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Résumé 

Les champignons mycorhiziens peuvent offrir différents services écosystémiques 

comme l’amélioration de la nutrition et de la croissance des plantes, la protection contre les 

maladies et ravageurs, etc. Ainsi, les mycorhizes peuvent présenter des solutions pour réduire 

l’impact du secteur agricole sur l’environnement en réduisant l’usage des engrais, pesticides, 

et autres produits. Cependant, les informations disponibles indiquent que le blé peut dans 

certains cas réagir négativement à la mycorhization : réduction de croissance et de rendement 

au point de caractériser la relation comme du parasitisme. Nous avons émis l’hypothèse que 

certains génotypes de blé pourraient engendrer des modifications de la structure des 

communautés mycorhiziennes associées. Nous avons testé 31 génotypes de blé dur (Triticum 

turgidum var. durum) produits à différentes époques de l’histoire de l’amélioration génétique 

de cette espèce dans une expérience en champs avec un sol pauvre en phosphore afin de 

caractériser leur association mycorhizienne dans des conditions de colonisation naturelle. Le 

séquençage de la sous-unité ribosomique 18S de l’ADN extrait des échantillons indique que la 

communauté mycorhizienne détectée dans les racines de blé est dominée par Rhizophagus 

irregularis et R. intraradices tandis que la communauté dans la rhizosphère et dans le sol est 

dominée par Glomus spp., Claroideoglomus spp. ou Rhizophagus spp. Le taux de colonisation 

variait entre 57.8% (Arnautka) et 84.0% (AC Navigator) mais ces différences ne sont pas 

statistiquement significatives (p-value > 0.05). Bien que les racines de blé dur aient 

sélectionné un sous ensemble des taxa du sol pour coloniser leur tissues, les résultats 

suggèrent que tous les cultivars de blé dur sélectionnent des communautés de champignons 

mycorhiziens similaires. Il semble que la variation génétique du blé dur soit insuffisante pour 

permettre l’emploi de méthodes d’amélioration génétique traditionnelles pour la production de 

génotypes s’associant des champignons mycorhiziens arbusculaires performants. 

Mots-clés : mycorhizes, champignons mycorhiziens arbusculaires, blé, Triticum turgidum var. 

durum, communauté, microbiome, agriculture  
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Abstract 

Arbuscular mycorrhizal fungi can provide ecosystem services such as growth and 

nutrition enhancement, protection against pests and diseases, mitigation of abiotic stress, as 

well as stabilization of the soil. In the agriculture sector, symbiotic relationships between 

crops and AM fungi are being explored to help reduce agriculture’s ecological footprint and 

enhance its sustainability by decreasing demand for fertilisers, pesticides and other chemicals. 

However, information available to date indicates that wheat may sometimes show poor 

response to AM symbiosis (growth depressions and lower yields), and the relationship has in 

some cases been labeled parasitic. We tested the hypothesis that genetic variation among 

durum wheat cultivars (Triticum turgidum var. durum) might lead to shifts in fungal 

community structure. We tested 31 durum wheat cultivars released at different times in the 

history of durum wheat selection in Canada in a field experiment under phosphorus limiting 

conditions. Based on the 18S ribosomal subunit sequences of DNA extracted from roots, 

rhizosphere and soil, we found that AM community in durum wheat roots is dominated by 

Rhizophagus irregularis and R. intraradices. Meanwhile the community in the rhizosphere 

and soil have more Glomus spp., Claroideoglomus spp. or Rhizophagus spp. The mycorrhizal 

community associated with wheat roots is not significantly different between genotypes (p-

value > 0.05). Mean colonization levels in the roots of the different cultivars varied between 

57.8% (Arnautka) and 84.0% (AC Navigator). However, these differences were not 

statistically significant (p-value > 0.05). Despite that durum wheat roots could select a subset 

of taxa from the soil community to colonize their tissues, results suggest that all cultivars 

select similar communities. The genetic variation in durum wheat seems insufficient to allow 

the use of traditional plant breeding methods to produce genotypes associating with highly 

effective arbuscular mycorrhizal taxa.  

Keywords : Mycorrhiza, arbuscular mycorrhizal fungi, wheat, Triticum turgidum var. durum, 

fungal community, microbiome, agriculture 
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Introduction 

Arbuscular mycorrhizal (AM) fungi likely evolved around 353-462 million years ago, 

concurrently with the first land plants. In fact it is hypothesised that AM fungi were 

instrumental in facilitating the colonization of land by vascular plants (Simon et al. 1993). 

Arbuscular mycorrhiza is the most common type of mycorrhiza found among vascular plants 

(Wang & Qiu 2006). They are characterized by their ability to colonize a host plant’s root 

cortex cells, forming extensive exchange structures within the root called arbuscules, as well 

as storage structures called vesicles formed between cortex cells. All AM fungi belong to the 

phylum Glomeromycota and they form symbioses with more than 80% of all plants on Earth 

(Smith & Read 2008), providing a range of services from drought and disease protection to 

nutrient and water uptake (Gianinazzi et al. 2010).   

The ecology of AM fungi in the environment is complex and governed by a multitude 

of factors. AM fungi community composition and structure can be influenced by abiotic 

factors (such as soil type or soil use, phosphorus levels in the soil and other soil physico-

chemical properties, climate, time of year), and biotic factors (host plant identity, plant 

community structure) (Bainard et al. 2014, Bainard et al. 2015, Dai et al. 2012, Degrune et al. 

