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Résumé 

Bien que les infections cervicales au VPH soient très courantes, la séroconversion ne se 

produit pas toujours. Nous avons comparé deux protocoles basés sur deux dilutions sériques 

pour mesurer la séroréactivité du papillomavirus humain (VPH) de type 16 et avons étudié si 

la présence de l'ADN du VPH était associé à la séropositivité au VPH16. Nous avons 

également évalué si l'association était influencée par la co-infection avec d’autres types de 

VPH et par la charge virale. 

Les données utilisées proviennent de femmes brésiliennes qui ont participées à l'étude 

de cohorte Ludwig-McGill portant sur l'histoire naturelle de l'infection du col de l’utérus par le 

VPH. Les protocoles de sérologie étaient basés sur des particules pseudo-virales (VLP) 

composés par les protéines L1 ou L1 et L2 qui sont, respectivement, les protéines principale et 

secondaire de la capside virale. Deux dilutions sériques ont aussi été utilisées, soient : 1:10 et 

1:50. La séroréactivité au VPH16 a été exprimée en rapports d'absorbance normalisé (NAR). 

Le génotypage de l'ADN du VPH et la charge virale ont été évalués par des méthodes basées 

sur la PCR. La corrélation et la concordance entre les dilutions de chaque protocole (VLP L1 

et L1+L2) ont été évaluées par la corrélation de Pearson (r) et la méthode de Bland-Altman, 

respectivement. La performance des différents protocoles a été comparée à l’aide de courbe 

ROC (receiver operating characteristic) en utilisant la présence de l'ADN de VPH16 comme 

étalon-or. La régression linéaire a été utilisée pour analyser l'association entre la séropositivité 

au VPH16 et la détection de l’ADN du VPH avec les deux protocoles. La présence de l’ADN 

du VPH a été analysée en fonction (1) des types spécifiques de VPH plus ou moins apparentés 
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au VPH16 et (2) l’infection VPH16 détectée seule ou en co-infection avec d’autres types de 

VPH.  

Les modèles de régression linéaire présentés ci-haut ont aussi été utilisées sur 

l’ensemble de la cohorte testée avec le protocole VLP L1+L2 et dilution sérique 1:10. 

L'impact de l'âge en tant que facteur de confusion potentiel ou modificateur d'effet a été 

analysé dans ce modèle. Finalement, l’association entre la charge virale de VPH16 et la 

séroréactivité a été analysée à l’aide de la corrélation de Pearson. 

L’ampleur des différences de la moyenne des log10-NAR et les écart-types entre les 

dilutions sériques observées pour chaque protocole (VLP L1 et L1+L2) étaient, 

respectivement, -0,081 (0,123) et -0,026 (0,150) unités logarithmiques. Les NARs obtenus par 

les dilutions sériques utilisées (1:10 et 1:50) pour chaque protocole étaient fortement corrélés 

(r = 0,87 vs. 0,94, respectivement). Cependant, l'utilisation de VLP L1+L2 a augmenté la 

performance du test à détecter les anticorps IgG anti-VPH16 en particulier avec la dilution 

sérique 1:10 [l’aire sous la courbe ROC la plus élevée (IC 95%) = 0,7330 (0,6465 – 0,8495)]. 

Les modèles de régression ont montré que la séroréactivité au VPH16 n’étaient qu’associée à 

la présence de l’ADN du VPH16 et non pas aux autres types. Par exemple, les analyses avec le 

protocole VLP L1+L2 et la dilution sérique 1:10 ont montré que la séroréactivité au VPH16 

était associée à la présence de l'ADN du VPH16, β (IC 95%) = 0,24 (0,14 – 0,34), et non pas 

aux VPH31 ou 35, β (IC 95%) = 0.03 (-0,19 – 0,25), ou VPH52, 67, 33 ou 58, β (IC 95%) = 

0,15 (-0,04 – 0,34), comparativement aux femmes infectées par tout autre type de VPH ou 

négative.  
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Les analyses sur la cohorte entière avec le même protocole ont aussi montré que 

l’association entre la séroréactivité et l’ADN du VPH16 était similaire quand l’infection était 

présente seule ou en co-infection, β (IC 95%) = 0,14 (0,07 – 0,21) et β (IC 95%) = 0,11 (0,01 

– 0,21), respectivement, comparativement à celles infectées par tout autre type de VPH ou 

négative. L’âge n’a pas été un facteur de confusion important et n’a pas été un modificateur 

d’effet dans l'analyse de l'ensemble de la cohorte. La charge virale du VPH16 n’a pas été 

corrélée avec la séroréactivité du VPH16, r (95% IC) = -0,04 (-0,34 – 0,27); β (IC 95%) = -

0,01 (-0,08 – 0,06). En conclusion, le protocole le plus fortement corrélé avec l’ADN du VPH-

16 a été celui avec le VLP L1+L2 et la dilution sérique 1:10. Seule la présence de l'ADN du 

HPV16 a été associée à la séropositivité au HPV16 (pas d’autre type de HPV), et elle n'a pas 

été influencée par la co-infection ou la charge virale. 

Mots-clés : séroréactivité au VPH16, ADN de VPH, particules pseudo-virales, test 

immuno-enzymatique, anticorps IgG 
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Abstract 
Although cervical HPV infections are very common, seroconversion does not always 

occur. We compared two protocols based on two serum dilutions to measure human 

papillomavirus (HPV) type 16 seroreactivity and investigated if HPV DNA positivity was 

associated with HPV16 seropositivity. We also assessed if the association was influenced by 

co-infection with other HPV types and viral load. 

The data used are from Brazilian women participating in the Ludwig-McGill cohort 

study on the natural history of cervical HPV infection. The serology protocols were based on 

virus-like particles (VLPs) composed by the L1 or L1 and L2 proteins which are, respectively, 

the major and minor viral capsid proteins. Two serum dilutions were used: 1:10 and 1:50. 

HPV16 seroreactivity was expressed as normalized absorbance ratio (NAR). HPV DNA 

genotyping and viral load were evaluated by PCR-based methods. Correlation and agreement 

between serum dilutions of each protocol (L1 and L1+L2 VLP) were assessed by Pearson’s 

correlation (r) and Bland-Altman method, respectively. The performance of the different 

protocols was compared using the receiver operating characteristic (ROC) curve using the 

presence of HPV16 DNA as the gold standard. Linear regression was used to analyze the 

association between HPV16 seropositivity and the detection of HPV DNA infection with both 

protocols. The presence of HPV DNA was analyzed based on (1) specific HPV types more or 

less related to HPV16 and (2) HPV16 infection detected alone or in co-infection with other 

HPV types. 

The linear regression models presented above were also used on the entire cohort 

tested with VLP L1+L2 and serum dilution 1:10. The impact of age as a potential confounding 
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factor or effect modifier was analyzed in this model. Finally, the association between HPV16 

viral load and seroreactivity was analyzed using Pearson correlation. 

The magnitude of log10-NARs mean differences between serum dilutions and their 

standard deviations for each protocol (L1 and L1+L2 VLP) were -0,081 (0.123) and -0.026 

(0.150) log units, respectively. The NARs obtained by the serum dilutions used (1:10 and 

1:50) for each protocol were strongly correlated (r = 0.87 vs. 0.94, respectively). However, the 

use of L1+L2 VLPs increased the performance of the test to detect HPV16 IgG antibodies, 

especially with the 1:10 serum dilution [the highest ROC area (95% CI) = 0.7330 (0.6465 – 

0.8495)]. The regression models showed that HPV16 seroreactivity was uniquely associated 

with the presence of HPV16 DNA and not with other HPV types. For example, the analyses 

with the protocol L1+L2 VLP and serum dilution 1:10 showed that HPV16 seroreactivity was 

associated with the presence of HPV16 DNA, β (95% CI) = 0.24 (0.14 - 0.34), and not to 

HPV31 or 35, β (95% CI) = 0.03 (-0.19 - 0.25), or HPV52, 67, 33 or 58, β (95% CI) = 0.15 (-

0.04 - 0.34), compared to women infected with any other HPV type or negative. 

The analysis of the entire cohort shows that the association between HPV16 

seroreactivity and HPV16 DNA infection was similar when the infection was present alone or 

in co-infection, β (95% CI) = 0.14 (0.07 - 0.21) and β (95% CI) = 0.11 (0.01 - 0.21), 

respectively, compared to those infected with any other HPV type or negative. Age was not a 

significant confounder nor an effect modifier in the analysis of the entire cohort. The HPV16 

viral load was not correlated with HPV16 seroreactivity, r (95% CI) = -0.04 (-0.34 – 0.27); β 

(95% CI) = -0.01 (-0.08 – 0.06). In conclusion, the protocol with the higher correlation with 

HPV 16 positivity was that with the L1+L2 VLP and serum dilution 1:10. Only the presence 
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of HPV16 DNA was associated with HPV16 seropositivity (no other HPV type), and it was 

not influenced by co-infection or viral load. 

Keywords: HPV16 seroreactivity, HPV DNA infection, virus-like particles, Enzyme-linked 

immunosorbent assay, IgG antibodies 
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Introduction 
Human papillomavirus (HPV) infection is a major public health concern globally. 

Approximately 10% of worldwide cancers are associated to viral infection and more than half 

of infection-related cancers in women are attributed to HPV (1). 

Cervical cancer is a rare consequence of a common sexually transmitted HPV 

infection, most frequently with HPV16 (50%), the most significant genotype associated with 

the development of the disease (2). It is ranked as the fourth most common malignancy in 

women worldwide and the second most common cancer in women aged 15 to 44 years (3-5). 

In 2012, the world population of women aged ≥ 15 years who were at risk of developing 

cervical cancer was 2.7 million (6). About 528,000 new cases of cervical cancer were 

diagnosed in the same year and over 265,000 people died from it. The estimated cumulative 

incidence of cervical cancer worldwide is 14 cases per 100,000 women aged ≥ 15 years per 

year (4). The worldwide incidence increased by 0.6% annually between 1980 and 2010 (6). 

The estimated worldwide cumulative mortality of cervical cancer is 6.8 cases per 100,000 

women aged ≥ 15 years per year (4). About 85% of the global burden occurs in developing 

regions, where the cumulative incidence and mortality estimations of cervical cancer are 15.7 

and 8.3 cases per 100,000 women aged ≥ 15 years per year, respectively. While in more 

developed regions the statistics are 9.9 and 3.3 cases per 100,000 women aged ≥ 15 years per 

year, respectively (6, 7). 

Most HPV infections are transient and are cleared within 1 or 2 years by the immune 

system (2, 8). Although not all infected women develop measurable HPV antibodies, about 

60-70% seroconvert and retain their antibodies at low-levels in the serum (9-12). The duration 

of natural immunity and whether it can clear an existing infection or protect against reinfection 
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and cervical precancerous lesions are still unclear  (9, 13-23). HPV16 DNA positive women 

tend to be more frequently seropositive than HPV DNA-negative women (13, 15, 24-28). 

Several studies have found a positive association between HPV16 seropositivity and HPV 

DNA positivity; however, some of them did not reach statistical significance (13, 15, 25, 27-

33). 

There is no gold-standard method for measuring antibodies to HPV infection (34, 35). 

Several serological assays measuring a wide range of anti-HPV16 antibodies with different 

properties are currently available for research purposes only (34, 36, 37). They measure 

humoral immune response of cumulative exposure to the virus (38). In the absence of efficient 

methods to harvest native antigens from tissue culture, researchers have used virus-like 

particles (VLP) to study HPV serology. They are composed by recombinantly expressed HPV 

capsid proteins which self assemble into VLPs lacking the viral genome (39). They can be 

composed by the major capsid protein only (L1) or L1 together with L2 protein, the minor 

capsid protein (40). L2 alone lacks the ability to form VLPs, but it can be incorporated when 

co-expressed with L1 (41). 

The capsid proteins L1 and L2 are codified by the L1 and L2 genes, respectively (2). 

Sequencing analyzes of these genes have shown that L1 has the most conserved DNA 

sequence between different papillomaviruses. L2 DNA sequence is less conserved compared 

to L1 (42). There is no report in the literature evaluating which VLP type is better to detect 

HPV16 seroreactivity in enzyme-linked immunosorbent assay (ELISA) which is the most 

common method used for HPV seroepidemiological studies. Little is known if L1+L2 VLPs 

can be responsible for cross-reactivity between HPV types due to their degree of DNA 

sequence conservation, and if the performance of the immunoassays can be affected by the 
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prozone effect,  a type of interference resulting in false negatives or inaccurately low results 

which may be caused by a highly concentrated serum (34, 43).  

In the present study, we compared two ELISA protocols (L1 VLP vs. L1+L2 VLP) 

with two serum dilutions (1:10 and 1:50) to measure HPV16 seroreactivity and investigated if 

HPV DNA positivity was associated with HPV16 seropositivity. We also assessed if the 

association was influenced by co-infection with other HPV types and viral load. Seroreactivity 

in our study was expressed in normalized absorbance ratio (NAR) to minimize the 

measurement errors due to intra- and inter-assay variability of ELISA assays (27, 30, 44-47). 

Although NAR is an arbitrary value and unitless, it is an internally standardized measure of 

seroreactivity (46). 

This dissertation is composed of five main chapters. In the first chapter, we present an 

overview of the biology (viral structure, classification, life cycle, diagnosis and natural 

history), epidemiology of the papillomaviruses (risk factors of these infections based on DNA 

tests and questionnaires), and of the host immune response followed by a summary of the viral 

strategies to avoid it. We also present the viral-like particles and the main serological assays, 

followed by a review of the determinants of HPV16 seroreactivity (seroepidemiology). We 

conclude the first chapter presenting the relevance of this study. In chapter 2, we state our 

objectives, present the Ludwig-McGill cohort study, describe the participants of the study, the 

methods used to test our samples, and the statistical analyses. In this chapter, we emphasized 

that the methods used in this work are not currently available in the clinics and public health 

network. Next, we present the ethical considerations of this study and the author’s 

contributions to the Ludwig-McGill study. Chapter 3 presents the manuscript that will be 

submitted to “The Journal of Infectious Diseases”, containing the main results of this study. 



 

4 

The lab work was supervised by Dr. Luisa Lina Villa, and the statistical analysis by Drs. 

Helen Trottier and Eduardo Franco. João M.G. Candeias and Patrícia Thomann tested the 

HPV serology, and Andrea Trevisan tested the viral load and did the statistical analysis.  In 

chapter 4, we present some supplemental results. In chapter 5, we discuss our findings in light 

of the literature, the limits and strengths of the study, and potential threats to internal and 

external validity. Finally, we present our conclusions. 



 

 

Chapter 1. Literature review 

1.1. Papillomaviruses 

Papillomaviruses comprise a diverse group of viruses that are epitheliotropic, species-

specific, and they can infect the skin and mucosa of animals and humans (2, 48). To date, they 

have been found in fish, reptiles, birds, and mammals (49-53). Considering that these viruses 

have coevolved with their hosts, they have been an evolutionary success for over 500 million 

years (54, 55).  

1.1.1. Viral structure and classification 

Human papillomaviruses belong to the family Papillomaviridae, a family of non-

enveloped, small, and circular viruses with a double-stranded DNA genome of about 8,000 

base pairs. The genome is divided into eight open reading frames (genes) — E1, E2, E4, E5, 

E6, E7, L1, and L2 — coding for ‘early’ (E) or ‘late’ (L) viral functions, and an untranslated 

long control region (LCR) (2). The structure of their capsid is composed of a virally encoded 

major coat protein, L1 and a minor coat protein, L2, which will be described afterwards. HPV 

infections are associated with certain anogenital and oropharyngeal cancers (2, 56). Links 

between HPV and cervical cancer were first suspected more than 40 years ago (57, 58). 

HPV classification is based on the nucleotide sequence of the gene coding for the 

capsid protein L1 (48, 59). Types belonging to different genera share less than 60% similarity, 

different species within a genus have identity of DNA sequences between 60 and 70%, a novel 

genotype has less than 90% similarity to any other type, and identity of DNA sequences 
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between 98-99% defines a variant of type (48, 59). The family Papillomaviridae contains 49 

genera (Papillomavirus α, β, γ, etc.), each of which is further divided into several species. 

The Papillomavirus Episteme (PaVE) is a database of curated papillomavirus genomic 

sequences updated 4 times a year. The PaVE database was created with the objective to 

provide clinicians, epidemiologists, and bench scientists with a uniform data source (54). So 

far, about 350 types of papillomaviruses have been described of which more than 200 can 

infect humans (54, 60). About 40 human types exhibit tropism for the anogenital tract (1, 59). 

They are classified into two different groups according to their oncogenic risk. The first group 

is composed by low-risk types (LR-HPV), mainly represented by HPV6 and 11. They are 

found in 90% of genital warts and low-grade squamous intraepithelial lesions (LSIL) and 

rarely found in cancer. The second group is composed by high-risk types (HR-HPV), mainly 

represented by HPV16 and 18. They are associated with high-grade squamous intraepithelial 

lesions (HSIL) as well as carcinomas (2, 4, 61). HPV18 is most found in adenocarcinomas (4, 

5). All HR-HPV types together account for up to 5% of all human cancers and are the 

necessary cause of 99.7% of cervical cancer, 90% of anogenital cancer, 40% of penile cancers, 

and 42–60 % of oropharyngeal carcinomas (5, 62, 63). HPV16 is found in about 50% of all 

cervical cancer cases, HPV18 in approximately 20%, HPV31, 33, 45, 52, and 58 in about 

20%, and about 10% of all cases are caused by other HR-HPV types (4, 64, 65).  

The number of new HPV types increases very quickly due to metagenomic sequencing, 

a high throughput technology for sequencing of biological samples (66). The genus alpha-

papillomavirus contain 65 cutaneous and mucosal types as yet (60). Members of the alpha 9 

and 7 species have been studied in more detail (67). HPV16 belongs to alpha 9 species 

together with HPV31, 35, 52, 67, 33, and 58. The first two types are considered more related 
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to HPV16, since they share a common immediate ancestor in the phylogenetic tree (Figure 1, 

page 7) (68). According to the International Agency for Research on Cancer (IARC), most of 

these viruses belong to the group of carcinogenic agents (group 1), except HPV67 which is 

considered probably carcinogenic (group 2B) (69). 

 
 

Figure 1: Phylogenetic relatedness of alpha-9 HPV species. Inspired by Schiffman et al., 

2011 (68). 
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1.1.2. HPV life cycle and diagnosis 

HPVs infect keratinocytes in the basal layer of the cervical epithelium at low copy 

numbers as a consequence of microlesions of skin or mucosa. During an infection, HPV 

genomes are found in the nucleus as episomes, circular extrachromosomal DNA (70). The 

infected cell divides and spreads laterally increasing the viral load. Some of these cells stops 

dividing and move into the suprabasal differentiating cell layers. Early viral genes are 

activated at this point to increase viral genomes to thousands. 

Since HPV infection is asymptomatic, it is not possible to predict when it occurs and 

how soon after infection the presence of the virus can be detected in cervical cells. In clinics, 

the Pap test is used to look for abnormal cells in the cervix, while the HPV test looks for HPV 

DNA infection (71, 72). HPV test can find any of the HR-types of HPV that are commonly 

found in cervical cancer. 

Progression to malignancy is frequently associated with loss or viral disruption in the 

E1/E2 regions and integration into the cellular DNA resulting in the loss of negative feedback 

control of viral oncogenes (E6 and E7) (73). The moment that integration occurs in the natural 

history of cervical HPV infections is a controversial issue (74-77). Expression of E6 and E7 

oncoproteins is required to maintain the malignant growth of cervical cancer cells by 

inhibiting cellular tumour suppressors genes (2). The organization of the epithelium changes 

as the disease progresses (70). In the superficial layers of the epithelium, late viral genes are 

expressed, and L1 and L2 capsid proteins are formed to encapsidate the viral genomes. 

Infectious particles are released in the terminally differentiated outer epithelial layer (Figure 2, 

page 9) (2, 70, 78). 
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HPVs, especially alpha-species, are very successful infectious agents. They induce 

chronic infections with no serious sequelae, rarely kill the host and shed large amounts of 

infectious virus for transmission to other individuals (78). 

