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THE HESSIAN METHOD
(HIGHLY EFFICIENT STATE SMOOTHING, IN A NUTSHELL)

WILLIAM J. MCCAUSLAND

Abstract. I introduce the HESSIAN method for semi-Gaussian state space models with
univariate states. The vector of states α ≡ (α1, . . . , αn) is Gaussian and the observed vec-
tor y ≡ (y>1 , . . . , y

>
n )> need not be. I describe a close approximation g(α) to the density

f(α|y). It is easy and fast to evaluate g(α) and draw from the approximate distribu-
tion. In particular, no simulation is required to approximate normalization constants.
Applications include likelihood approximation using importance sampling and posterior
simulation using Markov chain Monte Carlo (MCMC). HESSIAN is an acronym but it
also refers to the Hessian of log f(α|y), which figures prominently in the derivation. I
compute my approximation for a basic stochastic volatility model and compare it with
the multivariate Gaussian approximation described in Durbin and Koopman (1997) and
Shephard and Pitt (1997). For a wide range of plausible parameter values, I estimate the
variance of log f(α|y) − log g(α) with respect to the approximate density g(α). For my
approximation, this variance ranges from 330 to 39000 times smaller.

1. Introduction

I introduce a close approximation of the conditional distribution of states given obser-
vations in state space models of the form

α1 = x>0 β + u0, αt+1 = x>t β + φtαt + ut, t = 1, . . . , n,

f(y1, . . . , yn|α1, . . . , αn) =
n∏
t=1

ft(yt|αt),

where the αt are univariate latent states, the xt are vectors of covariates, β is a vector of
coefficients, the ut are independant Gaussian random variables with mean 0 and precision
(inverse of variance) ωt, the yt are observable random vectors, and the ft are probability
density or mass functions. I define α ≡ (α1, . . . , αn)> and y ≡ (y>1 , . . . , y

>
n )>.

The distribution of yt given αt is quite flexible. It can be univariate or multivarite and
the length of yt can change with t. The ft may be density functions or mass functions
or a combination, and this too can vary over time. I require log ft(yt|αt) to be five times
differentiable in αt. I also assume that the distribution of α given y has a unique mode.
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2 WILLIAM J. MCCAUSLAND

In the special case where the densities ft(yt|αt) are Gaussian, α|y is multivariate Gauss-
ian and there are efficient methods to evaluate the likelihood function and draw α given y.
Carter and Kohn (1994), Frühwirth-Schnatter (1994), de Jong and Shephard (1995), and
Durbin and Koopman (2002) offer methods based on the Kalman filter. Rue (2001) and
McCausland, Miller, and Pelletier (2007) introduce methods based on the precision of the
conditional distribution of α given y.

When the ft are not Gaussian, we can make use of a suitably close approximation g(α)
of the target distribution f(α|y). We can estimate the likelihood function f(y) using g(α)
as an importance density. One can write f(y) = Eg[f(α)f(y|α)/g(α)], where Eg denotes
expectation with respect to the approximate distribution. If regularity conditions for a
strong law of large numbers hold, then

(1)
1
M

M∑
m=1

f(α(m))f(y|α(m))
g(α(m))

→ f(y)

almost surely, where {α(m)}Mm=1 is a random sample from the approximate distribution.
We can do posterior inference for α using the approximation as a proposal distribution in
a Metropolis-Hastings update of the target distribution. Providing that the approximation
is close enough, drawing α as a block in this way may be much more efficient than one-
at-a-time updates of the αt, due to posterior autocorrelation in α. One can also use a
good approximation of f(α|y) as part of a joint proposal distribution for parameters and
states: one can draw a proposal for the parameters followed by a conditional proposal
of α given the proposed parameter value then accept or reject the parameters and states
together. This is particularly efficient when parameters and states are strongly a posteriori
independent.

The closer the approximation, the better it is. In the importance sampling case, the
variance of the sample mean in (1) decreases (or becomes finite) as g(α) more closely ap-
proximates f(α|y). In the MCMC case, the acceptance probability increases. Often the
multivariate Gaussian approximation is not suitable as a proposal or importance distribu-
tion because it is not a close enough approximation of the target distribution. See Shephard
and Pitt (1997), Gamerman (1998) and Pitt (2000) and the examples in Section 6 of the
present paper.

There exist better approximations than the multivariate Gaussian. Richard and Zhang
(forthcoming) describe one. The user supplies an “auxiliary parametric importance sam-
pler”, which consists of parametric approximations to the conditional densities f(αt|αt+1, y).
Computing parameters for the auxiliary sampler relies on computationally intensive simula-
tion. Richard and Zhang (forthcoming), Liesenfeld and Richard (2003) and Liesenfeld and
Richard (2008) consider applications of this approximation to stochastic volatility models.
They suggest a Gaussian parametric approximation, which leads to particularly simple
simulations but does not capture deviations from Gaussianity of the conditional densi-
ties f(αt|αt+1, y). A more flexible choice of approximation would impose a considerable
implementation burden on the user and require more costly simulations.
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Rue, Steinsland, and Erland (2004) also describe improvements to the multivariate
Gaussian approximation. Their approximation applies in the more general context of
hidden Gaussian random fields, but also requires costly simulations to compute.

I will describe three approximations of f(α|y), the conditional density of α given y.
The first is a multivariate normal approximation introduced by Durbin and Koopman
(1997) and Shephard and Pitt (1997), and I use this as a benchmark. The second and
third approximations introduce refinements to the multivariate Gaussian approximation.
One can quickly and easily evaluate the fully normalized approximate densities and draw
random vectors from the corresponding distributions.

In Section 2, I discuss the first, multivariate Gaussian, approximate distribution. I de-
scribe efficient methods to draw from the approximate distribution and evaluate its density.
As in Durbin and Koopman (1997) and Shephard and Pitt (1997), the approximation is
based on the quadratic Taylor series approximation of log f(y|α) at α◦, the conditional
mode of α given y. However, I use very different techniques to draw α from the approxi-
mate distribution. I draw the αt sequentially backwards. To compute Eg[αt|αt+1, . . . , αn]
and Varg[αt|αt+1, . . . , αn], I use the procedure by McCausland, Miller, and Pelletier (2007),
based on an algorithm by Vandebril, Mastronardi, and Van Barel (2007) for solving band
diagonal symmetric systems.

Sections 3 and 4 both introduce refinements to the multivariate Gaussian approxima-
tion. For the first refinement, the approximate conditional distributions αt|αt+1, . . . , αn
are still Gaussian, but α is no longer multivariate Gaussian. The second refinement re-
places the conditional Gaussian distributions with skewed distributions capturing some of
the departure from Gaussianity of the target distributions αt|αt+1, . . . , αn, y.

In Section 5, I briefly address problems that arise when the ratio f(α|y)/g(α) is un-
bounded. I mention a standard solution and offer a variation on it.

In Section 6, I compare the three approximations of the target density for a basic sto-
chastic volatility model. I first estimate the variance (with respect to the approximate
distribution) of log f(α|y) − log g(α) for the three approximations g(α). The first refine-
ment leads to a moderate reduction in variance. Together with the first refinement, the
second refinement leads to a dramatic reduction in variance for a wide range of plausible
parameter values. I also demonstrate the efficacy of the final approximation as an impor-
tance distribution and as a proposal distribution. The HESSIAN method refers to the use
of the second refinement for state smoothing.

In Section 7, I conclude and mention some possible extensions.

2. A Basic Multivariate Gaussian Proposal

Here I consider a first approximation of the target distribution. It is a multivariate
Gaussian distribution based on a quadratic approximation of log f(α|y) at the mode α◦ of
the target distribution. One can write

log f(α|y) = log f(α) + log f(y|α) + k.

Here and throughout the paper I use k to denote an unimportant term not depending on
α. This is a slight abuse of notation since the term is not always the same.
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The first term is already quadratic in α. It is convenient to write it in the following
form:

(2) log f(α) =
1
2

[
log |H̄| − n log 2π − α>H̄α+ 2c̄>α+ c̄H̄−1c̄

]
,

where the precision (inverse of variance) H̄ and covector (precision times mean) c̄ of the
marginal distribution of α are given by

H̄ ≡



ω0 + ω1φ
2
1 −ω1φ1 0 0 . . . 0

−ω1φ1 ω1 + ω2φ
2
2 −ω2φ2 0 . . . 0

0 −ω2φ2
. . . . . . . . .

...

0 0
. . . . . . . . . 0

...
...

. . . . . . ωn−2 + ωn−1φ
2
n−1 −ωn−1φn−1

0 0 . . . 0 −ωn−1φn−1 ωn−1


and

c̄ ≡


ω0x0β − ω1φ1x1β

...
ωn−2xn−2β − ωn−1φn−1xn−1β

ωn−1xn−1β

 .
A second order Taylor expansion of log f(y|α) around the posterior mode α◦ gives the

approximation

(3) log f(y|α) ≈ −1
2

[
α>Hα− 2c>α

]
+ k,

where H ≡ diag(h1, . . . , hn), c ≡ (c1, . . . , cn)>, and for t = 1, . . . , n,

(4) ht ≡ −
∂2f(yt|αt)

∂α2
t

∣∣∣∣
αt=α◦t

and ct ≡
∂f(yt|αt)
∂αt

∣∣∣∣
αt=α◦t

− htα◦t .

