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SOMMAIRE

Les stents sont utilisés en cardiologie interventionnelle pour garder ouvert un vaisseau ma-

lade. Les nouveaux stents sont recouverts d’un agent médicinal pour prévenir l’obstruction

prématurée suite à la prolifération de cellules musculaires lisses (CML) dans la lumière du

vaisseau. Afin de réaliser le taux nécessaire de largage de médicament pendant la période thé-

rapeutique désirée, la tendance est aux largages biphasiques ou possiblement polyphasiques à

partir d’un mélange de polymères dégradables. Blanchet-Delfour-Garon [7] ont introduit une

équation différentielle ordinaire quadratique à 2 paramètres et Garon-Delfour [42] une équa-

tion différentielle partielle 3D quadratique à 2 paramètres pour caractériser la dynamique du

largage du médicament pour chaque polymère. Les deux paramètres de ces modèles peuvent

être obtenus expérimentalement à partir du protocole de mesures de Lao et al. pour des po-

lymères purs et pour des mélanges de polymères en créant des conditions de réservoir infini.

Ces équations constituent un outil pratique pour simuler numériquement et théoriquement

le largage 3D d’un médicament imprégné dans une mince couche de polymère vers la paroi

et la lumière du vaisseau sanguin aux fins d’évaluation et de design d’un stent.

L’objectif principal de la recherche était de passer d’une surface plate de polymère à la

surface courbe qui recouvre un véritable stent de géométrie complexe. En premier lieu, le

modèle à diffusion linéaire (et les résultats) de Delfour Garon-Longo [31] pour un vaisseau

modélisé par un cylindre droit ont été généralisés au cas d’un vaisseau avec surface cylindrique

courbe en introduisant les conditions de transparence appropriées à l’entrée et à la sortie.

Ce modèle a ensuite été utilisé pour obtenir les équations de la dose et de la concentration

normalisée. En second lieu, les conditions de transparence et le largage quadratique ont été

intégrés à l’équation aux dérivées partielles 3D de Garon-Delfour [42]. Ce deuxiéme modèle

non linéaire a ensuite été utilisé pour étudier la concentration normalisée en fonction de

l’épaisseur du polymère et de la constante de diffusion du milieu ambiant.

Mots clés : largage de médicament, polymères biodégradables, paclitaxel, équa-

tion de Riccati, équation différentielle partielle en espace-temps, simulation nu-

mérique.
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SUMMARY

Stents are used in interventional cardiology in order to keep a diseased vessel open. New

stents are coated with a medicinal agent that prevents the early reclosing caused by the

proliferation of smooth muscle cells (SMC). In order to obtain the desired release kinetics for

the SMC-controlling drug during the required therapeutic period, the current strategy focuses

on biphasic or possibly polyphasic release from blends of degradable polymers. Blanchet-

Delfour-Garon [7] introduced an ordinary differential equation with two parameters and

Garon-Delfour [42] a partial differential equation with two parameters to model the release

kinetics. The parameters are all obtained from experimental release curves of Lao et al. [60]

for pure polymers and polymer blends under infinite sink conditions. They are practical tools

to numerically and theoretically simulate the 3D drug release from a thin coating of polymer

to the aggregated wall and lumen of the blood vessel in order to facilitate the design and

evaluation of the coating.

The primary objective of this research was to pass from the thin, flat midsurface coating

to the thin coating of a realistic 3D stent with curved and complex surface. To begin, the

linearly diffusive model (and the results) of Delfour-Garon-Longo [31] that were obtained

for a vessel with flat surface were extended to the case of a vessel with curved surface by

finding the appropriate boundary conditions. The resulting model was then analysed from the

point of view of the dose and the normalised concentration. Secondly, the resulting boundary

condition from the 3D partial differential equation of Garon-Delfour was introduced into the

model. This second nonlinear model was then used to study the normalised concentration

as a function of the thickness of the polymer and the diffusion constant of the surrounding

medium.

Keywords : Drug release kinetics, biodegradable polymers, paclitaxel, Riccati

equation, time- space partial differential equation, numerical simulation.
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INTRODUCTION

The topic of this mémoire is best introduced by quoting the following sections from [42]

whose content is somewhat standard from papers on the subject.

Stents are used in interventional cardiology to keep a diseased vessel open

after angioplasty. This procedure is known to damage the endothelium at the

insertion site and thus to favour the occurrence of in-stent restenosis through

the proliferation of smooth muscle cells (SMC) within the lumen of the vessel.

To control the abnormal behaviour of SMC, stents are coated with polymers

that slowly release drug through diffusion into the wall of the vessel (drug-

eluting stents or DES). These drugs are designed to control the rate of mitosis

of SMC until the regeneration of the endothelium. In order to achieve pre-

scribed drug release kinetics over the required therapeutic period, the current

design strategies focus on bi-phasic and possibly multi-phasic1 releases from

blends of biodegradable polymers (cf. Batycky et al [3] in 1997).

In that spirit, Lao and Venkatraman [60] published the experimental release

profile of paclitaxel from three neat polymer matrices: PCL (Polycaprolac-

tone), PLGA (dl-lactide-co-glycolide) and PLGAPEG (PLGA with polyethy-

lene glycol). Lao et al [62] also considered polymer blends and proposed em-

pirical models to predict the release profiles. The three neat polymers are

representative of a broad spectrum of biodegradable polymers (cf. [63]).

The experimental paclitaxel release profiles suggest two types of release: S-

curve type and exponential type. S-curve behaviours are similar to the ones

encountered in the study of the logistic equation of populations. Blanchet et

al [7] introduced a two-parameter quadratic Ordinary Differential Equation

(ODE) model that reproduces with high accuracy the experimental normalized

drug release curves from neat PCL, PLGAPEG, and PLGA polymer matrices.

The one dimensional model of Lao et al [62] uses from 5 to 8 parameters. The

1A bi-phasic strategy consists in delivering the treatment in two phases. For instance, in the first phase of
drug release, the immediate release dose fraction reaches a therapeutic drug level, while the second extended
release phase provides the dose fraction required to maintain an effective therapeutic level for a prolonged
period.

xix



simplicity of the ODE model indicates that somehow the quadratic structure

captures the complex microphysics and chemistry of the release process for a

broad range of polymers and polymer blends. This suggests the introduction

of a quadratic time-space three dimensional (3D) partial differential equation

(PDE) model of the paclitaxel release that mimics the ODE model.2 The

complexity of the dynamics inside the polymer is captured through a quadratic

condition at the interface between the polymer and the surrounding medium

specified by the two parameters of the ODE model. In so doing, we avoid

resorting to a time-dependent or a nonlinear diffusion in the polymer.3

One important advantage of this model is to realistically and economically

permit the 3D simulation of the release of paclitaxel from DES coated with a

thin film of biodegradable polymers including the ones for which an incomplete

release4 is experimentally observed (recall that the paclitaxel is hydrophobic).

Indeed, modelling the 3D diffusion from the polymer coating on a DES into

the artery wall and the blood flow in the lumen involves complex phenomena

at different spatial scales.5 This requires the use of highly detailed 3D models

resulting in cost prohibitive parameter identification and computations. So it

is imperative to develop a simple macroscopic model of the diffusion of the

drug in the polymer film that simultaneously captures the surface erosion

and the collapsing of the polymer matrix for simulation and design purposes.

In such a process the relative scales of the key parameters are of paramount

importance, so that the macroscopic simulation of the drug release from a

DES can be limited to the region occupied by the arterial wall and its lumen.

The objective of this mémoire is to revisit some recent three-dimensional models of drug

release from the polymeric coating of a stent to the wall/lumen of a blood vessel and ex-

tend them to a curved blood vessel. Our work is to be placed within the broad context of

integrated wall-lumen modelling of blood vessels and design and control of medical devices

such as in M. C. Delfour, A. Garon, and V. Longo [31], É. Bourgeois and M. C. Delfour [8],

2An earlier purely theoretical 3D partial differential equation (PDE) model involving a quadratic semi-
permeable membrane condition at the interface and a diffusion constant inside the polymer was introduced
by Delfour [28].
3Thereby reducing the physical and computational complexity of mass transfer to ultimately predict the
concentration of paclitaxel in the arterial wall.
4Cf. Lao et al [60, page 13].
5The modeling complexity is increasing significantly due to the large differences in the spatial scales of
the media (assuming a 1 mm arterial wall thickness and a 10 µm polymer coating thickness) in which the
processes of mass transfer occur.
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M. C. Delfour and A. Garon [30], M. C. Delfour [28], , J. Siepmann and N. A. Peppas [77],

and P. Zunino and al. [92].

Chapter 1 introduces a section of a curved blood vessel made up of the lumen and the

wall. In order to isolate the section from the complex circulatory systems, transparency

conditions are introduced at the inlet and at the outlet of the vessel in the form of Robin

boundary conditions.

In Chapter 2 the stent is introduced as a zero thickness device and the polymer as a thin

domain within the wall. The polymer is modelled as a linearly diffusive medium as was done

in Delfour, Garon and Longo [31] for a blood vessel represented as a straight cylinder. This

chapter generalizes the equations for the concentration and the dose from a right cylinder to

a curved cylinder by introducing the proper geometrical concepts and integrating them into

the new equations.

Chapter 3 deals with the modelling of the drug release from a polymeric film starting from

laboratory measurements in a controlled environment. Experimentally, the release does not

look as the release from a linearly diffusive medium. To better appreciate and understand the

drug release from polymers, we describe the experimental and mathematical modelling work

of Lao et al [60, 62, 63] on the release of paclitaxel from biodegradable neat polymers and

polymer blends. Their work emphasized fitting to experimental data over purely mechanistic

models that yield exponential type release curves and completely miss S-curve type release

observed for highly degradable polymers. In that context, we describe the highly accurate

two-parameter quadratic ODE model of Blancher, Delfour, and Garon [7]. From this Garon

and Delfour [42] introduced a new quadratic PDE model of the 3D normalized concentrations

in the polymer and the medium for the release of paclitaxel from a thin polymer film in a

laboratory vial. In that context the local mass flux at the interface is completely specified by

the two parameters of the ODE model. Extensive numerical simulations of the drug release

of paclitaxel from the three neat polymers of Lao et al [60] have been performed to validate

the model. The results are summarized in the form of normalised drug release curves as a

function of the thickness of the film and the diffusion constant in the medium. The effects

of the thickness of the polymer and of the diffusion constant in the surrounding medium

are studied. The model readily extends to polymer blends. In this chapter, their model is

generalised to a one-sided release in preparation for the release from the polymeric coating

of a stent.

Chapter 4 incorporates the three-dimensional release model of Garon and Delfour [42]

for a flat polymeric film in a vial to a stent inserted in a curved segment of blood vessel. The

xxi



resulting concentration model is then analysed with respect to the normalised concentration

in order to identify the parameters.

The primary objective of this research was to model the release of drugs used to effectively

control the growth of SMC to prevent restenosis. Such drugs do not help the reconstruction

of the endothelium. Fortunately, there are medicinal agents that stimulate the growth of

endothelial cells and the reconstruction of the endothelium. This opens the research to more

ambitious projects combining the control of SMC and the regeneration of the endothelium.

For further readings along those lines, the reader is referred to the following papers:

- Y. Xia, F. Boey, and S.. S. Venkatraman [91], Surface modification of poly(L-lactic

acid) with biomolecules to promote endothelialization;

- R. A. Byrne, M. Joner, and A. Kastrati [12], Stent thrombosis and restenosis: what

have we learned and where are we going? (this paper describes the present state of

the art);

- W. K. E. Ip, N. Hoshi, D. S. Shouval, S. Snapper, and R. Medzhitov [50], Anti-

inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages;

- S. Gonca [44], Extracellular Matrix Proteomics Reveals Interplay of Aggrecan and

Aggrecanases in Vascular Remodeling of Stented Coronary Arteries (this paper deals

with the rheology of the matrix).

Another complementary aspect to the modelling of the drug release is the identification

of pertinent susceptibility models that accurately describe the effect of the distribution of the

drug concentration on the SMC. In that direction, several papers are available on log-kill laws

such as in [13] for larvicides in rivers and for the control of solid or liquid cancer depending

on the degree of penetration of the drug in the tissues:

- G. W. Swan [86], Cancer chemotherapy:optimal control using the Verhulst-Pearl equa-

tion and P.-F. Verhulst [89], Recherches mathématiques sur la loi d’accroissement de

la population;

- H. Byrne and D. Drasdo [11], Individual-based and continuum models of growing cell

populations: a comparison;

- K. R. Fister and J. C. Panetta [39], Optimal control applied to competing chemother-

apeutic cell-kill strategies.

Finally, the models and equation presented below are developed for arbitrary stent de-

signs. In practice however, the stent must be structurally capable of holding the blood vessel

open, and mechanically able to resist excessive degradation. These aspects are assumed to

be verified during the stent design, and so are not discussed here. Further reading on this

topic may be found in:

xxii



- F. Witte and A. Eliezer [33], Degradation of Implant Materials, Chapter 5:Degradable

Metals.
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Chapter 1

MODELING OF A SECTION OF BLOOD VESSEL

1.1. Preliminaries

We consider a diseased section of a blood vessel and study the evolution of the concen-

tration of a medical agent released from the polymer coating of a stent to the wall and the

lumen of the vessel. In this section, we begin by determining appropriate boundary condi-

tions that reflect the natural flow of a medicinal agent within the body. At this stage the

conditions do not depend on the stent, and so, for simplicity, the introduction of the stent

will only be discussed in future chapters.

We assume that the vessel is a curved tube of radius R > 0 around a smooth curve C

that can be regarded as the center line of the tube. It is assumed that the curvatures of C

are not too large, in order for the lateral surface of the tube to remain smooth (no kinks).

A second, curved inner tube of radius r, 0 < r < R, is introduced around the same center

line C. This tube of radius r will be the lumen of the vessel and the region between the two

tubes will be the wall of the vessel.

Since we are only considering a section of the vessel, assumptions need to be made about

the flow of blood entering and exiting the section. So, at the inlet we assume that the

incoming vessel is an infinitely long straight cylinder of radius R containing a cylinder of

radius r. Similarly, at the outlet we assume that the outgoing vessel is an infinitely long

straight cylinder of radius R containing a cylinder of radius r. In each tube on both sides

of the targeted section, we assume that the normal component of the flow of the blood is

the same in each orthogonal section, that is, that the flow of blood is independent of which

orthogonal section is chosen. The next step will be to introduce transparency conditions for

the concentration at the inner and outer orthogonal sections which will be of the Robin type.
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1.2. Parametrization and Characterization of a Smooth Curve

1.2.1. Parametrization of a Curve in R
3

A curve C in R
3 can be defined classically as the image of the real axis by a smooth

function

z 7→ φ(z) : R→ R
3, C

def= φ(R). (1.2.1)

Assume that φ is C2 and that there exists 0 < α ≤ β such that

∀z1, z2 ∈ R, α |z2 − z1| ≤ ‖φ(z2)− φ(z1)‖R3 ≤ β |z2 − z1|. (1.2.2)

This ensures that φ is injective , that the curve C is not self-intersecting and that the

derivative φ′(z) ∈ R
3 exists and is continuous

α ≤ ‖φ′(z)‖
R3 ≤ β.

Since ‖φ′(z)‖
R3 ≥ α > 0, we can assume that φ is unit speed by parametrising the curve with

respect to the arc length. Thus ‖φ′(z)‖
R3 = 1 ∀z ∈ R.

The vector φ′(z) in R
3 is the tangent to the curve C at the point x = φ(z) and the tangent

space Tφ(z)C to C in φ(z) is a line through φ(z) with orientation φ′(z)

Tφ(z)C = Rφ′(z). (1.2.3)

Denote by H1 the Hausdorff measure1 of dimension 1 in R
3. The integral of an H1-measurable

function f : C → R is defined as
∫

C
f dH1 =

∫

R

f(φ(z))
√

φ′(z)⊤φ′(z) dz, (1.2.4)

where φ′(z)⊤ is the transpose of the vector φ′(z) and φ′(z)⊤φ′(z) is a positive scalar. Since

φ is unit speed, we have that
√

φ′(z)⊤φ′(z) = 1, a.e. in R

so that the length of an interval [a,b] on the line R is equal to the length along the curve

between the points φ(a) and φ(b). Given L > 0 and f = 1
∫

φ((0,L))
f dH1 =

∫ L

0
f ◦ φ dz,

∫

φ((0,L))
dH1 =

∫ L

0
dz = L.

1See [34, page 65] for the definition and for more details. In our case, the Haussdorf and the Lebesgue
measure are equivalent [34, page 70], and so the integral is simply the standard integral in R

3.
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1.2.2. Characterisation of the Smoothness via Distance Functions

We first recall the definition and several properties of the distance function.2 Given a

non-empty subset A, ∅ 6= A ⊂ R
N , and h > 0, define the distance function and the open

and closed h-dilations of A as follows

dA(x) def= inf
a∈A
‖a− x‖

RN , Uh(A) def= {y ∈ R
N : dA(y) < h}, (1.2.5)

Ah
def= {y ∈ R

N : dA(y) ≤ h}. (1.2.6)

By definition, dA(x) = dA(x), Uh(A) = Uh(A), and Ah = Ah. Denote by ΠA(y) the set of

projections p ∈ A of y onto A

ΠA(y) def= {p ∈ A : ‖p− y‖ = dA(y)} . (1.2.7)

The projections are solutions of the following minimization problem

dA(y)2 = ‖p− y‖2 = inf
a∈A
‖a− y‖2 .

The set ΠA(y) is always compact and non-empty.

The function dA is Lipschizian of constant 1 on R
N

∀y,z ∈ R
N , ‖dA(z)− dA(y)‖ ≤ ‖z − y‖

and, by Rademacher’s Theorem3, ∇dA exists and ‖∇dA(y)‖ = 1 a.e. in R
N . The function

d2
A(y) is Hadamard semi-differentiable and

dHd2
A(y; v) = inf

p∈ΠA(y)
2 (p− y) · v.

In particular, if y ∈ A, pA(y) = y, ΠA(y) = {y}, and ∇d2
A(y) = 0.

When ΠA(y) = {pA(y)} is a singleton, d2
A is Fréchet differentiable at y and

∇d2
A(y) = 2 (pA(y)− y) ⇒ pA(y) = y −

1
2
∇d2

A(y)

and it can be verified that pA is a projection in the mathematical sense:

pA(pA(y)) = pA(y)−
1
2
∇dA(pA(y))2 = pA(y)− 0 = pA(y)

and pA ◦ pA = pA. In general, the function

fA(y) def=
1
2

(

‖y‖2 − d2
A(y)

)

(1.2.8)

2See [29] or [32] for proofs and more details.
3[34, page 81] or [38, page 216].
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which is convex and continuous on R
N [32, Thm. 3.2 (ii), page 282] plays a special role. It

is locally Lipschitzian, Hadamard semi-differentiable in R
N ,

dHfA(y; v) = y · v −
1
2

dHd2
A(y; v),

and (by Rademacher’s Theorem) Fréchet differentiable almost everywhere in R
N . When,

ΠA(y) = {pA(y)} is a singleton, d2
A is Fréchet diferentiable and

∇fA(y) = y −
1
2
∇d2

A(y) = pA(y).

We have the following theorem.

Theorem 1.2.1 (Poly and Raby [74]). Let x ∈ A ⊂ R
N and k ≥ 2 be an integer.

(i) Assume that there exists an open subset U(x) of R
N containing x such that d2

A ∈

Ck(U(x)), k ≥ 2. Then, A is a Ck submanifold of RN of dimension d = rank D2fA(x)

at x, where

fA(x) def=
1
2

(

‖x‖2 − d2
A(x)

)

. (1.2.9)

(ii) Assume that A is a Ck submanifold of RN of dimension d at x. Then, d2
A is Ck in a

neighbourhood of x and rank D2fA(x) = d.