 

Figure 2: Human papillomavirus life cycle in the squamous epithelium. Reproduced with 

permission from Kahn, 2009, Copyright Massachusetts Medical Society (70). 

1.1.3. Natural history, prevalence and risk factors of HPV infections 

HPV is a very common infection acquired via sexual activity (79). More than 80% of 

women will be infected in their lifetime (80). The incubation period of HPV infections may 
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last from 3 weeks to more than 8 months (78). Genital warts may occur about 2 to 3 months 

after infection which end up regressing exponentially in 10-30% of patients within 3 months 

(78). Infection with HR-HPV types, such as HPV16 and 18 are usually transient and tend to be 

cleared in 12–18 months due to cell-mediated and humoral immune responses (8, 20, 64, 78, 

81, 82). A small number of HPV infections persists, and the pathology may progress to LSIL 

(10–20%) and HSIL in some cases (20%). If not treated, advanced precancerous lesions may 

progress to cervical cancer (30-50%) (83-86). Therefore, cervical cancer is a rare consequence 

of a persistent HPV infection which can be harbored in a latent state for more than 20 years 

before progressing to cancer (Figure 3, page 10) (87, 88). Definition of HPV persistence varies 

significantly between studies due to several HPV detection methods available and several 

lengths of follow-up time (89-91). Consequently, comparison between studies can be 

challenging (92). In general, persistent infection means two or more HPV-DNA-positive tests, 

consecutively, in intervals of 4 to 6 months (93). 

 

 
 

Figure 3: Natural history of HR-HPV infections and the likelihood of progression 

according to disease severity. 
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A decade ago, researchers published a meta-analysis based on 78 studies to investigate 

the age and genotype specific prevalence of HPV infections worldwide (94). Final analysis 

included 157,879 women with normal cytology. Overall worldwide HPV prevalence was 

10.4% (95% CI: 10.2-10.7). Ten years ago, they observed a geographical variation of 

prevalence estimates by world region: in Africa HPV prevalence was 22.1% (95% CI: 20.9-

23.4), Central America and Mexico 20.4% (95% CI: 19.3-21.4), Northern America 11.3% 

(95% CI: 10.6-12.1), Europe 8.1% (95% CI: 7.8-8.4), and Asia 8.0% (95% CI: 7.5-8.4) (94). 

Nowadays, the variance in prevalence among different regions of the world has diminished 

over time probably due to prevention programs (4). Recent data show that HPV prevalence in 

most regions mentioned above is around 4.0%, except in Asia, where no reduction was 

observed over the last decade (4). Less developed regions, such as Caribbean with 15.8% 

(95% CI: 12.2-20.2), South America 12.1% (95% CI: 11.6-12.7), and Eastern Europe 9.7% 

(95% CI: 9.1-10.4) have the highest HPV prevalence in women with normal cervical cytology 

worldwide (4). 

HPV prevalence was high in women younger than 25 years of age, then decreased in 

older women in most of the world regions (94). In Africa, the Americas, and Europe, they 

observed a second peak of HPV prevalence in women aged 45 years or older. Unfortunately, 

most of age-prevalence data were shown graphically with no precise estimates in the text of 

the publication. They only provided detailed information on the HPV prevalence in women 

older than 45 years of age from the Americas. They showed that the overall estimate was 

higher in Central America (20.4%, 19.3–21.4) and South America (12.3%, 11.2–13.4) than in 

Northern America (11.3%, 10.6–12.1). HPV16, 18 or both were detected in 32% of the study 

participants (94, 95). The age-specific bimodal prevalence may be due to a cohort effect 
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(acquisition of new infections due to new sexual partners), the possibility of reactivation of 

latent infection or acquired immunity; however, more studies should be done to validate these 

hypothesis (16, 20, 93, 95, 96). 

 Overall HPV DNA prevalence grew with increasing severity of cervical disease (4, 94, 

97). The more severe the lesion, the greater the probability of detecting the DNA of a HR-

HPV type in cells from cervical smears. HPV16 and 18 DNA prevalence according to severity 

of cervical disease in less developed regions of the world were: 4.4% (95% CI: 4.3-4.5) in 

normal cytology, 25% (95% CI: 24.1-25.9) in LSIL, 46.6% (95% CI: 45.8-47.4) in HSIL, and 

69.5% (95% CI: 68.9-70.1) in cervical cancers (4).  

There are some risk factors associated with the acquisition and persistence of HPV 

infections (98). Some of them can be measured by molecular biology techniques or 

questionnaires. Cumulative HPV exposure is associated with sexual behaviors, such as 

number of sexual partners, and concurrent relationships (96, 98, 99). Sexually transmitted 

infections, such as Chlamydia trachomatis, immunodeficiency virus, and bacterial vaginosis 

have also been found to be predictive of cervical HPV infection risk in epidemiological studies 

(96, 98, 100-102). Immunodeficiency appears to increase the host susceptibility to infection, 

since a higher prevalence of genital HPV is observed in immunosuppressed individuals, 

regardless of the cause of immunosuppression (79, 103). 

There are other risk factors which are inconsistently associated to the acquisition of an 

HPV infection, particularly with respect to reproductive and genital health (98). Micro-

abrasions caused during sexual intercourse in a dry and irritated genital tract due to tampon 

use could increase the susceptibility to HPV infection and decrease the rate of HR-HPV 

clearance; however, this finding is not supported for all researchers (92, 98, 104, 105). There 
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is also a lack of consensus regarding smoking, use of oral contraceptive, condom use, and age 

at first intercourse (96, 99, 102, 106-108). Little is known about the association of frequent 

vaginal douching and HPV infections (109). 

Researchers have also concentrated their efforts to understand the role of risk factors 

that favor persistence of HPV infection and mediate progression of precancerous lesions to 

cancer. Some authors have shown that older age and viral factors, such as genotype, molecular 

variants, and viral load are predictive of persistent HPV infection and progression to cervical 

cancer (79, 88, 110-115). Smoking, multiparity, long-term use of oral contraceptive, other 

sexually transmitted infections, and chronic inflammation also seem to increase the risk of 

persistence, and disease progression (96). Daily consumption of vegetables has also been 

associated with HPV clearance (92). Besides, it is very common to find co-infection with 

multiple HPV types in many epidemiological studies (15, 30, 116). However, the role of co-

infection on the duration of the infection is not fully understood (101, 117).  

1.1.4. An overview of the host immune response 

This section is focused on the host immune response and the virus strategies to avoid it. 

Host immune response against pathogens can be divided in several basic phases that differ 

depending on the perspective. For the pathogen side, they must find a permissive host 

environment, successfully initiate infection of target cells and be able to replicate. For the host 

side, they have to initiate a series of events which includes initial recognition of the pathogen 

by sentinel host immune cells, establish a innate immune response and trigger an adaptive 

response to eliminate the pathogen (118). The innate and adaptive immune systems are often 

described separately; however, they usually act together (119).  
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1.1.4.1. Innate immunity 

Innate immunity is the first line of defense from infection in a non-specific manner by 

detecting the pathogen and clearing most of microbial assaults (119, 120). It is rapid, does not 

require prior sensitisation, is not antigen-dependent and has no specific memory (120, 121). In 

our context, it is an epithelial barrier composed by cells (i.e., phagocytes, some antigen 

presenting cells, and the effector cells), several cellular antimicrobial products (e.g., cytokines 

and chemokines), and the complement cascade, a biochemical process that occurs in the blood 

to help cells of the immune system to eliminate invading pathogens (121). 

Briefly, inflammation is the first sign of innate immune response which is triggered by 

cell injury or death. At this point, the actors of the innate immune system are recruited to solve 

the infection and kick-start the adaptive immune response if necessary (120). 

1.1.4.2. Adaptive immunity 

Adaptive immune response is specific and generally lethal to foreign antigens. 

Antibody-mediated humoral immune response clears free virus particles from body fluids 

preventing viral reinfection, while cell-mediated immune response kills infected cells and 

generate immune memory. Both systems are interconnected in some ways with the adaptive 

immunity becoming prominent several days after the onset of the innate immune response 

(119, 120). 

Antigen-specific immune response is triggered when cells of the innate immune system 

are stimulated leading to the proliferation and differentiation of cells that compose the 

adaptive immune system. Lymphocytes T and B are born in the bonne marrow and are the 

main components of adaptive immune system. Successful cellular and humoral (antibody) host 
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immune defenses depends on them (120). Next, we provide an overview of the humoral 

immune response. 

1.1.4.2.1. Humoral immune response 

Antibodies, also called Immunoglobulins (Ig), are Y-shaped glycoprotein molecules 

that are produced by plasma cells in response to an antigen. Since different antibodies 

recognize different antigens, antigen-binding sites are different for different antibodies which 

are the effector molecules of the humoral immune response (122). Five primary classes of 

antibodies exist based on the structure of their molecule. They are identified as IgG, IgM, 

IgA, IgD, and IgE, and are distributed and function differently in the body. IgG has four 

subclasses (IgG 1 to 4) and is the most frequent (75%) immunoglobulin in the serum. It is 

versatile because it can carry out all functions performed by all classes of immunoglobulins 

and provides long term protection (122). 

Naïve lymphocytes B are activated when they first encounter an antigen. Only a few 

native antigens can directly activate B cells and generate plasma cells (120). Low levels of 

antibodies are produced after natural HPV infection. The response to a second round of 

infection is often faster than the primary infection because of the activation of memory B and 

T cells (78). A neutralizing antibody response highly type-specific to L1 is known to 

effectively prevent HPV infection (123). However, they are unable to kill established HPV-

infected cells (62).  

HPV vaccination was implemented in several countries in 2007. A systematic review 

and meta-analysis published at the “Lancet Infectious Diseases” in 2015 showed that HPV16 

and 18 infections decreased between the pre-vaccination and post-vaccination periods by 68% 
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(RR: 0.32, 95% CI: 0.19 – 0.52) and anogenital warts decreased by 61% (RR: 0.39, 95% CI: 

0.22 –0.71) in girls 13–19 years of age (124). Significant reductions in HPV 31, 33, and 45 

infections were also observed in this age group of girls (RR: 0.72, 95% CI: 0.54 – 0.96) 

suggesting cross-protection. All these results were observed in high-income countries with 

female vaccination coverage of at least 50% (124). Vaccination can induce very high 

concentrations of neutralizing antibodies, at least 2 to 4 log units higher than in natural 

infections (78).  

1.1.4.3. Viral strategies to avoid host immune response 

The reason of the successful viral lifestyle is the ability of HR-HPV types to avoid host 

defence systems (78). The virus replication cycle itself is an immune evasion mechanism that 

helps the virus to evade the innate immune response and delay activation of adaptive 

immunity (78, 121). 

The HPV life cycle depends on the keratinocyte differentiation program, production of 

viral particles is time-consuming, there is no cytolysis and no virally induced cell death; 

consequently, there is no inflammation. All key events occurs in a cell destined for 

desquamation away from the primary site of immune surveillance, the submucosa (121). 

During HPV life cycle, there is little or no release of pro-inflammatory cytokines as part of the 

innate immune response. Cytokines help to trigger the adaptive immune response and are 

important in the activation and migration of antigen-presenting cells (78). In addition, there is 

no viremia, and host dendritic cells are exposed to low levels of viral proteins during the 

natural history of HPV infection (78, 84, 120).  
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1.1.5. HPV seroepidemiology 

In general, natural exposure to a virus results in a protective antibody response; 

however, seroconversion does not always occur following HPV infections. Only about half of 

infected women have detectable levels of anti-HPV antibodies in their bloodstream (10, 93). 

In addition, about half of seropositive women produce neutralizing antibodies (21). For 

women with incident HPV16 infections, the median time to seroconversion from DNA 

detection varies from 6-12 months (10, 125). The duration of natural immunity and whether it 

can protect against cervical precancerous lesions are still unclear (9). Serological assays may 

identify the individuals who had developed an immune response to previous exposure to HPV 

and may be protected against reinfection (18, 21, 126). However, some studies have shown 

that reinfection with the same type is possible suggesting no protection following a previous 

type-specific infection (20). 

Although some researchers have concentrated their efforts to establish an international 

standard operating procedure for HPV serology, we still do not have a gold-standard method 

for measuring antibodies to HPV infection (34, 35). Consequently, we have no agreed 

definition of what level of response indicates effective seroreactivity making comparison 

between results obtained by different laboratories extremely difficult (34, 78). In addition, 

HPV serology has several limitations, such as low seroconversion after natural infection, 

antibody levels may decrease over time, and limited assay sensitivity (10, 13, 127). Due to this 

variety of technical and biological limitations, HPV serology has not been used in the clinics 

(45, 128). 

In this section we introduce the viral-like particles (VLPs) which are the antigen used 

in most of the immunoassays and make a brief description of the main serological assays 
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available to measure antibody titers to HPV infection for research purposes. Finally, we 

present an overview of the most important findings in the literature about the determinants of 

HPV16 seroreactivity highlighting the association between HPV16 seroreactivity and HPV 

DNA positivity.  

1.1.5.1. Virus-like particles (VLP): antigens for serological assays 

The L1 and L2, major and minor viral capsid proteins, respectively, are assembled late 

in the HPV life cycle to compose the icosahedral capsid shell which has the function to protect 

the viral genome (129-132). 

In the absence of efficient methods to harvest native antigens from tissue culture, 

serologic detection of HPV has used virus-like particles (VLP) (39, 45, 131, 133-135). They 

are non-infectious papillomavirus particles without the viral genome. VLPs display 

conformational and type-specific epitopes which are the part of an antigen molecule to which 

an antibody attaches itself. They are structurally similar to authentic virions, term used to 

designate viral particles outside living cells (39, 135). VLPs are produced in a variety of 

recombinant expression systems and are highly immunogenic inducing potent antibody 

responses due to their ability to activate both innate and adaptive immune responses (131, 

133-139).  

L1 protein can self-assemble to form empty VLPs that are the basis of the licensed 

HPV vaccines (41, 123, 131). L2 does not form VLPs, but it can be incorporated when co-

expressed with L1 (40, 133). L1 has a highly conserved DNA sequence, and L2 is less-well 

conserved among different HPV types. Addition of L2 in the composition of VLPs can 
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possibly induce broader protection through cross-neutralizing antibodies, even across species 

(40, 62, 131).  

1.1.5.2. Main serological assays  

Serological assays confer an advantage over DNA methods because it is a single 

outcome that can represent infection from multiple anatomic sites (140, 141). They also can be 

used as an indicator of cumulative infection exposure to predict the risk of developing cancer 

and their precursor lesions, reinfection, reactivation, and clearance of infections. (14, 19, 30, 

142, 143).  

Several serological assays measuring a wide range of anti-HPV16 antibodies with 

different properties are currently available for research purposes (34, 36). The first assay 

developed for measuring HPV antibody titers was the athymic mouse xenograft system (144). 

Due to technical difficulties in testing a large number of sera using this protocol, several 

complementary assays have been developed (18). Each assay provides only a partial 

characterization of immune status. They differ quantitatively (i.e., throughput and detection 

range) and qualitatively (i.e., if they detect polyclonal antibodies which may be indicative of 

prior exposure or neutralizing antibodies which is indicative of immune protection). Because 

of that, comparison of seroprevalence across assays is not possible (18, 34, 121) 

Several immunoassays have been developed during the last decades, such as the type-

specific competitive radioimmunoassay (cRIA) and the pseudovirion-based neutralization 

assay. Both methods are labor intensive and only measure neutralizing antibodies (145, 146). 

The last generation of methods have used the Luminex technology to measure neutralizing or 

total IgG antibodies to VLP (competitive multiplexed, Luminex-based immunoassay, cLIA) or 
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to glutathione S-transferase-L1-flag-fusion proteins (GST-L1) (147-150). Luminex is a robust, 

sensitive, and high-throughput serological platform that can be used to measure antibodies to 

several HPV genotypes at the same time (151). Nevertheless, it is expensive and depends on 

monoclonal antibodies which specifically bind to only one epitope of the antigen to perform. 

The most common serologic assay for HPV is the enzyme-linked immunosorbent 

immunoassay (ELISA) (152). It is type-specific, but it cannot differentiate between 

neutralizing and non-neutralizing antibodies. In fact, it measures antibodies to HPV VLPs that 

were secreted by different B cell clones within the body. So, ELISA measures a polyclonal 

response. Technically, it means that these antibodies can bind to different epitopes on the same 

antigen. 

In ELISA protocols, antibody measurements have relied on determining VLP optical 

density (OD) values for serum samples and comparing them against negative and positive 

controls to detect HPV seroreactivity. However, OD values are prone to measurement errors 

due to intra- and inter-assay variability originated from daily variations in reagent batches and 

technical performance (e.g., pipetting, instrument readings, etc.) (46). Our team has proposed 

the use of normalized absorbance ratio (NAR) to circumvent these technical problems that can 

affect the validity of seroreactivity (27, 30, 44-47). NARs are calculated by dividing the mean 

blank-subtracted optical densities (OD) by the equivalent value of the control serum pool 

included in the same plate in triplicate. Although NAR is an arbitrary value and unitless, it is 

an internally standardized measure of seroreactivity (46).  

Therefore, we are facing a unique opportunity to evaluate which VLP type can better 

capture the association between naturally acquired HPV16 seropositivity and HPV DNA 
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positivity using an optimized ELISA, and to investigate if L1+L2 VLPs can be responsible for 

cross-reactivity between HPV types.  

1.1.5.3. Determinants of HPV16 seroreactivity  

A review on HPV serology including 117 studies from several world regions has been 

published (153).  Participants were women and men from several hours to over 90 years of 

age. Serological antibodies were detected with ELISA (78%), cLIA (12%), and other available 

methods (10%). HPV16 seropositivity was more prevalent in women than in men and peaked 

around ages 25-40 years in women. Some studies have reported that seroprevalence peaked 

twice in women. A possible explanation for the second peak at older ages (>50 years) is a 

reinfection or reactivation of a latent infection maybe by reduction of immune surveillance 

with increasing age followed by increasing viral load, and antibody induction (26). In young 

women from 9-26-year-old, HPV16 seroprevalence ranged from 0-31% in North America, 21-

30% in Africa, 0-23% in Asia/Australia, 0-33% in Europe, and 13-43% in Central and South 

America (153). 

To better understand the humoral immune response against HPV infections, several 

researchers from all over the world have identified the determinants of HPV16 seroreactivity. 

Sexual behavior seems to play an important role in the acquisition of HPV antibodies, 

particularly, the increased number of lifetime sexual partners (24, 27, 29, 30, 33, 38, 108, 154-

161). The exact number of sexual partners that increase the likelihood of seroconversion varies 

from study to study and depends particularly on the presence of HPV DNA infection among 

partners. In the Ludwig-McGill cohort study the odds ratio of HPV16 seroreactivity at 

baseline for women who reported having had more than four lifetime sexual partners were 
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elevated >2.5-fold compared to women who reported 0-1 partner during their entire life (OR: 

2.56, 95% CI: 1.97-3.53) in the analysis adjusted for age and HPV16 DNA positivity (30). 

Other determinants of HPV16 seroreactivity were identified, such as smoking, marital 

status, seropositivity for HPV18, history of sexually transmitted disease other than HPV, 

hormonal contraceptive use, parity, frequency of sex, years since sexual debut, and high 

HPV16 viral load (24, 30, 108, 156-159). Age, age at first intercourse, stage of the disease, 

and cytologic diagnosis are still controversial determinants of HPV16 seroreactivity (24-30, 

33, 38, 154, 156-158). However, all these factors might be related to HPV infection only. It is 

difficult to understand what is related to HPV DNA infection from what is related specifically 

to seroconversion. The role of potential confounders in the association between HPV16 

seropositivity and HPV DNA positivity will be discussed in depth later. 

Both cross-sectional and longitudinal study designs have reported the correlation 

between HPV16 DNA positivity and HPV16 seropositivity (13, 15, 25, 27-33). Based on 

inclusion and exclusion criteria which are shown in the appendix I, we prepared a summary 

table of the literature regarding this subject (Appendix II). In brief, all studies mentioned 

above have found a positive association between HPV16 seropositivity and HPV16 DNA 

positivity independently of any other factor (e.g., age, number of lifetime sexual partners, 

etc.). Three of them did not report statistically significant results for the association (29, 31, 

32). Only one study presented the results adjusted for age and lifetime number of sexual 

partners (p=0.046) (25). HPV16 DNA positive women tended to be more frequently 

seropositive than HPV DNA-negative women (13, 15, 24-28). Only two studies found that 

HPV16 DNA positive women were less seropositive than HPV DNA-negative women which 

is probably due to their small sample size (31, 32). German researchers have reported two 
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peaks of HPV seroprevalence according to the age of the participants (26). The first peak is in 

young adult women (15–34 years) and the second in women older than 45 years old. 

