio apply equally to the consumption-price ratio.
In particular, there is no predictability of excess returns by the price-consumption ratio.
Some predictability of excess returns appears if risk aversion increases for values of
y greater than one. It is interesting to note that for higher risk aversion the BY model
behaves more like the LLW model. The volatility of the stock decreases as well as the

level of the price-dividend ratio. These results are illustrated in tables 2.28 and 2.29.

2.5.3.2.3 Predictability of Volatility Another important message found in Bansal
and Yaron (2004) is the predictability of consumption volatility by the dividend-price
ratio. In Table 2.25, we report the R? of the regression of cumulative future consumption
volatility over several horizons on the current price-dividend ratio. Results are similar to
those obtained for future returns predictability. Not all preference configurations are able
to produce predictable volatility. Again only low values of the elasticity of intertemporal
substitution are able to genérate predictability (y = 0.5). Thef;: is no predictability at all

for values of y above one. Predictability is the strongest at a one-year horizon.

10We have checked that results similar to the analytical are obtained when we simulate with a sample
of 2,000 observations
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2.5.3.2.4 Variance Ratios There is negaﬁve autocorrelation at long horizons in re-
turns. Evidence is provided by the variance ratios computed at several horizons in Table
2.1. The variance ratios are less than one and decrease from year 2 up to year 4.

The corresponding analytical quantities are reported in Table 2.30. Most of the pref-
erence parameter combinations produce strong positive autocorrelations increasing with
the horizons. Only one set, Y =5 and y = 1.5 produce slight negative autocorrelation.
The same results would have been visible in a simulated finite sample setting with 840
observations (see Table 2.31). However, predictability would have appeared stronger for
the above-mentioned particular set of parameters and other candidate sets would have

appeared.

2.6 Conclusion

Equilibrium asset pricing models have become harder to solve. To reproduce resilient
stylized facts, researchers have assumed that the representative investor is endowed with
more sophisticated preferences. The fundamentals in the economy, consumption and
dividends, have also been modeled wi’th richer dynamics. Often the time required to
solve the model numerically or to simulate it to compute the statistics of interest is
prohibitive. Therefore, researchers lean towards simpler models, making simplifying
assumptions as a compromise between reality and feasibility.

In this chapter, we have provided analytical formulas that should be of great help
to assess the ability of these models to reproduce the stylized facts. We have chosen
a flexible model for the endowment that can be applied directly to the data, as already
done by several researchers, or used to match other processes that are contemplated. In
terms of preferences, we have chosen the recursive framework of Epstein and Zin (1989),
widely used in the asset pricing literature. We have limited our analysis to the Kreps and
Porteus (1978) certainty eqﬁivalent. In future research we intend to try to find analytical
formulas for other certainty equivalents in the recursive framework and other types of

preferences.
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CHAPTER 3

AFFINE STOCHASTIC SKEWNESS MODELS

Abstract

Recent developments in asset return modeling have shown evidence for time-variation
not only in conditional variance, but also especially in conditional skewness and lever-
age effects. We develop a discrete time affine multifactor latent variable model of asset
returns which allows for both stochastic volatility and stochastic skewness (SVS model).
Importantly, we disentangle the dynamics of conditional volatility and conditional skew-
ness in a coherent way. Our approach allows the distribution of current daily returns con-
ditional on current volatility to be asymmetric. In our model, time-varying conditional
skewness is driven by the conditional leverage effect and the asymmetry of the distribu-
tion of current returns conditional on current volatility. We derive analytical formulas
for various moment conditions that we use for GMM inference. Applying our approach
to several equity and index daily returns, we show that the conditional distribution of
current daily returns, conditional on current volatility, is positively skewed and helps to
match sample return skewness as well as negative cross-correlations between returns and
squared returns. The conditional leverage effect is significant and negative. The condi-
tional skewness is positive, implying that the asymmetry of the distribution of current
returns conditional on current volatility dominates the leverage effect in determining the

conditional skewness.

3.1 Introduction

Most empirical research in Finance put forward evidences that, not only return volatil-
ity changes over time, but also returns are conditionally non-normal with time-varying
conditional skewness. These two important features of asset returns are critically im-
portant as changes in volatility and skewness modify intertemporal opportunities for

portfolio choice. Evidence show that volatility and skewness risks are priced in financial
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markets as people require more premium for holding assets with more volatile and more
negatively skewed payoffs. Path dependence in the second and the third moments are
then able .to explain security prices. This chapter develops an affine multifactor latent
variable model of asset returns where both conditional volatility and conditional skew-
ness are time-varying and unobservable factors. Most importantly, in the two-factor case,
the vector of returns, volatility and skewness is affine.

Path dependence in return volatility has originally been captured by an autoregressive
conditional heteroskedasticity model (ARCH, Engle (1982)) or its extensions (GARCH,
Bollerslev (1986) and EGARCH, Nelson (1991)). While return volatility is completely
determined as a function of past observed returns in ARCH and GARCH models, an
alternative approach, which has become more popular recently, is the stochastic volatil-
ity model (SV), where return volatility is an unobserved component which undergoes
shocks from a different source other than return shocks. Most empirical applications of
stochastic volatility and GARCH models are based on the assumption that the condi-
tional distribution of returns is symmetric. Even if these models help explaining the ob-
served unconditional fat-tailedness of actual returns, there is still a lot to do in explaining
unconditional asymmetries (skewness and leverage effects) as well as conditional higher
return moments (skewness and kurtosis especially) [see e.g. Hansen (1994)]. Condi-
tionally nonsymmetric return innovations are critically important as in option pricing for
example, heteroscedasticity alone does not suffice to explain the option smirk.

The primary goal of this chapter is to develop a semi-affine multifactor stochas-
tic volatility model with skewed return innovations. Christoffersen, Heston and Jacobs
(2006) also study a semi-affine model of returns with time-varying volatility and condi-
tional skewness. However, skewness in their model is deterministically related to volatil-
ity and both undergo return shocks—since they work in a GARCH setting, whereas in the
new SV setting, volatility and skewness evolve as two separate factors with linearly
independent transformations, capturing different features of the return dynamics and un-
dergoing shocks from different sources than return shocks.

Harvey and Siddique (1999) also consider a nonsymmetric conditional distribution

of return with volatility and skewness as two separate factors which follow GARCH-type



167

processes. Their autoregressive conditional skewness is a simple way to model condi-
tional asymmetry and provides an easy methodology to estimate time-varying condi-
tional skewness because of the availability of the likelihood function. However, the non-
affinity of their model is a practical drawback for solving asset pricing and derivative
models. For example, in a general equilibrium model with autoregressive conditional
skewness of endowment growths, as well as in an option pricing model with autore-
gressive conditional skewness of returns, asset prices do not exist in closed-form. Then,
solving such models involves numerical methods or simulation techniques which take a
lot of time to perform and for which it is difficult to assess the errors. Instead, we pro-
pose a convenient alternative to autoregressive conditional skewness where skewness—
as well as volatility—is viewed as an affine combination of stochastic components. The
availability of the moment generating function in our setting leads to a GMM estimation
based on exact moment conditions. It also provides an analytical tool for solving asset
and derivative pricing models. We distinguish agent and econometrician information sets
in our SV setting and provide explicit GARCH counteparts of volatility and conditional
skewness and leverage effects.

Another contribution of this chapter is to develop and implement an algorithm for
computing exact analytical unconditional moments of observable in a more general dis-
crete time semi-affine multifactor latent variable model that nests our SVS model. A
similar study is conducted by Jiang and Knight (2002) in the case of continuous time
affine processes. They derive the unconditional joint characteristic function of the dif-
fusion vector process in closed form. However, this issue has not been addressed so
far in the literature for discrete time affine models although of critical importance. First,
these analytical formulas help in assessing the direct impact of model parameters on crit-
ical unconditional return moments such as skewness, excess kurtosis, autocorrelation of
squared returns and coskewness. More generally, this is very helpful for calibration ex-
ercises where model parameters are set to match important features of the data. Second,
the unconditional moments of observable implied by the model can directly be compared
to their sample counterparts. This allows for a GMM estimation based on exact moment

conditions. Moreover, this estimation technique permits a direct evaluation of the per-
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formance of the model in replicating well-known stylized facts like the persistence of
volatility through the autocorrelation of squared returns, the absence of autocorrelation
of returns, the negative leverage effect via coskewness, the unconditional fat-tailedness
and the negative asymmetry of returns. All these well-known empirical facts are driven
by particular unconditional moments which are considered in the vector of moment con-
ditions when performing the model estimation. ,

In this chapter, we apply the new GMM procedure for discrete time affine latent
variable models to the estimation of the one-factor SVS model using several equity and
index daily returns. We further apply the Unscented Kalman Filter to estimate cumu-
lants of stochastic factors conditional on observable returns, as they are necessary to
evaluate the GARCH counterparts of volatility and conditional skewness. Model param-
eters are significantly estimated and model implications are striking. The distribution
of current daily returns conditional on current daily volatility is positively skewed and
appears sufficient to match unconditional asymmetry and leverage effects all significant
in daily return data. Sécond, this positively skewed distribution of current daily returns
conditional on current daily volatility leads to a positive skewness of current returns con-
ditional on past returns and this result departs from most of the existing literature (e.g.
Forsberg and Bollerslev (2002)). Third, when the distribution of current daily returns
conditional on current daily volatility is constrained to be normal, then a negative skew-
ness of current returns conditional on past returns comes up to corroborate most of ex-
~ isting findings. However, the model doesn’t match unconditional skewness and leverage
effects. Moreover, the GMM test for overidentifying restrictions rejects the constrained
model at conventional level of significance whereas it does not reject the unconstrained
model which leads to a significant positive skewness of current returns conditional on
current volatility.

The rest of the chapter is organized as follows. Section 3.2 presents the general semi-
affine multifactor latent variable model of asset returns, discusses the nested SVS model
and derives GARCH counterparts of volatility and skewness. Section 3.4 presents the
procedure to estimate cumulants of the stochastic components of volatility and skewness,

conditional on observable returns. Section 3.5 presents arbitrage-free and risk-neutral



169

valuation of assets based on the SVS model. Séction 3.6 derives analytical formulas of
return moments and presents the GMM estimation based on exact moment conditions.
Section 3.7 estimates the univariate SVS model using several equity and index daily
returns and provides some diagnostics. It also derives GARCH estimates of volatility

and skewness and discusses their model implications. Section 3.8 concludes.

3.2 Affine Models of Returns: An Overview

3.2.1 Definition and General Structure

A discrete time parametric semi-affine multifactor latent variable model of returns
with time-varying conditional moments can be characterized by its conditional cumulant-

generating function:

¥, (x,y;0) =InE, [exp (xr,H +yTl,+1\)] =InE, |exp| xri41 + iyili’,ﬂ
k i=1
=A(x,:0)+B(x,;0) L =A(x,y;0) + Z{Bi (,¥;0) I, 3.0
i—

where E, [-| = E [ | I;] denotes the expectation conditional to a well-specified information
set Iy, I, = (I, .., lk,)T is the vector of latent factors and 8 is the vector of parameters.!
In all what follows, parameter 0 is withdrawn from functions A and B for expository
purposes.

In practice, models are specified through the joint dynamics of observable returns
t14+1 and latent factors I, = (Iy;, .., lk,)T. In general, all conditional moments of returns are
affine functions of the latent factors. In particular, a latent factor J;; itself can be a specific
conditional return moment, equivalent to the fact that derivatives of the functions A (x,y)

and B; (x,y) also satisfy specific conditions. Proposition 3.2.1 below gives necessary

and sufficient conditions under which a latent factor is the conditional variance or the

IDarolles, Gourieroux and Jasiak (2006) study in details conditions for the stationarity in distribution
T . . s .
of vector affine processes. The vector process (r,+ A ) 1s stationary in distribution if the conditional
moment-generating function E; [exp (xri..x +y " kx| converges to the unconditional moment-generating
function £ [exp (xr; +yTl;)] as h approaches infinity.
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conditional asymmetry.
Proposition 3.2.1. The factor l; is the conditional variance of returns if and only if

%A (x,y)
ox?

d?Bj(x,y)

=0 and 2

x=0,y=0

x=0,y=0
The factor l;; is the central conditional third moment of returns if and only if

3°A (x,y)
ox3

a3BJ (xay)

=0 and FPe

x=0,y=0

=14 (3.3)

x=0,y=0
Especially, affine models of the form (3.1) with a single latent factor corresponding
to the conditional variance have been widely studied in the literature as GARCH and
Stochastic Volatility models. An extensive review of this literature is given in Shephard
(2005). Example 1 below lists most common cases with normal return shocks condi-

tional to the latent volatility.

Example 1. Stochastic Volatility.
Discrete time parametric semi-affine latent variable models of returns with only one fac-
tor which is a conditional return moment, are the following stochastic volatility models

which have been considered in many empirical studies. Return dynamics is given by:

Fiet = Hr — Buttn + Brhy + Vot (3.4)

where the volatility process satisfies one of the followings:

2
st = (1= 0n) = 0+ (0h— 0udd) b+ o (e —Anv/Bi) T, (B)
hiv1 = (1 — Op) p + Pnhe + OnE 11, (3.6)
hiy1 = (1 - ¢h)l~lh + Onh; + 0'h\/h_tgt—H ) (3.7)

and where u; | and &1 are two i.i.d standard normal shocks. The parameter vector p is

(“raﬁh)“ha¢haahalhaprh)-r
with the autoregressive gaussian volatility (3.6) and (1, By, Wy, Ok, Oy Pri

with the volatility dynamics (3.5) whereas it is (U, By, i, On, On) T

)T with the
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square-root volatility (3.7), where p,j, denotes the conditional correlation between the
shocks u; 11 and &.. The particular case p,, = 1 in the volatility dynamics (3.5) corre-
sponds to the Heston and Nandi (2000)’s GARCH(1,1). For this reason we refer to the
dynamics (3.5) as HN-S volatility.

The A and B functions characierizing the cumulant-generating functions for these

models are given by:

1
A(x,y) = (tr — Bubtn)x + ((1 — On) w — ) y — 2 In(1—2ayy) (3.8)
1 a
_ _ 2 a2, Gy _ 2
B(x,y) = Brx+ (0 — owdy) y + > YT 2ay (Ah — Prax) (3.9
for the HN-S specification,
1
A(%,Y) = (kr = Bubt) x+ (1= 0n) ay + 505" (3.10)
1
B(x,y) = Brx+ ony + 5%° (3.11)
for the autoregressive gaussian specification and finally
A(x,y) = (Lr — Buttn) x + (1 — @n) tay (3.12)
1
B(x,y) = Bux+ 0wy + 5 (¢ +20m0nxy + 7°) (3.13)

for the square-root specification.