1.3. Geometry of Vessel and Concentration of Product

1.3.1. Equations for the Concentration in the Vessel

Going back to our curve C, the center line of our vessel, we assume that d2
C ∈ C2(UR(C))

for some R > 0. Then, for y ∈ UR(C), ∇fC(y) is the projection pC(y) of y onto C and

im D2fC(y) is the tangent to C at the point pC(y). The vessel U , the lumen Ul, and the wall

Uw are the open domains defined as follows

U = UR
def= {x ∈ R

3 : dC(x) < R},

Ul
def= {x ∈ R

3 : dC(x) < r}, Uw
def= {x ∈ R

3 : r < dC(x) < R}.
(1.3.1)

Let Dw and Dl be the respective diffusion constants in Ul and Uw and let V be the

velocity of the blood in U . There is no loss in the lumen, but let R ≥ 0 be the loss coefficient

in Uw to account for the metabolism of the drug. The motion of the blood in the lumen

is at best periodic. Yet, the period is small compared to the time constant associated with

the diffusion. In such a situation, it is convenient to work with a velocity averaged over the

period. We further assume that this averaged velocity V ∈ H1(Ul)3 is the solution of the
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Stokes equation in the whole lumen Ul. In particular,

div V = 0 in Ul and V · nUl
= 0 on ∂Ul, (1.3.2)

where ∂Ul is the lateral boundary of Ul and nUl
is the normal to Ul

∂Ul
def= {x ∈ R

3 : dC(x) = r}. (1.3.3)

At this juncture it is convenient to introduce the following global notation in U : the loss

coefficient R(x), the diffusion coefficient D(x), and the blood velocity V (x) ∈ R
3 in U are

defined from the corresponding quantities in the lumen and in the wall

D(x) =







Dl, x ∈ Ul

Dw, x ∈ Uw

V (x) =







Vl(x), x ∈ Ul

0, x ∈ Uw

R(x) =







0, x ∈ Ul

R, x ∈ Uw.
(1.3.4)

We assume that the concentration of product, c(x,t), satisfies a diffusion-advection equation

in the lumen and a diffusion-reaction equation in the wall. This corresponds to the following

equations:

∂c(x,t)
∂t

− div (D(x)∇c(x,t)) + V (x) · ∇c(x,t) + R(x)c(x,t) = 0 in U,

∂c(t)
∂nU

= 0 on ∂U, Dw
∂c(t)
∂nUw

+ Dl
∂c(t)
∂nUl

= 0 on ∂Uw ∩ ∂Ul,

c(x,0) = c0(x) in U,

(1.3.5)

where c(t) denotes the function x 7→ c(x,t) and ∂U is the lateral boundary of the infinite

tube U .

1.3.2. Central, Incoming, and Outgoing Sections

For analysis and control purpose, we restrict our attention to a central or therapeutic

region of the vessel where the stent will be introduced. It is chosen sufficiently long so that

the flow of blood at both end is sufficiently regular. This defines three regions (see Figure

1.1 ); the central section between φ(0) and φ(L)

Ω def= {x ∈ R
3 : dC(x) < R and pC(x) ∈ φ(0,L)},

Ωl
def= {x ∈ R

3 : dC(x) < r and pC(x) ∈ φ(0,L)},

Ωw
def= {x ∈ R

3 : r < dC(x) < R and pC(x) ∈ φ(0,L)};

(1.3.6)
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1.3.3. Transparency Conditions in Γ0 and ΓL

The objective is to find boundary conditions on Γ0 and ΓL to isolate the central section

Ω from Ωi and Ωo and obtain an equation for the concentration only on Ω. There are several

ways to do that; For instance, we could impose a pressure gradient between Γ0 and ΓL,

however we choose to do it by introducing transparency conditions in the form of boundary

conditions of the Robin type

D
∂c(t)
∂nΩ

+ β0 c(t) = 0 on Γ0 and D
∂c(t)
∂nΩ

+ βL c(t) = 0 on ΓL, (1.3.11)

where β0 : Γ0 → R and βL : ΓL → R are non-negative functions to be determined.

The boundary Γ of Ω is made up of Γ0, ΓL, Γlw = ∂Ul∩∂Uw∩Ω, and its lateral boundary

Γext where the normal derivative of the concentration is zero. In the end we obtain the

following equation for the concentration c in Ω:

∂c(x,t)
∂t

− div (D(x)∇c(x,t)) + V (x) · ∇c(x,t) + R(x)c(x,t) = 0 in Ω,

D
∂c(t)
∂nΩ

+ β0 c(t) = 0 on Γ0, D
∂c(t)
∂nΩ

+ βL c(t) = 0 on ΓL, D
∂c(t)
∂nΩ

= 0 on Γext,

Dw
∂c

∂nUw

+ Dl
∂c

∂nUl

on Γlw, c(x,0) = c0(x) in Ω.

(1.3.12)

The source term will come from the initial concentration.

1.3.4. Associated Bilinear Form and Existence of Solutions

Given u, v ∈ H1(Ω), consider the bilinear form associated with (1.3.12)

a(u,v) def=
∫

Ω
−div (D∇u) v + V · ∇u v + R u v dx. (1.3.13)

Upon integration by parts

a(u,v) =
∫

Ω
D∇u · ∇v + V · ∇u v + R u v dx−

∫

Γ0

D
∂u

∂nΩ

v dΓ−
∫

ΓL

D
∂u

∂nΩ

v dΓ

=
∫

Ω
D∇u · ∇v + V · ∇u v + R u v dx +

∫

Γ0

β0 u v dΓ +
∫

ΓL

βL u v dΓ.
(1.3.14)

This is a continuous bilinear form on H1(Ω) with a non-symmetric term V · ∇u v. It can be

decomposed as the sum of two bilinear forms

a0(u,v) =
∫

Ω
D∇u · ∇v + R u v dx +

∫

Γ0

β0 u v dΓ +
∫

ΓL

βL u v dΓ

b(u,v) =
∫

Ω
V · ∇u v dx.

(1.3.15)

7



Looking at each term in the expression of a0(u,u),
∫

Ω
D |∇u|2 dx ≥ min{Dl,Dw}

︸ ︷︷ ︸

>0

‖∇u‖L2(Ω),
∫

Ω
R
︸︷︷︸

≥0

u2 dx ≥ 0,

and assuming that

β0 ≥ 0 on Γ0 and βL ≥ 0 on ΓL, (1.3.16)

a0 generates a V -H coercive operator A0 with V = H1(Ω) and H = L2(Ω). The bilinear

form b generates a continuous linear operator B : V → H. So the operator A generated by

a is the sum A0 + B.

By [4, Thms. 1.1 and 1.2, pages 178-179] the sum A = A0 + B is V -H coercive and the

weak parabolic equation on the time interval [0,T ]

d

dt
(c(t), v)L2(Ω) + a(c(t),v) = 0, ∀v ∈ H1(Ω)

c(0) = c0 ∈ L2(Ω)
(1.3.17)

has a unique solution in W (0,T ) = {u ∈ L2 (0,T ; H1(Ω)) : u′ ∈ L2 (0,T ; H1(Ω)′)}, where

L2(Ω) and its dual L2(Ω)′ have been identified.

In order to have a(u,u) ≥ 0, we must look more closely at the term
∫

Ω
V · ∇u u dx =

∫

Ω
V ·

1
2
∇u2 dx =

∫

Ω

1
2

div (V u2) dx =
∫

Γ0

1
2

V · n u2 dΓ +
∫

ΓL

1
2

V · n u2 dΓ.

By using this identity, a(u,u) can be rewritten as

a(u,u) =
∫

Ω
D |∇u|2 + R u2 dx +

∫

Γ0

(

β0 +
1
2

V · n
)

u2 dΓ +
∫

ΓL

(

βL +
1
2

V · n
)

u2 dΓ

and we further need to assume that the two boundary terms verify the conditions

β0 +
1
2

V · n ≥ 0 on Γ0 and βL +
1
2

V · n ≥ 0 on ΓL. (1.3.18)

In order for a to be coercive, we need, in addition, an α > 0 and a subset γ0 ⊂ Γ0 of non

zero measure such that
(

β0 +
1
2

V · n
)

≥ α > 0 on γ0. (1.3.19)

This gives

a(u,u) ≥ min{Dl,Dw} ‖∇u‖2
L2(Ω) + R ‖u‖2

L2(Ω) + α ‖u‖2
L2

γ0
.

8



Since the geodesic distance4 between two points in Ω is bounded by a constant times the

distance between those two points, the norm in H1(Ω) is equivalent to the norm
[

‖∇u‖2
L2(Ω) + ‖u‖2

L2
γ0

]1/2
.

1.4. Transparency Conditions: Determination of β0 and βL

To obtain the functions β0 and βL at the interface Γ0 between Ωi and Ω and at the

interface ΓL between Ω and Ωo, it is sufficient to work with the “static part” of the evolution

equation (1.3.5)

− div (D∇u) + V · ∇u + Ru = 0 in U,

∂u

∂nU

= 0 on ∂U, Dw
∂u

∂nUw

+ Dl
∂u

∂nUl

= 0 on ∂Uw ∩ ∂Ul,
(1.4.1)

where we have not included the source term that will come from the initial condition. Note

that ∂U is the exterior lateral boundary of U . This equation will be integrated by parts

on each domain Ωi, Ω, and Ωo to obtain transmission conditions at the interfaces Γ0 and

ΓL at the inlet (z = 0) and at the outlet (z = L) of the therapeutic section Ω. Physically,

it amounts to following the transfers of mass of product across the interfaces and assume

conditions at an orthogonal section uphill (z = −∞) and at an orthogonal section downhill

(z = +∞). These integral conditions will then be strengthened by making them pointwise

to obtain the Robin conditions. By adding reasonable conditions on the normal component

of the velocity at both ends, V -H coercivity or coercivity for the variational formulation is

verified. That will ensure existence and uniqueness of the solution of the evolution equation

in the therapeutic section.

1.4.1. Bilinear Form in Ω

Recall that we have assumed that there is no loss in the lumen Ul (that is, R = 0 in Ul),

and that there is no transport term in the wall (that is, V = 0 in Uw).

The boundary of the domain Ωi is made up of three parts: Γ0, Γ−∞, and Γi
ext, the lateral

boundary of Ωi. Consider (1.4.1) in Ωi

− div
(

D∇ui
)

+ V · ∇ui = 0 in Ωi,

∂ui

∂nU

= 0 on Γi
ext, Dw

∂ui

∂nUw

+ Dl
∂ui

∂nUl

= 0 on ∂Ωi
w ∩ ∂Ωi

l.
(1.4.2)

4The geodesic distance between two points in Ω is the length of the shortest path in Ω connecting the two.
For a precise definition, see [5, page 364].
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Since div V = 0,

V · ∇ui =







0, in Ωi
w

div (V ui) in Ωi
l

(1.4.3)

applying Green’s formula 5 we have

0 =
∫

Ωi
div

(

V ui −Dl∇ui
)

dΓ =
∫

∂Ωi

(

V · n∂Ωi ui −D
∂ui

∂n∂Ωi

)

dΓ

=
∫

Γ0

(

V · n∂Ωi ui −D
∂ui

∂n∂Ωi

)

dΓ +
∫

Γ−∞

(

V · n∂Ωi ui −D
∂ui

∂n∂Ωi

)

dΓ,

where Γ−∞ can be seen as the orthogonal cross section of the tube far away from Γ0.

Assume that

V · n∂Ωi ≥ 0 on Γ0, V · n∂Ωi|Γ0 = −V · n∂Ωi|Γ−∞
, ui|Γ−∞

= 0, and
∂ui

∂n∂Ωi

∣
∣
∣
∣
∣
Γ−∞

= 0.

Then

0 =
∫

Γ0

(

V · n∂Ωi ui −D
∂ui

∂n∂Ωi

)

dΓ

=
∫

Γ0w

−Dw
∂ui

∂n∂Ωi

dΓ +
∫

Γ0l

(

V · n∂Ωi ui −Dl
∂ui

∂n∂Ωi

)

dΓ,

(1.4.4)

where Γ0 = Γ0w ∪ Γ0l and Γ0w and Γ0l are the two parts of Γ0. Finally, we strengthen this

integral condition by turning it into a pointwise condition

Dw
∂ui

∂n∂Ωi

= 0 on Γ0w and V · n∂Ωi ui −Dl
∂ui

∂n∂Ωi

= 0 on Γ0l. (1.4.5)

We have something similar on Ωo; The boundary of the domain Ωo is made up of three

parts: ΓL, Γ∞, and Γo
ext, the lateral boundary of Ωo. We get

0 =
∫

ΓL

(

V · n∂Ωo uo −D
∂uo

∂n∂Ωo

)

dΓ +
∫

Γ∞

(

V · n∂Ωo uo −D
∂uo

∂n∂Ωo

)

dΓ, (1.4.6)

where Γ∞ can be seen as the orthogonal cross section of the tube far away from ΓL. We

assume that

V · n∂Ωo ≥ 0 on ΓL, V · n∂Ωo|ΓL
= −V · n∂Ωo|Γ∞

,

uo|Γ∞
= uo|ΓL

, and
∂uo

∂n∂Ωo

∣
∣
∣
∣
∣
Γ∞

= 0.

5[10, page 316].
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Then

0 =
∫

ΓL

(

V · n∂ΩL u0 −D
∂uo

∂n∂Ωo

)

dΓ = −
∫

ΓLw

Dw
∂uo

∂n∂Ωo

dΓ−
∫

ΓLl

Dl
∂uo

∂n∂Ωo

dΓ. (1.4.7)

We also strengthen this integral condition by changing it into a pointwise condition

Dw
∂uo

∂n∂Ωo

= 0 on ΓLw and 0 = Dl
∂u0

∂n∂Ω0

on ΓLl. (1.4.8)

On the central section the boundary of the domain Ω is made up of three parts: ΓL, Γ0,

and Γext, the lateral boundary of Ω. Consider (1.4.1) on Ω

0 = −div (D∇u) + V · ∇u + Ru in Ω,

∂c

∂nΩ

= 0 on Γext, Dw
∂c

∂nΩw

+ Dl
∂c

∂nΩl

= 0 on ∂Ωw ∩ ∂Ωl.
(1.4.9)

From the transmission conditions across Γ0 and ΓL, we get two sets of identities

0 = Dw
∂ui

∂n∂Ωi

= −Dw
∂u

∂n∂Ω

on Γ0w

0 = V · n∂Ωi ui −Dl
∂ui

∂n∂Ωi

= −V · n∂Ω u + Dl
∂u

∂n∂Ω

on Γ0l.

and

0 = Dw
∂uo

∂n∂Ωo

= −Dw
∂u

∂n∂Ω

on ΓLw

0 = −Dl
∂uo

∂n∂Ωo

= Dl
∂u

∂n∂Ω

on ΓLl.

This completes the set of boundary and interface conditions on Ω and the functions β0 and

βL are given by the following expressions

β0(x) =







− V · n∂Ω, x ∈ Γ0l

0, x ∈ Γ0w






and βL = 0 on ΓL. (1.4.10)

As a result βL(x) ≥ 0 on ΓL and β0(x) ≥ 0 on Γ0 if and only if

V · n∂Ω ≤ 0 on Γ0l (1.4.11)
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which means that the flow of blood is coming into the segment Ω at its entry through Γ0.

Moreover, the conditions (1.3.18) are also verified

β0 +
1
2

V · n = −V · n∂Ω +
1
2

V · n∂Ω = −
1
2

V · n∂Ω ≥ 0 on Γ0l

βL +
1
2

V · n = 0 ≥ 0 on ΓL.

(1.4.12)

If we further assume that

∃γ0 ⊂ Γ0 of non-zero measure and ∃α > 0 such that − V · n ≥ α on γ0, (1.4.13)

then a is coercive.

1.4.2. Related Transparency Conditions in Dimension One

The approach followed in the previous section is related to the one used in Chalifour and

Delfour [13] to model the evolution of the concentration of larvicide in a targeted (finite)

segment of river (typically 12km for the Amoutchou river in Togo, West Africa). In order to

perform analysis and control over the segment, it was necessary to introduce transparency

conditions at the two ends of the segment to isolate it from the whole river bassin. In view

of the length of the segment, the river was considered to be one-dimensional and boundary

conditions of the Robin type were introduced at both ends. In their analysis Ω = (0,L), and

R(x) ≥ 0, D(x) ≥ α > 0, and V (x) ≥ 0 are functions defined on [0,L]. The constants β0 and

βL are given by expressions that incorporate the loss term R

β0 =
1
2

[√

V (0)2 + 4R(0) D(0) + V (0)
]

, (1.4.14)

βL =
1
2

[√

V (L)2 + 4R(L) D(L)− V (L)
]

. (1.4.15)

Our problem is similar but three-dimensional, and the one-dimensional analysis cannot be

carried out without some additional hypotheses. Note that when R = 0, we get our trans-

parency conditions.

1.5. Summary of the Assumptions, Existence Theorems, and Dose

Given the continuous bilinear form on H1(Ω)

a(u,v) =
∫

Ω
D∇u · ∇v + V · ∇u v + R u v dx +

∫

Γ0

β0 u v dΓ +
∫

ΓL

βL u v dΓ, (1.5.1)
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where

β0(x) =







− V · n∂Ω, x ∈ Γ0l

0, x ∈ Γ0w






and βL = 0 on ΓL, (1.5.2)

it is V -H coercive (V = H1(Ω) and H = L2(Ω)) if

min{Dw,Dl} > 0, Rw ≥ 0

V · n∂Ω ≤ 0 on Γ0l, V · n∂Ω ≥ 0 on ΓLl,
(1.5.3)

that is, the normal velocity of the flow is entering the lumen Ωl through Γ0 and exiting

through ΓL.

By [4, Thms. 1.1 and 1.2, pages 178-179] with the V -H coercivity of a, the weak parabolic

equation on the time interval [0,T ]

d

dt
(c(t), v)L2(Ω) + a(c(t),v) = 0, ∀v ∈ H1(Ω)

c(0) = c0 ∈ L2(Ω)
(1.5.4)

has a unique solution in W (0,T ) = {u ∈ L2(0,T ; H1(Ω) : u′ ∈ L2(0,T ; H1(Ω)′}, where L2(Ω)

and its dual L2(Ω)′ have been identified.