The partial analysis of the Finnish family HPV study conducted at Turku, Finland, and 

designed to evaluate dynamics of HPV infections within families used the Luminex 

technology with GST-L1 proteins as antigen to detect the antibody levels (150, 162). Authors 

reported no concordance between cervical DNA detection and co-existent seropositivity even 

in samples taken 12 months apart, but it showed that women who cleared their cervical 

HPV16 DNA infection had the highest HPV16 antibody levels, whereas those who acquired 

incident HPV16 DNA infections had the lowest antibody levels.  

1.2. Relevance of the study 

Cervical cancer is an important public health problem worldwide. There is no cervical 

cancer without an HPV infection. From a public health perspective, the government depends 

on seroconversion results obtained by standardized serological methods to decide the cost-

effectiveness of vaccination. This study aims to increase the validity and precision of a 

serological instrument and; therefore, should contribute directly to the quality and reliability of 

the decisions from public health institutions. 

From a clinical perspective, understanding why some women can produce antibodies 

after having naturally acquired an HPV infection and others not, particularly infection with 

HPV16, the most prevalent genotype, can help clinicians to drive personalised and more 

effective treatments. 

Based on the assumption that both clinical and public health professionals depend on a 

highly performing serological instrument for decision-making, it is important to consider 
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every detail concerning the methodology used to measure HPV antibodies. An accurate 

instrument should be valid and precise, which is essential to compare epidemiological studies 

and ultimately use the findings for the benefit of the population. The lack of precision 

(whether there is or not dispersion in measurements) and validity (whether the estimation is 

near or not the true value) in measurements can produce random errors and bias. The 

epidemiological objective of this study is the analysis of the baseline data of a cohort of 

women tested by two ELISA protocols performed with two VLP types using two serum 

dilutions. We sought to identify which of them better capture the association between HPV16 

seropositivity and HPV DNA positivity, that is which combination of conditions was the most 

accurate and precise to measure HPV seropositivity. Although comparisons between 

serological assays have been done, particularly to measure antibody responses after HPV 

vaccination, studies comparing L1 and L1+L2 VLP ELISA protocols to measure humoral 

immune response to naturally acquired HPV infection are lacking in the literature (34, 39, 163, 

164). 

This study provides data to increase the performance of serological methods with the 

potential to be used in clinics and public health decision-making in the future. A standardized 

method is crucial to validate the effect of the HPV vaccine in contrast to naturally acquired 

immunity. Our findings further our understanding of the natural history of HPV infections, 

provide us knowledge about the main determinant of HPV16 seroreactivity (HPV DNA 

positivity), and allow epidemiological researchers to design new epidemiological studies with 

the objective to answer remaining questions about this issue. 



 

 

Chapter 2. Methodology 

2.1. Objectives 

The aims of this study were to compare two protocols (L1 only vs. L1+L2 VLPs) based 

on two serum dilutions (1:10 and 1:50) to measure HPV16 seroreactivity, to investigate 

whether HPV DNA positivity was associated with HPV16 seropositivity and to verify if the 

association was influenced by co-infection with other HPV types and viral load. 

2.2. The Ludwig-McGill Cohort Study 

The Ludwig-McGill Cohort Study is a large longitudinal investigation of the natural 

history of HPV infection and cervical neoplasia which was carried out at Ludwig Institute for 

Cancer Research, Sao Paulo Branch, Brazil, in collaboration with McGill University, 

Montreal, Canada. Its design and methods have been described in detail in previous work 

(165). The objectives of this prospective cohort study were : (1) study the epidemiology of 

persistent cervical HPV infection in asymptomatic women, (2) investigate whether persistent 

HPV infection increases cervical precancerous lesions, (3) search for determinants of 

persistent HPV infection, (4) search for molecular variants of HPV that may be associated 

with an increased risk of lesions, (5) investigate whether viral load is correlated with persistent 

infections and with lesion risk, (6) study the antibody response to HPV as a predictor of 

persistence and lesion progression, and (7) evaluate the involvement of patients’ genetics in 

mediating HPV persistence and lesion severity. Study participants are described below. 
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2.3. Methods 

2.3.1. Study participants 

Out of 3,589 women eligible to be enrolled in the Ludwig-McGill cohort study, 2,528 

accepted to participate in the study which resulted in a response rate of over 70%. After 

further review restricted to eligibility, the cohort included 2,462 participants. The study 

population of this work is summarized in Figure I, page 53. They belong to a subset of 

Brazilian women attending a comprehensive maternal and child health program catering to 

low-income families in the city of Sao Paulo, Brazil, from 1993 to 1997. Participants were 

followed up on average for 6 years with some women who were followed for up to 10 years at 

scheduled returns every 4 months in the first year and once every 6 months thereafter. 

In brief, two nurses were employed and trained specifically for the study. They 

recruited participants randomly from the daily lists of outpatients in the family medicine, 

gynecology, and family planning clinics at the Municipal Hospital Maternidade Escola Dr. 

Mario de Moraes Altenfelder Silva, popularly known as Maternidade Escola Vila Nova 

Cachoeirinha, Sao Paulo, Brazil. The inclusion criteria were: (1) being 18–60 years old, (2) 

being permanent residents of Sao Paulo, (3) had no intention to become pregnant over the next 

year, (4) had an intact uterus without referral for hysterectomy, (5) had no treatment for 

cervical disease within 6 months before enrolment, and (6) reported no use of vaginal 

medication in the 2 days prior to enrolment. Eligible participants answered baseline and 

follow-up questionnaires administered by the nurses to collect information on 

sociodemographic, lifestyle, and sexual, reproductive, and contraceptive characteristics. 

Questionnaires varied between visits, with the questionnaire at baseline being the most 
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detailed. The codebook of the baseline questionnaire is in the appendix III. Patient’s biological 

samples were collected at baseline and each scheduled visit. Cervical cell specimens were 

collected for Pap cytology and HPV DNA analyses and blood samples for HPV serology. 

Cervicographies were performed once within the first year for each participant at one of the 

first four visits as well as at 24 and 48 months. 

Women recruited for the study were compensated with meal tickets which had a cash 

value honored by almost all shopping facilities, including groceries. To encourage compliance 

with follow-up visits, the value of the first meal ticket started at 5$ and increased by 5$ at each 

subsequent visit to a maximum of 20$ for every visit afterward. Meal ticket values were 

converted in US dollars to facilitate understanding. 

2.3.2. Cervical specimens 

An Accelon biosampler (Medscand Inc., Hollywood, FL, USA) was used to collect a 

sample of ecto- and endocervical cells. After preparation of the pap smear on a glass slide for 

cytology, remaining exfoliated cells were preserved in Tris-EDTA buffer (pH 7.4) at most 5 

days at 4ºC and were then frozen. Samples were sent to the Ludwig Institute for Cancer 

Research in Sao Paulo for storage and testing. Pap smears were shipped to Montreal, where 

they were re-read by one of the Canadian collaborators. Cytopathology reports were based on 

the Bethesda system for cytologic diagnoses (166). 

2.3.3. HPV detection and genotyping  

Standard techniques were used to extract and purify DNA from cervical cells. In brief, 

samples were digested with 100µg/ml proteinase K for 3-18h at 55ºC, and the DNA purified 

by spin-column chromatography. Specimens were tested for the presence of HPV DNA by a 
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previously described PCR protocol amplifying a highly conserved 450 base pairs (bp) segment 

of the L1 viral gene flanked by MY09/11 or PGMY09/11 primers (167, 168). Genotyping of 

the amplified products was performed by hybridization with individual oligonucleotide probes 

labelled with P32 and specific for 27 HPV genital types whose nucleotide sequences for probes 

within the MY09/11 fragment have been published elsewhere (169). To verify the specificity 

of the hybridizations, we included more than 30 type-specific positive controls in all 

membranes. 

Amplified products hybridizing to the generic probe, but not to any of the type-specific 

probes were further tested by restriction fragment length polymorphism analysis of the L1 

fragment extending the range of identifiable HPV to more than 40 genital types (42). The 

informative enzymes for this analysis include BamHI, DdeI, HaeIII, HinfI, PstI, RsaI, and 

Sau3aI. (170). The genotypes tested included high oncogenic risk (HR-) HPV types 16, 18, 

31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 73, and 82, and low oncogenic risk (LR-) HPV 

types 6, 11, 26, 32, 34, 40, 42, 44, 53, 54, 57, 61, 62, 64, 67, 69, 70, 71, 72, 81, 83, 84, 89, and 

CP6108, plus other unknown types (20, 171). Testing for host DNA was performed using 

GH20 and PCO4 primers, which amplify a 268 bp region of human β-globin gene. Specimens 

were tested blindly with respect to all other participant-specific information and care was 

taken to avoid contamination in all procedures. Only samples that tested positive at least for β-

globin were considered adequate and included in the analysis. 

2.3.4. HPV serology 

Serum samples were separated from clotted blood specimens and stored at −20°C until 

testing. The level of IgG antibodies to HPV16 was measured by a semi-quantitative method, 
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the enzyme-linked immunosorbent assay (ELISA). Recombinant HPV16 VLPs, composed by 

L1 only and L1 along with L2, were prepared in baculovirus (45). They were kindly provided 

by Dr. I. Frazer, University of Queensland, Australia and Dr. J. Schiller, National Institute of 

Health, United States, respectively. The ELISA protocol was performed as previously 

described (30, 46). Briefly, polystyrene microtiter plates were coated with 50 μL of a solution 

containing 2 mg of HPV16 VLP per 100 mL of PBS (phosphate-buffered saline) and 

incubated for 1.5 hours at 37°C. Plates were washed three times with calcium- and 

magnesium-free PBS and were then incubated with serum samples diluted 1:10 or 1:50 in PBS 

containing 0.5% skim milk and 0.1% newborn calf serum (PBS-MNCS) for 2.5 hours at 37°C. 

Following repeated washings, plates were incubated with 50 μL of a previously standardized 

dilution of peroxidase-labeled anti-IgG conjugate for 1 hour at room temperature. Following 

an additional washing cycle, a chromogen substrate mixture (0.1 mg/mL O-phenylenediamine 

and 0.003% hydrogen peroxide diluted in 0.15 mol/L PBS; pH 6.0) was added to the wells. 

Absorbances were read at 490 nm in a colorimetric plate reader after 45 minutes. Replicate 

blank wells with PBS-MNCS instead of diluted serum samples and a control human serum 

pool were included in all plates. The latter was included to control the inter- and intra-assay 

variation in reactivity that is inherent to immunoenzymatic techniques. A single batch of this 

serum pool was prepared in advance and used throughout the study. It was prepared from 

dozens of blood banks and normal clinical laboratory specimens from female adult donors at 

the AC Camargo Hospital in Sao Paulo. Specimens were then aliquoted and kept frozen at - 

20°C. Absorbances were corrected for the fluctuation in seroreactivity of the serum pool as 

previously described (46). Seroreactivity was expressed as normalized absorbance ratio 

(NAR) by dividing the mean blank-subtracted optical density (OD) by the equivalent value of 
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the control serum pool included in the same plate in triplicate (46). Sample size analyzed for 

HPV16 IgG antibodies seropositivity in this study is described in detail in the item 2.3.6, 

entitled statistical analysis and illustrated in the Figure I, page 53. 

2.3.5. Viral load  

Cervical specimens found to be positive with the main PCR protocol (MY09/11) were 

retested by a quantitative PCR to measure viral burden known as low-stringency PCR (LS-

PCR) (172). Briefly, a consensus primer pair (GP5/GP6) targeting the L1 gene of a broad 

spectrum of HPV was employed under low-stringency conditions to coamplify the specific 

HPV DNA fragment (140 bp) along with DNA sequences from the human genome present in 

the starting PCR mixture (173). A 192 bp DNA product homologous to a small region of the 

human chromosome X was selected to serve as internal control for the reaction. DNA 

extracted from two cervical carcinoma cell lines with known quantities of HPV copies (HeLa, 

20–40 copies/cell of HPV18 and Caski, 400–600 copies/cell of HPV16) were used as viral 

load controls (174). Standards were prepared with a reference HPV16 plasmid kindly provided 

by Dr. E.M. de Villiers, Deutsches Krebsforschungszentrum, Heidelberg, Germany. They 

consisted of mixtures containing varying amounts of the reference HPV16 plasmid 

(corresponding to 0, 4, 20, 100, 500, and 2,500 viral copies/cell) added to a constant 

background of DNA extracted from human breast tissue which were tested in all reactions. 

LS-PCR components in final volume of 20 μl were: 10 mM Tris-HCl, pH 8.3, 50 mM 

KCl, 3.5 mM MgCl2, 0.1 units of Taq DNA polymerase (Invitrogen, Grand Island, NY, USA), 

10 ng of the template DNA, 200 μM of each dNTPs (dATP, dTTP, dCTP, and dGTP), and 10 

pmol of each primer GP5/GP6 (GP5: 5' TTTGTTACTGTGGTAGATAC 3 ', GP6: 5' 
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GAAAAATAAACTGTAAATCA 3') (173). The reaction conditions were: one cycle of 94oC 

for 3 minutes, 45oC for 1 minute, and 72oC for 1 minute, followed by 9 cycles of 92oC for 30 

seconds, 45oC for 1 minute, and 72oC for 1 minute, and 29 cycles of 92oC for 30 seconds, 

40oC for 1 minute, and 72oC for 1 minute. Finally, a cycle with 92oC for 30 seconds, 40oC for 

1 minute, and 72oC for 5 minutes. 

Amplified products were run in silver-stained polyacrylamide gels (8%) (175). The 

ratio of the (140 bp) HPV band signal density to that of the internal control band (192 bp) was 

then measured by densitometry and quantified (in copies per cell) by linear interpolation using 

a standard curve constructed with the standards. Samples and controls were tested in duplicate, 

while standards in triplicate. Viral load was derived from the mean values. The protocol was 

described in details in previous work (172). 

2.3.6. Statistical analysis 

Descriptive statistics including median and interquartile range (IQR), mean and 

standard deviation (SD), and percentage were used to describe participant’s characteristics for 

all women included in the cohort (n=2,462), those tested individually with VLP composed by 

L1+L2 (n=1,975) as well as those tested with both VLP types (L1 and L1+L2) (n=246) at 

baseline. The subset of 246 women was selected based on their HPV DNA positivity to allow 

the investigation of our results in a fictitious population that contains a greater number of 

HPV-positive women, especially those infected with HPV16 alone or with other genotypes. 

Box-and-whiskers plot was presented to describe the level of HPV16 IgG antibodies 

(L1 vs. L1+L2 for both serum dilutions, 1:10 and 1:50) detected at baseline among the 246 

women tested with both protocols and serum dilutions. In this representation, the lower 
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adjacent values of HPV16 IgG antibodies were computed by subtracting 1.5-fold the IQR (25th 

percentile – 75th percentile) from the first quartile (25th percentile). Upper adjacent values 

were computed by subtracting 1.5-fold the IQR from the third quartile (75th percentile). 

In order to compare the ELISA protocols based on serum dilutions (1:10 vs. 1:50) and 

VLP types (L1 and L1+L2 VLP), we used Pearson’s correlation (r) followed by its 95% CI. 

Linear regressions were done to add regression lines and their 95% CI in the graphics. The 

coefficient of determination (R2) and its 95% CI (computed by bootstrapping) was also 

estimated. Bland-Altman method was also used to quantify the magnitude of differences 

between serum dilutions for each ELISA protocol (L1 and L1+L2 VLP) in the subset of 

women tested with both VLPs at baseline (n=246). For the Bland-Altman method we 

constructed a scatter plot containing the mean difference between serum dilutions 1:10 

(measure A) and 1:50 (measure B) and its limits of agreement which were calculated using the 

mean difference and the standard deviation (SD) (176, 177). This method recommends that 

95% of the data points should lie within ±2*SD of the mean difference or more precisely 

±1.96*SD (95% limits of agreement). Normalized absorbance ratios (NARs) were log10-

tranformed to ensure the assumption of normality of differences which was previously verified 

with a histogram. The Y axis of the scatter plot shows the difference between the two paired 

measurements (A – B), and the X axis represents the average of these measures [(A + B)/2]. In 

order to better detect the proportional difference between both measurements we included in 

the plots the regression lines and their 95% CI computed by bootstrapping. The magnitude of 

differences can be quantified by the gap between the Y axis corresponding to zero difference 

and the parallel line to the X axis representing the observed mean difference between both 

measurements.  
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The accuracy of the protocols to detect HPV16 IgG antibodies were assessed using 

receiver operating characteristic (ROC) curves with HPV16 DNA infection as gold standard. 

Areas under the ROC curves were estimated with their 95% CI. 

We used linear regression to analyze the association between HPV16 seropositivity 

(log10-transformed NARs) and HPV DNA infection at baseline. We built 3 models of exposure 

focusing on HPV DNA types 16, 31, 35, 52, 67, 33, and 58, which belong to genus alpha-

papillomavirus, species 9 (48). We built a first model comparing HPV16 DNA to the reference 

including all other HPV type or HPV-negative cases. A second model including 3 categories 

comparing HPV16, other alpha 9 types highly related to HPV16 (i.e., HPV31/35) versus the 

reference group including any other HPV type or HPV-negative women. Finally, a third model 

including 4 categories was used to compare women positive for HPV16, HPV31 or 35, and 

other alpha 9 HPV types moderately related to HPV16 (i.e., HPV52/67/33/58) versus the 

reference including any other HPV type or HPV-negative women (59). Using these models, 

we first analyzed the subset of 246 women tested with both ELISA protocols and serum 

dilutions. Then, we used the third model to analyze the entire cohort (excluding fourteen 

women who had no information on HPV status) (n=1,961). 

The association between HPV16 seropositivity and HPV16 DNA infection was also 

analyzed as single type infection compared to co-infection with other HPV types (multiple 

types). In this model, HPV exposure was categorized as follow: HPV16 single infection, 

HPV16 co-infection with other HPV types, and the reference category including all other 

women (i.e., infected with HPV other than 16 or negative). We used this model to analyze the 

subset of 246 women tested with both ELISA protocols and serum dilutions. Then, we 

analyzed the entire cohort tested for HPV16 serology with the L1+L2 VLPs and serum 
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dilution 1:10. (n=1,961). For all linear regression analyses we provided the regression 

coefficients (β) and their 95% CI. Technically, β coefficients are interpreted based on the 

reference group, and they can be used to determine the impact of the independent variable 

(HPV DNA positivity) on the dependent variable (HPV16 seroreactivity). They represent the 

estimated change in HPV16 seroreactivity for a unit change in HPV DNA positivity. Since 

HPV positivity is a categorical variable, one-unit change means moving to the adjacent 

category. The coefficient of determination (R2) and its 95% CI (computed by bootstrapping) 

was also estimated to measure how well the regression models fitted the observed data. 

Using the entire cohort tested for HPV16 serology with L1+L2 VLPs and serum 

dilution 1:10 (n=1,961), we investigated the impact of age as potential confounder in both 

models constructed to evaluate HPV exposure (i.e., phylogenetic relatedness to HPV16 and 

type of infection - single vs. multiple). For that, we included the variable age in our models 

(continuous) and we then evaluated the percentage of variation between the crude and adjusted 

β coefficients. We used a variation of >10% in the β coefficients as indicative of confounding. 

An interaction parameter was also added in our models to investigate the modifying effect of 

age. Statistical significance was achieved if the p-value of this parameter was <0.05. 

Finally, association between HPV16 DNA viral load (copies/cell) and HPV16 

seropositivity was investigated among women with HPV16 single type infection detected in 

the cohort at baseline (n=41) using the same ELISA protocol as above (L1+L2 VLPs, serum 

dilution 1:10). All analyses were performed using STATA statistical software (version 14.2). 