2015, Klabi et al. 2015). Dai et al. (2012) found that the variation in the AM fungal 

community structure in the Canadian Prairies was best explained by the soil types (Chernozem 

great groups), whereas Bainard et al. (2015) determined that land use (roadsides vs cultivated 

fields) played a greater role in AM fungal community composition than soil type. Soil 

chemistry, particularly pH, was shown to be a major driver of AM fungi community structure, 

and time of year can also play a role in determining community composition, influenced by 

flux in soil P and climate variables such as soil moisture (Bainard et al. 2014). Host plant also 

affects AM fungal community richness, diversity and composition, but mainly within the 

plant’s roots themselves. As this study showed, the effects of host plants on the fungi in the 

soil was minimal, and soil chemical factors likely affected them more than the hosts (Bainard 

et al. 2014). In more complex plant assemblage experiments, the introduction of a N-fixing 

legume was beneficial to AM fungal diversity (Klabi et al. 2015). 
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While plants have an effect on AM fungal communities, the reverse can also be true, 

with the fungi helping to shape plant communities or impacting the success of different plants. 

Experiments on prairie grassland communities involving different species of AM fungi, 

legumes, and grasses (cool-season and warm-season) showed that plant community structure 

and identity of AM fungi can impact the coexistence of different grasses by favouring some 

over others, showing that AM fungi are a key factor in understanding plant interactions (Klabi 

et al. 2014).  

The agriculture sector is known to be a source of pollution and contamination, 

especially from the manufacture and application of N and P fertilizers, as well as herbicides 

and pesticides, and from other agronomic practices. Increasingly, strategies are being explored 

to reduce the carbon footprint of agriculture and improve its sustainability, such as choosing 

crop varieties and cultivars specially adapted to the biotic and abiotic conditions of a certain 

area to reduce the need for inputs, diversifying cropping systems for more effective weed 

management and improving crop residue management to increase carbon sequestration in 

soils, among other strategies. The use of AM fungi, either through inoculation or adopting 

practices that encourage the naturally occurring fungal community, in agroecosystems is one 

of those strategies (Gan et al. 2011). Indeed, AM fungi play key roles in agroecology such as 

increasing soil stability, improving nutrient use efficiency and thus decreasing the need for 

fertilization, increasing crop plant tolerance and protection against abiotic and biotic stresses, 

and increasing the plants’ nutritional quality (Gianinazzi et al. 2010).  

Improving the sustainability of modern agriculture must involve, among other things, a 

shift toward management and crop breeding practices that favour the exploitation of AM 

symbioses and take into account the plant microbiome. It has been shown that agricultural 

practices such as tillage and pesticide application affect microbial community composition for 

both bacteria (Degrune et al. 2015, Yang et al. 2012) and fungi (Degrune et al. 2015), with 

some groups increasing or decreasing in abundance depending on use of conventional or 

reduced tillage (Degrune et al. 2015). Adopting tillage and weed control practices specifically 

tailored to encourage proliferation of healthy and beneficial soil microbes can greatly 

advantage crops. Brito et al. (2013) showed that using chemical as opposed to mechanical 

control for weeds minimized disturbance of indigenous mycorrhizal communities and existing 
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extra-radical mycelium, which enhanced early colonization rates in crops, boosting P 

acquisition and early growth. In addition, encouraging AM colonization may help crops 

overcome the stress of soil compaction due to the use of heavy agricultural machinery by 

boosting nutrient uptake in compacted soils (Miransari et al. 2009).  

Another example of the importance of the plant microbiome in agricultural systems is 

the effects of crop-microbiome interactions in crop rotations. The crop grown in a field 

previously can play a role in the success of the subsequent crop, through shaping the 

microorganism community in the soil. Indeed, durum wheat exhibited higher stand density 

when planted following the chickpea cultivar CDC Anna compared to other chickpea 

cultivars, though the effect was absent during particularly dry years (Ellouze et al. 2013), and 

experimentally introducing a root endophytes community to a wheat crop could either worsen 

or alleviate the allelopathic effect of chickpea cultivar tissues on wheat germination (Ellouze 

et al. 2015). Yang et al. (2012) found that terminating a pulse crop early before planting 

durum wheat lead to favourable conditions for the establishment of a beneficial root 

endophyte bacterial community and higher grain yield, though the effect was absent during a 

particularly wet year. Thus it is important for crop management strategies to not only consider 

the crop itself and its associated microbiome, but also the global management strategy for the 

whole field. 

Wheat has long been recognized as a crop with mixed responses to AM fungi. Some 

studies found overall positive effects of both inoculated and indigenous AM fungi colonization 

on wheat. A variety of experiments in different conditions have found increases in grain yield 

and aboveground and straw biomass as a result of AM colonization, including field 

experiments under conditions of water stress or organic farming (Pellegrino et al. 2015, Al-

Karaki et al. 2004, Nelson et al. 2011), as well as pot/glasshouse experiments in conditions of 

drought or elevated CO2 (Karagiannidis & Hadjisavva-Zinoviadi 1998, Zhu et al. 2016). 

Further study by Martín-Robles et al. 2018 on a wider range of 27 different crop species 

including durum wheat, tomato, chickpea, lettuce, cucumber, spinach and others, found that 

symbiosis with the AM fungus Rhizophagus irregularis benefitted plants in all cases in 

conditions of low P fertility, but that domesticated plants drew no such advantage at high soil 

fertility. However, in wild progenitors benefits were evident in both low and high fertility 
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conditions (Martín-Robles et al. 2018). Meanwhile other studies found i) negative effects of 

AM fungi on wheat in the form of growth depression depending on the phosphate fertilization 

regime, the AM fungal isolate tested, and plant density (Graham & Abbott 2000, Li et al. 

2008); ii) a mix of positive and negative effects, depending on the wheat cultivar tested and 

the management strategy used (organic or conventional) (Hetrick et al. 1996, Singh et al. 

2012, Dai et al. 2014); or iii) no significant effect on wheat growth at all regardless of added P 

(with a caveat that, even while no effect was observed, plants were still acquiring important 

amounts of their phosphorous through fungal pathways) (Li et al. 2006).  