To be more concrete this abstract equation corresponds to the partial differential equation

system (1.3.12)

∂c(x,t)
∂t

− div (D(x)∇c(x,t)) + V (x) · ∇c(x,t) + R(x)c(x,t) = 0 in Ω,

D
∂c(t)
∂nΩ

+ β0 c(t) = 0 on Γ0, D
∂c(t)
∂nΩ

+ βL c(t) = 0 on ΓL, D
∂c(t)
∂nΩ

= 0 on Γext,

Dw
∂c

∂nUw

+ Dl
∂c

∂nUl

= 0 on Γlw, c(x,0) = c0(x) in Ω,

(1.5.5)

where R, V , and D are defined as in (1.3.4)

D(x) =







Dl, x ∈ Ul

Dw, x ∈ Uw

V (x) =







Vl(x), x ∈ Ul

0, x ∈ Uw

R(x) =







0, x ∈ Ul

R, x ∈ Uw.
(1.5.6)

Under the V -H coercivity assumption on a, the asymptotic concentration as T goes to

infinity depends on the initial concentration and is not necessarily zero. Under the stronger

coercivity assumption on a, the asymptotic concentration goes to zero as T goes to infinity

regardless of the initial concentration. The bilinear form a is coercive if, for instance, in

addition to assumptions (1.5.3),

∃γ0 ⊂ Γ0 of non-zero measure and ∃α > 0 such that − V · n ≥ α on γ0. (1.5.7)
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Since the parabolic equation is linear, we can define the notion of dose in Ω

q(x) def=
∫ +∞

0
c(x,t) dt, x ∈ Ω, (1.5.8)

as initially introduced in Chalifour-Delfour [13] for the river blindness problem and extended

in Delfour-Garon-Longo [31] to the stenting problem. For the larvicide problem it was ex-

perimentally established that the dose is proportional to the rate of mortality of the black fly

larvae. Imposing a minimum dose level at every point of the river guarantees that a targeted

percentage of the larvae will be destroyed. It is not clear that such a rule would apply to the

smooth muscle cells in the presence of a specific drug. Nonetheless, applying the dose to the

time derivative of (1.5.5) gives
∫ +∞

0

∂c

∂t
(x,t) dt = −c0(x). (1.5.9)

Since the hypothesis that a is coercive implies that limt→+∞ c(t) = 0. And if we assume that

all the functions D, R and V are constant in the respective domains of the lumen and the

wall, the equation of the dose is

− div (D∇q(x)) + V · ∇q(x) + R q(x) = c0(x) in Ω,

D
∂q

∂nΩ

+ β0 q = 0 on Γ0, D
∂q

∂nΩ

+ βL q = 0 on ΓL, D
∂q

∂nΩ

= 0 on Γext,

Dw
∂q

∂nUw

+ Dl
∂q

∂nUl

= 0 on Γlw

(1.5.10)

or, in variational form,

∃u ∈ H1(Ω), ∀v ∈ H1(Ω), a(u,v) =
∫

Ω
c0 v dx. (1.5.11)

As can be readily seen, the coercivity of a is needed to get a unique solution.
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Chapter 2

MODELING THE STENT AND ITS POLYMERIC

COATING

2.1. Preliminaries

In Chapter 1, the segment of vessel Ω was divided between the domains occupied by the

lumen Ωl and the wall Ωw. To prevent early restenosis due to the proliferation of smooth

muscle cells a drug eluding stent (DES) will be inserted in the lumen. To do that a delivering

catheter is inflated to expand and deploy the stent which maintains the opening. The balloon

is then deflated and the catheter removed. Within a month, the stent becomes incorporated

into the artery wall. So the stent is forced and maintained against the wall of the vessel.

Since the stent is very thin, it will be assumed to have zero thickness and, as a consequence,

will be a subset of the interface

Γlw
def= Γw ∩ Γl = Ωw ∩ Ωl. (2.1.1)

Since the stent is forced and maintained against the wall, the polymeric coating will be

assumed to be a thin layer on top of the stent within the original wall.

This type of model has been introduced by Delfour, Garon, and Longo [31] for a straight,

cylindrical vessel where the polymer was assumed to be a material with linear diffusion

characterised by a constant Dp. In this chapter we generalise this model to a curved vessel

with the transparency conditions developed in Chapter 1. We also obtain equations for the

dose and the normalised concentration , and discuss their limit as the thickness of the polymer

goes to zero. A second model will also be introduced for a very thin polymer.

2.2. Modeling of the Stent and its Polymeric Coating

2.2.1. Specification of the Stent and the Polymeric Domain

We designate a subset, Σ, of the interface Γlw as the target region where the stent will

be deployed against the wall. It is assumed to be far enough away from the boundaries Γ0
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and ΓL so as not to interfere with the boundary conditions (Σ∩ (Γ0 ∪ΓL) = ∅). Within the

target region Σ, we associate with a stent, Σs ⊂ Σ, the characteristic function:

χΣs
(x) =







1, if x ∈ Σs,

0, else.
(2.2.1)

While the characteristic function can be defined via the stent, conversely starting from a

(measurable) characteristic function χ ∈ L∞ (Σ) we can define the stent via

Σχ
def= {x ∈ Σ|χ(x) = 1} . (2.2.2)

This method was developed in [31, sec. 5.3] for arbitrary stents1 and later used by Bourgeois

and Delfour [8] to study the limit behaviour of the concentration and the dose as the scale

of the pattern of the stent gets asymptotically smaller. This is the so-called asymptotic stent

which depends on the ratio between the surface occupied by the stent and the surface of the

target region. Its advantage is to be able to specify any pattern with a single function. Due

to this, we will use the notation Σχ for the stent.

Both sides of the stent can be coated with drug-infused polymer. However, for our pur-

poses we assume that the coating is only on the upper side.2 We denote by h the (uniform)

thickness of the polymer on the upper side. We then partition the domain Ωw into the do-

main occupied by the polymer and the reduced domain occupied by the wall (see Figures

2.1 and 2.2)

Ωh
p

def= {x ∈ Ωw : pΣ(x) ∈ Σs and r < dC(x) < r + h} , (2.2.3)

Ωh
w

def= Ωw\Ωh
p , (2.2.4)

where it is assumed that the projection pΣ(x) of the point x onto Σ is a singleton. The

notation emphasises the dependence on h. This creates the new interface

Γh
pw

def= Ωh
p ∩ Ωh

w between the wall and the polymer (2.2.5)

while the former interface Γlw between the lumen and the wall is now made of two pieces:

Γlp
def= Σχ specified by the stent

Γh
lw

def= Ωl ∩ Ωh
w between the lumen and the wall.

(2.2.6)

1Even if the heading of the section was “Extension to general periodic stents”, it didn’t require the periodicity.
2That is, the side adjacent to the wall Ωw.
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As in Chapter 1 we now construct the bilinear form a, but there is an important change.

The presence of the stent creates a barrier or a crack(s) within the domain Ω. This means

that the new domain is

Ωχ
def= Ω\Σχ = {x ∈ Ω : x /∈ Σχ} . (2.2.12)

We can also use the notation Ω(χ). It is not Lipschitzian anymore, but the geodesic distance

between two points in Ωχ is still bounded by a constant times the distance between those

two points and the norm in H1(Ωχ) is equivalent to the norm
[

‖∇u‖2
L2(Ωχ) + ‖u‖2

L2
γ0

]1/2
for ∅ 6= γ0 ⊂ Γ0

where γ0 has strictly positive two-dimensional Hausdorff measure.

Define the following bilinear form on H1(Ωχ)

a(u,v) def=
∫

Ωl

−div (Dl∇u) v + Vl · ∇u v dx

+
∫

Ωh
w

−div (Dw∇u) v + Rw u v dx +
∫

Ωh
p

−div (Dp∇u) v + Rp u v dx.
(2.2.13)

Since the interface conditions are symmetric with respect to the normals, upon integration

by parts we get the same expression as in Chapter 1 but with Ωχ in place of Ω

a(u,v) =
∫

Ωχ

D∇u · ∇v + V · ∇u v + R u v dx−
∫

Γ0

D
∂u

∂nΩχ

v dΓ−
∫

ΓL

D
∂u

∂nΩχ

v dΓ

=
∫

Ωχ

D∇u · ∇v + V · ∇u v + R u v dx +
∫

Γ0

β0 u v dΓ +
∫

ΓL

βL u v dΓ,

(2.2.14)

where R, V , and D are defined as in (2.2.9). Again, this is a continuous bilinear form on

H1(Ωχ) with a non-symmetric term V ·∇u v. It can be decomposed as the sum of two bilinear

forms

a0(u,v) =
∫

Ωχ

D∇u · ∇v + R u v dx +
∫

Γ0

β0 u v dΓ +
∫

ΓL

βL u v dΓ

b(u,v) =
∫

Ωχ

V · ∇u v dx.
(2.2.15)
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As in Chapter 1 the concentration is solution of the equation

∂c(x,t)
∂t

− div (D(x)∇c(x,t)) + V (x) · ∇c(x,t) + R(x)c(x,t) = 0 in Ωχ,

D
∂c(t)
∂nΩχ

+ β0 c(t) = 0 on Γ0, D
∂c(t)
∂nΩχ

+ βL c(t) = 0 on ΓL, D
∂c(t)
∂nΩχ

= 0 on Γext,

c(x,0) = c0(x) in Ωχ,

(2.2.16)

with the boundary interface/conditions (2.2.10). Assuming that

β0 ≥ 0 on Γ0 and βL ≥ 0 on ΓL, (2.2.17)

a0 generates a V -H coercive operator A0 with V = H1(Ωχ) and H = L2(Ωχ). The bilinear

form b generates a continuous linear operator B : V → H. So the operator A generated by

a is the sum A0 + B. By [4, Thms. 1.1 and 1.2, pages 178-179] the sum A = A0 + B is V -H

coercive and the weak parabolic equation on the time interval [0,T ]

d

dt
(c(t), v)L2(Ωχ) + a(c(t),v) = 0, ∀v ∈ H1(Ωχ)

c(0) = c0 ∈ L2(Ωχ)
(2.2.18)

has a unique solution in W (0,T ) = {u ∈ L2 (0,T ; H1(Ωχ)) : u′ ∈ L2 (0,T ; H1(Ωχ)′)}, where

L2(Ωχ) and its dual L2(Ωχ)′ have been identified.

2.2.3. Equations for the Normalised Concentration

We assume that the initial mass of product, M0, is uniformly distributed within our

polymer. Thus

ch
0(x) =







M0
∣
∣
∣Ωh

p

∣
∣
∣

def= ch
0 , x ∈ Ωh

p

0, else.

(2.2.19)

We then define the normalised concentration

ĉh(x,t) def=
ch(x,t)

ch
0

, (2.2.20)

where the concentrations c(x,t) = ch(x,t), ch
0 , and ĉh(x,t) all depend on h. But now ĉh(x,t)

is a number between 0 and 1 ,which makes it possible to study its behaviour as h goes to

zero. For simplicity of the notation, the superscript h will be dropped.
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Since the equations in (2.2.16) are all linear, we obtain a system of equations for the

normalised concentration by substituting ĉ for c and altering the initial condition

∂ĉ(x,t)
∂t

− div (D(x)∇ĉ(x,t)) + V (x) · ∇ĉ(x,t) + R(x)ĉ(x,t) = 0 in Ωχ,

ĉ(x,0) =







1, x ∈ Ωh
p ,

0, else,

(2.2.21)

with boundary and interface conditions

D
∂ĉ

∂nΩ

+ β0 ĉ = 0 on Γ0, D
∂ĉ

∂nΩ

+ βL ĉ = 0 on ΓL, D
∂ĉ

∂nΩ

= 0 on Γext,

Dw
∂ĉ

∂nΩh
w

+ Dl
∂ĉ

∂nΩl

= 0 on Γh
lw (at the interface lumen/wall)

Dw
∂ĉ

∂nΩh
w

+ Dp
∂ĉ

∂nΩh
p

= 0 on Γpw (at the interface polymer/wall)

Dp
∂ĉ

∂nΩh
p

= 0 on Γlp Dl
∂ĉ

∂nΩl

= 0 on Γlp (at the interface lumen/polymer).

(2.2.22)

The next step is to see if the normalised concentration can be related to the normalised

mass of product in the polymer. The mass of product Mp(t) and the normalised mass of

product mp(t) in the polymer at time t are defined as follows

Mp(t) def=
∫

Ωh
p

c(x,t) dx, mp(t) def=
Mp(t)
M0

. (2.2.23)

mp(t) is then related to ĉ(x,t) by

mp(t) =
1

M0

∫

Ωh
p

c(x,t) dx =
1
∣
∣
∣Ωh

p

∣
∣
∣

∫

Ωh
p

ĉ(x,t) dx (2.2.24)

=⇒
dmp(t)

dt
=

1
∣
∣
∣Ωh

p

∣
∣
∣

∫

Ωh
p

∂ĉ(x,t)
∂t

dx. (2.2.25)

We then combine this equation with (2.2.21) reduced to the subdomain Ωh
p to obtain a system

of equations for mp(t)

dmp

dt
−

1
∣
∣
∣Ωh

p

∣
∣
∣

∫

Ωh
p

div (Dp∇ĉ) dx +
1
∣
∣
∣Ωh

p

∣
∣
∣

∫

Ωh
p

Rp ĉ dx = 0. (2.2.26)
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Applying the divergence theorem somewhat simplifies the equations

dmp

dt
−

Dp
∣
∣
∣Ωh

p

∣
∣
∣

∫

∂Ωh
p

∂ĉ

∂np

dΓ +
Rp
∣
∣
∣Ωh

p

∣
∣
∣

∫

Ωh
p

ĉ dx = 0,

=⇒
dmp

dt
−

Dp
∣
∣
∣Ωh

p

∣
∣
∣

∫

Γpw

∂ĉ

∂np

dΓ + Rp mp = 0.

(2.2.27)

For this first model, this is as far as we are able to push the equations. Contrary to future

models, we are not able to obtain an ODE for the normalised mass in the polymer mp(t) as

h goes to zero.

2.2.4. Equations for the Dose

When c(t) goes to zero as t goes to infinity, it is possible to introduce the notion of dose

q(x) def=
∫ ∞

0
c(x,t) dt, x ∈ Ωχ, (2.2.28)

as in [13] and [31]. Since all of the equations are linear in terms of the concentration, we

obtain the following equations for the dose

− div (D(x)∇q(x)) + V (x) · ∇q(x) + R(x) q(x) = c0(x) in Ωχ,

D
∂q

∂nΩχ

+ β0 q = 0 on Γ0, D
∂q

∂nΩχ

+ βL q = 0 on ΓL, D
∂q

∂nΩχ

= 0 on Γext,
(2.2.29)

or in terms of the bilinear form

∃q ∈ H1(Ωχ), ∀v ∈ H1(Ωχ), a(q,v) = ℓ(v), ℓ(v) def=
∫

Ωh
p

c0 v dx, (2.2.30)

As before, we assume that the initial mass of product, M0, is evenly distributed within the

polymer. Therefore, our linear function ℓ depends on h and we emphasize this dependence

by adding the subscript h to ℓ

c0(x) = ch
0(x) =







M0

|Ωh
p |

in Ωh
p

0 in Ωχ \ Ωh
p

⇒ ℓh(v) def=
∫

Ωh
p

M0

|Ωh
p |

v dx, (2.2.31)

where |Ωh
p | is the volume of Ωh

p . Recalling that everything depends on h, one should really

write

∃qh ∈ H1(Ωχ), ∀v ∈ H1(Ωχ), ah(qh,v) = ℓh(v), ℓh(v) def=
∫

Ωh
p

M0

|Ωh
p |

v dx, (2.2.32)
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ah(u,v) =
∫

Ωh
w

Dw∇u · ∇v + Rw u v dx +
∫

Ωh
p

Dp∇u · ∇v + Rp u v dx

+
∫

Ωl

Dl∇u · ∇v + Vl · ∇u v dx +
∫

Γ0

β0 u v dΓ +
∫

ΓL

βL u v dΓ.
(2.2.33)

It is possible to study the behaviour of qh as h goes to zero. But the target area is a piece

of curved cylinder and so we need some general results to get the asymptotic equations that

were obtained for a straight piece of cylinder in [31].

2.2.5. Local Coordinate System on Σ and Oriented Distance Function to Ωl

Remark 2.2.1. Unless otherwise stated, the definitions and results from this section can be

found in [29]. More details can also be found in [32].

The volume of the domain Ωh
p can be computed exactly by assuming that Ωl is of class

C1,1 in a neighbourhood of Σ 3 via the oriented distance function bΩl
to Ωl,

bΩl
(x) def= dΩl

(x)− dR3\Ωl
(x), (2.2.34)

where dA(x) is the distance from x to a set A

dA(x) def= inf
a∈A
|x− a|. (2.2.35)

The set Ωl is C1,1 at a point x ∈ ∂Ωl if and only if there exists k > 0 such that

bΩl
∈ C1,1(Bk(x)). To be on the safe side assume that bΩl

∈ C1,1(B2h(x)) at each x ∈ Σ. The

tubular neighbourhood of Σ is

U2h(Σ) def=
{

x ∈ R
3 : p∂Ωl

(x) ∈ Σ and |bΩl
(x)| < 2h

}

, (2.2.36)

Recall that the target region Σ ⊂ ∂Ωl is far from Γ0 and ΓL. If we further assume that

Σ ⊂ {x ∈ ∂Ωl : dΓ0(x) > 2h and dΓL
(x) > 2h} , (2.2.37)

there is a natural change of variables that will be defined via the bijection Tz(x) below.

This condition makes U2h(Σ) a “hollow tube” rather than a “sausage” with hemispheric

ends. At X ∈ Σ, the vector ∇bΩl
(X) is the outward unit normal to Ωl and the matrix

D2bΩl
(X) is the curvature matrix of ∂Ωl. Since D2bΩl

(X)∇bΩl
(X) = 0, 0 is an eigenvalue

and det D2bΩl
(X) = 0. The other eigenvalues are the principal curvatures4 of ∂Ωl at X.

3Intuitively, a domain is said to be of class C1,1 if its boundary can be mapped into a subset of R
m for

some m ∈ N by a C1, Lipschitzian function. See [32, chapter 2] for more details on C1,1 domains as well as
rigorous definitions.
4See [5, section 10.6] for more details on curvatures.
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Since bΩl
∈ C1,1(B2h(x)), the projection of each point of B2h(x) onto ∂Ωl is unique.

Consider the following region

U+
h (Σ) def=

{

x ∈ R
3 : p∂Ωl

(x) ∈ Σ and 0 < bΩl
(x) < h

}

(2.2.38)

that contains the polymer and part of the wall near Σ. The following bi-Lipschitzian bijection

is well-defined

x 7→ T (x) def= (p∂Ωl
(x), bΩl

(x)) : U+
h (Σ)→ Σ× (0,h) (2.2.39)

(X,z) 7→ T −1(X,z) = X + z∇bΩl
(X) : Σ× (0,h)→ U+

h (Σ). (2.2.40)

This bijection makes it possible to express a function in Euclidean coordinates x ∈ U+
h (Σ) ⊂

R
3 or in local coordinates (X,z) ∈ Σ × (0,h). We introduce the convenient notation X →

Tz(X) def= T −1(X,z) = X + z∇bΩl
(X). The change of variable formula for a function f :

U+
h (Σ)→ R is given by Federer’s formula5

∫

U+
h

(Σ)
f(x) dx =

∫ h

0

∫

Σ
f(Tz(X)) det DXTz(X) dX dz

=
∫

Σ

[
∫ h

0
f(Tz(X)) det DXTz(X) dz

]

dX,

(2.2.41)

where the Jacobian matrix is

DXTz(X) = I + z D2bΩl
(X), X ∈ Σ. (2.2.42)

Here DXTz denotes the Jacobian matrix of the mapping X 7→ Tz(X) = X + z∇bΩl
(X). For

small z its determinant is strictly positive since |∇bΩl
(X)| = 1. For instance, for the volume

with f = 1
∫

U+
h

(Σ)
dx =

∫

Σ

∫ h

0
det DXTz(X) dz dX. (2.2.43)

In dimension 3, denote by κ1(X) and κ2(X) the two principal curvatures of ∂Ωl at X ∈ Σ.

Then, for each (X,z) ∈ Σ× (0,h),

det DXTz(X) = det [I + z D2bΩl
(X)] = 1 + z H(X) + z2 K(X), (2.2.44)

5The original can be found in [38, page 243]. An alternate version, which is closer to the one used here, can
be found in [29, page 90].
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where H = κ1 + κ2 = ∆bΩl
is the mean curvature (of mathematicians)6 and K = κ1 κ2 is the

Gauss curvature. Coming back to the volume integral
∫

U+
h

(Σ)
dx =

∫

Σ

∫ h

0
1 + z H + z2 K dz dX =

∫

Σ
h +

h2

2
H +

h3

3
K dX. (2.2.45)

As for the domain occupied by the polymer
∫

Ωh
p

dx =
∫

U+
h

(Σ)
χ ◦ p∂Ωl

dx =
∫

Σ

∫ h

0
(χ ◦ p∂Ωl

) ◦ Tz (1 + z H + z2 K) dz dX. (2.2.46)

But χ ◦ p∂Ωl
◦ Tz = χ and the expression simplifies

∫

Ωh
p

dx =
∫

U+
h

(Σ)
χ ◦ p∂Ωl

dx =
∫

Σ
χ
∫ h

0
1 + z H + z2 K dz dX

=
∫

Σχ

h +
h2

2
H +

h3

3
K dX.

(2.2.47)

In particular, the initial concentration in Ωh
p is given by the expression

ch
0(x) =







M0
∫

Σχ
h + h2

2
H + h3

3
K dΣ

, in Ωh
p ,

0, elsewhere.