2.3.7. Power estimation 

A power analysis comparing two-sample means was done using the two-sided t-test 

with a significance level (α) of 0.05 using the data obtained with the ELISA protocol - L1+L2 



 

35 

VLP and serum dilution 1:10. The estimated power of the comparative analysis was 99.74%. 

Parameters used for the calculation were: total sample size = 246, number of women infected 

with HPV16 DNA (n=28), and any other HPV DNA result (Else, n=218), ratio (218/28) = 

7.78, mean HPV16 IgG NAR in women within the category “Else” = -0.14 log units, mean 

HPV16 IgG NAR of HPV16 DNA positive women = 0.09 log units, and SD = 0.24 log units. 

The estimated power considering the entire cohort was 99.45%. Parameters used for 

the calculation were: total sample size = 1,961, number of women infected with HPV16 DNA 

(n=60), and any other HPV DNA result (Else, n=1,901), ratio (1,901/60) = 31.68, mean 

HPV16 IgG NAR in women within the category “Else” = -0.07 log units, mean HPV16 IgG 

NAR of HPV16 DNA positive women = 0.06 log units, and SD = 0.22 log units.  

2.4. Ethical considerations 
Women were enrolled to participate in this study only after giving signed informed 

consent. All study procedures and the informed consent were approved by the institutional 

review boards and ethical committees of the participating institutions: McGill University, 

Montreal, Canada, the Ludwig Institute for Cancer Research, and the Maternidade Escola Vila 

Nova Cachoeirinha clinic, the last two from Sao Paulo, Brazil. The McGill University ethics 

certificate has been renewed annually. The master’s student also obtained ethical permission 

to do this work from the CERES (Comité d'éthique de la recherche en santé) which is the 

University Council Committee at the Université de Montréal. 

All professionals and students who contribute to the accomplishment of this study have 

the ethical and moral obligation to keep confidential all that they have learned, seen or heard 

in the exercise of their work to protect study participants against stigmatization and 

inequalities, and they must have the same respect and concern for each of them. We were 
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committed to demonstrate scientific rigor at the time of the data analysis, interpretation, and 

communication of our results. 

2.5. Contribution to the Ludwig-McGill cohort study 

I have worked with the Ludwig-McGill cohort since 1997. I received my master’s 

degree in 1999 and PhD. in 2004, both in microbiology, working on the projects “HPV viral 

load in clinical specimens using low-stringency PCR” and “Viral load and physical state of 

human papillomavirus in cervical smears”, respectively, under the supervision of Dr. Luisa 

Lina Villa from Sao Paulo, Brazil. Among the objectives of these projects were the 

standardization of real-time PCRs to detect viral load targeting three HPV16 genes (E2, E6, 

and L1), and a protocol to detect the HPV16 physical state in cervical cells. The validation of 

the protocols was done by testing thousands of DNA samples from the Ludwig-McGill cohort 

study. Even after finishing my degree in microbiology, I continued to collaborate with the 

principal investigators of the study, Dr. Eduardo Franco and Dr. Luisa Lina Villa, in 

publications that included the results of my projects. In the fall of 2016, I decided to add in my 

career the experience in epidemiology. Dr. Helen Trottier and Dr. Eduardo Franco offered me 

the opportunity to learn epidemiological analysis with the database of the same cohort. This 

dissertation is the result of this learning. 
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ABSTRACT 

Background: Seroconversion does not always occur following HPV infections. We compared 

two protocols based on two serum dilutions to measure HPV16 seroreactivity and investigated 

if HPV DNA positivity was a correlate of HPV16 seropositivity. We also assessed if the 

association was influenced by co-infection with multiple HPV types and viral load. 

Methods: We used baseline data of women participating in the Ludwig-McGill cohort. ELISA 

assays were based on L1 and L1+L2 virus-like particles (VLP). Serum dilutions were 1:10 and 

1:50. Seroreactivity was expressed as normalized absorbance ratios (NAR). HPV genotyping 

and viral load were evaluated by PCR-based methods. Comparisons were evaluated through 

Pearson’s correlation (r). The accuracy of the tests was compared using receiver operating 

characteristic (ROC) curves with HPV16 DNA positivity as gold standard. Association 

between HPV16 seropositivity and HPV DNA positivity was analyzed by linear regression.  

Results: Assays were highly correlated (0.87≤ r ≤0.94). The protocol with the best accuracy 

was with L1+L2 VLPs and serum dilution 1:10 (ROC area=0.7330, 95% CI: 0.6465 – 0.8495). 

Regression models showed that HPV16 seropositivity was associated with HPV16 DNA 

positivity only, and the association was not influenced by either co-infection or viral load. 

Conclusion: HPV16 DNA infection is a correlate of HPV16 seropositivity. 

KEYWORDS 

Human papillomavirus, natural infection, IgG antibodies, HPV16 seropositivity, HPV DNA, 

viral load, coinfections, virus-like particles, enzyme-linked immunosorbent assay. 
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INTRODUCTION 

Cervical cancer ranks as the fourth most frequent malignancy among women worldwide 

and the second most common cancer in women aged 15 to 44 years (1, 2). Persistent HPV 

infection causes virtually all cervical cancer cases (3). HPV16 is the most prevalent genotype 

being responsible for 50% of cases (3, 4). 

Most HPV infections are transient and clear within 1-2 years by the immune system (4, 

5). About 60-70% of all infected women develop measurable HPV antibodies (6). HPV16 

DNA-positive women tend to be more frequently seropositive than HPV DNA-negative women 

(7). Several studies have found a positive association between HPV16 seropositivity and HPV 

DNA positivity; however, some of them did not reach statistical significance (8-10).  

Serological assays are useful for measuring humoral immune response of cumulative 

exposure to a viral infection from multiple anatomic sites (11-13). Researchers have used virus-

like particles (VLP) in serological tests in the absence of efficient methods to harvest native 

antigens from tissue culture (14). L1 and L2 are the major and minor capsid proteins, 

respectively. L1 alone or with L2 recombinantly expressed self assembles into VLPs lacking 

the viral genome. They are structurally similar to authentic virions (11-13). Little is known if 

L1+L2 VLPs performs better than L1 only and if they can be responsible for cross-reactivity 

between HPV types in immunoassays (14-18). 

We compared two protocols based on two serum dilutions to measure total HPV16 IgG 

antibodies in a cohort of Brazilian women naturally infected with HPV. We also investigated if 

HPV DNA positivity was associated with HPV16 seropositivity in this cohort, and if the 

association was influenced by co-infection with other HPV types and viral load. 
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METHODS 

Study participants  

The Ludwig-McGill Cohort Study is a large longitudinal investigation of the natural 

history of HPV infection and cervical neoplasia. The study enrolled 2,462 Brazilian women 

from 1993 to 1997 (Figure I, page 53). They were women attending a comprehensive maternal 

and child health program catering to low-income families in the city of Sao Paulo, Brazil. The 

design and methods of the study have been described previously (19). In brief, two nurses 

trained specifically for the study recruited participants by selecting them at random from the 

daily lists of outpatients in the family medicine, gynecology, and family planning clinics at 

Maternidade Escola Vila Nova Cachoeirinha, Sao Paulo, Brazil. The inclusion criteria were: 

(1) being 18–60 years old, (2) being permanent resident of Sao Paulo, (3) had no intention to 

become pregnant over the next year, (4) had an intact uterus without referral for hysterectomy, 

(5) had no treatment for cervical disease within 6 months before enrolment, and (6) reported no 

use of vaginal medication in the 2 days prior to enrolment. Participants were followed up to 10 

years at scheduled returns every 4 months in the first year and once every 6 months thereafter. 

Cervical cell specimens were collected for Pap cytology and HPV DNA analyses, and blood 

samples for HPV serology at baseline and each scheduled visit. Eligible participants signed an 

informed consent and answered baseline and follow-up nurse-administered questionnaires to 

collect information on sociodemographic, lifestyle, and sexual, reproductive, and contraceptive 

characteristics. The study protocol was approved by the ethical review boards of the 

participating institutions in Canada and Brazil. 
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Cervical cell specimens 
  An Accelon biosampler (Medscand Inc., Hollywood, FL, USA) was used to collect a 

sample of ecto- and endocervical cells. After preparation of the Pap smear on a glass slide for 

cytology, remaining exfoliated cells were preserved in Tris-EDTA buffer (pH 7.4) at 4ºC at 

most 5 days and were then frozen until testing. 

HPV detection and typing 

Standard techniques were used to extract and purify DNA from cervical cells. In brief, 

samples were digested with 100µg/ml proteinase K for 3-18h at 55ºC, and the DNA purified by 

spin-column chromatography. Specimens were tested for the presence of HPV DNA by a 

previously described PCR protocol amplifying a highly conserved 450 base pairs (bp) segment 

of the L1 viral gene flanked by MY09/11 or PGMY09/11 primers (20, 21). Genotyping of the 

amplified products was performed by hybridization with individual oligonucleotide probes 

labelled with P32 and specific for 27 HPV genital types (22). Amplified products hybridizing to 

the generic probe, but not to any of the type-specific probes were further tested by restriction 

fragment length polymorphism analysis using the restriction enzymes, extending the range of 

identifiable HPV to more than 40 genital types (23). Testing for host DNA was performed 

using GH20 and PCO4 primers, which amplify a 268 bp region of human β-globin gene (24). 

The genotypes tested included HR-HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 

68, 73, and 82, and low oncogenic risk (LR-) HPV types 6, 11, 26, 32, 34, 40, 42, 44, 53, 54, 

57, 61, 62, 64, 67, 69, 70, 71, 72, 81, 83, 84, 89, and CP6108, plus other unknown types (25). 

Specimens were tested blindly with respect to all other participant-specific information and 

care was taken to avoid contamination in all procedures. Only samples that tested positive at 

least for β-globin were considered adequate and included in the analysis. 
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HPV serology 

Serum samples were separated from clotted blood specimens and stored at -20°C until 

testing. The level of HPV16 IgG antibodies was measured by a semi-quantitative method, the 

enzyme-linked immunosorbent assay (ELISA). Recombinant HPV16 VLPs, expressing L1 

only and L1 with L2, were prepared in baculovirus (26). They were kindly provided by Dr. Ian 

Frazer, University of Queensland, Australia, and Dr. John Schiller, National Institute of Health, 

United States, respectively. The ELISA protocol was performed as described in previous work 

(27, 28). Briefly, polystyrene microtiter plates were coated with 50 μL of a solution containing 

2 mg of HPV16 VLP per 100 mL of PBS (phosphate-buffered saline) and incubated for 1.5 

hours at 37°C. Plates were washed three times with calcium- and magnesium-free PBS and 

were then incubated with serum samples diluted 1:10 or 1:50 in PBS containing 0.5% skim 

milk and 0.1% newborn calf serum (PBS-MNCS) for 2.5 hours at 37°C. Following repeated 

washings, plates were incubated with 50 μL of a previously standardized dilution of 

peroxidase-labeled anti-IgG conjugate for 1 hour at room temperature. Following an additional 

washing cycle, a chromogen substrate mixture (0.1 mg/mL O-phenylenediamine and 0.003% 

hydrogen peroxide diluted in 0.15 mol/L PBS; pH 6.0) was added to the wells. Absorbances 

were read at 490 nm in a colorimetric plate reader after 45 minutes. Replicate blank wells with 

PBS-MNCS instead of diluted serum samples and a control human serum pool were included in 

all plates. The latter was included to control the inter- and intra-assay variation in reactivity that 

is inherent to immunoenzymatic techniques. A single batch of this serum pool was prepared in 

advance and used throughout the study. It was prepared from dozens of blood banks and 

normal clinical laboratory specimens from female adult donors at the AC Camargo Hospital in 

Sao Paulo. Specimens were then aliquoted and kept frozen at -20°C. Absorbances were 
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corrected for the fluctuation in seroreactivity of the serum pool as previously described (28). 

Seroreactivity was expressed as normalized absorbance ratio (NAR) by dividing the mean 

blank-subtracted optical densities (OD) by the equivalent value of the control serum pool 

included in the same plate in triplicate. This method is used to minimize measurement error in 

ELISA assays (28). Sample size analyzed for IgG antibodies seropositivity in this study is 

described in Figure I, page 53. 

Viral load  

Cervical specimens found to be positive with the main PCR protocol (MY09/11) were 

retested by a quantitative PCR to measure viral burden (29). Briefly, a consensus primer pair 

(GP5, GP6) targeting the L1 gene of a broad spectrum of HPV was employed under low-

stringency conditions to coamplify the specific HPV DNA fragment (140 bp) along with DNA 

sequences from the human genome present in the starting PCR mixture (30). A 192 bp DNA 

product homologous to a small region of the human chromosome X was selected to serve as 

internal control for the reaction. DNA extracted from two cervical carcinoma cell lines with 

known quantities of HPV copies (HeLa, 20–40 copies/cell of HPV18 and Caski, 400–600 

copies/cell of HPV16) were used as viral load controls (31). Standards consisting of mixtures 

containing varying amounts of a reference HPV16 plasmid (corresponding to 0, 4, 20, 100, 

500, and 2,500 viral copies/cell) added to a constant background of DNA extracted from human 

breast tissue were tested in all reactions. Viral load was quantified by linear interpolation using 

the standard curve. Samples and controls were tested in duplicate, while standards in triplicate, 

viral load (in copies per cell) was derived from the mean values. The protocol was described in 

details in previous work (29). 

Statistical analysis 
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Descriptive statistics including median and interquartile range (IQR), mean and 

standard deviation (SD), and percentage were used to describe participant’s characteristics for 

all women included in the cohort (n=2,462), those tested individually with VLP composed by 

L1+L2 (n=1,975) as well as those tested with both VLP types (L1 and L1+L2) (n=246) at 

baseline. The subset of 246 women was selected based on their HPV DNA positivity to allow 

the investigation of our results in a fictitious population that contains a greater number of HPV-

positive women, especially those infected with HPV16 alone or with other genotypes. 

Box-and-whiskers plot was presented to describe the level of HPV16 IgG antibodies 

detected at baseline among the 246 women tested for both protocols and serum dilutions. In this 

representation, the lower adjacent values of HPV16 IgG antibodies were computed by 

subtracting 1.5-fold the IQR (25th percentile – 75th percentile) from the first quartile (25th 

percentile). Upper adjacent values were computed by subtracting 1.5-fold the IQR from the 

third quartile (75th percentile). In order to compare the ELISA protocols based on serum 

dilutions (1:10 vs. 1:50) and VLP types (L1 and L1+L2 VLP), we used Pearson’s correlation 

(r) followed by its 95% CI. Linear regressions were done to add regression lines and their 95% 

CI in the graphics. The coefficient of determination (R2) and its 95% CI (computed by 

bootstrapping) was also estimated. 

The accuracy of the protocols to detect HPV16 IgG antibodies were assessed using 

receiver operating characteristic (ROC) curves using HPV16 DNA infection as gold standard. 

We used linear regression to analyze the association between HPV16 seropositivity (log10-

transformed NARs) and HPV DNA positivity at baseline. For all linear regression analyses we 

provided the regression coefficients (β) and their 95% CI. β coefficients represent the estimated 

change in HPV16 seroreactivity for a unit change in HPV DNA positivity. The coefficient of 
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determination (R2) and its 95% CI (computed by bootstrapping) was also estimated to measure 

how well the regression models fitted the observed data. 

We built 3 models of exposure focusing on HPV DNA types 16, 31, 35, 52, 67, 33, and 

58, which belong to genus alpha-papillomavirus, species 9 (32). We built a first model 

comparing HPV16 DNA to the reference including all other HPV type or HPV-negative cases. 

A second model including 3 categories comparing HPV16, other alpha 9 types highly related to 

HPV16 (i.e., HPV31/35) versus the reference group including any other HPV type or HPV-

negative women. Finally, a third model including 4 categories was used to compare women 

positive for HPV16, HPV31 or 35, and other alpha 9 HPV types moderately related to HPV16 

(i.e., HPV52/67/33/58) versus the reference including any other HPV type or HPV-negative 

women (33). Using these models, we first analyzed the subset of 246 women tested with both 

ELISA protocols and serum dilutions. Then, we used the third model to analyze the entire 

cohort (n=1,961). 

Finally, we analyzed the relationship between HPV16 serology and HPV DNA 

positivity using linear regression in the entire cohort (n=1,961) tested with L1+L2 VLPs and 

serum dilution 1:10 (excluding fourteen women who had no information on HPV status). We 

analyzed HPV16 DNA infection as single type infection compared to co-infection with other 

HPV types (multiple types). HPV exposure was categorized as follow: HPV16 single infection, 

HPV16 co-infection with other HPV types, and the reference category including all other 

women (i.e., infected with HPV other than 16 or negative). Association between HPV16 DNA 

viral load (copies/cell) and HPV16 seropositivity was also investigated using Pearson’s 

correlation among women with HPV16 single type infection detected in the cohort at baseline 

(n=41) using the same ELISA protocol as above (L1+L2 VLPs, serum dilution 1:10). The 
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impact of age as potential confounder or effect modifier was analyzed in both models used to 

evaluate HPV exposure (i.e., phylogenetic relatedness to HPV16 and type of infection - single 

vs. multiple). Analyses were performed using STATA statistical software (version 14.2). 

RESULTS 

The Ludwig-McGill cohort included 2,462 participants. The mean follow-up time (SD, 

years) was 6.37 (±1.99), median (IQR) 7.09 (6.20 – 7.50). HPV16 seropositivity using VLPs 

composed by L1+L2 was tested in 1,975 women at baseline. Out of them, 246 were tested for 

the level of HPV16 IgG antibodies by the two ELISA protocols differing from each other by 

the composition of the VLP used as antigens (L1 or L1+L2) and based on two serum dilutions 

(1:10 and 1:50) (Figure I, page 53). 

The subset of 1,975 women tested for HPV16 seropositivity was quite representative of 

the entire cohort, while the subset of 246 women was inflated with respect to HPV infections 

(HPV status, type of infection, and number of HPV types detected per women). Characteristics 

of all participants under investigation are described in Table 1, page 54. Normalized 

absorbance ratios (NARs), which represent the level of IgG antibodies produced after HPV16 

natural infection, are very low independently of the protocol used (median ranged from 0.77 to 

1.18) (Figure II, page 55). We observed a difference between protocols in the ability to detect 

higher absolute values of NARs (see upper adjacent values), while this observation is less 

pronounced in lower values (see lower adjacent values). HPV16 IgG NARs obtained through 

VLPs with L1 only were slightly higher than those obtained with L1+L2. The protocol using 

L1 VLPs and serum dilution 1:50 reached higher levels of HPV16 IgG antibodies compared to 

the protocol with L1+L2 VLPs (both serum dilutions). However, it tended to produce more 

outliers than the serum dilution 1:10. We observed strong correlations between results obtained 
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by serum dilutions 1:10 and 1:50 using both VLP types. The β coefficient of both regression 

lines was very similar (0.65 vs. 0.74) (Figure III A and B, page 56). On the other hand, we 

observed poor correlations between VLP types using the same serum dilution. Very similar β 

coefficient of both regression lines were observed (0.56 vs. 0.46) (Figure III C and D, page 56).   

Figure IV on page 57 shows the receiver operating characteristic (ROC) curves. The 

best area under ROC curve was reached by the protocol using L1+L2 VLPs and serum dilution 

1:10 (ROC area=0.7330, 95% CI: 0.6465 – 0.8495), although differences between ROC areas 

were not statistically significant as indicated by the overlapping confidence intervals. Both 

protocols behaved similarly when very low levels of HPV16 antibodies were detected. 

