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Sommaire

Les gammes de produits logiciels (Software Product Lines)(SPLs) permettent de gérer

la variabilité qui apparaît dans les familles de modèles logiciels connexes en raison des va-

riations des besoins des clients. Durant la conception de leurs modifications, les ingénieurs

doivent considérer plusieurs conceptions de SPLs alternatives. Cependant, sans informa-

tions complètes sur les exigences de qualité souhaitées pour le SPL final, les ingénieurs sont

confrontés à une incertitude quant au choix de la conception appropriée. Les formalismes

et techniques existants ne conviennent pas à la modélisation et au raisonnement sur l’es-

pace à deux dimensions défini par la variabilité et les choix conceptuels. Nous proposons

une approche pour modéliser l’incertitude de conception dans les SPLs et, pour analyser

et comprendre l’impact des choix conceptuels sur la qualité des SPLs, exprimé comme des

propriétés. Nous définissons formellement les Gammes de produits logiciels avec des choix

conceptuels (SPLDCs)(Software Product Lines with Design Choices) et nous décrivons une

procédure pour les analyser et fournir une rétroaction appropriée aux ingénieurs basée sur

l’ordre partiel des catégories de propriétés de SPLDC. Nous illustrons l’applicabilité de notre

approche en utilisant un exemple entirément élaboré qui montre le type de rétroactions nuan-

cées nécessaire pour des analyses significatives des SPLs en présence de choix conceptuels.

Pour évaluer l’évolutivité de notre approche, nous utilisons notre approche sur de nombreux

SPLDC et enregistrer des temps d’exécution.

Keywords : Ingénierie de ligne de produit, modélisation, choix de conception, variabilité,

incertitude
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Summary

Software product lines (SPLs) allow managing the variability that arises in families of

related software models due to varying customer needs. While designing changes to them,

engineers need to consider many alternative SPL designs. However, without complete infor-

mation about the desired quality requirements of the final SPL, engineers face uncertainty

about how to make the appropriate design choices. Existing formalisms and techniques are

not well suited to modelling and reasoning about the two dimensional space defined by vari-

ability and design choices. We propose an approach for modelling design uncertainty in SPLs

and for analyzing and understanding the impact of design choices in the quality of SPLs,

expressed as properties. We formally define Software Product Lines with Design Choices

(SPLDCs) and outline a procedure for analyzing them and providing appropriate feedback

to engineers, based on the partial order of SPLDC property categories. We illustrate the

applicability of our approach using a fully worked out example, that shows the kind of nu-

anced feedback necessary for meaningful analysis of SPLs in the presence of design choices.

To evaluate the scalability of our approach we use our approach over many SPLDCs and

record runtimes.

Keywords: Product line engineering, modeling, Design choices, variability, uncertainty

iii



Contents

Sommaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Remerciements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1. Product lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Design Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Problem Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4. Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5. Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1. Software Product Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. Deriving Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3. Levels of Property Satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4. Alloy Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 3. Modelling Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iv



3.1. SPLDCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2. Deriving SPLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 4. Reasoning about SPLDCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1. Levels of SPLDC properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2. Analysis procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1. Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3. Illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.2. Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 5. Implementing SPLDCs in Tyson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1. Language Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2. Tyson Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3. Encoding and Checking Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 6. Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.4. Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 7. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



8.2. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.3. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Appendix A. Tyson Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-i

Appendix B. WM SPLDC in Tyson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-i

Appendix C. WM SPLDC in Alloy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-i

Appendix D. Acceleo Template for Tyson to Alloy Transformation . . . . . . . D-i

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-i

vi



List of Tables

2.1 Quality Requirements for WM example expressed as properties . . . . . . . . . . . . . . . . . 12

4.1 Levels of satisfaction of SPLDC quality requirements, expressed as properties. . . . 18

4.2 Feedback generated for different property checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Number of elements in each category. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Properties Checked for scalability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



List of Figures

1.1 (a) Feature Model, (b) Domain Model of WM SPL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A Variant of WM SPL when features Heat and Delay are selected . . . . . . . . . . . . . . . 5

1.3 (a) Feature Model, (b) Domain Model of WM SPL with design choices . . . . . . . . . . 7

2.1 Simplified metamodel of state machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Choice Model for WM SPLDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.1 Effect of size of feature model on run time for different sizes of choice model and

domain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Effect of size of choice model on run time for different sizes of feature model and

domain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 Effect of size of Domain model on run time for different sizes of choice model and

Feature model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.4 Effect of scope on run time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.1 Tyson Language metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-ii

viii



List of Acronyms

API: Application Programming Interface

CM: Choice Model

DM: Domain Model

DSL: Domain Specific Language

EMF: Eclipse Modeling Framework

FM: Feature Model

FOL: First Order Logic

MOF: Meta Object Facility

OMG: Object Management Group

QBF: Quantified Boolean Formula

RQ: Research Question

SAT Solver: Satisfiability Solver

SPL: Software Product Line

SPLDC: Software Product Line with Design Choice

SPLE: Software Product Line Engineering

SPLOT: Software Product Lines Online Tools

UML: Unified Modeling Language

WM: Washing Machine

ix



Remerciements

I would like to acknowledge my indebtedness and render my warmest thanks to my

supervisor, Professor Michalis Famelis, who made this work possible. His friendly guidance,

expert advice, and encouragement have been invaluable through all the stages of this work.

I also thank him, for providing the Financial Support throughout this period. I have been

extremely lucky to have a supervisor who cared so much about my work, and who responded

to my questions and queries so promptly. I am thankful to all the Professors and research

scholars of the GEODES research group for providing me some useful insights and suggestions

about this work and helping me in different ways.

I would like to thank my parents, whose love and guidance are with me in whatever

I pursue. They are the ultimate role models. I would like to acknowledge all the hard

work they endured for my studies. I am thankful to my brother Arshdeep Singh and his

fiance Simrat for all their emotional support and motivation. Furthermore, I wish to thank

my caring and supportive friends Joginder Singh, Manvi Virk, Gurpreet Kaur, Khady Fall,

Safaa Allamy, Jatinder Singh, and Parminder Kaur for providing an unending inspiration

and support.

1



Chapter 1

Introduction

The way that industrial products are developed has changed significantly with time.

Before the industrial revolution, products were crafted for individual customers. As the

number of people able to afford different kinds of products increased, the production line

was invented such as the Ford Production line. Production lines facilitate the production

for a mass market rather than creating individualized products. This significantly reduced

the production cost but at the same time reduced diversification possibilities. Customers

were satisfied with standardized mass products for some time – but not everyone wanted

the same kind of product, which increased demand to get individualized products. This led

to the emergence of the mass customization approach, that is the large-scale development

of products designated to individual needs. This meant increased technological expendi-

tures, leading to costly products and lower profit margins for the producers. Therefore some

companies started to use common platforms for their different kinds of products by antic-

ipating in advance which parts will be used in different types of products. This approach

enabled producers to offer a greater variety of products and at the same time reduced costs.

The amalgamation of mass customization and a common platform allows both the reuse a

common base of technology and, to bring out products in close accordance with individual

needs [28].

In the case of software products, that already exhibit sprawling complexity, it makes

things even more complex while implementing the fusion of the two approaches, as we need

to manage the commonality and variability among different software variants. Therefore,

there is a need to use some techniques dedicated to this scenario, known as Software Product

Line Techniques. For instance, modern cars such as those made by General Motors, can



contain tens of millions of lines of code, for implementing a variety of functionality such as

powertrain control, safety features, climate control, and more. In addition to that, they have

to deal with high variability to produce more than 60 models with additional variation to

deal with the requirements differences in over 150 countries. To achieve this, they can make

extensive use of software product line engineering techniques [14]. Combined with the need

to raise the level of abstraction in software development, so that engineers can work using

familiar notations, this lead to the emergence of model based techniques. Hence, different

model-based techniques are also used by many companies [14].

1.1. Product lines

The need for high degrees of customizability and adaptability in software intensive sys-

tems compels developers to create, manage and maintain large families of similar but different

product variants. To achieve this, they have at their disposal a wide range of available Soft-

ware Product Line (SPL) practices that allow organizations to make long-term commitments

to the maintenance of variability in sets of related products [28]. SPLs enables developers to

take advantage of the common aspects of products related to each other with some predicted

variability. In SPLs, variability is typically modeled using variation points, also known as

features, and their inter-dependencies, typically expressed as feature models [31, 28]. Soft-

ware product lines can significantly impact many aspects of product development such as:

less development and maintenance costs, reduced time-to-market, improved product quality,

improved customer satisfaction, reuse of artifacts and more [32]. SPLE techniques have been

applied for many years in industries such as automotive, telecommunications, and others.

Consider the toy example of a company that develops the software controller for an

automated washing system. The company has clients with different needs and has therefore

developed a family of products i.e., a family of software controllers called WM. Here we

assume that the company uses models to represent its various software artifact [6] We show

the WM SPL in Figure 1.1. The WM SPL contains a feature model and a domain model.

The feature model has four features: Wash, Heat, Delay and Dry that can be combined to

generate several variants. Wash is a mandatory feature, that is, it must be present in all the

valid feature configurations, however the other three features are optional. To generate a

variant, the developers must select a valid subset of the features of WM. The product variant

3



(a)

(b)

Figure 1.1. (a) Feature Model, (b) Domain Model of WM SPL

is then generated by appropriately evaluating the presence conditions of the elements of the

domain model, shown in Figure 1.1(b) using grey boxes. For example, selecting features

Wash, Heat and Delay will generate a variant of the washing machine example which is

shown in Figure 1.2. These different combinations of features give different products to the

user.

1.2. Design Uncertainty

SPL engineering allows the long-term maintenance of variability options by providing

the ability to give individualized products to customers according to their need. However,

engineers often need to express and reason about short-term design choices about products.

These choices are a source of design uncertainty [29] and can result from many scenarios such

as, dealing with different design alternatives, making decisions about product architecture,

4



Figure 1.2. A Variant of WM SPL when features Heat and Delay are selected

resolving model inconsistencies, or resolving conflicting stakeholder requirements. There can

be various design decisions about which developers can be uncertain. Such design decisions

can impact various elements of an SPL definition. In our example, while designing the

washing machine controller, the developers are not sure if the features Heat and Delay should

be mutually exclusive or not. Also, the developers are uncertain if they should provide

an option of heating incrementally or not. We represent these uncertainties as boolean

design decisions. Each of the two design decisions is shown as a yellow annotation box

with dashed outlines on the model elements that are impacted by the decision. Specifically,

Mutex is shown as an annotation to the mutual exclusion arc between the Heat and Delay

features in Figure1.3(a), and IncrementalHeat as an annotation to a self-transition on the

state Waiting, as shown in Figure1.3(b). By answering differently to these design decisions,

developers can arrive to different SPL designs. For example, if they decide against Mutex

and IncrementalHeat, the resulting SPL is the one shown in Figure 1.1.

1.3. Problem Definition

The design uncertainty implies that there exists a space of possibilities, consisting of

the set of product lines that can be created with different combinations of answers to the

design choices. These design choices can therefore have significant impact on the quality

requirements of the project.

