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Abstract. The goal of this paper is to contribute to the economic literature on ethnic and
cultural diversity by proposing a new index that is informationally richer and more flexible

than the commonly used ‘ethno-linguistic fractionalization’ (ELF ) index. We characterize

a measure of diversity among individuals that takes as a primitive the individuals, as

opposed to ethnic groups, and uses information on the extent of similarity among them.

Compared to existing indices, our measure does not require that individuals are pre-

assigned to exogenously determined categories or groups. We show that our generalized

index is a natural extension of ELF and is also simple to compute. We also provide

an empirical illustration of how our index can be operationalized and what difference it

makes as compared to the standard ELF index. This application pertains to the pattern

of fractionalization in the United States.
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1 Introduction

The role of ethnic and cultural diversity has received increasing attention by economists

in recent years. Numerous contributions have analyzed the relationship between ethnic

heterogeneity and socioeconomic outcomes, including public good provision, growth, cor-

ruption and social capital. The transmission of cultural traits and the ‘formation’ of

heterogeneity have also been studied theoretically and empirically.1 The growing inter-

est in these topics is likely attributable to the upward trend in migration flows and the

fact that many societies are becoming increasingly heterogeneous from a cultural point of

view.

Yet the economics literature does not seem to have advanced very far in the measure-

ment of ethnic and cultural diversity. This contrasts with the breadth of the literature

on the measurement of income inequality, the traditional notion of heterogeneity em-

ployed by economists. While we can rely on a variety of indices of economic inequality,

and these indices have been axiomatically characterized from a theoretical point of view,

the economic literature on the measurement of ‘categorical’ heterogeneity is much less

developed. Virtually every empirical contribution on the topic uses the so-called index

of ethno-linguistic fractionalization (ELF ), which is a decreasing transformation of the

Herfindahl concentration index built from population shares. The ELF index measures

the probability that two randomly drawn individuals from the overall population belong

to different (pre-defined) ethnic groups. While ELF has the advantage of being simple

to compute and easy to interpret, its economic underpinnings seem inadequate.2

The implicit contention in economic models is often that different ethnic groups may

1Among the first group of studies, ethnic diversity has been shown to be associated with lower growth

rates (Easterly and Levine, 1997), more corruption (Mauro, 1995), lower contributions to local public

goods (Alesina, Baqir and Easterly, 1999), lower participation in groups and associations (Alesina and La

Ferrara, 2000) and a higher propensity to form jurisdictions to sort into homogeneous groups (Alesina,

Baqir and Hoxby, 2004). For a review of contributions on the relationship between ethnic diversity and

economic performance, see Alesina and La Ferrara (2005). For the formation and transmission of cultural

traits see, among others, Bisin and Verdier (2000), Fernandez, Fogli and Olivetti (2004), and Giuliano

(2007).
2To our knowledge, the only paper that attemps to provide a theoretical background for the use of ELF

is the one by Vigdor (2002). He proposes a behavioral interpretation of ELF in a model where individuals

display differential altruism. He assumes that an individual’s willingness to spend on local public goods

depends partly on the benefits that other members of the community derive from the good, and that the

weights of this ‘altruistic’ component vary depending on how many members of the community share the

same ethnicity of that individual. Notice that our goal here is to provide a characterization, rather than

a behavioral interpretation, of a new index of fractionalization.
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have different preferences, and this would generate conflicts of interest in economic deci-

sions. It is hard to believe that population shares would be enough to capture the extent

of divergence in preferences among society’s members. Presumably, people of different

culture or ethnicity will feel differently about each other depending on how similar they

are in other dimensions. A second channel through which ethnic or cultural diversity may

affect economic performance is the existence of possible skill complementarities among

different types. But again, it is unlikely that simple population shares will capture the

nature and extent of skill complementarities among groups.

If the rationale for including ethnic diversity effects in economic models lies in pref-

erences or technological features, then measuring fractionalization purely as a function of

population shares seems a severe limitation. Similarity between individuals should play

a role. This similarity could depend, for example, on language spoken, age, educational

background, employment status, just to mention a few attributes. If preferences might be

induced by these other characteristics, then considering similarities between individuals

will give a better understanding of the potential conflict in economic decisions. Providing

a measure of ‘fractionalization’ that accounts for the degree of similarity among agents

seems therefore an important task.

The goal of this paper is to characterize a generalized fractionalization index (GELF)

that takes as primitive the individuals and uses information on their similarities to measure

fractionalization. We propose to use as a building block a ‘similarity matrix’ containing

pairwise similarity values {sij} among any two individuals i and j in society. An entry

equal to 1 in the matrix represents perfect similarity among individuals, an entry equal

to 0 complete dissimilarity. We then rely on four axioms to characterize GELF . The

first axiom is a normalization one, and requires that in a society with maximal similarity

our diversity index takes value zero and in a society with maximal dissimilarity it takes

a positive value. The second axiom, anonymity, requires that individuals are treated

impartially, i.e. that our diversity measure is invariant with respect to permutations. The

third axiom, additivity, imposes a separability property on our index. The fourth and last

axiom, replication invariance, requires the index to be invariant with respect to ‘replicas’

of the population. We prove that a diversity measure satisfies these four axioms if and

only if it is a decreasing function of the sum of similarity values in the matrix, scaled by

the square of the population size. We denote this generalized index as GELF and show

that it is a natural extension of ELF . More generally, depending on the metric used to

measure similarity among individuals and on the level of aggregation of the information

(i.e., similarity among individuals or among groups), our index nests a number of indices
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used in the literature. In the limit case where the information is purely categorical (e.g.,

similarity is 0 or 1) our measure reduces to ELF . In richer information settings where

measuring the ‘distance’ among individuals is feasible and meaningful, our index conveys

a broader measure of ‘diversity’. The flexibility of our formulation and its suitability to

being applied in very different informational environments are an advantage of the measure

we propose. Another advantage is that our index does not require that individuals are

pre-assigned to exogenously determined categories or groups. Our theoretical framework

(e.g. the similarity matrix) can actually be used to determine an endogenous partition of

society into groups. Relevant groups may be constituted by clusters of individuals who

have perfect (or very high) similarity among themselves, and share the same (or very

close) similarity values vis-a-vis the rest of society.

We also provide an empirical illustration of how GELF can be operationalized and

what difference it makes as compared to the standard ELF index. This application

pertains to the pattern of fractionalization in the United States. Using individual level

data from the 1990 Census, we compute the two indices for all US states. We find that

the ranking of several states changes significantly when we use GELF rather than ELF .

For example, in 1990 Hawaii was the first most diverse state in terms of ethnic diversity

(ELF ) and California was the fifth. When we compute GELF embedding information on

similarity in income, education and employment, as well as ethnicity, Hawaii moves to the

42nd place and California to the 30th. This is because economic opportunities in these

states are relatively more equal across races than they are in other states. The District

of Columbia, on the other hand, is the 2nd most fractionalized on the basis of ELF and

becomes the 1st most fractionalized -by a wide margin- when we use GELF . Finally, we

compute ‘grouped’ versions of the GELF index and show how each variable contributes

to the pattern of similarity among races.

Our paper is related to several strands of the literature. First, it naturally relates

to the economics literature on ethnic diversity and its economic effects (see Alesina and

La Ferrara, 2005, for a survey). While the bulk of this literature does not focus on the

specific issue of measurement, a few contributions do. As the majority of applications

have used language as a proxy for ethnicity, some authors have criticized the use of ELF

on the grounds that linguistic diversity may not correspond to ethnic diversity. Among

these, Alesina, Devleeschauwer, Easterly, Kurlat and Wacziarg (2003) have proposed a

classification into groups that combines information on language with information on skin

color. These authors propose three measures of fractionalization: one purely linguistic,

one related to religion, and one that broadly defines ‘ethnicity’ by combining language
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and skin color. Note that this approach differs from ours because it defines ethnic (or

linguistic, or religious) categories on the basis of certain criteria and then applies the ELF

formula to the resulting number of groups.

Other authors, in particular Fearon (2003), have criticized standard applications of

ELF on the grounds that they would fail to account for the salience of ethnic distinc-

tions in different contexts. For example, the same two ethnic groups may be allies in one

country and opponents in another, and using simply their shares in the population would

fail to capture this. We share Fearon’s concerns on this point, and indeed we hope that

our index can be a first step towards incorporating issues of salience in the measurement

of fractionalization, albeit in a simplistic way. In particular, if one thinks that differ-

ences in income, or education, or any other measurable characteristic may be the reason

why ethnicity matters only in certain contexts, our GELF index already ‘weighs’ ethnic

categories by their salience.