Hetrick et al. (1993) found strong dependence of winter wheat on mycorrhiza in 

cultivars released prior to 1950, but more variable responses in more recent releases, 

suggesting an effect of intensive breeding and management practices on mycorrhizal response 

in wheat cultivars. For durum wheat, there is little evidence that selection under high soil 

fertility conditions and breeding of modern cultivars impairs their ability to regulate their AM 

symbiosis compared to landraces (Ellouze et al. 2015). Breeding has generally had the 

consequence of increased AM colonization in durum wheat grown in soil with poor fertility 

and impacted the wheat’s ability to regulate the symbiosis according to soil fertility. However, 

this impact has been inconsistent: certain cultivars had good but unimproved mycorrhizal 

regulation (e.g.: Commander, Pathfinder), whereas others had inefficient regulation resulting 

in significant growth reduction of mycorrhized plants compared to non-mycorrhized controls 

(e.g.: Hercules, Wascana, Eurostar) (Ellouze et al. 2015).  

These varied responses suggest that AM fungal effect on wheat is not straight forward 

and not always strictly beneficial as measured through growth response, but rather is affected 

by a number of factors including time of year (variation throughout growing season, 

separation of nutrient flow to plant and fungus over time), growth stage of plants, 

environmental conditions or stresses, nutrient availability, identity of the plant and fungus, etc. 

(Jones & Smith 2004). Still, the fact that the relationship between mycorrhizal fungi and plants 

has persisted and remained stable for millions of years suggests that it confers a distinct 

selective fitness advantage for both partners (Brundrett 2002), even if some cases would be 

better classed as parasitism than mutualism (Jones & Smith 2004). During partner selection, 

there are likely processes at play which favour higher quality partners providing the best return 
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on the energy investment for the symbiosis, resulting in a selective pressure not to “cheat” in 

the relationship, thus helping to stabilize the plant-AMF association through evolutionary 

history (Werner & Kiers 2015). 

The objective of this study was to characterize the arbuscular mycorrhizal fungal 

community associated with the roots of 31 different cultivars released at different times in the 

history of durum wheat (Triticum turgidum var. durum) breeding in order to discern possible 

differences in AM fungi community composition and colonization levels between genetically 

diverse durum wheat cultivars. We hypothesised that different durum wheat cultivars may 

favour the establishment of distinct AM fungal communities (Mao et al. 2014). To test this 

hypothesis, we conducted a field experiment in summer 2016 with a randomized complete 

block design. Amplicon sequences from 18S rDNA of AM fungi extracted from root, soil, and 

rhizosphere soil samples were used to characterize fungal communities. 



 

 

Materials and Methods 

The 31 wheat cultivars tested in this project are listed in Appendix 1. A randomized 

complete block design with four blocks was used; all 31 cultivars were randomized in each 

block. This gave a total of 124 plots (31 cultivars x 4 blocks). Due to the large number of 

treatments and the dimension of the field where the experiment was conducted each block was 

layered in two rows of plots. The final experimental setup is illustrated in Figure 1. 

 

 

Figure 1. Chart showing the experimental set-up of field trial. A randomized complete 

block design of four blocks of 36 plots was conducted in summer 2016. The numbers 

inside each plot represent the cultivar ID numbers (1-31). Numbers above plots represent 

plot ID numbers (1-124). 
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Study Area 

Field trials were carried out at a site located outside the municipality of Lévis 

(46°47’40"N 71°08’05"W) in the Canadian province of Quebec. Agriculture and Agri-Food 

Canada data lists the growing season in this region as lasting between 140 and 150 days 

(http://www.agr.gc.ca/, retrieved 10/07/2017), and a cool and humid climate is characteristic. 

The average temperatures for the area in 2016 were 12.5°C, 16.9°C and 19.1°C respectively 

for May, June, and July according to the Lauzon weather station of Environment and Natural 

Resources Canada (http://climate.weather.gc.ca/, retrieved 23/08/2017), which was located at 

3.5 km from the experimental field. These temperatures are comparable to the 1981-2010 

averages for those months (11.0°C, 16.5°C, and 19.3°C). 

The soil was a well-drained Saint-André gravelly loam (Fragic Humo-Ferric Podzol or 

mixed, frigid, Typic Dystrochrept) (Soil Classification Working Group, 1998) with properties 

listed below (Table I). The field was previously used to grow switchgrass in 2014-2015. 

Roundup was applied and the field was tilled in fall 2015. Harrowing and fertilization were 

carried out on 11 May 2016. The plots at time of sowing received 90 kg/ha N as calcium 

ammonium nitrate (27-0-0) and 45 kg/ha K2O as potassium chloride (0-0-60). Phosphorous 

fertilization was not applied in order to make P resources a limiting factor to favour 

mycorrhizal associations. Plots were seeded using a 4 row cereal seeder on 12 May 2016 as 

follows: 4 rows of 50 seeds over 1.7 m for each of the 31 varieties of wheat. DyVel herbicide 

(Dicamba) was applied at 1.25 L/ha on 7 June 2016 for weed control. 

Table I.   Physical and chemical properties of the field in this experiment. Measurements 

taken in spring 2015 prior to the beginning of the current project. Mineral nitrogen was 

extractible with KCl (Maynard & Kalra 1993) and other nutrients were extractible with 

Mehlich-3 (Mehlich 1984). 

 

Texture pH C Total N Total C/N P-PO4 N-NO3 N-NH4

% % mg/Kg mg/Kg mg/Kg

Loam 5.30 2.66 0.21 12.73 34.52 52.96 43.32

P K Ca Mg Al Fe Cu Zn Mn

mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg

133.97 205.11 1632.19 55.44 1346.00 225.39 1.74 1.92 15.92

http://www.agr.gc.ca/
http://climate.weather.gc.ca/
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Sampling 

Durum wheat aerial parts, roots and soils were sampled on July 8
th

 and 12
th

 2016 as 

follows: six plants were randomly selected from within rows 2 and 3 of each plot (three plants 

from row 2 and three from row 3). The aboveground portion of each plant was cut and 

discarded and the root balls were set aside in the shade in plastic bags for transfer to the 

laboratory. Once there, root balls were kept at 4°C until further processing in the subsequent 

days. Six samples of soil from between rows were also collected using a 15 cm core sampler, 

cleaned between every plot by taking a first sample to discard. A single composite sample for 

the soil between rows of every plot was obtained by combining the six soil cores from each 

plot, passing them through a 2 mm sieve and transferring them to 15 mL tubes. Tubes of soil 

were kept in the shade until transfer to the laboratory by car, where they were stored at -20°C. 