In previous work, it was shown that, instead of finalizing design decisions with little

knowledge about their impact, developers can defer making these decisions until they acquire

more information [13]. However, that work focused on single products rather than product

families. If we consider design uncertainty in product lines then we get the combination

5



of both long term variability commitments and short term choices of configurable software

designs. We are therefore presented with challenges that cannot be adequately addressed

by the state of the art. Suppose, the developers do not have enough knowledge to make

the decisions yet, and they want to defer these decisions. But at the same time they want

to check some properties of the system, such as consistency. For example, the developers

can check the property R2, shown in Table 2.1, if they want to make sure that whatever

the decision they make in the future, and whatever configuration they choose, the state

machine of the resulting controller product will always contain a final state. After analysis,

the designers should know whether the system always has this property or not, regardless of

the feature configuration they choose and design decisions they make in the future.

Checking these properties is a non trivial task, as both variability and uncertainty are

present in the system and must therefore be taken into account in the check. For instance,

in the example shown in Figure 1.3, we are uncertain whether the customer wants to have an

option to heat for more than one cycle during a load or not. A developer may want to analyze

the requirements models, even though they have some uncertainty, to better understand the

impact of design decisions on quality. The variability of features and uncertainty among

design choices gives a set of software product lines, each of which itself is a set of different

products having some commonality. In other words, the analysis must be performed over

a powerset of products. However, existing techniques for variability management are not

enough for reasoning in this scenario. In [11] Famelis et al. argued that managing the

uncertainty induced by design choices is different from managing the variability induced by

variation points. The goal of variability management is to support the different variants of a

software product line in accordance to different needs among multiple customers. However,

uncertainty management provides a means to explore and assess alternative designs, so that

software developers can make informed decisions about the design choices [16].

While many approaches exist to manage and reason about variability in product lines [33,

3], and some techniques are developed for uncertainty management [13], there is no signif-

icant work to manage both dimensions. This work aims at dealing with the problem of

expressing and reasoning about variability and design uncertainty in product lines simul-

taneously. In previous work [11] Famelis et al. outlined a research vision for design space

exploration for SPLs. In this thesis, we expand on that work, using partial models, defined

6



(a)

(b)

Figure 1.3. (a) Feature Model, (b) Domain Model of WM SPL with design choices

in [12], to express decision points. A partial model is a representation of a set of models

that could be obtained after resolving the design uncertainty. We call the systems having

both decision points and variability points,such that the one in Figure 1.3, Software Product

Line with Design Choices (SPLDCs) [11].
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1.4. Research Contribution

The main contributions of this thesis are,

(1) the formal definition of product lines with design choices,

(2) a language for the formal specification of SPLDCs,

(3) a technique to analyze their quality requirements, expressed as structural properties,

and

(4) a technique to generate feedback to engineers in the form of counterexample, in case

the property is not satisfied for all the categories. We define the different levels of

quality requirements of SPLDCs as categories of SPLDC-level properties in [11].

1.5. Thesis Structure

The rest of this document is organized as follows: We describe necessary background

on SPL engineering in Chapter 2. In Chapter 3 we introduce the formalism for modelling

SPLDCs and in Chapter 4 we describe how to analyze them, while generating appropriate

feedback. In Chapter 5 we discuss implementation details of our approach. We discuss

related work in Chapter 7 We evaluate the applicability and scalability of SPLDC analysis

in Chapter 6 and conclude in Chapter 8.
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Chapter 2

Background

In previous chapter, we explained the basics of product lines. In this chapter, we discuss

some terminology related Software Product Line engineering using the annotative product

line paradigm [19] and provide formal definition for each term. We also explain the analyzer

we use for our approach.

2.1. Software Product Lines

This section provides a formal definition of software product lines.

Définition 2.1.1 (Software Product Lines). A Software Product Line (SPL) S is a 3-tuple

< FM,DM,µ > consisting of: a Feature Model FM, a Domain Model DM, and feature

mapping µ that maps features to the domain model entities.

For instance, Figure 1.1 represents the SPL of a washing machine controller.

Définition 2.1.2 (Feature Model). A Feature Model FM is a graphical representation of

2-tuple, < F,ΦF > where F is a set of features, and ΦF is a formula representing variability

constraints among them.

There exist various model variants that provide different concrete syntaxes for represent-

ing constraints between features [7]. Our work is not dependent on any single feature model

variant; instead we use them merely as a graphical representation of logical constraints [5].

Figure 1(a) represents the feature model of the WM example described above, where Wash,

Heat, Delay, and Dry are features, with the constraints thatWash is mandatory which means

that, Wash will be present in all valid configurations and other three features are optional.

Each feature uniquely corresponds to a propositional variable. In what follows, we use

features and their corresponding variables interchangeably.



Figure 2.1. Simplified metamodel of state machines

Définition 2.1.3 (Domain Model). A Domain Model DM is a graphical representation of

2-tuple < D,φD > consisting of: a set of various model elements D, and a formula φD that

represents the metamodel and well-formedness constraints.

A Domain Model is a representation of entities in the system and relationships between

them. The Domain Model can be described using a variety of modelling languages, such

as state charts, class diagrams, etc. The domain models for the examples of this thesis are

simplified versions of class diagram and state machines. Figure 1(b) depicts the domain

model of the WM represented as a state chart. We show the simplified metamodel for

state machines in Figure 2.1. For our example, we use state machines that conform to this

metamodel. Hence, one of the well-formedness constraint for the domain models represented

as state machines is that there is exactly one source for each transition, ∀t : Transition, ∃s1 :

State · (t = source = s1) ∧ (∃s2 : State · (t.source = s2) ⇒ (s1 = s2)). The formula φD

represents the conjunction of all such constraints.

Définition 2.1.4 (Feature Mapping). A feature mapping µ is a function µ : FM → DM ,

consisting of a set of tuples 〈E, φE〉 that map each entity E of the domain model with a

propositional formula φE over the features from the FM . The formulas φE are known as

presence conditions. If we encode the presence of an element e in a product by the proposi-

tional variable ve, we can then logically express its feature mapping to the presence condition

φe as Φe = ve ⇔ φe.

We represent presence conditions graphically using grey box annotations next to the

graphical elements that they apply to. In the WM example, the state Drying has the

presence condition φDrying =Dry. This means that state Drying is present in a product iff

the feature Dry is selected.
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2.2. Deriving Products

In this section we discuss the derivation of an individual product from the product line.

Définition 2.2.1 (Feature Configuration). A feature configuration ρ of a feature model

FM =< F,ΦF > is a subset of features from F that satisfies ΦF . In other words, if in

ΦF we substitute every variable in ρ with true and all others with false, then the resulting

expression evaluates to true. The set of all feature configurations of a feature model FM is

denoted by Conf(FM).

For example, for WM, some of the feature configurations are:

{Wash,Dry},

{Wash,Heat},

{Wash,Delay,Dry}

Définition 2.2.2 (Product Derivation). Given a valid feature configuration ρ, a product M

is derived from an SPL, such that only those elements are present in its domain model whose

presence conditions are satisfied under ρ. The set of all products that can be derived by a

product line SPL is denoted by Conf(SPL)

For example, the WM variant represented in Figure 1.2, is a product derived from SPL

using the feature configuration:

ρ = {Wash,Heat,Delay}

2.3. Levels of Property Satisfaction

While analyzing product lines, we can check its properties against different levels of

satisfaction. In this section we discuss different levels of property satisfaction for a product

line.

Définition 2.3.1 (Product Level Properties). A product level property R is a property that

constrains a model without any variability, i.e., properties for individual products, rather

than entire SPLs [11].

In this thesis, we focus on structural properties of models. For instance, in the WM

example, the property R2 “the model has a final state” is a product level property, which can

11



# SPLDC Property

R1 WM ∃ state S in DM: s is an initial State.

R2 WM ∃ state S in DM: s is a final State.

R3 WM ∀ transition T in DM: T has a guard

Table 2.1. Quality Requirements for WM example expressed as properties

be expressed 1 as:

R2 = ∃s : State @t : Transition · (t.source = s)

The quality requirements for a product are expressed as a set R of product level properties

which are desired to be true for that product. The quality requirements for the WM example

are shown in Table 2.1.

Generally, we can define the degree of satisfaction of a quality requirement by the number

of products of the SPL for which the corresponding property holds. Specifically, we identify

two useful levels of satisfaction of a quality requirement:

Définition 2.3.2 (SPL levels of satisfaction). The level of satisfaction of a quality require-

ment expressed by a property R of an SPL S is:

A (All): if ∀p ∈ Conf(S) · p |= R.

S (Some): if ∃p ∈ Conf(S) · p |= R.

In the WM example the quality requirement that a product always has exactly one final

state (property R2) is satisfied by all the products, so its level is A. However, a requirement

that no state has an entry action is clearly not satisfied by any feature that has the Heat

feature, therefore, so its level is S.

2.4. Alloy Analyzer

Given the requirements specifications for a system, we sometimes need to check if the

property holds for all the models satisfying those requirements or not. This problem is

equivalent to proving semantic entailment for first order logic (FOL) which is undecidable.

So, rather than checking a property against all the possible models we can extract a relatively

1. To maintain the simplicity of the metamodel of our toy example, we assume that a final state is on

that has no outgoing transition. More complex formalisations are of course possible.

12



small number of models from given requirements, and check that they satisfy the given

property or not [?]. Alloy is a tool that implements this approach. Alloy is typically used for

describing the structures and it is supported by the Alloy Analyzer, a tool for exploring those

structures [17]. Alloy avoids the problem of the undecidability of FOL by putting a finite

bound on the size of models, and check whether the property is satisfied by all the models

whose size falls within the given bound and that satisfy all the requirements. We refer to this

bound also as a “scope”. A positive result to the check indicates that the property is valid for

all models that come within the scope. The result is a proof only within the scope. There is

no guarantee for larger models. However, a positive result provides us some confidence. To

gain more confidence, we can increase the bound a little further. The negative response, on

the other hand, is conclusive. It tells us that there exists at least one model that does not

satisfy the property. Alloy is based on D. Jackson’s small cope hypothesis, which states that

negative answers tend to occur in small models already [?]. This allows us to assume that

we can reach useful conclusions in small scopes, even if we cannot provide general proofs.
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Chapter 3

Modelling Design Choices

In this chapter we describe the way in which design choices can be modelled in product

lines.

3.1. SPLDCs

Design uncertainty can affect any part of a product line definition for which modellers

need to make a design decision. This includes uncertainty in the design of the domain model

(like the choice IncrementalHeat in WM), of the feature model (like the choice Mutex

in WM) or of the feature mapping. Famelis et al. introduced partial models as a formalism

to represent design uncertainty [15], as well as different variants of partial models [30], that

can express more complex types of partiality. In this thesis, we make two key assumptions:

(1) that modellers are aware of the design choices about the SPL that need to be addressed

in the short term, and

(2) that for each such choice, a set of possible acceptable solutions has been elicited.

Design choices can therefore be represented as boolean choice variables.

Définition 3.1.1 (Design choice). A design choice is a propositional variable that encodes

the choice of a particular solution to a design problem.

So as long as a design choice variable is not bound to True or False, it represents the

modeller’s uncertainty about that choice. For example, the design choice Mutex is a propo-

sitional variable encoding the uncertainty that modellers have whether the features Heat and

Delay should be mutually exclusive.

To represent potential dependencies between design choices, we use a special feature

model, called a “choice model”:



Figure 3.1. Choice Model for WM SPLDC

Définition 3.1.2 (Choice Model). A choice model CM , is a graphical representation of

a tuple < C, φC >, where C is a set of design choices C, and φC a formula representing

dependencies between them.

For example, the choice model for WM, drawn as a feature diagram, is shown in Fig-

ure 3.1. It consists of the two optional decisions Mutex and IncrementalHeat. Same as

in Section 2.1, we do not assert any particular feature model dialect. We simply assume that

the FM and CM are both expressed in the same dialect.