Turning to the notion of ‘distance’ among ethnic groups, relatively little has been

done. Using a heuristic approach, Laitin (2000) and Fearon (2003) rely on measures of

distance between languages to assess how different linguistic groups are across countries.

In particular, in his 2003 contribution Fearon proposes a measure of ‘cultural fractional-

ization’ that adapts Greenberg’s (1956) formula by weighting population shares with a

resemblance factor that depends on the number of shared classifications between any two

languages. This measure intuitively captures the expected cultural distance between two

people drawn at random from the population. As we show below, this measure can be

derived as a special case of our GELF index. Caselli and Coleman (2002) stress the im-

portance of ethnic distance in a theoretical model and propose to measure it using surveys

of anthropologists. Finally, a few recent contributions underline the correlation between

‘genetic’ distance and pairwise income differences, trust and trade flows (Guiso, Sapienza

and Zingales, 2004, Spolaore and Wacziarg, 2006, and Giuliano, Spilimbergo and Tonon,

2006).

Second, the paper relates to the literature on ethnic polarization. In her original con-

tribution, Reynal-Querol (2002) adapts the measure of polarization developed by Esteban

and Ray (1994) to the case of categorical variables, such as ethnicity or religion, and pro-

poses an index of ethnic polarization, RQ, which captures how far the distribution of

ethnic groups is from the bipolar case. Montalvo and Reynal-Querol (2005) show that

the RQ index is a more powerful predictor of the incidence of civil wars than ELF . The

authors also show that RQ is highly correlated with ELF at low levels, uncorrelated

at intermediate levels and negatively correlated at high levels. In a recent contribution
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(Montalvo and Reynal-Querol, 2007), the same authors analyze the theoretical properties

of RQ and show that the explanatory power of RQ for the incidence of wars is greater

the higher the intensity of the conflict. Desmet, Ortuño-Ortín and Weber (2005) focus

on ethno-linguistic conflict that arises between a dominant central group and peripheral

minority groups. To this aim the authors propose an index of peripheral ethno-linguistic

diversity, PD, which can capture both the notion of diversity and of polarization. The

relationship between RQ, PD and GELF is discussed in Section 3.

Third, the paper is related to the theoretical economics literature on the measurement

of diversity. For example, Weitzman (1992) suggests an index that is primarily intended to

measure biodiversity. Moreover, the measurement of diversity has become an increasingly

important issue in the recent literature on the ranking of opportunity sets in terms of

freedom of choice, where opportunity sets are interpreted as sets of options available to a

decision maker. Examples for such studies include Weitzman (1998), Pattanaik and Xu

(2000), Nehring and Puppe (2002) and Bossert, Pattanaik and Xu (2003). A fundamental

difference between the above-mentioned contributions and the approach followed in this

paper is the informational basis employed which results in a very different set of axioms

that are suitable for a measure of diversity. Both Weitzman’s (1992) seminal paper and

the literature on incorporating notions of diversity in the context of measuring freedom of

choice proceed by constructing a ranking of sets of objects, interpreted as sets of species in

the case of biodiversity and as sets of available options in the context of freedom of choice.

On the other hand, we operate in an informationally richer environment: not only whether

a group is present may influence the measure of fractionalization, but also the relative

population shares of these groups along with the pairwise similarities among them. We

are interested in capturing a different aspect of diversity than Nehring and Puppe (2002),

namely the instrumental–as opposed to intrinsic–value of diversity, where the number

of individuals plays a key role.

Finally, ELF is also used in the literature on network formation as a measure of

heterogeneity in the underlying population, where distances in characteristics translate

into distances in connections in the network (see, for example, Moody, 2001).

The remainder of the paper is organized as follows. In Section 2 we introduce the notion

of a similarity matrix, we present the formula of our diversity index, and we provide some

examples to show how it compares with the ELF index and how our framework can be

used to derive an endogenous partition of society into groups. Section 3 contains our main

theoretical result, namely, the axiomatic characterization of GELF . The relationship

between GELF and alternative measures that appear in the literature is discussed in
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Section 4. Section 5 provides an empirical illustration and Section 6 concludes with a

summary of our results and possible extensions.

2 Similarity and fractionalization: notation and ex-

amples

In this section we first of all introduce the notion of a similarity matrix, which is the

building block of our index. We then present our proposed diversity measure, GELF ,

and show that the commonly employed ELF is a special case of our index. Finally, we

briefly illustrate how our framework can be used to partition the population into groups.

Similarity

While the existing literature on the measurement of fractionalization relies on exoge-

nous partitions of the population into groups, our starting point is a society composed

of individuals. We believe that a measure of fractionalization of a society should take as

primitive the individual and consider attributes such as ethnicity like any other personal

characteristic in determining the similarity among individuals. In our informal discussion,

we shall occasionally refer to ethnic groups in order to be in line with the literature to

which we aim at contributing. Similarly, the empirical application will also make use of

ethnic categories for comparison purposes with standard indices. However, the character-

ization result we provide in this paper is very general and we do not need to impose any

predefined partition of the population into groups.

Our reasoning proceeds as follows. Imagine a society composed of individuals with

personal characteristics, whatever they might be. Any two individuals may be perfectly

identical according to the characteristics under consideration, completely dissimilar or

similar to different degrees. For simplicity, we normalize the similarity values to be in the

interval [0, 1], assign the value one to perfect similarity and a value of zero to maximum

dissimilarity. If the society is composed of n individuals, the comparison process will

generate n2 similarity values. These values are collected in a matrix that we call the

similarity matrix. Each row i of this matrix contains the similarity values of individual i

with respect to all members of society. Naturally, all entries on the main diagonal of such

a matrix–the entries representing the similarity of each individual to itself–are equal to

one. Furthermore, a similarity matrix is symmetric: the similarity between individuals i

and j is equal to that between j and i. We discuss below the possibility of a non-symmetric

similarity matrix.
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Let N denote the set of positive integers and R the set of all real numbers. The

set of all non-negative real numbers is R+ and the set of positive real numbers is R++.
For n ∈ N \ {1}, Rn is Euclidean n-space and ∆n is the n-dimensional unit simplex.

Furthermore, 0n is the vector consisting of n zeroes.

Definition 1. A similarity matrix of dimension n ∈ N \ {1} is an n × n matrix

S = (sij)i,j∈{1,...,n} such that:

(a) sij ∈ [0, 1] for all i, j ∈ {1, . . . , n};
(b) sii = 1 for all i ∈ {1, . . . , n};
(c) [sij = 1 ⇒ sik = skj] for all i, j, k ∈ {1, . . . , n}.

The three restrictions on the elements of a similarity matrix have very intuitive inter-

pretations. (a) is consistent with a normalization requiring that complete dissimilarity is

assigned a value of zero and full similarity is represented by one. Clearly, this requires

that each individual has a similarity value of one when assessing the similarity to itself,

as stipulated in (b). Condition (c) requires that if two individuals are fully similar, it is

not possible to distinguish between them as far as their similarity to others is concerned.

Because i = j is possible in (c), the conjunction of (b) and (c) implies that a similarity

matrix is symmetric. Finally, (c) implies that full similarity is transitive in the sense that,

if sij = sji = sjk = skj = 1, then sik = ski = 1 for all i, j, k ∈ {1, . . . , n}. Our char-
acterization result remains valid if restriction (c) is dropped –that is, our index can be

characterized on a larger domain where the notion of similarity is not necessarily symmet-

ric, as may be the case if the similarity values are obtained from people’s subjective views

on the degree to which they differ from others. We state our main result with restriction

(c) to emphasize that we do not need non-symmetric similarity matrices and, thus, our

characterization is not dependent on an artificially large domain. See the Appendix for

details.

Measuring diversity: GELF and ELF

Let Sn be the set of all n-dimensional similarity matrices, where n ∈ N \ {1} and
S = ∪n∈N\{1}Sn., A diversity measure is a function D : S → R+. The specific measure we
propose in this paper is what we call the generalized fractionalization (GELF ) index G.

It is defined as

G(S) = 1− 1

n2

nX
i=1

nX
j=1

sij (1)
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for all n ∈ N \ {1} and for all S ∈ Sn (or any positive multiple; clearly, multiplying

the index value by α ∈ R++ leaves all diversity comparisons unchanged). GELF is the

expected dissimilarity between two individuals drawn at random.