(2.2.48)

So, as the thickness h goes to zero, the initial concentration will explode making the asymp-

totic analysis difficult.

2.2.6. Back to the Asymptotic Dose

Going back to the system (2.2.32)-(2.2.33) for the dose with a polymer of thickness h

∃qh ∈ H1(Ωχ), ∀v ∈ H1(Ωχ), ah(qh,v) = ℓh(v), ℓh(v) def=
∫

Ωh
p

M0

|Ωh
p |

v dx, (2.2.49)

ah(u,v) =
∫

Ωh
w

Dw∇u · ∇v + Rw u v dx +
∫

Ωh
p

Dp∇u · ∇v + Rp u v dx

+
∫

Ωl

Dl∇u · ∇v + Vl · ∇u v dx +
∫

Γ0

β0 u v dΓ +
∫

ΓL

βL u v dΓ.
(2.2.50)

6In Physics and Engineering mean curvature means (κ1 + κ2)/2; See [5, section 10.6] for more details on the
subject of curvatures.
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Since as h → 0 we have that Ωh
p → Σχ, a set of zero measure in R

3, it is readily seen that

for all u,v ∈ H1(Ωχ)

ah(u,v)→ a(u,v) =
∫

Ωw

Dw∇u · ∇v + Rw u v dx

+
∫

Ωl

Dl∇u · ∇v + Vl · ∇u v dx +
∫

Γ0

β0 u v dΓ +
∫

ΓL

βL u v dΓ.

The bilinear form ah is coercive with a coercivity constant independent of h

ah(u,u) ≥ min{Dw,Dp,Dl} ‖∇u‖2
L2(0,1) + ‖u‖2

L2
γ0

under assumptions (1.5.3) plus

∃γ0 ⊂ Γ0 of non-zero measure and ∃α > 0 such that − V · n ≥ α on γ0. (2.2.51)

So there is an α > 0 such that

ah(u,u) ≥ α ‖u‖2
H1(Ωχ). (2.2.52)

As for the linear form

ℓh(v) =
∫

Ωh
p

M0

|Ωh
p |

v dx =
M0

∫

Σχ
1 + h

2
H + h2

3
K dX

1
h

∫

Ωh
p

v dx.

The first term is bounded by a constant independent of h as h goes to zero since
∣
∣
∣
∣
∣
∣

M0
∫

Σχ
1 + h

2
H + h2

3
K dX

∣
∣
∣
∣
∣
∣

≤
M0

|Σχ| −
h
2

∫

Σχ
|H| dX − h2

3

∫

Σχ
|K| dX

.

So, there exists h̄ and C such that for all 0 < h ≤ h̄
∣
∣
∣
∣
∣
∣

M0
∫

Σχ
1 + h

2
H + h2

3
K dX

∣
∣
∣
∣
∣
∣

≤ C.

As for the second term we use the change of variable formula (2.2.41)

1
h

∫

Ωh
p

v dx =
∫

Σ
χ

[

1
h

∫ h

0
v ◦ Tz (X)(1 + z H + z2 K) dz

]

dX →
∫

Σ
χ v dX =

∫

Σχ

v dX,

∃c, ∀v ∈ H1(Ωχ),

∣
∣
∣
∣
∣

∫

Σχ

v dX

∣
∣
∣
∣
∣
≤
∫

Σ
|v| dX ≤ c ‖v‖H1(Ωχ). (2.2.53)

The convergence of the integral is not entirely trivial; for each fixed X ∈ Σ consider the

functions f(h) and g(h) defined by

f(h) def= h, g(h) def=
∫ h

0
v ◦ Tz (X)(1 + z H + z2 K) dz.
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We are thus interested in the limit

lim
h→0

g(h)
f(h)

= lim
h→0

1
h
︸︷︷︸

1
f(h)

∫ h

0
v ◦ Tz (X)(1 + z H + z2 K) dz

︸ ︷︷ ︸

g(h)

.
(2.2.54)

Applying L’Hôpital’s rule7, we have

lim
h→0

g(h)
f(h)

= lim
h→0

g′(h)
f ′(h)

= lim
h→0

∂

∂h

(
∫ h

0
v ◦ Tz (X)(1 + z H + z2 K) dz

)

.

Leibniz’s integral rule8 implies that

∂

∂h

(
∫ h

0
v ◦ Tz (X)(1 + z H + z2 K) dz

)

= v ◦ Th (X)
(

1 + h H + h2 K
)

.

And so returning to (2.2.54) we have that

lim
h→0

1
h

∫ h

0
v ◦ Tz (X)(1 + z H + z2 K) dz = lim

h→0
v ◦ Th (X)

(

1 + h H + h2 K
)

= v ◦ T0 (X).

But Tz(X) = X+z∇bΩl
(X), which implies that T0(X) = X and T0 = i, the identity function

on Σ. Thus limh→0
1
h

∫ h
0 v ◦ Tz (X)(1 + z H + z2 K) dz = v(X). Moreover, since the domain

Σχ and the characteristic function χ are independent of h, we have

lim
h→0

∫

Σ
χ

[

1
h

∫ h

0
v ◦ Tz (X)(1 + z H + z2 K) dz

]

dX

=
∫

Σ
χ

[

lim
h→0

1
h

∫ h

0
v ◦ Tz (X)(1 + z H + z2 K) dz

]

dX =
∫

Σ
χ v dX =

∫

Σχ

v dX.

So, there exists h̄ and C ′ such that for all 0 < h ≤ h̄
∣
∣
∣
∣
∣

1
h

∫

Ωh
p

v dx

∣
∣
∣
∣
∣
≤ C ′ ‖v‖H1(Ωχ) ⇒ ∀v ∈ H1(Ωχ), |ℓh(v)| ≤ c C ′ ‖v‖H1(Ωχ) (2.2.55)

ℓh(v)→ ℓ0(v) def=
M0

|Σχ|

∫

Σχ

v dx. (2.2.56)

We are now ready to study the limit of qh as h goes to zero: from (2.2.32)

∃qh ∈ H1(Ωχ), ∀v ∈ H1(Ωχ), ah(qh,v) = ℓh(v) ⇒ ah(qh,qh) = ℓh(qh),

7See, for instance, [90, page 35].
8See, for instance, [40, page 615].
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by substituting v = qh ∈ H1(Ωχ). By using the bounds in (2.2.52) and (2.2.55)

α ‖qh‖
2
H1(Ωχ) ≤ ah(qh,qh) = ℓh(qh) ≤ c C ′ ‖qh‖H1(Ωχ) ‖qh‖H1(Ωχ) ≤ c C ′ /α.

The sequence qh is bounded, and so there exists q ∈ H1(Ωχ) and a sequence {qhn
} such that

qhn
⇀ q in H1(Ωχ)-weak and

∀v ∈ H1(Ωχ), a(q,v)← ahn
(qhn

,v) = ℓhn
(v)→ ℓ0(v).

But the solution of the variational equation a(q,v) = ℓ0(v) is unique and, hence, q =

limh→0 qh. Finally, q ∈ H1(Ωχ) is the unique solution of
∫

Ωw

Dw∇q · ∇v + Rw q v dx

+
∫

Ωl

Dl∇q · ∇v + Vl · ∇q v dx +
∫

Γ0

β0 q v dΓ +
∫

ΓL

βL q v dΓ =
M0

|Σχ|

∫

Σχ

v dx.
(2.2.57)

2.3. Second Model: Shrinking the Domain Occupied by the Poly-

mer

In the previous section the domain Ωh
p occupied by the polymer is characterised by the

characteristic function χ and its thickness h. Yet, the size of Ωh
p is very small and Ωh

w is

almost equal to Ωw. So it is natural to attempt to neglect Ωh
p and to replace it by an

appropriate condition at Σχ characterised by some parameters that will depend on h (as

shown in Figures 2.3 and 2.4). As before, since the initial mass M0 of product is constant,

the initial concentration ch
0 in Ωh

p is assumed to be uniform

ch
0(x) def=







M0/
∫

Ωh
p

dx, in Ωh
p

0, elsewhere.

(2.3.1)

The first objective is to shrink Ωh
p to Σχ and incorporate h in an appropriate condition

on Σχ. The second objective is to study the behaviour of the concentration ch as h goes to
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2.3.1. Shrinking Ωh
p to Σχ for a fixed h

Recall the equations (2.2.11) for the concentration in each subdomain

∂c

∂t
− div (Dw∇c) + Rw c = 0 in Ωh

w,

∂c

∂t
− div (Dl∇c) + Vl · ∇c = 0 in Ωl,

∂c

∂t
− div (Dp∇c) + Rp c = 0 in Ωh

p ,

(2.3.2)

and the condition at the interface polymer/wall

Dw
∂c

∂nΩh
w

+ Dp
∂c

∂nΩh
p

= 0 on Γh
pw

def= Ωh
p ∩ Ωh

w, (2.3.3)

and on each side of the interface polymer/lumen Γlp

Dp
∂c

∂nΩh
p

= 0 and Dl
∂c

∂nΩl

= 0 on Γlp = Ωl ∩ Ωh
p = Σχ. (2.3.4)

At t ≥ 0, the mass of product in the polymer is

Mp(t) def=
∫

Ωh
p

cp(x,t) dx,

where cp(x,t) is the restriction of c(x,t) to Ωh
p . Using the change of variables

Mp(t) def=
∫

Σ
χ(x)

[
∫ h

0
cp(Tz(X),t) (z +

z2

2
H(X) +

z3

3
K(X)) dz

]

dΣ.

Define the concentration averaged along the normal in each point of Σχ

c̄p(X,t) def=
1
h

[
∫ h

0
cp(Tz(X),t)

(

z +
z2

2
H(X) +

z3

3
K(X)

)

dz

]

c̄p(t) def=
1
h

[
∫ h

0
(cp(t) ◦ Tz)

(

z +
z2

2
H +

z3

3
K

)

dz

]

on Σχ,

where c̄p(t) : [0,∞)→ L2(Σχ). By definition

Mp(t) =
∫

Ωh
p

cp(x,t) dx = h
∫

Σχ

c̄p(X,t) dΣ (2.3.5)

∫

Ωh
p

∂cp

∂t
(x,t) dx = h

∫

Σχ

∂c̄p

∂t
(X,t) dΣ (2.3.6)
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Upon substitution into the third equation of (2.2.11) on Ωh
p

h
∫

Σχ

∂c̄p

∂t
(X,t) dΣ =

∫

Ωh
p

div (Dp∇cp)−Rp cp dx

=
∫

∂Ωh
p

Dp
∂cp

∂nΩh
p

dx−Rp

∫

Ωh
p

cp dx

=
∫

Γh
wp

Dp
∂cp

∂nΩh
p

dx−Rph
∫

Σχ

c̄p(X,t) dΣ,

(2.3.7)

since Dp
∂c

∂n
Ωh

p

= 0 on Γ0w ∪ ΓLw ∪ Γlp. Using the transmission condition across Γh
wp

−
∫

Γh
wp

Dw
∂cw

∂nΩh
w

dΓ = h
∫

Σχ

(

∂c̄p

∂t
(X,t) + Rpc̄p(X,t)

)

dΣ =
∫

Γh
wp

Dp
∂cp

∂nΩh
p

dΓ. (2.3.8)

The interface Γh
wp = ∂Ωh

p\Σχ is made of the upper part of ∂Ωh
p parallel to Σχ and the lateral

part of height h. We want to neglect the integral over the lateral part and identify the integral

on the upper part of Γh
wp with the integral on Σχ.

We proceed in two steps. In step (a), we take care of the first two integrals in (2.3.8) and

in step (b) of the last two integrals.

(a) First replace the first equation (2.2.11) for c on Ωh
w by the same equation on the larger

original domain Ωw. Denote by c̄ the new solution of

∂c̄

∂t
− div (Dw∇c̄) + Rw c̄ = 0 in Ωw,

∂c̄

∂t
− div (Dl∇c̄) + Vl · ∇c̄ = 0 in Ωl.

(2.3.9)

In enlarging the domain Ωh
w to Ωw and confining Ωh

p to Σχ the total mass

Mwp(t) =
∫

Ωh
w

cw(t,x) dx +
∫

Ωh
p

cp(t,x) dx =
∫

Ωh
w

cw(t,x) dx + h
∫

Σχ

c̄p(X,t) dX

of drug must be preserved as we replace cw by c̄:

Mwp(t) = β(h)
∫

Ωw

c̄(t,x) dx + h
∫

Σχ

c̄p(X,t) dX, β(h) def=
|Ωh

w|

|Ωw|
, (2.3.10)

where β(h) is a geometric factor that is almost 1 since |Ωw| = |Ωh
w| + |Ω

h
p | ≈ |Ω

h
w|. In what

follows we just write β. This will give
∫

Γh
wp

Dw
∂cw

∂nΩh
w

dΓ ≈ β
∫

Σχ

Dw
∂c̄

∂nΩw

dΣ

∫

Σχ

β Dw
∂c̄

∂nΩw

+ h

(

∂c̄p

∂t
(X,t) + Rpc̄p(X,t)

)

dΣ = 0.
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Assume that this integral identity is valid pointwise

β Dw
∂c̄

∂nΩw

+ h

(

∂c̄p

∂t
(X,t) + Rpc̄p(X,t)

)

= 0 on Σχ. (2.3.11)

(b) To complete our system of equation we need an equation for c̄p on Σχ. So we go back

to the second part of the transmission condition (2.3.8)
∫

Γh
wp

Dp
∂cp

∂nΩh
p

dΓ = h
∫

Σχ

(

∂c̄p

∂t
(X,t) + Rpc̄p(X,t)

)

dΣ. (2.3.12)

The simplest thing to do is to approximate the normal derivative. Drop the variable t for

the moment and consider the function z 7→ c(z,X) def= cp(Tx(X)) and

∂cp

∂z
(z,X) = ∇cp(Tx(X)) ·

∂Tz(X)
∂z

= (∇cp · ∇bΩl
)(Tz(X)) =

∂cp

∂nΩh
p

(Tz(X)).

At points X away from the edges we can approximate the function z 7→ c(z,X) by linear

interpolation via the points c(0,X) and c(h,X)

c(x, X) = c(0,X) + (c(h,X)− c(0,X))
z

h
,

⇒
∂cp

∂z
(z,X) =

c(h,X)− c(0,X)
h

, c̄p(X) =
c(h,X) + c(0,X)

2
.

By continuity of c, cp(h,X) = cw(h,X) ≈ c̄(X) and

∂cp

∂z
(h,X) ≈

cp(h,X)− cp(0,X)
h

= 2
c̄(X)− c̄p(X)

h

⇒
∫

Γh
wp

Dp
∂cp

∂nΩh
p

dΓ ≈
∫

Σχ

∂cp

∂z
(h,X) dΓ ≈

2
h

∫

Σχ

Dp (c̄− c̄p) dΓ.

Finally,

2
h

∫

Σχ

Dp (c̄− c̄p) dΓ ≈ h
∫

Σχ

(

∂c̄p

∂t
(X,t) + Rpc̄p(X,t)

)

dΣ. (2.3.13)

Assuming that this integral identity is verified pointwise

∂c̄p

∂t
(X,t)−

2 Dp

h2
(c̄p(X,t)− c̄(X,t)) + Rp c̄p(X,t) = 0 on Σχ

c̄p(X,0) =
M0

∫

Σχ

(

h + h2

2
H + h3

3
K
)

dΣ
on Σχ,

(2.3.14)
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2.3.2. Summary of the Equations for the Concentrations (c̄, c̄p)

The pair c̄(t) : Ωχ → R and c̄p(t) : Γχ → R, is solution of the coupled system






∂c̄

∂t
− div (Dw∇c̄) + Rw c̄ = 0 in Ωw,

∂c̄

∂t
− div (Dl∇c̄) + Vl · ∇c̄ = 0 in Ωl,

c̄(0) = 0 in Ωχ,

Dw
∂c̄

∂nΩw

+ Dl
∂c̄

∂nΩl

= 0 on Γlw\Σχ,

β Dw
∂c̄

∂nΩw

+
2
h

Dp (c̄p − c̄) = 0 on Σχ, Dl
∂c̄

∂nΩl

= 0 on Σχ.

D
∂c̄

∂nΩχ

+ β0 c̄ = 0 on Γ0, D
∂c̄

∂nΩχ

+ βL c̄ = 0 on ΓL, D
∂c̄

∂nΩχ

= 0 on Γext,

(2.3.15)







∂c̄p

∂t
+

2 Dp

h2
(c̄p − c̄) + Rp c̄p = 0 on Σχ,

c̄p(0) =
M0

∫

Σχ

(

h + h2

2
H + h3

3
K
)

dΣ
on Σχ,

(2.3.16)

where R, V , and D are defined as

D(x) =







Dl, x ∈ Ωl,

Dw, x ∈ Ωw,
V (x) =







Vl(x), x ∈ Ωl,

0, x ∈ Ωw,
R(x) =







0, x ∈ Ωl,

Rw, x ∈ Ωw.
(2.3.17)

2.3.3. Equations for the Normalised Concentration

In this section we follow the construction of [42], where we recreate the drug-release ODE

obtained in [7] for the normalised mass released into the wall from our system of equations.

We do this by examining the effect on the equations (2.3.15)-(2.3.16) as we let the thickness

h go to zero. However, this results in the initial concentration c̄p(0) going to infinity. To

prevent this, we define ch
0

def= M0/
∣
∣
∣Ωh

p

∣
∣
∣ as before, and the normalised concentrations with

respect to ch
0

ĉ(x,t) def=
c(x,t)

ch
0

, x ∈ Ωχ, ĉp(X,t) def=
c̄p(X,t)

ch
0

, X ∈ Σχ. (2.3.18)
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Since all of the equations in (2.3.15)-(2.3.16) are linear, they remain valid when substituting

the normalised concentration. The only modification is to the initial condition c̄p(0)






∂ĉ

∂t
− div (Dw∇ĉ) + Rw ĉ = 0 in Ωw,

∂ĉ

∂t
− div (Dl∇ĉ) + Vl · ∇ĉ = 0 in Ωl,

ĉ(0) = 0 in Ωχ,

Dw
∂ĉ

∂nΩw

+ Dl
∂ĉ

∂nΩl

= 0 on Γlw\Σχ,

β Dw
∂ĉ

∂nΩw

+
2
h

Dp (ĉp − ĉ) = 0 on Σχ, Dl
∂ĉ

∂nΩl

= 0 on Σχ.