Composite rhizosphere soil samples for each plot were collected in the lab by gently shaking 

the six root balls in order to dislodge the soil that was attached to them. Soil collected this way 

was passed through a 0.5 mm sieve for homogenization and to remove debris. All soil samples 

(rhizosphere and between rows) were stored at -20°C until DNA extraction.  

Once the rhizosphere soil was collected, the six root samples from each plot were 

combined into a composite sample and rinsed, and the fine roots (around 1 mm thickness or 

less) were cut into 1-2 cm lengths. Root fragments for each plot were separated into 4 parts: 2 

parts were put into two plastic Shandon™ tissue cassettes (Thermo Scientific™) for root 

colonization analysis, temporarily stored in tap water acidified with a few drops of white 

vinegar at 4°C until all samples were processed, then transferred into a 50% ethanol solution 

for longer term storage before analysis, still at 4°C. The other 2 parts were stored in 1.5 mL 

tubes at -80°C for DNA extraction.  

 

Root Colonization Analysis 

Root samples prepared for colonization analysis (the cassettes) were treated using the 

“ink and vinegar” staining method (Vierheilig et al. 1998). Cassettes were boiled in 10% w/v 

KOH solution for 3 min to remove pigmentation and rinsed several times in tap water. Next, 
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roots and associated fungal structures were coloured by boiling in a 5% ink (Shaeffer black) 

and white vinegar solution for 3 min. Excess ink was rinsed by soaking roots in tap water 

acidified with a few drops of vinegar per litre for 20 min. Finally, treated roots were stored in 

a 50% glycerol solution until they could be analyzed to evaluate their level of colonization. 

Root samples were examined under a Zeiss Discovery V20 stereomicroscope coupled 

with an AxioCam ICc 5 camera. ZEN pro 2012 software was used to visualize the roots on a 

computer. The level of colonization was evaluated using the gridline intersection method; root 

samples were spread out in a 90 mm plastic petri dish with a 7x7 gridline drawn on the 

bottom, and for each intersection of a root with the gridline the presence or absence of 

mycorrhizal structures was noted (Brundrett 1996, based on Giovannetti & Mosse 1980). In 

total 39 116 intersects were recorded, giving an average of about 315 intersects per sample. 

Colonization percentage is represented by the following formula: 

(
# 𝑐𝑜𝑙𝑜𝑛𝑖𝑧𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠
) × 100 

 

DNA Extraction 

DNA extraction from roots was performed using DNeasy Plant Mini Kit (Qiagen) 

following the manufacturer’s instructions except the elution step, where 75 µL of buffer was 

used instead of 100 µL, and the flow-through from the first elution was reused for the second 

elution rather than using fresh buffer. DNA was then stored at -20°C until use. DNA 

extraction from soil samples was performed using UltraClean Soil DNA Isolation Kit and 

PowerSoil DNA Isolation Kit (Mo Bio) (see Annex 2). All rhizospheric soil samples were 

extracted using the PowerSoil kit. The manufacturer’s instructions for both kits were used 

except for the elution step for the PowerSoil kit where 50 µL were used instead of 100 µL. 

DNA extractions were done in duplicate for each sample then combined in order to increase 

the amount of extracted DNA. DNA quality was first checked by gel electrophoresis, and then 

quantified using Qubit Fluorometer (Invitrogen). DNA was stored at -20°C until use. 
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Polymerase Chain Reaction 

PCR was carried out by Genome Quebec according to the following protocol (see 

Annex 3 for details). PCR was done in one step on the genomic DNA using the Franck 

primers and CS1/CS2 adapters (Table II), which gives a 400 bp fragment of the 18S gene. 

Program parameters were as follows: denaturation for 0.5 min at 98°C, then 30 cycles of 10 

seconds at 98°C followed by 15 seconds at 60°C followed by 30 seconds at 72°C, then a final 

extension period of 2 min at 72°C. Then barcoding was done on the amplified DNA products 

from the first step (diluted 1/200) to incorporate Illumina adapters and index, with the 

following program parameters: denaturation for 3 min at 98°C, then 10 cycles of 10 seconds at 

98°C followed by 30 seconds at 60°C followed by 30 seconds at 72°C, then a final extension 

period of 2 min at 72°C.  

Table II: Primers used in PCR to amplify 400bp section of 18S gene. 

Franck_F-CS1 ACACTGACGACATGGTTCTACACGGTAATTCCAGCTCCAAT

AG 

Franck_R-CS2 TACGGTAGCAGAGACTTGGTCTTTGATTAATGAAAACATCC

TTGGC 

 

PCR amplification was checked by gel electrophoresis on 2% agarose gel, and DNA 

concentration was quantified. Equal amounts of DNA were pooled for each sample and the 

final pool was purified using AMPure XP at a ratio of 0.8 and eluted in water (molecular 

biology grade). Final quantification on the purified pool was then performed: libraries were 

quantified with the Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies) and the 

Kapa Illumina GA with Revised Primers-SYBR Fast Universal kit (Kapa Biosystems). 

Average size fragment was determined using a LabChip GX (PerkinElmer) instrument. 

Finally, sequencing was performed with the MiSeq Reagent Kit v3 (600 cycles) from 

Illumina, with all 380 samples pooled for the Miseq run. 
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Bioinformatics 

Amplicon sequence data from Genome Quebec were sorted using sequence barcodes 

for each sample. Sequence data were analyzed using the UNOISE algorithm in USEARCH in 

order to identify ZOTUs (zero-radius operational taxonomic units) among the fungal DNA. 