The design choices that capture the design uncertainty of modellers about an SPL, can

then be mapped to the SPL elements as follows:

Définition 3.1.3 (Decision Mapping). A decision mapping δ is a function δ : CM → SPL

consisting of a set of tuples < S, φS >, mapping each entity S of an SPL to a propositional

formula φS defined over the SPL entities with respect to the choices in CM . If we encode

the presence of an element s in an SPL design by the propositional variable vs, we can then

logically express its decision mapping to φs as Φs = vs ⇔ φs.

For instance, in WM shown in Figure 1.3(b) the transition looping over state Waiting is

present in a product iff the choice IncrementalHeat is selected.

Using the above definitions, we can therefore formally define an SPLDC as:

Définition 3.1.4 (Software Product Line with Design Choices (SPLDC)). An SPLDC is a

tuple 〈CM,SPL, δ〉 where SPL is a product line definition, CM is a choice model and δ is

the decision mapping between them.

For instance, Figure 1.3 represents an SPLDC of WM controller, where yellow boxes

represent the design choices Mutex and IncrementalHeat.

The SPLDC allows representing both long term configuration options (in the FM of

the underlying SPL definition) and short term design choices for which the developers have

uncertainty (in the CM). If developers acquire information that allows them to resolve this

uncertainty, they can make decisions about the design choices.
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3.2. Deriving SPLs

Définition 3.2.1 (Design Decision). Given the choice model CM =< C, φC > of an SPLDC

SC, a valid design decision α is a subset of design choice variables from C that satisfy φC.

In other words, if in φC we substitute all variables in α by true and all other variables by

false, the resulting expression evaluates to true. The set of all valid design decisions of SC

is denoted as Ch(SC).

In the WM example we have that: Ch(WM) ={ { }, {Mutex, IncrementalHeat},

{Mutex}, {IncrementalHeat}}.

Given the previous definitions, the concretization of an SPLDCs is defined thus:

Définition 3.2.2 (Concretization). A concretization n of an SPLDC S = 〈CM,S,δ〉 is an

SPL that can be derived from S under a design decision α, such that it contains only elements

of S that are mapped by δ under α. A concretization is a model without design uncertainty

that results from resolving all design uncertainty in a partial model [15]. The set of all

concretizations that can be derived from S is denoted by Ch(S).

For example the SPL shown in Figure 1.1 is a concretization of the WM SPLDC that

can be derived using the decision α = {}.
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Chapter 4

Reasoning about SPLDCs

In this chapter we propose an approach to reason about the properties of SPLDCs.

We discuss the various satisfaction levels for SPLDC quality requirements, expressed as

properties. We provide an analysis procedure for analyzing the properties of SPLDCs and

show its correctness.

4.1. Levels of SPLDC properties

Similar to the degree of satisfaction of a quality requirement by an SPL in Definition 2.3.2,

we can define the degree of satisfaction of a quality requirement by an SPLDC, as the number

of SPLs and number of products of an SPL, for which the corresponding property holds.

Specifically, we identify four useful levels of satisfaction of a quality requirements:

Définition 4.1.1 (SPLDC levels of satisfaction). The level of satisfaction of a quality re-

quirement expressed by a property R of an SPLDC SC is:

NA (Necessary All): if ∀s ∈ Ch(SC),∀p ∈ Conf(s) · p |= R

NS (Necessary Some): if ∀s ∈ Ch(SC),∃p ∈ Conf(s) · p |= R

PA (Possible All): if ∃s ∈ Ch(SC),∀p ∈ Conf(s) · p |= R

PS (Possible Some): if ∃s ∈ Ch(SC),∃p ∈ Conf(s) · p |= R

For example, for the property R2 given in Table 6.2 with respect to any SPLDC, the

different levels have the following meaning:

NA : Regardless what decisions are made to create an SPL, every possible configuration

will lead to a state machine with final state.



Table 4.1. Levels of satisfaction of SPLDC quality requirements, expressed as properties.

All Products Some Products

Necessary for prod-

uct line

Possible for product

line

Necessary for prod-

uct line

Possible for product

line

Pn

Level NA PA NS PS

Property R

holds in...

every product of every

product line

every product of at

least one product line

at least one product of

every product line

at least one product of

at least one product

line

Formalization

F

∀α ·Φ∃ ⇒ (∀ρ · Φ⇒ R) ∃α · Φ∃ ∧ (∀ρ · Φ⇒ R) ∀α · Φ∃ ⇒ (∃ρ · Φ ∧R) ∃α · Φ∃ ∧ (∃ρ · Φ ∧R)

Counterexample α, ρ ρ α –

NS : There is a set of design decisions that would lead to an SPL design for which every

possible configuration will lead to a state machine with final state.

PA : Regardless what decisions are made, it is always possible to configure the resulting

SPL such that a state machine can be derived with final state.

PS : There is a set of design decisions that would lead to an SPL design which is possible

to configure to derive a state machine with final state.

We summarize the four levels in Table 4.1.

Using logical consequence as a binary relation between levels, the four levels form a

partially ordered set (poset), where PS is the minimal and NA is the maximal element,

and where NS and PA are at same rank. In other words, if for example for an SPL S, a

property R is satisfied at level NA, it is also satisfied at levels, PA, NS, and PS, while if

it is satisfied at level PA or NS it is also satisfied at level PS. Conversely, if the property

is not satisfied for level PS, it is not satisfied for any other level, etc. More formally, we

observe that given the lemma of Bjorner [2] that a bounded poset of finite rank forms a

lattice, the four SPLDC requirement satisfaction levels form the lattice:

In the following, we denote this lattice as L.
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NA
NS PA
PS

4.2. Analysis procedure

Given this observation, we can define an analysis procedure for SPLDC properties, which

we illustrate with the WM example. We assume as inputs the specification of an SPLDC K

according to Definition 3.1.4, as well as a quality requirement R expressed as a first order

logic property. Our aim is to understand the level of satisfaction of R in K.

First, we encode the SPLDC K in logic. Specifically, we construct the formula:

Φ = ΦF ∧ ΦD ∧
∧
e∈E

Φe ∧ ΦC ∧
∧
s∈S

Φs

Where ΦF is given in Definition 2.1.2, ΦD in Definition 2.1.3, the set of formulas Φe over

the set E of Domain Model elements in Definition 2.1.4, ΦC in Definition 3.1.2, and the

set of formulas Φs over the set S of elements of the SPL (features, domain model elements

and feature mapping tuples) in Definition 3.1.3. The formula Φ encodes the entire two

dimensional space of SPLs and products; a valid design decision α and a valid configuration

ρ define exactly one satisfying assignment for it.

To check if a property is satisfied at a particular level, we check the validity of the corre-

sponding logical formalization F of that level, according to Table 4.1, using a satisfiability

checker such as Sat4J [21]. The formulas FNA,FPA,FNS , and FPS were first introduced in

[11] but in this thesis we integrate them in a coherent modelling and analysis approach. In

effect they lift product-level properties to the SPLDC level, allowing the quantification over

design choices and features. We describe their construction below.

The formula Φ is satisfied for combinations of decision and feature variables. However,

when reasoning about SPLDCs, we want to be able to provide nuanced feedback to users,

separating the cause of analysis results into each dimension. We therefore use the formula Φ∃

which encodes the dependency constraints on just the design choice variables; it is derived

from Φ by quantifying out [36] all variables except for those representing design choices.

This allows us to separate quantification over design choice and feature variables. Each

combination of values assigned to the design choice variables is a design decision α, i.e.,
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a set of decisions in the design space that define a single SPL design. Each subsequent

combination of feature variables is a product configuration ρ of that SPL design.

In case a quality requirement is not satisfied at a particular level, we produce appropriate

feedback by using the counterexample generated by the satisfiability checker during the

validity check. This consists of a truth assignment of the design choice variables in α and/or

the feature variables in ρ depending on the level, see Table 4.1. We translate this truth

assignment back to the level of abstraction used for SPLDC modelling and present it to

the user as a counterexample. There is an obvious tradeoff between generating nuanced

feedback that separates between the two dimensions (variability and design choices). The

computation requires the existential quantification over the two different sets of variables

and the check for satisfiability, and is therefore computationally costly.

To analyse the overall level of satisfaction of a requirement R, we start our analysis at

the maximal element of L, and move downwards. At rank 2, the order of checking FPA and

FNS is irrelevant. In the worst case (where the property is not satisfied by any product of

any possible product line design), four checks are required in total.

Suppose we want to analyze requirement property R1 (“there is an initial state”) given in

Table 2.1, that is expressed by the formula R1 = ∃s : State @t : Transition · (t.target = s).

First we check whether its level of satisfaction is NA. To do this, we construct FNA using

the logical encoding of the WM SPLDC and R1, and check whether it is valid, using a

satisfiability checker. We find that it is, and therefore we neither need to check the other

levels, nor to produce any further feedback to the modellers.

Suppose that we then want to analyze the property R3 (“there exists a transition that has

a guard”) from Table 2.1. Following the same process, we find that it is not satisfied for NA.

To help modellers understand why, we pinpoint a product that violates the property, by

providing a set of design and configuration choices. The exact choice of feedback depends on

the satisfiability solver, but one possibility is α={Mutex} and ρ={Wash,Dry}. Going down

the lattice L, we check whether R3 is satisfied for level NS, also getting a counterexample.

In this case, the counterexample is a design decision α that results in an SPL concretization

with no products that satisfy the property. A possible feedback generated by the solver

is α={Mutex,IncrementalHeat} as resulting the SPL has no product that contains a

transition with a guard. We also check whether R3 is satisfied for level PA, which also
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generates as a counterexample a configuration that exists in every product line and for which

the property is not satisfied. A possible feedback generated by the solver is ρ={Wash}: the

simplest washing machine configuration is included in all SPL concretizations and does not

contain any transitions with guards. Finally, we check the lowest level of L, i.e., whether

R3 is satisfied at level PS. We find that it is not (obviously, as the domain model of WM,

shown in Figure 1.3(b), does not contain any guards to begin with) and the solver does

not need to generate a counterexample, as by definition every combination of α and ρ is a

counterexample.

4.2.1. Correctness

Using the appropriate formalization formula F from Table 4.1, we can prove whether

a property R of an SPLDC K is satisfied at the corresponding level, per Definition 4.1.1.

Below, we state this as a theorem for level NA. The theorems and proofs for levels PA,

NS, and PS are analogous.

Théorème 4.2.1. Given an SPLDC K, encoded logically as Φ, and a quality requirement

R of K, expressed as a property, the level of satisfaction of R is NA iff the formula FNA

(R)= ∀α · Φ∃ ⇒ (∀ρ · Φ⇒ R) is valid.

Proof. The satisfaction level of R in K is NA if ∀s ∈ Ch(K),∀p ∈ Conf(s) · p |= R.

Assume that there is an SPL concretization s in Ch(K) from which we can derive a product

p in Conf(s) such that p 6|= R. That means that there is a design decision αs that can be

used to derive s from K and that there is a configuration ρp that can be used to derive p

from s. But since the formula FNA (R) is valid, it is true for every design decision α and

configuration ρ. Therefore there is no way to derive a p such that p 6|= R and thus the

satisfaction level of R for K is NA.

Conversely, if the level of R in K is NA, then for every s in Ch(K), i.e., for every decision

αs, every product p in Conf(s), i.e., for every configuration ρp, it is the case that p |= R.