The sum of the right hand sides of (2) and (3) gives the second order Taylor series expansion
of log f(α|y) around α◦:

log f(α|y) ≈ 1
2

[
log | ¯̄H| − n log 2π − α> ¯̄Hα+ 2¯̄c>α+ ¯̄c ¯̄H−1¯̄c

]
+ k,

where ¯̄H ≡ H̄ + H and ¯̄c ≡ c̄ + c. Since by assumption α◦ is the unique mode of α given
y and f(α|y) is more than twice differentiable, ¯̄H must be positive definite. This in turn
implies that the approximation is multivariate Gaussian.

Although framed differently, the multivariate Gaussian approximation is identical to the
approximation introduced by Durbin and Koopman (1997) as an importance distribution.
They constructed, as a device, a fully Gaussian state space model where the conditional
distribution of the latent states given y approximates that of the semi-Gaussian model.
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2.1. Implementation. Drawing from the approximate distribution involves finding α◦,
¯̄H and ¯̄c and then drawing α∗ ∼ N( ¯̄H−1¯̄c, ¯̄H−1).
α◦, ¯̄H and ¯̄c satisfy α◦ = ¯̄H−1¯̄c. One can find these values by iterating the computation

α′ := ¯̄H(α)−1¯̄c(α) until numerical convergence, where ¯̄H(α)−1 and ¯̄c(α) are defined in
the same way as ¯̄H and ¯̄c except that the derivatives in (4) are evaluated at the value α
rather than at α◦. I use the algorithm of Vandebril, Mastronardi, and Van Barel (2007) to
compute α′. We will refer to this algorithm as the solver, since it solves a band diagonal
system. There is a forward pass and a backward pass. The foward pass is:

(1) Compute Σ1 := 1/ ¯̄H11 and m1 := Σ1¯̄c1.
(2) For t = 2, . . . , n, compute Σt := ( ¯̄Htt− ¯̄H2

t,t−1Σt−1)−1, andmt = Σt(¯̄ct− ¯̄Ht,t−1mt−1).
The backward pass is:

(1) Compute α′n = mn.
(2) For t = n− 1, . . . , 1, compute α′t = mt − Σt

¯̄Ht,t+1α
′
t+1.

Once we have α◦, we can draw α∗ from the approximate distribution using the algorithm
described in McCausland, Miller, and Pelletier (2007). Here, too, there is a forward and a
backward pass. The forward pass is the same as that of the solver. The backward pass is:

(1) Draw α∗n ∼ N(mn,Σn).
(2) For t = n− 1, . . . , 1, draw α∗t ∼ N(mt − Σt

¯̄Ht,t+1α
∗
t+1,Σt).

Evaluation of the density g(·) corresponding to the approximate distribution is straight-
forward. We have

log g(α) = −n
2

log(2π)− 1
2

n∑
t=1

[
log(Σt) + Σ−1

t (αt −mt − Σt
¯̄Httαt+1)2

]
While the multivariate Gaussian approximation is the same as the distribution Durbin

and Koopman (1997) and Shephard and Pitt (1997) introduce, the method described here
to draw variates is quite different, since it does not use the Kalman filter. McCausland,
Miller, and Pelletier (2007) compare their method with methods based on the Kalman filter
and find that their method is somewhat more efficient when one draw is required for each
value of the parameters and considerably more efficient when repeated draws are required.
MCMC is typically an example of the former. Importance sampling is an example of the
latter.

3. A First Refinement

In this section I propose a first refinement to the multivariate Gaussian approximation.
For the multivariate Gaussian approximation, Eg[αt|αt+1, y] depends only affinely on αt+1,
but for the first refinement there are also quadratic and cubic terms. For the basic ap-
proximation, Varg[αt|αt+1] does not depend on αt+1 at all, but for the first refinement
log Varg[αt|αt+1, y] depends on αt+1 through linear and quadratic terms. The conditional
distribution of αt given αt+1 and y is still Gaussian, but the distribution of α given y is no
longer multivariate Gaussian.
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To provide some intuition for the first refinement, I first describe the following im-
practical approximate distribution. It is closer to the target distribution but I do not
know of any computationally efficient procedure for drawing from it. The approximate
marginal distribution of αn is the same as for the multivariate Gaussian approximation.
For t = n − 1, . . . , 1, the approximate conditional distribution of αt given αt+1, . . . , αn
is based on the quadratic Taylor series expansion of log f(α1, . . . , αt|αt+1, . . . , αn, y) at
(α•1|t+1, . . . , α

•
t|t+1), the conditional mode of (α1, . . . , αt) given (αt+1, . . . , αn) and y. There

is a multivariate Gaussian distribution whose log density equals this expansion up to an
additive constant. We know that its mean is (α•1|t+1, . . . , α

•
t|t+1), since that it its mode.

For τ = 1, . . . , t, I define Σ•τ |t+1 as the implied conditional variance of ατ given αt+1. The
(impractical) approximate distribution is defined by

αn|y ∼ N(α◦n,Σn), αt|αt+1, . . . , αn, y ∼ N(α•t|t+1,Σ
•
t|t+1), t = n− 1, . . . , 1.

In the way previous draws are used to update the quadratic approximations of the log f(yt|αt),
this should be a better approximation of the target distribution than the multivariate
Gaussian approximation, which is based on the static quadratic approximations of the
log f(yt|αt) at α◦t . Our simulation results bear this out.

Computing the α•t|t+1 and Σ•t|t+1 is feasible: for each t, we can compute α•1:t|t+1 ≡
(α•1|t+1, . . . , α

•
t|t+1) and (Σ•1|t+1, . . . ,Σ

•
t|t+1) in much the same way as we compute α◦ and

the Σt. However, drawing the whole vector α in this way requires O(n2) operations and
this is impractical. I do not know of any method of computing these quantities exactly
using only O(n) operations.

However, we can do something almost as good using O(n) operations. Instead of com-
puting the α•t|t+1 and Σ•t|t+1 exactly, I use the following Taylor series approximations:

(5) α•t|t+1 ≈ α̂
•
t|t+1 ≡ α

◦
t + α̇t(αt+1 − α◦t+1) +

1
2
α̈t(αt+1 − α◦t+1)2 +

1
6

...
α t(αt+1 − α◦t+1)3,

(6) log Σ•t|t+1 ≈ log Σ̂•t|t+1 ≡ log Σ◦t + ṡt(αt+1 − α◦t+1) +
1
2
s̈t(αt+1 − α◦t+1)2,

where I define

α̇t ≡
∂α•t|t+1

∂αt+1

∣∣∣∣∣
αt+1=α◦t+1

, α̈t ≡
∂2α•t|t+1

∂α2
t+1

∣∣∣∣∣
αt+1=α◦t+1

,
...
α t ≡

∂3α•t|t+1

∂α3
t+1

∣∣∣∣∣
αt+1=α◦t+1

,

ṡt ≡
∂ log Σ•t|t+1

∂αt+1

∣∣∣∣∣
αt+1=α◦t+1

and s̈t ≡
∂2 log Σ•t|t+1

∂α2
t+1

∣∣∣∣∣
αt+1=α◦t+1

.

I compute these five derivatives exactly, for t = 1, . . . , n− 1, using O(n) operations.
I derive difference equations for α̇t, α̈t and

...
α t in the following way. Let t ∈ {1, . . . , n−1}

be arbitrary. The log conditional density of α1, . . . , αt given αt+1, . . . , αn and y is

log f(α1:t|αt+1, y) = −1
2

(α1:t − ᾱ1:t)>H̄1:t(α1:t − ᾱ1:t)− H̄t,t+1αtαt+1 + log f(y1:t|α1:t) + k,
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where H̄1:t is the leading t× t submatrix of H̄, y1:t ≡ (y1, . . . , yt)>, α1:t ≡ (α1, . . . , αt) and
ᾱ1:t = E[α1:t]. A first order necessary condition for α•1:t|t+1 to be the conditional mode is

(7) c̄1:t − H̄1:tα
•
1:t|t+1 − (0, . . . , 0, H̄t,t+1αt+1)> +

∂ log f(y1:t|α•1:t|t+1)

∂α>1:t

= 0,

where c̄1:t ≡ (c̄1, . . . , c̄t)>. We can rewrite this as

(8) ¯̄H•1:t|t+1α
•
1:t|t+1 = ¯̄c•1:t|t+1,

where
¯̄H•1:t|t+1 ≡ H̄1:t +H•1:t|t+1, ¯̄c•1:t|t+1 ≡ c̄1:t + c•1:t|t+1 + (0, . . . , 0,−H̄t,t+1αt+1)>,

H•1:t|t+1 ≡ diag(h•1|t+1, . . . , h
•
t|t+1), c•1:t|t+1 ≡ (c•1|t+1, . . . , c

•
t|t+1)>,

h•τ |t+1 ≡ −
∂2 log f(yτ |α•τ |t+1)

∂α2
τ

, c•τ |t+1 ≡
∂ log f(yτ |α•τ |t+1)

∂ατ
− h•τ |t+1α

•
τ |t+1, τ = 1, . . . , t.