D
∂ĉ

∂nΩχ

+ β0 ĉ = 0 on Γ0, D
∂ĉ

∂nΩχ

+ βL ĉ = 0 on ΓL, D
∂ĉ

∂nΩχ

= 0 on Γext,

(2.3.19)







∂ĉp

∂t
+

2
h2

Dpβ (ĉp − ĉ) + Rp ĉp = 0 on Σχ,

ĉp(0) = 1.
(2.3.20)

The normalised mass in the polymer is defined as

mp(t) def=
Mp(t)
M0

. (2.3.21)

where

Mp(t) = h
∫

Σχ

c̄p(X,t) dΣ and ch
0 =

M0
∫

Σχ
h + h2

2
H + h3

3
K dΣ

We have that

mp(t) =
h

M0

∫

Σχ

c̄p(X,t) dΣ =
1

∫

Σχ
1 + h

2
H + h2

3
K dΣ

∫

Σχ

ĉp(X,t) dΣ

=⇒
dmp(t)

dt
=

1
∫

Σχ
1 + h

2
H + h2

3
K dΣ

∫

Σχ

∂ĉp(X,t)
∂t

dΣ. (2.3.22)

If we set
∣
∣
∣Σh

χ

∣
∣
∣

def=
∫

Σχ
1 + h

2
H + h2

3
K dΣ and then combine (2.3.22) with (2.3.20), we obtain a

PDE for mp

dmp

dt
+

2β Dp

h2
∣
∣
∣Σh

χ

∣
∣
∣

∫

Σχ

ĉp − ĉ dΣ +
Rp
∣
∣
∣Σh

χ

∣
∣
∣

∫

Σχ

ĉp dΣ = 0,

mp(0) =
1
∣
∣
∣Σh

χ

∣
∣
∣

∫

Σχ

ĉp(0) dΣ = 1.

(2.3.23)

34



As we take the limit h → 0, we have that ĉ → 0 and
∣
∣
∣Σh

χ

∣
∣
∣ → |Σχ|. From there, the first

equation of (2.3.23) would simplify and we would obtain a system of equations for the

normalized mass of product in the polymer

dmp

dt
+

2β

h2 |Σχ|
Dp

∫

Σχ

ĉp dΣ +
1
|Σχ|

∫

Σχ

Rp ĉp dΣ = 0

=⇒
∂mp

∂t
+

2β

h2
Dpmp + Rpmp = 0,

(2.3.24)

with initial condition mp(0) = 1. This would lead to the equation for the normalised mass

released to the wall
∂mw

∂t
=

2β

h2
Dp (1−mw) + Rp (1−mw)

mw(0) = 0
(2.3.25)

Unfortunately, there is an h2 at the denominator of the coefficient in front of the diffusion

term and the whole argument collapses. As in section 2.2.3, we cannot get a nice ODE for

the normalised mass mp.

2.3.4. Equations for the Dose and the Asymptotic Dose

As in Chapter 1 it is possible to introduce the dose when both c̄(t) and c̄p(t) go to zero

as t goes to infinity

q̄(x) def=
∫ ∞

0
c̄(x,t) dt, q̄p(x) def=

∫ ∞

0
c̄p(x,t) dt. (2.3.26)

The resulting equations are






− div (Dw∇q̄) + Rw q̄ = 0 in Ωw,

− div (Dl∇q̄) + Vl · ∇q̄ = 0 in Ωl,

Dw
∂q̄

∂nΩw

+ Dl
∂q̄

∂nΩl

= 0 on Γlw\Σχ,

β Dw
∂q̄

∂nΩw

+
2
h

Dp (q̄p − q̄) = 0 on Σχ, Dl
∂q̄

∂nΩl

= 0 on Σχ.

D
∂q̄

∂nΩχ

+ β0 q̄ = 0 on Γ0, D
∂q̄

∂nΩχ

+ βL q̄ = 0 on ΓL, D
∂q̄

∂nΩχ

= 0 on Γext,

(2.3.27)

2 Dp

h2
(q̄p − q̄) + Rp q̄p = c̄p(0) =

M0
∫

Σχ

(

h + h2

2
H + h3

3
K
)

dΣ
on Σχ. (2.3.28)
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From the last equation, we can solve explicitly for q̄p as a function of q̄
(

2 Dp + h2 Rp

)

q̄p = 2 Dp q̄ + h2 c̄p(0)

⇒ q̄p =
2 Dp

2 Dp + h2 Rp

q̄ + h2 1
2 Dp + h2 Rp

c̄p(0)

=
2 Dp

2 Dp + h2 Rp

q̄ + h
1

2 Dp + h2 Rp

M0
∫

Σχ

(

1 + h
2

H + h2

3
K
)

dΣ
.

(2.3.29)

Since the variable q̄p appears only once in the interface equation on Σχ, it can be eliminated

q̄p − q̄ = −h2 Rp

2 Dp + h2 Rp

q̄ + h2 1
2 Dp + h2 Rp

c̄p(0)

to get a system of equation for q̄






− div (Dw∇q̄) + Rw q̄ = 0 in Ωw,

− div (Dl∇q̄) + Vl · ∇q̄ = 0 in Ωl,

Dw
∂q̄

∂nΩw

+ Dl
∂q̄

∂nΩl

= 0 on Γlw\Σχ,

β Dw
∂q̄

∂nΩw

− h
2 Dp Rp

2 Dp + h2 Rp

q̄ +
2 Dp

2 Dp + h2 Rp

M0
∫

Σχ

(

1 + h
2

H + h2

3
K
)

dΣ
= 0 on Σχ,

Dl
∂q̄

∂nΩl

= 0 on Σχ.

D
∂q̄

∂nΩχ

+ β0 q̄ = 0 on Γ0, D
∂q̄

∂nΩχ

+ βL q̄ = 0 on ΓL, D
∂q̄

∂nΩχ

= 0 on Γext,

(2.3.30)

Note that the term
M0

∫

Σχ

(

1 + h
2

H + h2

3
K
)

dΣ
(2.3.31)

is a density per unit area.
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When h goes to zero, q̄p = q̄ on Σχ and q̄ is solution of the system






− div (Dw∇q̄) + Rw q̄ = 0 in Ωw,

− div (Dl∇q̄) + Vl · ∇q̄ = 0 in Ωl,

Dw
∂q̄

∂nΩw

+ Dl
∂q̄

∂nΩl

= 0 on Γlw\Σχ,

Dw
∂q̄

∂nΩw

+
M0

|Σξ|
= 0 on Σχ, Dl

∂q̄

∂nΩl

= 0 on Σχ.

D
∂q̄

∂nΩχ

+ β0 q̄ = 0 on Γ0, D
∂q̄

∂nΩχ

+ βL q̄ = 0 on ΓL, D
∂q̄

∂nΩχ

= 0 on Γext.

(2.3.32)

It is the same equation as (2.2.57) obtained in the previous section.
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Chapter 3

QUADRATIC DRUG RELEASE FROM A THIN,

FLAT POLYMERIC FILM

3.1. Introduction

The underlying assumption for the models introduced in Chapter 2 was that the poly-

mer behaves as a homogeneous, linearly diffusive material with diffusion constant Dp and a

standard transmission condition at the interface between the wall and the polymer. A poly-

mer, and even more so highly degradable polymers, are quite different environments. They

are made up of an internal matrix subject to deterioration, dislocation, and surface erosion.1

The molecules of drug must find their way out through deficiencies of the polymer depending

on the relative size of the interior holes or paths compared to the size of the molecule of drug.

Physically, we are closer to models of semi-permeable membranes obeying some form

of Fick’s law. Mathematically, such models have been studied within the framework of the

Neumann sieve model by Damlamian [27] in 1986 where two linearly diffusive domains are

separated by an interface punctured with small holes. Depending on the nature of the holes

and the rate at which their size goes to zero, several cases are to be considered. In our

context, it would mean a condition of the form

β Dw
∂cw

∂nΩw

+ A1 (cp − cw) = 0 on ∂Ωh
w ∩ ∂Ωh

p , (3.1.1)

where A1 is a term coming from nowhere2 which is related to the mathematical capacity of

the holes. This condition is of the same form as condition

β Dw
∂c̄

∂nΩw

+
2
h

Dp (c̄p − c̄) = 0 on Σχ,

1More information on the subject can be found in [33, chapter 5], which discusses various stent compositions
and their effects on deterioration and erosion.
2See Cioranescu and Murat [24, 25] in 1982, [26] in 1997, and the very elegant theory of periodic unfolding
by Cioranescu, Damlamian, and Griso [18, 19, 20, 21].
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in equation (2.3.15) of Chapter 2 (but missing a factor of h at the denominator), and the

underlying physics are quite different.

This chapter briefly surveys recent work of A. Garon and M. C. Delfour [42] on a three-

dimensional, quadratic partial differential equation model of the drug release from a thin

film of biodegradable polymer to a surrounding medium. Its very innovative feature is to go

directly from the experimental normalised release curves of L. L. Lao and S. S. Venkatraman

[60] to a flux condition at the interface between the polymer and the medium. In order

to do so, it only requires the identification of the two parameters of the highly accurate

ordinary differential equation model of G. Blanchet, M. C. Delfour, and A. Garon [7] In

the context of drug eluting stents, it is a practical and economical tool to theoretically and

numerically simulate the 3D release of drug from the thin polymer film to the integrated

wall and lumen of the blood vessel for evaluation and design. This approach avoids resorting

to time-dependent or nonlinear diffusion in the polymer.

3.2. Measurements and the Two-parameter ODE Model

3.2.1. Neat Polymers

The objective of the experiment of L. L. Lao and S. S. Venkatraman [60] was to get the

release profile of paclitaxel from three neat polymer matrices of PCL (Polycaprolactone),

PLGA (dl-lactide-co-glycolide) and PLGAPEG (PLGA with polyethylene glycol), and con-

struct a semi-empirical model for prediction and design. They are representative of a broad

spectrum of biodegradable polymers ranging from hydrophobic to hydrophilic (cf., for in-

stance, [63]). In hydrophilic polymers the internal bounds between the chains are weakened

and this adds to the surface erosion phenomenon. The drug release mechanism within a poly-

mer matrix depends on many factors such as the affinity of the drug with the surrounding

medium (water). Specifically, paclitaxel is hydrophobic and this might explain the fact that

some of the drug blended into the polymer matrix is not released and cannot participate to

the treatment of the diseased wall. The main criticism expressed in [62] of available models

for drug release from eroding surfaces is that they fail to faithfully reproduce experimental

data for highly degradable polymers (the S-curve behaviour in Figure 3.2). The reader is

referred to the introduction of the paper of Lao et al [62] for a comprehensive review of the

literature.
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polymer film Ωh
p

(surrounding) fluid Ωh
m

Figure 3.1. The polymer film Ωh
p and the (surrounding) medium Ωh

m in the
vial (not to scale). Reproduced from [42, Fig. 1]. Copyright c©2014 Society for
Industrial and Applied Mathematics. Reprinted with permission. All rights
reserved.

Each polymer sample consisted of a thin square film (12 mm×12 mm) of thickness 80 µm

uniformly loaded with 4 µg of paclitaxel. The film was placed in a vial and the vial was filled

with a fluid solution that we shall call the surrounding medium (see Figure 3.1). The vial is

closed without circulation of the fluid. The time t is measured in days. The surrounding fluid

was removed and analysed every two days and replaced by a fresh solution. The measurements

were presented in the form of a normalised release curve, that is, the total mass Mm(t) of

paclitaxel released to the medium at time t divided by its initial mass M0 in the polymer.
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Figure 3.2. Quadratic ODE model [7] and experimental [60, Figure 1] nor-
malised paclitaxel release curves as a function of the time t for the neat PCL,
PLGAPEG, and PLGA. Copyright c©2011 Society for Industrial and Applied
Mathematics. Reprinted with permission. All rights reserved.

A quick look at the paclitaxel release profiles of Lao et al [60, Figure 1] reproduced

in Figure 3.2 suggests two types of release: S-curve type and exponential type. Many drug

release experimental curves in literature show an S-type behaviour, but are theoretically
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approximated by an exponential (see, for instance, the MCC core curve in Siepmann and

Siepmann [81, Fig. 3, page 354] reproduced in Figure 3.3).

Figure 3.3. Theoretically predicted (dotted curve) and experimentally ver-
ified (symbols) diltiazem HCl release kinetics from coated pellets in 0.1 N
HCl.. . . Reprinted from Journal of Controlled Release [81, Fig. 3], Copyright
c©2012, with permission from Elsevier.

It is fair to say that the paper of Lao et al [62, p. 797] has changed the focus by empha-

sising the fitting to experimental data over mechanistic theories such as the erosion models

of T. Higuchi [46] (Rate of Release of Medicaments from Ointment) in 1961 and [47] (Theo-

retical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices) in 1963 that

cannot generate release curves of the S-type.

S-curve behaviours are similar to the ones encountered in the study of the logistic equation

of populations. This led Blanchet et al [7] to fitting the normalised experimental data of Lao

et al [60] with the solution of the following quadratic ODE

dm

dt
(t) = a1 (1−m(t)) + a2 (1−m(t))2 , m(0) = 0, (3.2.1)
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where m(t) is the ratio of the released mass of drug Mm(t) to the medium at time t divided

by the initial mass of drug M0 at time 0. The time t is expressed in days. The two parameters

a1 and a2 expressed in days−1 completely specify the release. Total release is achieved when

m(t) goes to 1 as the time t goes to infinity, but partial release is also possible by changing

the asymptotic value m∞ = limt→∞ m(t) to a number between 0 and 1. It was shown in [7]

that four cases can occur under the conditions m(0) = 0 and m′(0) = a1 + a2 > 0. In all

cases a1 ≥ 0 but a2 can be positive (exponential type), zero (true exponential) or negative

(S-type).

In our context, 0 ≤ m(t) ≤ 1 and it is further necessary that m′(0) > 0 to initiate the

release. This yields a first condition on the two parameters : m′(0) = a1 + a2 > 0. When

a2 = 0, the ODE is linear, and it is necessary that a1 > 0 to get 1 as the asymptotic limit:

m(t) = (1− e−a1t). When a2 6= 0, m(t) is given in closed form by

m(t) =







(a2 + a1)
1− e−a1 t

a2 + a1 − a2 e−a1 t
, if a1 6= 0,

a2 t

1 + a2 t
, if a1 = 0.

(3.2.2)

As t goes to infinity,

m(t)→







1, if a1 ≥ 0

1 + a1/a2, if a1 < 0.
(3.2.3)

Under the conditions m(0) = 0 and m′(0) > 0, the following four cases can occur:

Case 1) (True S type) a1 > 0, a2 < 0, and − 2 < a1/a2 < −1. The point of inflexion of the

S-curve occurs at the positive time

tc = −(1/a1) log
(

a1 + a2

−a2

)

> 0,

since 0 < (a1 + a2)/(−a2) < 1;

Case 2) (S type) a1 > 0, a2 < 0, and a1/a2 ≤ −2. The point of inflexion occurs at the

negative time

tc = −(1/a1) log
(

a1 + a2

−a2

)

≤ 0

since 1 < (a1 + a2)/(−a2);
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Case 3) (Exponential type) a1 ≥ 0 and a2 > 0. The blow up time3 occurs at time

tc =







−(1/a1) log
(

1 +
a1

a2

)

< 0, if a1 > 0,

− 1/a2 < 0, if a1 = 0;
(3.2.4)

Case 4) (True exponential) a1 > 0 and a2 = 0. The blow up time occurs at −∞

m(t) =
(

1− e−a1 t
)

, tc = −∞.

The four cases are illustrated below in Figure 3.4 with parameters in Table 3. I

-10 -5 0 5 10

-1

-0.5

0

0.5

1

1.5

True S Type

-5 0 5 10

-3

-2

-1

0

1

S Type

-5 0 5

-2

-1

0

1

2

Exponential Type

-5 0 5 10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

True Exponential

Figure 3.4. Example release curves showing the four possible types. See
Table 3. I for parameters and values.

3In cases 3), 4), and 5), the point of inflexion at time tc becomes a negative blow up time where the solution
first goes to +∞ and then comes back from −∞. There are no singularities or point of inflexion for positive
times. This gives an exponential type curve behaviour that is sharper than a pure exponential.
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Table 3. I. Parameters and values for example release curves in Figure 3.4.

Type a1 a2 Point of Inflexion Blow Up Time

True S type 1 −1
1+e−2 2 -

S type 1 −1
1+e

−2 -

Exponential type 0 0.5 - −2

True exponential 0.5 0 - −∞

Since in all cases a1 ≥ 0, m∞ = 1. For a2 < 0, m∞ = 1 + a1/a2 < 1 , and for a2 > 0

m∞ = 1 + a1/a2 > 1. For a1 = 0 and a2 > 0, m(t) → 1 as t → ±∞ and m(t) → −∞ as

t→ −1/a2.

Table 3. II. Identified parameters of paclitaxel release from neat PCL, neat
PLGA, neat PLGAPEG films from the measurement of M(t)/M∞ ([7, Ta-
ble 2.1]).Copyright c©2011 Society for Industrial and Applied Mathematics.
Reprinted with permission. All rights reserved.

Parameters Neat PCL Neat PLGAPEG Neat PLGA
a1 day−1 0.07050 0.24013 0.12273
a2 day−1 0.13950 −0.23950 −0.12240
case 3) 1) 1)
tc (days) -5.8 24.7 48.2

The simplicity of the model for a broad range of polymers indicates that somehow the

quadratic structure captures the complex microphysics and chemistry of the release process.

This type of model also reproduces with much higher accuracy the normalised release curves

from polymer blends than the one of Lao et al [62].

The quadratic equations offer some similarity with the Kedem-Katchalsky [57, 58] equa-

tions (see also [56, 53, 83]) for the modelling of the mass flux across a membrane under

osmotic and hydrostatic pressures jump. For the special case of zero hydrostatic pressure

across the membrane, the Kedem-Katchalsky equations reduce to

Js = k1 (cp − cm) + k2 (cp − cm) (cp + cm) (3.2.5)
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and the quadratic term becomes c2
p− c2

m instead of (cp− cm)2 in the quadratic model. In the

absence of fluid flow, k2 is zero, and Js reduces to a linear equation. The context is different

since the quadratic terms in our analysis are present without fluid flow through porous me-

dia. However, the reader can appreciate that the underlying mathematical structures used in

some of the works on thin porous media and quadratic semipermeable membranes presents

some interesting similarities. See the book of A. Katchalsky and P. F. Urran [56] on Nonequi-

librium thermodynamic in biophysics and articles on biological membranes of O. Kedem and

A. Katchalsky [57] on Thermodynamic analysis of the permeability of biological membranes

to non-electrolytes and [58] on A physical interpretation of the phenomenological coefficients

of membrane permeability and A. Katchalsky and O, Kkedem [55] on Thermodynamics of

flow processes in biological systemsin 1962.

As a final remark, quadratic ODEs are classical in population models such as the Verhulst

logistic equation [89], but there is a whole spectrum of related non-quadratic models that

can be used for less standard problems (see, for instance Tsoularis [85]). The quadratic law

(3.2.1) (and later (3.3.10)) works well for polymers such as PCL and PLGA , but other types

of functions can be envisioned if they provide a better fit to the drug release curves.

3.2.2. Polymer Blends

In order to achieve prescribed drug release kinetics some authors have been investigating

biphasic and possibly multiphasic releases. Blending two or more polymers with different

drug release profiles and time constants is used to create two or more time synchronised

phases to closely achieve a desired drug release profile over a longer therapeutic period (see,

for instance, the release curves in Figure 3.5). Lao, Venkatraman, and Peppas [62] proposed

and tested novel models for drug (notably paclitaxel) release from films made of neat PCL,

neat PLGA, and their blends:

For applications involving drug-eluting stents, controlled paclitaxel release of

up to 3 months is desirable to combat restenosis (renarrowing of arteries)

which is usually most active during this period. However, as seen from the re-

lease data for the neat polymers, release from neat PCL has an unacceptably

short duration of release with high burst, whereas release of paclitaxel from

neat PLGA has an unacceptably long induction period of zero to little re-

lease. Therefore, a blend of PCL and PLGA would give an intermediate (and

acceptable) release profile that reflects the complementary effect of the two

components. PCL contributes to paclitaxel release in the first half (up to 30

days) while PLGA contributes in the latter half (up to 85 days) of the release.
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Looking at the release data from [62, Fig. 8–10] for polymer blends (see also Figure 3.5),

it is quite clear that to model real polymer blends such as the nondegradable PCL with the

biodegradable PLGA, it will not be sufficient to adjust the parameters a1 and a2 in the ODE

model.
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Figure 3.5. Model and experimental data of paclitaxel release with time for
blends. See table 3. III for parameters. Reproduced from [7, Fig. 3.1] that used
data from [62, Fig. 8–10]. Copyright c©2011 Society for Industrial and Applied
Mathematics. Reprinted with permission. All rights reserved.