Therefore FNA (R) is valid. �
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4.3. Illustration

4.3.1. Setup

We illustrated our approach, to know about the kinds of insights we gain from the prop-

erty analysis of SPLDCs. To do so, we transformed the counterexamples produced by Alloy

for various property checks, to our domain specific languageTyson discussed in Chapter 5.

The transformed counterexamples contain the feature configuration, choice configuration, or

both, of the product or the product line that does not satisfy the property for a given level.

The type of feedback given for each level of property check is described in the last row

of Table 4.1.

— If a property fails to satisfy level NA, then it could be because of the feature configu-

ration or the design choices that are made for the product for which the property fails.

Therefore, we provide both feature configuration of the product and design decision

of the product line containing that product for counterexample at level NS.

— If the property fails at level NS, then the possible reason for not satisfying the

property is the design decision made for the SPL that fails to satisfy the property.

So, for the counterexamples at level NS we give the design decision for the product

line where the property is violated.

— For properties that do not satisfy level PA, we provide the feature configuration for

the product that violates the property.

— If the property is not satisfied for level PS then there is no product in SPLDC that

satisfies the property. We do not provide any feedback for this level because the

violation of the property is caused by the entities that are always present in the

models. In other words, it is not caused because of a particular design decision or a

feature configuration.

Based on the feedback we provide for each level, the developer can make sure not to make

the design decisions or choose the feature configuration that does not satisfy the property.

Developers can also add constraints to make sure that a particular feature configuration or

design decision is never present in the system.

We use theWM example described in Chapter 1. TheWM example is inspired from the

motivating example in [11]. We used a slightly different version of the example in [11] to add
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# Property Result Counterexample

Decision

Counterexample

Configuration

1 ∃ state S in DM: s is initial

State.

SAT for all levels - -

2 ∃ state S in DM: s is Final

State.

SAT for all levels - -

3 ∃ Transition T: t.source =

t.target

Violates level NS IncrementalHeat -

4 ∃ Transition T:

t.target=waiting

Violates level PS - Wash, Dry

Table 4.2. Feedback generated for different property checks

another design choice to the example. The example is then represented in Alloy specification

language [17], and the properties we want to analyze are written as Alloy Assertions.

4.3.2. Observations

We analyze the WM example against 4 properties. The feedback generated for each

property check on WM is shown in Table 4.2. Two of these properties satisfy level NA

which means that they satisfy all levels of property satisfaction. The property that checks

there is no self loop in the state chart, fails at level NS, so the feedback generated gives the

decision Incremental Heat Fourth property checks if waiting is always present in system.

The satisfaction level for this property is PA, the feedback gives a feature configuration {

Wash, Dry}

4.3.3. Discussion

The feedback we provide gives an insight to the developers about the issues present in

the system. It gives the possible reason behind the violation of a property. To raise the sat-

isfaction level for a property, the developers can make changes in accordance to the feedback

provided. For instance, for Property #3 in the Table 4.2, we get the counterexample at level

NS, which gives contains the design decision IncrementalHeat. The result implies that the

possible reason behind the non-satisfiability is the presence of decision IncrementalHeat.
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So, to improve the level of satisfiability, the developer can decide against IncrementalHeat

and check the property again.

Our study shows that the feedback generated for the property check, provides insights

about the models that can help in improvement of a certain property satisfaction level. This

gives us initial evidence for the usefulness and applicability of the study, giving us confidence

to do further research on the topic.

We illustrated our approach on a small, synthetic example. However, despite its size,

the example is enough to showcase that we can generate feedback that is useful in terms of

helping modellers plan their responses to property violations. Furthermore, we are currently

planning a bigger case study from the domain of mixed-criticality cyber-physical systems.
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Chapter 5

Implementing SPLDCs in Tyson

In this Chapter we discuss the implementation of the approach discussed in Chapter

4. We have developed a Domain Specific Language (DSL), called Tyson, to simultaneously

express variability and design uncertainty. In the following, we use the WM example to

illustrate how Tyson can be used to model SPLDCs. The full Tyson specification of the WM

example can be found in Appendix B.1

5.1. Language Basics

In order to specify SPLDCs, we need a language that can represent different entities of

SPLDCs, and mapping among them. To accomplish this, we developed a textual language

called Tyson. Tyson is a textual language developed using Xtext, a framework for the creation

of programming languages and DSLs [10].

Xtext facilitates the development of DSLs by allowing the creation of a full infrastruc-

ture stack that includes a parser, linker, type checker, compiler, and editor with syntax

highlighting. Xtext automatically generates an ecore metamodel for the language based on

the grammar we write. Ecore is the core eclipse modeling framework (EMF), which allows

us to describe models and provide run time support for the models. Ecore is an efficient API

for generically manipulating EMF objects [8].

Tyson is specifically designed to express SPLDCs. The metamodel for Tyson is shown

in the Appendix A.1. We can declare 3 kinds of models in Tyson: 1) a feature model that

represent all the features and constraints among them, 2) a choice model that represents

all the design choices the developer is uncertain about and, constraints among them, 3)

domain model of the system. Apart from representing all different entities of SPLDCs, we



also need to represent relations among them. We represent these relations in terms of two

kinds of mappings: 1) Feature Mappings, which represent how features impact the presence

of domain model entities 2) Decision Mappings, which represent how the different design

choices impact product line entities. The Listing 5.1 shows the definition of choice model in

Tyson having two design choices as described in Chapter 1.

Listing 5.1. Choice Model Definition in Tyson

CM { Mutex ;

IncrementalHeat ;

}

Listing 5.2 shows the definition of Feature Model shown in Figure 1.3(a) having 4 fea-

tures. We also define a constraint that Wash is a Mandatory feature. Tyson also allows

the definition of multiplicity constraints about a feature group. Similarly, we can also define

constraints about design choices as a part of choice model definition.

Listing 5.2. Feature Model Definition in Tyson

FM { Wash ;

Delay ;

Dry ;

Heat ;

FMConst: [ Mandatory(Wash) ]

}

Listing 5.3 defines the domain model shown in Figure 1.3(b) in Tyson having 5 states

and 7 Transitions: T1, T2, T3, T4, T5, T6, T7. In this example the domain model is a

State Chart. Tyson currently supports DMs conforming to simplified State Chart and UML

Class Diagram metamodels.

Listing 5.3. Domain Model Definition in Tyson

StateChart{

State Locking ;

State Waiting ;
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State Washing ;

State Drying ;

State UnLocking ;

Transition T1 : Locking to Waiting

Transition T2 : Waiting to Washing

Transition T3 : Locking to Washing

Transition T4 : Washing to UnLocking

Transition T5 : Washing to Drying

Transition T6 : Drying to UnLocking

Transition T7 : Waiting to Waiting

}

Mappings among various entities of SPLDC are shown in Listing 5.4. F1, F2, and F3

are Feature Mappings, that represent how the presence or absence of a feature effects the

entities of domain model. F1 shows that presence of Wash in Feature Model implies that

Transition T2 and T5 are present in Domain model; otherwise they will be absent. D1 and

D2 are Decision Mappings, that represents how the presence or absence of design choices can

impact the product line entities. D1 shows that presence of Design Choice Mutex implies

that presence of Features Heat and Delay are mutually exclusive; its absence that they are

not.

Listing 5.4. Mappings among SPLDC entities in Tyson

Mappings {

FMap {

F1: {(Wash IN ) =>

AND (Transition T3 IN , Transition T4 IN ) }

F2 : {OR (Heat IN , Delay IN ) =>

AND (Transition T1 IN , Transition T2 IN ) }

F3 : {(Dry 2IN ) =>

AND (Transition T5 IN , Transition T6 IN ) }}
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DMap {

D1 : {Mutex IN =>

XOR (Feature Heat IN , Feature Delay IN ) }

D2 : { IncrementalHeat IN =>

Transition T7 IN }}

}

5.2. Tyson Semantics

The purpose of representing SPLDCs is to analyze and reason about their various prop-

erties. Therefore, we need to provide semantics to Tyson, that can facilitate the analysis of

SPLDCs. To achieve this task, the Tyson models are transformed into Alloy. Alloy is a a

lightweight formal method which allows us to do a bounded reasoning of first order logic.

Alloy uses the Kodkod model finder and can leverage a variety of SAT solvers used as block

box reasoners.

These SAT Solvers allow us to analyze different properties of the system written as

assertions. To analyze SPLDCs, Tyson models are transformed into Alloy. We used Acceleo

templates to do this transformation. Acceleo is a pragmatic implementation of the OMG

MOFModel to Text standard [27]. In other words, we used an Acceleo transformation to give

semantics to Tyson via a translation to a formal language: Alloy. Acceleo takes the models

represented in Tyson and convert them as text that corresponds to Alloy Specifications for

the Tyson models. The full Acceleo translation is provided in Appendix D.1 The full Alloy

semantics of the WM example is provided in Appendix C.1.

Tyson does not provide a property specification language; instead, SPLDC properties are

written directly in Alloy. In Section 5.3, we show how such properties can be checked for

the 4 satisfaction levels in L.

The Listing 5.5 represents the choice model definition in Alloy for the choice model in

Listing 5.1.

Listing 5.5. Choice Model Definition in Alloy

abstract sig Choice {}

sig Mutex , IncrementalHeat extends Choice {}
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// ChoiceModel definition

abstract sig ChoiceModel{

choice : set Choice}

Using Acceleo, the Feature Model defined in listing 5.2, will be transformed to the code

represented in Listing 5.6. The Fact written in the code represents the constraint about

feature Wash.

Listing 5.6. Feature Model Definition in Alloy

abstract sig Feature {}

one sig Wash , Heat , Delay , Dry extends Feature {}

abstract sig FeatureModel{

feature : some Feature

}

fact {

all f : FeatureModel | Wash in f.feature

}

Listing 5.3 which defines the domain model in Tyson, is transformed as Listing 5.7 in

Alloy. The metamodel well-formedness constraint states that if a transition is present in a

Domain Model, then its source state and target states will also be present in the Domain

Model.

Listing 5.7. Domain Model Definition in Alloy

abstract sig State {}

one sig Locking , Waiting , Washing , Drying , Unlocking extends State{}

abstract sig Transition{

source : one State ,

target : one State

}

one sig T1, T2 , T3, T4, T5 , T6 , T7 extends Transition {}
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fact {(T1.source = Locking) and (T1.target = Waiting)}

fact {(T2.source = Waiting) and (T2.target = Washing) }

fact {(T3.source = Locking) and (T3.target = Washing) }

fact {(T4.source = Washing) and (T4.target = Unlocking) }

fact {(T5.source = Washing) and (T5.target = Drying)}

fact {(T6.source = Drying) and (T6.target = Unlocking) }

fact {(T7.source = Waiting) and (T7.target = Waiting)}

// DOMAIN MODEL DEFINITION

// container for model elements , i.e., the domain model

sig DomainModel{

transition : some Transition ,

state : some State

}

// Metamodel well -formedness constraints

fact{all d : DomainModel | all s : State | some t : Transition |

(t in d.transition) and ((s in t.source) or (s in t.target )) =⇒

(s in d.state)

else (s not in d.state)}

Listing 5.4 defines Feature Mappings and Decision Mappings. The Feature Mappings

are transformed as Listing 5.8. The first Fact corresponds to the Feature Mapping F1, the

second Fact corresponds to F2, and the third Fact corresponds to the mapping F3.