Forward and reverse reads were first merged with a maximum overlap difference allowance of 

10 base pairs (bp). Of 16.9 M pairs, 10.9 M (64.36%) were successfully merged; about 6.0 M 

pairs (35.64%) were either too different (> 10 bp) or had no alignment and were discarded. 

Then the primer sequences were removed from either end, giving sequences of median length 

353 bp. Any sequences longer than 373 bp or shorter than 333 bp were discarded (142 735 of 

remaining sequences—or 1.4%—were eliminated this way). Quality filtering discarding 

sequences with expected errors > 1.00 eliminated another 295 435 (2.9%) of remaining 

sequences, and dereplication generated the final set of unique sequences (158 057 uniques). 

The UNOISE algorithm generated a total of 3877 fungal ZOTUs, which were then identified 

via BLAST using the UNITE and NCBI databases. 102 AMF (Glometomycota) ZOTUs were 

identified and extracted for further analysis. Samples originating from each of the three 

categories (roots, rhizosphere soil, and soil between rows) were given unique identifier letters 

so they could be tracked through further analyses. Samples from root-extracted DNA were 

given the letter R; samples from rhizosphere soil-extracted DNA the letter S; and samples 

from between-row soil-extracted DNA the letter E. Read data was turned into percentages so 

they would be comparable and averaged across replicates. 

 

Statistical Analyses 

All statistical analyses were performed in R (v. 3.4.2) except for the PerMANOVA 

which was done using PC-ORD (v. 6.19). One-way analysis of variance with blocks was done 

on root colonization % data for each cultivar, as well as species richness and Shannon 

diversity in the three sample types (roots, rhizosphere, soil). The Bartlett test of homogeneity 

of variances and the Shapiro-Wilk normality test were applied to the data to ensure 

compliance with the analysis’ requirements. A dendrogram based on average agglomerative 

clustering (UPGMA) and a heatmap were generated to illustrate the distances between 
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samples, and principal component analysis was performed to represent the community 

structure. The AMF communities in each of the three environments were analysed by 

PerMANOVA and by one-way ANOVA on select fungal OTUs of interest, and the 

community profiles were represented with bar graphs.  

 

 

 



 

 

Results 

Root Colonization 

All root samples for all wheat cultivars showed some degree of colonization by AM 

fungi, varying between 57.84% (Arnautka) and 84.02% (AC Navigator) (Figure 2). However 

the differences were not significant (p-value from ANOVA = 0.455; p-value from Dunnett’s 

Test > 0.05). 

 

Figure 2. Percentage of AM fungi colonization for each cultivar based on the gridline 

intersect method
 
(±SE). See Appendix 1 for full cultivar names and other information. 

Highest observed colonization in AC Navigator (84.02%) and lowest observed 

colonization in Arnautka (57.84%). P-value from ANOVA = 0.455 and Dunnett test > 

0.05, no significant difference in means (n = 4) 
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AMF Community Diversity 

The rhizosphere and soil samples showed greater AMF species richness and diversity 

than the root samples (Figure 3, p.15), which is expected as plants do not indiscriminately 

form associations with all fungal species in their soil. The Shannon diversity plot shows that 

there is no significant difference in the diversity of the AMF community between the 

rhizosphere and the soil, thus theoretically evenness should be higher in the soil samples to 

balance the lower richness. However the observed difference in evenness is not large enough 

to be significant, with a p-value from Student’s t-test of 0.12. 



 

15 

 

Figure 3. AMF species richness and Shannon diversity coefficient in 31 durum wheat 

cultivars based on origin of samples (rhizosphere, roots, soil). P-value from ANOVA is 

5.01e-12 for species richness and <2e-16 for Shannon diversity (n = 31). The horizontal 

lines represent the median of the datasets and boxes represent the middle 50% of values 

(25% above the median and 25% below). Whiskers represent maximum and minimum 

values in each dataset. 
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AMF Community Structure by Origin 

Samples originating from root-extracted DNA form a distinct pattern of AMF 

colonization compared to soil and rhizosphere samples. Community composition in roots was 

similar across cultivars, but different from the composition of the rhizosphere and soil 

communities. This is illustrated by the high degree of clustering between root samples in the 

dendrogram (Figure 4, p. 17) as well as the distinct pattern in the heat map indicating small 

distances, and thus high similarity, between these samples (Figure 5, p. 18).  
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Figure 4. Dendrogram of OTU data based on average agglomerative clustering 

(UPGMA) of Chord distance, divided into 4 groups. Cluster 2 (green) contains all 

samples taken from DNA extracted from durum wheat roots (R1-31). 
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Figure 5. Seriation heatmap showing lower distance objects closer to the diagonal. 

Note the highly similar root samples (lower right). 

  

Roots 
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The distinct pattern of root sample clustering is most clearly evident in the PCA 

(Figures 6 & 7, p. 20-21), where the scaling 1 biplot shows samples originating from wheat 

roots form a tight cluster on the right-hand side of the plot along PC1. It also suggests 

composite OTU RHIR (made up of the 5 OTUs that were identified as Rhizophagus 

irregularis; 109, 411, 601, 762, 992) and OTU201 (Rhizophagus intraradices) dominate the 

root AMF community. As for the two other groups of samples—rhizosphere and soil—they 

are not as strongly clustered on the PCA biplot but nevertheless rhizosphere samples are 

generally grouped in the upper left quadrant of the plot and correlated with OTU133 (Glomus 

sp.) and OTU143 (Claroideoglomus sp.), as well as three OTUs which could not be 

adequately identified (OTU172, OTU389, OTU494). Meanwhile soil samples are generally 

grouped in the bottom left quadrant of the plot and influenced by OTU340 (Glomus sp.), 

OTU186 (a Claroideoglomus sp.; either Claroideoglomus lamellosum or Claroideoglomus 

etunicatum), and OTU455 (Glomus sp. or Rhizophagus sp.), as well as one which could not be 

adequately identified (OTU952). 
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Figure 6. Principal component analysis biplot on Hellinger transformed OTU data, 

scaling 1. Note the cluster of root originated samples on the right of the plot, exhibiting a 

unique community of associated AMF.  