Lao, Venkatraman, and Peppas [62, eqs. (5) and (7) on p. 798, eq. (8) on p. 799, eq. (10)

on p. 801] introduce a partitioning of the release (fP CL,fP LGA) where fP CL and fP LGA are the

respective fractions of the initial masses of PCL and PLGA (see [62, Equation (10)]) with

5+8+1 parameters. However, [62, Figures 8, 9b, and 10] show that the straight substitution
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Table 3. III. Model parameters of paclitaxel release from blend PLGA/PCL
50/50, PCL/PLGA 35/65, and PCL/PLGA 25/75 films. Reproduced from [7,
Table 3.1]. Copyright c©2011 Society for Industrial and Applied Mathematics.
Reprinted with permission. All rights reserved.

Parameters PCL/PLGA 50/50 PCL/PLGA 35/65 PCL/PLGA 25/75
a1P CL

0.12600 0.03830 0.07550
a2P CL

0.71300 0.22760 -0.01130
a1P LGA

0.23292 0.20532 0.14052
a2P LGA

-0.23290 -0.20530 -0.14030
fP CL 84.56% 74.92% 12.32%
fP LGA 15.44% 25.08% 87.68%

of the parameters of the ODE models for PCL and PCLA of Table 3. II with the partition

parameter is not sufficient to get really good fits with experimental data. The matching

with the data deteriorates in going from 50/50 blends to 35/65 and seriously deteriorates for

25/75.

To correct this, Blanchet, Delfour and Garon [7] adopted a slightly more elaborate ap-

proach based on the following assumptions:

(a) the blend of two neat polymers in the presence of paclitaxel yields two new polymers

since the matrices are modified at the microscopic level;

(b) the total mass of paclitaxel redistributes itself among the two new polymers in a way

that is not necessary proportional to the relative fractions of polymers.

In practical terms this means that we shall now identify five parameters: two for each new

polymer plus the fraction parameter:

m(t) = fP CL mP CL(t) + fP CLA mP LGA(t), 0 < fP CL < 1, fP LGA = 1− fP CL, (3.2.6)

where fP CL rougthly corresponds to the level of the first plateau in the experimental release

curves of Figure 3.5.4 The results of the identification process are shown in Table 3. III. This

successful approach readily extends to blends of n polymers

m(t) =
n∑

i=1

fi mi(t), fi ≥ 0,
n∑

i=1

fi = 1, (3.2.7)

dmi

dt
(t) = ai1 (1−mi(t)) + ai2 (1−mi(t))

2 , mi(0) = 0, (3.2.8)

with n pairs (ai1,ai2) of parameters and n factors 0 ≤ fi ≤ 1, such that f1 + · · ·+fn = 1 that

roughly correspond to each plateau in the release curve. Release curves of the type shown in

4Computations using LSQCURVEFIT in MATLAB, which solves nonlinear least squares problems.

48



Figure 3.5 are common in the literature (see, for instance, Faisant, Akiki, Siepmann, Benoit,

and Siepmann [35, Figures 5 and 6, page 194]), but have not been approximated by a system

of quadratic ODE of the type (3.2.7).

3.3. Three Dimensional Model for the Experimental Setup

3.3.1. From the ODE to the PDE Model

To our best knowledge, the quadratic ODE model that Blanchet, Delfour and Garon

[7] introduced in 2011 was the first semi-empirical drug release model in the literature that

provides an excellent fit for a broad range of biodegradable neat polymers. The robustness

of the model and the fact that only two parameters had to be identified indicated that the

model was not purely empirical and that somehow it was implicitly capturing some important

mechanistic features.

The new PDE model was developed to provide a three-dimensional simulation model for

drug release from DES where the parameters of the model could be obtained directly from

the experimental release curves. A choice had to be made. One can start from first principles

and find a way to go from the micro scale to the macro scale in order to obtain at least a

qualitative model with a minimal number of parameters to be identified. This is a delicate

exercise since it is difficult to evaluate a priori the contribution of each parameter and decide

which ones are to be retained. A mathematical approach was chosen starting from a PDE

model with a quadratic structure at the macroscopic level, postponing the microphysical

interpretations and justifications to a later time. Yet, it is not a purely abstract model

since it incorporates basic principles such as the conservation of the mass and the standard

diffusion equation in the surrounding medium. Since the polymer is very thin compared to

other dimensions, it was reasonable to reduce it to a zero thickness surface and to lump all

the chemistry and the physics inside the polymer as a quadratic flux through the surface,

resulting in a jump in the normal derivative across the surface.

Like the quadratic ODE model, the three-dimensional PDE model is semi-empirical and

it could effectively be used to drive the experiment in order to better understand the complex

underlying microphysics and, in turn, the experiment can put the theory back on track and

prevent systematic model deviations.

3.3.2. Experimental Set-up

We start by describing the experimental setup as well as summarising the equations and

relevent explanations used for the model developed by Garon and Delfour [42], the detailed
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description of which can be found in Lao et al [60]. In this section, we only retain the elements

required in the modelling.

The release takes place from all sides of the film as if it was “floating” in the medium.

The thickness 2h > 0 of the polymer film is very small compared to all the other geometric

parameters. Denote by Ωh
p the open parallelepipedic domain associated with the polymer

and by Ωh
m the open domain associated with the medium (cf. Figure 3.1). Their boundaries

will be denoted Γh
p and Γh

m, respectively. Denote by Σ0 the midsurface of the polymer film

midsurface Σ0

ξ1

ξ2
z

Figure 3.6. Domain Ωh
p occupied by the polymer of thickness 2h, midsurface

Σ0, and coordinate system x = (ξ1, ξ2,z) at the center of the polymer film.
Reproduced from [42, Fig. 3]. Copyright c©2014 Society for Industrial and
Applied Mathematics. Reprinted with permission. All rights reserved.

Ωh
p .

Consider the coordinate system x = (ξ1.ξ2,z) of Figure 3.6 with the origin at the center

of the polymer film, the z-axis orthogonal to the film, and the ξ1 and ξ2 axes in the plane of

the midsurface.5 So, in the polymer domain Ωh
p , −h < z < h. Denote by Γh

int = Γh
p ∩ Γh

m the

interface between the polymer and the medium. Since the vial is closed without circulation

of the fluid (the medium), a zero Neumann boundary conditions was assumed on Γh
ext =

(Γh
p ∪Γh

m)\Γh
int. The volumes of the polymer and the medium will be denoted |Ωh

p | and |Ωh
m|.

The surface area of their boundaries and their interface will be denoted |Γh
p |, |Γ

h
m|, and |Γh

int|.

Since the vial was closed, given an initial mass M0 of drug in the polymer, the conservation

of the total mass at time t was assumed. In addition, the equations of linear diffusion in

the medium were assumed to be verified by the concentration in the medium. A local flux

function was introduced by using a z-average of cp and by reducing the polymer domain to

5This approach can be readily extended to curved polymer films by introducing local curvilinear coordinates
and bases in the curved midsurface Σ0.
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the zero-thickness midsurface which results in a jump condition on the normal derivative

across the midsurface Σ0.

3.3.3. From equations on Ωh
m to equations on Ωm

Denote by cm(x,t) and cp(x,t) the respective concentrations of drug in the medium Ωh
m

and in the polymer Ωh
p at time t ≥ 0 and at point x = (ξ1,ξ2,z). Assume that the linear

diffusion equations are verified in the medium






∂cm

∂t
= div (Dm∇cm) in Ωh

m, cm(x,0) = 0 in Ωh
m,

Dm
∂cm

∂nm

= F (cm,cp) on Γh
int, Dm

∂cm

∂nm

= 0 on Γh
ext,

(3.3.1)

where Dm > 0 is the diffusion constant in the medium, and the form of the flux F (cm,cp) at

the interface Γh
int is to be specified. As mentioned previously, the total mass of drug M0 is

assumed to be preserved at all time t ≥ 0
∫

Ωh
p

cp(x,t) dx +
∫

Ωh
m

cm(x,t) dx = M0. (3.3.2)

Taking the time derivative then applying (3.3.1) and Green’s formula implies that

⇒ 0 =
∫

Ωh
p

∂cp

∂t
(x,t) dx +

∫

Ωh
m

∂cm

∂t
(x,t) dx

=
∫

Ωh
p

∂cp

∂t
(x,t) dx−

∫

Γh
int

Dm
∂cm

∂nm

(x,t) dΓ,

(3.3.3)

where nm is the outward normal to Ωh
m.

Define the z-averaged concentration in the polymer

c̄p(ξ,t) def=
1

2h

∫ h

−h
cp(ξ,z,t) dz, ξ = (ξ1,ξ2) ∈ Σ0 (3.3.4)

which is defined on Σ0 rather than on the interface Γh
int. The volume of the polymer film is

|Ωh
p | = 2h |Σ0|, (3.3.5)

where |Σ0| is the area of the midsurface. At t = 0 the concentration of drug in the polymer

film is assumed to be uniform, that is

cp(x,0) = ch
0

def=
M0

|Ωh
p |

=
1

2h

M0

|Σ0|
= c̄p(ξ,0), (3.3.6)

where M0/|Σ0| is a surfacic concentration in kg/m2.
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The variable c̄p is defined on the midsurface Σ0 whereas the boundary condition on

Dm∂cm/∂nm is defined on the interface Γh
int which creates a small mismatch to fix. Since

lateral boundary Σ

midsurface Σ0 midsurface Σ0

z z

(cm, Ωh
m)

(cp, Ωh
p)

(c, Ωm)

n+

n−

ξ

n−

c+

c−

ξ n+

ξ

Figure 3.7. Cross-section of the shrinking of the domain Ωh
p to Σ0 as h →

0. Reproduced from [42, Fig.4]. Copyright c©2014 Society for Industrial and
Applied Mathematics. Reprinted with permission. All rights reserved.

the thickness 2h is very small, replace the domain Ωh
m by the slightly larger open domain

Ωm
def= int

(

Ωh
m ∪ Ωh

p

)

occupied by the fluid and the polymer. The polymer thus reduces to

the zero-thickness midsurface Σ0 (see Figure 3.7). Another point of view is to consider the

midsurface Σ0 as a crack in Ωm and introduce the new domain (medium) Ω def= Ωm\Σ0 for

which |Ω| = |Ωm|. In practice Σ0 ∩ Γm = ∅ and Γm = ∂Ωm, that is, the polymer does not

touch the exterior boundary. Hence ∂Ω = Σ0 ∪ Γm and Γext = Γm.

Since Ω is slightly larger than Ωh
m, the equation for the conservation of the mass must be

adjusted

2h
∫

Σ0

c̄p(ξ,t) dξ + β(h)
∫

Ω
c(x,t) dx = M0 (3.3.7)

by introducing the geometric conservation factor β(h) = |Ωh
m|/|Ω| = |Ωh

m|/|Ωm| = 1 −

2h |Σ0|/|Ωm| to take into account the slight increase in the volume of the medium going from

|Ωh
m| to |Ωm|.

The orientation of the midsurface is naturally defined by the choice of our (local) coor-

dinate system. Denote by n− the unit normal to the midsurface Σ0 pointing “up” 6 and by

6that is, in the direction defined as the positive direction along the z-axis by the coordinate system
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n+ the unit normal pointing “down” 7. Denote by c+ and c− the respective concentrations

above and below Σ0 in a neighbourhood of a point ξ ∈ Σ0 as shown in Figure 3.7. Define the

respective jumps in the concentration and in the normal derivative across Σ0

[c] def= c+ − c−,

[

∂c

∂n

]

def=
∂c+

∂n+
+

∂c−

∂n−
=
(

∇c+ −∇c−
)

· n+. (3.3.8)

From (3.3.7)

0 = 2h
∫

Σ0

∂c̄p

∂t
(ξ,t) dξ + β(h)

∫

Ω

∂c

∂t
(x,t) dx

= 2h
∫

Σ0

∂c̄p

∂t
(ξ,t) dξ − β(h)

∫

Σ0

Dm

[

∂c

∂nnΩm

(ξ,t)

]

dξ

since ∂Ω = Σ0 ∪ Γext and

Dm
∂c

∂n
= 0 on Γext.

The first assumption in [42] is that this identity is valid pointwise

2h
∂c̄p

∂t
= β(h) Dm

[

∂c

∂nnΩ

]

on Σ0 (3.3.9)

and the second assumption is the flux condition

∂c̄p

∂t
(ξ,t) + A1 (c̄p(ξ,t)− c(ξ,t)) +

A2

ch
0

(c̄p(ξ,t)− c(ξ,t))2 = 0 on Σ0 (3.3.10)

which characterises each polymer. Under these two assumptions, Garon and Delfour [42]

obtained the following 3D system of equations on the larger domain Ωm for c coupled with

an equation on the zero thickness midsurface for c̄p:






∂c̄p

∂t
(ξ,t) + A1 (c̄p(ξ,t)− c(ξ,t)) + A2

1
ch

0

(c̄p(ξ,t)− c(ξ,t))2 = 0,

c̄p(ξ,0) = ch
0 ,







, ∀ξ ∈ Σ0, (3.3.11)







∂c

∂t
= div (Dm∇c) in Ωm, c(x,0) = 0 in Ωm,

Dm

[

∂c

∂n

]

= −
2h

βh

∂c̄p

∂t
and [c] = 0 on Σ0, Dm

∂c

∂n
= 0 on Γm = Γext.

(3.3.12)

The diffusion constant Dm is known but the parameters A1 and A2 must be obtained from

the experimental release curves.

7that is, in the direction defined as the negative direction along the z-axis by the coordinate system
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It is important to notice that the conditions (3.3.9) and (3.3.10) are local conditions at

each point of the interface between the polymer and the diffusive medium. They charac-

terise the microphysics of the polymer, and do not depend on the geometry nor the exterior

boundary conditions for the concentration in the medium. Moreover, we shall see in the next

section that the two parameters A1 and A2 are the two numbers a1 and a2 that arise from

the experimental measurements under a quasi-infinite sink condition.

3.3.4. Asymptotic Convergence to the ODE Model as h Goes to 0

In order to relate the parameters A1 and A2 to the experimental release curves that

have been fitted by the ODE model of G. Blanchet, M. C. Delfour, and A. Garon [7], an

asymptotic analysis is performed on the system (3.3.11)-(3.3.12).

As the thickness h goes to zero the initial concentration c̄p(ξ,0) goes to infinity. By

introducing the normalised concentrations with respect to ch
0

ĉp(ξ,t) def=
c̄p(ξ,t)

ch
0

, ξ ∈ Σ0, ĉ(x,t) def=
c(x,t)

ch
0

, x ∈ Ωm, (3.3.13)

both normalised concentrations will remain bounded. We get the new system






∂ĉp

∂t
(ξ,t) + A1 (ĉp(ξ,t)− ĉ(ξ,t)) + A2 (ĉp(ξ,t)− ĉ(ξ,t))2 = 0,

ĉp(ξ,0) = 1, ξ ∈ Σ0,
(3.3.14)







∂ĉ

∂t
= div (Dm∇ĉ) in Ωm, ĉ(x,0) = 0 in Ωm,

Dm

[

∂ĉ

∂n

]

= −
2h

βh

∂ĉp

∂t
and [ĉ] = 0 on Σ0, Dm

∂ĉ

∂n
= 0 on Γm.

(3.3.15)

Since the normalised mass mp in the polymer is related to ĉp as follows

mp(t) =
1
|Σ0|

∫

Σ0

ĉp(ξ,t) dξ, (3.3.16)

we get the following equation for mp(t) from equation (3.3.14): given ĉp(ξ,t)






dmp

dt
(t) + A1

1
|Σ0|

∫

Σ0

ĉp(ξ,t)− ĉ(ξ,t) dξ + A2
1
|Σ0|

∫

Σ0

(ĉp(ξ,t)− ĉ(ξ,t))2 dξ

mp(0) = 1.

(3.3.17)

In the limit as h → 0, ĉ(ξ,t) goes to zero. Since the first equation in (3.3.14) becomes

independent of ξ and the initial conditions are identical for all ξ, the solution ĉp(ξ,t) is also
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independent of ξ:






∂ĉp

∂t
(ξ,t) + A1 ĉp(ξ,t) + A2 ĉp(ξ,t)2 = 0,

ĉp(ξ,0) = 1, ξ ∈ Σ0.

After simplifying equation (3.3.17) with the identity (3.3.16), we see that mp(t) and ĉp(t)

are solutions to the same ODE and thus mp(t) = ĉp(t). We then recover an ODE for the

normalised mass in the polymer

dmp

dt
(t) + A1 mp(t) + A2 mp(t)2 = 0, mp(0) = 1, (3.3.18)

and the equation for the normalised mass mm(t) = 1−mp(t) released to the medium

dmm

dt
(t) = A1 (1−mm(t)) + A2 (1−mm(t))2 , mm(0) = 0. (3.3.19)

This is precisely equation (3.2.1) of the highly accurate ODE model developed by

G. Blanchet, M. C. Delfour, and A. Garon [7] to identify the parameters a1 and a2 from

the release curves. By choosing A1 = a1 and A2 = a2, we get the three-dimensional PDE

model whose solution asymptotically yields the experimental release curves of Lao et al [60]

as h→ 0.

3.4. One-Sided Drug Release

In Lao’s experiment, it was assumed that the polymer film is floating in the medium,

and thus the drug release occurs on both sides of the film. However, for coated stents, the

stent itself acts as a physical barrier and so the release only occurs on one side. The analysis

is the same but, for later reference, we explicit the case where a polymer of thickness h is

attached to the bottom of the vial. In this situation the vertical coordinate z is perpendicular

to the bottom of the vial and runs from 0 to h, and the midsurface Σ0 is the contact surface

between the bottom of the film and the vial. The set Σ0 is now a part of the boundary Γm of

Ωm. The boundary Γext must be replaced by Γm\Σ0 and the open set Ω = Ωm\Σ0 coincides

with Ωm.

The z-averaged concentration in the polymer is modified as follows

c̄p(ξ,t) def=
1
h

∫ h

0
cp(ξ,z,t) dz, ξ = (ξ1,ξ2) ∈ Σ0. (3.4.1)
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Figure 3.8. Cross-section of the shrinking of the domain Ωh
p to Σ0 as h→ 0.

The volume of the polymer film is

|Ωh
p | = h |Σ0|. (3.4.2)

At t = 0 the concentration of drug in the polymer film is assumed to be uniform, that is

cp(x,0) = ch
0

def=
M0

|Ωh
p |

=
1
h

M0

|Σ0|
= c̄p(ξ,0), (3.4.3)

where M0/|Σ0| is a surfacic concentration in kg/m2.