One should notice that the volatility processes (3.6) and (3.7) are not well defined
since h, can take negative values for example in simulations of the process.? This can
also arise with the process (3.5) unless parameters satisfy a couple of constraints. Note
also that if the volatility shock & in (3.6) is allowed to be correlated to the return shock
u in (3.4), then the model becomes non-affine.

A known case of a well-defined affine stochastic volatility model assumes that A,

ZBecause of this limitation, autoregressive gaussian and squared-root stochastic volatility models have
been mainly explored in continuous time. To avoid negative values of #, in simulations for examples, on
can find the dynamics of In A, using the 1td lemma and work through the logarithmic model.
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follows an autoregressive gamma process (Gourieroux and Jasiak (2001)). However,
when combined with the return process (3.4), the model presumes that within a period,
return and volatility shocks are mutually independent, what appears to be a counterfac-
tual assumption against the well-documented conditional leverage effect (Black(1976)
and Christie (1982)). This counterfactual assumption is not required for classical log-
normal stochastic volatility and GARCH models. However, these latter models are less
tractable in empirical studies because of their non-affinity. Then, there has always been
a trade-off between tractable affine models with counterfactual assumptions and non-
tractable non-affine models that do not require these assumptions. In this chapter, we
aim at combining both the tractability of our affine model and its ability to take into
account impdrtant features of the data (fat-tailedness, asymmetry and leverage effect) in

a coherent way.

3.2.2 Conditional Leverage Effect and Skewness.

While return models of Example 1 are such that the vector (r,..;,h41) " of returns
and volatility is affine, the conditional skewness of returns in these models is zero. The
literature on asset return models has evolved so far and empirical evidence upon path
dependence of conditional skewness as well as its contribufion to risk management and
asset pricing rose in recent studies. The necessity to model return skewness has become
of first order importance.

Existing affine stochastic volatility models basically lead to a couple of equations of

the form:

i1 = e () + v/ bty (3.14)
hisr =m(h) + /v (he )€1 (3.15)

where ;.1 and & are two errors with mean zero and unit variance. Written in this
form, the conditional skewness of returns is zero unless ;.1 is conditionally asymmetric.
Also, these models do not allow for the leverage effect unless the shocks ;4 and &

are correlated. However, it is generally assumed that u,.1 is gaussian and unfeasible to
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assume a conditional correlation when at least one of the shocks is non-gaussian. This
is a potential limitation that typically arises when ;1 is gaussian and equation (3.15) is
such that 4, is an autoregressive gamma process.

Since the leverage effect is the nonzero conditional covariance between returns and
volatility, this means that projecting r;,; onto k. should lead to a nonzero slope co-
efficient. Then, another technique to account for skewness and leverage effect in asset
returns modeling would be to project returns r,, onto volatility #,,; and characterize

the projection error. This will basically lead to a return equation of the form:

rev1 =g () +Ahyy + v h, — }{2v(hr)ur+1 (3.16)

where | is an error with mean zero and unit variance. One can still endow u,; with
a suitable distribution conditional on (h;,h;41) such that combining (3.15) with (3.16)
leads to an affine stochastic volatility model of asset returns. The model will now account
for the leverage effect through A. The conditional skewness will also depend on A as
well as the conditional asymmetry of the shock u;, if any. We further use a similar
technique in our return modeling.

This chapter aims first at developing a semi-affine multifactor latent variable model
of returns such that both conditional variance h, and conditional skewness s, are stochas-
tic. Moreover, the vector (r,H , h,H,s,HhXZ]) ! is affine in the case of two linearly in-
dependent latent factors. It is more easy to think at a semi-affine one-factor model with
stochastic volatility as in Example I, that is such that the equation for volatility dynam-
ics is directly specified, precisely because of tractable properties of the standard normal
distribution that governs return and volatility dynamics. It is more challenging to think
at a semi-affine two-factor model with stochastic skewness as additional factor, such that
both equations for volatility and skewness dynamics are directly specified. The reason
is that, while conditional asymmetry of returns appears to be a necessary and sufficient
condition to generate time-variation in conditional skewness, asymmetric distributions
are not as tractable as the normal distribution. A strategy to get equations which explic-

itly characterize the joint dynamics of returns, volatility and skewness would be to first
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specify a semi-affine two-factor model with arbitrary linearly independent latent factors,

more easier to think at, and:

¢ find volatility and conditional skewness in terms of the two arbitrary factors,

e then, invert the previous relationship to determine the two arbitrary factors in terms

of volatility and skewness,

¢ and finally, replace the arbitrary factors in the initial return model to get the joint

dynamics of returns, volatility and skewness.

3.3 Return Models with Stochastic Skewness

3.3.1 General Setup

The dynamics of returns in our model is built upon shocks drawn from a standard-
ized inverse gaussian distribution. The cumulant-generating function of a discrete ran-
dom variable which follows a standardized inverse gaussian distribution of parameter s,

denoted SIG (s), is given by:

v (u;5) = InE [exp (uX)] = =35 'u+9s2 (1 —1/1- %su) . (3.17)

For such a random variable, one has E [X] =0, E [X?] =1 and E [X?®] =s, meaning
that s is the skewness of X. In addition to the fact that the SIG distribution is directly
parameterized by its skewness, the limiting distribution when the skewness s tends to
zero is the standard normal distribution, that is SIG (0) = .#"(0,1). This particularity
makes the SIG an ideal building block for studying departures from normality.

For each variable in all what follows, the time subscript denotes the date from which

the value of the variable is known. We assume that returns follow the dynamics:

k k

S k
res1 =1In ?] =Ho+ 2 Bi (0'3 - I»li) + 2 Ai (o-i?t—i—] - I»li) + 2, Cig+1ligti
! i=1 i=1 i=1

= 5¢+ATO',2+] +O’,THut+] (3.18)
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where S, is the price process, & = o — (B +A) " + BT 62 and wjpyq | {62, 1) ~
SIG (m i_th) If n; =0, then u; ;41 is a standard normal shock. The k return shocks
u;+1 are mutually independent conditionally on < ; +1,I,> The vector u is the un-
conditional mean of the stationary process 2. In consequence Ly is the unconditional
expected return. The time ¢ information set /; contains past returns r, = {r;,r,_1,...} and
past latent factors 0', {0?,6%,,...}.

2

The process o/ is assumed to be affine with the conditional cumulant generating

function
v’ (y)=InE [eXP( Gt+1) IIt] =a(y)+b(y)" 6?2 (3.19)

.
In this case, the vector (r,+1, (O'tszl)T) is semi-affine in the sense of Bates (2006). Its

conditional cumulant generating function is given by:

i (x,y) = InE [exp (w41 +37 02 ) [h] =4 (63) +B () o,

with

A(xy) = (Ho— (B+A)Th)x+a(f (x)) (3.20)
B(x,y) = Bx+b(f (x,y)) 3.21)

where f (x,y) = (fi (%, 31),--, fi (6,3)) T with £i (x,3) = yi + Ax+ v (x:15).

Since the factors 6 are nonnegative, we assume that the vector 67 follows a mul-
tivariate autoregressive gamma process. This process also represents the discrete-time
counterpart to many of the multivariate affine diffusions that have previously been exam-
ined in the literature. It follows that the log conditional Laplace transform of the vector

0',2 has the exponential affine form (3.19) with:

k

k YN
a()’) = —ZV,-ln(l —aiy,-) and bi(y) = z Mj_

i=1 oy
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The k x k matrix ® = [¢,~ j] represents the persistence matrix of the vector 0',2 and the au-
toregressive gamma processes 0'3 are mutually correlated if the off-diagonal elements of
@ are nonzero. More specifically for the one-factor model that we focus on in this chap-

ter, the unique latent state variable 0']2, has the following conditional cumulant generating

function:
v’ (y1) = InE [exp ()’10'12,t+1) | L] =a(y))+bi (») 07
where
d1y1
= —vIn(1— by (1) =
a(y1)=-viln(1—oyy;) and by (y1) T—awy;

The parameter ¢ is the persistence of the factor and the parameters v; and «; are related

to persistence and unconditional mean i, and variance @; as follows:

Proposition 3.3.1. Conditional on I, the mean L], the variance h, and the skewness s,

of returns are given by:

k
w=po—B+A)Tu+B e +ATmS =cop+

2 T .2
CiuOj = Coy +¢, 07, (3.22)
=1

. |
h=ATVoA+e m? =con+ 3, cin0% = con +cj 07, (3.23)

i=1

k
s = (A @A) STA+3eTVIL+10Tm = cos+ Y cisO2 = cos+¢7 62, (3.24)

=1

where the coefficients c,; depend on model parameters,
o 2 o 2 o 2 o\ T
mS =E [Gt+1 |It] , Vo =E [(0'1+1 —ny ) (0751 —my ) |It]

and
57 =E (0% —m) @ (0F1 —~mf)) (07 —m®) " 1],

The vector e denotes the k X 1 vector of ones.
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The linearity of conditional volatility and conditional third moment of returns in
terms of latent state variables comes from the fact that the elements of the vector m? and
of the matrices V,° and S7 are also linear in these variables. This is a consequence of
the affine structure of the process 0',2. Also, note that the bivariate vector (h,,s,h?/ 2) !
is not deterministically related to contemporaneous and past returns as for GARCH-type
processes as in Harvey and Siddique (2000). This is the reason why we label our model

stochastic volatility and skewness (SVS model).

Proposition 3.3.2. Conditional on 1,, the covariance between returns and volatility

(leverage effect) and the covariance between returns and skewness are given by:

k
T T .2
Cov(rir, st [ 1) =c, VEA =com+ Z ci,,;,oﬁ = Corh + €0/, (3.25)
=
3/2 T d 2 T 2
Cov (rm Sty | ]z) =¢; VOA = o+ D, CirsOf = Cors + €507 (3.26)

i=]
where the c’s depend on parameters.

It should be noted that, in our SVS model, although the parameter 77 dictates the
contemporaneous conditional asymmetry of returns—that is, the asymmetry of returns
conditional on factors of the same date—it is not the only parameter that characterizes
the conditional skewness of returns as defined in equation (3.24). The parameter A plays
a central role in generating conditional asymmetry in returns, even if returns are normally
distributed conditional upon contemporaneous factors, that is when n = 0.

It is also not surprising that the vector A governs the conditional leverage effect since
it represents the slope vector of the linear projection of returns on factors of the same
date. For a negative correlation between spot returns and variance, and consistently with
the postulate of Black (1976) and the leverage effect documented by Christie (1982) and
others, the parameter A may be expected to be negative. If A = 0, there is no leverage
effect. There is also no skewness unless 1 # 0. Then, the contemporaneous conditional
asymmetry in this model reinforces the effects of the leverage parameter A.

While 0']2,, vy 0',(2, are the primitive predictive variables in our SVS model, predictabil-

ity when k > 2 can also be directly related to conditional variance and skewness which
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are more economically interpretable. For example, empirical facts support that an in-
crease in return variance leads to an increase in expected returns. This comes from the
fact that agents require more risk premium when the stock payoff become more volatile,
meaning that it becomes more riskier to invest in the stock. As well as agents dislike
high return volatility, they prefer positive return skewness since it implies that higher
and even extreme positive values of return are more likely to realize. Then, agents are
ready to deliver some premium in exchange of a positive skewness, or to require some
premium to compensate a negative skewness.

When k > 2 and if cj,c25 # c15c2, Without loss of generality, one can invert relations
(3.23) and (3.24) to obtain 6, and 67 in terms of A, and s,h?/ 2. Using inverted relations

in (3.22) gives expected returns in terms of volatility and skewness:

k
W= chu+ b+ s + Y ¢ 07 (3.27)
i=3

where

C0sC2h — CORC2s T ConCls — COsClh

CBN =Cop+Cip

)
C1hC2s — C1sC2h C1hC2s — C15C2h
CluC2s — C15C2 C1hC2u — CluCan
]‘” = K H and C;ﬂ = s s
C1hC2s — C15C2h C1hC2s — C15C2p
* CisC2h — CipC2s CinCls — CisClh
Ciu =Clu +c2

i
C1hC2s — C15C2h C1hC2s — C15C2h

-
Moreover if k = 2, it turns out that the vector (r,+1,h,+1,s,+1ht3fl) is semi-affine

with the conditional characteristic function:

3
W (x,1,y2) =InE [CXP (xr,+1 +y1hit1 +)’2St+1h14/rzl) | I,]

:A* (xayl ,)’2) +Bh (X,y] ,y2) hl +BS (xayl ayZ)Sth?/za (328)
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with

CosC2h — COnC2s
———2B{
C1pC2s — C15C2
ConCls — C0sClh

+ ———— By (x,c1py1 + C15¥2, Cony1 + C25¥2) (3.29)
C1hC2s — C15C2h

Ay (x,¥1,¥2) = cony1 +cosy2 + X,C1hY1 + C15Y2,ConY1 + C25¥2)

_ 6
By, (x,y1,y2) = ———————B (x,c1ay1 + C15¥2, Cony1 + C25¥2)
C1hC2s — C15C2h ‘
C1
— ————— By (x,c1ay1 +C15¥2, Cony1 + €25¥2) (3.30)
C1hC2s — C15C24
and
Clh
B (x,y1,y2) = By (x,c1py1 + C15¥2, ConY1 + €25¥2)

C1hC2s — C15C2h

Coh
— ——=—— B (x,c1py1 +C15Y2,ConY1 + C25¥2) s (3.31)
C1hC25 — C15C2p

where the functions A and B = (B1,B2)T are defined in (3.20) and (3.21). In this case,
the advantage of the SVS model is that unobserved variables are directly interpretable as
conditional variance and skewness instead of arbitrary factors.

While the IG-GARCH model of Christoffersen, Heston and Jacobs (2006) implies a
strong relationship between conditional variance and skewness, in our two-factor case,
we disentangle these two moments while maintaining a semi-affine structure of the
model. This separation between the volatility and the conditional skewness comes from
the decomposition of return shocks into two linearly independent components whose

individual variances have specific dynamics.