Listing 5.8. Feature Mapping in Alloy

fact {

all p : Product |

(Wash in p.config.feature)=⇒

((T3 in p.dm.transition) and (T4 in p.dm.transition))

else ((T3 not in p.dm.transition) and (T4 not in p.dm.transition)

↪→ )

}

fact {

all p : Product |

(Dry in p.config.feature)=⇒
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((T5 in p.dm.transition) and (T6 in p.dm.transition))

else ((T5 not in p.dm.transition) and (T6 not in p.dm.transition)

↪→ )

}

fact {

all p : Product|

(Heat in p.config.feature) or (Delay in p.config.feature) =⇒

((T1 in p.dm.transition) and (T2 in p.dm.transition))

else ((T1 not in p.dm.transition) and (T2 not in p.dm.transition)

↪→ )

}

The Product Line can be defined as Listing 5.9 in Alloy. It defines that a product line

contains some product, where each product contains a valid feature configuration, and a

Domain Model derived by the feature configuration.

Listing 5.9. Product Line Definition in Alloy

// Product Definition

abstract sig Product{

dm : one DomainModel ,

config : one FeatureModel}

//Well formedness rules

fact{all f : FeatureModel | f in Product.config}

fact{all d : DomainModel | d in Product.dm}

// Product line definition

abstract sig SPL{

product : some Product

}

fact {all p : Product | p in SPL.product}

The decision mappings defined in Listing 5.4 are transformed to Listing 5.10. The first

Fact corresponds to the decision Mapping D1 and the second Fact corresponds to decision

Mapping D2.
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Listing 5.10. Decision Mapping in Alloy

// decision Mapping

fact { all dec : DesignChoices | all s : dec.spl | all p : s.product |

Mutex in dec.cm.choice =⇒

not ((Heat in p.config.feature) and (Delay in p.config.feature))

}

fact {

all dec : DesignChoices | all s : dec.spl | all p : s.product |

(IncrementalHeat in dec.cm.choice) and

(Heat in p.config.feature) and

(Delay in p.config.feature) =⇒

T7 in p.dm.transition

}

Listing 5.11 gives the definition on an SPLDC. An SPLDC contains some Design Choices,

where each design choice contains a Choice configuration and an SPL derived by selected

choices.

Listing 5.11. SPLDC definition in Alloy

// Design Choices Definition

abstract sig DesignChoices{

cm : one ChoiceModel ,

spl : one SPL

}

fact {all c : ChoiceModel | c in DesignChoices.cm}

fact{all s : SPL | s in DesignChoices.spl}

//spldc definition

one sig SPLDC{

dc : some DesignChoices

}

fact {all d : DesignChoices | d in SPLDC.dc}

Listing 5.12 defines various symmetry breaking constraints for SPLDCs. These con-

straints stop Alloy from generating du2plicate instances of the SPLDC entities.
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Listing 5.12. Symmetry Braking Constraints in Alloy

// symmetry breaking constraints

fact {all f1 , f2 : FeatureModel | f1.feature = f2.feature =⇒ f1= f2}

fact {all d1 , d2 : DomainModel | d1.transition = d2.transition =⇒ d1=d2}

fact {all t1 , t2 : Transition | (t1.source = t2.source) and (t1.target = t2.target

↪→ ) =⇒

t1=t2}

fact {all p1 , p2 : Product | (p1.config = p2.config) and (p1.dm=p2.dm)=⇒

p1 = p2}

fact{all c1 , c2 : ChoiceModel | c1.choice = c2.choice =⇒

c1 = c2}

fact {all dc1 , dc2 : DesignChoices | dc1.cm = dc2.cm =⇒

dc1=dc2}

5.3. Encoding and Checking Properties

As mentioned before, Tyson does not provide a property specification language; instead,

SPLDC properties are written directly inAlloy as assertions. Alloy allows us to write them

as First Order Logic formulas.

For each property we write four assertions, one for each level of satisfaction in L. List-

ing 5.13 shows the property R2 (“the domain model has exactly one final state”) in Alloy.

The check statements in the listing are used to run the assertions. As discussed in Chapter 2,

first order logic reasoning is undecidable without a bound so, each assertion is associated

with a bound called scope, i.e., an integer value (Int) that represents the search space for the

SAT solver while checking the validity of an assertion. The search for an instance is con-

ducted within a scope. By specifying the scope, we make the search space finite by putting

bounds on the sizes of the sets assigned signatures. It is to be noted that the scope does

not declare the number of elements in the signature. Instead, it gives the bit width of inte-

gers (including the sign bit) and all integers that can be expressed using this bit width are
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included implicitly in the type Int. All integer computations are performed within the given

bit width, and if, for a given instance, an expression’s evaluation would require a larger bit

width to succeed without overflow, the instance will not be considered by the analysis [17].

Therefore, when we get result for a property check, we can say that the result is valid within

the given scope. To include larger expressions in their analysis, one can increase the scope

value. In this example, the scope is set to 10. It is important to note that scope value is not

set by default ,and developers can set scope according to their need. We keep a small value

of scope here because size of our example is small. However, we can not make an argument

about the optimal value for scope with respect to size of example. Finding optimal value for

scope is a future work. The Tyson implementation allows declaring product-level properties

as raw Strings in the Tyson model, using the Alloy syntax. Tyson then automatically gen-

erates SPLDC-level properties according to L. Each property written in Tyson, is therefore

transformed to 4 different assertions in Alloy, one for each level in L.

Listing 5.13. SPLDC level properties in Alloy

// oneFinalNA

assert oneFinalNA {all pl : SPL | all p : pl.product| one d : p.dm | one s : d.state |

(s not in p.dm.transition.source)}

// oneFinalNS

assert oneFinalNS {all pl : SPL | some p : pl.product| one s : p.dm.state |

(s not in p.dm.transition.source) and (s in p.dm.transition.target)}

// oneFinalPA

assert oneFinalPA {some pl : SPL | all p : pl.product| one s : p.dm.state |

(s not in p.dm.transition.source) and (s in p.dm.transition.target)}

// oneFinalPS

assert oneFinalPS {some pl : SPL | some p : pl.product| one s : p.dm.state |

(s not in p.dm.transition.source) and (s in p.dm.transition.target)}

check oneFinalNA for 10

check oneFinalNS for 10

check oneFinalPA for 10

check oneFinalPS for 10
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Chapter 6

Evaluation

We aim to evaluate the scalability of our approach for analyzing the quality requirements

of SPLDCs. We thus pose the following research question:

RQ (scalability) : How is the run time of the various property checks needed for

SPLDC analysis affected by the size of the SPLDC?

In the scalability study, we applied the approach to SPLDCs of varying sizes, and collected

the run times for each check. This allowed us to answer the RQ.

6.1. Experimental Setup

For the Scalability study, we applied the approach to randomly generated SPLDCs of

varying sizes. We checked three consistency properties for each SPLDC and recorded the

run time for each check. To check all three properties for an SPLDC, we need between 3 to

12 checks, depending on the level of satisfaction for a property. The properties we check for

each model are inspired from [35].

To generate feature and choice models for our study, we used the SPLOT feature model

repository [23]. Feature models in SPLOT are expressed in a custom language for expressing

logic constraints. We transformed 30 SPLOT feature models to Tyson feature models. To

get the choice models, we transformed another 30 SPLOT feature models (different from the

used to generate Tyson feature models) Tyson choice models. The SPLOT repository only

contains feature models. To generate complete SPLDC specifications, we also need domain



Element Type Small Medium Large

# of Features in FM 10-15 16-30 31-45

# of Choices in CM 10-15 16-30 31-45

# of Classes in DM 7-15 16-30 31-45

Table 6.1. Number of elements in each category

# Property

R4 @ Association A in DM: (A.from = none OR A.to=none)

R5 @ Class C in DM: ∀ Association A in DM (C not in A.from) AND (C not in A.to)

R6 @ Association A in DM: (A.from =A.to)

Table 6.2. Properties Checked for scalability analysis

models. For this, we used the class diagrams of the metamodels from the AtlanMod

Metamodel Zoo [18] 1

According to their size, we categorize feature models, choice models and domain models

in three categories: small, medium and large. To generate the complete SPLDCs, we combine

feature models, choice models and domain models from all three categories to generate 270

different SPLDCs, belonging to 27 different categories. Table 6.1 shows the number of

elements in each category.

We generated random feature mappings and decision mappings for these SPLDCs. We

then transformed all Tyson models to Alloy specifications.

We checked the three consistency properties shown in Table 6.2 for each model and

recorded the run times to check the scalability of the approach. To study the effect of

Alloy’s scope in the analysis, we tried scopes of 20, 40, and 60. The results of property

analysis were same regardless of scope, however the analysis became much slower. Below,

we report results for scope 40. The machine we used to run these experiments is a LENOVO

ThinkPad laptop, with 8GB RAM and Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, 2701

Mhz, 2 Core(s), 4 Logical Processor(s).

1. http://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Zoos
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Figure 6.1. Effect of size of feature model on run time for different sizes of choice model

and domain model

6.2. Results

To assess the scalability of the approach, we study how the run time for each check varies

with the size of different elements of SPLDC. Figure 6.1, Figure 6.2, and Figure 6.3 shows

the effects on the run time of the size of feature model, choice model and domain model

respectively. The maximum time for a check was approximately 6 minutes for the category

with large feature models, large choice models, and large domain models. Figure 6.1 shows

a mixed trend in run time with respect to the size of feature models. On one hand, for some

categories run time increases with increasing size of feature models. On the other hand, for

some categories run time decreases despite an increase in the size of feature model.

However, figure 6.2 shows that in most of the cases, run time increases with increase in

size of choice models.
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Figure 6.2. Effect of size of choice model on run time for different sizes of feature model

and domain model

Figure 6.3 shows that for the majority of the categories run time increases with increase

in domain model size. However, there are some categories where run time decreases despite

increase in domain model size.

6.3. Discussion

According to the results for the scalability study, we can see that in general for large

SPLDCs, the run time for each check can take a few minutes. Figure 6.2 shows that size

of choice model clearly impacts the run time. So, we conclude that for SPLDCs with more

uncertainty, run time is larger. Figure 6.4 shows that Alloy scope has significant impact on

the run time. Higher value of scope means higher confidence over the results as Alloy then

considers larger expressions while analyzing a property, but that also leads to an increase

in the run time. So, there is a trade-off between run time and confidence over the results.

However, for the examples that we studied, we get the same results even increasing the scope.

Hence, by considering the small scope hypothesis explained in Chapter 2, we set scope to
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Figure 6.3. Effect of size of Domain model on run time for different sizes of choice model

and Feature model

be 40 for our experiments. Overall, we note that with increasing the sizes of the different

SPLDC components indicates some reasonable increases in run time. In other words, we do

not see evidence that increasing the size of any of the components of an SPLDC can have a

dramatic effect in the overall scalability of the approach. Even though the property checks

took some minutes to complete, the overall cost did not outweigh the benefit of being able

to reason in the presence of both variability and uncertainty in SPLDCs.

6.4. Threats to validity

Our evaluation is faced with various threats to the validity, discussed briefly below.

One threat to validity comes from our choice of experimental subjects. To mitigate the

lack of real examples, we randomly generated SPLDCs. For this, we used real, publicly

available models from SPLOT and the AtlanMod Metamodel Zoo, and only randomly

generated the mappings. This allowed us to generate SPLDCs of various sizes, allowing

us to explore the effect of the change in size. To mitigate the randomness, we used real
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Figure 6.4. Effect of scope on run time

components (domain, feature and choice models) to generate SPLDCs. We are therefore

confident that the resulting SPLDCs are realistic.