Based on model 3 (both serum dilutions) used to analyze the subset of 246 women, we 

observed that the β coefficients of the group containing HPV types highly (HPV31/35) related 

to HPV16 were very close to the zero value and were not statistically significant to confirm 

their association with HPV16 IgG antibodies. The β coefficients of the group containing HPV 

types moderately (HPV52/67/33/58) related to HPV16 were higher, but still not statistically 

significant (Table 2, page 58). Only HPV16 DNA was associated with HPV16 IgG antibodies 

(with both protocols and serum dilutions) in our analysis. However, L1+L2 VLPs were better to 

capture the association between HPV16 seropositivity and HPV16 DNA positivity in our 

samples compared to VLPs composed by L1. After transforming the HPV16 NARs in log10 

units to ensure normality of our data, we observed that HPV16 positive women were more 

susceptible to seroconversion compared to the reference group (seroreactivity was measured by 

VLP L1+L2, serum dilution 1:10). Technically, HPV16 positive women had 0.24 log10 units of 

NAR (antibody levels) higher than the reference group (Table 2, page 58). In the subset of 246 

women, co-infection with multiple HPV types significantly decreased susceptibility to 
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seroconversion according to the test with best accuracy (L1+L2 VLP, serum dilution 1:10): β 

(HPV16 single infection) = 0.27 (95% CI: 0.15 – 0.40), and β (multiple HPV infection with 

HPV16) = 0.17 (95% CI: 0.02 – 0.32). Results obtained using linear regression were similar 

when we used the entire cohort tested for HPV16 seroreactivity using L1+L2 VLP and sera 

diluted 1:10 (n=1,961, considering missing data on HPV status) (Table 3, page 59). HPV16 

DNA positive women had 0.14 log10 units of NAR higher than the reference group. Positivity 

for HPV types 31 and 35 did not significantly change the susceptibility of seroconversion, but 

positivity for HPV52, 67, 33 or 58 slightly did it compared to the reference group. The 

susceptibility of seroconversion of women co-infected with multiple HPV types was very 

similar to those infected with HPV16 only (Table 3, page 59). Adjustment for age did not 

change considerably the strength of the association observed in crude analyses. Age was not an 

effect modifier as the introduction of an interaction term for age in our models was not 

statistically significant (p > 0.05) (data not shown). 

Finally, HPV16 viral load was not associated with HPV16 IgG antibodies. Median 

(IQR) of HPV16 viral load (copies/cell) was 2.0 (0.5 – 77.0), whereas the mean (SD) was 154.0 

(428.9) with a minimum value of 0.5, and a maximum value of 1,940.  There was no 

association between HPV16 viral load and seropositivity [r = -0.04 (95% CI: -0.34 – 0.27); β 

coefficient = -0.01 (95% CI: -0.08 – 0.06), R2=0.02 (95% CI: -0.05 – 0.06)]. 

DISCUSSION 

Although comparisons between serological assays have been done to measure antibody 

responses after HPV vaccination, studies evaluating the influence of the VLPs composition 

used as antigen in ELISA protocols to measure humoral immune response against naturally 

acquired HPV infection are lacking in the literature (14-17). The Ludwig-McGill cohort study 
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provides a unique opportunity to evaluate the association between HPV16 naturally acquired 

immunity and DNA infection in a large sample size of women collected in the pre-vaccine era. 

Our comparative analysis between different ELISA protocols showed, as expected, that 

both methods and both serum dilutions detected very low levels of HPV16 IgG antibodies 

following natural HPV infection compared to the level that could be detected after vaccination 

(6, 34). This weak natural immune response is probably related to the absence of viremia (35). 

The L1 gene has the most conserved nucleotide sequence of the HPV genome. It can be 

aligned for all known papillomaviruses (33). Although L2 is not very immunogenic, antibodies 

against L1+L2 VLPs may block infection of a diverse range of other HPV genotypes in 

contrast to VLPs L1 only (36). Technically, there is an increase in the yield of HPV16 VLPs 

when they are produced with L1 and L2 compared to L1 only which is an advantage for 

researchers planning to produce VLPs for their own serologic assays (37). Therefore, we 

investigated if the structure of the VLP used in the ELISA assays could affect the detection of 

HPV16 IgG antibodies. Our findings are supported by another study that compared Luminex 

multiplex assays performed with both VLP types. They showed that L1+L2 VLPs performed 

better at measuring HPV16 and 18 antibodies in large samples (14). Our results also showed a 

strong correlation between data obtained by serum dilutions 1:10 and 1:50 using both VLP 

types. Although results obtained with L1+L2 VLPs were more scattered around the regression 

line, they were also more stable between serum dilutions compared to L1 VLPs. In addition, we 

have found that results obtained from L1 and L1+L2 VLPs cannot be pooled in the same 

analysis since the correlation between them is poor, independently of the serum dilution used. 

In general, sensitivity of ELISA protocols using VLPs as antigens is between 50 to 60% 

with high specificity (>90%) and good agreement between interlaboratory tests (38). This 
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variation in sensitivity may be due to different definitions of cut-off values between studies 

making the comparison between them even more difficult (35). The strength of the association 

between HPV16 antibodies and naturally acquired HPV DNA infection has been mostly 

investigated considering seropositivity as a predictor of HPV infection using logistic regression 

or generalized estimating equation (8-10, 27, 39-42). We evaluated HPV infection as a 

predictor of seropositivity through linear regression in order to avoid using a cut-off for NARs. 

Residuals were randomly distributed which supported the application of this model in our 

analysis. Both linear and logistic regressions analyses show the association between HPV16 

seropositivity and HPV16 DNA positivity in cross-sectional studies (7).  

HPV16 DNA positivity was considered as an independent determinant of HPV16 

seropositivity in our study which is similar to the findings of others (9, 10, 27, 41-43). We have 

observed a low degree of cross-reactivity for infections with other alpha 9 HPV types; but the β 

coefficients were not statistically significant. Our results agree with others (7). Although it is 

not clear in the literature what are the potential confounders of this association, we analyzed the 

impact of age as a potential confounder and effect modifier using the entire cohort (n=1,961) 

(13, 27, 39, 41, 42). Age was neither a strong confounder nor an effect modifier.  

It is also very common to find co-infections with multiple HPV types in many 

epidemiological studies (9, 27, 44). In the Ludwig-McGill cohort 12.3% of all study 

participants were tested positive for multiple HPV types at baseline (45). The association 

measured for HPV16 with multiple types (co-infection) was similar to that for HPV16 single 

infection. It is possible that co-infections with multiple HPV types or high HPV16 viral load 

reflect the inability of the immune system to respond to the viral infection (leading to low 

levels of antibodies), as others observed through logistic regression (9, 27). In our models, 
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neither HPV16 viral load nor co-infections with other types seemed to influence the association 

between HPV16 seropositivity and HPV16 DNA positivity. 

In conclusion, our findings show that there is a positive association between HPV16 

seropositivity and HPV16 DNA positivity that seems not be affected by co-infections or viral 

load. HPV types related to HPV16, such as HPV31, 35, 52, 67, 33 or 58 seem to not be 

associated with HPV16 IgG antibodies. The protocol using L1+L2 VLPs and serum dilution 

1:10 better capture the association between HPV16 seropositivity and HPV16 DNA positivity. 

Finally, further studies are needed to investigate the association between HPV16 natural 

acquired immunity and co-infections, development of precursor cervical lesions, reinfection, 

and viral load over time. 
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Figure I: Flowchart of the Ludwig-McGill cohort study participants. Inspired by Shaw et al., 

2016 (46). 
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Table 1: Characteristics of the Ludwig-McGill cohort participants at baseline. 

Characteristics All participants 
(n=2,462) 

Groups tested for HPV16 IgG 

With L1+L2 VLP (n=1,975) With L1+L2 and L1 VLP (n=246) 

Age, yr    
Mean (SD) 32.7 (8.8) 32.9 (8.7) 33.0 (8.6) 
Median (IQR) 32.0 (26.0-39.0) 32.0 (26.0-39.0) 32.0 (27.0-39.0) 
Ethnicity, n (%)    
White 1,585 (64.4) 1,280 (64.8) 162 (65.9) 
Others 874 (35.5) 694 (35.1) 84(34.1) 
Marital status, n (%)    
Single 252 (10.2) 201 (10.2) 29 (11.8) 
Cohabiting 832 (33.8) 642 (32.5) 85 (34.5) 
Married 1,179 (47.9) 969 (49.1) 106 (43.1) 
Separated 140 (5.7) 121 (6.1) 15 (6.1) 
Widowed 57 (2.3) 42 (2.1) 11 (4.5) 
Education, n (%)    
< Elementary 554 (22.5) 442 (22.4) 57 (23.2) 
Elementary 1,438 (58.4) 1,164 (58.9) 147 (59.8) 
Secondary 397 (16.1) 310 (15.7) 34 (13.8) 
Higher education 70 (2.9) 57 (2.9) 7 (2.8) 
Smoking, n (%)    
No 1,168 (47.4) 953 (48.3) 114 (46.3) 
Smoker 864 (35.1) 674 (34.1) 91 (37.0) 
Former 429 (17.4) 348 (17.6) 41 (16.7) 
Alcohol consumption, n (%)    
No 852 (34.6) 664 (33.6) 75 (30.5) 
Yes 1,601 (65.0) 1,306 (66.1) 171 (69.5) 
Age at first sexual intercourse, yr    
Mean (SD) 17.9 (4.0) 17.9 (4.0) 17.9 (4.6) 
Median (IQR) 17.0 (15.0-20.0) 17.0 (15.0-20.0) 17.0 (15.0-20.0) 
Lifetime number of sexual partners, n (%)    
0-1 1,089 (44.2) 870 (44.0) 106 (43.1) 
2-3 856 (34.8) 691 (35.0) 93 (37.8) 
≥ 4 515 (20.9) 413 (20.9) 47 (19.1) 
HPV status, n (%)    
Negative 2,026 (82.3) 1,629 (82.5) 183 (74.4) 
Low-risk types 156 (6.3) 117 (5.9) 17 (6.9) 
HPV16 67 (2.7) 60 (3.0) 28 (11.4) 
HPV31 or 35 37 (1.5) 31 (1.6) 5 (2.0) 
HPV52, 67, 33 or 58 46 (1.9) 40 (2.0) 7 (2.9) 
Other high-risk types 107 (4.3) 84 (4.3) 6 (2.4) 
Type of infection, n (%)    
Else 2,373 (96.4) 1,901 (96.9) 218 (88.6) 
HPV16 single infection 45 (1.8) 41 (2.1) 17 (6.9) 
Multiple HPV infection with HPV16 22 (1.0) 19 (1.0) 11 (4.5) 
Number of HPV types per women, n (%)    
0 2,048 (83.2) 1,642 (83.1) 183 (74.4) 
1 336 (13.6) 269 (13.6) 46 (18.7) 
2 63 (2.5) 52 (2.6) 11 (4.5) 
≥ 3 14 (0.6) 11 (0.6) 6 (2.4) 
HPV16 viral load, copies/cell    
n (mean, SD) 66 (436.4, 1,993.4) 59 (476.8, 2,105.3) 27 (324.7, 911.8) 
n (median, IQR) 66 (5.0, 0.5-86.0) 59 (5.0, 0.5-89.0) 27 (7.0, 0.5-160.0) 
The number of missing values represents less than 1%. yr: years; SD: Standard deviation; IQR: Interquartile range. 
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Figure II: Box-and-whiskers representation of untransformed HPV16 IgG normalized 

absorbance ratios (NAR) at baseline. Protocols differ by the composition of the virus-like 

particles (L1 and L1+L2) and are based on two serum dilutions (1:10 and 1:50) (n=246). Boxes 

extend from the 25th percentile to the 75th percentile (i.e., the interquartile range, IQR); lines 

inside boxes represent median values. Lines emerging from boxes (i.e., the whiskers) extend to 

the upper and lower adjacent values which are the lower and upper limits of the array, 

respectively. Values outside these limits are outliers represented by symbols (circle, diamond, 

square and triangle). 
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Figure III: Person’s correlation (r) between log10-transformed IgG normalized absorbance ratios (NAR) by serum dilution 
and by VLP type at baseline. Analyzed in women tested with both virus-like particles, n=246. A. L1 Virus-like particle (VLP), 

serum dilution 1:10 vs 1:50: r (95% CI) = 0.94 (0.92 – 0.95), β (95% CI) = 0.65 (0.62 – 0.67), R2 (95% CI) = 0.88 (0.84 – 0.91). B. 
L1+L2 VLP, serum dulution 1:10 vs 1:50: r (95% CI) = 0.87 (0.84 – 0.90), β (95% CI) = 0.74 (0.69 – 0.79), R2 (95% CI) = 0.76 

(0.69 – 0.82). C. L1+L2 VLP vs L1 VLP, serum dilution 1:10: r (95% CI) = 0.43 (0.33 – 0.53), β (95% CI) = 0.56 (0.41 – 0.71), R2 

(95% CI) = 0.19 (0.09 – 0.28). D. L1+L2 VLP vs L1 VLP, serum dilution 1:50: r (95% CI) = 0.44 (0.33 – 0.54), β (95% CI) = 0.46 

(0.34 – 0.58), R2 (95% CI) = 0.19 (0.11 – 0.28). 

A B

C D



 

57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV: Receiver operating characteristic (ROC) curves of untransformed IgG normalized 

absorbance ratios (NAR). ROC areas and their respective 95% CI are presented. Protocols 

differ by the structure of the virus-like particles (L1 and L1+L2) and are based on two serum 

dilutions (1:10 and 1:50) (n=246). 
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Table 2: Linear regression between HPV16 seroreactivity and HPV status based on the phylogenetic relatedness to HPV16 at 

baseline evaluated by three models of exposure. 

   L1 VLP (1 :10) L1 VLP (1 :50) L1+L2 VLP (1 :10) L1+L2 VLP (1 :50) 

Model Parameters n 
(%) 

β coefficient 
(95% CI) 

β coefficient 
(95% CI) 

β coefficient 
(95% CI) 

β coefficient 
(95% CI) 

1 

Constant (β0)  -0.02 (-0.04 – -0.01) 0.06 (0.02 – 0.10) -0.14 (-0.17 – -0.11) -0.12 (-0.16 – -0.08) 
Else 218 (88.6) Reference Reference Reference Reference 
HPV16 28 (11.4) 0.09 (0.01 – 0.17) 0.12 (0.00 – 0.23) 0.23 (0.14 – 0.33) 0.26 (0.15 – 0.38) 
R2 (95% CI)  0.02 (-0.02 – 0.06) 0.02 (-0.02 – 0.05) 0.08 (0.01 – 0.16) 0.08 (-0.01 – 0.16) 

2 

Constant (β0)  -0.02 (-0.05 – 0.01) 0.06 (0.02 – 0.10) -0.14 (-0.17 – -0.11) -0.12 (-0.16 – -0.10) 
Else 213 (86.6) Reference Reference Reference Reference 
HPV16 28 (11.4) 0.09 (0.01 – 0.17) 0.12 (0.00 – 0.23) 0.23 (0.14 – 0.33) 0.27 (0.15 – 0.38) 
HPV31/35 5 (2.0) 0.02 (-0.16 – 0.20) -0.05 (-0.30 – 0.20) 0.02 (-0.20 – 0.24) 0.07 (-0.18 – 0.34) 
R2 (95% CI)  0.02 (-0.02 – 0.06) 0.02 (-0.02 – 0.05) 0.08 (0.01 – 0.16) 0.08 (-0.01 – 0.17) 

3 

Constant (β0)  -0.02 (-0.04 – 0.01) 0.06 (0.02 – 0.10) -0.15 (-0.18 – -0.11) -0.12 (-0.16 – -0.08) 
Else 206 (83.7) Reference Reference Reference Reference 
HPV16 28 (11.4) 0.09 (0.01 – 0.16) 0.11 (-0.00 – 0.23) 0.24 (0.14 – 0.34) 0.27 (0.15 – 0.39) 
HPV31/35 5 (2.0) 0.02 (-0.16 – 0.19) -0.05 (-0.30 – 0.20) 0.03 (-0.19 – 0.25) 0.08 (-0.18 – 0.34) 
HPV52/67/33/58 7 (2.9) -0.05 (-0.20 – 0.10) -0.08 (-0.29 – 0.14) 0.15 (-0.04 – 0.34) 0.10 (-0.12 – 0.32) 
R2 (95% CI)  0.02 (-0.02 – 0.06) 0.02 (-0.02 – 0.06) 0.09 (0.01 – 0.17) 0.08 (-0.01 – 0.17) 

Protocols differ by the structure of the virus-like particles (L1 and L1+L2) and are based on two serum dilutions (1:10 and 1:50). Model 1: HPV16 positivity versus the reference including any other HPV 
infection with other type or HPV negative; Model 2: HPV16 and HPV positivity for alpha 9 types highly related to HPV16 (HPV31 or 35) versus the reference including any other HPV type with other 
type or HPV negative; Model 3: HPV16 and HPV31 or 35 and HPV positivity for alpha 9 types (moderately related to HPV16 (HPV52, 67, 33 or 58) versus the reference including any other HPV type 
with other type or HPV negative. IgG normalized absorbance ratios (NAR) were log10-transformed (n=246). 

 



 

59 

Table 3: Linear regression statistics of the HPV16 seroreactivity by HPV status at baseline in 

the entire cohort.  

Model 1: Phylogenetic relatedness to HPV16 

Parameters 
ß Coefficients 

Crude (95% CI) Age-adjusted (95% CI) 
Constant -0.07 (-0.08 – -0.06) -0.16 (-0.20 – -0.12) 
Else Reference Reference 
HPV16 0.13 (0.08 – 0.19) 0.14 (0.08 – 0.20) 
HPV31 or 35 0.04 (-0.03 – 0.12) 0.06 (-0.02 – 0.14) 
HPV52, 67, 33, or 58 0.07 (0.00 – 0.14) 0.08 (0.01 – 0.15) 
Age - 0.00 (0.00 – 0.00) 
R2 (95% CI) 0.01 (0.00 – 0.02) 0.02 (0.01 – 0.04) 

Model 2: Type of infection: single vs multiple 

Parameters 
ß Coefficients 

Crude (95% CI) Age-adjusted (95% CI) 
Constant -0.07 (-0.08 – -0.06) -0.15 (-0.19 – -0.11) 
Else Reference Reference 
HPV16 single infection 0.14 (0.07 – 0.21) 0.14 (0.08 – 0.21) 
Multiple HPV infection 
with HPV16 0.11 (0.01 – 0.21) 0.12 (0.02 – 0.22) 

Age - 0.00 (0.00 – 0.00) 
R2 (95% CI) 0.01 (-0.00 – 0.02) 0.02 (0.01 – 0.03) 
Log10-transformed data obtained by the ELISA protocol using L1+L2 VLP and serum dilution 1:10 (n=1,961); IgG NAR: median (IQR)=0.89 
(0.62 – 1.23).  
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Chapter 4. Supplemental results 
In this chapter are presented some supplemental results that were not included in the 

manuscript. The cohort tested for HPV16 IgG seroreactivity at baseline with two ELISA 

protocols and serum dilutions, 1:10 and 1:50, was composed of 246 women (Figure I and 

Table 1, pages 53 and 54, respectively). The Bland-Altman analysis shows that there is a 

slightly difference between serum dilutions 1:10 and 1:50 with higher HPV16 antibody levels 

being detected in more diluted sera in both ELISA protocols (Figure 4, page 68). The upper 

and lower limits of agreement (95% CI) of the mean difference between both serum dilutions 

using the protocol with L1 VLPs were -0.164 (95% CI: -0.138 – -0.191) and -0.327 log units 

(95% CI: -0.354 – -0.300), respectively. The range between the upper [-0.273 (95% CI: -0.240 

– -0.305)] and lower [-0.325 (95% CI: -0.358 – -0.203)] limits of agreement were larger when 

L1+L2 VLPs were used. The magnitude of differences between serum dilutions observed 

using L1 VLPs, and L1+L2 VLPs were -0.081 and -0.026 log units, respectively. Although 

they are below 1 log unit, the confidence intervals of the limits of agreement showed 

statistically significant results (the line of equality is not included in the interval). A greater 

dispersion of data points was observed using L1+L2 VLPs compared to L1 VLPs with 96.7% 

of the data points within the limits of agreement (mean ± 2SD) when the protocol was 

performed with VLPs composed by L1 only, and 93.1% with L1+L2. The regression line of 

the mean differences shows that the proportional difference between both serum dilutions is 

smaller when L1+L2 VLPs were used [R2 = 0.098 (95%CI: 0.020 – 0.176)] in comparison to 

L1 VLPs [R2 = 0.546 (95%CI: 0.445 – 0.647)]. The 95% CI of the determination coefficients 

(R2) showed the statistical significance of these observations. 
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Figure 4: Bland-Altman plot of differences between log-10 transformed HPV16 IgG NAR obtained by two serum dilutions 

versus the mean of the two measurements. They include regression lines and their confidence interval limits (grey bars). A. 