As an example, suppose a three-dimensional similarity matrix is given by

S =

⎛⎜⎝ 1 1/2 1/4

1/2 1 0

1/4 0 1

⎞⎟⎠ .

The corresponding value of G is given by

G(S) = 1− 1
9

∙
1 +

1

2
+
1

4
+
1

2
+ 1 + 0 +

1

4
+ 0 + 1

¸
=
1

2
.

It is easy to show that G(S) is indeed a generalization of the commonly-employed

ethno-linguistic fractionalization (ELF ) index. The application of ELF is restricted to

an environment where the only information available is the vector p = (p1, . . . , pK) ∈ ∆K

of population shares for K ∈ N predefined groups. No partial similarity values are taken
into consideration–individuals are either fully similar or completely dissimilar, that is,

sij can assume the values one and zero only. Letting ∆ = ∪K∈N∆K, the ELF index

E : ∆→ R+ is defined by letting

E(p) = 1−
KX
k=1

p2k

for all K ∈ N and for all p ∈ ∆K . Thus, ELF is one minus the well-known Herfindahl

index of concentration.

In our setting, the ELF environment can be described by a subset S01 = ∪n∈N\{1}Sn
01

of our class of similarity matrices where, for all n ∈ N \ {1}, for all S ∈ Sn
01 and for

all i, j ∈ {1, . . . , n}, sij ∈ {0, 1}. By properties (b) and (c), it follows that, within this
subclass of matrices, the population {1, . . . , n} can be partitioned into K ∈ N non-empty
and disjoint subgroups N1, . . . , NK with the property that, for all i, j ∈ {1, . . . , n},

sij =

(
1 if there exists k ∈ {1, . . . ,K} such that i, j ∈ Nk;

0 otherwise.

Letting nk ∈ N denote the cardinality of Nk for all k ∈ {1, . . . ,K}, it follows thatPK
k=1 nk = n and pk = nk/n for all k ∈ {1, . . . ,K}. For n ∈ N \ {1} and S ∈ Sn

01, we

obtain

G(S) = 1− 1

n2

KX
k=1

n2k = 1−
KX
k=1

p2k = E(p).
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For example, suppose that

S =

⎛⎜⎝ 1 1 0

1 1 0

0 0 1

⎞⎟⎠ ,

that is, we are analyzing a society composed of three individuals. Two of them (indi-

viduals 1 and 2) are fully similar: the similarity values s12 and s21 are equal to one and,

furthermore, they have the same degree of similarity –zero– with respect to the remain-

ing member of society (individual 3). Because individual 3 is not completely similar to

anyone else, it forms a group on its own. The corresponding value of G is given by

G(S) = 1− 1
9
[1 + 1 + 0 + 1 + 1 + 0 + 0 + 0 + 1] =

4

9
.

Because S ∈ S301, we can alternatively calculate this diversity value using ELF . We have
K = 2, N1 = {1, 2}, N2 = {3}, p1 = 2/3 and p2 = 1/3. Thus,

E(p) = 1−
"µ
2

3

¶2
+

µ
1

3

¶2#
=
4

9
= G(S).

Partitioning society into groups

Our framework allows us to obtain population subgroups endogenously from similarity

matrices even if similarity values can assume values other than zero and one. A plausible

method of doing so is the following. Any two individuals i and j belong to the same

group if the similarity between i and j is equal to one and, moreover, the similarities of

i with respect to all other individuals k are the same as those of j. Using this process,

a group partition emerges naturally from the similarity matrix without having to impose

it in advance. This method has several advantages: i) it releases the researcher of the

choice of the one characteristic that determines fractionalization in the society of interest;

ii) it makes it possible to consider simultaneously multiple characteristics; iii) it allows

group formation across characteristics; iv) it considers the intensity of similarities between

groups.

Formally, we define a partition of {1, . . . , n} into K ∈ N non-empty and disjoint

subgroups N1, . . . , NK. By properties (b) and (c), these subgroups are such that, for all

k ∈ {1, . . . ,K}, for all i, j ∈ Nk and for all h ∈ {1, . . . , n}, sij = sji = 1 and sih = shi =

shj = sjh. Thus, for all k, ∈ {1, . . . ,K}, we can unambiguously define sk = sij for some

i ∈ Nk and some j ∈ N . Again using nk ∈ N to denote the cardinality of Nk for all

9



k ∈ {1, . . . ,K}, it follows that
PK

k=1 nk = n and pk = nk/n for all k ∈ {1, . . . ,K}. For
n ∈ N \ {1} and S ∈ Sn, we obtain

G(S) = 1− 1

n2

KX
k=1

KX
=1

nkn sk = 1−
KX
k=1

KX
=1

pkp sk . (2)

Clearly, the ELF index E is obtained for the case where all off-diagonal entries of S are

equal to zero.

To provide a numerical illustration of this case, let

S =

⎛⎜⎝ 1 1 1/2

1 1 1/2

1/2 1/2 1

⎞⎟⎠ ,

that is, we consider another society of three individuals. Again, two of them (individuals

1 and 2) are fully similar: the similarity values s12 and s21 are equal to one and, further-

more, they have the same degree of similarity with respect to the remaining member of

society (individual 3). This time, however, the similarity between the members of the

first group and the remaining individual is equal to 1/2 rather than zero. Individual 3 is

not completely similar to anyone, thus is in a group by itself. The corresponding index

value is

G(S) = 1− 1
9

∙
1 + 1 +

1

2
+ 1 + 1 +

1

2
+
1

2
+
1

2
+ 1

¸
=
2

9
.

According to the method outlined above, we can alternatively partition the population

{1, 2, 3} into two groups N1 = {1, 2} and N2 = {3}. The population shares of these
groups are p1 = 2/3 and p2 = 1/3. We obtain the intergroup similarity values s11 = s22 =

s11 = s22 = s12 = s21 = 1 and s12 = s21 = si3 = s3i = 1/2 for i ∈ {1, 2} which, using (2),
leads to the index value

G(S) = 1−
"µ
2

3

¶2
+

µ
1

3

¶2
+
2

3
· 1
3
· 1
2
+
2

3
· 1
3
· 1
2

#
=
2

9
.

3 A characterization of GELF

We now turn to a characterization of GELF . Our characterization relies on four axioms,

which we proceed to illustrate in order. We then state and prove the main theorem

containing the formula of our diversity index.
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Axiom 1: Normalization
Let In denote the n× n identity matrix and 1n denote the n× n matrix all of whose

entries are equal to one. Clearly, both of these matrices are in Sn, and they represent

extreme cases within this class. In can be thought of as having maximal diversity: any

two individuals are completely dissimilar and, therefore, each individual is in a group

by itself. 1n, on the other hand, represents maximal concentration (and, thus, minimal

diversity) because there is but a single group in the population all members of which are

fully similar. Our first axiom is a straightforward normalization property. It requires that

the value of D at 1n is equal to zero and the value of D at In is positive for all n ∈ N\{1}.
Given that the matrix 1n is associated with minimal diversity, it is a very plausible

restriction to require that D assumes its minimal value for these matrices. Note that this

minimal value is the same across population sizes. This is plausible because, no matter

what the population size n might be, there is but a single group of perfectly similar

individuals and, thus, there is no diversity at all.

In contrast, it would be much less natural to require that the value of D at In be

identical for all population sizes n. It is quite plausible to argue that having more distinct

groups each of which consists of a single individual leads to more diversity than a situation

where there are fewer groups containing one individual each. Our first axiom can thus be

formalized as follows.

Normalization. For all n ∈ N \ {1},

D(1n) = 0 and D(In) > 0.

Axiom 2: Anonymity
Our second axiom is very uncontroversial as well. It requires that individuals are

treated impartially, paying no attention to their identities. For n ∈ N \ {1}, let Πn be the

set of permutations of {1, . . . , n}, that is, the set of bijections π : {1, . . . , n}→ {1, . . . , n}.
For n ∈ N \ {1}, S ∈ Sn and π ∈ Πn, Sπ is obtained from S by permuting the rows

and columns of S according to π. Anonymity requires that D is invariant with respect to

permutations.