A second threat to validity comes from our choice or properties. To mitigate this, we

chose examples of properties that were inspired from published literature and represent

typical structural properties of models found in MDE practice.

The choice of Alloy scope may also affect the results. To mitigate this effect, we experi-

mented with various scopes, validating that the choice of scope did not change the property

check results. Regardless, we report observations for a high enough scope such that the

slowdown effects would be observable.

In the future we intend to experiment with even larger examples, as well as with other

reasoning engines such as Clafer [37], and Alloy* [26] and alternative automated reasoning

formalisms, such as QBF solving [20] and Answer Set Programming [22], with the aim to

improve the efficiency of the implementation.
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Chapter 7

Related Work

The work presented here follows up on a previously published vision paper [11], that

originally postulated the need for managing variability and design uncertainty at the same

time. More broadly, this work deals with the capturing and management of uncertainty

about design decisions among a set of possible SPLs, including at design time, a concern

that has been posed by Metzger and Pohl [24] while they outline some ongoing research

challenges in product line engineering based on major trends in SPLE. We build on previous

work on the modelling and reasoning for design uncertainty in software models that did not

consider the relationship with explicit variability management [15].

Tran and Massacci [34] studied the management of risk that is caused by uncertainty

about the evolution of the feature model of an SPL. For instance, uncertainty about the

features that will be implemented in the future. They proposed an approach to support

decision making that takes into account the probability that individual products have of

surviving over long periods of time. Three key differences between their work and ours

are (a) the type of analysis, (b) the emphasis on long versus short term change, and (c)

the semantics of uncertainty [9] that is being considered. The uncertainty surrounding the

evolution of a feature is aleatory (i.e., predicated on randomness and is generally modelled

using probability) because it depends on the future context in which it will take place. On

the other hand, uncertainty about short term decisions is epistemic (i.e., predicated on lack

of knowledge which is termed as uncertainty on decision maker’s side) since in the short term

the context is constant.

There exist two notable examples of research that attempts to explicitly model different

kinds of choices present in SPL engineering. Lytra and colleagues [16] proposed a framework



in which decisions about variability and architectural design are conceptually differentiated

and used in a synergistic way. The focus of their work is to model the two dimensions, map-

ping variability options to architectural design alternatives in order to capture and manage

the dependencies between them, as well as for providing decision support for creating vari-

ants.

Barner and colleagues [1] proposed a technique for design space exploration for SPLs,

using evolutionary optimization with the aim of discovering alternative implementations for

a given functional description of a product variant. They identify two types of configura-

tion choices: those having to do with “business variability”, and those concerning “technical

variability”. The former express end user functionality; the latter represent technical alter-

natives that can deliver the same functionality, albeit with different quality characteristics.

Our work is complementary to such approaches, since our focus is on reasoning and analysis.

Finally, we note that there exists a large body of work that concerns modelling variability

and dealing with challenges of managing variability [3]. Furthermore, there exist a variety

of approaches to reason about variability without necessarily generating all products of an

SPL [33], for instance, by checking feature-oriented analysis or exploitation of the variability

information while analyzing.

Examples of the latter include techniques for model checking product lines [4], for auto-

matically lifting analyses to account for variability [25], and for formalizing and analyzing

behavioural specifications of product line requirements [38]. In principle, any technique for

variability analysis can be used to reason about both design and variability choices, provided

that the two are modelled at the same level of abstraction (i.e., in the same feature model).

However, as we have also illustrated in Chapter 6, it is useful to separate the two concerns, as

design choices may very well affect the variability abstractions themselves. Moreover, unless

we take care to model the two concerns separately, we can not easily express properties that

quantify differently the two sets of choice variables and can thus generate nuanced feedback.
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Chapter 8

Conclusion

8.1. Summary

We have described a formal approach for modelling and reasoning about design uncer-

tainty in Software Product Lines (SPLs). We have shown how to formally represent design

choices in different elements of an SPL definition using a formalism called “Software Product

Lines with Design Choices” (SPLDCs). An SPLDC represents a two dimensional space de-

fined by two axes: variability configurations and design decisions. Making design decisions

on an SPLDC yields a concrete SPL design, which can then be configured to produce indi-

vidual products by choosing among the different feature configurations. In order to analyze

the quality requirements, expressed as properties, of SPLDCs we have defined four levels

of requirements satisfaction, which allow different quantification over design decisions and

product configurations. We then introduced an analysis procedure that leverages the formal

semantics of SPLDCs, as well as the relationships between the different levels of quality

requirement satisfaction. We developed a textual language to express and reason about the

SPLDCs. We have illustrated the applicability of our approach by showing that nuanced

feedback can be generated for an SPLDC, and we have studied the efficiency of reasoning,

finding that generating nuanced feedback comes at a computational cost.

8.2. Limitations

In this section, we discuss some of the limitations of the proposed approach. The feed-

back provided by our approach includes either a feature configuration or a design decision.

However, it does not indicate which of the features or choices in the counterexample are



specifically responsible for the violation of the property. Furthermore, as evident from the

scalability study, there is a large computational complexity for property checking. This can

hinder developers from reasoning about extra large SPLDCs. Finally, our approach is fo-

cused on reasoning only about the structural properties of the models, leaving the behavioral

properties of SPLDCS as a topic for future research.

8.3. Future Work

The future work for this problem may include the following.

(1) To further evaluate our approach with a large case study from the domain of real-time

reactive embedded systems.

(2) To further investigate the use of other reasoning engines such as Clafer [37], and

Alloy* [26] and alternative automated reasoning formalisms, such as QBF solving [20]

and Answer Set Programming [22], with the aim to improve the efficiency of our

implementation.

(3) To expand the expressiveness of the decision model, to allow representing more com-

plex design decisions, such as those involving numeric ranges. This would allow our

approach to be used for automated design space exploration for SPLs.

(4) To expand our approach to the analysis of requirements expressed as behavioral prop-

erties. This would require adapting our reasoning procedure to support specialized

reasoning engines such as model checkers.
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Appendix A

Tyson Metamodel



Figure A.1. Tyson Language metamodel
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Appendix B

WM SPLDC in Tyson

Listing B.1. WM SPLDC definition in Tyson

CM { Mutex ;

IncrementalHeat ;

}

FM { Wash ;

Delay ;

Dry ;

Heat ;

FMConst: [ Mandatory(Wash) ]

}

StateChart{

State Locking ;

State Waiting ;

State Washing ;

State Drying ;

State UnLocking ;

Transition T1 : Locking to Waiting



Transition T2 : Waiting to Washing

Transition T3 : Locking to Washing

Transition T4 : Washing to UnLocking

Transition T5 : Washing to Drying

Transition T6 : Drying to UnLocking

Transition T7 : Waiting to Waiting

}

Mappings {

FMap {

F1: {(Wash IN ) =>

AND (Transition T3 IN , Transition T4 IN ) }

F2 : {OR (Heat IN , Delay IN ) =>

AND (Transition T1 IN , Transition T2 IN ) }

F3 : {(Dry IN ) =>

AND (Transition T5 IN , Transition T6 IN ) }}

DMap {

D1 : {Mutex IN =>

XOR (Feature Heat IN , Feature Delay IN ) }

D2 : { IncrementalHeat IN =>

Transition T7 IN }}

}
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Appendix C

WM SPLDC in Alloy

Listing C.1. WM SPLDC in Alloy with some properties

// general definitions

abstract sig Feature {}

one sig Wash , Heat , Delay , Dry extends Feature {}

// FEATURE MODEL DEFINITION

abstract sig FeatureModel{

feature : some Feature

}

// Wash is a necessary feature in all products

fact {

all f : FeatureModel | Wash in f.feature

}

abstract sig State {}

one sig Locking , Waiting , Washing , Drying , Unlocking extends State{}

abstract sig Label {}

abstract sig Guard {}

abstract sig Transition{

source : one State ,

target : one State ,

guard : lone Guard ,



label : lone Label

}

one sig Nospin extends Guard{}

one sig HeatEnabled_or_DelayEnabled , IncHeat , washstart , nospin , quickcool

↪→ extends Label{}

one sig T1, T2 , T3, T4, T5 , T6 , T7 extends Transition {}

fact {(T1.source = Locking) and (T1.target = Waiting) and (T1.label =

↪→ HeatEnabled_or_DelayEnabled) and (T1.guard= none)}

fact {(T2.source = Waiting) and (T2.target = Washing) and (T2.label = washstart)

↪→ and (T2.guard= none)}

fact {(T3.source = Locking) and (T3.target = Washing) and (T3.label = washstart)

↪→ and (T3.guard= none) }

fact {(T4.source = Washing) and (T4.target = Unlocking) and (T4.label = quickcool)

↪→ and (T4.guard= none)}

fact {(T5.source = Washing) and (T5.target = Drying)}

fact {(T6.source = Drying) and (T6.target = Unlocking) and (T6.label = quickcool)

↪→ and (T6.guard= none)}

fact {(T7.source = Waiting) and (T7.target = Waiting) and (T7.label= IncHeat)and (

↪→ T7.guard= none)}

// DOMAIN MODEL DEFINITION

// container for model elements , i.e., the domain model

sig DomainModel{

transition : some Transition ,

state : some State

}

// Metamodel well -formedness constraints

fact{all d : DomainModel | all s : State | some t : Transition |

(t in d.transition) and ((s in t.source) or (s in t.target )) =⇒

(s in d.state)

else (s not in d.state)}

// Product Definition

abstract sig Product{
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dm : one DomainModel ,

config : one FeatureModel}

one sig P1, P2 , P3, P4, P5 , P6 , P7, P8, P9 , P10 , P11 , P12 extends Product {}

//Well formdness rules

fact{all f : FeatureModel | f in Product.config}

fact{all d : DomainModel | d in Product.dm}

// Product line definition

abstract sig SPL{

product : some Product

}

fact {all p : Product | p in SPL.product}

fact {

all p : Product |

(Wash in p.config.feature)=⇒

((T3 in p.dm.transition) and (T4 in p.dm.transition))

else ((T3 not in p.dm.transition) and (T4 not in p.dm.transition)

↪→ )

}

fact {

all p : Product |

(Dry in p.config.feature)=⇒

((T5 in p.dm.transition) and (T6 in p.dm.transition))

else ((T5 not in p.dm.transition) and (T6 not in p.dm.transition)

↪→ )

}

fact {

all p : Product|

(Heat in p.config.feature) or (Delay in p.config.feature) =⇒

((T1 in p.dm.transition) and (T2 in p.dm.transition))

else ((T1 not in p.dm.transition) and (T2 not in p.dm.transition)

↪→ )
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}

// symmetry breaking constraints

fact {all f1 , f2 : FeatureModel | f1.feature = f2.feature =⇒ f1= f2}

fact {all d1 , d2 : DomainModel | d1.transition = d2.transition =⇒ d1=d2}

fact {all t1 , t2 : Transition | (t1.source = t2.source) and (t1.target = t2.target