Deriving difference equations for α̇t, α̈t and
...
α t involves differentiating (7) once, twice and

three times with respect to αt+1 and applying results based on the solver algorithm. I show
in Appendix A that α̇t is given by

(9) α̇t = −ΣtH̄t,t+1, t = 1, . . . , n− 1,

that the α̈t are given by the difference equation

(10) α̈1 = Σ1ψ1α̇
2
1, α̈t = Σtψtα̇

2
t + γtα̇

2
t α̈t−1, t = 2, . . . , n− 1,

where I define, for t = 1, . . . , n,

γt ≡ H̄t−1,tΣ◦t , ψt ≡
∂3 log f(yt|α◦t )

∂α3
t

and ψ′t ≡
∂4 log f(yt|α◦t )

∂α4
t

,

and that the
...
α t are given by the difference equation

...
α1 = Σ◦1(ψ′1α̇

3
1 + 3ψ1α̇1α̈1),

(11)
...
α t = Σ◦t (ψ

′
tα̇

3
t + 3ψtα̇tα̈t) + γt(

...
α t−1α̇

3
t + 3α̈t−1α̇tα̈t), t = 2, . . . , n.

I now describe how to compute ṡt and s̈t. Recall that the solver, applied to the un-
conditional precision ¯̄H and unconditional covector ¯̄c, generates the conditional variances
Σ1, . . . ,Σn for the multivariate Gaussian approximation. In the same way, it gives the
conditional variances Σ•1|t+1 and Σ•t|t+1 as

(12) Σ•1|t+1 = ( ¯̄H•11|t+1)−1, Σ•τ |t+1 =
[

¯̄H•ττ |t+1 − ( ¯̄H•τ,τ−1)2Σ•τ−1|t+1

]−1
, τ = 1, . . . , t.

Deriving difference equations for ṡt and s̈t involves differentiating (12) once and twice with
respect to αt+1 and applying results based on the solver algorithm. I show in Appendix B
that ṡt is given by the difference equation

(13) ṡ1 = Σ◦1ψ1α̇1, ṡt = Σ◦tψtα̇t + α̇t−1α̇tγtṡt−1, t = 2, . . . , n,
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and that s̈t is given by the difference equation

s̈1 = ṡ21 + Σ◦1(ψ′1α̇
2
1 + ψ1α̈1),

(14) s̈t = ṡ2t + Σt(ψ′tα̇
2
t + ψtα̈t) + γtα̇t−1(α̇2

t s̈t−1 + ṡt−1α̈t + ṡ2t−1α̇
2
t ), t = 2, . . . , n.

4. A Second Refinement

In the first refinement, the approximate conditional distributions αt|αt+1, y adjust to
changes in the quadratic approximation of

∑t
τ=1 log f(yτ |ατ ) as αt+1 deviates from α◦t+1.

The conditional distributions are still Gaussian, but the approximate distribution α|y is no
longer multivariate Gaussian. The second refinement captures departures from Gaussianity
of the target conditional distributions αt|αt+1, y.

The second refinement is based on an approximation of an approximation of the log
conditional densities log f(αt|αt+1, y). I first approximate log f(αt|αt+1, y) directly as a
third order polynomial in αt of the following form:

(15) log f(αt|αt+1, y) ≈ −1
2

(Σ?
t|t+1)−1(αt − α?t|t+1)2 + λ?t|t+1(αt − α?t|t+1)3,

where α?t|t+1, Σ?
t|t+1 and λ?t|t+1 are determined below. While the approximation is quite

good near α•t|t+1, it is not the log of a proper density, due to the unbounded cubic term. I
next approximate this approximation, up to an additive constant, by the log of a density
that is proper, fully normalized, easy to evaluate, and simple to draw from. The collection
of these indirect approximations of log f(αt|αt+1, y), for t = 1, . . . , n, defines the second
refinement.

4.1. Finding α?t|t+1, Σ?
t|t+1 and λ?t|t+1. We now proceed to find suitable values of the

α?t|t+1, Σ?
t|t+1 and λ?t|t+1 in (15). The case t = 1 is easy, since we know log f(α1|α2, y) up

to an additive constant. We can write down its third order Taylor series approximation
around α•1|2 as

log f2(α1|α2) ≈ −1
2

(Σ•1|2)−1(α1 − α•1|2)2 +
1
6
ψ•1|2(α1 − α•1|2)3 + k.

This leads to the following obvious choices:

(16) α?1|2 ≡ α
•
1|2, Σ?

1|2 ≡ Σ•1|2, λ?1|2 ≡
1
6
ψ•1|2.

Finding suitable values of α?t|t+1, Σ?
t|t+1 and λ?t|t+1 for t > 1 is more difficult, since we

do not know log f(αt|αt+1, y) up to an additive constant. I assume for now that we have
available a good approximation of E[αt−1 − α•t−1|t|αt, y] as a second order polynomial in
αt − α◦t . That is, I assume we know the constant (not depending on α) coefficients At−1,
Bt−1 and Ct−1 in the following expression:

(17) E[εt−1|αt] ≈ At−1 +Bt−1at +
1
2
Ct−1a

2
t ,
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where we define, for t = 1, . . . , n − 1, εt ≡ αt − α•t|t+1 and for t = 2, . . . , n, at ≡ αt − α◦t .
Later in the section I will derive the approximations in (17), computing the At, Bt and Ct.

We are now ready to find an approximation for log f(αt|αt+1, y) of the form given in
(15), for t > 0. We can write

(18) log f(αt|αt+1, y) = log c(αt) + log f(yt|αt) + log f(αt+1|αt) + k,

where the integration constant c(αt) is given by

c(αt) ≡
∫
f(α1)f(y1|α1)

{
t−1∏
τ=2

f(ατ |ατ−1)f(yτ |ατ )

}
f(αt|αt−1)

t−1∏
τ=1

dατ .

We now proceed to approximate each of the non-constant terms of (18) as a third order
polynomial in εt. Later, we use the coefficients of this polynomial to determine α?t|t+1,
Σ?
t|t+1 and λ?t|t+1.
We begin with the first term of (18), log c(αt). Taking the derivative of c(αt) with

respect to αt, we obtain

∂c(αt)
∂αt

=
∫
f(α1)f(y1|α1)

{
t−1∏
τ=1

f(ατ |ατ−1)f(yτ |ατ )

}
∂f(αt|αt−1)

∂αt

t−1∏
τ=1

dατ

=
∫
f(α1)f(y1|α1)

{
t−1∏
τ=1

f(ατ |ατ−1)f(yτ |ατ )

}
f(αt|αt−1)

∂ log f(αt|αt−1)
∂αt

t−1∏
τ=1

dατ .

We can write
∂ log c(αt)

∂αt
=

1
c(αt)

∂c(αt)
∂αt

= E

[
∂ log f(αt|αt−1)

∂αt

∣∣∣∣αt]
= −ωt−1αt + ωt−1xt−1β + ωt−1φt−1E[αt−1|αt]

≈ −ωt−1εt − ωt−1α
•
t|t+1 + ωt−1xt−1β − H̄t−1,t(α•t−1|t +At−1 +Bt−1at +

1
2
Ct−1a

2
t ).

We can approximate α•t−1|t as follows:

α•t−1|t ≈ α◦t−1 + α̇t−1at +
1
2
α̈t−1a

2
t +

1
6

...
α t−1a

3
t

=
(
α◦t−1 + α̇t−1δt +

1
2
α̈t−1δ

2
t +

1
6

...
α t−1δ

3
t

)
+
(
α̇t−1 + α̈t−1δt +

1
2

...
α t−1δ

2
t

)
εt

+
1
2

(α̈t−1 +
...
α t−1δt)ε2t +

1
6

...
α t−1ε

3
t

≈ α•t−1|t+1 +
(
α̇t−1 + α̈t−1δt +

1
2

...
α t−1δ

2
t

)
εt +

1
2

(α̈t−1 +
...
α t−1δt)ε2t +

1
6

...
α t−1ε

3
t .

Similarly, we have

At−1 +Bt−1at +
1
2
Ct−1a

2
t = (At−1 +Bt−1δt +

1
2
Ct−1δ

2
t ) + (Bt−1 + Ct−1δt)εt +

1
2
Ct−1ε

2
t .
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Gathering coefficients of 1, εt and ε2t and dropping the cubic term, we write

∂ log c(αt)
∂αt

≈
[
−ωt−1α

•
t|t+1 + ωt−1xt−1β − H̄t−1,t

(
α•t−1|t+1 +At−1 +Bt−1δt +

1
2
Ct−1δ

2
t

)]
+

[
−ωt−1 − H̄t−1,t

(
α̇t−1 + α̈t−1δt +

1
2

...
α t−1δ

2
t +Bt−1 + Ct−1δt

)]
εt

+
1
2
[
−H̄t−1,t(α̈t−1 +

...
α t−1δt + Ct−1)

]
ε2t .