Since Ωm is slightly larger than Ωh
m, the equation for the conservation of the mass must

be adjusted

h
∫

Σ0

c̄p(ξ,t) dξ + β(h)
∫

Ωm

c(x,t) dx = M0 (3.4.4)

by introducing the geometric conservation factor β(h) = |Ωh
m|/|Ωm| = 1 − h |Σ0|/|Ωm| to

take into account the increase in the volume of the medium from |Ωh
m| to |Ωm|. Since the

release only occurs on one side of the polymer, there is no longer a jump [c] = c+ − c− in

the concentration and the normal derivative
[

∂c
∂n

]

= ∂c+

∂n+ −
∂c−

∂n−
at the boundary Σ0. Instead,

from (3.4.4), the boundary conditions are

Dm
∂c

∂n
= 0 on Γm\Σ0.

and

0 = h
∫

Σ0

∂c̄p

∂t
(ξ,t) dξ + β(h)

∫

Ωm

∂c

∂t
(x,t) dx

= h
∫

Σ0

∂c̄p

∂t
(ξ,t) dξ − β(h)

∫

Σ0

Dm
∂c

∂nnΩm

(ξ,t) dξ
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The first assumption (3.3.9) becomes

h
∂c̄p

∂t
= β(h) Dm

∂c

∂nnΩ

on Σ0 (3.4.5)

and the second assumption (3.3.10) becomes

∂c̄p

∂t
(ξ,t) + A1 (c̄p(ξ,t)− c(ξ,t)) +

A2

ch
0

(c̄p(ξ,t)− c(ξ,t))2 = 0 on Σ0 (3.4.6)

which characterises each polymer. Under these assumptions, we obtain the following 3D

system of equations on the larger domain Ωm for the pair (c, c̄p) :






∂c̄p

∂t
(ξ,t) + A1 (c̄p(ξ,t)− c(ξ,t)) + A2

1
ch

0

(c̄p(ξ,t)− c(ξ,t))2 = 0

c̄p(ξ,0) = ch
0 ,







, ∀ξ ∈ Σ0, (3.4.7)







∂c

∂t
= div (Dm∇c) in Ωm, c(x,0) = 0 in Ωm,

Dm
∂c

∂n
= −

h

β(h)
∂c̄p

∂t
on Σ0, Dm

∂c

∂n
= 0 on Γm\Σ0.

(3.4.8)

The diffusion constant Dm is known but the parameters A1 = a1 and A2 = a2 are obtained

from experimental release curves.

The assumptions (3.4.5) and (3.4.6) are local conditions at each point of the interface

between the thin polymer and the linearly diffusive medium. They have been derived within

the context of Lao’s experiment with an infinite sink to reveal the release mechanism in the

polymer when put in contact with a medium. When the medium is changed parameters may

change, but the equations will remain valid. Looking at things differently, one can say that

they are constitutive laws governing the release of drugs from a thin polymeric film. Since

the conditions are local they remain valid for curved films. We shall use them in Chapter 4

for the curved wall of a blood vessel which is modelled as a linearly diffusive medium with

loss term coupled with blood flow in the lumen.

3.5. Sink Condition and One-dimensional Model of Lao

Experimentally, the sink condition is achieved when the following two conditions are sat-

isfied: (1) the polymer film is immersed into a vial containing a large volume of fluid, and

(2) the diffusion coefficient is sufficiently large to prevent the formation of a concentration

boundary layer at the interface between the polymer and the surrounding medium. In prac-

tice, this results in low – almost zero – paclitaxel concentration in the neighbourhood of
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the interface. The diffusion coefficient can be increased by adding a solubility agent in the

surrounding medium (see Lao et al [63, p. 1056]):

However, for paclitaxel release, the release medium comprised of PBS pH 7.4

and 10% (v/v) solubility enhancer, that is, DMSO [the solubility agent was

added to prevent paclitaxel saturation and mimic the infinite “sink condition.”

No plasticization effect . . . ].

As can be readily seen from the equations (3.3.14)-(3.3.15), the same asymptotic model can be

obtained by making the diffusion constant Dm very large while keeping h constant. The two

effects can be combined. As the ratio Dm/h goes to infinity, we get a set of equations for the

asymptotic solution of the equations which only depends on the experimental parameters a1

and a2. In order to have the ratio Dm/h go to infinity in a laboratory setting, the thickness is

fixed and the Dm is increased by adding an accelerator to drive the system into its asymptotic

state; Experimentally, it is easier to increase Dm than decrease h, but the end result is the

same.

Remark 3.5.1. Physically, and according to the 3D quadratic model, there is a boundary

layer next to the exterior boundary of the polymer, and a finite flux across the interface

between the polymer and the medium. In their mathematical model Lao et al [63, Eqs (1) to

(7), p. 1059–1060] induce the release of paclitaxel by imposing an idealistic zero concentration

at the boundaries of the polymer. Then the resulting simple, one-dimensional diffusion model

is solved by using standard infinite series of exponentials. It turns out that this model is

physically unrealistic since the flux between the polymer and the medium would be infinite as

shown in Appendix B.

.
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Chapter 4

QUADRATIC RELEASE FROM A COATED STENT

IN A CURVED VESSEL

4.1. The PDE Quadratic Model

We start with the model of Chapter 2, but we don’t assume linear diffusion in the

polymeric domain Ωh
p . The concentration cp

def= c|Ωh
p

in Ωh
p will be handled as in Chapter

3 by introducing the averaged concentration c̄p and enlarging the domain occupied by the

wall from Ωh
w to Ωw = int (Ωh

p ∪ Ωh
w) together with two assumptions similar to the two

assumptions (3.4.5) and (3.4.6) of Chapter 3 that are characteristic of the interaction of a

thin polymer with a linear-diffusive medium.

With the notation of Chapter 2

∂cw

∂t
− div (Dw∇cw) + Rw cw = 0 in Ωh

w, cw(x,0) = 0

∂cl

∂t
− div (Dl∇cl) + Vl · ∇cl = 0 in Ωl, cl(x,0) = 0,

cp(x,0) =
M0

|Ωh
p |

, |Ωh
p | =

∫

Σχ

(

h +
h2

2
H +

h3

3
K

)

dΣ.

(4.1.1)

The initial condition can be written in the more compact form

ch
0(x) =







M0
∫

Σχ

(

h + h2

2
H + h3

3
K
)

dΣ
, in Ωh

p ,

0, in Ωh
w ∪ Ωl.

(4.1.2)
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The boundary/interface conditions are

D
∂c

∂nΩ

+ β0 c = 0 on Γ0, D
∂c

∂nΩ

+ βL c = 0 on ΓL, D
∂c

∂nΩ

= 0 on Γext,

Dw
∂c

∂nΩh
w

+ Dl
∂c

∂nΩl

= 0 on Γh
lw (at the interface lumen/wall)

Dw
∂c

∂nΩh
w

+ Dp
∂c

∂nΩh
p

= 0 on Γpw (at the interface polymer/wall)

Dp
∂c

∂nΩh
p

= 0 on Γlp Dl
∂c

∂nΩl

= 0 on Γlp (at the interface lumen/polymer).

(4.1.3)

with

D(x) =







Dl, x ∈ Ωl

Dw, x ∈ Ωh
w

V (x) =







Vl(x), x ∈ Ωl

0, x ∈ Ωh
w

R(x) =







0, x ∈ Ωl

Rw, x ∈ Ωh
w.

(4.1.4)

At t ≥ 0, the mass of product in the polymer is

Mp(t) def=
∫

Ωh
p

cp(x,t) dx.

Using the change of variables

Mp(t) def=
∫

Σ
χ(x)

[
∫ h

0
cp(Tz(X),t) (z +

z2

2
H(X) +

z3

3
K(X)) dz

]

dΣ.

Define the concentration averaged along the normal in each point of Σχ

c̄p(X,t) def=
1
h

[
∫ h

0
cp(Tz(X),t)

(

z +
z2

2
H(X) +

z3

3
K(X)

)

dz

]

c̄p(t) def=
1
h

[
∫ h

0
(cp(t) ◦ Tz)

(

z +
z2

2
H +

z3

3
K

)

dz

]

on Σχ,

where c̄p(t) : [0,∞)→ L2(Σχ). By definition

Mp(t) =
∫

Ωh
p

cp(x,t) dx = h
∫

Σχ

c̄p(X,t) dΣ (4.1.5)

∫

Ωh
p

∂cp

∂t
(x,t) dx = h

∫

Σχ

∂c̄p

∂t
(X,t) dΣ (4.1.6)

As in chapter 2, replace the first equation (4.1.1) for cw on Ωh
w by the following equation

on the larger domain Ωm for the concentration c̄w

∂c̄w

∂t
− div (Dw∇c̄w) + Rw c̄w = 0 in Ωw, c̄w(x,0) = 0. (4.1.7)
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To complete the system of equation, we now add the two assumptions (3.4.5) and (3.4.6)

of Chapter 3 by replacing the linearly diffusive domain Ωm by Ωp, 2h by h, and the jump in

the normal derivative by the normal derivative. The two assumptions are:

h
∂c̄p

∂t
= β(h) Dm

∂c̄w

∂nnΩp

on Σχ (4.1.8)

∂c̄p

∂t
(ξ,t) + A1 (c̄p(ξ,t)− c̄w(ξ,t)) +

A2

ch
0

(c̄p(ξ,t)− c̄w(ξ,t))2 = 0 on Σχ . (4.1.9)

Recall that those assumptions are local conditions at each point of the interface between the

thin polymer and the linearly diffusive medium. They remain valid for curved films and a

linearly diffusive medium with loss term coupled with circulation in the lumen.

4.2. Summary of the Equations for the Concentrations (c̄, c̄p)

The new system of equations is now defined on a domain Ωχ that does not depend on

h. Yet, even if h is not emphasised in the notation of the solution (c̄p, c̄) of the equations, it

is dependent on h through the geometrical factor β(h) and the initial condition M0/ch
0 that

goes to infinity as h goes to zero.

The pair c̄(t) : Ωχ → R and c̄p(t) : Γχ → R, is solution of the coupled system






∂c̄

∂t
− div (D∇c̄) + V · ∇c̄ + R c̄ = 0 in Ωχ,

c̄(0) = 0 in Ωχ,

Dw
∂c̄

∂nΩw

+ Dl
∂c̄

∂nΩl

= 0 on Γlw\Σχ,

β(h) Dw
∂c̄

∂nΩw

= h
∂c̄p

∂t
on Σχ, Dl

∂c̄

∂nΩl

= 0 on Σχ.

D
∂c̄

∂nΩχ

+ β0 c̄ = 0 on Γ0, D
∂c̄

∂nΩχ

+ βL c̄ = 0 on ΓL, D
∂c̄

∂nΩχ

= 0 on Γext,

(4.2.1)







∂c̄p

∂t
+ A1 (c̄p − c̄) +

A2

ch
0

(c̄p − c̄)2 + Rp c̄p = 0 on Σχ,

c̄p(0) =
M0

∫

Σχ

(

h + h2

2
H + h3

3
K
)

dΣ
on Σχ,

(4.2.2)

where R, V , and D are defined as

D(x) =







Dl, x ∈ Ωl,

Dw, x ∈ Ωw,
V (x) =







Vl(x), x ∈ Ωl,

0, x ∈ Ωw,
R(x) =







0, x ∈ Ωl,

Rw, x ∈ Ωw.
(4.2.3)
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Or, in static variational form, ∃(u,ūp) ∈ H1(Ωχ)× R such that

a ((u,ūp), (v,v̄p)) = 0, ∀(v,v̄p) ∈ H1(Ωχ)× R, (4.2.4)

where

a ((u,ūp), (v,v̄p))

=
∫

Ωχ

D∇u · ∇v + V · ∇uv + Ruv dx +
∫

Γ0

β0uv dΓ +
∫

ΓL

βLuv dΓ

+
∫

Σχ

A1 (c̄p − c̄) (v̄p − v) +
A2

ch
0

(c̄p − c̄)2 (v̄p − v) + Rp c̄p(v̄p − v) dΣ.

(4.2.5)

Questions of existence and uniqueness of the solution to system (4.2.1)-(4.2.2) or (4.2.4)-

(4.2.5) enter the domain of non-linear control, which goes beyond the scope of this work. In

addition, contrary to [42], the mass of product is not constant in the vessel (since there is a

loss term as well as the transparency conditions), which makes it impossible to decouple c̄p

and c̄.

4.3. Normalised Concentration

In this section we follow the construction of [42], where we recreate the drug-release ODE

obtained in [7] for the normalised mass released into the wall from our system of equations.

We do this by examining the effect on the equations as we let the thickness h go to zero.

However, this results in the initial concentration c̄p(0) going to infinity. To prevent this, we

define the normalised concentrations with respect to ch
0

ĉ(x,t) def=
c(x,t)

ch
0

, x ∈ Ωχ, ĉp(X,t) def=
c̄p(X,t)

ch
0

, X ∈ Σχ. (4.3.1)

Since almost all of the equations in (4.2.1) are linear, they remain valid when substituting

the normalised concentration. The only parts that are affected are the quadratic terms on

62



Σχ and the initial condition ĉp(0):






∂ĉ

∂t
− div (D∇ĉ) + Rw ĉ + V · ∇ĉ = 0 in Ωχ,

ĉ(0) = 0 in Ωχ,

Dw
∂ĉ

∂nΩw

+ Dl
∂ĉ

∂nΩl

= 0 on Γlw\Σχ,

β(h) Dw
∂ĉ

∂nΩw

= h
∂ĉp

∂t
on Σχ, Dl

∂ĉ

∂nΩl

= 0 on Σχ.

D
∂ĉ

∂nΩχ

+ β0 ĉ = 0 on Γ0, D
∂ĉ

∂nΩχ

+ βL ĉ = 0 on ΓL, D
∂ĉ

∂nΩχ

= 0 on Γext,

(4.3.2)







∂ĉp

∂t
+ A1 (ĉp − ĉ) + A2 (ĉp − ĉ)2 + Rp ĉp = 0 on Σχ,

ĉp(0) = 1.
(4.3.3)

The normalised mass in the polymer is defined as

mp(t) def=
Mp(t)
M0

. (4.3.4)

Since

Mp(t) = h
∫

Σχ

c̄p(X,t) dΣ and ch
0 =

M0
∫

Σχ
h + h2

2
H + h3

3
K dΣ

,

we have that

mp(t) =
h

M0

∫

Σχ

c̄p(X,t) dΣ =
hch

0

M0

∫

Σχ

ĉp(X,t) dΣ

=⇒
dmp(t)

dt
=

1
∫

Σχ
1 + h

2
H + h2

3
K dΣ

∫

Σχ

∂ĉp(X,t)
∂t

dΣ. (4.3.5)

If we introduce the area
∣
∣
∣Σh

χ

∣
∣
∣

def= |Ωh
p |/h =

∫

Σχ

1 +
h

2
H +

h2

3
K dΣ

and then combine (4.3.5) with (4.3.3), we obtain an ODE for mp







dmp

dt
+

A1
∣
∣
∣Σh

χ

∣
∣
∣

∫

Σχ

ĉp − ĉ dΣ +
A2
∣
∣
∣Σh

χ

∣
∣
∣

∫

Σχ

(ĉp − ĉ)2 dΣ +
1
∣
∣
∣Σh

χ

∣
∣
∣

∫

Σχ

Rp ĉp dΣ = 0,

mp(0) =
1
∣
∣
∣Σh

χ

∣
∣
∣

∫

Σχ

c̄p(0) dΣ = 1.

(4.3.6)
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We are then interested in the effect on the equations as we take the the limit h → 0. To

start, we have that ĉ→ 0 and
∣
∣
∣Σh

χ

∣
∣
∣→ |Σχ|. From there, (4.3.6) simplifies and for all X ∈ Σχ

we have






dmp

dt
+

A1

|Σχ|

∫

Σχ

ĉp dΣ +
A2

|Σχ|

∫

Σχ

(ĉp)2 dΣ +
1
|Σχ|

∫

Σχ

Rp ĉp dΣ = 0, X ∈ Σχ,

mp(0) = 1.

(4.3.7)

Since ĉ = 0 in equation (4.3.3), the solution of that equation is independent of the point

X ∈ Σχ. It then reduces to the following ODE in time






dĉp

dt
+ A1 ĉp + A2 (ĉp)2 + Rp ĉp = 0,

ĉp(0) = 1,

whose solution is independent of the point X ∈ Σχ: ĉp(X,t) = ĉp(t). As a consequence, since

mp(t) =
hch

0

M0

∫

Σχ

ĉp(X,t) dΣ and
hch

0

M0

=
1

∫

Σχ
1 + h2

1
H + h3

2
K dΣ

,

as h goes to zero mp(t)→ ĉp(t) and (4.3) implies that






dmp

dt
+ A1 mp + A2 m2

p + Rp mp = 0,

m(0) = 1,

This leads to the equation for the normalised released mass to the wall mw(t) = 1−mp(t)






dmw

dt
= A1 (1−mw) + A2 (1−mw)2 + Rp (1−mw) ,

mw(0) = 0,
(4.3.8)

which corresponds to the ODE equation from [7] with a1 = A1, a2 = A2, and an added loss

factor Rp. As with the model for a straight vessel, the parameters for the curvilinear vessel

can easily be obtained from experimental release curves such as those in [60].
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CONCLUSION

The model presented here is a significant improvement from the one presented in [31]. It

includes the flux function from [42] as boundary condition, which eliminates the factor of h

in the denominator of the normalised equations (that led to infinite flux at the boundary).

The normalised equation reduces to the ODE model from [7], and so the parameters can be

easily calculated from release curves such as the ones presented in [61].

It is worth mentioning possible improvements to the model, which could serve as a subject

for further research. The first two relate to the blood flow. Firstly, the pulsatile effects of blood

flow have been eliminated by taking the average over the period, however this computational

limitations is fairly standard; since blood flow occurs in the scale of seconds whereas drug

release occurs on the scale of days, it would be computationally infeasible to use a small

enough time scale to account for the pulse. For further reading on the subject, the reader is

referred to

- C.C. O’Brien, V.B. Kolachalama, T.J. Barber, A. Simmons, and E.R. Edelman [68],

Impact of Flow Pulsatility on Arterial Drug Distribution in Stent-Based Therapy.

Their findings provide significant insight into the subject. However, their results show that

the effects may be stent and vessel dependent, while our model is intended to be as general as

possible. Further refinements for particular stent design could be included during simulations.

Secondly, the method used here to obtain the transparency conditions require that there is

no blood flow in the wall of the vessel. In reality, while much slower than in the lumen, there

is some flow within the wall as well. Depending on the type of drug used, this can result in

the concentration obeying a form of diffusion-advection-reaction equation in the wall. For

further reading into the subject of blood flow modelling, the reader is referred to the very

in-depth article

- N. Bessonov, A. Sequeira, S. Simakov, Yu. Vassilevskii, and V. Volpert [6], Methods

of Blood Flow Modelling.

An important assumption for the model is that both the lumen and the wall have a uniform

thickness. This results in the change of variables to the tubular neighbourhood and the

resulting integral formula, a necessary component of our analysis.
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As mentioned in the introduction, the goal of this mémoire was to create an efficient

and accurate model for the concentration of drug used to control the proliferation of smooth

muscle cells. Future research could be done to incorporate a multi-phasic release that includes

medicinal agents that help regenerate the endothelium in addition to those used to control

the smooth muscle cells. We once again refer the readers interested in the subject to the

following papers:

- Y. Xia, F. Boey, and S.. S. Venkatraman [91], Surface modification of poly(L-lactic

acid) with biomolecules to promote endothelialization;

- R. A. Byrne, M. Joner, and A. Kastrati [12], Stent thrombosis and restenosis: what

have we learned and where are we going? (this paper describes the present state of

the art);

- W. K. E. Ip, N. Hoshi, D. S. Shouval, S. Snapper, and R. Medzhitov [50], Anti-

inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages;

- S. Gonca [44], Extracellular Matrix Proteomics Reveals Interplay of Aggrecan and

Aggrecanases in Vascular Remodeling of Stented Coronary Arteries (this paper deals

with the rheology of the matrix).