3.3.2 Continuous-Time Limits

We are interested in continuous-time versions of our SVS models. In appendix IV,
we derive the continuous-time versions of our one-factor SVS model. We show that
the two-factor SVS model has two interesting continuous-time limits. Writing the SVS

model for a small time interval, we consider letting the time interval shrink to zero.
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Compound autoregressive processes as 67 in our case have been widely discussed by
Gourieroux and Jasiak (2006) as well as Lamberton and Lapeyre (1992). They show that
the continous time limit of a univariate autoregressive gamma process is a square-root

process. It follows that the dynamics of 0'12, converges to the square-root diffusion:
dO'lzl =Kj (&'7] — 0'121) dt + e O']idW],-

where wy, is a Wiener process and k1, @ and e are related to the initial parameters as
follows:

Vi —21
ki =—In¢y, fﬂ]zll : , and e%:—ndjl

o
— o 1—¢

. (3.32)

The two continuous-time limits of the one-factor SVS model differ from their return
processes. We consider that &, is constant. The reason is that in continuous time in the
return equation (3.18) one cannot identify f3; and A; separately. To avoid this identifica-
tion problem, we set 3; = O in the continuous time limit. If both 1 approaches zero,

then the return process converges to:
dnS, = [po+ A (0f — )] dt + o1dzyy (3.33)

where 7|, is a Wiener process. Instead, if 1] is constant, then the return process converges
to:
m

302
dInS, = |po+A (o — i) — n“ di+ —=dy), (3.34)
1

where yj; is a pure-jump inverse gaussian process with degree of freedom 90‘12[ / n12 on
interval [¢,7+dt]. The stock price in this case converges to a pure-jump process with

stochastic intensity.>

3The inverse Gaussian process has been investigated by Barndorff-Neilsen and Levendorskii (2000),
Jensen and Lunde (2001), and Bollerslev and Forsberg (2002). See also the excellent overview of related
processes in Barndorff-Nielsen and Shephard (2001).
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3.3.3 GARCH vs. SVS

In GARCH models, the information set I, is exactly r; so that both the economic
agent and the econometrician view the same information set. This is an implicit strong
assumption in GARCH models. In the SVS model, the econometrician doesn’t observe
0'_,2, only known by the economic agent. While the moments in Proposition 3.3.1 are
conditional on I; = r; UO'_,z, one can also derived their GARCH counterparts, meaning
same return moments now conditional on econometrician’s information, r, only. Let
1%, hG and sC respectively denote the mean, the variance and the skewness of 7,

conditional on r;. One has:

1 = cou +c Gur, (3.35)
hE = cop+cj G + CIGmCu, (3.36)
N\ 3/2
G (hf’) = cos +¢] Gur +cp Gren+ (cu ®cy) | Gacy (3.37)
where

Gu=E[c} |n],. (3.38)
Gu=E |02 (02) | n] ~E[0? | n]E [0 n]”, (3.39)

Gy =E [(0,2 ®0?) (c?) | Q} ~3E[(6?®02) | r]E[6? |n]"
+2(E[0? | ] ®E [0} | n])E [0 | n] - (3.40)

are mean, variance and third central moment of the latent vector 6 conditional upon
observed returns r;.

Disentangling agent and econometrician information sets in return modeling can be
crucial. In our SVS model with only one latent factor, return conditional variance and
central third moment are perfectly correlated to the agent, whereas it is the contrary to
the econometrician unless returns are unpredictable (c, = 0). Under return predictabil-
ity, our one latent variable SVS model generates, conditional to observable returns, an

asymmetry that is not perfectly correlated to the variance. This is the contrary in the
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IG-GARCH model of Christoffersen, Heston and Jacobs (2006) where these two con-
ditional moments are perfectly correlated. Also, While these authors restrict the condi-
tional skewness of returns to be negative, Feunou (2006) provides an empirical evidence
that conditional skewness, although centered around a negative value, can be positive
at some dates. The autoregressive conditional skewness of Harvey and Siddique (2000)
can also attain positive values. This can arise in our SVS model as we don’t impose any
restriction on parameters.

The GARCH counterparts of the leverage effect and of the conditional covariance

between returns and skewness are defined by:

3/2
Cov (rt+1,h,(i1 | Q) and Cov (r,+1,s,(i1 (hfil) |Q) .

These two quantities are difficult to express in terms of the moments of the latent vec-
tor 67 conditional on observed returns r; and instead we consider the following two

quantities which are more easier:

Cov (rt+1,ht+1 | 2) = C0,rh +Cj—th + C,IG},I(DTC;, (3.41)
Cov (r,+1,s,+1h?ﬁ | Q) =Co,rs+ c,TsGw +c;Gh,(I)Tcs, (3.42)

where @ represents the persistence matrix of the latent vector.

3.4 Filtering

Various strategies to deal with non-linear state-space systems have been proposed in
the filtering literature: the Extended Kalman Filter, the Particle Filter and more recently
the Unscented Kalman Filter that we apply in this chapter.* Since our SVS model has the
standard state space representation, on can use Kalman Filter-based techniques to com-
pute Gy, Gy and G As these methods will not guarantee that E [67 | ;] is positive, it

would be more convenient to filter @ = Inc?. Let @ = (@, .., (okt)T.

4See Leippold and Wu (2003) and Bakshi, Carr and Wu (2005) for application in finance, Julier et
al. (1995) and Jullier and Uhlmann (1996) for details and Wan and van der Merwe (2001) for textbook
treatment.
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The basic framework of Kalman filter techniques involves estimation of the state of

a discrete-time nonlinear dynamic system of the form:

revt =H (@1,u74) (3.43)
Wy = F (a)tagt*Jrl) ’ (344)

where u7 | and g | are not necessarily but conventionally two gaussian noises. For this

reason, we log-normally approximate our model, which in the one-factor case leads to:

w 9
H(w.f,H,u‘,‘:,H) = lip + Arexp (@) ,41) +exp (—%ﬂ) [exp (]n ( )

5 ((01,1+|) s (01441 )2 +9

s(wr, 1) +9) . 3
N

(3.45)

and

F(wlhgr,t-l-]) =1In

e ks (m(wlr)2+v2(wlt)) El i1
\/m(w1:)2+v(w1,) m(wy,)

(3.46)

where

Wy 44
S(wl,H-l) =N exp (—IT”])

m () = (1—¢1) i +¢rexp (o)
2(1—¢1) 902
Hi

v(w,)=(1-¢)’ 0+ exp ().
Details on this log-normal approximation for one-factor as well as two-factor models are
provided in appendix VL.

Let @, |; be the estimate of @, using returns up to and including time 7, r¢, and let

1 : . . . B . T L.
PI“"T‘" be its covariance. Given the join distribution of (a),T,u;"L,eff |T1) conditionally to
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ry, the filter predicts what future state and returns will be using process models. Optimal

predictions and associated mean squared errors are given by:

Oy =E [0y | 1] =E [F(@,87)) | r] (3.47)
et = E[ra1 | n] = EH(@41,85,) | ] (3.48)
P¥y =E :(“”H — @) (@41 — f01+1|z)T | Q] (3.49)

) =E :(’r+1 —repape) (e —r,+1|,)T |Q} (3.50)
PLy=E :(ﬁ>r+| ~ @) (a1 = i) | r_,} : (3.51)

The join distribution of (a),T,u;‘Il, ,*_;'-]) conditionally to r, is conventionally as-

sumed gaussian. To the contrary of the standard Kalman filter where the functions H
and F are linear, the precise values of the conditional moments (3.47) to (3.51) can not
be determined analytically in our model because the functions H and F are strongly
nonlinear. Alternative methods produce approximations of these conditional moments.

The Extended Kalman Filter linearizes the functionals H and F in the state-space
system to determine the conditional moments analytically. While this simple lineariza-
tion maintains a first-order accuracy, it can introduce large errors in the true posterior
mean and covariance of the transformed random variable which may lead to sub-optimal
performance and sometimes to divergence of the filter. The Particle Filter uses Monte-
Carlo simulations of the relevant distributions to get estimates of moments. In contrast,
the Uncented Kalman Filter adresses the approximation issues of the Extended Kalman
filter and the computational issues of the Particle Filter. It represents the distribution of
(a),T,u;‘L,el*L)T conditional on r; by a minimal set of carefully chosen points. This
reduces the computational burden but maintain second-order accuracy. Details on the
Unscented Kalman Filter are provided in appendix VIII.

The next step is to use current returns to update estimate (3.47) of the state. In the

Kalman filter, a linear update rule is specified, where the weights are chosen to minimize
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the mean squared error of the estimate. This rule is given by:

O 1)t+1 = Grg1)y + K4 ("t—H —rt+1|t) (3.52)
T
Pt(-of-(i)|t+1 = Pt(i(ﬂt ~ K1 tr4:1|th+1 (3.53)
-1
L :Pt(—oi—rl |t ( tr—:'l |t) . (3.54)

Once the Kalman recursion outlined above delivers the estimates @, and Pt‘|‘t’“’ for
the whole sample, the statistics G;, Gy, and G, can be computed using approximations
of moments of a nonlinear function of a gaussian random variable. Without loss of

generality, appendix VII derives corresponding formulas in the univariate case.

3.5 Arbitrage-Free and Risk-Neutral Pricing

In the context of asset and derivative pricing, one would like to find a probability
measure under which the expected gross return on a security equals the gross return on
the safe security. To define such a probability measure, it is sufficient to define a Radon-
Nikodym derivative which changes the historical measure into the risk-neutral measure
(see Christoffersen et al. (2006)). This is also equivalent to define a stochastic discount
factor M; ;41 (as in Gourieroux and Monfort (2006)) from which investors value financial

payoffs. The stochastic discount factor M, ;. satisfies the following conditions:
E[M,,,H | I] = exp (—"f,t+1) and E [Mt,H—l exp (riv1) | ] = 1. (3.55)

where rg, refers to the risk-free rate from date ¢ to date ¢ + 1, known at date ¢ since
the final payoff of a safe security is known in advance.

The conditions (3.55) are the familiar Euler conditions for the safe and the risky se-
curities. Recent asset pricing general equilibrium models decompose log returns into
exogenous consumption growth with specified dynamics and an endogenous part that
depends on the price-consumption ratio solved through Euler conditions (See as exam-
ples Bansal and Yaron (2004) and Tauchen (2005)). They follow the economic definition

of returns as the ratio of future payoffs to current price. In the alternative approach used
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in this chapter, we follow the statistical definition of log returns as a sum of endoge-
nous expected returns which depend on a variable like & (see also Duan, Ritchken and
Sun (2005)) and exogenous return innovation with specified dynamics. Solving for &
through the conditions (3.55) necessitates the knowledge of the exact form of the pricing
kernel or equivalently of the change of measure.

From the affinity of our SVS models we conjecture that the stochastic discount factor

has the form:

M; ;11 =exp (g, + Kryp1 + 7rT0',2+]) =exp (g, + Krep + zk‘{n,-ofm) . (3.56)
-

This form of the change of measure is different from that considered in previous stud-
ies in option pricing. Heston and Nandi (2000) and Christoffersen, Heston and Jacobs
(2006) conjecture that the change of measure is log-linear in returns only. Including
latent variables governing the return dynamics as we do in this chapter is more famil-
iar with the context of general equilibrium models. For example, in a affine general
equilibrium model with stochastic volatility as in Bansal and Yaron (2004) and Tauchen
(2005), the change of measure of a representative investor with recursive preferences of
Epstein and Zin (1989), depend log-linearly on both the return on aggregate wealth and
the volatility of aggregate consumption.

From conditions (3.55) one has that:

a=-A(1+x,7)—B(1+x,7x) o? (3.57)
rrie =[A(1+x,m) —A(x,m)] + [B(1 + x,m) — B(x, )] ' o2 (3.58)

While the pricing kernel is completely determined in many asset pricing models
with endogenous risk-free rate and equity premium, particularly in equilibrium models
cited in this chapter, an alternative literature considers that the risk-free rate is constant
(Heston and Nandi (2000) and Christoffersen, Heston and Jacobs (2006)), then transmits

the indeterminacy to the change of measure through ¢;. If the risk-free rate is constant
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and equal to ry in our models, then the endogenous risk premium is given by:

o —rp=(B+1) p+alf(x,m)—a(f(1+x,7)) (3.59)

where
B=b(f(x,m)—b(f(1+x,7)). (3.60)

Equation (3.59) gives the risk-premium as function of agent preferences characterized by
the parameters K and 7. As shown in appendix V, in a general equilibrium model with
the recursive utility of Epstein and Zin (1989) and unitary elasticity of intertemporal
substitution, the parameter x is the opposite of the risk aversion parameter while the
parameter 7 is a function of the risk-aversion and the subjective discount factor.

The joint dynamics of returns and latent variables under the risk-neutral distribution

is characterized by the following cumulant generating function:
* o * T .2 * * T 2
i (x,y) =InE [eXp (xrt+1+y G,+1) IIz} =A"(x,y)+ B (x,y) 0

where E* [ | I,] denotes the expectation associated with the density M, ;1.1 exp (rf,+1)

and
A" (x,y) =A(x+K,y+7) —A(K,7) and B* (x,y) = B(x+ K,v+7) — B(x, ).
Let y;'[_; (x) denotes the conditional log-moment generating function of aggregate

h
returns Y, r;4;. One has
i=1

h
E° [exp (2) | 1,} = exp (W7 (0) = exp (A7 () +B; (k) 6?)

i=1

where the sequence of functions A} (x; /) and B; (x; h) satisfy the following recursion:

Al (x;h) = A (x;h—1)+A" (x,B; (x;h— 1)) and B} (x;h) = B* (x, B} (x;h — 1)),
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with A% (x;1) = A* (x,0) and B} (x;1) = B* (x,0).

3.6 Unconditional Moments and GMM Estimation of Semi-Affine Latent Vari-
able Models.

In this section we show a simple procedure to compute analytically unconditional
moments of observable in a semi-affine multifactor latent variable model. We further
confront these analytical moments to their sample counterparts in a single step optimal
GMM estimation. The estimation of latent variable models and in particular of discrete
time stochastic volatility models like (3.6) and (3.7) have become a challenging issue in
financial econometrics literature. From an econometric viewpoint a practical drawback
of stochastic volatility models is the intractability of the likelihood function. Because
volatility is an unobserved component and the model is non-gaussian, the likelihood
function is only available in the form of a multiple integral. Also, in the case of the
univariate lognormal stochastic autoregressive volatility model, Quasi Maximum Like-
lihood (QML) and Method of Moments estimators are not very reliable (see Jacquier,
Polson, and Rossi, 1994; Andersen and Sgrensen, 1996). Exact likelihood-oriented
methods require simulations and are thus computer intensive (see Danielsson, 1994;
Jacquier, Polson, and Rossi, 1994).