Integrating the right hand side, we obtain

log c(αt) ≈
[
−ωt−1α

•
t|t+1 + ωt−1xt−1β − H̄t−1,t

(
α•t−1|t+1 +At−1 +Bt−1δt +

1
2
Ct−1δ

2
t

)]
εt

+
1
2

[
−ωt−1 − H̄t−1,t

(
α̇t−1 + α̈t−1δt +

1
2

...
α t−1δ

2
t +Bt−1 + Ct−1δt

)]
ε2t

+
1
6
[
−H̄t−1,t(α̈t−1 +

...
α t−1δt + Ct−1)

]
ε3t + k.

I now approximate the second term of (18), log f(yt|αt), by its third order Taylor series
expansion around α•t|t+1:

log f(yt|αt) ≈ log f(yt|α•t|t+1) +
∂ log f(yt|α•t|t+1)

∂αt
εt +

1
2

∂2 log f(yt|α•t|t+1)

∂α2
t

ε2t +
1
6

∂3 log f(yt|α•t|t+1)

∂α3
t

ε3t

= log f(yt|α•t|t+1) + (c•t|t+1 − h
•
t|t+1α

•
t|t+1)εt −

1
2
h•t|t+1ε

2
t +

1
6
ψ•t|t+1ε

3
t .

The third term of (18), log f(αt+1|αt), is already quadratic in αt, so we can write it exactly
as the following polynomial in εt:

log f(αt+1|αt) = −1
2
ωt(αt+1 − xtβ − φtαt)2

= k +
(
ωtφtαt+1 − ωtφtxtβ − ωtφ2

tα
•
t|t+1

)
εt −

1
2
ωtφ

2
t ε

2
t .

Now we have all non-constant terms of (18) approximated by explicit third order polyno-
mials in εt. We ignore the constant coefficient, which corresponds to the normalization con-
stant of f(αt|αt+1, y). Using the definitions H̄tt = ωt−1+ωtφ2

t and c̄t = ωt−1xt−1β−ωtφtxtβ,
we can write the coefficient of εt as

(c̄t + c•t|t+1)− (H̄tt + h•t|t+1)α•t|t+1 − H̄t,t−1α
•
t−1|t+1 − H̄t,t+1αt+1 − H̄t,t−1

(
At−1 +Bt−1δt +

1
2
Ct−1δ

2
t

)
= ¯̄c•t|t+1 −

¯̄H•tt|t+1α
•
t|t+1 − H̄t,t−1α

•
t−1|t+1 − H̄t,t+1αt+1 − H̄t,t−1

(
At−1 +Bt−1δt +

1
2
Ct−1δ

2
t

)
= −H̄t,t−1

(
At−1 +Bt−1δt +

1
2
Ct−1δ

2
t

)
.

To compute the final right hand side of this equation, I use the last element of the vector
equation in (8).
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I write the coefficient of ε2t as

−1
2

[
H̄tt + h•t|t+1 + H̄t−1,t

(
α̇t−1 + α̈t+1δt +

1
2

...
α tδ

2
t

)
+ H̄t−1,t(Bt−1 + Ct−1)δt

]
= −1

2

[
¯̄H•tt|t+1 −

¯̄H2
t−1,tΣ

•
t−1|t + ¯̄Ht−1,t(Bt−1 + Ct−1δt)

]
= −1

2

[
(Σ•t|t+1)−1 + ¯̄Ht−1,t(Bt−1 + Ct−1δt)

]
.

For the final line of this equation, I use equation (12), with τ = t.
The coefficient of ε3t is

1
6

[
ψ•t|t+1 − H̄t−1,t(α̈t−1 +

...
α t−1δt + Ct−1)

]
.

Gathering terms, we now have the following approximation g(εt) of the log conditional
target density log f(εt|αt+1):

g(εt) ≡ −1
2

(Σ•t|t+1)−1ε2t − H̄t,t−1

(
At−1 +Bt−1δt +

1
2
Ct−1δ

2
t

)
εt

−1
2
H̄t,t−1(Bt−1 + Ct−1δt)ε2t +

1
6

[
ψ•t|t+1 − H̄t,t−1(α̈t−1 +

...
α t−1δt)− H̄t,t−1Ct−1

]
ε3t(19)

A good choice for α?t|t+1 would be α•t|t+1 + ε?, where ε? is the local maximum of g(εt)
near zero. This local maximum ε? must satisfy

∂g(ε?)
∂αt

= −(Σ•t|t+1)−1ε? − H̄t,t−1

(
At−1 +Bt−1δt +

1
2
Ct−1δ

2
t

)
−H̄t,t−1(Bt−1 + Ct−1δt)ε? +

1
2

[
ψ•t|t+1 − H̄t,t−1(α̈t−1 +

...
α t−1δt + Ct−1)

]
(ε?)2 = 0.(20)

Finding the roots of this equation is feasible, but computationally intensive since a
floating point division is required. Instead we will find a first order approximation of the
root near zero. It is easy to see that for At−1 = Bt−1 = Ct−1 = 0, we have a root at
zero. We first find the first partial derivatives of (20) with respect to At−1, Bt−1 and Ct−1,
evaluated at At−1 = Bt−1 = Ct−1 = 0. We obtain

∂2g(ε?)
∂At−1∂εt

∣∣∣∣
At−1=Bt−1=Ct−1=0

= −(Σ•t|t+1)−1 ∂ε?

∂At−1

∣∣∣∣
At−1=Bt−1=Ct−1=0

− H̄t,t−1 = 0,

∂2g(ε?)
∂Bt−1∂εt

∣∣∣∣
At−1=Bt−1=Ct−1=0

= −(Σ•t|t+1)−1 ∂ε?

∂Bt−1

∣∣∣∣
At−1=Bt−1=Ct−1=0

− H̄t,t−1δt = 0,

∂2g(ε?)
∂Ct−1∂εt

∣∣∣∣
At−1=Bt−1=Ct−1=0

= −(Σ•t|t+1)−1 ∂ε?

∂Ct−1

∣∣∣∣
At−1=Bt−1=Ct−1=0

− 1
2
H̄t,t−1δ

2
t = 0.
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Next, we solve these equations for the first partial derivatives of ε? with respect to At−1,
Bt−1 and Ct−1, evaluated at At−1 = Bt−1 = Ct−1 = 0, to obtain

∂ε?

∂At−1

∣∣∣∣
At−1=Bt−1=Ct−1=0

= −Σ•t|t+1H̄t,t−1,
∂ε?

∂Bt−1

∣∣∣∣
At−1=Bt−1=Ct−1=0

= −Σ•t|t+1H̄t,t−1δt,

∂ε?

∂Ct−1

∣∣∣∣
At−1=Bt−1=Ct−1=0

= −1
2

Σ•t|t+1H̄t,t−1δ
2
t .

We now define

(21) α?t|t+1 ≡ α
•
t|t+1 + ε?t|t+1,

where ε?t|t+1 is the following first order approximation of the local maximum of (19) near
zero:

(22) ε?t|t+1 ≡ −Σ•t|t+1H̄t,t−1

(
At−1 +Bt−1δt +

1
2
Ct−1δ

2
t

)
.

Ideally, I would choose Σ?
t|t+1 so that −(Σ?

t|t+1)−1, the second derivative of (15) with respect
to αt at α?t|t+1 matches the second derivative of (19) with respect to εt at ε?t|t+1. The latter
is given by:

∂2g(ε?t|t+1)

∂ε2t
= −(Σ•t|t+1)−1 − H̄t,t−1(Bt−1 + Ct−1δt) +

[
ψ•t|t+1 − H̄t,t−1(α̈t−1 +

...
α t−1δt + Ct−1)

]
ε?t|t+1.

Using the approximation log(1+x) ≈ 1+x, reasonable for small x, I define Σ?
t|t+1 indirectly

by defining its logarithm as follows:

log Σ?
t|t+1 ≡ log Σ•t|t+1

+ Σ•t|t+1

{
−H̄t,t−1(Bt−1 + Ct−1δt) +

[
ψ•t|t+1 − H̄t,t−1(α̈t−1 +

...
α t−1δt + Ct−1)

]
ε?t|t+1.

}
(23)

I define λ?t|t+1 as 1/6 (the 3rd order Taylor series coefficient) times the (constant) third
derivative of (19) with respect to εt:

(24) λ?t|t+1 ≡
1
6

∂3g(ε?t|t+1)

∂ε3t
=

1
6

[
ψ•t|t+1 − H̄t,t−1(α̈t−1 +

...
α t−1δt + Ct−1)

]
.

I have now defined α?t|t+1, Σ?
t|t+1 and λ?t|t+1 in terms of At−1, Bt−1 and Ct−1.