  

Roots 
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The scaling 2 biplot (Figure 7) suggests OTUs 133 (Glomus sp.), 143 

(Claroideoglomus sp.), 494, and 389 are correlated together given the small angles between 

the vectors. Similarly OTUs 340 (Glomus sp.), 186 (Claroideoglomus sp.) and 952, as well as 

OTUs RHIR (Rhizophagus irregularis) and 201 (R. intraradices) are correlated together.  

 

 

Figure 7. Principal component analysis biplot on Hellinger transformed OTU data, 

scaling 2. Three types of AMF communities can be distinguished based on the angles 

between vectors.  

 

Roots 
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Figure 8. Bar graph illustrating how community structure of wheat-associated AMF 

changes based on sample origin. 

 

Figure 8 shows the relative abundance of the AMF taxa composing each community 

found by the PCA above (Figures 6 & 7, p. 20-21). In addition, while both the soil and 

rhizosphere communities exhibit important proportions of both Glomus sp. and 

Claroideoglomus sp. represented by 2 different OTUs each (OTU340/orange and 

OTU133/dark blue for Glomus sp. and OTU186/purple and OTU143/red for Claroideoglomus 

sp.), the relative contribution of each OTU in those two communities reflects the layout of the 

PCA biplots. Thus the orange band of Glomus sp. in Figure 8 is much thicker in the soil 

community, indicating a greater proportion of OTU340 in those samples. In contrast the dark 

blue band of Glomus sp. in the rhizosphere community in Figure 8 illustrates that OTU133 

contributes more. Similarly the purple band of Claroideoglomus sp. (OTU186) is thicker in 

the soil community while the red band of Claroideoglomus sp. (OTU143) is thicker in the 

rhizosphere community. 
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AMF Community Structure by Wheat Genotype 

While the results show a distinct effect of sample origin on community composition, 

PerMANOVA analysis shows there is no effect of individual wheat genotypes on AMF 

community (Table III), with a p-value > 0.05 in all 3 sample types.  

 

Table III.   PerMANOVA results for wheat genotype effect on AMF community. 

No significant results for all 3 sample types (p-value > 0.05) 

 

In addition, ANOVA performed on individual OTUs of interest selected from among 

the OTUs that stood out in the PCA (Figure 6, p. 20) and the community structure analysis 

(Figure 8, p. 22) also show that we cannot reject the null hypothesis that there is no difference 

in means between wheat genotypes (Table IV, p. 24).  All but the two RHIR OTUs (all 

samples combined and roots only) were subjected to square root transformation before 

analysis to comply with homogeneity of variances and normality requirements. In the case of 

the two RHIR OTUs the data passed the Bartlett test of homogeneity of variances but failed 

a) Rhizo 

b) Roots 

c) Soil 
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the Shapiro-Wilks normality test even after transformation. In all cases for all OTU tested, 

there were no pairs of genotypes for which Dunnett’s test found significant difference. 

Table IV: Brief summary table of various ANOVA results for select OTUs with 

regards to wheat genotype. In no case was a significant result observed (all p-

value > 0.05) meaning we cannot reject the null hypothesis that there is no 

difference in the means. 

All samples Roots Rhizosphere 

OTU RHIR (R. irregularis) 

F-value: 1.315  

p-value: 0.12953 

OTU RHIR (R. irregularis) 

F-value: 0.729  

p-value: 0.8355 

OTU133 (Glomus sp.) 

F-value: 1.018   

p-value: 0.456 

 OTU201 (R. intraradices) 

F-value: 1.395  

p-value: 0.11880 

OTU143 (Claroideoglomus 

sp.) 

F-value: 0.832    

p-value: 0.71 

  OTU172 

F-value: 0.644  

p-value: 0.9134 

 

The community profile graphs below (Figures 9-12, p. 25-28) provide a visual 

representation of the lack of difference between genotypes for community composition found 

by the PerMANOVA and ANOVA tests. Figure 9 shows the community as a whole including 

all samples from the 3 origins (roots, rhizosphere and soil) while Figures 10-12 illustrate in 

more detail the communities found in each of the 3 areas. The fungal species and OTUs 

highlighted on the graphs are those which stood out in the PCA tests above. 
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Figure 9. Bar graph illustrating proportions of the most important fungal species in 

each wheat cultivar’s overall community (including roots, rhizosphere and soil) (%). The 

legend contains the important OTUs identified by the PCA. 
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Figure 10. Bar graph illustrating proportions of the most important fungal species in 

each wheat cultivar’s root-associated community (%). The legend contains the important 

OTUs identified by the PCA which characterize the root-associated community. P-value 

from PerMANOVA = 0.668, n=4. 
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Figure 11. Bar graph illustrating proportions of the most important fungal species in 

each wheat cultivar’s rhizosphere-associated community (%).The legend contains the 

important OTUs identified by the PCA which characterize the rhizosphere-associated 

community. P-value from PerMANOVA = 0.337, n=4. 
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Figure 12. Bar graph illustrating proportions of the most important fungal species in 

each wheat cultivar’s soil-associated community (%).The legend contains the important 

OTUs identified by the PCA which characterize the soil-associated community. P-value 

from PerMANOVA = 0.098, n=4. 
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Discussion 

Root Length Colonization 

The percentages of root lengths colonized (% RLC) (Figure 2) are on the high end 

compared to previous studies like Ellouze et al. 2016 and Singh et al. 2012 which found 

colonization percentages under low fertility conditions in the range of roughly 12-43% and 8-

32% respectively. This difference may be due to the fact that those previous experiments were 

conducted in greenhouses under controlled conditions with a limited number of AMF species 

tested, whereas the current study was done in natural field conditions where the entire range of 

resident AMF species could potentially colonize the roots.  