In the case of semi-affine models whose the cumulant-generating function takes the
form (3.1), Bates (2006) provides an algorithm to perform the estimation via Approxi-
mated Maximum Likelihood (AML). In this chapter we show that in such models, rele-
vant unconditional moments of observable (here the returns) can be derived analytically.
Examples of such moments are mean, variance, skewness, kurtosis and autocorrelations
of squared returns. This allows for a GMM-based estimation of the vector of parameters
6 that is more easier to perform as it is done very quickly and is not computationally
intensive. Moreover, the existence of closed-form formulas helps analyzing the impact
of several model parameters on critical return moments (for example, skewness, kurtosis
and autocorrelation of squared returns). This also enhances our understanding of mecha-

nisms behind analytical results and of the limits of validity of methods based on approx-
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imations. We present the model estimation in the more general setting of semi-affine
multifactor latent variable model of returns presented in Section 3.2.1. It is worthwhile

to notice that the procedure can be extended to a setting where r,; is a vector.

3.6.1 Analytical Expressions of Unconditional Moments

Given the joint cumulant-generating function (3.1), the conditional moment-generating

function of the vector of latent variables /, is given by:

E[exp (yhe1) | = exp (41 0) + B () 1) (3.61)

where A; (y) =A(0,y) and B, (y) = B(0,y). The unconditional moment-generating func-

tion of the latent vector is then given by:

E [exp (yTl,+])] —E [E, [exp (yTl,+1)]] —E [exp (A, )+ By (y)Tl,)] . (3.62)

from which we deduce that the cumulant-generating function ¥; (y) = InE [exp (y" ;)]

satisfies:

Yi(y) =A1)+¥ (B (). (3.63)

This function can be found analytically as for affine (jump-)diffusion processes as in
Jiang and knight (2002). Since the unconditional cumulant generating function can be
expressed as an infinite polynomial whose coefficients are unconditional cumulants, we
notice that it is sufficient in a discrete time setting to find the derivatives of ‘¥, (y) at
y =0, and this can be done through equation (3.63), since B; (0) = 0.

Similarly, the conditional moment-generating function of observable returns r, given

the joint cumulant-generating function (3.1) can be written:
T
E; [exp (xr;41)] =exp (A, (x) 4+ B, (x) l,) (3.64)

where A, (x) =A (x,0) and B, (x) = B(x,0). The unconditional moment-generating func-
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tion of observable returns is then given by:

Elexp(xri41)] = E [E, [exp (xriz1)]] = E [exp (A, (x) +B, (x)Tl,)] . (3.65)

from which we deduce that the cumulant-generating function ‘¥, (x) = InE [exp (xr;)]

satisfies:
¥, (x) = A, (x) + ¥, (B, (v)). (3.66)
Proposition 3.6.1. The n-th unconditional cumulant of the observable returns r; is the

number K, (n) given by:

MY, A "
(1) = 5 (O = 5 O+ G (RB W) (3.67)

As we mentioned earlier, cross-moments of returns can also be computed analytically

. T .
and this can be performed through cross-cumulants of couples (r,+1,r,+ 1+ j) ,Jj > 0.
The unconditional moment-generating function of such couples is easily obtained in

case of affine models (See Darolles et al. 2006). One has:

E [exp (xrip1 +2rq14j) ]| =E [exp (A,,j (2)+A (x,B(z)) + B (x,B: (z))Tl,)] .

(3.68)

The functions A, ; and B;,; satisfy the forward recursions:
Arj(2) =Arj—1(2) +A; (Brj-1(2)) (3.69)
B.;(z) =B, (B,j-1(2)), (3.70)

with the initial conditions A, (z) = A,(z) and B (z) = B,(2). It comes from the equa-

tion (3.68) that the unconditional cumulant-generating function

¥, j(x,z) =InE [exp (xrt +Zrt+j)]



191
is given by:
¥ (x,2) =Arj(2) +A(x,Br (2)) + ¥/ (B (x,Br, (2))) - (3.71)

Proposition 3.6.2. Given n > 0 and m > O, the unconditional cross-cumulant of order

(n,m) of the observable returns r, is the number x; j (n,m) given by:

an—}-m\Pr .
Kr,j (n,m) = axn—aZ";] (0,0)
an—}-m an—}-m
= Srom (A (x,B:; () oo + g (¥ (B(x,B:;(2)))) oro
(3.72)

Note that one should have x;;(n,0) = K;,; (0,n) = k- (n) for any j > 0 because of
the stationarity of the return process. Since B, (0) = 0, the formulas (3.67) and (3.72)
show that cumulants of the latent vector /, are essential to compute cumulants and cross-
cumulants of returns. As pointed out earlier, these derivatives of the function ¥, (y)
at y = 0 can be solved analytically through equation (3.63), since B; (0) = 0. Let the
operator % defines the Jacobian matrix of a real matrix function of a matrix of real

variables, as defined in Magnus and Neudecker (1988) (Ch. 9, Sec. 4, Page 173).

Proposition 3.6.3. The n-th unconditional cumulant of the latent vector I, is the K1 x k

matrix K (n) given by:
K (n) = 9™, (0), 3.73)
where 2™V, (0) is found through the equation
P%,(0) = 941 (0) + 9" (%1 (B )], o, (3.74)

and depends on 2%, (0), 2°¥,(0),.., 2" ¥, (0), 2B, (0), 2B, (0),...,2"B, (0).

Note that while the matrix x; (n) of all cumulants of order n has k" elements, only

(n +Z_1) of these elements are distinct due to the equality of some partial derivatives of
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the function W, (v). The higher order derivatives of composite functions in (3.67), (3.72)
and (3.74) are evaluated through the chain rule given by the Faa di Bruno’s formula
which the multivariate version is detailed in Constantine and Savits (1996). In the case
of a univariate latent variable (k = 1), it is very easy to find higher order cumulants of
the latent variable. This task is more cumbersome and tedious for k > 1. In this latter

case, when n = 1, the solution to the equation (3.74) is given by:
DY, (0) = DA, (0) [Idy — 2B, (0)] " (3.75)

Note that 2B, (0) represents the persistence matrix of the latent vector /,. However when

n > 1, it can be shown that the matrix 2"V, (0) satisfies: -
T
7"%,(0) - ((2B,(0)°"™) 2"¥,(0) 2B1(0) = 2"A,(0)+C,  (376)

where the matrix C, depends on the matrices { 2/B; (0) }, <jeney a0 {27¥(0)}, o,
through the multivariate Faa di Bruno’s formula. As example, the second unconditional

cumulant of the latent vector is given by:

2*¥,(0) ~ 9B, (0" 2*¥,(0) 2B, (0) = 2%A, (0) + (Idy © 2V, (0)) 2°B, (0).
3.77)

It turns out from (3.76) that 2™¥, (0) is solution to a matrix equation that can be
written X — AXT = A. Jameson (1968) and Jiang and Wei (2005) study this matrix
equation in the general case and derive the explicit solution by means of characteristic
polynomials. Using the vec operator, the solution to the matrix equation X — AXT = A
is given by:

vee (X) = [1d— (I @A)]_' vec (A).

In the particular case where the matrices A and I are diagonal, solving this equation is
more easier and elements of the solution matrix X = [x,- j] are given by x;; = A4;;/(1 —
8i7;), where A = Diag (8,,8,...), T = Diag (11, %2,...) and A = [A;;]. This is the case in

our general multivariate latent variable model when the components of the multivariate
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function B; (y) = (By1 (¥),..,Bik (y))T satisfy By j (y1,-.,y¢) = By (v;). In this case,
the persistence matrix 2B, (0) is diagonal and its diagonal elements represent individual
persistence of latent factors ;. It is sufficient to have B; (x,y1,..,yx) = Bi(x,y;) in (3.1)
and (3.21).

We have just provided analytical formulas for computing return cumulants and cross-
cumulants ;. ; (n,m), j >0, n>0, m > 0. This also allows us to compute analytically
the corresponding return moments and cross-moments [, (n,m) = E [r,”rt'"+ j] through
the relationship between multivariate moments and cumulants, derived and proved in
Constantine and Savits (1996), as an application of the multivariate Faa di Bruno’s for-

mula. For example:

Hio = Kio

Hao = Klzo + K20

H11 = K10Ko1 + K7

130 = Kip + 3K10%20 + K30

L21 = KigKoi +2K10K11 + Ko1 K20 + K2

a0 = Kio + 6KToKa0 + 4K10K30 + 3K30 + Kag

131 = Ko Ko1 + 3K50 K11 + 3Ki0Ko1 K20 + 3K10K21 + Kot K30 + 3K K11 + K31

Uz = K120"'31 + K1201‘€02 +4K10Kp1 K11 + rq%] K20 + 2K10K12 + 2Ko1 K21 + K20 K2 + 21(121 + K27
where Ui, and K, respectively denote i, j (n,m) and x;, ; (n,m) for simplification.

3.6.2 GMM Procedure

Notice that all these moments are functions of the parameter vector 6 that governs
both the dynamics of returns and that of the latent factors. We can then choose N per-
tinent moments to perform the GMM estimation of the return model. In this chapter,
we choose N pertinent ones among all the moments p, ; (n,m) = E [r,”r;"+ j] such that
1<j<J,0<n<Q and 0 <m < Q—n, meaning N among @ +JQ(Q —1)/2 mo-

ments of order less than or equal to ¢J. Since the moments of observed returns implied by
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a given model can directly be compared to their sample equivalent, our estimation setup
is more likely to evaluate the performance of a given model in replicating well-known
stylized facts like autocorrelation of squared returns, absence of autocorrelation of re-
turns, leverage effect which can be captured via coskewness, unconditional fat-taildness
and asymmetry of returns. All these well-known empirical facts can be considered as
relevant part of our moment conditions by choosing corresponding moments.

Letg (0) = [rf" T M (ni,mi)] Lcien denotes the N x 1 vector from the retained
moments. We have E [g; (8)] = 0 and we define the sample counterpart of this moment

condition as follows:
E [r;”rﬂjl} — Uy j, (ny,my)
£(9) = ' : (3.78)
E [r?’”ri"fm} — Hrjy (nn,my)

Given the N x N matrix W used to weight the moments, the GMM estimator 6 of the

parameter vector is given by:
6 = argngng(e)TWg(e). (3.79)

Interestingly, the variance-covariance matrix of g, (8) does not depend on the vector of
parameter 8. This is a huge advantage since with a nonparametric empirical variance-
covariance matrix of moment conditions, the optimal GMM procedure can be imple-
mented in one step. Also and most importantly, two different models can be estimated
via same moment conditions and weighting matrix. In this case, the minimum value of
the GMM objective function itself is a criterion for comparison of alternative models.
In some cases, this GMM procedure also has a huge numerical advantage compared
to the maximum likelihood estimation even when the likelihood function can be de-
rived. Maximum likelihood estimation becomes difficult to perform numerically espe-
cially when the support of the likelihood function is parameter-dependent. This is the

case in the IG-GARCH model of Christoffersen, Heston and Jacobs (2006) that can also
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be estimated through this GMM method.

On the other hand, the maximum likelihood estimation of semi-affine latent vari-
able models of Bates (2006) and the quasi-maximum likelihood estimation based on the
Kalman recursion have the downside that critical unconditional higher moments (skew-
ness and kurtosis) of returns can be poorly estimated due to the second order approxima-
tion of the distribution of the latent variable conditional on observable returns. Moreover,
in single-stage estimation and filtering methods like the Unscented Kalman Filter and the
Bates (2006)’s algortihm, one can argue that approximations affect both parameter and
state estimations.

Instead, our GMM procedure matches critical higher moments exactly and requires
no approximation for parameter estimation. Provided with the GMM estimates of model
parameters, Bates (2006)’s procedure or any other filtering procedure like the Unscented
Kalman Filter can be followed for the state estimation. In this sense, approximations re-
quired by these techniques will only affect state estimation. In future research following
this chapter, Monte Carlo experiments are performed to assess this two-stage estimation

and filtering.

3.7 Estimation of SVS Models Using Daily Equity Returns.

3.7.1 Parameter Estimation

We estimate the SVS models using daily returns on S&P500 and CRSP indexes as
well as daily returns on six Fama and French portfolios. As explained in Fama and
French (1993), the six portfolios are the outcome of the intersection of two independent
sorts. Stocks are sorted into two size groups— S (small; that is, market capitalization
below the NYSE median) and B (big; that is, market capitalization above the NYSE
median)—and into three book-to-market groups—G (growth; that is, in the bottom 30
percent of the NYSE book-to-market), N (neutral; that is, in the middle 40 percent of
the NYSE book-to-market) and V (value; that is, in the top 30 percent of the NYSE
book-to-market). The six portfolios are commonly labelled SG, SN, SV, BG, BN and
BV.
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Table 3.1 summarizes basic descriptive statistics of these returns. It shows the well-
documented facts that asset returns are negatively skewed and fat-tailed. Small stocks
are generally more negatively skewed than big stocks and a growth portfolio has lower
average returns and higher negative skewness compared to a value portfolio of the same

size.

Table 3.1: Summary Statistics of Stocks Returns for the Period 1990-2005.
r; x100 Mean Median  Std. Skew. Kurt. Max. Min.

SG 0.024 0.110 1.205 -0.463 6.613 7.102 -8.992
SN 0.055 0.110 0.847 -0.462 6.363 4.555 -5.668
Sv 0.061 0.120 0.788 -0.608 6.993 3.990 -5.869
BG 0.040 0.060 1.086 -0.059 6.783 6.269 -8.034
BN 0.045 0.060 0.904 -0.191 7.043 5.647 -6.699
BV 0.043 0.070 0.888 -0.300 6.882 5.136 -6.486

CRSP 0.040 0.071 0979 -0.208 7.211 5.180 -6.856
S&P500 0.036 0.041 1.013 -0.015 6.694 5.731 -6.867

To perform the GMM procedure for each series, we need to decide which moments

to choose. To achieve this task, we refer to the relative importance of return moments.

e[},

in order to match the critical first moments of asset returns. Figure 3.2 displays auto-

We consider the moments

correlations of square returns which as shown are significant up to the twentieth lag.