4.2. Computation of At, Bt, Ct. I now need to compute values of At, Bt and Ct to
approximate E[εt|αt+1, y] as

(25) E[εt|αt+1, y] = At +Btat+1 +
1
2
Cta

2
t+1.
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I begin by computing A1, B1 and C1. We can write

E[ε1|α2] ≈
∫
fN (ε1; 0,Σ•1|2)

(
1 +

1
6
ψ•1|2ε

3
1

)
ε1 dε1 =

1
6
ψ•1|2E1[ε41] =

1
2
ψ•1|2(Σ•1|2)2

≈ 1
2

[
ψ1 + ψ′1α̇1a2 +

1
2

(ψ′1α̈1 + ψ′′1 α̇
2
1)a2

2

]
(Σ◦1)2 exp(2ṡ1a2 + s̈1a

2
2),

where fN (·;µ,Σ) denotes the density of a Gaussian random variable with mean µ and
variance Σ. The second order Taylor series expansion of this expression around a2 = 0
gives the approximation E[ε1|α2] ≈ A1 +B1a2 + 1

2C1a
2
2, where

(26) A1 ≡
1
2

(Σ◦1)2ψ1,

(27) B1 ≡
1
2

(Σ◦1)2(2ψ1ṡ1 + ψ′1α̇1),

(28) C1 ≡
1
2

(Σ◦1)2
[
(4ṡ21 + 2s̈1)ψ1 + (4ṡ1α̇1 + α̈1)ψ′1 + α̇2

1ψ
′′
1

]
.

I now compute At, Bt and Ct for t > 1. I decompose E[εt|αt+1, y] as

(29) E[εt|αt+1, y] = ε?t|t+1 + E[εt − ε?t|t+1|αt+1, y].

I approximate the first term of (29) as

ε?t|t+1 = γt exp
(
ṡtat+1 +

1
2
s̈ta

2
t+1

)[
At−1 +Bt−1α̇tat+1 +

1
2

(Bt−1α̈t + Ct−1α̇
2
t )a

2
t+1

]
.

I can approximate this in turn by its second order Taylor series expansion around at+1:

ε?t|t+1 ≈ γtAt−1 + (γtAt−1ṡt + γtBt−1α̇t)at+1

+
1
2
[
(γtAt−1(ṡ2t + s̈t) + γtBt−1(2ṡtα̇t + α̈t) + γtCt−1α̇

2
t

]
a2
t+1.

Following the example of computing E[ε1|α2] in (25), I approximate the second term of
(29) as E[εt|αt+1, y]− ε?t|t+1 ≈ 3(Σ?

t|t+1)2λ?t|t+1, then (Σ?
t|t+1)2 as

(Σ?
t|t+1)2 ≈ (Σ•t|t+1)2 ≈ (Σ◦t )

2 exp(2ṡtat+1 + s̈ta
2
t+1) ≈ (Σ◦t )

2(1 + 2ṡtat+1 + (ṡ2t + s̈t)a2
t+1),

and 6λ?t|t+1 as

6λ?t|t+1 ≈ ψ•t|t+1 − H̄t,t−1(α̈t−1 +
...
α t−1δt + Ct−1)

=
[
ψt − H̄t,t−1(α̈t−1 +

...
α t−1δt + Ct−1)

]
+ (ψ′t − H̄t,t−1

...
α t−1)δt +

1
2
ψ′′t δ

2
t

= ψ̄t + ψ̄′tα̇tat+1 +
1
2

(ψ̄′tα̈t + ψ′′t α̇
2
t )a

2
t+1,
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where ψ̄t ≡ ψt − H̄t,t−1(α̈t−1 + Ct−1) and ψ̄′t ≡ ψ′t − H̄t,t−1
...
α t−1. Multiplying 3 times the

approximation for (Σ?
t|t+1)2 times the approximation for λ?t|t+1 and retaining terms up to

order 2 in at+1, we obtain
(30)

E[εt|αt+1, y] ≈ 1
2

(Σ◦t )
2
{
ψ̄t + (2ψ̄tṡt + ψ̄′tα̇t)at+1 +

[
(4ṡ2t + 2s̈t)ψ̄t + (4ṡtα̇t + α̈t)ψ̄′t + α̇2

tψ
′′
t

]
a2
t+1

}
Adding the two terms (30) and (30) approximating the two terms of E[εt|αt+1, y] in (29),

we obtain

E[εt|αt+1, y] ≈ At +Btat+1 +
1
2
Cta

2
t+1,

where

(31) At ≡
1
2

(Σ◦t )
2ψ̄t + γtAt−1,

(32) Bt ≡
1
2

(Σ◦t )
2(2ψ̄tṡt + ψ̄′tα̇t) + γtAt−1ṡt + γtBt−1α̇t,

Ct ≡
1
2

(Σ◦t )
2
[
(4ṡ2t + 2s̈t)ψ̄t + (4ṡtα̇t + α̈t)ψ̄′t + α̇2

tψ
′′
t

]
+γtAt−1(ṡ2t + s̈t) + γtBt−1 (2α̇tṡt + α̈t) + γtCt−1α̇

2
t(33)

4.3. A Skewed Approximate Distribution for αt|αt+1, y. We can now compute all
the quantities in the expression for the approximation of log f(αt|αt+1, y) in (15). Since
the approximation is based on Taylor series expansions around α•t|t+1 and α◦t , we expect
it to be good near those values. Unfortunately, it is not the log of a proper density, due
to the unbounded cubic term. I now give an approximation of this approximation, up to
an additive constant, by the logarithm of a density that is proper and fully normalized.
It is easy to evaluate the density and to draw random variates from the distribution it
represents.

Using the approximation ex ≈ 1 + x, we approximate (15) near α?t|t+1 up to a positive
multiplicative constant by the following function.

f?(αt) =
(

2πΣ?
t|t+1

)−1/2
exp

[
−1

2
(Σ?

t|t+1)−1(αt − α?t|t+1)2
] [

1 + u(λ?t|t+1(αt − α?t|t+1)3
]
,

where

u(x) =

{
x |x| < 1
sign(x) |x| ≥ 1.

In practice, λ?t|t+1 is small enough that in the region of high probability, λ?t|t+1(αt−α?t|t+1)3

is very close to 0 and thus u(λ(αt − α?t|t+1)3) = λ(αt − α?t|t+1)3. We use u to ensure that
f? is non-negative everywhere. Choosing a function that is odd around α?t|t+1 makes the
normalization constant easy to compute.
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We take the density f?(αt) as defining the conditional second refinement distribution.
Since u(λ?t|t+1(αt − α?t|t+1)3) is an odd function of αt around α?t , f

? is a proper and fully
normalized density.

We can draw a random variate in the following way. We first draw a αt from the Gaussian
distribution with mean α?t|t+1 and variance Σ?

t|t+1. If (αt−α?t|t+1) and λ?t|t+1 have opposite
signs, then with probability λ?t|t+1(αt − α?t|t+1)3 we replace αt with α?t|t+1 − (αt − α?t|t+1).

4.4. An algorithm for drawing α. I now outline the algorithm for drawing α from the
second refinement approximate distribution.

(1) Compute Σ1, . . . ,Σn using the forward pass of the solver.
(2) Compute α̇t, α̈t,

...
α t, ṡt and s̈t, t = 1, . . . , n, using equations (9), (10), (11), (13)

and (14).
(3) For t = 1, . . . , n− 1, compute At, Bt and Ct using equations (26), (27), (28), (31),

(32) and (33).
(4) For t = n, . . . , 1

(a) Compute α̂•t|t+1 and Σ̂•t|t+1 using equations (5) and (6).

(b) Compute α̂?t|t+1, Σ̂?
t|t+1 and λ̂?t|t+1 using equations (16), (21), (23) and (24).

(c) Draw αt ∼ N(α̂?t|t+1, Σ̂
?
t|t+1).

(d) If αt − α̂?t|t+1 and λ?t|t+1 have opposite signs, then with probability λ?t|t+1(αt −
α?t|t+1)3 replace αt with α?t|t+1 − (αt − α?t|t+1).

5. Tail Behavior

It is desirable that an approximation g(α) have the property that the ratio f(α|y)/g(α)
be bounded. In the context of importance sampling, this guarantees the boundedness of the
importance weights, an important condition for the existence of the variance of importance
sample means: see Geweke (1989) for example. In the context of independence Metropolis
Hastings Markov chains, this guarantees the geometric ergodicity of the Markov chain: see
Roberts and Rosenthal (1998).

There is no reason to suppose that the approximation g(α) introduced here has this
property. In particular, the simulations of the next section do not demonstrate this, even
for the examples considered. They only suggest that the region, if any, where the ratio
f(α|y)/g(α) becomes much larger than its mean value has extremely low probability.

Fortunately, it is quite simple to modify any approximation g(α) so that the ratio
f(α|y)/g(α) is bounded. The simplest solution is to mix in the marginal density f(α)
into g(α), replacing g(α) with (1−π)g(α) +πf(α), where π ∈ (0, 1). A small but non-zero
value of π is sufficient and does not overly distort the approximation in the region of high
probability.

This solution may be less than satisfying as a practical device. For state space models
with tens of thousands of observations, the prior will typically be extremely diffuse relative
to the posterior. A better alternative might be to mix in the density f(αt|αt+1) with the
conditional density g(αt|αt+1) for all (or a random number of) periods t.
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6. An Empirical Example

As an example, I consider a simple stochastic volatility model which, together with
variants differing only in parameterization, is widely used. The log-volatility equation is

αt = (1− φ)ᾱ+ φαt−1 + ut,

and the return equation is
yt = eαt/2vt.