Anonymity. For all n ∈ N \ {1}, for all S ∈ Sn and for all π ∈ Πn,

D(Sπ) = D(S).
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Axiom 3: Additivity
Many social index numbers have an additive structure. Additivity entails a separability

property: the contribution of any variable to the overall index value can be examined in

isolation, without having to know the values of the other variables. Thus, additivity

properties are often linked to independence conditions of various forms. The additivity

property we use is standard except that we have to respect the restrictions imposed by

the definition of Sn. In particular, we cannot simply add two similarity matrices S and T

of dimension n because, according to ordinary matrix addition, all entries on the diagonal

of the sum S + T will be equal to two rather than one and, therefore, S + T is not an

element of Sn. For that reason, we define the following operation ⊕ on the sets Sn by

letting, for all n ∈ N \ {1} and for all S, T ∈ Sn, S ⊕ T = (sij ⊕ tij)i,j∈{1,...,n} with

sij ⊕ tij =

(
1 if i = j;

sij + tij if i 6= j.

The standard additivity axiom has to be modified in another respect. Because the diagonal

is unchanged when moving from S and T to S ⊕ T , it would be questionable to require

the value of D at S ⊕ T to be given by the sum of D(S) and D(T ) because, in doing so,

we would double-count the diagonal elements in S and in T . Therefore, this sum has to

be corrected by the value of D at In, and we obtain the following axiom.

Additivity. For all n ∈ N \ {1} and for all S, T ∈ Sn such that (S ⊕ T ) ∈ Sn,

D(S ⊕ T ) = D(S) +D(T )−D(In).

Axiom 4: Replication invariance
With the partial exception of the normalization condition (which implies that our di-

versity measure assumes the same value for the matrix 1n for all population sizes n), the

first three axioms apply to diversity comparisons involving fixed population sizes only.

Our last axiom imposes restrictions on comparisons across population sizes. We consider

specific replications and require the index to be invariant with respect to these replica-

tions. The scope of the axiom is limited to what we consider clear-cut cases and, therefore,

represents a rather mild variable-population requirement. In particular, consider the n-

dimensional identity matrix In. As argued before, this matrix represents an extreme

degree of diversity: each individual is in a group by itself and shares no similarities with

anyone else. Now consider a population of size nm where there are m copies of each

individual i ∈ {1, . . . , n} such that, within any group of m copies, all similarity values are

12



equal to one and all other similarity values are equal to zero. Thus, this particular repli-

cation has the effect that, instead of n groups of size one that do not have any similarity

to other groups, now we have n groups each of which consists of m identical individuals

and, again, all other similarity values are equal to zero. As before, the population is

divided into n homogeneous groups of equal size. Adopting a relative notion of diversity,

it would seem natural to require that diversity has not changed as a consequence of this

replication. To provide a precise formulation of the resulting axiom, we use the following

notation. For n,m ∈ N \ {1}, we define the matrix Rn
m = (rij)i,j∈{1,...,nm} ∈ Snm by

rij =

(
1 if ∃h ∈ {1, . . . , n} such that i, j ∈ {(h− 1)m+ 1, . . . , hm};
0 otherwise.

Now we can define our replication invariance axiom.

Replication invariance. For all n,m ∈ N \ {1},

D(Rn
m) = D(In).

These four axioms characterize GELF , as we state in the following theorem.

Theorem 1 A diversity measure D : S → R+ satisfies normalization, anonymity, addi-
tivity and replication invariance if and only if D is a positive multiple of

G(S) = 1− 1

n2

nX
i=1

nX
j=1

sij

for all n ∈ N \ {1} and all S ∈ Sn.

Proof. That any positive multiple of G satisfies the axioms is straightforward to verify.

Conversely, suppose D is a diversity measure satisfying normalization, anonymity, addi-

tivity and replication invariance. Let n ∈ N \ {1}, and define the set X n ⊆ Rn(n−1)/2

by

X n = {x = (xij) i∈{1,...,n−1}
j∈{i+1,...,n}

| ∃S ∈ Sn such that sij = xij for all i ∈ {1, . . . , n− 1}
and for all j ∈ {i+ 1, . . . , n}}.

Define the function Fn : X n → R by letting, for all x ∈ X n,

F n(x) = D(S)−D(In) (3)
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where S ∈ Sn is such that sij = xij for all i ∈ {1, . . . , n− 1} and for all j ∈ {i+1, . . . , n}.
This function is well-defined because Sn contains symmetric matrices with ones on the

main diagonal only. Because D is bounded below by zero, it follows that Fn is bounded

below by −D(In). Furthermore, the additivity of D implies that F n satisfies Cauchy’s

basic functional equation

Fn(x+ y) = Fn(x) + Fn(y) (4)

for all x, y ∈ X n such that (x + y) ∈ X n; see Aczél (1966, Section 2.1). We have to

address a slight complexity in solving this equation because the domain X n of Fn is not

a Cartesian product, which is why we provide a few further details rather than invoking

the corresponding standard result immediately.

Fix i ∈ {1, . . . , n − 1} and j ∈ {i + 1, . . . , n}, and define the function fnij : [0, 1] → R
by

fnij(xij) = Fn(xij;0
n(n−1)/2−1)

for all xij ∈ [0, 1], where the vector (xij;0n(n−1)/2−1) is such that the component corre-
sponding to ij is given by xij and all other entries (if any) are equal to zero. Note that

this vector is indeed an element of X n and, therefore, fnij is well-defined. The function f
n
ij

is bounded below because Fn is and, as an immediate consequence of (4), it satisfies the

Cauchy equation

fnij(xij + yij) = fnij(xij) + fnij(yij) (5)

for all xij, yij ∈ [0, 1] such that (xij + yij) ∈ [0, 1]. Because the domain of fnij is an
interval containing the origin and fnij is bounded below, the only solutions to (5) are

linear functions; see Aczél (1966, Section 2.1). Thus, there exists cnij ∈ R such that

Fn(xij;0
n(n−1)/2−1) = fnij(xij) = cnijxij (6)

for all xij ∈ [0, 1].
Let S ∈ Sn. By additivity, the definition of Fn and (6),

F n
³
(sij) i∈{1,...,n−1}

j∈{i+1,...,n}

´
=

n−1X
i=1

nX
j=i+1

Fn(sij;0
n(n−1)/2−1) =

n−1X
i=1

nX
j=i+1

fnij(sij) =
n−1X
i=1

nX
j=i+1

cnijsij

and, defining dn = D(In) and substituting into (3), we obtain

D(S) =
n−1X
i=1

nX
j=i+1

cnijsij + dn. (7)

Now fix i, k ∈ {1, . . . , n− 1}, j ∈ {i+1, . . . , n} and ∈ {k+1, . . . , n}, and let S ∈ Sn

be such that sij = sji = 1 and all other off-diagonal entries of S are equal to zero. Let
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the bijection π ∈ Πn be such that π(i) = k, π(j) = , π(k) = i, π( ) = j and π(h) = h for

all h ∈ {1, . . . , n} \ {i, j, k, }. By (7), we obtain

D(S) = cnij + dn and D(Sπ) = cnk + dn,

and anonymity implies cnij = cnk . Therefore, there exists c
n ∈ R such that cnij = cn for all

i ∈ {1, . . . , n− 1} and for all j ∈ {i+ 1, . . . , n}, and substituting into (7) yields

D(S) = cn
n−1X
i=1

nX
j=i+1

sij + dn

for all n ∈ N \ {1} and for all S ∈ Sn.

Normalization requires

D(1n) = cn
n(n− 1)

2
+ dn = 0

and, therefore, dn = −cnn(n − 1)/2 for all n ∈ N \ {1}. Using normalization again, we
obtain

D(In) = −cnn(n− 1)
2

> 0

which implies cn < 0 for all n ∈ N \ {1}. Thus,

D(S) = cn
n−1X
i=1

nX
j=i+1

sij − cn
n(n− 1)

2
(8)

for all n ∈ N \ {1} and for all S ∈ Sn.

Let n be an even integer greater than or equal to four. By replication invariance and

(8),

D(R2n/2) = cn
n

2

³n
2
− 1
´
− cn

n(n− 1)
2

= −c2 = D(I2).