As the positive and significant autocorrelation of square returns appears to be a critical

empirical fact, we consider the moments
{E[RR]Y,

i} j=1

in order to match these autocorrelations. The negative and significant cross-correlation

between returns and square returns for various leads as shown in Panel A of Figure 3.3

is an empirical fact characterizing the well-known leverage effect. Panel B of Figure 3.3

shows similar cross-correlations for various lags. The cross-correlation between returns

and cube returns is also shown to be positive and significant at least for the first three
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Figure 3.1: Return Series.
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Figure 3.2: Autocorrelation of Squared Returns.
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Figure 3.3: Cross-Correlations Between Returns and Squared Returns.

Panel A: Corr (r,, r,2+j)
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Figure 3.4: Cross-Correlations Between Returns and Cubed Returns.

Panel A: Corr (13, )
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leads as shown in Panel A of Figure 3.4, especially for small stocks. Panel B of Figure
3.4 shows similar cross-correlations for various lags. To assess the ability of our SVS

models to match these important features of return data we add the set of moments

{E [r,r,2+j] E [r,r,3+j] }jzl'

We weight the 15 moments with the diagonal of the inverse of the covariance matrix

W = Diag { (Va\r [g,])_] } .

This matrix is nonparametric and puts more weight on moments with low magnitude.

of moments:

~

Estimation results for one-factor SVS models are shown in Table 3.2. Indeed, we use
14 moment conditions in our GMM procedure since we don’t estimate the unconditional
mean of returns L, set to its sample counterpart. Also, the parameter f3; is not esti-
mated. The reason is that, due to the high persistence of the factor, it becomes difficult
in the return equation (3.18) to identify B; and A, separately. To avoid this identification
problem, we set 3; = 0.

Panel A of Table 3.2 shows the estimation results in the case of the contemporaneous
conditional asymmetry of returns, that is, when 1; # 0 is estimated. Starting with the
measure equation (3.18), estimation output confirm that projecting returns onto the latent
factor results in a significant negative coefficient A; and corroborates the story that an
increase in contemporaneous volatility lowers asset payoffs. Most importantly is the
significance and the positivity of the coefficient 1; in the return equation. This is a new
evidence in asset return dynamics which says that the distribution of the daily returns
conditional upon their contemporaneous volatilities is asymmetric. This result differs
from thé findings of Forsberg and Bollerslev (2002) that the distribution of daily returns
conditional upon their realized volatilities is normal.

Coming to the state dynamics, estimation results show that the latent variable gov-
erning the daily return dynamics is highly persistent, with significant estimates of the
coefficient of persistence of 0.967 and 0.956 for the S&P500 and the CRSP indexes re-

spectively. This also means that daily return volatility as perceived by agents is highly



Table 3.2: One-Factor SVS: GMM Estimation Results.

Param. S&P500 SG SN A% BG BN BV  CRSP
Panel A: Contemporaneous Conditional Asymmetry: 1, # 0

AL -22.39 2637  -42.68  -55.52 2287 -2495 -21.23 -27.50

4.01 3.96 7.12 8.57 3.39 5.26 6.17 4.60

m 744E-3 5.74E-3 4.06E-3 4.11E-3 847E-3 5.31E-3 3.21E-3 7.44E-3

1.37E-3 1.17E-3 1.12E-3 1.03E-3 1.49E-3 1.26E-3 1.29E-3 1.50E-3

H 9.67E-5 1.33E-4 6.55E-5 5.49E-5 1.10E4 7.77E-5 7.59E-5 8.80E-5

9.62E-6 1.42E-5 6.68E-6 5.08E-6 1.04E-5 8.23E-6 8.16E-6 9.06E-6

0] 0.967 0.996 1.008 0.968 0.954 0.970 1.007 0.956

0.037 0.028 0.020 0.025  0.032 0.043 0.028 0.039

Vo 1.02E-4 1.37E-4 636E-5 S538E-5 1.17E-4 850E-5 8.38E-5 9.66E-5

1.43E-5 1.81E-5 7.16E-6 5.38E-6 1.58E-5 1.37E-5 1.60E-5 1.24E-5

J-Stat 9.36 11.52 12.19 20.12 11.54 7.47 5.14 8.92

p-value 0.40 0.24 0.20 0.02 0.24 0.59 0.82 0.44

Panel B: Contemporaneous Conditional Normality: n1; =0

Al -12.01  -22.41 -37.03 -50.62 -13.14 -1630 -16.10 -19.13

2.95 3.55 6.61 8.02 2.61 4.60 5.72 3.63

H 1.01E-4 1.37E-4 6.93E-5 5.85E-5 1.15E-4 8.02E-5 7.74E-5 9.23E-5

1.01E-5 1.49E-5 7.36E-6 5.50E-6 1.13E-5 8.57E-6 8.55E-6 9.73E-6

o] 0.974 1.034 1.048 1.016 0.971 1.000 1.024 1.001

0.035 0.028 0.023 0.028 0.031 0.042 0.027 0.040

VO 1.09E-4 1.37E-4 6.25E-5 5.22E-5 1.25E-4 8.66E-5 8.42E-5 997E-5

1.56E-5 1.87E-5 7.29E-6 5.62E-6 1.72E-5 145E-5 1.65E-5 1.35E-5

J-Stat 18.66 18.85 16.30 23.80 20.06 13.65 7.56 15.65

p-value 0.03 0.03 0.06 0.00 0.02 0.14 0.58 0.07

10T
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persistent as well, since it is a linear function of the latent factor. All the estimates of
Panel A are significant and overall, the J-test of over-identifying restrictions does not
reject the models, with a minimum p-value of 0.20 except for the small value portfolio
rejected with a p-value of 0.02.

We now assess how important is the contemporaneous conditional non-normality in
asset return modeling. Panel B of Table 3.2 shows the estimation results in the case of the
contemporaneous conditional normality of returns, that is, with the constraint n; = 0. As
in the first panel, all the parameters are significantly estimated. Compared to results of
Panel A however, there is a decrease in the magnitude of the leverage parameter and an
increase in the persistence of the factors— estimates of the persistence become greater
or equal to 1 for four of the six assets. Moreover, and most importantly, models are or
tend to be rejected in the data. There is a sharp decrease in the p-values compared to
Panel A. For the S&P500 and the CRSP indexes, the p-values decrease from 0.40 and
0.44 t0 0.03 and 0.06 respectively.

Figure 3.5: One Factor SVS: Equity Risk Premium.
n,=*0 n,=0

Ho%
o — N w & w o ~

Ho™
o - N w -y W [+ ~
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Most importantly, the contemporaneous conditional asymmetry is important in de-
termining the equity premium. Using the GMM estimates for the S&P500, we evaluate

the formula (3.59) for a range of preference parameters both when 77, # 0 and when



Table 3.3: One-Factor SVS: ¢’s Coefficients.

Coeff.  S&P500 SG SN SV BG BN BV CRSP
Contemporaneous Conditional Asymmetry: 17; # 0
Cou 2.46E-3 3.72E-3 3.37E-3 3.56E-3 2.79E-3 2.33E-3 2.05E-3 2.72E-3
Clu -21.659 -26.261 -43.026 -53.736 -21.822 -24.196 -21.372 -26.299
COh 3.15E-6 5.23E-7  -5.25E-7 1.77E-6 5.03E-6 235E-6  -5.14E-7 3.85E-6
Clh 0.97081 0.99683 1.0062  0.97798 0.95987 0.97321 1.0062  0.96316
Cos 2.27E-8 298E-9 -2.17E-9 6.75E-9 4.05E-8 1.20E-8  -1.67E-9 2.70E-8
Cls 6.75E-3 5.63E-3 4.22E-3 3.43E-3 7.34E-3 4.74E-3 3.31E-3 6.38E-3
Ccor -2.45E-10 -7.69E-12 -1.11E-11 -1.66E-10 -6.53E-10 -1.64E-10 -6.83E-12 -4.86E-10
Clr -1.51E-4  -2.93E-5 426E-5 -1.82E-4 -2.48E-4 -1.36E-4 2.67E-5 -243E-+4
Contemporaneous Conditional Normality: n; =0
Coy 1.54E-3 3.43E-3 3.24E-3 3.62E-3 1.86E-3 1.76E-3 1.71E-3 2.17E-3
Clu -11.691 -23.169 -38.812 -51.4 -12.751 -16.304 -16.485 -19.142
Con 2.65E-6  -4.68E-6 -3.33E-6 -9.05E-7 337E-6 -7.61E-9 -1.86E-6 -6.45E-8
Clh 0.975 1.029 1.040 1.012 0.972 1.000 1.023 1.001
Cos -298E-10  -1.46E-9 -1.01E-9 -990E-11 -529E-10 -3.31E-15 -1.97E-10 -2.79E-13
Cls -2.19E-4 6.42E-4 6.31E-4 222E-4  -3.05E-4 8.70E-7 2.17E-4 8.65E-6
cor -9.94E-11 -4.86E-10 -3.36E-10 -3.31E-11 -1.76E-10 -1.10E-15 -6.57E-11 -9.30E-14
Cir -1.30E-5 2.14E-4 2.11E-4 7.40E-5 -1.02E-4 2.90E-7 7.25E-5 2.88E-6

£0¢C



Table 3.4: One-Factor SVS: Moment Matching for the S&P500 Index and Small Portfolios.

S&P500 ‘ SG SN SV

Sample m#£0 m=0 Sample m#0 n =0 Sample m#0 m=0 Sample m#0 m=0
E|n] 0 3.68E-4 3.64E-4 3.64E-4 247E-4 243E-4 243E-+4 553E-4 5.49E-4 S549E-4 6.16E-4 6.13E-4 6.13E4
E »r,2 1 1.03E-4 1.02E-4 1.03E-4 145E-4 1.46E-4 147E-4 7.21E-5 7.32E-5 7.50E-5 6.24E-5 6.42E-5 6.59E-5
E[r 1 9.72E-8 1.13E-7 -3.22E-7 -7.03E-7 -7.16E-7 -1.20E-6 -1.62E-7 -1.71E-7 -3.33E-7 -1.83E-7 -191E-7 -3.25E-7
E[rt 1 7.07E-8 7.11E-8 6.91E-8 1.39E-7 1.38E-7 1.35E-7 3.23E-8 3.23E-8 3.13E-8 2.63E-8 253E-8 2.42E-8
E :r, ’r2+s 0 -1.11E-7 -1.77E-7 -9.11E-8 -3.69E-7 -540E-7 -5.20E-7 -7.03E-8 -1.72E-7 -1.63E-7 -6.36E-8 -1.32E-7 -1.34E-7
Elriris| 0 -737E-9 265E-9 1.29E-9 -627E-9 142E-8 138E-8 -251E9 367E9 347E-9 -256E-9 3.23E-9 3.30E-9
E 'r,2r2Jr5 1 227E-8 2.09E-8 2.15E-8 4.70E-8 4.77E-8  5.00E-8 1.10E-8 1.14E-8 1.19E-8 8.10E-9 8.22E-9 8.61E9
E :r,r;,’+5 0 -6.07E-9 265E-9 1.29E-9 -854E-9 142E-8 1.38E-8 -6.42E-10 3.67E-9 347E-9 -1.01E-10 3.23E9 330E-9
E _r,r,zJr4 0 242E-8 -1.84E-7 -946E-8 -391E-7 -542E-7 -5.02E-7 -797E-8 -1.70E-7 -1.53E-7 -5.58E-8 -1.38E-7 -1.32E-7
E\rirn] O 3.09E-9 2.74E-9 1.33E9 843E9 1.42E-8 133E-8 -9.24E-10 3.64E-9 3.30E-9 5.12E-10 3.34E-9 3.24E-9
E|r Seal 1 1.95E-8 2.13E-8 2.18E-8 5.13E-8 4.78E-8  4.90E-8 1.22E-8 1.14E-8  1.16E-8 8.66E-9 837E-9 8.54E-9
E :r,rf+4 0 -135E9 274E-9 1.33E-9 1.13E-8 142E-8 1.33E-8 5.93E-10 3.64E-9 3.30E-9 1.04E-9 334E-9 3.24E-9
E|rfrns| O 9.35E-8 -1.91E-7 -9.81E-8 6.22E-8 -5.44E-7 -4.84E-7 5.57E-8 -1.68E-7 -1.44E-7 2.61E-8 -144E-7 -1.29E-7
E 'r,r,zJr3 1 -987E-8 -191E-7 -9.81E-8 -3.58E-7 -5.44E-7 -4.84E-7 -7.75E-8 -1.68E-7 -1.44E-7 -7.83E-8 -1.44E-7 -1.29E-7
E[Pris] 0 428E-9 283E-9 137E-9 5.53E-9 143E-8 1.29E-8 241E-9 3.61E-9 3.14E-9 3.03E-9 346E-9 3.19E-9
E 'r,zr,zJr3 1 2.24E-8 2.16E-8 2.21E-8 4.66E-8 4.79E-8 4.81E-8 1.12E-8  1.13E-8  1.13E-8 8.85E-9 852E-9 847E-9
E :r,r?+3 1 -4.84E-10 2.83E9 1.37E-9 1.67E-8  143E-8 1.29E-8 480E-9 3.61E-9 3.14E-9 4.55E-9 3.46E-9 3.19E-9
Elrfr2] 0 6.64E-8 -1.99E-7 -1.02E-7 1.72E-7 -547E-7 -4.67E-7 7.26E-8 -1.67E-7 -1.36E-7 6.91E-8 -1.50E-7 -1.27E-7
E :r, ity 1 -3.28E-7 -1.99E-7 -1.02E-7 -7.56E-7 -547E-7 -4.67E-7 -2.08E-7 -167E-7 -136E-7 -1.82E-7 -1.50E-7 -1.27E-7
E|rFfrs| O -886E-10 292E9 141E9 -1.79E-8 1.43E-8 1.25E-8 -1.66E-9 3.58E-9 298E-9 -446E-10 3.57E-9 3.14E-9
E 'r,2r,2Jr2 1 223E-8 2.20E-8 2.24E-8 6.46E-8 4.81E-8 4.72E-8 1.43E-8 1.13E-8 1.11E-8 1.09E-8 8.67E-9  8.40E-9
E -r,r?+2 1  9.50E-10 2.92E-9 141E-9 6.01E-9 1.43E-8 1.25E-8 4.18E-9 3.58E-9 2.98E-9 427E-9 3.57E9 3.14E-9
Elrtr] 0 1.94E-7 -2.07E-7 -1.06E-7 -5.28E-10 -5.49E-7 -4.51E-7 3.09E-8 -1.65E-7 -1.28E-7 7.71E-9 -1.56E-7 -1.24E-7
E :r,r,2+, 1 -2.30E-7 -2.07E-7 -1.06E-7 -555E-7 -5.49E-7 -451E-7 -1.44E-7 -1.65E-7 -1.28E-7 -1.32E-7 -1.56E-7 -1.24E-7
E[r’rng] O -1.00E-8 3.02E-9 145E9 537E-9 144E-8 1.20E-8 -6.90E-10 3.55E-9 2.84E9 1.04E-9 3.70E-9 3.09E-9
E 'r,zr,ZJrl 1 2.26E-8 224E-8 2.27E-8 4.36E-8 4.82E-8 4.64E-8 1.0SE-8  1.12E-8  1.08E-8 7.94E-9 8.83E-9 8.34E-9
E 'r,rfﬂ 1 532E-10 3.02E-9 1.45E-9 1.65E-8 1.44E-8 1.20E-8 294E-9 3.55E-9 2.84E-9 4.04E-9 3.70E-9 3.09E-9

)



Table 3.5: One-Factor SVS: Moment Matching for Large Portfolios and the CRSP Index.