The error sequences {ut} and {vt} are Gaussian white noise and mutually independent.
The precision of ut is ω and the precision of vt is 1. We observe the return yt for t = 1, . . . , n.

Jacquier, Polson, and Rossi (1994) propose a posterior simulator that draws volatil-
ity proposals one observation at a time. The high posterior autocorrelation of volatility,
especially for daily returns, leads to highly autocorrelated posterior draws.

Kim, Shephard, and Chib (1998) (KSC) transform the model into a linear one, and
approximate the random component of the transformed model as a mixture of Gaussian
random variates. They employ a data augmentation scheme where mixture component in-
dicators are included in the vector of unknown quantities. Given the component indicators,
the approximate model is linear and Gaussian, allowing them to draw all volatilities and
parameters as a block. Since volatilities are highly correlated with each other and with
parameters, this improves numerical efficiency.

The chain’s stationary distribution is only an approximation of the posterior distribution
and to obtain simulation-consistent sample moments they re-weight draws. Re-weighting
and data augmentation imply lower numerical efficiency than for independent draws.

The simple stochastic volatility model is a special case of the state space model described
in the introduction, with

H̄11 = H̄nn = ω, H̄tt = ω(1 + φ2) t = 2, . . . , n− 1,

H̄t,t+1 = −ωφ, t = 1, . . . , n− 1

c̄1 = c̄n = (1− φ)ᾱ, c̄t = (1− φ)2ᾱ, t = 2, . . . , n− 1,

ht =
1
2
y2
t e
−α◦t , ct =

1
2

[
y2
t e
−α◦t (1 + α◦t )− 1

]
, t = 1, . . . , n,

ψt = ht, ψ′t = −ht, ψ′′t = ht, t = 1, . . . , n.
In the rest of this section, I use simulation exercises to evaluate how well the 2nd re-

finement works for this stochastic volatility example. In all simulations, we set ᾱ = −9.0,
which implies that when the log volatility is at its mean, the standard deviation of re-
turns is around 0.01, which is reasonable for stock returns. Since exp(ᾱ/2) is just a scale
parameter for returns, the value of ᾱ has no bearing on our results.

I vary φ and ω across simulations. I use the following values of φ: 0.8, 0.9, 0.95, 0.98, 0.99.
Jacquier, Polson, and Rossi (1994) examine several financial returns, including those of
major currencies; market indices; portfolios of first, fifth, and tenth decile stocks, by market
capitalization, listed on the New York Stock Exchange; and individual stocks varying in
market capitalization over a factor of about 370. They also report results obtained by
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other researchers. All estimates of φ for daily returns exceed 0.95. All estimates of φ for
weekly returns exceed 0.8.

For each value of φ, I use three values of ω. The three values are chosen such that the
corresponding values of the coefficient of variation of volatility are 0.25, 0.75 and 2.5. The
coefficient of variation is the following function of the parameters φ and ω:

Var[exp(αt)]
E[exp(αt)]2

= exp
(

1
ω(1− φ2)

)
− 1.

Most of the estimates of the coefficient of variation in Jacquier, Polson, and Rossi (1994)
lie between 0.5 and 1.0. The highest reported estimate is 1.61, with a posterior standard
deviation of 0.38. Thus, the high value of the coefficient of variation is quite extreme.

Intuitively, lower values of ω, the precision of αt given αt−1, mean lower relative weight
for the quadratic part of log f(α|y) relative to the non-quadratic part. We can write, for
example,

∂2

∂α2
t

log f(αt|αt−1, yt) = −ω − 1
2
y2
t exp(−αt).

The first term, which comes from the marginal density of αt, is constant. The second term,
which comes from the conditional density of yt given αt, depends on αt but its expected
value, conditional or not on αt, is -0.5. Thus we can interpret ω as a measure of the relative
weight of the quadratic to non-quadratic parts of log f(α|y).

In the first simulation exercise, I do the following for all pairs (φ, ω). I first simulate
n = 10000 returns using the stochastic volatility model and the given values of φ and ω.
For daily returns in markets open five days a week, n = 10000 corresponds to about 40
years of data; for weekly returns, 200 years. Thus the worst case I consider, with a low
value of φ even for weekly data, extremely high variation of volatility and n = 10000 is
quite severe. I draw a sample of size M = 10000 from each of the three approximations and
report the sample standard deviation of the log ratio between the target and approximate
densities. Table 1 shows the results.

In the second simulation exercise, I assess the performance of the second refinement
as an importance distribution for the stochastic volatility example. For each pair (φ, ω),
I simulate n = 10000 returns, then draw a sample of size M = 100 from the second
refinement distribution. I use the sample as an importance sample to estimate the log
likelihood evaluated at the true value of the parameters. I report, in Table 2, numerical
standard errors for the log likelihood estimate.

In the next two simulation exercises, I assess the second refinement as a proposal distribu-
tion in a Metropolis Hastings chain whose target distribution is the conditional distribution
of α given y, ᾱ, φ and ω.

The first Metropolis-Hastings simulation exercise measures the numerical efficiency of
estimating the conditional mean of α given y, ᾱ, φ and ω. For each pair (φ, ω), I simulate
n = 10000 returns, then draw a Metropolis-Hastings chain of length M = 5 × 106. The
proposal distribution is the second refinement and the target distribution is the conditional
distribution of α given y and the true values of ᾱ, φ and ω. For all t = 1, . . . , n, I compute
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Table 1. Standard deviation of log f(α∗|y)/g(α∗) by φ and ω

φ ω MVN proposal 1st refinement 2nd refinement
0.80 12.45 4.370 2.841 0.107
0.80 4.96 10.085 6.624 0.365
0.80 2.22 18.822 12.739 1.035
0.90 23.59 4.118 2.568 0.049
0.90 9.40 8.226 5.153 0.154
0.90 4.20 13.946 8.623 0.468
0.95 45.96 3.378 2.103 0.027
0.95 18.33 6.165 3.796 0.069
0.95 8.19 9.896 6.046 0.186
0.98 113.17 2.428 1.463 0.014
0.98 45.12 4.056 2.438 0.034
0.98 20.16 6.303 3.820 0.062
0.99 225.20 1.781 1.070 0.009
0.99 89.80 2.927 1.771 0.021
0.99 40.11 4.422 2.687 0.034

Table 2. Numerical standard error for the importance sampling log likeli-
hood estimate, by φ and ω

φ ω numerical standard error
0.80 12.45 0.0109
0.80 4.96 0.0782
0.80 2.22 0.1336
0.90 23.59 0.0052
0.90 9.40 0.0152
0.90 4.20 0.0524
0.95 45.96 0.0029
0.95 18.33 0.0070
0.95 8.19 0.0157
0.98 113.17 0.0013
0.98 45.12 0.0027
0.98 20.16 0.0061
0.99 225.20 0.0008
0.99 89.80 0.0019
0.99 40.11 0.0039

the relative numerical efficiency1 (RNE) of the sample mean of αt, using the batch mean

1The relative numerical efficiency is the ratio of the squared numerical standard error for a hypothetical
random sample to the squared numerical standard error for the Markov chain.
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method. The number of batches is 500 and the batch length is 10000. In Table 3, I report
the average (over t) relative numerical efficiencies for all pairs (φ, ω).

Table 3. Relative numerical efficiency for α draws, by φ and ω

φ ω average RNE
0.80 12.45 0.88
0.80 4.96 0.39
0.80 2.22 0.06
0.90 23.59 0.95
0.90 9.40 0.83
0.90 4.20 0.42
0.95 45.96 0.97
0.95 18.33 0.93
0.95 8.19 0.78
0.98 113.17 0.99
0.98 45.12 0.97
0.98 20.16 0.93
0.99 225.20 0.99
0.99 89.80 0.98
0.99 40.11 0.96

The numerical inefficiency of independence Metropolis-Hastings chains arises from the
rejection of proposals. I examine this issue in more detail in the last simulation exercise.
For each pair (φ, ω) and all three proposal distributions, I estimate the unconditional
distribution of the number of proposals that will be rejected before the next acceptance.

Figure 1 shows probability mass functions up to a run length of 50. Each plot is for a
different pair (φ, ω). From top to bottom, the values of φ for all the plots in a row are
0.8, 0.9, 0.95, 0.98, and 0.99. From left to right, the values of the coefficient of variation
of volatility for all the plots in a column are 0.25, 0.75 and 2.5. Each plot shows the log
probability mass function for the multivariate Gaussian proposal, the first refinement and
the second refinement. In all cases, the second refinement has the thinnest tails, followed
by the first refinement. The multivariate Gaussian proposal always has the thickest tails.
Where it seems that one or two curves are missing, all probabilities are below 10−6.