Solving, we obtain

cn = 4
c2

n2
. (9)

Now let n be an odd integer greater than or equal to three. Thus, q = 2n is even, and

the above argument implies

cq = 4
c2

q2
=

c2

n2
. (10)

Furthermore, replication invariance requires

D(Rn
2 ) = D(R

q/2
2 ) = cq

q

2
− cq

q(q − 1)
2

= −cnn(n− 1)
2

= D(In).
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Solving for cn and using the equality q = 2n, it follows that cn = 4cq and, combined with

(10), we obtain (9) for all odd n ∈ N \ {1} as well.
Substituting into (8), simplifying and defining α = −2c2 > 0, it follows that, for all

n ∈ N \ {1} and for all S ∈ Sn,

D(S) = 4
c2

n2

n−1X
i=1

nX
j=i+1

sij − 2
c2

n2
n(n− 1)

= 2
c2

n2

nX
i=1

nX
j=1
j 6=i

sij − 2c2 + 2
c2

n

= −2c2

⎡⎢⎣1− 1

n2

nX
i=1

nX
j=1
j 6=i

sij −
1

n

⎤⎥⎦
= −2c2

"
1− 1

n2

nX
i=1

nX
j=1

sij

#
= αG(S).

4 Alternative and related approaches

In this section we discuss the differences between GELF and related indices proposed

in various literatures. We start briefly with the linguistics and statistical literature and

compare GELF with Greenberg’s (1956) index and with the quadratic entropy index

(QE). We then proceed with the economics literature, focusing on the indices of ethnic

polarization (RQ) and peripheral diversity (PD).

What is known in the economics literature as ELF is, in the statistical literature, the

Gini-Simpson index, introduced first by Gini (1912) and then by Simpson (1949) as a

measure of diversity of the multinomial distribution. The same index has been proposed

by the linguist Greenberg (1956) termed as the ‘A index’. In his 1956 article, Greenberg

suggested a way to measure the degree of resemblance among K languages. Indicating

by rkl ≥ 0 the resemblance between language k and l, the proposed B index is:

B = 1−
KX
k=1

KX
l=1

pkplrkl.

This is the index used by Fearon (2003) in his empirical contribution on cultural fraction-

alization.
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In an independent contribution, Rao (1982) suggested exactly the same generalization

of ELF , the quadratic entropy index (QE), in order to take into account different distance

values, dkl ≥ 0, of different pairs of categories, k and l. As opposed to Greenberg (1956),

Rao (1984) and Rao and Nayak (1985) provide various axiomatizations of the measure.

QE is an index that, rewritten in the settings of our paper, considers distances other than

zero—one between individuals belonging to different groups, that is

QE =
KX
k=1

KX
l=1

pkpldkl.

Recall the definition of skl in Section 2 and the formula forGELF (2). Letting dkl = 1−skl,
we immediately see that GELF is QE, and hence B, when the population is partitioned

ex-ante into groups on the basis of a characteristic.

The inspection of the indices B and QE gives further insights into the relationship

between GELF and ELF. As we said above, GELF is the expected dissimilarity between

two individuals drawn at random from the population. ELF is the likelihood that two

randomly drawn individuals belong to different (exogenous) categories. RewritingELF as

E(p) = 1−
PK

k=1 pkpk, we see that ELF can be interpreted as one minus a weighted sum

of population shares pk, where the weights are these shares themselves. GELF, on the

other hand, is its natural generalization: it can be written as one minus a weighted sum of

the population shares. However, the weight assigned to pk is now not merely pk itself but

a considerably more refined expression that takes account of the similarities of the group

members to the individuals in other groups. In calculating GELF , each individual counts

in two capacities. Through its membership in its own group, an individual contributes to

the population share of the group. In addition, there is a secondary contribution via the

similarities to individuals of other groups.

It should be noted that, when the distance values are differences in income, QE is

twice the well-known absolute Gini coefficient. The latter, when normalized by mean

income, is one among the most popular indices of income inequality.

In economics, the index of ethnic polarization RQ (see Reynal-Querol, 2002, and

Montalvo and Reynal-Querol, 2005) shares a structure similar to that of ELF and of

GELF . It is defined by

RQ(p) = 1−
KX
k=1

µ
1/2− pk
1/2

¶2
pk

for all K ∈ N and for all p ∈ ∆K . As is the case for ELF , RQ employs a weighted sum

of population shares. The weights employed in RQ capture the deviation of each group
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from the maximum polarization share 1/2 as a proportion of 1/2. Analogously to ELF ,

underlying the formula of RQ is the implicit assumption that any two groups are either

completely similar or completely dissimilar and, thus, the weights depend on population

shares only.

The index of peripheral diversity PD (see Desmet, Ortuño-Ortín andWeber, 2005) is a

specification of the original Esteban and Ray (1994) polarization index. It is derived from

the alienation-identification framework proposed by Esteban and Ray (1994), applied to

distances between languages spoken rather than to income distances as in Esteban and

Ray (1994). Desmet, Ortuño-Ortín and Weber (2005) distinguish between the effective

alienation felt by the dominant group and that of the minorities. In particular, expressed

in the setting of our paper, the index is defined by

PD(p) =
KX
k=1

£
p1+αk (1− s0k) + pkp

1+α
0 (1− s0k)

¤
for all K ∈ N and for all p ∈ ∆K, where α ∈ R is a parameter indicating the importance
given to the identification component, 0 is the dominant group and the other K are

minority groups. When α < 0, PD is an index of peripheral diversity; when α > 0, PD

is an index of peripheral polarization. The structure of this index is different from that

of those previously discussed. As is the case for GELF , it does incorporate a notion of

dissimilarity between groups, given by the complement to one of the similarity value. On

the other hand, as opposed to the previous indices, the identification component plays a

crucial role enhancing (when α > 0) or diminishing (when α < 0) the alienation produced

by distances between groups. An additional difference to the other indices discussed in

this section is the distinction between the dominant groups and the minorities.

5 An empirical illustration

In this section we provide an application of GELF to the pattern of diversity in the

United States. Our goal is to compare the extent of diversity across states taking into

account different dimensions of similarity among individuals, in particular: racial identity,

household income, education and employment status.

5.1 Methodology

The data set used is the 5 percent IPUMS from the 1990 Census. We use individual level

information on all household heads in the sample and record the following characteristics:
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(a) Race. Each individual is attributed to one of five racial groups, that is, (i) White;
(ii) Black; (iii) American Indian, Eskimo or Aleutian; (iv) Asian or Pacific Islander; and

(v) Other.3

(b) Income. Total household income.
(c) Education. The years of education of the individual.
(d) Employment. Each individual is attributed to one of four categories, namely, (i)

Civilian employed or armed forces, at work; (ii) Civilian employed or armed forces, with

a job but not at work; (iii) Unemployed; and (iv) Not in labor force.

Drawing on the above information, we construct GELF in several ways. The first,

and more general, is an implementation of formula (1) that takes into account all four

dimensions at the same time without imposing an exogenous partition into groups. The

second and third approaches rely on an ex ante partition of the population and implement

the ‘grouped’ version of GELF, expression (2).

Similarity of individuals
To implement our index (1), we start from the variables (a) to (d) and apply principal

component analysis.4 In this way, we extract for each individual i a synthetic measure xi,

the first principal component, that we employ to compute pairwise distances among all

individuals living in the same state, i.e., |xi − xj|. To generate similarity values sij that
are bounded between 0 and 1, we normalize this distance by the difference between the

maximum and the minimum value of the xi’s in the entire US sample, and we subtract

the resulting value from 1. Once we have the full set of similarity values {sij}i,j∈{1,...,n}
computation of (1) is straightforward.

Our second set of results is obtained by assuming that individuals can be aggregated

into exogenously defined groups –specifically, the five racial groups described under (a)–

and measuring the similarity among these groups along the remaining dimensions. The

choice of race as the exogenously given category is purely instrumental to comparing our

results to the widely used ELF index that relies exclusively on racial shares Obviously,

depending on the specific application, the grouping could be done on the cleavage that is

3The last category includes any other race except the four mentioned. The 1990 Census does not iden-

tify Hispanic as a separate racial category. However, Alesina, Baqir and Easterly (1999), who construct

ELF from the same five categories, report that the category Hispanic (obtained from a different source)

has a correlation of more than 0.9 with the category Other in the Census data.
4We have experimented with the standard principal component method as well as with an application

that employs polychoric correlation matrix to take into account the fact that some of our variables are

categorical. The estimates reported below rely on the latter method; results obtained using the standard

method are available from the authors.
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most relevant for the phenomenon under study. The idea underlying this second set of

results is to propose a way to computeGELF that is less data intensive and to see whether

the qualitative pattern of results differs from that obtained using the full similarity matrix.

This second set of results, in turn, is obtained under two alternative methods. The first

requires the availability of the entire distribution of individual characteristics, and can be

used when individual survey data is available. The second relies only on aggregate data

on mean characteristics by group. In what follows we briefly describe the two methods.