Further research on the subject can be devoted to removing or weakening these restric-

tions, as well as continuing the analysis on the non linear problem (2.3.15)-(2.3.16) (or

(4.2.4)-(4.2.5)) in order to gain more insight into the solution obtained.
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Appendix A

ELEMENTS OF FUNCTIONAL ANALYSIS,

OPTIMISATION, SOBOLEV SPACE AND THEORY

OF DISTRIBUTIONS

A.0.1. Functional Analysis

For the convenience of the reader, we present some definitions and preliminary notions

necessary for our calculations. We start with a basic, but important, definition that occurs

frequently in this work. Two norms on a space V , ‖·‖ and | · |, are said to be equivalent1 if

there exists α, β > 0 such that

∀x ∈ V, α ‖x‖ ≤ |x| ≤ β ‖x‖ . (A.0.1)

In particular, equivalent norms induce the same topology, and thus functions that are con-

tinuous for one norm will be continuous for the other.

Remark A.0.1. The previous definition is valid for any space for which there is a norm.

Moreover, some of the definitions and theorems that will be presented below can be defined

more generally on Banach spaces or even simply normed vector spaces. However, since the

spaces involved in our model are Hilbert spaces, we give the definitions in that context rather

than specify what degree of regularity is required for each notion and result. In some cases

this will also allow for simpler or more intuive characterisations. The general definitions,

and accompanying results, can be found in [64] and [9].

Let V be a Hilbert space (complete inner product space) on a field K, with inner product

denoted (· , ·). We define the dual space of V , denoted V ′, as the set of linear and continuous

functions V → K. For all φ ∈ H ′, and for all f ∈ H, we denote < φ, f > as the duality

pairing, which evaluates the functional φ at f . Since V is a Hilbert space, we then have the

following theorem that characterises all of the elements of the dual space:

Theorem A.0.1. (Riesz-Fréchet representation theorem, adapted from [9, Théorème V.5,

page 81])

1An equivalent definition is given in [64, page 37]; it suffices to take c = min(α, β−1).



∀φ ∈ H ′,∃!f ∈ H such that

< φ,v >= (f,v), ∀v ∈ H. (A.0.2)

This allows us to identify V and V ′ by matching an element of V with the linear function

it generates via the inner product:

v ∈ V ≡ (v, ·) ∈ V ′, ∀v ∈ V. (A.0.3)

The weak topology on V is defined as the coarsest topology on V for which all functions

in V ′ are continuous. If V is finite-dimensional, then the strong topology2 and the weak

topology coincide. However, if V is infinite-dimensional, then the weak topology is strictly

coarser than the strong topology.3

Having defined a weaker topology, we need to distinguish between convergence in one

topology or the other. Let {xn} be a sequence in V . We say that {xn} converges weakly to

x ∈ V (denoted {xn}⇀ x) if {xn} converges to x in the weak topology. In particular, since

V is a Hilbert space, then the Riesz-Fréchet representation theorem implies that

{xn}⇀ x ⇐⇒ < xn,y >→< x,y >, ∀y ∈ V. (A.0.4)

The weak topology and weak convergence have many interesting properties, but for brevity

we only mention one here (that we use in chapter 2): If {xn} is a bounded sequence in V ,

then ∃x ∈ V such that {xn}⇀ x.4

A.0.2. Optimisation

We now introduce the notions of optimisation that are used in this mémoire. The general

definitions can be found in [4], however for simplicity they have been adapted for non time-

dependant generators as occur in our equations.

Let V and H be two Hilbert spaces with the notation

(· , ·) is the inner product,

‖·‖ is the norm (from the inner product),

< · , · > is the duality pairing from a space and its dual.

Where needed, the applications will include a subscript to indicated in which space the

operation takes place.

2that is, the topology induced by the norm.
3[64, Theorem 1, page 118].
4[64, Theorem 9, page 105]. Note that every Hilbert space is a reflexive Banach space. It then suffices to
take the subset C as the closed ball of radius defined by the bound on {xn}.
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Assume that there is a continuous injection from V to H. Let A ∈ L(V,V ′) be a contin-

uous, measurable linear operator such that

∃c > 0 such that | < Av,w >V | ≤ c ‖v‖ ‖w‖ , ∀v,w ∈ V. (A.0.5)

We introduce the following definitions:

Definition A.0.1. ([4, page 178])

Let A ∈ L(V,V ′) be a continuous linear operator. We say that A is V-H coercive if there

exist α > 0 and λ ∈ R such that

∀v ∈ V, < Av,v >V +λ ‖v‖2
H ≥ α ‖v‖2

V . (A.0.6)

If this holds true when λ = 0, then A is said to be coercive5.

A.0.3. Sobolev Spaces and Theory of Distributions

The following definitions and results are taken from [48], with occasional modifications

to the notation. Let Ω be an open subset of Rn, and K ⊂ Ω be a compact subset. We define

Dm(K) as the vector space of all functions φ : Rn → R whose partial derivatives of order

up to m exist and are continuous, and whose support6 is contained in K. The set Dm(K) is

non-empty7 and, more importantly, is dense in Lp(K), p = 1,2, . . . 8. Since this is the case,

we have the reversed inclusion for the dual space:

Dm(K) ⊂ Lp(K) =⇒ Lp(K)′ ⊂ Dm(K)′ p = 1,2, . . . . (A.0.7)

Let α = (α1, . . . , αn) ∈ N
n be a multi-index and denote by |α| = α1 + · · ·+ αn the order

of the multi-index. Given a function φ : Rn → R, introduce the notation

∂αφ
def= (∂α1

1 . . . ∂αn
n )φ =

∂|α|φ

∂α1
x1

. . . ∂
αp
xn

.

We define the semi-norms qα(φ), by

qα(φ) def= max
x∈K
|∂αφ(x)|. (A.0.8)

The set of functions Vα,ε
def= {φ ∈ Dm(K)|qα(φ) ≤ ε} forms a fundamental system of neigh-

bourhoods for K9. The topology on D(Ω) is defined as the finest topology for which all of the

canonical injections ik

D(K)
ik
−֒→ D(Ω) (A.0.9)

5[4, page 175].
6The support of a function is the closure of the set of points for which the function is non-zero.
7[48, page 166].
8[88, page 22].
9[48, page 88 and page 90].
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are continuous for all compact subsets K ⊂ Ω10.

A distribution on Ω is defined as a continuous linear form on D(Ω). In other words,

distributions are the elements of the dual space D(Ω)′. In particular, from (A.0.7), every

element of L2(Ω)′ is also an element of D(Ω)′. Since L2(Ω) is a Hilbert space, the Riesz

representation theorem implies that we can construct elements ofD(Ω)′ via the scalar product

in L2. More precisely, for f ∈ L2(Ω) we define Tf ∈ D(Ω)′ as

φ 7→ Tf (φ) def=
∫

Ω
f(x)φ(x) dx : D(Ω)→ R. (A.0.10)

This definition allows us to define a notion of first order partial derivative11 ∂j : D(Ω)′ →

D(Ω)′ (for j a single index). For f ∈ C1(Ω) we want to ensure that the derivative associated

with Tf is the same as the distribution associated with ∂jf , that is to say that ∂jTf = T∂jf .

If we start from the right-hand side and apply integration by parts and the compact support

of functions in D(Ω), for all φ ∈ D(Ω) we have
∫

Ω
∂jf(x)φ(x) dx =

∫

∂Ω
f(x)φ(x) dx−

∫

Ω
f(x)∂jφ(x) dx

= −
∫

Ω
f(x)∂jφ(x) dx.

(A.0.11)

Or, in terms of the duality pairing

< T∂jf , φ >= − < Tf , ∂jφ > . (A.0.12)

This naturally leads to the desired definition for the derivative: ∂jT is defined as the distri-

bution such that

< ∂jT, φ >= − < T, ∂jφ >, ∀φ ∈ D(Ω). (A.0.13)

By induction, this definition can be extended to derivation of any order: For α ∈ N
n a

multi-index, define ∂αT as the distribution such that

< ∂αT, φ >= (−1)|α| < T, ∂αφ >, ∀φ ∈ D(Ω). (A.0.14)

We say that a function g is the derivative in the sense of distributions of a function f if the

distribution associated with g is the distributional derivative of the distribution associated

with f , that is if Tg = ∂Tf . In general this requires a lower degree of regularity than the

standard derivative (see [48, examples 4.1-4.3]).

This weaker notion of derivative allows us to easily define Sobolev Spaces. We present

here the definitions given in [14, chapter 2] with additional definitions, as well as results

10[48, page 165].
11The definitions can be found in [48, chapter 4], however the notation has been modified to be more
consistent with the previous set of definitions.
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from [10, chapter 9]. We define12 W 1,p(Ω) as the set of functions in Lp(Ω) for which all of

its first-order partial derivatives (in the sense of distributions) are in Lp(Ω):

W 1,p(Ω) = {f ∈ Lp(Ω)|∂mf ∈ Lp(Ω), m = 1, . . . , n} . (A.0.15)

We set H1(Ω) = W 1,2(Ω). We set the norm on W 1,p(Ω) as

‖f‖W 1,p = ‖f‖2
L +

n∑

m=1

‖∂mf‖L2 (A.0.16)

and the inner product on H1(Ω) as

(u,v)H1 = (u,v)L2 +
n∑

m=1

(∂mu,∂mv)L2 . (A.0.17)

W 1,p(Ω) is a Banach space ∀1 ≤ p ≤ +∞ (which is reflexive for p 6= 1, +∞ and separable

for p 6= +∞) and H1(Ω) is a separable Hilbert space.13

Similarly, we define W m,p(Ω), k = 2,3, . . . as the set of functions in Lp(Ω) for which

all of its partial derivatives ∂α (in the sense of distributions) of order m are in Lp(Ω) or,

equivalently

W m,p(Ω) = {f ∈ Lp(Ω)|∂αf ∈ Lp(Ω), |α| ≤ m} , (A.0.18)

and we set Hm(Ω) = W m,2(Ω). The norm on W m,p(Ω) is defined as

‖f‖W m,p =




∑

|α|≤m

∫

Ω
|∂αf |2 dx





1
2

(A.0.19)

and the inner product on Hm(Ω) is

(u,v)Hm = (u,v)L2 +
m∑

|α|=1

(∂αu,∂αv)L2 . (A.0.20)

As before, W m,p(Ω) is a Banach space ∀1 ≤ p ≤ +∞ and Hm(Ω) is a Hilbert space.14

12The definition given here is not found in [14], only a definition for the spaces Hm(Ω). Equivalent definitions
for the spaces W 1,p and W k,p can be found in [10, pages 263 and 271], however for consistency and simplicity
we give the version presented here.
13[10, page 264]. Note that while the definition given for the spaces is different than the one presented here,
remark 3 on page 264 clarifies that the two definitions are equivalent.
14[10, page 271]
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Appendix B

ONE-DIMENSIONAL MODEL AND SINK

CONDITION OF LAO

The following section is a transcript of a calculation made by A. Garon [41] that shows that

the one-dimensional model in [62] with zero boundary conditions results in an infinite flux

across the interface between the polymer and the medium that is physically unrealistic.

B.1. Detailed Computations

Let

∂u

∂t
= c2 ∂2u

∂u2
x ∈ ]0,L[ , (B.1.1)

with initial conditions

u(x,0) = u0, a constant,

and boundary conditions

u(L,t) = 0, the “sink” condition,

∂u

∂x
(0,t) = 0.

We proceed by standard separation of variables method. That is, let F , a function of space,

and G, a function of time, such that

u(x,t) = F (x)G(t)

Taking partial derivatives and applying (B.1.1) leads to

Ġ

c2G
=

F ′′

F
= cnst = −p2,

where p > 0 to ensure that the function is decreasing. From there we have that

F ′′ + p2F = 0,



=⇒ F (x) = A cos(px) + B sin(px).

The boundary conditions then become






u(L,t) = F (L)G(t) = 0, ∀t,

∂u

∂x
(0,t) = F ′(0)G(t) = 0, ∀t.

(B.1.2)

Using the boundary condition at x = L, we obtain

u(L,t) = {A cos(pL) + B sin(pL)}G(t) = 0,

=⇒ A cos(pL) + B sin(pL) = 0.

And from the boundary condition at x = 0, we have that

∂u

∂x
(0,t) = {−A sin(px)p + B cos(px)p}x=0 G(t) = 0,

−Ap sin(p · 0)
︸ ︷︷ ︸

∅

+Bp cos(p · 0)
︸ ︷︷ ︸

1

= 0,

=⇒ B = 0.

Thus

A cos(pL) = 0,

=⇒ cos(pL) = 0,

=⇒ pL =
π

2
,
3π

2
,
5π

2
,
7π

2
, . . .

We set

p =
2n− 1

2
π

L
n = 1, . . .

pn =
(

n−
1
2

)
π

L
n = 1,2,3, . . .

We denote

Fn(x) = cos(pnx)

We now examine the time-dependant equation

dG

G
= −c2p2 dt

G = e−c2p2t

=⇒ Gn(t) = e−c2p2
nt .
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Which leads to the equations

un(x,t) = Fn(x)Gn(t)

For which the general solution is given by

u(x,t) =
∞∑

n=1

Bn cos(pnx) e−c2p2
nt

Applying the initial conditions then leads to

u(x,0) =
∞∑

n=1

Bn cos(pnx) = u0.

Lemma B.1.1. For m,n ≥ 1

2
L

∫ L

0
cos(pnx) cos(pmx) dx =







1, m = n,

0, m 6= n.

Proof.

cos(pnx) cos(pmx) =
cos ((pn + pm)x) + cos ((pn − pm)x)

2
,

∫ L

0
cos ((pn + pm)x) dx =

1
pn + pm

sin ((pn + pm)x)|L0 .

=
1

pn + pm

sin ((pn + pm)L) (B.1.3)

∫ L

0
cos ((pn − pm)x) dx =

1
pn − pm

sin ((pn − pm)x) . (B.1.4)

We have

(B.1.3) =⇒ pn + pm = (m + n− 1)
π

L
,

=⇒ sin ((pn + pm)L) = sin




(m + n− 1)
︸ ︷︷ ︸

∈Z

π




 = 0,

(B.1.4) =⇒ pn − pm = (n−m)
π

L
,

=⇒ sin




(n−m)
︸ ︷︷ ︸

∈Z

π




 = 0, if n−m 6= 0.

And if n = m, we have

1
π
L

(n−m)
sin ((n−m)π) =

L

π(n−m)

(

x−
x3

3!
+ . . .

)

x=(n−m)π

,
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= L



1− . . .
︸︷︷︸

∅ if n=m



 ,

= L.

Thus
∫ L

0
cos(pnx) cos(pmx) dx =







0, m 6= n,

L

2
, m = n.

And
2
L

∫ L

0
cos(pnx) cos(pmx) dx =







0, m 6= n,

1, m = n.

�

We now return to the initial condition and apply the lemma

u0 =
∞∑

n=1

Bn cos(pnx),

=⇒ u0 cos(pmx) =
∞∑

n=1

Bn cos(pnx) cos(pmx),

=⇒
2
L

∫ L

0
u0 cos(pmx) dx =

∞∑

n=1

Bn
2
L

∫ L

0
cos(pnx) cos(pmx) dx,

=⇒
2
L

∫ L

0
u0 cos(pmx) dx = Bm.

Moreover, we have that
∫ L

0
cos(pmx) dx =

1
pm

sin(pmx)|L0 ,

=
1

pm

sin(pmL).

Remark B.1.1. In general, for m = 1,2, . . . , we have pmL = mπ
2

and

sin(pmL) =







1, if m is odd,

− 1, if m is even.
(B.1.5)

Thus,

sin(pmL) = (−1)m−1, m ≥ 1,

=⇒
∫ L

0
cos(pmx) dx =

(−1)m−1

pm

.
(B.1.6)

This allows us to calculate the explicitly calculate the initial condition

Bm = u0
2
L

∫ L

0
cos(pmx) dx,

B-iv



=⇒ Bm = u0
2
L

(−1)m−1

pm

,

or Bm = u0
4

(2m− 1)π
(−1)m−1.

To summarise, we have:

pn =
2n− 1

2
π

L
,

Bn = u0
4

(2n− 1)π
(−1)m−1,

u(x,t) =
∞∑

n=1

Bn cos(pnx) e−c2p2
nt .

Remark B.1.2. If we denote û
def= u(x,t)

u0
the normalised concentration, then the previous

calculations imply that

û(x,0) =
∞∑

n=1

B̂n cos(pnx) e−c2p2
nt,

B̂n =
4

(2n− 1)π
(−1)m−1,

∞∑

n=1

B̂n cos(pnx) = 1.

We have that

M(t) =
∫ L

0
û(x,t) dx,

M(0) =
∫ L

0
û(x,0) dx = L.

And thus, if we calculate the normalised mass in the polymer, we have

mp(t) =
M(t)
M(0)

=
1
L

∫ L

0
û(x,t) dx,

=
1
L

(
∞∑

n=1

B̂n e−c2p2
nt
∫ L

0
cos(pnx) dx

)

,

=
1
L

(
∞∑

n=1

B̂n e−c2p2
nt (−1)n−1

pn

)

,

=
∞∑

n=1

B̂n
(−1)n−12
(2n− 1)π

e−c2p2
nt,

=
∞∑

n=1

4
(2n− 1)π

(−1)n−1 (−1)n−12
(2n− 1)π

e−c2p2
nt,

=
∞∑

n=1

8(−1)2n−2

(2n− 1)2 π2
e−c2p2

nt .
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Remark B.1.3. In particular, if we examine the (normalised) initial mass of product in the

polymer, we have mp(0) =
∑∞

n=1
8(−1)2n−2

(2n−1)2π2 = 1.

We now proceed to examine the normalised mass of product in the medium m(t) =

1−mp(t). By substitution, we have

m(t) = 1−
∞∑

n=1

[

8
(2n− 1)2π2

]

e−c2p2
nt

We then differentiate this equation to calculate the flow of the released mass at t = 0

dm

dt
= a0(1−m) + a1(1−m)2,

= −
∞∑

n=1

[

8
(2n− 1)2π2

]

(−c2p2
n) e−c2p2

nt,

=⇒
dm

dt

∣
∣
∣
∣
∣
t=0

= a0 + a1 =
∞∑

n=1

[

8
(2n− 1)2π2

]

c2p2
n.

If we simplify a0 + a1, we have

a0 + a1 = c2
∞∑

n=1

[

8
(2n− 1)2π2

] (2n− 1
2

)2

π2,

= c2
∞∑

n=1

2 =∞.

We also calculate the flow of the normalised concentration

û(x,t) =
∞∑

n=1

B̂n cos(pnx) e−c2pn2t,

=⇒
∂û

∂x
= −

∞∑

n=1

B̂npn sin(pnx) e−c2pn2t,

=⇒
∂û

∂x

∣
∣
∣
∣
∣
x=L

= −
∞∑

n=1

B̂npn sin(pnL) e−c2pn2t,

=⇒
∂û

∂x

∣
∣
∣
∣
∣
x=L

= −
∞∑

n=1

B̂npn(−1)n−1 e−c2pn2t . (B.1.7)

But

B̂npn(−1)n−1 =
4

(2n− 1)π
(−1)n−1 (2n− 1)π

2L
(−1)n−1,

=
2
L

.

We apply this to equation (B.1.7) to obtain

∂û

∂x

∣
∣
∣
∣
∣
x=L

= −
2
L

∞∑

n=1

e−c2p2
nt,
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c2 ∂û

∂x

∣
∣
∣
∣
∣
x=L

︸ ︷︷ ︸

flow leaving the polymer

= −
2
L

∞∑

n=1

e−c2p2
nt .

Evaluating this equation at t = 0 =⇒ −c2p2
nt = 0, we have that

c2 ∂û

∂x
= −

2c2

L

∞∑

n=1

1

= −∞.
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