For a given pair (φ, ω), and given y, I estimate the probability mass functions in the
following manner. I draw samples of size M = 20000 from each of the three approxima-
tions. For each draw α(m) from the second refinement sample, I compute the conditional
probability that, given α(m) is the chain’s current state, of accepting the next proposal
drawn from a given approximate distribution by averaging Metropolis-Hastings acceptance
probabilities over all draws in the sample associated with that distribution. This yields
a geometric conditional probability mass function for run lengths given that α(m) is the
chain’s current state. I obtain the unconditional probability mass function by averaging
over the α(m), 1, . . . ,M , using importance sampling weights.
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Figure 1. Probabilities of numbers of rejections on a log scale. Values
of φ are, from top to bottom, 0.8, 0.9, 0.95, 0.98 and 0.99. Values of the
coefficient of variation of volatility are, from left to right, 0.25, 0.75 and 2.5.
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7. Conclusions

The two refinements described in this paper define a new approximation of the con-
ditional distribution of α given y in univariate semi-Gaussian state space models. For
the stochastic volatility examples I consider, the approximation is dramatically closer to
the target distribution than is a multivariate Gaussian approximation. When the relative
precision of the Gaussian marginal distribution of α, compared with the precision that y
contributes through f(yt|αt), is high, as it is for daily data and low or moderate variation
in volatility, the variance of the log ratio of target to approximate densities is reduced
by a factor in the thousands. Even when the relative precision is low, as it is for weekly
data and volatility with low persistence and high variability, the variance reduction is in
the hundreds. Applied as an importance distribution or a proposal distribution, the new
approximation works well for problems where the multivariate Gaussian approximation is
infeasible.

If these improvements carry over to other semi-Gaussian state space models, importance
sampling and independence Metropolis-Hastings should become feasible for many problems
where they are currently impractical. The approximation is not model specific, and one can
implement it for a new model by providing routines to compute derivatives of log f(yt|αt).
This is not trivial, especially since we use derivatives up to the fifth. We note, however, that
one can use numerical derivatives or other approximations. The approximate distribution
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may deteriorate as a result, but we will still be able to evaluate and draw exactly from an
approximate density.

While it does not seem worth the trouble for the stochastic volatility model, there
remains scope for further refinements. In particular, we could add higher order terms to
the approximations α̂•t|t+1 and log Σ̂•t|t+1 of α•t|t+1 and log Σ•t|t+1. We could add a quartic
term to the log of the approximate conditional density, although it would be difficult to
construct a fully normalized approximation and to draw variates.

Possible future work includes applying the ideas of this paper to more general models,
such as state space models with multivariate states or models with hidden Gaussian random
fields.
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Appendix A. Conditional Mean Derivatives

In this appendix we derive, for t = 1, . . . , n − 1, the first, second and third derivatives
α̇t, α̈t and

...
α t of α•t|t+1 with respect to αt+1, where (α•1|t+1, . . . , α

•
t|t+1) is the conditional

mode of α1, . . . , αt given αt+1, . . . , αn and y.

A.1. First derivative. Taking derivatives of both sides of (7) with respect to αt+1 yields

(34) −H̄1:t

∂α•1:t|t+1

∂αt+1
−


0
...
0

H̄t,t+1

−H•1:t|t+1

∂α•1:t|t+1

∂αt+1
= 0,

Rearranging and setting αt+1 = α◦t+1 gives:

(35) ¯̄H1:t

∂α•1:t|t+1

∂αt+1

∣∣∣∣∣
αt+1=α◦t+1

=


0
...
0

−H̄t,t+1

 .
We can use the solver to solve equation (35) for the vector of first derivatives on the left

hand side. This gives the solution in terms of the following difference equation:

∂α•t|t+1

∂αt+1

∣∣∣∣∣
αt+1=α◦t+1

= −Σ◦t H̄t,t+1,

∂α•τ |t+1

∂αt+1

∣∣∣∣∣
αt+1=α◦t+1

= −Σ◦τ H̄τ,τ+1

∂α•τ+1|t+1

∂αt+1

∣∣∣∣∣
αt+1=α◦t+1

τ = t− 1, . . . , 1.
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Since t is abitrary, we have from the first equation that α̇t = −Σ◦t H̄t,t+1 for t = 1, . . . , n−1,
which is the result in equation (9).

A.2. Second derivative. Taking derivatives of both sides of (34) with respect to αt+1

yields

(36) −H̄1:t

∂2α•1:t|t+1

∂α2
t+1

−
∂H•1:t|t+1

∂αt+1

∂α•1:t|t+1

∂αt+1
−H•1:t|t+1

∂2α•1:t|t+1

∂α2
t+1

= 0.

Rearranging and setting αt+1 = α◦t+1 gives:

(37) ¯̄H1:t

∂2α•1:t|t+1

∂α2
t+1

∣∣∣∣∣
αt+1=α◦t+1

=


ψ1

(
∂α•

1|t+1

∂αt+1

)2

...

ψt

(
∂α•

t|t+1

∂αt+1

)2



∣∣∣∣∣∣∣∣∣∣∣
αt+1=α◦t+1

We use the solver again to solve equation (37) for the vector of second derivatives on
the left hand side. This gives the solution in terms of the following difference equation:

(38) α̈t ≡
∂2α•t|t+1

∂α2
t+1

∣∣∣∣∣
αt+1=α◦t+1

= mt,t+1,

(39)
∂2α•τ |t+1

∂α2
t+1

∣∣∣∣∣
αt+1=α◦t+1

= mτ,t+1 + α̇τ
∂2α•τ+1|t+1

∂α2
t+1

∣∣∣∣∣
αt+1=α◦t+1

, τ = t− 1, . . . , 1,

where the mτ,t+1 are given by the forward pass

(40) m1,t+1 = Σ◦1ψ1

 ∂α•1|t+1

∂αt+1

∣∣∣∣∣
αt+1=α◦t+1

2

,

(41) mτ,t+1 = Σ◦τψτ

 ∂α•τ |t+1

∂αt+1

∣∣∣∣∣
αt+1=α◦t+1

2

+ γτmτ−1,t+1, τ = 2, . . . , t,

where, recall, for all τ , γτ ≡ Σ◦τ
¯̄Hτ,τ−1.

If we take α•τ |t+1(αt+1) = α•τ |t(α
•
t|t+1(αt+1)) we can write

∂α•τ |t+1

∂αt+1
=
∂α•τ |t

∂αt

∂α•t|t+1

∂αt+1
.
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using the chain rule. Taking another partial derivative with respect to αt+1, again chaining
through αt, we obtain

(42)
∂2α•τ |t+1

∂α2
t+1

=
∂2α•τ |t

∂α2
t

(
∂α•t|t+1

∂αt+1

)2

+
∂α•τ |t

∂αt

∂2α•t|t+1

∂α2
t+1

.

Taking τ = t− 1 and setting αt+1 = α◦t+1 we obtain

∂2α•t−1|t+1

∂α2
t+1

∣∣∣∣∣
αt+1=α◦t+1

= α̈t−1α̇
2
t + α̇t−1α̈t.

We now write equation (39), with τ set to t− 1:

∂2α•t−1|t+1

∂α2
t+1

∣∣∣∣∣
αt+1=α◦t+1

= mt−1,t+1 + α̇t−1α̈t.

Substituting this equation in the previous equation gives

(43) mt−1,t+1 = α̇2
t α̈t−1.

We now write equation (41), with τ = t:

mt,t+1 = Σ◦tψtα̇
2
t + γtmt−1,t+1.

Substituting equations (38) and (43) in this expression gives:

α̈t = Σ◦tψtα̇
2
t + γtα̇

2
t α̈t−1.

Equations (38) and (40), with t = 1, give

α̈1 = Σ◦1ψ1α̇
2
1.

Since t is arbitrary, the two previous equations give the result in equation (10).

A.3. Third derivative. Taking derivatives of both sides of (36) with respect to αt+1

yields

−H̄1:t

∂3α•1:t|t+1

∂α3
t+1

+


ψ′•1|t+1

(
∂α•

1|t+1

∂αt+1

)3

+ 3ψ•1|t+1

∂α•
1|t+1

∂αt+1

∂2α•
1|t+1

∂α2
t+1

...

ψ′•t|t+1

(
∂α•

t|t+1

∂αt+1

)3

+ 3ψ•t|t+1

∂α•
t|t+1

∂αt+1

∂2α•
t|t+1

∂α2
t+1

−H•1:t

∂3α•1:t|t+1

∂α3
t+1

= 0,

where

ψ•τ |t+1 ≡
∂3 log f(yτ |ατ )

∂α3
τ

∣∣∣∣
ατ=α•τ |t+1

ψ′•τ |t+1 ≡
∂4 log f(yτ |ατ )

∂α4
τ

∣∣∣∣
ατ=α•τ |t+1

τ = 1, . . . , t
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Rearranging and setting αt+1 = α◦t+1 gives:

(44) ¯̄H1:t

∂3α•1:t|t+1

∂α3
t+1

∣∣∣∣∣
αt+1=α◦t+1

=


ψ′1

(
∂α•

1|t+1

∂αt+1

)3

+ 3ψ1
∂α•

1|t+1

∂αt+1

∂2α•
1|t+1

∂α2
t+1

...