Similarity of distributions
Once the population is exogenously partitioned into racial groups, we can assess the

‘distance’ among these groups by comparing the distributions of individual characteristics

such as income, education, employment. Consider for example income. We first estimate

non-parametrically the distributions of household income by race of the head of the house-

hold, bf i (y). The estimation method applied in the paper is derived from a generalization
of the kernel density estimator to take into account the sample weights attached to each

observation in each group, namely, from the adaptive or variable kernel. After estimating

the densities of household income by race, we measure the overlap among them, implying

that two racial groups whose income distributions perfectly overlap are considered per-

fectly similar. The measure of overlap of distributions applied is the Kolmogorov measure

of variation distance:

Kovij =
1

2

Z ¯̄̄ bf i (y)− bf j (y)¯̄̄ dy.
Kovij is a measure of the lack of overlap between groups i and j. It ranges between 0

and 1, taking value zero if bf i (y) = bf j (y) for all y ∈ R and one if bf i (y) and bf j (y) do not
overlap at all.5 The resulting measure of similarity between any two groups i and j, that

we employ to implement formula (2) for grouped GELF, is

sij = 1−Kovij.

This method is also applied on the distribution of the synthetic measure xi obtained

for each individual in each group by principal component analysis. In this case we esti-

mate bf i (x) , the distribution of the synthetic measure by race, compute the Kolmogorov
measure of variation distance and the measure of similarity as described above.

5The distance is sensitive to changes in the distributions only when both take positive values, being

insensitive to changes whenever one of them is zero. It will not change if the distributions move apart,

provided that there is no overlap between them or that the overlapping part remains unchanged.
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Similarity of means
As an alternative to the distance among distributions, we compute a crude measure of

similarity based on the expected value of the distribution of the characteristic analyzed.

This is to illustrate the performance of GELF in case of grouped data or poor availability

of information in the data set.

We can measure similarity with respect to continuous or to categorical variables. For

continuous variables, such as household income or education, we indicate by λi the sample

mean of the distribution for group i, by λMax the maximum mean value among all groups

in all states, and by λMin the minimum. Then we can compute sij for each state as

sij = 1−
¯̄̄̄

λi − λj

λMax − λMin

¯̄̄̄
. (11)

Note that expression (11) is bounded between zero and one by construction.

For categorical variables like employment, we create a dummy variable that assumes

the value one if the household head is employed, and zero if he is unemployed or not in

the labor force.6 Indicating by δi the sample means of this variable for group i (i.e., the

share of the population assuming value one), similarity between any two groups i and j

is

sij = 1−
¯̄
δi − δj

¯̄
.

Again, sample weights are used in the computations for these variables.

5.2 Results

We discuss our results starting with computations based on the GELF formula (1), which

relies on the original similarity matrix without pre-assigning individuals to groups. We

refer to this index as ‘GELF ’ with no further specifications. We then turn to approaches

that pre-assign individuals to racial groups. In this case the distance among groups is

computed on the basis of characteristics other than race (e.g., income) and we refer to

the indices as ‘GroupedGELF_income’, etc.

[Insert Figure 1]

The main result of our empirical analysis is summarized in figure 1. On the horizontal

axis we plot values of ethno-linguistic fractionalization (ELF ) for all states in the US

6We have also experimented with a different definition where one corresponds to households whose

head is employed or not in the labor force, and zero to unemployed. The results were not significantly

affected and are available from the authors.
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in 1990. The vertical axis reports the corresponding value of GELF. While the two

are positively correlated, their relationship is far from linear: the correlation coefficient

is only .59. In particular, states like Hawaii, California and Nevada are much more

heterogeneous if one only looks at racial shares than if all dimensions are considered jointly.

This is because in these states the distribution of income, education and employment is

relatively more similar among races than in other states. At the opposite end we have

states like Alaska, Kentucky, Rhode Island, Massachusetts and in general New England,

where diversity measured in terms of racial shares is relatively low, but different races

differ in the distribution of the remaining characteristics to such an extent that they are

actually ‘more diverse’ when the full similarity GELF is employed.

[Insert Table 1]

Table 1 provides the counterpart to the graphical analysis, as it reports the full set

of states listed in decreasing order of ethno-linguistic fractionalization, the corresponding

values of ELF , GELF and the difference in ranks between ELF and GELF for each

state. We prefer to rely on a comparison of ranks because the absolute values of the two

indices are not comparable. In particular, in the last column of table 1 we report the

difference ELFrank − GELFrank, so that negative values indicate that a given state

is less fractionalized according to GELF than according to ELF, while positive values

indicate the opposite. The magnitude of the difference gives a rough approximation of

how big a difference it makes for a particular state to use one index over the other, in

terms of relative rankings.

We next turn to an investigation of what happens when race is isolated to define

relevant subgroups and distance is computed on the remaining components. In particular,

we implement formula (2) with the slight modification that individuals are exogenously

grouped into five categories–in this case racial groups–and distances among groups are

measured as the difference in a synthetic measure of income, education and employment.7

The results are displayed in table 2.

[Insert Table 2]

States in table 2 are listed in decreasing order of GELF, and two additional in-

dices (with the corresponding ranks) are reported. The first index, which we denote

7As before, this synthetic index is the first principal component extracted from our income, education

and employment variables, where we use a polychoric correlation matrix to take into account the fact

that employment is a categorical variable.
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as GroupedGELF_d, employs the Kolmogorov distance among distributions of the syn-

thetic index to compute similarity values that are the used in formula (2). The second

index, denoted as GroupedGELF, is simpler in that only the average value of the syn-

thetic index for each racial group is used when computing distances (differences). While

the use of means or of the entire distribution yield very similar results, the comparison

with GELF suggests that for some states the exogenous definition of racial categories

does make a difference: these are the same states for which the difference between ELF

and GELF in figure 1 was more pronounced. In this sense, and not surprisingly, the

GroupedGELF index calculated according to (2) is more similar to ELF than the GELF

index (1) calculated on the full similarity matrix.

[Insert Table 3 and Figure 2]

Finally, in table 3 we try to disentangle the contribution of each individual dimension

to overall diversity by implementing a version of (2) where distance among racial groups

is measured solely in terms of differences in average income (GroupedGELF_income),

differences in average years of education (GroupedGELF_edu), or difference in the share

of people employed (GroupedGELF_empl). For each index, we report the value and the

rank, and states are still listed in decreasing order of the full similarity GELF. The results

are quite informative and are more easily visualized through figure 2. Panel A of the figure

plots the original values of ELF on the horizontal axis against GroupedGELF_income on

the vertical one. The two measures are closely correlated with two extreme outliers:

Hawaii is much less fractionalized when we use GroupedGELF_income than when we use

ELF, while the opposite occurs for the District of Columbia. The intuition is similar

to that provided when commenting on figure 1, i.e., in states like Hawaii or California

average income levels are relatively more similar among races than they are in DC or

in Connecticut, for example. A similar picture is offered in Panel B with respect to

years of education. Interestingly, however, when we look at employment levels (Panel C)

the relationship between the two indices becomes hump-shaped. The maximum value of

diversity according to GroupedGELF_empl corresponds to intermediate levels of ethnic

fractionalization; on the other hand, very low or very high levels of ELF translate into

middle range values of diversity when both race and similarity in employment status are

taken into account. A possible interpretation of this result is that sizeable differences

in employment status (e.g., high unemployment levels for minorities) may be politically

difficult to sustain in states where a relatively high fraction of the population is non-white.

On the other hand, the same does not hold for income, as if income differences were more
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easily acceptable compared to the universal right of access to employment.

While only suggestive and illustrative, the above analysis highlights some of the poten-

tial benefits that may derive from the use of fractionalization indices that do not simply

rely on population shares, but also try to incorporate information on other dimensions

along which individuals may differ.

6 Concluding remarks

The main purpose of this paper is to provide a theoretical foundation and an empirical

illustration of a new measure of ethnic diversity. Unlike the most commonly used ELF in-

dex, our generalized version GELF makes use of a broader informational base. Instead of

limiting the relevant variables to the population shares of predefined groups, we start out

with a notion of similarity among individuals and calculate our index value accordingly.

It is possible to derive a partition into groups endogenously, and the standard ELF index

emerges as a special case when no partial similarity is allowed. The results of our empir-

ical application suggest that accounting for the extent of similarity among individuals in

observable dimensions other than race may indeed alter the picture of ‘ethnic diversity’ in

the United States. In places like New England or Washington DC racial fractionalization

is magnified when similarity in income, education or employment is taken into account;

in places like California the opposite occurs.