↪→ ) =⇒

t1=t2}

fact {all p1 , p2 : Product | (p1.config = p2.config) and (p1.dm=p2.dm)=⇒

p1 = p2}

// SPLDCs

// Choices

abstract sig Choice {}

sig Mutex , IncrementalHeat , Guards extends Choice {}

// ChoiceModel definition

abstract sig ChoiceModel{

choice : set Choice}

// Design Choices Definition

abstract sig DesignChoices{

cm : one ChoiceModel ,

spl : one SPL

}

fact {all c : ChoiceModel | c in DesignChoices.cm}

fact{all s : SPL | s in DesignChoices.spl}

//spldc definition

one sig SPLDC{

dc : some DesignChoices

}

fact {all d : DesignChoices | d in SPLDC.dc}
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// decision Mapping

fact { all dec : DesignChoices | all s : dec.spl | all p : s.product |

Mutex in dec.cm.choice =⇒

not ((Heat in p.config.feature) and (Delay in p.config.feature))

}

fact {

all dec : DesignChoices | all s : dec.spl | all p : s.product |

(IncrementalHeat in dec.cm.choice) and

(Heat in p.config.feature) and

(Delay in p.config.feature) =⇒

T7 in p.dm.transition

}

one sig p1, p2 , p3, p4, p5 , p6 extends Product {}

// symmetry breaking constraints

fact{all c1 , c2 : ChoiceModel | c1.choice = c2.choice =⇒

c1 = c2}

fact {all dc1 , dc2 : DesignChoices | dc1.cm = dc2.cm =⇒

dc1=dc2}

//for all spl and for all products

assert initialState {all pl : SPL | all p : pl.product| some s : p.dm.state |

(s in p.dm.transition.source) and (s not in p.dm.transition.target)}

assert initialStateone {all pl : SPL | all p : pl.product| one s : p.dm.state |

(s in p.dm.transition.source) and (s not in p.dm.transition.target)}

assert initialStateoneNS {all pl : SPL | some p : pl.product| one s : p.dm.state |

(s in p.dm.transition.source) and (s not in p.dm.transition.target)}

assert initialStateonePA {some pl : SPL | all p : pl.product| one s : p.dm.state |

(s in p.dm.transition.source) and (s not in p.dm.transition.target)}
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assert finalState {all pl : SPL | all p : pl.product| some s : p.dm.state |

(s not in p.dm.transition.source) and (s in p.dm.transition.target)}

// oneFinalNA

assert oneFinalNA {all pl : SPL | all p : pl.product| one d : p.dm | one s : d.state |

(s not in p.dm.transition.source)}

// oneFinalNS

assert oneFinalNS {all pl : SPL | some p : pl.product| one s : p.dm.state |

(s not in p.dm.transition.source) and (s in p.dm.transition.target)}

// oneFinalPA

assert oneFinalPA {some pl : SPL | all p : pl.product| one s : p.dm.state |

(s not in p.dm.transition.source) and (s in p.dm.transition.target)}

// oneFinalPS

assert oneFinalPS {some pl : SPL | some p : pl.product| one s : p.dm.state |

(s not in p.dm.transition.source) and (s in p.dm.transition.target)}

//no guards NA

assert NoGuardsNA{all pl : SPL|all p : pl.product |

all t : p.dm.transition | t.guard =none}

//no guards NS

assert NoGuardsNS{all pl : SPL|some p : pl.product |

all t : p.dm.transition | t.guard =none}

//no guards PA

assert NoGuardsPA{some pl : SPL|all p : pl.product |

all t : p.dm.transition | t.guard =none}

//no guards PS

assert NoGuardsPS{some pl : SPL|some p : pl.product |

all t : p.dm.transition | t.guard =none}

// incheatNA
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assert incheatNA {all pl : SPL | all p : pl.product | T7 in p.dm.transition}

// incheatNS

assert incheatNs {all pl : SPL | some p : pl.product | T7 in p.dm.transition}

assert incheatPA {some pl : SPL | all p : pl.product | T7 in p.dm.transition}

assert incheatPS {some pl : SPL | some p : pl.product | T7 in p.dm.transition}

// waitPS

assert waitNs {all pl : SPL | some p : pl.product | T4 in p.dm.transition}

//p6

assert p6{some pl : SPL | some p : pl.product | some d : p.dm | T5 in d.transition }

check NoGuardsNA for 10

check NoGuardsNS for 10

check NoGuardsPA for 10

check NoGuardsPS for 10

check initialState for 10

check finalState for 10

check incheatNA for 10

check incheatNs for 10

check waitNs for 10

check initialStateone for 10

check initialStateoneNS for 10

check initialStateonePA for 10

check p6 for 10

check incheatPA for 10

check incheatPS for 10
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Appendix D

Acceleo Template for Tyson to Alloy Transformation

Listing D.1. Acceleo template to transform Tyson models to Alloy

[ comment encoding = UTF−8 / ]

[ module generate ( ’ http ://www. xtext . org /example/mydsl/Tyson ’ ) ]

[ template pub l i c generateElement ( dc : DesignChoices ) ]

[ comment @main/ ]

[ f i l e ( ’ / models /REAL−FM−3REAL−FM−18UEMLExtended . a l s ’ , f a l s e , ’UTF

↪→ −8 ’) ]

// BASIC DEFINITIONS

abs t r a c t s i g Feature {

ch i l d : s e t Feature ,

parent : l one Feature }

f a c t { a l l f : Feature | a l l c : f . c h i l d |

c . parent = f }

[ f o r ( fm : FeatureModl | dc . fm) ]

[ g en f e a tu r e s ( fm) / ]

[ g e n ch i l d f e a t ( fm) / ]

[ f o r ( f c : FMconstraints | fm . c on s t r a i n t ) ]



[ getmandatoryfeat ( f c ) / ]

[ / f o r ]

[ / f o r ]

// FEATURE MODEL DEFINITION

abs t r a c t s i g FeatureModel {

f e a t u r e : some Feature

}

f a c t { a l l f : Feature | a l l fm : FeatureModel | f . c h i l d in fm . f e a tu r e

↪→ =>

f in fm . f e a tu r e }

ab s t r a c t s i g Att r ibute {}

[ f o r ( a : ClassDiagram | dc . cd ) ]

[ g ena t t r i bu t e ( a ) / ]

[ / f o r ]

ab s t r a c t s i g Class {

a t t r : s e t Attr ibute ,

}

ab s t r a c t s i g Re la t i on sh ip {

from : lone Class ,

to : l one Class ,

inMul : l one Int ,

outMul : l one Int }

[ f o r ( c : ClassDiagram | dc . cd ) ]

[ g e n c l a s s e s ( c ) / ]
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[ g e n c l a s s a t t r i b u t e s ( c ) / ]

[ g e n r e l a t i o n s h i p s ( c ) / ]

[ g e n r e l a t i o nd e f ( c ) / ]

[ / f o r ]

s i g ClassDiagram{

c l a s s : some Class ,

r e l : some Re la t i on sh ip }

ab s t r a c t s i g Trans i t i on {}

abs t r a c t s i g State {}

s i g StateChart {

t r a n s i t i o n : some Trans i t ion ,

s t a t e : some State

}

ab s t r a c t s i g DomainModel{

cd : lone ClassDiagram ,

sc : l one StateChart

}

f a c t {

a l l d : DomainModel | a l l c : d . cd | a l l r : Re l a t i on sh ip | r

↪→ in c . r e l =>

( r . from in c . c l a s s ) and ( r . to in c . c l a s s )

}
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// Metamodel wel l−formedness c on s t r a i n t s

// f a c t {

// a l l d : DomainModel | a l l t : d . sc . t r a n s i t i o n | t in d . sc .

↪→ t r a n s i t i o n =>

//( t . source in d . sc . s t a t e ) and ( t . t a r g e t in d . sc . s t a t e )

//}

//Product De f i n i t i o n

ab s t r a c t s i g Product{

dm: one DomainModel ,

c on f i g : one FeatureModel }

//Well formdness r u l e s

f a c t { a l l f : FeatureModel | f in Product . c on f i g }

f a c t { a l l d : DomainModel | d in Product .dm}

//Product l i n e d e f i n i t i o n

ab s t r a c t s i g SPL{

product : some Product

}

f a c t { a l l p : Product | p in SPL . product }

//Feature Mapping

[ f o r (m: Mappings | dc .m) ]
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[ f o r ( fm : FeatureMapping | m. fmap ) ]

[ getfeatmap ( fm) / ]

[ / f o r ]

[ / f o r ]

f a c t { a l l f1 , f 2 : FeatureModel | f 1 . f e a t u r e = f2 . f e a t u r e => f1=

↪→ f 2 }

f a c t { a l l d1 , d2 : StateChart | d1 . t r a n s i t i o n = d2 . t r a n s i t i o n =>

↪→ d1=d2}

// f a c t { a l l t1 , t2 : Trans i t i on | ( t1 . source = t2 . source ) and ( t1 .

↪→ t a r g e t = t2 . t a r g e t ) =>

// t1=t2 }

f a c t { a l l d1 , d2 : DomainModel | d1 . sc=d2 . sc=> d1=d2}

f a c t { a l l p1 , p2 : Product | ( p1 . c on f i g = p2 . c on f i g ) and ( p1 .dm=p2

↪→ .dm)=>

p1 = p2}

one s i g P1 , P2 , P3 , P4 , P5 , P6 extends Product {}

//SPLDCs

//Choices

ab s t r a c t s i g Choice {

ch i l d : s e t Choice ,

parent : l one Choice }

f a c t { a l l f : Choice | a l l c : f . c h i l d |

c . parent = f }

[ f o r ( fm : ChoiceModel | dc . cm) ]
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[ g encho i c e s ( fm) / ]

[ gench i ldch ( fm) / ]

[ f o r ( f c : CMconstraints | fm . c on s t r a i n t ) ]

[ getmandatorych ( f c ) / ]

[ / f o r ]

[ / f o r ]

//ChoiceModel d e f i n i t i o n

ab s t r a c t s i g ChoiceModel{

cho i c e : s e t Choice }

f a c t { a l l c : Choice | a l l cm : ChoiceModel | c . c h i l d in cm. cho i c e =>

c in cm. cho i c e }

//Design Choices De f i n i t i o n

ab s t r a c t s i g DesignChoices {

cm : one ChoiceModel ,

s p l : one SPL

}

f a c t { a l l c : ChoiceModel | c in DesignChoices . cm}

f a c t { a l l s : SPL | s in DesignChoices . s p l }

// sp ldc d e f i n i t i o n
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one s i g SPLDC{

dc : some DesignChoices

}

f a c t { a l l d : DesignChoices | d in SPLDC. dc}

// d e c i s i o n Mapping

[ f o r (m: Mappings | dc .m) ]

[ f o r ( fm : DecisionMapping | m. dmap) ]

[ getdecmap ( fm) / ]

[ / f o r ]

[ / f o r ]

//symmetry breaking c on s t r a i n t s

f a c t { a l l c1 , c2 : ChoiceModel | c1 . cho i c e = c2 . cho i c e =>

c1 = c2}

f a c t { a l l dc1 , dc2 : DesignChoices | dc1 . cm = dc2 . cm =>

dc21=dc2}

// There i s no c l a s s r e l a t e d to i t s e l f

a s s e r t selfNA { a l l p l : SPL | a l l p : p l . product |

a l l r : p .dm. cd . r e l | ( r . to != r . from )

}

a s s e r t se l fNS { a l l p l : SPL | some p : p l . product |

a l l r : p .dm. cd . r e l | ( r . to != r . from )
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}

a s s e r t se l fPA { some pl : SPL | a l l p : p l . product |

a l l r : p .dm. cd . r e l | ( r . to != r . from )

}

a s s e r t s e l fPS { some pl : SPL | some p : p l . product |

a l l r : p .dm. cd . r e l | ( r . to != r . from )

}

a s s e r t disconnectNA { a l l p l : SPL | a l l p : p l . product | no c : p .dm.