BG BN BV CRSP

Sample m#£0 m =0  Sample m#0 m=0 Sample m#0 m =0  Sample m#0 n =0
E|n] 0 4.03E4 399E-4 399E-4 4.52E-4 448E-4 4.48E-4 4.34E-4 432E-4 4.32E4 4.05E-4 401E4 4.01E-4
E|[r? 1 1.18E-4 1.17E-4 1.18E-4 8.19E-5 8.24E-5 8.24E-5 791E-5 793E-5 795E5 9.60E-5 9.53E-5 9.61E-5
E(r 1 658E-8 9.33E-8 -484E-7 -3.08E-8 -3.82E-8 -2.63E-7 -1.08E-7 -1.13E-7 -245E-7 -792E-8 -424E-8 -4.70E-7
E[r? 1 9.43E-8 9.52E-8 9.17E-8 4.68E-8 4.67E-8 4.45E-8 425E-8 4.25E-8 4.17E-8  6.60E-8 6.48E-8 6.14E-8
E :r,r,2+5] 0 -135E-7 -227E-7 -136E-7 -1.25E-7 -1.32E-7 -898E-8 -1.00E-7 -1.30E-7 -9.86E-8 -1.27E-7 -1.96E-7 -1.64E-7
E[r’ris] 0 -9.89E-9 4.06E-9 234E-9 -540E-9 2.16E-9 135E-9 -328E9 191E-9 138E9 -686E-9 3.67E-9 3.07E-9
E -r,2r2Jr5 1 295E-8 271E-8 2.83E-8 1.50E-8 1.43E-8 149E-8 1.37E-8 146E-8 1.49E-8 2.07E-8 1.89E-8 2.06E-8
E 'r,ré+5 0 -897E-9 4.06E-9 234E-9 -387E-9 2.16E-9 135E9 -1.24E9 191E-9 1.38E9 -659E9 3.67E-9 3.07E-9
E :r,r,2+4 0 1.94E-8 -2.40E-7 -1.42E-7 -1.61E-8 -1.37E-7 -8.98E-8 -1.96E-8 -129E-7 -9.55E-8 -1.64E-8 -2.06E-7 -1.64E-7
Elrirnsal 0 529E-9 426E9 242E-9 -141E-9 223E-9 135E-9 -5.10E-10 1.89E-9 1.34E9 227E-9 3.84E-9 3.06E-9
E _r,2r,2+4 1 2.47E-8 2.77E-8 287E-8 143E-8 145E-8 148E-8 148E-8 1.45E-8 1.47E-8 1.85E-8 1.94E-8  2.06E-8
E Lo 0 1.15E-10 426E-9 242E9 -3.00E-9 223E-9 1.35E9 -296E-9 1.89E-9 1.34E-9 9.84E-11 3.84E-9 3.06E-9
E|\rfris 0 1.18E-7 -2.54E-7 -147E-7 6.08E-8 -1.43E-7 -8.98E-8 5.15E-8 -1.28E-7 -9.25E-8 8.61E-8 -2.18E-7 -1.64E-7
E :r,r,2+3 1 -1.32E-7 -254E-7 -147E-7 -536E-8 -143E-7 -898E-8 -8.85E-8 -128E-7 -9.25E-8 -1.07E-7 -2.18E-7 -1.64E-7
Eirinsal 0 4.83E9 446E-9 250E9 3.78E9 2.29E-9 1.35E9 3.26E-9 1.88E-9 1.3I1E-9 4.13E-9 40IE-9 3.06E-9
E .r,2r,2+3 1 2.74E-8 2.84E-8 292E-8 1.57E-8 147E-8 148E-8 1.52E-8 1.45E-8 1.45E-8 2.01E-8 198E-8 2.05E-8
E :r, 3 1 -2.04E-9 446E9 250E-9 345E-9 229E-9 135E9 1.61E-9 1.88E-9 131E-9 1.65E-9 4.0I1E9 3.06E-9
Elrfri;2) 0  5.17E-8 -2.69E-7 -1.53E-7 8.04E-8 -148E-7 -8.98E-8 5.10E-8 -1.27E-7 -895E-8 5.92E-8 -2.29E-7 -1.64E-7
E :r,r,2+2 1 -461E-7 -2.69E-7 -1.53E-7 -193E-7 -148E-7 -8.98E-8 -1.59E-7 -1.27E-7 -895E-8 -3.57E-7 -2.29E-7 -1.64E-7
Eirirnia| 0 -443E9 4.67E-9 258E-9 1.09E-9 2.37E-9 1.35E9 2.16E-9 1.87E-9 1.28E9 -2.88E-9 4.20E-9 3.06E-9
E 'r,2r,2+2 1 3.02E-8 291E-8 296E-8 148E-8 1.50E-8 1.48E-8 1.40E-8 1.44E-8 1.43E-8 2.28E-8 2.03E-8 2.05E-8
E :r,r,3Jr2 1 5.01E-11 4.67E9 258E-9 3.13E9 237E9 1.35E9 3.65E-9 1.87E9 1.28E-9 2.65E-9 4.20E-9 3.06E-9
Elrfrna 0 2.44E-7 -2.84E-7 -1.59E-7 1.35E-7 -1.54E-7 -8.98E-8 1.37E-7 -1.25E-7 -8.66E-8 1.62E-7 -2.41E-7 -1.64E-7
E :r,r,2+l 1 -3.11E-7 -2.84E-7 -1.59E-7 -1.44E-7 -1.54E-7 -8.98E-8 -1.04E-7 -1.25E-7 -8.66E-8 -243E-7 -2.41E-7 -1.64E-7
E|\rirs1l 0 -143E-8 4.89E-9 2.66E-9 -346E-9 244E-9 135E9 -234E-9 185E9 124E9 -856E-9 4.39E-9 3.06E-9
E -r,2r,2+1 1 3.03E-8 2.99E-8 3.01E-8 1.50E-8 1.52E-8 1.48E-8 1.43E-8 1.43E-8 1.41E-8 1.98E-8 2.09E-8 2.05E-8
Er i1 1 1.81E9 4.89E-9 2.66E9 2.82E-9 244E9 1.35E-9 2.57E-9 1.85E-9 1.24E9 3.12E-9 439E9 3.06E-9

)

e
W
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N1 = 0. Figure 3.5 plots the annualized equity premium in terms of preferences for
our one-factor SVS model. One observes that the maximum premium generated in this
range of preference parameters when 7 # 0 is almost 2% more than the same premium
generated with n; = 0.

For the S&P500 index and the small book-to-market sorted stocks, Table 3.4 com-
pares unconditional moments of returns computed from the parameter estimates through
the analytical formulas, to their sample counterparts. A straightforward remark is how
accurate the model with n; # O matches the selected moments better than the model
with 111 = 0. Especially, the third row of the table shows that the unconditional skewness
in not matched with 1; = 0 and this is also true for the unconditional leverage effect as
shown in rows 18 and 24 of the table. Over all, this rises the role of the parameter 77; in
capturing third order return moments. Table 3.5 shows similar comparisons for the large
book-to-market sorted portfolios and the CSRP index and.the same observations hold.

Finally, as we mentioned previously, the choice of the moments to be used in the
GMM procedure is crucial when intended to reproduce important empirical facts. While
the cross-correlation between returns and cube returns is in general not significant for
big stocks and market indexes, one can observe that, although used for the estimation
procedure, this moment is not matched by the GMM estimates, except for the first lead
where it appears significant for some of these stocks. However, for small stocks, this
moment is significant empirically as shown in Panel A of Figure 3.4 for the three first
leads, and Table 3.4 shows that the GMM estimates reproduce the moment as well. Next,

we filter the latent factors using the GMM estimates of parameters.

3.7.2 State Estimation.

We use the Unscented Kalman Filter algorithm with our GMM estimates to filter
the latent factor 0'12t that we use to compute the GARCH counterparts of conditional
volatility and skewness, i.e G, and Gy. We do this exercise for all estimations in Table
3.2 such that the estimate of the factor persistence ¢; is well below the unity. This is the
case for the big growth stock and the S&P500 index in both panels of the table, and for

the small growth, the small value, the big neutral stocks and the CRSP index in Panel A



207

of the table.

Figure 3.6 displays the time series of the GARCH counterparts of volatility and
skewness for the big growth stock and the S&P500 index both for the contemporaneous
conditional asymmetry (1; # 0) as well as for the contemporaneous conditional nor-
mality (17, = 0). Asset returns in our sample as plotted in Figure 3.1, are characterized
by moderately high volatility at the beginning of the sample (1990-1992), followed by
low volatility (1993-1996), then high volatility (1997-2003) and low or moderately high
volatility at the end of the sample (2004-2005). This volatility pattern is well-matched
by the volatility time series plotted in the first and the second rows of Figure 3.6. Also
notice the slightly difference between volatility time series in different columns of the
figure, due to the effect of the positive parameter 17;. The volatility pattern in left panels
of Figure 3.6 is more tightened.

The third and the fourth rows of the figure show the pattern of the GARCH counter-
part of conditional skewness. Overall results are striking. Conditional skewness is nega-
tive when 1y = 0 as displayed in Figure 3.6, and this is consistent with the IG-GARCH
model of Christoffersen, Heston and Jacobs (2006). It should also be noticed that these
authors constrain their IG-GARCH model to display negative conditional skewness. On
the other hand, as we mentioned earlier, maximum likelihood methods can poorly match
higher order unconditional return moments and this may also affect conditional higher
order moments. Compared to our model, we also found that critical unconditional third
order moments of returns, skewness and leverage effects, are not matched by our GMM
estimation procedure when we assumed contemporaneous conditional normality. In con-
trast, if contemporaneous conditional asymmetry is allowed, we found that our GMM
procedure matches unconditional skewness and leverage effects very well and, in this
case, the pattern of conditional skewness displayed in Figure 3.6 shows that conditional
skewness is positive and even with a mean with large magnitude compared to the con-
temporaneous conditional normality case. Figure 3.7 confirms that these results hold for

other portfolios as well.
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Figure 3.6: Portfolios Volatility and Skewness: S&P500 and Others

S&P500 Volatility 1, # 0 S&P500 Volatility 7, = 0
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Figure 3.7: Portfolios Volatility and Skewness: Others

SG Volatility n; # 0 SG Skewness 17; # 0
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3.8 Conclusion

In this chapter, we provide a new affine multivariate latent variable model for asset
returns in which conditional volatility and skewness are stochastic. We characterize
these critical conditional return moments as well as their GARCH counterparts. The
model allows for closed-form asset and option pricing formulas and can be well-utilized
in term structure as well.

We also develop a GMM procedure for the estimation of a more general affine multi-
variate latent variable model that nests our SVS specification. This procedure has a huge
computational advantage compared to maximum likelihood-based techniques and per-
fectly matches critical higher order return moments while other methods generally fail
to. We apply this procedure to our univariate SVS model and use the GMM estimates
and the Unscented Kalman Filter to derive the GARCH counterparts of volatility and
skewness.

Results point out that stochastic skewness appears to be relevant in asset pricing.
Moreover and more striking, a positively-skewed distribution of returns conditional on
contemporaneous latent volatility fits the unconditional return skewness and leverage
effects, whereas a normal distribution doesn’t. Most importantly, this positively-skewed
distribution generates positive conditional skewness, in contrast to negative conditional
skewness more consistent with previous studies.

These striking results open a room for a new relevant issue which deserves further
investigation: can a return model with well-fitted unconditional third order moments
produce negative conditional skewness? This constitutes an ongoing research together
with the estimation of the two factor SVS model and the application of SVS models in

asset and derivative pricing as well as term structure of interest rates.
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CONCLUSION GENERALE

Les investisseurs s’ intéressent a la volatilit€ de la consommation parce qu’ils craignent
les répercussions de I”incertitude macroéconomique sur leur richesse future. Motivés par
un modele d’équilibre général sous forme réduite dans lequel la consommation suit un
processus affine a volatilité stochastique, le premier chapitre de cette thése a documenté
des faits empiriques importants reliant les rendements des actions a la volatilité de la
consommation.

Les investisseurs peuvent choisir pour un horizon d’investissement donné, de déte-
nir les actions pour une courte période au début de I’intervalle d’investissement, disons
pendant la premiére période seulement, puis des obligations sans risque pour le restant
de I'intervalle d’investissement. Adoptant une telle stratégie pour des horizons d’inves-
tissement courts, nous avons trouvé que le risque lié a la variation dans le niveau de la
consommation est moins cotrélé au rendement escompté que le risque li€ & la variation
dans la volatilité de la consommation pendant I’intervalle d’investissement. L’ inverse se
produit pour des horizons d’investissement longs.