Before concluding, we would like to stress an important methodological point. While

in this paper we characterize GELF on the basis of similarities among individuals, our

approach is silent on how these similarities should be defined. In particular, our approach

is fully compatible with a setting in which the notion of continuous distance does not

apply (i.e., individuals are either fully similar or fully dissimilar, in which case our prim-

itives sij will take values 0 or 1), as well as with a setting in which it is meaningful to

think of similarity among individuals in a continuous way. In addition, our index allows

to incorporate a multidimensional concept of similarity, as opposed to a single dimen-

sion. We view this flexibility as an advantage of our approach, and one that makes our

index applicable in many different settings. Our choice in the empirical illustration was

guided by the attempt to compare our results with well known patterns in the economics

literature on ethnic fractionalization in the US. We chose as dimensions of similarity eth-

nicity, household income, education and employment status since we believe that these

are important aspects of the US economy that could influence the behavior of individuals.

However, the choice of variables to be employed in the measurement of similarity could
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include very different aspects and should be guided by the specific application that one

has in mind.

Finally, the application of our index is not limited to studies involving ethno-linguistic

fractionalization. The generalized index that we propose may be applied to various areas in

economics, including for example industrial organization. GELF is an index of diversity,

and the difference between one and the index value can be interpreted as an index of

concentration. Embedding information on similarity among firms in a concentration index

may yield different results than the traditional Herfindahl index, which is purely based

on market shares.

Appendix

In this appendix, we illustrate that our characterization result is unchanged if the set of

similarity matrices Sn consists of all n×n matrices S satisfying conditions (a) and (b) of

section 2, but not necessarily (c). This is achieved by some straightforward modifications

of the definition used in the proof of Theorem 1.

That any positive multiple of G satisfies the axioms on the larger domain as well is,

again, straightforward to verify. Conversely, suppose D is a diversity measure defined on

the larger domain satisfying normalization, anonymity, additivity and replication invari-

ance. Let n ∈ N \ {1}, and define the set X n ⊆ Rn(n−1)/2 by

X n = {x = (xij) i∈{1,...,n}
j∈{1,...,n}\{i}

| ∃S ∈ Sn such that sij = xij for all i ∈ {1, . . . , n}
and for all j ∈ {1, . . . , n} \ {i}}.

Define the function Fn : X n → R by letting, for all x ∈ X n,

F n(x) = D(S)−D(In) (12)

where S ∈ Sn is such that sij = xij for all i ∈ {1, . . . , n} and for all j ∈ {1, . . . , n} \ {i}.
Because D is bounded below by zero, it follows that Fn is bounded below by −D(In).
Furthermore, the additivity of D implies that Fn satisfies Cauchy’s basic functional equa-

tion

Fn(x+ y) = Fn(x) + Fn(y) (13)

for all x, y ∈ X n such that (x+ y) ∈ X n; see Aczél (1966, Section 2.1).

Fix i ∈ {1, . . . , n} and j ∈ {1, . . . , n} \ {i}, and define the function fnij : [0, 1]→ R by

fnij(xij) = F n(xij;0
n(n−1)−1)
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for all xij ∈ [0, 1], where the vector (xij ;0n(n−1)−1) is such that the component correspond-
ing to ij is given by xij and all other entries (if any) are equal to zero. The function fnij

is bounded below because F n is and, as an immediate consequence of (13), it satisfies the

Cauchy equation

fnij(xij + yij) = fnij(xij) + fnij(yij) (14)

for all xij, yij ∈ [0, 1] such that (xij + yij) ∈ [0, 1]. Because the domain of fnij is an
interval containing the origin and fnij is bounded below, the only solutions to (14) are

linear functions; see Aczél (1966, Section 2.1). Thus, there exists cnij ∈ R such that

F n(xij;0
n(n−1)−1) = fnij(xij) = cnijxij (15)

for all xij ∈ [0, 1].
Let S ∈ Sn. By additivity, the definition of Fn and (15),

F n
³
(sij) i∈{1,...,n}

j∈{1,...,n}\{i}

´
=

nX
i=1

nX
j=1
j 6=i

F n(sij;0
n(n−1)−1) =

nX
i=1

nX
j=1
j 6=i

fnij(sij) =
nX
i=1

nX
j=1
j 6=i

cnijsij

and, defining dn = D(In) and substituting into (12), we obtain

D(S) =
nX
i=1

nX
j=1
j 6=i

cnijsij + dn. (16)

Now fix i, k ∈ {1, . . . , n}, j ∈ {1, . . . , n} \ {i} and ∈ {1, . . . , n} \ {k}, and let S ∈ Sn

be such that sij = 1 and all other off-diagonal entries of S are equal to zero. Let the

bijection π ∈ Πn be such that π(i) = k, π(j) = , π(k) = i, π( ) = j and π(h) = h for all

h ∈ {1, . . . , n} \ {i, j, k, }. By (16), we obtain

D(S) = cnij + dn and D(Sπ) = cnk + dn,

and anonymity implies cnij = cnk . Therefore, there exists c
n ∈ R such that cnij = cn for all

i ∈ {1, . . . , n} and for all j ∈ {1, . . . , n} \ {i}, and substituting into (16) yields

D(S) = cn
n−1X
i=1

nX
j=i+1

sij + dn

for all n ∈ N \ {1} and for all S ∈ Sn.

Normalization requires

D(1n) = cnn(n− 1) + dn = 0
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and, therefore, dn = −cnn(n−1) for all n ∈ N\{1}. Using normalization again, we obtain

D(In) = −cnn(n− 1) > 0

which implies cn < 0 for all n ∈ N \ {1}. Thus,

D(S) = cn
nX
i=1

nX
j=1
j 6=i

sij − cnn(n− 1) (17)

for all n ∈ N \ {1} and for all S ∈ Sn.

Let n be an even integer greater than or equal to four. By replication invariance and

(17),

D(R2n/2) = cnn
³n
2
− 1
´
− cnn(n− 1) = −c2 = D(I2).

Solving, we obtain

cn = 2
c2

n2
. (18)

Now let n be an odd integer greater than or equal to three. Thus, q = 2n is even, and

the above argument implies

cq = 2
c2

q2
=

c2

2n2
. (19)

Furthermore, replication invariance requires

D(Rn
2 ) = D(R

q/2
2 ) = cqq − cqq(q − 1) = −cnn(n− 1) = D(In).

Solving for cn and using the equality q = 2n, it follows that cn = 4cq and, combined with

(19), we obtain (18) for all odd n ∈ N \ {1} as well.
Substituting into (17), simplifying and defining α = −2c2 > 0, it follows that, for all

n ∈ N \ {1} and for all S ∈ Sn,

D(S) = 2
c2

n2

nX
i=1

nX
j=1
j 6=i

sij − cnn(n− 1)

= 2
c2

n2

nX
i=1

nX
j=1

sij − 2
c2

n2
n− 2 c

2

n2
n(n− 1)

= −2c2
"
1− 1

n2

nX
i=1

nX
j=1

sij

#
= αG(S).
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Figure 1: GELF and ELF in the US. 
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 Figure 2: GroupedGELF (income, education, employment) and ELF in the US. 
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Table 1: GELF and ELF in the US. 