ψ′t

(
∂α•

t|t+1

∂αt+1

)3

+ 3ψt
∂α•

t|t+1

∂αt+1

∂2α•
t|t+1

∂α2
t+1



∣∣∣∣∣∣∣∣∣∣∣
αt+1=α◦t+1

We use the solver again to solve equation (44) for the vector of third derivatives on the
left hand side. This gives the solution in terms of the following difference equation:

(45)
...
α t ≡

∂3α•t|t+1

∂α3
t+1

∣∣∣∣∣
αt+1=α◦t+1

= m̄t,t+1,

(46)
∂3α•τ |t+1

∂α3
t+1

∣∣∣∣∣
αt+1=α◦t+1

= m̄τ,t+1 + α̇τ
∂3α•τ+1|t+1

∂α3
t+1

∣∣∣∣∣
αt+1=α◦t+1

, τ = t− 1, . . . , 1,

where the mτ,t+1 are given by the forward pass

(47) m̄1,t+1 = Σ◦1

ψ′1
(
∂α•1|t+1

∂αt+1

)3

+ 3ψ1

∂α•1|t+1

∂αt+1

∂2α•1|t+1

∂α2
t+1

∣∣∣∣∣∣
αt+1=α◦t+1

,

(48)

m̄τ,t+1 = Σ◦τ

ψ′τ
(
∂α•τ |t+1

∂αt+1

)3

+ 3ψτ
∂α•τ |t+1

∂αt+1

∂2α•τ |t+1

∂α2
t+1

∣∣∣∣∣∣
αt+1=α◦t+1

+γτm̄τ−1,t+1, τ = 2, . . . , t.

Taking the partial derivative with respect to αt+1 of both sides of equation (42), again
chaining through αt, we obtain

∂3α•τ |t+1

∂α3
t+1

=
∂3α•τ |t

∂α3
t

(
∂α•t|t+1

∂αt+1

)3

+ 3
∂2α•τ |t

∂α2
t

∂α•t|t+1

∂αt+1

∂2α•t|t+1

∂α2
t+1

+
∂α•τ |t

∂αt

∂3α•t|t+1

∂α3
t+1

.

Taking τ = t− 1 and setting αt+1 = α◦t+1 we obtain

∂3α•t−1|t+1

∂α3
t+1

∣∣∣∣∣
αt+1=α◦t+1

=
...
α t−1α̇

3
t + 3α̈t−1α̇tα̈t + α̇t−1

...
α t.

We now write equation (46), with τ set to t− 1:

∂3α•t−1|t+1

∂α3
t+1

∣∣∣∣∣
αt+1=α◦t+1

= m̄t−1,t+1 + α̇t−1
...
α t.
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Substituting this equation in the previous equation gives

(49) m̄t−1,t+1 =
...
α t−1α̇

3
t + 3α̈t−1α̇tα̈t.

We now write equation (48), with τ = t:

m̄t,t+1 = Σ◦t (ψ
′
tα̇

3
t + 3ψtα̇tα̈t) + γtm̄t−1,t+1.

Substituting equations (45) and (49) in this expression gives:
...
α t = Σ◦t (ψ

′
tα̇

3
t + 3ψtα̇tα̈t) + γt(

...
α t−1α̇

3
t + 3α̈t−1α̇tα̈t).

Equations (45) and (47), with t = 1, give
...
α1 = Σ◦1(ψ′1α̇

3
1 + 3ψ1α̇1α̈1)

Since t is arbitrary, the two previous equations give the result in equation(11).

Appendix B. Conditional Variance Derivatives

In this appendix we derive, for t = 1, . . . , n − 1, the first and second derivatives ṡt and
s̈t of log Σ•t|t+1 with respect to αt+1.

We begin with some useful preliminary results. Differentiating log Σ•t−1|t+1 with respect
to αt+1, chaining through αt, yields

(50)
∂ log Σ•t−1|t+1

∂αt+1
=
∂ log Σ•t−1|t

∂αt

∂α•t|t+1

∂αt+1
,

Differentiating again with respect to αt+1, we obtain

(51)
∂2 log Σ•t−1|t+1

∂α2
t+1

=
∂2 log Σ•t−1|t

∂α2
t

(
∂α•t|t+1

∂αt+1

)2

+
∂ log Σ•t−1|t

∂αt

∂2α•t|t+1

∂α2
t+1

.

Setting αt+1 = α◦t+1 in (50) gives

(52)
∂ log Σ•t−1|t+1

∂αt+1

∣∣∣∣∣
αt+1=α◦t+1

= ṡt−1α̇t,

and setting αt+1 = α◦t+1 in (51) gives

(53)
∂2 log Σ•t−1|t+1

∂α2
t+1

∣∣∣∣∣
αt+1=α◦t+1

= s̈t−1α̇
2
t + ṡt−1α̈t.

Differentiating h•t|t+1 with respect to αt+1, chaining through αt, yields

(54)
∂h•t|t+1

∂αt+1
= −ψ•t|t+1

∂α•t|t+1

∂αt+1
.

Differentiating again with respect to αt+1, we obtain

(55)
∂2h•t|t+1

∂α2
t+1

= −ψ′•t|t+1

(
∂α•t|t+1

∂αt+1

)2

− ψ•t|t+1

∂2α•t|t+1

∂α2
t+1

.
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Setting αt+1 = α◦t+1 in (54), we obtain

(56)
∂h•t|t+1

∂αt+1

∣∣∣∣∣
αt+1=α◦t+1

= −ψtα̇t

Setting αt+1 = α◦t+1 in (55), we obtain

(57)
∂2h•t|t+1

∂α2
t+1

∣∣∣∣∣
αt+1=α◦t+1

= −ψ′tα̇2
t − ψtα̈t.

B.1. First derivative. For clarity, we rewrite the equations in (12) as

(58) Σ•1|t+1 =
(
H̄11 + h•1|t+1

)−1

(59) Σ•τ |t+1 =
(
H̄ττ + h•τ |t+1 − H̄

2
τ−1,τΣ•τ−1|t+1

)−1
, τ = 2, . . . , t.

Taking the logarithm of equations (58) and (59) then the derivative with respect to αt+1

gives

(60)
∂ log Σ•1|t+1

∂αt+1
= −Σ•1|t+1

∂h•1|t+1

∂αt+1
,

and for τ = 2, . . . , t,

∂ log Σ•τ |t+1

∂αt+1
= −Σ•τ |t+1

[
∂h•τ |t+1

∂αt+1
− H̄2

τ−1,τ

∂Σ•τ−1|t+1

∂αt+1

]

= −Σ•τ |t+1

∂h•τ |t+1

αt+1
+ Σ•τ |t+1H̄

2
τ−1,τΣ•τ−1|t+1

1
Σ•τ−1|t+1

∂Σ•τ−1|t+1

∂αt+1,i

= −Σ•τ |t+1

∂h•τ |t+1

∂αt+1
+ (−Σ•τ |t+1H̄τ−1,τ )(−Σ•τ−1|t+1H̄τ−1,τ )

∂ log Σ•τ−1|t+1

∂αt+1
.(61)

Taking t = 1 and αt+1 = α◦t+1 in (60) and using (56) gives

ṡ1 = Σ1ψ1α̇1

Taking τ = t and αt+1 = α◦t+1 in (61) and using (52) and (56) gives

ṡt = Σtψtα̇t + γtα̇t−1α̇tṡt−1.

Since t is arbitrary, the two previous equations give the result of equation (13).
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B.2. Second derivatives. Taking derivatives of equation (60) and the first equation of
(61) with respect to αt+1 gives

∂2 log Σ•1|t+1

∂α2
t+1

= −
∂Σ•1|t+1

∂αt+1

∂h•1|t+1

∂αt+1
− Σ•1|t+1

∂2h•1|t+1

α2
t+1

=

(
∂ log Σ•1|t+1

∂αt+1

)2

− Σ•1|t+1

∂2h•1|t+1

α2
t+1

,(62)

∂2 log Σ•τ |t+1

∂α2
t+1

= −
∂Σ•τ |t+1

∂αt+1

[
∂h•τ |t+1

αt+1
− H̄2

τ−1,τ ·
∂Σ•τ−1|t+1

∂αt+1

]

−Σ•τ |t+1

[
∂2h•τ |t+1

α2
t+1

− H̄2
τ−1,τ ·

∂2Σ•τ−1|t+1

∂α2
t+1

]

=

(
∂ log Σ•τ |t+1

∂αt+1

)2

− Σ•τ |t+1

∂2h•τ |t+1

α2
t+1

(63)

+(−Σ•τ,t+1H̄τ−1,τ )(−Σ•τ−1,t+1H̄τ−1,τ )

∂2 log Σ•τ−1|t+1

∂α2
t+1

+

(
∂ log Σ•τ−1|t+1

∂αt+1

)2
 ,

where we used the following identity to compute the second equality of equation (63):

∂2y

∂x2
= y

[
∂2 log y
∂x2

+
(
∂ log y
∂x

)2
]
.

Taking t = 1 and αt+1 = α◦t+1 in (62) and using (57) gives

s̈1 = ṡ21 + Σ1(ψ′1α̇
2
1 + ψ1α̈1).

Taking τ = t and αt+1 = α◦t+1 in (63) and using (53) and (57) gives

s̈t = ṡ2t + Σt(ψ′tα̇
2
t + ψtα̈t) + γtα̇t−1(α̇2

t s̈t−1 + ṡt−1α̈t + ṡ2t−1α̇
2
t ).

Since t is arbitrary, the two previous equations give the result of equation (14).
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