Virus-like particles (VLP) composed by L1 proteins. B. Virus-like particles (VLP) composed by L1 and L2 proteins. The 

magnitude of differences is represented by the gap between the Y axis corresponding to a zero difference (red dashed lines), and 

the parallel line to the X axis (mean). The 95% CI on the determination coefficient (R2) was determined by bootstrapping. 
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Before testing the entire cohort (n=1,961) with the protocol that best captured the 

association between HPV16 seropositivity and HPV16 DNA positivity (L1+L2 VLP and the 

serum dilution 1:10) (Table 3, page 59), we analyzed the subset of women tested for both 

protocols and both serum dilutions (n=246) (Table I, page 70). We found that women infected 

with multiple HPV types were less susceptible to seroconversion in comparison to women 

infected with HPV16 only. Based on these analyses, we first observed that L1+L2 VLP was 

the best protocol to capture the association between HPV16 seropositivity and HPV16 DNA 

positivity. The best serum dilution to use with the L1+L2 VLPs was confirmed by the ROC 

curves. Dilution 1:10 presented the best area under ROC curve (ROC area=0.7330, 95% CI: 

0.6465 – 0.8495) (Figure IV, page 57). 
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Table I. Linear regression between HPV16 seroreactivity and HPV status (single vs. multiple 

infection) at baseline in women tested by both protocols and serum dilutions 

Protocol Parameters β coefficient (95% CI) 

L1 VLP (1:10) 

Constant (β0) -0.02 (-0.04 – 0.01) 

Else Reference 

HPV16 single infection 0.11 (0.01 – 0.21) 

Multiple HPV infection with HPV16 0.05 (-0.07 – 0.17) 

R2 (95% CI) 0.02 (-0.01 – 0.06) 

L1 VLP (1:50) 

Constant (β0) 0.06 (0.02 – 0.10) 

Else Reference 

HPV16 single infection 0.15 (0.00 – 0.29) 

Multiple HPV infection with HPV16 0.07 (-0.10 – 0.25) 

R2 (95% CI) 0.02 (-0.02 – 0.05) 

L1+L2 VLP (1:10) 

Constant (β0) 1.14 (-0.17 – -0.11) 

Else Reference 

HPV16 single infection 0.27 (0.15 – 0.40) 

Multiple HPV infection with HPV16 0.17 (0.02 – 0.32) 

R2 (95% CI) 0.09 (0.01 – 0.16) 

L1+L2 VLP (1:50) 

Constant (β0) -0.12 (-0.16 – -0.08) 

Else Reference 

HPV16 single infection 0.34 (0.19 – 0.48) 

Multiple HPV infection with HPV16 0.15 (-0.03 – 0.33) 

R2 (95% CI) 0.09 (0.01 – 0.17) 
Protocols differ by the composition of the virus-like particles (L1 and L1+L2) and are based on two serum dilutions (1:10 and 1:50) (n=246) 

 

Age was not an effect modifier as the introduction of an interaction term for age in our 

models was not statistically significant (p > 0.05). The analysis was done in the entire cohort 

(n=1,961). Detailed results of age as an effect modifier are presented below (Tables II and III, 
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pages 71 and 72, respectively). Table II shows the results by HPV status based on the 

phylogenetic relatedness to HPV16 HPV and Table III by type of infection (single vs. 

multiple). 

 

Table II. Evaluation of age at enrollment as an effect modifier of the association between 

HPV16 seroreactivity and HPV DNA infection (HPV status by phylogenetic relatedness to 

HPV16) at baseline in the entire cohort 

Parameters ß Coefficients (95% CI) 

Constant -0.170 (-0.210 – -0.130) 

Else Reference 

HPV16 0.325 (0.098 – 0.551) 

HPV31/35 0.235 (-0.109 – 0.580) 

HPV52/67/33/58 0.232 (-0.035 – 0.500) 

Age at enrollment 0.003 (0.002 – 0.004) 

HPV16 * Age -0.006 (-0.013 – 0.001) 

HPV31/35 * Age -0.006 (-0.018 – 0.006) 

HPV52/67/33/58 * Age -0.005 (-0.013 – 0.003) 

R2 (95% CI) 0.002 (0.010 – 0.041) 
Log10-transformed data obtained by the ELISA protocol using L1+L2 VLPs and serum dilution 1:10, n=1,961. CI: Confidence interval; CI on the determination 
coefficient (R2) was determined by bootstrapping. IgG NAR: Median (IQR) = 0.89 (0.62 – 1.23). * Interaction with age at enrollment. 
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Table III. Evaluation of age at enrollment as an effect modifier of the association between 

HPV16 seroreactivity and HPV DNA infection (single vs. multiple infection) at baseline in 

the entire cohort 

Parameters ß Coefficients (95% CI) 

Constant -0.159 (-0.198 – -0.119) 

Else Reference 

HPV16 single infection 0.337 (0.066 – 0.607) 

Multiple HPV infection with HPV16 0.369 (-0.122 – 0.860) 

Age at enrollment 0.003 (0.001 – 0.004) 

HPV16 single infection * Age -0.006 (-0.014 – 0.002) 

Multiple HPV infection with HPV16 * Age -0.009 (-0.026 – 0.009) 

R2 (95% CI) 0.021 (0.007 – 0.035) 
Log10-transformed data obtained by the ELISA protocol using L1+L2 VLPs and serum dilution 1:10, n=1,961. CI: Confidence interval; CI on the determination 
coefficient (R2) was determined by bootstrapping. IgG NAR: Median (IQR) = 0.89 (0.62 – 1.23) * Interaction with age at enrollment. 

 

Figure 5 on page 73 shows the correlation between HPV16 seroreactivity and HPV16 

viral load observed in the subset of 41 women with single HPV16 infection. Although the 

results have been mentioned in the manuscript, we included in this chapter the graphic 

representation of this analysis. 



 

73 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 5: Correlation between log10-transformed HPV16 IgG NAR and HPV16 viral 

load at baseline. Log10-transformed HPV16 IgG NAR obtained by virus-like particles (VLP) 

composed by L1+L2, serum dilution 1:10. HPV16 viral load (log copies per cell) (n=41 

women with single HPV16 infection). Pearson’s correlation, r (95% CI) = -0.04 (-0.34 – 

0.27), β coefficient (95% CI) = -0.01 (-0.08 – 0.06), R2 (95% CI) = 0.02 (-0.05 – 0.06). 

HPV16 viral load (copies/cell): median (interquartile range) = 2 (0.5 – 77.0), mean (standard 

deviation) = 154.0 (428.9), minimum=0.5, maximum=1,940.0. The 95% CI on the 

determination coefficient (R2) was determined by bootstrapping. 

 

 



 

 

Chapter 5. Discussion 

In this chapter we discuss our results in light of the literature, the limits and strengths 

of the study, and the potential threats for the internal and external validity. 

5.1. Results in light of the literature 

 Although comparisons between serological assays have been done to measure antibody 

responses after HPV vaccination, studies evaluating the influence of the composition of the 

VLPs used as antigen in ELISA protocols to measure humoral immune response against 

naturally acquired HPV infection are lacking in the literature (34, 39, 163, 164). The Ludwig-

McGill cohort study provides a unique opportunity to evaluate the association between HPV16 

naturally acquired immunity and DNA positivity in a large sample size of women collected in 

the pre-vaccine era. 

Our comparative analysis between different ELISA protocols showed, as expected, that 

both methods and both serum dilutions detected very low levels of HPV16 IgG antibodies 

following natural HPV infection compared to the level that could be detected after vaccination 

(9, 178). This weak natural immune response is probably related to the absence of viremia 

(179). 

The L1 gene has the most conserved nucleotide sequence of the HPV genome. It can 

be aligned for all known papillomaviruses (59). Although L2 is not very immunogenic, 

antibodies against L1+L2 VLPs may block infection of a diverse range of other HPV 

genotypes in contrast to L1 VLPs (180). Technically, there is an increase in the yield of 

HPV16 VLPs when they are produced with L1 and L2 proteins compared to L1 only which is 
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an advantage for researchers planning to produce VLPs for their own serologic assays (133). 

Therefore, we investigated if the composition of the VLP used in the ELISA assays could 

affect the detection of HPV16 IgG antibodies. Our findings are supported by another study 

that compared Luminex multiplex assays performed with both VLP types. They showed that 

L1+L2 VLPs performed better for measuring HPV16 and 18 antibodies in large samples (39). 

Our results also showed a strong correlation between data obtained by serum dilutions 1:10 

and 1:50 using both VLP types, and a moderate correlation between VLP types with the same 

serum dilution, suggesting that data obtained through different VLP types cannot be pooled in 

the analysis. Although results obtained with L1+L2 VLPs were more scattered around the 

regression line, they were also more stable between serum dilutions in comparison to L1 

VLPs.  

There are only a few studies in the literature that have focused on assay validation and 

optimization (44, 45, 47). In general, sensitivity of ELISA protocols using VLPs as antigens is 

between 50 to 60% with high specificity (>90%) (179). This variation in sensitivity may be 

due to different definitions of cut-off values between studies making the comparison between 

them even more difficult (179). Based on the literature and on our own experience, our team 

has proposed the use of normalized absorbance ratio (NAR) to circumvent the ELISA 

technical problems (intra- and inter-assay variability) that can affect the validity of 

seroreactivity (27, 30, 44-47). This method may provide a cost-effective alternative to keep the 

quality control of serological measurements in large epidemiological cohort studies (46). The 

GST-L1 antigens closely approximates the VLP-ELISA at a lower cut-off and may be an 

appropriate choice for studies aiming to assess population-level patterns in the epidemiology 

of cumulative infection with many HPV types (181). 
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The strength of the association between HPV16 antibodies and naturally acquired HPV 

DNA infection has been mostly investigated considering seropositivity as a predictor of HPV 

infection using logistic regression or generalized estimating equation (15, 25, 27-31, 33). We 

evaluated HPV infection as a predictor of seropositivity through linear regression in order to 

avoid using a cut-off for NARs. Residuals were randomly distributed which supported the 

application of this model in our analysis. Both linear and logistic regressions show the 

association between HPV16 seropositivity and HPV16 DNA positivity in cross-sectional 

studies (24).  

HPV16 DNA positivity was considered as an independent determinant of HPV16 

seropositivity in our study which is similar to the findings of others (13, 15, 27, 28, 30, 33). 

We have observed low degree of cross-reactivity for infections with other alpha 9 HPV types 

when we analyzed the entire cohort. Although not statistically significant, our results agree 

with others (24, 26, 182). The measured antibodies seem to be mainly type-specific. Although 

it is not clear in the literature what are the potential confounders of this association, we 

analyzed the impact of age as a potential confounder and effect modifier using the entire 

cohort (n=1,961) (25, 27, 28, 30, 38). Age was neither a strong confounder nor an effect 

modifier of this association.  

It is also very common to find co-infections with multiple HPV types in many 

epidemiological studies (15, 30, 116). In the Ludwig-McGill cohort 12.3% of all study 

participants tested positive for multiple HPV types at baseline (183). The association 

measured for HPV16 with multiple types (co-infection) was similar to that for HPV16 single 

infection. It is possible that co-infections with multiple HPV types or high HPV16 viral load 
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reflect the inability of the immune system to respond to the viral infection (leading to low 

levels of antibodies), as others observed through logistic regression (15, 30). Researchers 

observed that the correlation between serology and HPV DNA status tends to be stronger 

among women infected with a single HPV type (median OR = 10.5, CI 95% = 2.4–48.4) than 

among women with multiple HPV infections (median OR = 4.6, CI 95% = 1.8–11.7) (15). In 

our models, neither HPV16 viral load nor co-infections with other types seem to influence the 

association between HPV16 seropositivity and HPV16 DNA positivity. 

Serological assays to measure anti-HPV antibodies have a potential clinical utility to 

measure present and past exposure to HPV infection and could be used as a marker of HPV-

associated disease (128). Although they cannot replace HPV DNA detection methods or 

cytological and histological examinations of the cervical cells, it can be an adjuvant test, 

especially in molecular epidemiology studies to investigate the natural history of HPV 

infection and cervical precancerous lesions (10, 184-186). 

5.2. Limits and strengths of the study 

The Ludwig-McGill cohort study is the largest epidemiologic investigation of the 

natural history of HPV infections ever done in the Brazilian population (165). This is a rare 

opportunity to investigate serological data from naturally acquired HPV infection in a vaccine 

era. 

We tested samples from many women; however, participant’s characteristics are not in 

line with our expectations for a region considered to be at high risk for cervical cancer. Most 

of them were on average 33 years old [median (IQR) = 32.0 (26.0 - 39.0)] and reported having 

had at most one lifetime sexual partner. More than 80% of them had no active HPV infection 
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(negative for HPV DNA) at the onset of the study. Despite the unfavorable characteristics of 

the study population, we could detect the presence of total HPV16 IgG antibodies in many of 

them, indicating cumulative exposure to the virus. We share the same technical limits of other 

serological studies. ELISA is the most common serological assay used in epidemiological 

studies; however, we do not have a gold standard method to compare our results. Although 

ELISA assays cannot differentiate between neutralizing and non-neutralizing antibodies, they 

do provide us information on cumulative exposure to the virus. One of the strengths of our 

study is the accessibility of serological data obtained by two ELISA protocols differing from 

each other by the composition of the VLP used as an antigen and based on two serum dilutions 

(1:10 and 1:50). VLPs were kindly provided by Dr. John Schiller from the National Institute 

of Health (USA), and Dr. Ian Frazer from the University of Queensland (Australia). Both are 

pioneers of the VLP production which gives us confidence in the quality of our antigens. 

To our knowledge, this is the first study comparing ELISA protocols performed with 

two serum dilutions to evaluate the impact of the composition of the VLPs to detect HPV16 

seroreactivity. Since the outcome (HPV16 seroreactivity) is kept as a continuous variable, we 

avoided having to establish a cut-off point for seropositivity which can vary between studies 

(179). Otherwise, without a cut-off point we cannot provide seroprevalence data in our study. 

5.3. Potential threats to internal validity 

Precision. Care was taken with the serum control used in the ELISA assays to control inter- 

and intra-assay variations. A pool of serum recovered from adult women was prepared in 

advance. In order to minimize measurement random errors, normalized absorbance ratios 

(NAR) were calculated by dividing the mean blank-subtracted optical densities by the 
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equivalent values of the control serum pool included in the same plate in triplicate, using 

different dilutions (46). One may suspect systematic errors (non-differential classification 

errors) since HPV DNA detection and seroreactivity data depends on several lab equipment’s, 

especially PCR machines, pipettes, and the colorimetric plate reader which provides us the 

optical densities. Unfortunately, poor calibration of equipment cannot be analyzed statistically. 

If it happens, all the data may be off in the same direction, either too high or too low. 

Bias. The participant’s response rate was very high (70%), and they were randomly selected. 

In addition, women that tested for HPV16 seroreactivity were highly representative of the 

entire cohort. So, selection bias due to recruitment and sample testing is thus unlikely. We 

analyzed baseline data only, therefore we were not penalized for the loss of follow-up which 

increases the possibility of introducing selection bias in relation to possible differential losses 

depending on exposure and outcome. Information bias may not have happened because we did 

not deal with repeated measures; consequently, our analysis was not influenced either by the 

memory of the participants with respect to questionnaire responses or changes in their 

behavior during the study. Since we used linear regression to analyze our data, we did not 

have to define a cut-off point for HPV16 seropositivity, decreasing the possibility of 

misclassification linked to the outcome variable. The chance to have had differential 

classification error of the exposure is minimal since we had very few missing data related to 

the detection of HPV infection (14/1975 specimens) randomly distributed in the cohort. 

Missing data was probably due to the poor-quality of some DNA samples. In addition, 

samples for both DNA and serology tests were collected at the same visit and blindly tested 

for the exposure and outcome, decreasing the possibility of differential classification errors. 
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Confounding. We constructed a conceptual framework to illustrate our thoughts about the 

role of age on the HPV seroconversion followed to an exposure to HPV DNA infection 

(Figure 6, page 80). 

 
 

Figure 6: Conceptual framework. The role of age on the acquisition of an HPV DNA 

infection and seropositivity.  

 Although lifetime number of sexual partners seems to be strongly associated with HR-

HPV DNA and seroprevalence, we ruled out the possibility of considering this variable as a 

confounder in this study, since most cohort participants reported at enrolment having had at 

most only one lifetime sexual partner. It is easy to understand that there is a reduction of 

immune responsiveness in the elderly (187). However, it is difficult to find a biological 

explanation to justify changes in the risk to acquire an HPV infection as we get older. We 

understand that it is very difficult to acquire an HPV infection without having sexual activity. 

Virgins have less chance to acquire an HPV infection, no matter their age (188-191). 

Consequently, there is no antibody production without having had an HPV infection (present 

or past). Regardless, several studies have found similar results reporting age as a statistically 

significant determinant for the acquisition of an HPV infection (see chapter 1). In a study done 
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with sexually active women of all ages, HPV16 seroprevalence tended to remain elevated 

compared to DNA positivity (33). HPV16 seroprevalence reached its highest peak at 25–34 

years of age. Although seropositivity appeared to decline slightly with age after its peak, 

HPV16 seroprevalence always remained elevated above the level seen in women less than 25 

years old. In contrast, HPV16 DNA positivity peaked in women less than 25 years old and 

declined with increasing age. They also observed a slight secondary increase in DNA 

prevalence in women older than 55 years old. However, there are controversies in the 

literature regarding all these findings (28, 38, 192). We have two hypotheses for the role of 

age in the association between HPV infection and seropositivity. The first one, less likely to 

happen, is that age is considered an independent factor directly associated to the acquisition of 

an HPV infection. The second one is the most biologically coherent hypothesis where age is 

considered a proxy of the lifetime number of sexual partner in its association with the 

acquisition of an HPV infection. In our opinion, young women tend to have more sexual 

partners than older women until they get divorced/widowed and start again having more 

sexual partners; consequently, they have more chance to acquire a new HPV infection. 

Although believing that age is not a direct determinant of the acquisition of an HPV infection, 

we adjusted our analysis by the age of the participants at the enrollment of the study to verify 

any changes in the β coefficients of the linear regression analysis. In this study, adjustment for 

age marginally changed the association between HPV16 seropositivity and HPV DNA 

infection confirming our hypothesis that age cannot be considered a confounder in this 

relationship. We also observed that age was not an effect modifier of the association. 
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5.4. Potential threats to external validity 

Difficulty of generalizing beyond people. The participants may be different from the non-

participants due to their socioeconomic status (low-income women) or because they are more 

concerned with their health. 

Difficulty of generalizing beyond location. The study was conducted in Sao Paulo, Brazil. 

However, the variables under investigation in this study (HPV DNA positivity and HPV16 

seroreactivity) are unlikely to be affected by the genetics or lifestyle (culture) of the 

participants. Therefore, it is unlikely that we will have problems in extrapolating our findings 

to other populations. However, caution was taken to discuss our data. We compared our 

results with results all over the world. However, caution was taken to discuss our data. We 

compared our results with results all over the world. 

Difficulty of generalizing beyond time. The participants were selected from 1993 to 1997, 

and their follow-up finished more than 10 years ago. Caution was thus taken while interpreting 

our results in 2018. The literature review was done with no restriction of date. 