↪→ cd . c l a s s |

( c not in p .dm. cd . r e l . to ) and ( c not in p .dm. cd . r e l . from ) }

a s s e r t disconnectNS { a l l p l : SPL | some p : p l . product | no c : p .dm

↪→ . cd . c l a s s |

( c not in p .dm. cd . r e l . to ) and ( c not in p .dm. cd . r e l . from ) }

a s s e r t disconnectPA {some pl : SPL | a l l p : p l . product | no c : p .dm

↪→ . cd . c l a s s |

( c not in p .dm. cd . r e l . to ) and ( c not in p .dm. cd . r e l . from ) }

a s s e r t disconnectPS {some pl : SPL | some p : p l . product | no c : p .

↪→ dm. cd . c l a s s |

( c not in p .dm. cd . r e l . to ) and ( c not in p .dm. cd . r e l . from ) }
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a s s e r t danglingNA{ a l l p l : SPL | a l l p : p l . product | a l l r : p .dm. cd

↪→ . r e l |

( r . to !=none ) and ( r . from !=none )

}

a s s e r t danglingNS{ a l l p l : SPL | some p : p l . product | a l l r : p .dm.

↪→ cd . r e l |

( r . to !=none ) and ( r . from !=none )

}

a s s e r t danglingPA{some pl : SPL | a l l p : p l . product | a l l r : p .dm.

↪→ cd . r e l |

( r . to !=none ) and ( r . from !=none )

}

a s s e r t danglingPS{some pl : SPL | some p : p l . product | a l l r : p .dm.

↪→ cd . r e l |

( r . to !=none ) and ( r . from !=none )

}

check selfNA f o r 20

check se l fNS f o r 20

check sel fPA f o r 20

check s e l fPS f o r 20

check disconnectNA f o r 20

check disconnectNS f o r 20

check disconnectPA f o r 20

check disconnectPS f o r 20
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check danglingNA f o r 20

check danglingNS f o r 20

check danglingPA f o r 20

check danglingPS f o r 20

[ / f i l e ]

[ / template ]

[ template pub l i c g en f e a tu r e s ( fm : FeatureModl ) ]

one s i g [ f o r ( f : Featur | fm . eContents ( Featur ) ) s epa ra to r ( ’ , ’ )

↪→ ] [ f . name/ ] [ / f o r ] extends Feature {}

[ / template ]

[ template pub l i c g en ch i l d f e a t ( fm : FeatureModl ) ]

[ f o r ( f : Featur | fm . ch ) ]

[ i f ( f . ch i ld−>s i z e ( )<>0) ]

one s i g [ f o r ( f : Featur | f . c h i l d ) s epa ra to r ( ’ , ’ ) ] [ f . name/ ]

↪→ [ / f o r ] extends Feature {}

f a c t { [ f . name / ] . c h i l d = [ f o r ( c : Featur | f . c h i l d ) s epa ra to r ( ’+ ’) ]

↪→ [ c . name/ ] [ / f o r ] } [ / i f ]

[ / f o r ]

[ / template ]

[ template pub l i c gencho i c e s ( fm : ChoiceModel ) ]

one s i g [ f o r ( f : Choice | fm . eContents ( Choice ) ) s epa ra to r ( ’ , ’ )

↪→ ] [ f . name/ ] [ / f o r ] extends Choice {}

[ / template ]

D-x



[ template pub l i c gench i ldch ( fm : ChoiceModel ) ]

[ f o r ( f : Choice | fm . ch ) ]

[ i f ( f . ch i ld−>s i z e ( )<>0) ]

one s i g [ f o r ( f : Choice | f . c h i l d ) s epa ra to r ( ’ , ’ ) ] [ f . name/ ]

↪→ [ / f o r ] extends Choice {}

f a c t { [ f . name / ] . c h i l d = [ f o r ( c : Choice | f . c h i l d ) s epa ra to r ( ’+ ’) ]

↪→ [ c . name/ ] [ / f o r ] } [ / i f ]

[ / f o r ]

[ / template ]

[ template pub l i c g ena t t r i bu t e ( c : ClassDiagram ) ]

one s i g [ f o r ( f : S t r ing | c . c l a s s . a t t r . name−>asOrderedSet ( ) )

↪→ s epa ra to r ( ’ , ’ ) ] [ f / ] [ / f o r ] extends Att r ibute {}

[ / template ]

[ template pub l i c g en c l a s s e s ( cd : ClassDiagram ) ]

one s i g [ f o r ( f : Class | cd . eContents ( Class ) ) s epa ra to r ( ’ , ’ ) ]

↪→ [ f . name/ ] [ / f o r ] extends Class {}

[ / template ]

[ template pub l i c g e n c l a s s a t t r i b u t e s ( cd : ClassDiagram ) ]

[ f o r ( f : Class | cd . c l a s s ) ]

[ i f ( f . a t t r−>s i z e ( )<>0) ]

f a c t { [ f . name / ] . a t t r = [ f o r ( c : Att r ibute | f . a t t r ) s epa ra to r ( ’+ ’) ]

↪→ [ c . name/ ] [ / f o r ] }

[ / i f ]
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[ / f o r ]

[ / template ]

[ template pub l i c g e n r e l a t i o n s h i p s ( cd : ClassDiagram ) ]

one s i g [ f o r ( f : Re l a t i on sh ip | cd . eContents ( Re la t i on sh ip ) )

↪→ s epa ra to r ( ’ , ’ ) ] [ f . name/ ] [ / f o r ] extends Re la t i on sh ip {}

[ / template ]

[ template pub l i c g en r e l a t i o nd e f ( cd : ClassDiagram ) ]

[ f o r ( f : Re l a t i on sh ip | cd . eContents ( Re la t i on sh ip ) ) ]

f a c t { ( [ f . name / ] . to = [ f . to . name / ] ) and ( [ f . name / ] . from = [ f . from .

↪→ name / ] )

and ( [ f . name / ] . inMul = [ f . inMul / ] ) and ( [ f . name / ] . outMul = [ f .

↪→ outMul / ] ) }

[ / f o r ]

[ / template ]

[ template pub l i c getmandatoryfeat ( f c : FMconstraints ) ]

[ i f ( f c . opr= Operator : :MANDATORY) ]

f a c t { a l l fm : FeatureModel | [ f c . operand . name/ ] in fm . f e a tu r e }

[ / i f ]

[ i f ( f c . opr = Operator : :AND) ]

f a c t { a l l fm : FeatureModel | [ f c . operand . name / ] . parent in fm .

↪→ f e a t u r e =>

( [ f o r ( f : Featur | f c . operand . oc lAsSet ( ) ) s epa ra to r ( ’ and ’ ) ] ( [ f .

↪→ name/ ] in fm . f e a t u r e ) [ / f o r ] ) }

[ / i f ]
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[ i f ( f c . opr = Operator : :OR) ]

f a c t { a l l fm : FeatureModel | [ f c . operand . name / ] . parent in fm .

↪→ f e a t u r e =>

( [ f o r ( f : Featur | f c . operand . oc lAsSet ( ) ) s epa ra to r ( ’ or ’ ) ] ( [ f . name

↪→ / ] in fm . f e a t u r e ) [ / f o r ] ) }

[ / i f ]

[ / template ]

[ template pub l i c getmandatorych ( f c : CMconstraints ) ]

[ i f ( f c . opr = Operator : :MANDATORY) ]

f a c t { a l l fm : ChoiceModel | [ f c . operand . name/ ] in fm . cho i c e }

[ / i f ]

[ i f ( f c . opr = Operator : :AND) ]

f a c t { a l l fm : ChoiceModel | [ f c . operand . name / ] . parent in fm . cho i c e

↪→ =>

( [ f o r ( f : Choice | f c . operand . oc lAsSet ( ) ) s epa ra to r ( ’ and ’ ) ] ( [ f .

↪→ name/ ] in fm . cho i c e ) [ / f o r ] ) }

[ / i f ]

[ i f ( f c . opr = Operator : :OR) ]

f a c t { a l l fm : ChoiceModel | [ f c . operand . name / ] . parent in fm . cho i c e

↪→ =>

( [ f o r ( f : Choice | f c . operand . oc lAsSet ( ) ) s epa ra to r ( ’ or ’ ) ] ( [ f . name

↪→ / ] in fm . cho i c e ) [ / f o r ] ) }

[ / i f ]

[ / template ]
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[ template pub l i c getfeatmap ( fm : FeatureMapping ) ]

[ f o r ( fmap : featMapping | fm . fmap ) ]

f a c t { a l l p : Product |

[ i f ( fmap . oprLHS= Operator : :AND) ] [ f o r ( f : Map | fmap . mapfrom)

↪→ s epa ra to r ( ’ and ’ ) ] ( [ f . f t r . name/ ] in p . c on f i g . f e a t u r e ) [ / f o r

↪→ ] [ / i f ]

[ i f ( fmap . oprLHS=Operator : :OR) ] [ f o r ( f : Map | fmap . mapfrom)

↪→ s epa ra to r ( ’ or ’ ) ] ( [ f . f t r . name/ ] in p . c on f i g . f e a t u r e ) [ / f o r

↪→ ] [ / i f ]

=>

[ i f ( fmap . oprRHS=Operator : :AND) ] [ f o r ( f : Mapto | fmap . mapto )

↪→ s epa ra to r ( ’ and ’ ) ] ( [ f . r e l a t i o n . name/ ] in p .dm. cd . r e l ) [ / f o r

↪→ ] [ / i f ]

[ i f ( fmap . oprRHS=Operator : :OR) ] [ f o r ( f : Mapto | fmap . mapto )

↪→ s epa ra to r ( ’ or ’ ) ] ( [ f . r e l a t i o n . name/ ] in p .dm. cd . r e l ) [ / f o r

↪→ ] [ / i f ]

} [ / f o r ]

[ / template ]

[ template pub l i c getdecmap ( fm : DecisionMapping ) ]

[ f o r ( fmap : DecMapping | fm . decisionMap ) ]

f a c t { a l l dec : Des ignChoices | a l l s : dec . s p l | a l l p : s . product |

[ i f ( fmap . oprLHS=Operator : :AND) ] [ f o r ( f : Mapdec | fmap . mapfrom)

↪→ s epa ra to r ( ’ and ’ ) ] ( [ f . cho i c e . name/ ] in dec . cm . cho i c e ) [ / f o r

↪→ ] [ / i f ]
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[ i f ( fmap . oprLHS=Operator : :OR) ] [ f o r ( f : Mapdec | fmap . mapfrom)

↪→ s epa ra to r ( ’ or ’ ) ] ( [ f . cho i c e . name/ ] in dec . cm . cho i c e ) [ / f o r

↪→ ] [ / i f ]

=>

[ i f ( ( fmap . oprRHS=Operator : :AND) ) ] [ f o r ( f : MapToEntity | fmap .

↪→ maptoEntity ) s epa ra to r ( ’ and ’ ) ] ( [ f . r e l a t i o n . name/ ] in p .dm.

↪→ cd . r e l ) [ / f o r ] [ / i f ]

[ i f ( fmap . oprRHS=Operator : :OR) ] [ f o r ( f : MapToEntity | fmap .

↪→ maptoEntity ) s epa ra to r ( ’ or ’ ) ] ( [ f . r e l a t i o n . name/ ] in p .dm. cd

↪→ . r e l ) [ / f o r ] [ / i f ]

} [ / f o r ]

[ / template ]
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