The colonization levels reported here are more in line with what Graham & Abbott 

(2000) observed from “aggressive colonizers” at low P fertility (50-89% RLC compared to 58-

84% RLC in this project). In their case the aggressive colonizers included species such as 

Scutellospora calospora, Glomus invermaium, Acaulospora laevis and Gigaspora decipiens 

inoculated onto specimens of Kulin wheat. In my experiment (Figure 10) the most prominent 

AMF colonizing the roots of durum wheat were two Rhizophagus species (R. irregularis and 

R. intraradices). These species, especially R. irregularis, are common plant colonizers in 

nature and are widely used as inoculants in both commercial and scientific contexts (Peyret-

Guzzon et al. 2016), thus finding them strongly represented in this field experiment was not 

surprising.  

In addition to the identity of the AMF colonizing the wheat, another factor which likely 

contributed to the high % RLC observed was the fertility of the field, specifically the 

phosphorus fertility. The field where the trial was conducted is naturally poor in phosphorus 

(Table I), and the decision was made to withhold adding any P fertilization at the time of 

sowing the wheat in order to favour associations with AMF. In their study on the effect of 

domestication on AM association at different fertility regimes, Martín-Robles et al. (2017) 

found that at low P fertility levels, both domesticated crops and wild progenitors benefitted 

similarly from AM association. This is in line with the results presented here, which showed 
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no significant difference in colonization or AM fungal community composition between 

durum wheat genotypes (Figure 2; Tables III, IV). 

AMF Community Structure 

While it is clear that durum wheat genotype did not influence AMF community profile 

(Figures 9-12), the distinct structure found in the different sample types, specifically roots, 

suggest there is active selection on the plant’s part with regards to AMF symbiosis. Such 

deliberate partner selection is known to occur in a broad range of plant and AMF species 

mediated in part by various chemicals which are released into the rhizosphere (Werner & 

Kiers 2015, Steinkellner et al. 2007). Evidence for this selection is seen throughout the results, 

as root originated samples are consistently more tightly clustered together and more similar to 

each other than to any other sample. Also, the root community is dominated by 2 species 

which are comparatively not important in the soil or rhizosphere communities, where they 

represent less than 10% (compared to 61.5% for R. irregularis and 14.1% for R. intraradices 

in the root community) (Figure 8). In addition, the root associated AMF community boasts 

overall fewer species than the soil or rhizosphere, but interestingly the species richness is 

higher in the rhizosphere than in the soil, which could be due to fungal species becoming 

“activated” as they come into contact with the wheat roots and proliferating at high enough 

levels to be detectable by the analysis (Figure 3). Most likely all the species present in the 

rhizosphere samples are also present in the soil samples, but in a dormant state and at low 

enough abundance that they are undetected. All these results together point to a filtering and 

selection process which favours the proliferation of certain AMF species within wheat roots, 

and the lack of genotype effect suggests the underlying mechanisms which shape community 

structure are likely common among durum wheat cultivars, and no single genotype interacts 

differently with the soil AMF under the trial conditions. The exact factors governing partner 

selection between AM fungi and durum wheat could be an interesting avenue to explore with 

further research. 
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Breeding for AMF Compatibility 

Durum wheat breeding and improvement in Canada has been an evolving and ongoing 

endeavour since the first Canadian cultivar, Stewart 63, was registered in 1963. Since then 

over 20 new cultivars have been developed and registered, almost all of which were included 

in this study. Durum wheat breeding has been directed by market demands and quality 

standards through the years, and as a result more recent registrations exhibit higher yield and 

grain protein content, higher yellow pigment content and gluten strength as well as lower grain 

cadmium concentrations (Dexter 2008, Clarke et al. 2010). Resistance to diseases and pests 

such as fusarium head blight, leaf and stem rust, wheat stem sawfly and wheat midge is also 

an area of interest to breeders, especially as the incidence and severity of pest damage 

increases as a result of climate change. Canadian durum is already resistant against some 

diseases, and efforts to maintain and improve resistance in future cultivars are underway 

(Clarke et al. 2010).  

There is high genetic diversity available within durum wheat germplasm which allows 

for such breeding to occur, and breeding for mycorrhizal association is an avenue which could 

be explored as the push to decrease the need for chemical fertilizers intensifies. Singh et al. 

2012 demonstrated in a greenhouse experiment using five different durum wheat cultivars that 

the genetic variation necessary for selection on AM symbiotic formation and function exists 

within the species. This should serve as a starting point for identifying the genes responsible 

for AM formation and developing new cultivars with this criterion in mind. Singh et al. 2012 

also warn against selecting only for AM dependence, but rather breeding efforts should aim to 

produce cultivars with good AM formation and phenotypic plasticity allowing them to respond 

effectively to a variety of nutrient conditions.   

Building upon the findings of Singh et al. 2012 and Ellouze et al. 2016 this project 

sought to investigate the AMF communities of a large set of wheat cultivars (31 as opposed to 

the 5 tested in Singh et al. 2012) in a natural field setting rather than in a greenhouse setting. 

Similar to Ellouze et al. 2016, the current study found no significant effect of wheat genotype 

on AM root colonization or indeed on AM community composition. The comparison between 

the two studies is particularly apt because all but one cultivar that was tested in 2016 was also 

tested in the present study. While wheat genotype was identified as having a significant effect 
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on root colonization at both low and medium soil fertility in the Singh et al. 2012 study, the 

specific genotypes of interest for the present study (ie. those that were used in the field trial as 

well as in the 2016 greenhouse trial, namely AC Morse, Commander, and Strongfield) showed 

no significant differences between them in terms of root colonization by AMF at medium 

fertility, while at low fertility AC Morse and Strongfield exhibited similar colonization.  