Conclusion 
We observed an association between HPV16 seropositivity and HPV16 DNA positivity 

do not seem to be affected by co-infections or viral load (as per the protocol used in this 

study). Other HPV types, even those related to HPV16, such as HPV31, 35, 52, 67, 33 or 58 

HPV seem to not be associated with HPV16 IgG antibodies. The protocol using L1+L2 VLPs 

and serum dilution 1:10 better capture the association between HPV16 seropositivity and 

HPV16 DNA positivity. 
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Several questions remain about HPV serology. Despite the hard work of many researchers 

to identify the determinants of HPV seroreactivity, we still have a lot of controversies in the 

literature (13, 24, 27, 29, 30, 33, 38, 108, 154-161). We do not know why not all women 

seroconvert after prior exposure to HPV. It may be due to methodological issues (study 

design, assay, antigen, antibody, etc.) or a failure still not identified in their immune system. It 

has been reported that the median time from HPV16 DNA detection to seroconversion varies 

from 6-12 months (10, 125); but we do not know if it could vary according to the 

characteristics of the population under investigation. The duration of natural immunity is also 

unclear (13, 15, 17). In addition, studies showing the dynamics of HPV antibodies are missing 

in the literature. It is unclear if the naturally acquired immune response to HPV infection can 

effectively protect against reinfection, reactivation of a latent infection, or cervical 

precancerous lesions, and if it can clear an HPV infection (14, 16, 18-23, 193). Therefore, 

further studies are needed to investigate the naturally acquired immunity over time which 

represents a huge challenge in the HPV vaccine era. 
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Appendix I. Inclusion and exclusion criteria for the 
summary table of the literature review 

Inclusion criteria 

1. Studies done in healthy women from the general-population; 

2. Women with ≥18 years of age must be included in the cohort; 

3. Studies done with children, men, and women were included if data were stratified by sex and/or age; 

4. Baseline data for HPV16 DNA, seroprevalence and/or determinants of seroreactivity; 

5. Data from natural acquired cervical HPV infection; 

6. Studies evaluating HPV16 IgG antibodies only; 

7. Studies providing HPV16 seroprevalence by HPV16 DNA status; 

8. Studies evaluating seroreactivity against L1 and/or L1+L2 capsid proteins; 

9. Articles published in English, French, and Portuguese; 

10. Major articles only; 

11. Full article available. 

Exclusion criteria 

1. Studies done animals; 

2. Studies done with minorities (eg., patients diagnosed with cervical precancerous lesions and/or cervical 

cancer, pregnant women, HIV infected women, virgins, etc.); 

3. Studies exclusively done with children and/or adolescents (<17 years of age); 

4. Studies done with children, men, and women which data were not stratified by sex and/or age; 

5. Studies evaluating HPV16 seropositivity as a determinant of reinfection (repeated measures); 

6. Studies evaluating seroincidence/seroconversion, and seropersistence. 



 

ii 

7. Studies done with vaccinated subjects; 

8. HPV16 DNA and/or seropositivity data provided exclusively in combination with other HPV types (HR-

types); 

9. HPV16 DNA and/or seropositivity data from anatomical regions other than the cervix; 

10. Studies providing HPV16 serology data without mentioning the HPV16 DNA status of the subjects; 

11. Studies evaluating types of antibodies other than total HPV16 IgG antibodies (e.g., IgA, IgM, subclasses 

of IgG, and neutralizing antibodies); 

12. Studies that did not specify, directly or indirectly (via reference), the type of antibody evaluated; 

13. Studies on IgG antibodies other than L1 and L2 (e.g., E6, E7, etc.); 

14. Studies providing odds ratios without proof of statistical significance (e.g., 95% confidence interval or p 

value); 

15. Reviews and communication reports (if relevant are cited in the body of the dissertation). 

Note. The research was done in PubMed using several combinations of key words and restricted to human subjects. There was no date or study design restriction. 
The selection of the articles was made by applying the inclusion and exclusion criteria in four steps: (1) Title relevance; (2) Abstracts evaluation; (3) Full article 
content, and (4) Evaluation of the references of selected articles. 
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Appendix II. Summary table of the literature review 
The association between HPV16 serology and HPV DNA infection in transversal analysis (baseline data), and the determinants of 

HPV16 serology 
 

Authors (year)/ 
Location 

Study 
design/Enrollment/ 
Sample size/(Age) a 

HPV16 seroprevalence (HPV16 
DNA positive vs. negative) b 

(%)/Assay 

Determinants of HPV16 serology: OR (95% IC) or p value/Conclusion 

Unadjusted analysis Adjusted analysis 

Carter et al. (1996) 
 
USA 

 
Baseline data from a 
longitudinal study 
 
1990-1995 
 
n=294 (18-20) 
 

52.6 vs. 6.9 (p<0.001) 
 
ELISA (L1 VLP) 

There is an association between HPV16 
DNA infection and HPV16 serology 
(Fisher’s exact test: p<0.001) 
 
Determinants of HPV16 serology 
No of lifetime sexual partners 
>10: 23.1% (3/13) (Chi-squared test: 
p<0.01) 

- 

Women who seroconverted were 5.7 times (95% confidence interval = 2.4-13.4) more 
likely to have precancerous lesions associated with the detection of HPV16 DNA than 
were women who did not seroconvert.

Nonnenmacher et al. 
(2003) 
 
Brazil 

Cross-sectional 
 
July-Aug. 1994 
 
n=976 
 
(15-70) 

44.9 vs. 35.3 
 
ELISA (L1 VLP) 

Unconditional logistic regression: 
 
There is an association between HPV16 
DNA infection and HPV16 serology: 1.61 
(1.20–2.20) 

Unconditional logistic regression: final 
model defined by stepwise backwards 
method: p value for removal=0.15 and for 
entry=0.10 
Adjusted for: age, and HPV16 DNA+ 
Age (years) 

≤24: reference  
25-34:1.56 (1.00-2.50) 
35-49: 1.87 (1.20-2.90) 
50+: 1.37 (0.80-2.30) 

Lifetime no sexual partners 
1: reference 
2: 1.89 (1.40-2.60) 
3: 1.82 (1.20-2.80) 
4+: 2.95 (1.90-4.50) 

Cytological diagnosis of SILs in HPV16 
seropositive women 

Age-adjusted: 2.07 (1.0–4.5)
Seropositivity to HPV 16 and HPV 6/11/16/18 antigens seem to be better markers of past
sexual activity than current HPV infection, and humoral response to HPV16 or
HPV6/11/16/18 may not be a strong indicator of cervical lesions in populations at low risk
for cervical lesions. 
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Wang et al. (2003) 
 
Costa Rica 

 
Cross-sectional 
 
1993-1994 
 
HPV16: n=9949 
 
HPV18: n=9928 
 
HPV31: n=9932 
 
HPV45: n=3019 
 
CIN III/cancer: n=107 
 
(18-97) 
 

45.0 
 
In women infected with HPV31: 2.0 
(1.6 –2.6) 
In women infected with HPV18: 1.9 
(1.5 – 2.5) 
 
ELISA (L1 VLP) 

Logistic regression: 
 
There is an association between HPV16 
DNA infection and HPV16 serology: 4.50 
(3.60–5.60) 
 
For all four HPV types measured, the 
magnitude of the association was highest 
for each HPV serotype and DNA of the 
same type. 
 
Sero- and HPV prevalence varied with 
age 

Logistic regression: 
 
Adjusted for: age, and no of sexual partners 
in the past year 
Lifetime no sexual partners 
(Data for HPV16) 

1: reference 
2-3: 2.10 (1.80 –2.30) 
4+: 3.1 (2.60 –3.70) 

Lifetime number of sexual partners was the 
key determinant of seropositivity 
independent of DNA status and age. 
Oral Contraceptive use 

Never: reference 
Former: 1.30 (1.10 – 1.50) 
Current: 1.5 (1.20 – 1.80) 

Adjusted for: age 
Diagnosis of CIN III/cancer 

Sero-/DNA-: reference 
Sero+/DNA+: 34.70 (19.70 – 61.00) 
Sero-/DNA+: 39.90 (24.10 – 66.20) 
Sero+/DNA-: 2.00 (1.10 – 3.70)

DNA-positive and seropositive women showed the highest risk for concurrent CIN 
III/cancer, followed by DNA-positive, seronegative women.

Faust et al. (2013) 
 
Slovenia 

Cross-sectional 
 
Dec. 2009-Aug. 2010 
 
n=3,291 
 
(20-64) 

56.7 vs 23.9 
 
Luminex (L1+L2 VLP) 

Logistic regression: 
There is an association between HPV16 
DNA infection and HPV16 serology: 

4.31 (2.27–8.21) 
Sero+/multiple type DNA+: 4.26 (2.62–
6.93) 
HPV types evaluated: 16, 18, 31, 33, 35, 
39, 45, 52, 56, 58, 59, 68, and 73) 

 
The correlation between serology and 
HPV DNA status tended to be stronger 
among women infected with single HPV 
type (median OR = 10.5, CI 95% = 2.4–
48.4) than among women with multiple 
HPV infections (median OR = 4.6, CI 
95% = 1.8–11.7) 

- 

A multiplexed HPV PsV-Luminex assay has been developed and validated to correlate 
with natural HPV infection for 13 HPV types, thus enabling more comprehensive studies 
in HPV epidemiology and vaccine research.
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Dondog et al. (2008) 
 
Mongolia 

Cross-sectional 
 
Sept.-Nov. 2005 
 
n=969 
 
(15-59) 

33.9 vs. 22.3 
 
Luminex (GST-L1) 

- 
 

Logistic regression: 
Adjusted for: age, and lifetime no of sexual 
partners 
There is an association between HPV16 
DNA infection and HPV16 serology: (Chi-
squared test, p=0.046) 
Age (years) 

<25: reference  
25-29: 0.90 (0.50-1.40) 
30-34: 1.00 (0.60-1.60) 
35-39: 1.40 (0.90-2.20) 
40-44: 1.20 (0.70-1.90) 
45-49: 1.70 (1.00-2.60) 
50+:2.00 (1.20-3.10) 

Lifetime no sexual partners 
1: reference 
2: 1.10 (0.80-1.50) 
3: 1.30 (0.90-1.90) 
4+: 1.50 (1.00-2.10) 

Husbands’ extramarital sexual 
relationships 

Never: reference 
Ever: 1.40 (1.00-2.00) 

Induced abortion 
Never: reference 
Ever: 1.40 (1.00-1.90)

The proportion of women positive for HPV16 DNA or antibodies was similar among 
women ages <35 years (27.6%) and ages ≥35 years (26.6%). However, older women were 
less likely to be HPV16 DNA positive (with or without corresponding antibodies) and 
more likely to be HPV16 seropositive only. Lifetime number of sexual partners and 
induced abortions were shown to be directly associated with HPV DNA and/or 
seroprevalence. 
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De Araujo-Souza et al. 
(2014) 
 
Brazil 

Baseline data from a 
longitudinal study 
 
1993-1997 
 
n=2,049 
 
(18-60) 

20.7 
 
ELISA (L1 and L1+L2 VLP) 

Unconditional logistic regression: 
 
Age (years) 

<25: reference  
25-34:1.33 (0.97-1.84) 
35-44: 1.55 (1.11-2.15) 
45+: 2.11 (1.42-3.12) 

Lifetime no sexual partners 
0-1: reference 
2-3:1.70 (1.32-2.19) 
4-5: 2.71 (1.97-3.32) 
6+: 2.34 (1.59-3.44) 

Age at first intercourse (years) 
20-50: reference 
18-19:1.30 (0.93-1.79) 
16-17: 1.29 (0.94-1.76) 
≤15: 1.68 (1.25-2.27) 

HPV16 DNA+ 
No: reference 
Yes: 3.60 (2.11-6.13) 

HPV16 DNA+ (single vs multiple 
infection) 
Negative: reference 
Single: 3.80 (2.01-7.19) 
Multiple: 3.60 (2.11-6.13) 

HPV16 viral load (copies/cell) 
Negative: reference 
<1: 2.91 (1.16-7.28) 
1-100:4.33 (1.96-9.58) 
≥100: 3.43 (1.14-10.30) 

Non HPV16 alpha PV-9 
No: reference 
Yes: 2.00 (1.20-3.21) 

Any HPV 
No: reference 
Yes: 1.40 (1.07-1.83) 

Any HR-HPV 
No: reference 
Yes: 1.60 (1.16-2.19) 

Unconditional logistic regression: 
Adjusted for: age, and HPV16 DNA+ 
 
Age (years) 

<25: reference  
25-34: 1.38 (0.97-1.84) 
35-44: 1.60 (1.15-2.23) 
45+: 2.16 (1.45-3.22) 

Lifetime no sexual partners 
0-1: reference 
2-3: 1.70 (1.32-2.20) 
4-5: 2.56 (1.97-3.53) 
6+: 2.29 (1.55-3.37) 

Age at first intercourse (years) 
20-50: reference 
18-19: 1.52 (1.08-2.13) 
16-17: 1.60 (1.15-2.23) 
≤15: 2.18 (1.59-3.00) 

Frequency of sex 
0-1 times: reference 
2-3: 0.95 (0.75 – 1.22) 
4-5:1.53 (1.04 – 2.26) 
6+: 1.77 (1.07 – 2.92) 

Duration of smoking 
Never: reference 
≤10 years: 0.81 (0.61 – 1.07) 
11+ years: 0.62 (0.57 – 0.98) 

Age-adjusted: 
HPV16 DNA+ 

No: reference 
Yes: 3.86 (2.23-6.59) 

HPV16 DNA+ (single vs multiple 
infection) 
Negative: reference 
Single: 3.93 (2.07-7.48) 
Multiple: 3.86 (2.23-6.59) 

HPV16 viral load (copies/cell) 
Negative: reference 
<1: 3.10 (1.23-7.79) 
1-100: 4.64 (2.09-10.30) 
≥100: 3.73 (1.24-11.20)
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Non HPV16 alpha PV-9 
No: reference 
Yes: 2.17 (1.32-3.56) 

Any HPV 
No: reference 
Yes: 1.52 (1.15-1.83) 

Any HR-HPV 
No: reference 
Yes: 1.73 (1.25-2.39)

In multivariate analysis, seroreactivity was positively correlated with age, lifetime number 
of sexual partners, frequency of sex, and HPV16 viral load, and negatively associated 
with duration of smoking. In summary, HPV16 seroreactivity is determined by factors 
that reflect viral exposure.

 
Triglav et al. (2017) 
 
Slovenia 
 

Baseline data from a 
longitudinal study 
 
Dec. 2009-Aug. 2010 
 
HPV16 DNA-: n=2111 
HPV16 DNA+: n=88 
 
(20-64) 

55.7 vs 23.2 
(p<0.01) 
 
Luminex (VLP) 

Unconditional logistic regression: 
 
There is an association between HPV16 
DNA infection and HPV16 serology:  

4.2 (2.70-6.40) 

- 

Naturally acquired anti-HPV16 serum antibodies appeared to protect against anogenital 
HPV16 infection, but this association was at least partially confounded by age. Baseline 
anti-HPV16 serum antibodies did not influence persistence/clearance of HPV16 infection 
at follow-up.

Michael et al. (2008) c 

 

Germany 

 
Cross-sectional 
 
Oct. 1985-Jan. 1989 
 
Male: n=758 
 
Female: n=1,039  
 
(1-82) 
 

10.9 (women > 14 years old) 
0.5 (children) 
 
Serological data was stratified by 
age and sex 
 
Luminex (GST-L1) 

 
Highly significant seroprevalence 
increases from children to younger adults 
(15–34 years) (but not from younger to 
older adults >34 years) (Fisher’s exact 
test, p<0.0001). 
 
The antibody prevalence to HPV16, 
peaked between 25 and 34 years. 

Age standardization was applied, but 
changed seroprevalence estimates only 
marginally. 

We provide evidence for different age- and sex-dependent seroprevalence patterns of 
phylogenetically related HPV: antibodies to cutaneous mu and nu PV appear early in life, 
those to mucosal alpha PV after puberty, and those to beta and gamma skin PV 
accumulate in adulthood.
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Castro et al. (2014) 
 
Chile 

 
Baseline data from a 
longitudinal study 
 
2001 
 
n=1,021 
 
(15-86) 

18.5 (95% CI: 16.2-21.0) 
 
Luminex (GST-L1) 

GEE: 
 
There is an association between HPV16 
DNA infection and HPV16 serology: 1.3 
(0.5-3.4) 
 
Seropositivity for each HPV type (16, 18, 
31, 33, 35, 45, 52, and 58) tended to be 
higher among DNA-positive infections 
with the same type, reaching statistical 
significance only when all infections were 
analyzed together: positive to the same 
HR-HPV type: 1.7 (1.1-2.5) 

GEE: Variables with p ≤ 0.2 in univariate 
models were included in the multivariate 
model. 
Adjusted for: age, age at first intercourse, 
lifetime no of sexual partners, smoking, 
cervical HPV DNA 
Age (p trend<0.001) 

15-20: reference 
21-30: 0.70 (0.40-1.22) 
31-40: 1.24 (0.73-2.11) 
41-50: 1.09 (0.59-1.69) 
51-60: 2.15 (1.15-3.32) 
≥ 61: 2.16 (1.17-3.47) 

Age at first intercourse (p trend<0.001) 
15: reference 
16-17: 0.79 (0.57-1.08) 
18-19: 0.66 (0.47-0.92) 
≥ 20: 0.53 (0.38-0.74) 

Lifetime no of sexual partners 
1: reference 
≥2: 1.30 (1.01-1.67) 

Cervical HPV DNA 
Negative: reference 
Positive: 1.48 (0.86 – 2.56)

HPV seroprevalence studies are a useful tool for learning about the dynamics of HPV 
infection in a community. This study contributes to understanding the natural history of 
HPV infection and provides a baseline assessment before the incorporation of HPV 
vaccination into a national program.
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Nonnenmacher et al. 
(1996)  
 
Greenland (i) 
 
Denmark (ii) 
 

Cross-sectional 
 
1993 
 
n=153 (i) 
 
n=124 (ii)  
 
(21-33) 

Greenland 
 
33.0 vs 58.0 (Fisher’s exact test, 
p=0.18). 
 
Denmark 
 
38.0 vs 38.0 (p >0.05) 
 
ELISA (L1 and L1+L2 VLP) 

Greenland 
 
Determinants of HPV16 serology 
Age (years) (Chi-squared trend, p>0.1) 

35+: reference  
30-34: 0.30 (0.07-1.30) 
25-29: 0.30 (0.07-1.00) 
20-24: 0.40 (0.09-1.60) 
<20: 0.20 (0.04-1.10) 

Lifetime no sexual partners 
(Chi-squared trend, p>0.25) 
35+: reference 
25-34: 1.50 (0.90-2.60) 
15-24: 0.80 (0.30-1.90) 
5-14: 1.10 (0.40-2.70) 

<5: 0.20 (0.02-1.90) 
 
Denmark 
 
Determinants of HPV16 serology 

(Chi-squared trend, p<0.001) 
Age (years) 

35+: reference  
30-34: 0.40 (0.10-1.10) 
25-29: 0.20 (0.05-0.60) 
20-24: 0.10 (0.03-0.40) 
<20: 0.10 (0.01-0.60) 

Lifetime no sexual partners 
(Chi-squared trend, p<0.001) 
35+: reference 
25-34: 0.40 (0.10-1.30) 
15-24: 0.30 (0.10-0.90) 
5-14: 0.20 (0.05-0.50) 
<5: 0.10 (0.02-0.60)

- 

Since genital HPV DNA prevalence decreased with increased cumulative HPV 
exposure in the 2 high risk groups examined, we conclude that HPV DNA is not a valid 
marker for comparing relative exposure to HPV in high- and low-risk populations. 
Seroreactivity using the VLP ELISA appears to reflect relative cumulative exposure to 
the virus more closely, although in very high-risk cohorts, such as the Greenlandic one 
examined here, there may be a plateau at high levels of exposure.
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Porras et al. (2010) 
 
Costa Rica 

Baseline data from the 
Costa Rica HPV 
Vaccine Trial (pre-
vaccination) 
 
Jun. 2004- Dec. 2005 
 
n=646 
 
(18-25) 

63.0 
 
ELISA (L1 VLP) 

Unconditional logistic regression: 
 
Frequency sexual intercourse, month 

(ANOVA, p trend=0.27) 
≤1: reference 
2-3:1.92 (1.03-3.57) 
4-9: 1.79 (1.07-2.99) 
10+: 1.96 (1.14-3.36) 
(ANOVA, p trend=0.27) 

Lifetime no sexual partners 
(ANOVA, p trend=0.04) 
1: reference 
2: 1.23 (0.75-2.03) 
3+: 1.62 (1.02-2.59) 

Use of hormonal contraceptives 
Never: reference 
In the past: 1.33 (0.76-2.33) 
Current use of oral contraceptive: 1.88 
(1.14-3.09) 
Current injectable: 3.38 (1.39-8.23) 

Use of condom last sexual intercourse 
No: reference 
Yes: 0.54 (0.37-0.81) 

Cytology/Viral load 
Normal/Low viral load: 

reference 
LSIL/Low viral load: 

2.12 (0.84-5.34) 
HSIL/Low viral load: 

2.79 (0.98-7.93) 
Normal/High viral load: 

2.22 (1.28-3.85) 
LSIL/High viral load: 

1.63 (0.97-2.75) 
HSIL/High viral load: 

2.50 (1.30-4.81)

Unconditional logistic regression: 
 
Of particular interest were variables that 
could be markers of timing of HPV 
infection (time since sexual debut and 
time with most recent partner) or of 
amount/load of exposure (number of 
sexual partners, viral load by HC2, 
cytologic finding, hormonal 
contraception, and condom use). Possible 
confounding factors were explored, and a 
final model was built for each 
characteristic of interest adjusting for all 
other variables that changed the crude OR 
estimates by 15% or more. 
Adjusted for the use of hormonal 
contraceptive 
Frequency sexual intercourse 

≤1: reference 
2-3: 1.85 (0.98-3.46) 
4-9: 1.55 (0.91-2.65) 
10+: 1.57 (0.89-2.77) 

Adjusted data for time with most recent 
partner 
Lifetime no sexual partners 

1: reference 
2: 1.48 (0.87-2.50) 
3+: 1.96 (1.19-3.25) 

Adjusted data for use of hormonal 
contraceptive 
Use of condom last sexual intercourse 

No: reference 
Yes: 0.66 (0.42-1.03) 

Factors associated with sustained HPV exposure (abnormal cytology, elevated HPV 
viral load, increasing lifetime partners) were predictive of HPV16 seropositivity. 
Hormonal contraceptive use was associated with seropositivity suggesting an effect of 
hormones on immune responses to HPV.
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Carter et al. (2000) 
 
USA 

 
Baseline data from a 
longitudinal study 
 
1990-1998 
 
n=588 
 
(18-20) 

54.2 
 
ELISA (VLP) 

- -

Seroconversion study which provides the seroprevalence of HPV16 in women infected 
with the same HPV type at baseline. 
Antibody responses to each type were heterogeneous, but several type-specific 
differences were found: seroconversion for HPV16 occurred most frequently between 6 
and 12 months of DNA detection, but seroconversion for HPV6 coincided with DNA 
detection. Additionally, antibody responses to HPV16 and 18 were significantly more 
likely to persist during follow-up than were antibodies to HPV6. 