Par ailleurs, les investisseurs peuvent choisir pour un horizon d’investissement donné,
de détenir les actions pour une plus longue période, voire tout le long de I’intervalle d’in-
vestissement. Pour une telle stratégie et pour des horizons d’investissement courts, nous
avons trouvé que le risque lié 4 la variation dans le niveau de la consommation est plus
corrélé au rendement escompté que le risque lié a la variation dans la volatilité de la
consommation pendant I’intervalle d’investissement. L’ inverse se produit pour des hori-
zons d’investissement longs.

Ainsi, les rendements d’actions possédées pour une courte période sont plus sensibles
aux variations de court terme dans la volatilité de la consommation tandis qu’il existe
une relation stable de long terme entre la volatilit€ de la consommation et les rendements
d’actions. L'estimation des prix des risques en utilisant les portefeuilles d’actions des
firmes classées selon la capitalisation boursiere et le rapport valeur comptable/valeur
boursiére, a montré que la volatilité de la consommation reste un facteur significatif

dans la valorisation des actions, méme lorsque les investisseurs tiennent déja compte de
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la valorisation basée sur le niveau de la consommation.

La volatilité de 1a consommation varie avec le cycle des affaires et apparait comme
un facteur important permettant d’expliquer les différences entre les primes de risque
d’actions par les différences entre les sensibilités de leurs gains vis-a-vis de I’incertitude
macroéconomique. Une recherche future s’intéressera a la rationalisation des faits em-
piriques €tablis a I’aide d’un modele d’équilibre général similaire a celui ayant motivé
cette étude.

Les modeles d’évaluation d’actifs financiers par €quilibre sont devenus difficile a
résoudre. Pour reproduire les faits empiriques robustes, les chercheurs ont supposé que
I’agent représentatif est doté de préférences plus sophistiquées. Les agrégats fondamen-
taux de I’économie, & savoir la consommation et les dividendes, ont également bénéfi-
cié de dynamiques plus riches. Souvent, le temps requis pour résoudre numériquement
le modele ou pour le simuler afin de calculer les statistiques d’intérét est abusif. Par
conséquent, les chercheurs se sont tournés vers des modeles plus simples, faisant des
hypothéses simplificatrices comme compromis entre la réalité et la faisabilité.

* Dans le deuxiéme chapitre de cette these, nous avons fourni des formules analy-
tiques qui devraient énormément aider a évaluer 1’habilité de ces modeles a reproduire
les faits empiriques. Nous avons choisi un modele flexible pour la consommation et les
dividendes, pouvant étre directement appliqué aux données comme 1’ont précédemment
fait plusieurs chercheurs, ou encore pouvant tre utilisé pour reproduire d’autres types
de processus qui ont ét€ examinés. En termes de préférences, nous avons choisi le cadre
de I'utilité récursive d’Epstein et Zin (1989), largement, utilisé dans la littérature sur
I’évaluation d’actifs financiers. Nous avons limité notre analyse a ’équivalent certain
de Kreps et Porteus (1978). Dans la recherche future, nous avons I’intention d’essayer
d’obtenir des formules analytiques pour d’autres équivalents certains dans le cadre de
I’utilité récursive, mais aussi pour d’autres types de préférences.

Dans le troisieme chapitre de cette thése, nous avons fourni un nouveau modele af-
fine multivarié a variables latentes pour les rendements journaliers. Dans ce modele, la
variance et I’asymétrie conditionnelles sont des combinaisons linéaires de facteurs sto-

chastiques. Nous avons caractérisé ces moments conditionnels critiques tels que pergus
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par I’agent économique, ainsi que leurs contreparties telles que vues par I’économetre.
Le modele permet d’obtenir des formules analytiques aussi bien pour les moments en po-
pulation des rendements que pour les prix d’actifs financiers. Nous développons ensuite
une procédure d’estimation par la méthode des moments généralisée. Nous argumentons
que cette procédure présente un énorme avantage par rapport a I’estimation par maxi-
mum de vraisemblance. En outre elle permet de reproduire parfaitement des moments
critiques des rendements tels que 1’asymétrie et 1’aplatissement tandis que la plupart des
méthodes y €chouent.

Nous avons appliqué cette nouvelle procédure d’estimation au cas univari€ de notre
modele et avons estimé le facteur latent grice a une variante du filtre de Kalman non-
linéaire. Les résultats ont montré que 1’asymétrie inconditionnelle est déterminante pour
I’évaluation d’actifs financiers. Plus frappant encore, une asymétrie positive de la distri-
bution des rendements courants conditionnellement a la volatilité courante est nécessaire
et suffisante pour reproduire I’asymétrie et les effets de levier inconditionnels, mais en-
gendre une asymétrie positive de la distribution des rendements courants conditionnel-
lement aux rendements passés, ce qui est contraire aux résultats empiriques connus.

Ce résultat €tonnant et robuste demande d’examiner plus rigoureusement la ques-
tion de savoir si un modele reproduisant parfaitement les asymétries inconditionnelles
génererait une asymeétrie conditionnelle négative. Cette dernicre question constitue une
recherche en cours, ainsi que 1’estimation du modele bivarié et ses implications pour la

valorisation des produits dérivés et la structure a terme des taux d’intérét.



Appendix 1

Additional Figures: Consumption Level and Volatility Risks at a Less Aggregate

Level

Figure I.1: Cross-Sectional Correlations, by Stock Holding Period, Between Risk
Premium and Consumption Level and Consumption Volatility Risks.

This figure presents the patterns of p,. (S,k) and p,; (S,k) when S is fixed to 8, 12, 16 and 20,
while k varies from | to S.
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Figure 1.2: Volatility Risk for One-Period Book-to-Market Sorted Portfolios in Size Dimension.
This figure presents the pattern of S-volatility risk across one-period book-to-market sorted portfolios in size dimension (k = 1). Risks are
computed as covariances of returns with variations in consumption volatility.
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Figure 1.3: Level Risk for One-Period Book-to-Market Sorted Portfolios in Size Dimension.
This figure presents the pattern of S-level risk across one-period book-to-market sorted portfolios in size dimension (k = 1). Risks are

computed as covariances of returns with variations in consumption level.
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Figure 1.4: Volatility Risk for Multiperiod Book-to-Market Sorted Portfolios in Size Dimension.
This figure presents the pattern of S-volatility risk across long-horizon book-to-market sorted portfolios in size dimension (k = S). Risks

are computed as covariances of returns with variations in consumption volatility.

5 semi-small portfolios 5 medium-sized portfolios

5 small portfolios

L "'“""'u,

x x x

2 2 2

< = =

z z Z

g k] k]

o ° °

T T 7

7] 7] 7]

Can w,
-5
4 8 12 16 20 4 8 12 16 20 4 8 12 16 20
investment horizon S investment horizon S investment horizon S
5 semi-large portfolios 5 large portfolios
1
k] 3
- -
£ £
= =
i $ = ® ® High
@ s data
-4
4 8 12 16 20 4 8 12 16 20
investment horizon S investment horizon S

AIXX



Figure 1.5: Level Risk for Multiperiod Book-to-Market Sorted Portfolios in Size Dimension.

This figure presents the pattern of S-level risk across long-horizon book-to-market sorted portfolios in size dimension (k = §). Risks are

computed as covariances of returns with variations in consumption level.
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Appendix 11

Technical Appendix of Chapter 2

Before showing the propositions, we provide some results on Markov switching models.

It is well known that (see, e.g., Hamilton (1994), page 679)

E[Gin | 1] = PG, (A1)
In addition,
Vh, P'TI=T1. (A.2)
For any vectors A, B, € RV, we have
(ATC)BTE) = (A0B)"E. (A3)

Meddahi and Taamouti (2004) showed that: Yh > 2,Vu; € R,i =1, ..., h, we have
: d 29\ T

Elexp| Yuixyi | || =" [JAMuns1—i+ gy ;/2) exp((uipt + oui/2)7 )G (A4
. i= i=2

Yu e R,Vh > 2, we have

h
E [exp (uzx,ﬂ-) | J,} =e' (A(uu+ a)u2/2))h~l exp((up + (4?/2)0) T §) & (A.5)
i=1
finally,

VYue RN Vh> 1, Elexp(u’ §in) | Ji] = A@)PH'E,, (A.6)

E[exp(uT Gr1)Gv1 | ] =AW)G. (A7)
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Lemma 1: For any vectors A, B € R and for any integer h, h > 0, we have
A T T1pT p)\2
Var 2 (AT 1) B G j)| = HAGA)E[GLGTIPT(BOB) —h(ATE[L('|PTB)

h
+2 Y (h—j+1DATE[GLTIPT(BO (P27 (A0 (PTB)))).

=2
(A.8)
Proof of Lemma 1. Define the random variable u; as u, = (AT {,_) (BT ;). We have
h h
Var 2 A CH—] 1) B Ct+j) = Var 2 Uy j
= A (A.9)

h
= hVarlu;] +2 Y (h— j+1)Cov(u 1,11 ).
j=2

We first compute Var[u,]. We have,
Elu|=A"E[4L | B=ATE[GE[; | GIIB=ATE[LLTPTIB=ATE[{LIPTB. (A.10)

In addition,

=(ATL?BT L) = (A0A) L) ((BOB) ).

Hence, the same calculations done in the proof of (A.10) yield to
E[u?]=(A®A)TE[§LTIPT(BOB). (A.11)
By combining (A.10) and (A.11), one gets

Var[w] = (AGA)TE[LLTIPT(BOB)— (ATE[LLT|PTB)%. (A.12)



Xxviii
We now compute Cov(u 41, 4:+;). For j > 2, we have

Elurpiverj] = E[(ATENBT Gt )AT G jm1)(BT G 1))
=E[ATG)B ) AT G jm YBTEGr5 | Grvji])]
E[(A" &) ( (

) ( )

e

=E[ATE)B LA G jm1))(BTPE4 1)
=E[ATE)B ) (A (PTB) &y -1,

where the last equality follows from (A.3). Hence,

Elurr1t+ ) =E[ATEG) BT Ga)(AO (PTB) EGajo1 | G+1))]
=E[ATE)(BT6r)((AO (PTB) P72 )]
=E[(ATL)BO (P (A0 (PTB)) &),

where again the last equality follows from (A.3). Therefore,

Elurrursj] = ATE[GGL(BO (PP T (A0 (PTB)))

_ (A.13)
=ATE[LGTIPT(BO((PI2)T (A (PTH)))).

By combining (A.10) and (A.13), one gets
Covlursi,inss] = ATEIGETIPT(BO (P (A0 (PTB))) — (ATEILSTIPTBY.  (Al4)

By plugging (A.12) and (A.14) into (A.9), one gets (A.8).
Proof of Proposition 2.4.1. See Bonomo and Garcia (1994).
Proof of (2.18): We have

Rt — Pi1+Diy1 Dy Dy <Pr+l
+1 = ey

B B D \Dy
= (}VzT Cr) exp(x,+1)(l3T Cr+l),

+ 1) = (A7 &) exp(xa1)(A &1 +1)

where the last equality holds given that e’ {, | = 1.

Proof of Proposition 2.3.1. Given the information J;, the processes ;. and x, . are indepen-



dent. Therefore,

EReet | ] = E[(47 &) explaier) (A5 Gt [ ]
= (4 &) Elexp(xit1) [ 4] E[(AF &) | /]
=4 &) exp(nT G+ @76 /2) A5 ElGgr | ]
= 6) exp(uT G+ @76 /2) A PG,

i.e., (2.20). Consequently, Vj > 2
E[Ryj| =W E[Grjo1 | 0] =y PTG,

i.e., (2.23). Finally,

h
E[RH-I t+h | Jr [2 RH-) | Jr

i.e., (2.24).
Proof of Proposition 2.3.2. By using (2.16), one gets

Var [’; ] Varlpy ] = A Var|G]Aa,

i.e. (2.27). We also have

D
Cov (R1+]:r+h>—P') COV(E[RtH t+h |Jr] ) COV(‘V}. Cr )q Cr)
i

= l,(/hTVar(C,)lg,

i.e., (2.28).

Observe that conditional on the information set {{;, 7 € N}, the variables R, ;, j=1,...,

are independent. Therefore,

Va"[Rt+l:r+h} = Var[E [R1+l:r+h I {C‘h TE N}H + E[Va"[RH-I:Hh | {Cr-, TE N}]]

+E

] =

h
=Var L ER ;| {&, T €N}

h
S Var[Reyj | {& T eNY] |-

XXix

vy Cov(6,4, )

hv

(A.15)
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Given that Ry j = (A &t j-1) (A4 &y j) explary j), we have

E[Rsj| {8, € NY = (N L jmr) (Aq Ga)Elexp(aia ) | {r,7 € NY]
=M Grjm1) (Ag G )exp( " Gpjmr + 076 j1/2) (A.16)
= (6] Grjm1) (A Gt p),s

and

Var[Rey j | {Ge, T € N} = (A4 & j=1)? (A7 G ) Varlexp(i ) [ {e, 7 € N}
= ((20K) 8+j-1) (O A4) &)
(exp(21 "G jot +20 G j1) —exp(2i T G 1+ 0 Gy jor)
= (8 Givj-1) (65 it )),

(A1)
where 6, 6; and 6 are defined in (2.33), (2.34), and (2.35) respectively. Consequently,
LZ Var[R,+j | {&r, T €N} [2(92 G+ j-1) (93TCr+j)]
. h
=6 ZE Cr+j—JC;+j] 6
=
R
= 6] Y E G ElG} 1 iajo1]] &
j=1 -
T & [ T
=6, ZE c’+]—'§r+]—1PT] 6s,
=1 -
1.e.,
h
E {2 VarlRess | {&e, 1 €NY]| = h6] E [c,cf} PTo,. (A.18)
j=1

In addition, we have

, .
= Var [Z(HTQH-]) (AGTCrH)] .

=

h
Var le[Rrﬂ [ {&,TENY]
j=1
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Therefore, by using (A.8), one gets

Var i E[R;| {teNY| =h(61068)E[LETIPT (A @ A3) — K2 (0] E|6,LTPTA3)?
=1

£23 (h=j+ DO EILLTIP (o (P (60 (PTA)))).
=2

(A.19)

Finally, by combining (A.15) with (A.18) and (A.19), one gets (2.32).