     Difference 
State ELF ELF rank GELF GELF rank (ELF rank-GELF rank) 

HI 0.5245 1 0.0668 42 -41 
DC 0.5032 2 0.0767 1 1 
MS 0.4344 3 0.0737 3 0 
LA 0.4165 4 0.0731 4 0 
CA 0.4042 5 0.0681 30 -25 
MD 0.3975 6 0.0709 12 -6 
SC 0.3940 7 0.0722 6 1 
GA 0.3885 8 0.0716 9 -1 
NY 0.3644 9 0.0690 23 -14 
AL 0.3577 10 0.0717 7 3 
TX 0.3534 11 0.0697 21 -10 
NC 0.3425 12 0.0703 15 -3 
NM 0.3332 13 0.0698 19 -6 
VA 0.3259 14 0.0717 8 6 
AK 0.3225 15 0.0738 2 13 
IL 0.3069 16 0.0688 24 -8 
NJ 0.3005 17 0.0703 14 3 
DE 0.2904 18 0.0697 20 -2 
OK 0.2640 19 0.0696 22 -3 
MI 0.2591 20 0.0686 26 -6 
TN 0.2566 21 0.0701 16 5 
AR 0.2546 22 0.0688 25 -3 
AZ 0.2509 23 0.0679 34 -11 
FL 0.2324 24 0.0677 35 -11 
NV 0.2248 25 0.0639 51 -26 
OH 0.2037 26 0.0686 27 -1 
CT 0.1967 27 0.0700 17 10 
MO 0.1958 28 0.0698 18 10 
PA 0.1821 29 0.0683 29 0 
CO 0.1815 30 0.0680 33 -3 
WA 0.1637 31 0.0684 28 3 
IN 0.1574 32 0.0669 41 -9 
MA 0.1535 33 0.0710 11 22 
KS 0.1501 34 0.0669 40 -6 
KY 0.1354 35 0.0728 5 30 
RI 0.1290 36 0.0712 10 26 
WI 0.1145 37 0.0671 39 -2 
OR 0.1054 38 0.0673 38 0 
UT 0.1033 39 0.0664 45 -6 
MT 0.1027 40 0.0665 44 -4 
SD 0.1015 41 0.0660 47 -6 
NE 0.0980 42 0.0659 49 -7 
WY 0.0856 43 0.0661 46 -3 
ID 0.0797 44 0.0657 50 -6 
MN 0.0788 45 0.0681 32 13 
ND 0.0718 46 0.0659 48 -2 
WV 0.0674 47 0.0708 13 34 
IA 0.0503 48 0.0666 43 5 
NH 0.0321 49 0.0675 37 12 
VT 0.0240 50 0.0677 36 14 
ME 0.0238 51 0.0681 31 20   
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Table 2: GELF and GroupedGelf (Kolmogorov and Average) in the US. 
 

State GELF GELF rank GroupedGELF_d GroupedGELF_d rank GroupedGELF GroupedGELF rank 

HI 0.0668 42 0.0917 6 0.0588 13 
DC 0.0767 1 0.2306 1 0.1864 1 
MS 0.0737 3 0.1161 2 0.1061 2 
LA 0.0731 4 0.1070 3 0.0951 3 
CA 0.0681 30 0.0793 9 0.0586 14 
MD 0.0709 12 0.0675 14 0.0564 16 
SC 0.0722 6 0.0974 4 0.0879 4 
GA 0.0716 9 0.0850 7 0.0758 6 
NY 0.0690 23 0.0701 12 0.0617 10 
AL 0.0717 7 0.0810 8 0.0727 7 
TX 0.0697 21 0.0783 10 0.0646 8 
NC 0.0703 15 0.0701 13 0.0613 12 
NM 0.0698 19 0.0656 17 0.0614 11 
VA 0.0717 8 0.0752 11 0.0637 9 
AK 0.0738 2 0.0966 5 0.0875 5 
IL 0.0688 24 0.0664 15 0.0576 15 
NJ 0.0703 14 0.0661 16 0.0541 18 
DE 0.0697 20 0.0545 19 0.0510 20 
OK 0.0696 22 0.0365 26 0.0303 26 
MI 0.0686 26 0.0558 18 0.0516 19 
TN 0.0701 16 0.0432 24 0.0356 25 
AR 0.0688 25 0.0543 20 0.0475 21 
AZ 0.0679 34 0.0440 23 0.0558 17 
FL 0.0677 35 0.0448 22 0.0388 23 
NV 0.0639 51 0.0363 27 0.0285 29 
OH 0.0686 27 0.0392 25 0.0364 24 
CT 0.0700 17 0.0481 21 0.0407 22 
MO 0.0698 18 0.0291 31 0.0252 31 
PA 0.0683 29 0.0324 29 0.0294 27 
CO 0.0680 33 0.0348 28 0.0293 28 
WA 0.0684 28 0.0257 35 0.0184 37 
IN 0.0669 41 0.0284 32 0.0241 32 
MA 0.0710 11 0.0310 30 0.0256 30 
KS 0.0669 40 0.0261 34 0.0216 33 
KY 0.0728 5 0.0202 41 0.0146 42 
RI 0.0712 10 0.0247 36 0.0197 36 
WI 0.0671 39 0.0272 33 0.0213 34 
OR 0.0673 38 0.0168 44 0.0125 45 
UT 0.0664 45 0.0222 39 0.0180 39 
MT 0.0665 44 0.0222 38 0.0184 38 
SD 0.0660 47 0.0243 37 0.0201 35 
NE 0.0659 49 0.0182 43 0.0148 41 
WY 0.0661 46 0.0189 42 0.0157 40 
ID 0.0657 50 0.0214 40 0.0145 43 
MN 0.0681 32 0.0157 46 0.0114 46 
ND 0.0659 48 0.0164 45 0.0128 44 
WV 0.0708 13 0.0123 47 0.0097 47 
IA 0.0666 43 0.0085 48 0.0058 48 
NH 0.0675 37 0.0052 49 0.0040 49 
VT 0.0677 36 0.0044 50 0.0020 51 
ME 0.0681 31 0.0043 51 0.0030 50 



 35  

 
Table 3: GELF and GroupedGelf (income, education, employment) in the US. 
 

State GELF rank GroupedGELF_income rank GroupedGELF_edu rank GroupedGELF_empl rank

DC 1 0.2880 1 0.2436 1 0.1426 29 
AK 2 0.0936 10 0.0825 8 0.2261 5 
MS 3 0.1181 2 0.1048 2 0.1748 23 
LA 4 0.1181 3 0.0836 6 0.1960 16 
KY 5 0.0249 36 0.0063 46 0.1169 34 
SC 6 0.1054 5 0.0905 4 0.1943 17 
AL 7 0.0937 9 0.0618 14 0.2023 11 
VA 8 0.0938 8 0.0675 12 0.2100 9 
GA 9 0.1161 4 0.0690 11 0.2021 12 
RI 10 0.0285 33 0.0190 35 0.1151 36 
MA 11 0.0401 25 0.0259 26 0.1332 32 
MD 12 0.1028 6 0.0581 16 0.2117 8 
WV 13 0.0135 44 0.0039 49 0.0631 47 
NJ 14 0.0936 11 0.0596 15 0.2140 7 
NC 15 0.0827 13 0.0568 18 0.2081 10 
TN 16 0.0555 22 0.0236 29 0.1845 20 
CT 17 0.0709 17 0.0435 21 0.1615 25 
MO 18 0.0353 30 0.0174 37 0.1575 26 
NM 19 0.0625 19 0.0751 9 0.2300 4 
DE 20 0.0735 16 0.0533 19 0.2004 14 
TX 21 0.0840 12 0.0830 7 0.2346 3 
OK 22 0.0396 26 0.0254 28 0.2013 13 
NY 23 0.0967 7 0.0674 13 0.2349 2 
IL 24 0.0778 15 0.0576 17 0.2156 6 

AR 25 0.0564 20 0.0389 22 0.1849 19 
MI 26 0.0629 18 0.0356 23 0.1917 18 
OH 27 0.0475 24 0.0257 27 0.1617 24 
WA 28 0.0230 37 0.0209 34 0.1411 30 
PA 29 0.0396 27 0.0229 30 0.1499 28 
CA 30 0.0779 14 0.0851 5 0.2522 1 
ME 31 0.0028 51 0.0025 51 0.0233 51 
MN 32 0.0169 40 0.0067 45 0.0737 45 
CO 33 0.0361 29 0.0330 25 0.1531 27 
AZ 34 0.0556 21 0.0733 10 0.1965 15 
FL 35 0.0552 23 0.0480 20 0.1790 22 
VT 36 0.0031 50 0.0034 50 0.0235 50 
NH 37 0.0047 49 0.0051 48 0.0313 49 
OR 38 0.0129 46 0.0156 39 0.0963 38 
WI 39 0.0264 35 0.0153 40 0.1033 37 
KS 40 0.0265 34 0.0209 33 0.1304 33 
IN 41 0.0304 32 0.0178 36 0.1337 31 
HI 42 0.0325 31 0.0940 3 0.1166 35 
IA 43 0.0054 48 0.0056 47 0.0482 48 
MT 44 0.0175 39 0.0131 41 0.0935 40 
UT 45 0.0168 41 0.0211 32 0.0945 39 
WY 46 0.0150 43 0.0171 38 0.0796 43 
SD 47 0.0188 38 0.0084 43 0.0922 41 
ND 48 0.0131 45 0.0073 44 0.0674 46 
NE 49 0.0162 42 0.0119 42 0.0899 42 
ID 50 0.0117 47 0.0224 31 0.0745 44 
NV 51 0.0394 28 0.0330 24 0.1811 21 
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