This would suggest that in the conditions tested both in the greenhouse experiment of 

2016 and 2012, and in the present field trial, wheat genotype in itself does not significantly 

affect mycorrhizal fungi. A factor which may affect the results could be the fact that all durum 

wheat cultivars tested are of Canadian origin, which may result in similar reactions to AMF 

just by virtue of being broadly adapted to similar environmental conditions and developed 

using similar techniques. It would be interesting to test a broader selection of cultivars from 

around the world to see whether the observed lack of genotype effect in Canadian cultivars 

holds true. 



 

 

Conclusion 

This study characterized the AM fungal communities of 31 different durum wheat 

cultivars in a natural field setting with no artificial inoculation and low soil P fertility. The 

hypothesis that different cultivars support distinct AM communities was not supported, 

contrary to what some previous studies have suggested. The AM fungal community found 

within wheat roots is distinct compared to that in the rhizosphere or surrounding soil, and is 

dominated by Rhizophagus irregularis and R. intraradices. When analyzing individual fungal 

taxa no significant difference was found in their relative abundance when tested by wheat 

genotype. The results of this research constitute a base which explores a large number of 

cultivars from the oldest (Arnautka) to the most recent (Transcend) under field conditions 

which future studies will be able to build on. It would be interesting to see these cultivars 

subjected to a range of soil fertility conditions which may impact their behaviour in the field. 
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Annex 1 – Wheat Cultivar List + Pedigree 

# Cultivar Pedigree (GRIS*) Year 

1 Arcola WASCANA/HERCULES 1983 

2 Arnautka LV-RUS; LV-ODESSA 1865 

3 Brigade DT-513/DT-696 2008 

4 CDC Verona D-95253/D-95212 2008 

5 Commander W-9260-BK-03/AC-

NAVIGATOR//AC-

PATHIFINDER 

2005 

6 Transcend DT-707/DT-696 2010 

7 Enterprise DT-716/STRONGFIELD; 9488-C-

CK-2/STRONGFIELD 

2009 

8 Eurostar G-9575-B-AA-09-C/DT-498//DT-

691 

2008 

9 Golden Ball (S)LV-SOUTH-AFRICA 1918 

10 Hercules RL-3097/RL-

3304//STEWART(TR.DR)/RL-3380 

1969 

11 Kubanka  LV 1938 

12 Kyle WAKOOMA/DT-322(6962-92-8-

5)//(6965-494-1)WAKOOMA/DT-

320 

1984 

13 Lakota SENTRY,USA//LD-379/LD-357 1960 

14 Macoun RL-3607/DT-182 1974 

15 Medora WARD/MACOUN 1982 

16 Mindum (S)HEDGEROW 1917 



 

 

17 Pelissier (S)LV-DZA 1896 

18 Plenty VIC/WASCANA//DT-354 1990 

19 Quilifen - - 

20 Sceptre D-72110/COULTER 1985 

21 Ramsey CARLETON/(PAL)PI-94701 1955 

22 Strongfield AC-AVONLEA/DT-665 2003 

23 Stewart 63 ST-464/8*STEWART,TR.DR; 

STEWART*8/ST-464  

1963 

24 Wakooma LAKOTA*2/PELISSIER; 

LAKOTAPELISSIER; 

LAKOTA/2*PELISSIER 

1973 

25 Wascana LAKOTA*2/PELISSIER 1971 

26 AC 

Pathfinder 

WESTBRED-881/DT-367; DT-

367/WESTBRED-881 

1999 

27 AC Morse RL-7196/D-84328 1996 

28 AC Navigator KYLE/WESTBRED-881 1999 

29 AC Napoleon VIC/DT-384//DT-471 1999 

30 AC Avonlea SC-8267-AD-2A/DT-612 1997 

31 AC Melita MEDORA/LLOYD 1995 

*GRIS = Genetic Resources Information System for Wheat and Triticale 

(http://www.wheatpedigree.net/, retrieved 20/10/2017) 

  

http://www.wheatpedigree.net/


 

 

Annex 2 – Soil DNA Extraction 

DNA extraction for the soil between rows was performed with two different kits due to Mo 

Bio ceasing manufacturing the UltraClean Soil DNA Isolation Kit partway through the 

extractions and replacing it with the PowerSoil DNA Isolation Kit. Below is the detailed list of 

which soil samples were treated with which kit. Verification of both kits was done by gel 

electrophoresis. 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 UltraClean PowerSoil



 

 

Annex 3 – Genome Quebec PCR Protocol 

1. Targeted PCR 

Master Mix 

Components 
1X 419 Final Concentration 

Q5 reaction Buffer 5X 1.60 670.4 1 X 

DMSO 0.40 167.6 5 % 

dNTP mix 10 mM 0.16 67.0 0.2 mM 

Q5 HiFi polymerase 

2U-ml 0.08 33.5 0.02 U/μl 

H2O 4.70 1969.3 

 Franck_F-CS1 100μM 0.03 12.6 0.4 μM 

Franck_R-CS2 100μM 0.03 12.6 0.4 μM 

DNA diluted 1/200 1.00 

  Total 8.00 2933.0 

  

2. Illumina adapters and index incorporation 

Master Mix 

Components 
1X 419 

Final 

Concentration 

Q5 reaction Buffer 5X 4.00 1676.0 1 X 

DMSO 1.00 419.0 5 % 



 

 

dNTP mix 10 mM 0.40 167.6 0.2 mM 

Q5 HiFi polymerase 

2U-ml 0.25 104.8 0.025 U/μl 

H2O 11.35 4755.7 

 Total 17.00 7123.0 

  

Volume of Master mix to transfer 

in samples 
17 

2uM Index volume to add 2 

Amplified DNA diluted 1/200 (ul) 1 

Final volume 20 

 

 

 