Appendix I11
The Campbell and Cochrane (1999) Model

The Euler equation in Campbell and Cochrane (1999) is given by

Cr (S 7
o R Ji .
( o ) ( ) R 14

1=FE

If we assume that,

Xgpi1 = 10g(S1) —log(Sy) = py & + (@] &) e s
where

8c,t+]
Ed.141 | O-(gc,ragd,ngs,r, T<t;Gn,meZ)

8s,t+]

1 p'G pié
~ N 01, PTCt 1 PdeCt

0 PcTs G Pde G 1

Observe that Campbell and Cochrane assumed
pes=e=(1,1,....,1)7 and py =p.
Under (A.3), (A.1) becomes

1 = E[6exp(—xes+1) Ry [ ]

(A.1)

(A.2)

(A.3)

(A4)

(A.5)



with
_ T T 1/2
Xesp+1 = Xep1 T X1 = Hes & + (@558) / Ecs+1

where

Hes = He + Hsy s = O + g +2pcs O] (a)c)]/2 ® (ms)l/zz

Ecss+1 | O(Ec,1, €0 1,601, T<;EmmEZ) ~ A(0,1).

XXx1ii

(A.6)

(A.7)

Consequently, their model is like a CCAPM model where one has x., in the SDF instead

of having x.. In order to compute the price-payoff ratios with these preferences, it is im-

portant to derive the joint dynamics of (€csr+1, €404 1,€c 41 )T, It will then be sufficient

to plug these formulas in the CCAPM model to derive the vectors A.
We have

Ecs+1 \

€dy+1 | O(&c,1,€d,1, 85,1, T < 13 Cm,m € L)

Ecrtl )
[0 1 Pral Pl
~ N 01, P,;Tstr 1 e
\ 0 Posclr PTG 1

where
Pcsc = (Wc +pcs®wé/2 @W;/Z) @Wc—l/z ® wc_:vl/za
Pecsd = (Pch)wl/z@wJ/z+Pds®w(!,/2®w;/2)@w;I/z(Da);sl/z.
Define

Hesd = —YHes + Hay Oced = V05 + 0 — 2¥(Pesa @ 00 - © /%)

(A.8)

(A.9)
(A.10)

(A.11)
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1/2

Hese = —YHes + He =, Wcse = Yzmcs + @, — 2}'(pcsc O Oy @ a)g/l) (Alz)

Proposition 111.0.1. Characterization of the Asset Prices.

The i-th component, i=1,...,N, of the vector Ay defined in (2.13) is given by

ll,i =0 exp(.ucsd,i + wcsd,i/z))eT [Id - 5A(.uc:d + mcsd/z)}_l €, (A.13)

where A(-) is defined in (3.20). In addition, the i-th component, i=1,...,N, of the vector
A1 defined in (2.14) is given by

Alc,i = 6 CXP(.u"csc,i + a)csc,i/z))eT [Id - 6A()u~csc + a)csc/z)]71 €j, (A]4)

Finally, the components of the vector b defined in (2.15) are given by

b; = 371 exp(?’.“cs,i - ?wcs,i)~ (A.15)



Appendix IV
Continuous Time Limits of SVS Models

Here we derive the continuous time limit of our one-factor SVS model. For simplicity
we consider that & is constant. Our discrete time process is built in two steps. We first

specify the distribution of log returns conditional upon the latent factor:

2
rv1 = Ho+A (O-I,H—l —Hl) + O1 41411 +1

and next, we specify the dynamics of the latent factor, namely a univariate autoregressive

gamma process, ARG(1).

E[exp(y107,41) | I] =exp(a(v)+bi () of,)

where

by (y1) = ]ibliéiyl and a(y1) =—viIn(1—ouy1).

Compound autoregressive processes has been widely discussed by Gourieroux and Jasiak
(2006) as well as Lamberton and Lapeyre (1992) who established a more general result.
They show that the continous time limit of a univariate autoregressive gamma process,

ARG(1), is a square-root process, CIR. Thus, it follows that:
do'lzt = K (CU1 — 0'12,)dt+e10'1,dw1,

where wy, is a Wiener process and ki, @) and e; are related to the initial parameters as
follows:

via =21
K1=-1In¢;, @) = 11 L and e%— ne,

! o 1—¢

a.

The return process has two interesting continuous time limits, depending on how we
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parameterize the skewness parameter 1;. It is useful to write down the model! for a time

interval A:

1 AYEUN
n

s, [0+ A (0'12,:+A — )] A+ VAGY 14 AUy 444

where §; denotes the price.

Case 1: n; shrinks to zero as A— 0. In this case u; ;A converges to standard normal

distribution, which implies that
_ 2
d(In(S)) = [to+ A (of, — )] dt + ovdzys
where ‘zl ¢ 18 a Wiener process.

Case 2: 1y = constant. We can always write:

™ 3vVAG) 414
ViggA — —————

UlgfA=——F—
3VAGH 14 m

where y ;A follows a standard inverse gaussian of parameter

9A612,t+A
i
Thus
3A0-12r+A'
\/ZO'],t+A”],t+A =3 Vs —
: M
This implies that
St4A 2 ul 307, o
In== = [+A (0], a— )] A+ —yij4a— ——
5; ! 3 ™
307 +A m
= |Mo+A (012,t+A —Hl) -2 A+ = Y11+A-

i 3
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The continous time limit is then given by:

302
dinS; = \po+2 (0f —pu) = 4 dz+%dyl,

where y|, is a pure-jump inverse gaussian process with degree of freedom 90‘12,/ n? on

interval [t, ¢+ dt].



Appendix V
SVS in General Equilibrium

Consider an investor whose lifetime utility V, depends recursively on its consumption

flow C; as follows:

V=G0 % (Vi) (A1)
e
where Z; (Vi+1) = (E [V,:y | J,] ) "7 is the certainty equivalent of the next period life-
time utility, & is the subjective discount factor and 7 is the coefficient of risk aversion.
For this investor, the elasticity of intertemporal substitution is unitary.
Hansen, Heaton and Li (2005) use the shadow valuation of consumption and lifetime
utility to show that investor values consumption claim through a stochastic discount

factor whose the logarithm is given by:

vyt

M1 = Ind — yAc, 11+ (1 —7) (Zv,t—H - —6—> ) (A.2)

where Ac;+1 =¢41 —¢, =InC41 —InG; and 2,y = v, — ¢; = InV, — InC, are respectively
the consumption growth rate and the log utility-consumption ratio. It can also be shown

that the return on a claim to total consumption for this investor is given by:
riy1 =—Ind +Ac4. (A.3)
In this case, the logarithm of the SDF becomes:
g = (1 =908 — yr +(1—7) (zv,,ﬂ — %’) , (A4)

From the recursion (A.1) and the equation (A.3) on has:

- Ly =

$ =T YlnE lexp((1—7)(Ind + 241 +1141))]- (A.5)
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If the dynamics of returns is given by (3.18) and we conjecture that z,, = Yo + YTO',z,

then it follows that T solves the equation:

é
Y=—B((1-7),(1-1T), (A6)
and
) A((1-7).,1-77)
Yo_—l_a Ind+ 1=y (A7)

If 67 is a multivariate autoregressive gamma process as defined in Section 3.3, then the

element Y; solves the equation:

o (1= Y2~ (1= {1 -8 (i~ aBi(1 - V)] —[L(1 =Y +y (1 - yn)]} Y
+0Bi(1=7)+6(pi—0uBi(1-7) [Ai(1=y)+w(1—y;m:)] =0.

(A.8)
Equation (A.8) has two solutions:
— by +vAy
i Lo P G S (A9)
205(1—7) 204{1-7)

where

by =[1-6(¢:i—o;Bi(1-7)] - [A(1-7)+y (1 -7;m:)]
Ar={[14+8(¢i— 0P (1 -] — & [A:(1 =)+ y (1 —v:m)]}* — 459

Finally, the loading Y; of the log utility—consurﬁption ratio on the factor ¢ is then Y; =

Y; since the root Y has the unappealing property that
lim oY #0
al'—OO

which would mean the impact of the factor would grow without bound as it becomes

unimportant as pointed out by Tauchen (2005).



Comparing (3.56) and (A.4) shows that:

¢=(1-7) {1115—

1-6

)

o

x1

(A.10)

(A.11)
(A.12)



Appendix VI
Second Order Lognormal Approximation of Positive Random Variables

The second :order lognormal approximation of a positive random variable X with

mean [, and variance 6?2 is given by:

2 2 4 52
X ~exp|In K +4/In (“ +20 )SX (A.1)
Vi +o? M

where €y is a standard normal random variable.

Given (A.1), the second order lognormal approximation of a standardized inverse

gaussian random variable u with positive skewness s is given by:

2
u = exp <1n (S\/%) +4/In (s ;_9)8) —% (A2)

where € is a standard normal random variable.

Given (A.1), the second order lognormal approximation for the dynamics of a sta-
tionary univariate autoregressive gamma process X, with mean y,, variance 2 and

persistence @, is given by:

2 2
X = exp‘ In \/ ) e +.|In ( (XZ(;)Z(X,)) EX 1+1 (A.3)
m( ') t
where
m(X;) = (1= ¢x) e+ 0 X, (A.4)
V) = (1— 600 4 20 0hocy (AS)

X

and €y, is a i/i.d. standard normal shock.

The second order lognormal approximation of a couple (X,Y) of positive random
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. . . 2 2 . . . .
variables with means [, and L, variances oy and o and correlation p,y is given by:

2 2 2
~ | ux u'x + Gx
X ~exp (ln (—uxz n O_xz) +4/In ( 02 )8x) (A.6)

2 2 2
N (#ﬁ%) a
Ymexp|In| ——=——= | +,|In| —5— | |cn&x + /] —c5,& (A7)
M3+ 0} w ( xy )

where €x and €y are uncorrelated standard normal random variables and:
In ( + Puy Z"Z‘ )
ol '
\/m (1+%)m(1 +E)

Given (A.6)land (A.7), the second order lognormal approximation for the dynamics

(A.8)

ny:

. o . .
of a stationary bivariate autoregressive gamma process (X;41,Y+1) with means i, and

My, variances c? and O'yz, persistences ¢x and ¢, and correlation p,y is given by:

InX, | ~ ln

m (X,)° +4In (m] (%) +vi (%)
\/ml +v1 (Xi) mi (X,)2

ma (¥,)°
\ \ma (1) 492 (¥)

i my (Y)2 + vy (V,)
+ 1( i

) X141 (A.9)

InY,,; ~In|

) (C(XtaYt)gX,H—l + I_C(XtaYt)zgY,t-H)

(A.10)



where

my (X)) = (1— o) e + X
v (%) =(1 wg%ﬂth
mz (Y) = (1—&y) ty + $yY:
() = (1— o202+ 2BV,

Hy

and €x ;11 and €y, are uncorrelated i.i.d. standard normal shocks and

my (X, )my (Y,

\/m (1420 Y in (14220, )

In (1 +p(X,,Y,) X2 (X’)VZ(YY’)))
C(XhYt) =

where

Pry (1 = 9x¢y) 0,0y
XhYt = .
P = R @)
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(A.11)
(A.12)
(A.13)
(A.14)

(A.15)
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Appendix VII
The Unscented Kalman Filter

The Unscented Kalman Filter is essentially an approximation of a-nonlinear transfor-
mation of probability distribution coupled with the Kalman Filter. It has been introduced
in the engineering literature by Julier et al. (1995) and Jullier and Uhlmann (1996). (See
also Wan and van der Merwe (2001) for general introduction) and, to our knowledge,
was first imported in Finance by Leippold and Wu (2003).

*T oxT )T

The Unscented Filter selects a set of sigma points in the distribution of (a),T, Ui, &5

conditional on r,. This distribution is assumed gaussian with mean

T
= T -T 2T
X = (a);|;7u 38 )

and variance

P(|oa) pou  poe
Lt
PXX — puo  puu  pue

PE(D PEu PEE

-
Following Julier et al. (1995) we consider the 2n+- 1 sigma points ; = (a)ﬁp, u,-T, SI-T)

with associated weights W; defined by:

, Wo=x/(n+x)

+(\/m)_, Wi=1/2(n+x) (A1)

[

Kitn =12~ (VOO PEE) , Wi=1/2(n+x),
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* 1 * 1
t+10 &1

real number and ( (n+x) PXX) _is the ith column of the matrix (n+ k) PXX.
4

: . . T . .
where 7 is the dimension of the vector (@,",u ), K is an appropriately chosen

These sigma points are transformed through state and observation functions to ob-
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tain:

W; 1 :F(wi,tltaui) and ri,z+1|:=H(0)i,:+w,Ei)

from which approximations of predicted means and covariances are computed as:

2n n

W 1) = Z Wiw; 1| and ripq = Z Wiri r1pe (A.2)
i=0 =0

— 2 o T

P = D Wil @1 = O ) (@it — @ryqr) (A.3)
i=0

e 2n o T

fﬂ”, = Z Wi ("i=¢+]|t - rH—Ht) (ri,H-HI - "r—Hlt) (A4)

i=0

—

2n
PYT = ZDW (@i et = Breip) (rigerp —Fretl) - (A.5)
I:



Appendix VIII
Approximated Moments of a Function of a Normal Random Variable
Consider a normal random variable X with mean g, and variance 672. Let Y = f (X),

where f is a twice differentiable real function. The variable ¥ admits the second order

Taylor approximation

V= £ (1) + F (1) (X — ) 57 (1) (X — 11 (A.D)

which implies that the mean of Y can be approximated by:

] /!
uy =E[Y] = f (o) + 5" (1) o} (A.2)
It follows that:
1
Y=y = f (1) (X = ) + 5 " () [(X — phe)* — cf] (A.3)
(Y = )" = F () (X = )+ () £ () [ (X = 20) = 02 (X — )]
2" ()2 (6~ ) =202 (X — P + o] (A4)

(0 — P = 7 1) (X = e+ 3 (e 7 (1) [ X = ) = 02 (¢ — o))

3 () (0 [(X = ) 202 (X — )+ 0F (X )]

+ %f” (1) [(X — 1) =302 (X — ) + 30 (X — p)* - cf] (A.5)

The third and fifth central moments of X are zero whereas the fourth and sixth central
moments of X are respectively 36 and 156°. Based on that, taking expectations of (A.4)

and (A.5) gives the following approximations for the variance and the third moment of
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ol =Var[Y] = f' ()’ oF + % () o (A.6)

E[(r =) =37 () £ (1) o + 1" () 0. (A7)