Olsen et al. (1997) 
 
Norway 

 
Case-Control 
 
1991-1992 
 
Normal cytology: 
n=208 
 
HPV signs in cytology: 
n=20 
 
CIN II/II/Cancer: 
n=6 
 
(20-44) 
 

17.6 
 
ELISA (VLP) 

 
The proportion of women with antibody 
response above 0-100 (cut-off) was 
significantly lower in the category with 
normal cytology than in the categories of 
cytological features of HPV or CIN (Chi-
squared: 6.8, p = 0.03). 

Multivariate logistic regression: 
 
Adjusted for: age, age at first sexual 
intercourse; and number of sexual 
partners. 
 
Neither age nor age at first sexual 
intercourse was associated with HPV16 
antibodies 
 
No of sexual partners (p trend<0.01) 

0-1: reference 
2-3: 2.90 (0.30-30.80) 
4-5: 13.10 (1.50-110.80) 
6-10: 8.20 (1.00-69.60) 
10+: 10.50 (1.20-94.00) 

Seropositivity to HPV16 capsids is positively associated with the number of sexual 
partners, suggesting that HPV16 is predominantly sexually transmitted. The fact that 
serology had a stronger association with number of sexual partners than viral DNA 
suggests that seroreactivity is a better measure of lifetime history of HPV infection.
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Coseo et al. (2010) 
 
Costa Rica 
 
 

Baseline data from the 
Costa Rica HPV 
Vaccine Trial (pre-
vaccination) 
 
Jun. 2004- Dec. 2005 
 
n=5,871 
 
(18-25) 

63.0 vs 27.9 
 
ELISA (VLP) 

Univariate unconditional logistic 
regression: 
Age (years) 

18-19: reference  
20-21:1.30 (1.10-1.53) 
22-23: 1.57 (1.33-1.84) 
24-25: 1.70 (1.45-2.00) 

Years since sexual debut 
0-1: reference 
2-3:1.66 (1.32-2.09) 
4-5: 2.19 (1.75-2.75) 
6-7: 2.58 (2.04-3.25) 
8+: 3.23 (2.56-4.07) 

Marital status 
Married: reference 
Single:1.12 (1.00-1.25) 
Separated/Divorced/Widowed: 1.55 
(1.15-2.09) 

Lifetime no sexual partners 
1: reference 
2-3: 2.04 (1.79-2.32) 
4+: 3.52 (3.00-4.14) 

No of pregnancies 
0: reference 
1:1.36 (1.20-1.55) 
2+: 1.81 (1.57-2.09) 

Hormonal contraceptives 
Neither: reference 
OC:1.33 (1.12-1.57) 
Inj. C: 1.84 (1.42-2.40) 
OC + Inj. C: 1.67 (1.41-1.99) 

Smoking 
Never: reference 
Former:1.52 (1.23-1.89) 
Current: 1.73 (1.45-2.08) 

Current and/or past STIs 
No: reference 
Yes:1.86 (1.61-2.14) 

HC2/cytology result 

HC2-/normal: reference 
HC2+/normal: 2.05 (1.78-2.36)

Multivariate unconditional logistic 
regression: p value for entry <0.10 in a 
univariate model 
 
Adjusted for: years since sexual debut, 
lifetime no of sexual partners, no of 
pregnancies, hormonal contraceptive use, 
condom use, smoking history, current 
and/or past STIs, HC2/cytology result. 
Years since sexual debut 

0-1: reference 
2-3: 1.39 (1.09-1.79) 
4-5: 1.55 (1.20-2.02) 
6-7: 1.69 (1.24-2.21) 
8+: 1.82 (1.35-2.46) 

Lifetime no sexual partners 
1: reference 
2-3: 1.53 (1.38-1.77) 
4+: 2.19 (1.81-2.65) 

No of pregnancies 
0: reference 
1: 1.22 (1.03-1.44) 
2+: 1.37 (1.11-1.69) 

Hormonal contraceptives 
Neither: reference 
OC: 1.11 (0.92-1.34) 
Inj. C: 1.44 (1.07-1.93) 
OC + Inj. C: 1.15 (0.93-1.42) 

Smoking 
Never: reference 
Former: 1.21 (0.95-1.54) 
Current: 1.29 (1.05-1.57) 

Current and/or past STIs 
No: reference 
Yes: 1.44 (1.23-1.67) 

HC2/cytology result 

HC2-/normal: reference 
HC2+/normal: 1.83 (1.58-2.14) 
HC2+/mild alterations: 2.07 (1.70-2.53) 
HC2+/mild to severe alterations: 

3.21 (2.38-4.34)
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HC2+/mild alterations: 2.17 (1.80-2.62) 
HC2+/mild to severe alterations: 

3.61 (2.72-4.79) 

*Linear regression models with log-
transformed continuous antibodies titers 
results were similar to dichotomous 
models (data not shown)

There was no evidence of assay cross-reactivity as HPV16 seroprevalence was similar 
(approximately 34%) among women singly infected with genetically and nongenetically 
related species (α9 and non-α9). The increasing seroprevalence observed with time 
since first sex suggests that HPV serology is a cumulative marker of HPV exposure. 
However, many DNA infected women were seronegative; thus, serology is an imperfect 
measure of past exposure to cervical HPV, at best. Additionally, we found no evidence 
of assay cross-reactivity.

Liu et al. (2016) c 
 
China 

Baseline data from a 
longitudinal study 
 
2007-2009 
 
Men: n=1,603 
 
Women: n=2,187  
 
(25-65) 

0.3 vs 9.2 
 
Luminex (GST-L1) 

Logistic regression: 
 
Data were grouped by oncogenic types 
(HPV16, 18, 45, 52, and 58). HPV16 only 
not showed. 
 
Few subjects were dually positive to HPV 
DNA and serum antibodies for any HPV 
(3.1% of women). 
 
Positivity for oncogenic HPV DNA and 
seropositive for the same type 

1.89 (1.00–3.57) 
Among 762 couples, the presence of HPV 
DNA and/or antibodies in one partner was 
positively associated with the identical 
HPV type in the other partner. 
Oncogenic types: 

1.56 (1.10–2.21) 

Multivariate logistic regression: 
 
Data were grouped by oncogenic types 
(HPV16, 18, 45, 52, and 58). HPV16 only 
not showed. 
 
Adjusted for: age, cigarette smoking, 
alcohol consumption, lifetime, no of 
sexual partners. 
 
Positivity for oncogenic HPV DNA and 
seropositive for the same type 

1.91 (1.01–3.60) 
 

Among 762 couples, the presence of HPV 
DNA and/or antibodies in one partner was 
positively associated with the identical 
HPV type in the other partner. 
Oncogenic types: 
1.55 (1.09–2.20)

These findings may reflect a site-specific natural course of HPV infection.
Abbreviation. OR, odds ratio; CI, 95% Confidence interval; GEE, generalized estimating equation; PRR, prevalence rate ratio; USA, United States of America; GST-L1, glutathione S-transferase-L1-flag-fusion proteins; 
ELISA, Enzyme-linked immunosorbent assay; VLP, virus-like particle; PV, papillomavirus; RCT, Randomized clinical trial; STIs, sexually transmitted infections; HC2, Hybrid capture 2; OC, oral contraceptive; Inj. C., 
injectable contraceptive; HR-HPV, High-risk HPV types; HSV2, herpes simplex virus type 2; LSIL, low-grade squamous intraepithelial lesions; HSIL, high grade squamous intraepithelial lesion; CIN II and III, Cervical 
intraepithelial neoplasia of grade II and III, respectively.  
a Sample size is presented as number of subjects and age in years. 
b Data from women with vs. without HPV16 DNA infection, if not, data is from women with HPV16 DNA infection only. 95% CI or p-value are provided whenever informed. 
c Results are from women only. 



 

 

Appendix III. Codebook of the Ludwig-McGill study 
baseline questionnaire 
 

Brazilian Study, Questionnaire 1 
Question Code Descriptor Number Descriptor 

Date Interview Date   
No Study number Num   

MEVNC Hospital number Num   
NOME Name Initial   

NASCEU Birth date Date
ANOS Age Num   

5 Ethnic group 

1 White 
2 “Mulata” 
3 Black 
4 Asian 
5 Native Indian

6 Marital status 

1 Single 
2 Married 
3 Widowed 
4 Separated 
5 Unmarried, but living with partner 

7 Occupation for the 10 
past years N-Num   

8 Level of schooling 

1 Illiterate 
2 Elementary incomplete 
3 Elementary completed 
4 Secondary incomplete 
5 Secondary completed 
6 College-Technical-professional 
7 University 

9 Religion 

1 Catholic 
2 “Crente” 
3 Protestant 
4 Jewish 
5 Spiritism
6 Umbanda 
7 Other 
8 None 
9 ? 

9B Religion for those coded 
7 at Q.9 N-Num   
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10 
Number of person living 
with her including 
herself 

Num   

11 Family income Num Questionnaire shows cruzeiros 

12a Household goods: 
Refrigerator 1 Yes 

  2 No 

12b Household goods: Color 
TV 1 Yes 

  2 No 

12c Household goods: Phone 1 Yes 

  2 No 

12d Household goods: 
Videotape 1 Yes 

  2 No 

12e Household goods: Car 1 Yes 

  2 No 

12f Household goods: 
Another car 1 Yes 

  2 No 

13 District (where she lives) Non-num   

14 Number of years (that 
she lives at this place) Num   

15a Birth place (city) Non-num   

15b Birth place (State) Non-num   

16 Type of birthplace 

1 Rural 

2 Urban 

3 Suburb 

8 Don't know 
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17a 
Where she spent the 
major part of their life 
after 12 years old (city) 

Non-num   

17b 
Where she spent the 
major part of her life 
after 12 years old (state)

Non-num   

18 
Type of era where she 
spent the major part of 
her life 

1 Rural 

  2 Urban 

  3 Suburb 

  4 Don't know 

19 Ever smoked 1 Yes 

  2 No 

20 

Number of cigarettes 
smoked in average by 
day (commercial 
cigarettes) 

1 No more than 1 

  2 2 to 5 

  3 6 to 10 

  4 11 to 20 

  5 More than 20 

  6 More than 40 (2 packs) 

21 Type of cigarettes 
(commercial cigarettes) 1 Only with filter 

22 Age she started smoking 
(commercial cigarettes) Num   

23 

(If she still smoking, 
number of years she 
smokes) (commercial 
cigarettes) 

Num   

24 

If she quitted smoking, 
number of years she had 
smoked (commercial 
cigarettes) 

Num   
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25 

Number of cigarettes 
smoked in average by day 
(homemade cigarettes; 
stronger) 

1 No more than 1 
2 2 to 5 
3 6 to 10 
4 11 to 20
5 More than 20 
6 More than 40 (2 packs) 

26 Age she started smoking 
(homemade cigarettes) Num   

27 

If she still smoking, 
number of years she 
smokes (homemade 
cigarettes) 

Num   

28 

If she quitted smoking, 
number of years she had 
smoked (homemade 
cigarettes) 

Num   

29 Age she quitted smoking Num

30 Ever smoked cigars or 
pipe 

1 Yes 
2 No 

31 Ever drank alcohol 
occasionally 

1 Yes 
2 Never 

32 Ever drank beer 

1 No / occasionally 
2 No more than one glass per week 
3 2-5 per week 
4 6-10 per week 
5 11-30 per week 
6 More than 30 per week 

33 Ever drank wine 

1 No / occasionally 
2 No more than one glass per week 
3 2-5 per week 
4 6-10 per week 
5 11-30 per week 
6 More than 30 per week 

34 Ever drank Cachaça 
(strong local alcohol) 

1 No / occasionally 
2 No more than one glass per week 
3 2-5 per week 
4 6-10 per week 
5 11-30 per week 
6 More than 30 per week 

35 
Ever drank scotch, gin, 
vodka or other alcohol 
beverage 

1 No / occasionally 
2 No more than one glass per week 
3 2-5 per week 
4 6-10 per week 
5 11-30 per week 
6 More than 30 per week 
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36 Number of years she has 
been drinking this amount Num   

37 Number of years she 
drinks Num   

38 Menarche Num   
39A Last menstrual period Date   

39B If not menstruated, reason 
1 Post-partum 
2 Breast-feeding 
3 Menopause 

40a Type of menstrual 
absorbent: Sanitary pad 

1 Yes
2 No 

40b Type of menstrual 
absorbent: tampon 

1 Yes 
2 No 

40c Type of menstrual 
absorbent: Cloth 

1 Yes 
2 No 

40d Type of menstrual 
absorbent: Other type 

1 Yes
2 No 

40d out If other type (Q.40), 
mentioned N-Num   

41 Felt Itching in genital area 
in the last 5 years 

1 Never 
2 Sometimes (1-9 times) 
3 Many times (10 times and +) 

42 
Felt pain (burning) in the 
genital area in the last 5 
years 

1 Never 
2 Sometimes (1-9 times) 
3 Many times (10 times and +) 

43 Vaginal discharge in the 
last 5 years 

1 Never 
2 Sometimes (1-9 times) 
3 Many times (10 times and +) 

44 Gynecologic products 
used N-Num   

45 Homemade gynecologic 
products used 

1 Yes 
2 No

45B Type of homemade 
products N-Num   

46 
Discharge, itching or pain 
(burning) in the last 2 
days 

1 Yes 

2 No 

47a Use of vaginal shower 
douche. 

1 Yes, always 
2 Yes, often 
3 Sometime 
4 Never

47b Which product (for 
vaginal shower) N-Num   

48 

During menstruation, in 
addition to take a shower 
or a bath, does she wash 
genital organs 

1 No 
2 Yes, once a day 

3 Yes, more than once a day 

49 Ever had sores in the 1 Yes 
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vaginal or vulva 2 No 

50 Ever had venereal disease 
diagnosis 

1 Gonorrhea 
2 Chancre 
3 Condylomas or venereal warts 
4 Syphilis 
5 Herpes 
6 Trichomonas 
7 Candidiasis 
8 Never 

51 
Ever had a prevention 
exam for cervical cancer, 
pap test or cytologic exam

1 Yes

2 No 

52 If yes (Q51), number of 
time Num   

53 When was the last time 
(gynecologic exam) 

1 Last year 
2 More than 1 year, less than 5 
3 More than 5 
8 Don't know 

54 Age at the first sexual 
intercourse Num   

55 Number of pregnancy Num   

56 Number of normal 
delivery Num   

57 Number of caesarian Num   
58 Number of abortion Num   
59 Year of the last pregnancy Year   

60 This delivery (Q.59) was 
it a completed gestation 

1 Yes 
2 No 

61 Sexual relations during 
pregnancy 

1 Yes 
2 No 

62 Stop having sex after 
delivery 

1 Yes 
2 No 

63a Age she starts to have sex 
at least once a week Num   

63b If never regular 1   

64 Number of lifetime sexual 
partners Num   

65 

Number of lifetime sexual 
partners (Q.64) that were 
regular for at least 6 
months 

Num   

66 
Number of regular 
partners (Q.65) that were 
not loyal 

Num   

67 
Total number of sexual 
partner before the age of 
20 

Num   

68 Number of these partners Num   
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(Q.67) that were less than 
20 years old 

69 
Number of these partners 
(Q.67) that were more 
than 30 years old 

Num   

70 Total number of sexual 
partner after the age of 20 Num   

71 
Number of these partners 
(Q.70) that were less than 
20 years old 

Num   

72 
Number of these partners 
(Q.70) that were more 
than 30 years old 

Num   

73 

Lifetime number of years 
of interruption of the 
sexual relation (for more 
than one year) 

Num   

74 Sexual intercourse 
frequency and duration Num   

75 Sexual relation during 
menstruation 

1 Always avoid it 
2 Sometimes 
3 Only on the first days
4 Never 

76 Genital organs washing 
BEFORE sexual relation 

1 Always 
2 Sometimes 
3 Never 

77 Genital organs washing 
AFTER sexual relation 

1 Always 
2 Sometimes
3 Never 

78 Number of sexual 
partners in the last 5 years Num   

79 
Number of sexual 
partners in the last 5 years 
that were not loyal 

Num   

80 
Number of these partners 
(Q.78) that were less than 
20 years old 

Num   

81 
Number of these partners 
(Q.78) that were more 
than 30 years old 

Num   

82 S 
Frequency of sexual 
relation during the last 5 
years: BY WEEK 

Num   
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82 M 
Frequency of sexual 
relation during the last 5 
years: BY MONTH 

Num   

82 A 
Frequency of sexual 
relation during the last 5 
years: BY YEAR 

Num   

83 
Number of sexual 
partners during the last 12 
months 

Num   

84 

Number of sexual 
partners in the last 12 
months that were not 
loyal 

Num   

85 
Number of these partners 
(Q.83) that were less than 
20 years old 

Num   

86 
Number of these partners 
(Q.84) that were more 
than 30 years old 

Num   

87 S 
Frequency of sexual 
relation during the last12 
months: BY WEEK 

Num   

87 M 
Frequency of sexual 
relation during the last 12 
months: BY MONTH 

Num   

87 A 
Frequency of sexual 
relation during the last 12 
months: BY YEAR 

Num   

88 Contraception methods 

1 Oral contraceptive 
2 Tubal ligation 
3 Vasectomy
4 IUCD 
5 Condom 
6 Diaphragm 
7 Spermicide 

8 Withdrawal, rhythm (calendar), cervical 
mucus

9 Other 
10 No method
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88 B Description of the "other" 
contraceptive method N-Num 

Example: Vaginal shower with vinegar, 
Vaginal shower with warm water, 
Anticontraceptive injection, Piece of Soap 
introduced in the vagina before relation, 
Japanese vaginal suppository, Pills of 
spermicide, Bandage of caustic liquid 
introduced in the vaginal, Vaginal 
spermicide suppository, Mint infusion in 
the vaginal or bean broth with salt, Wound 
dress in the cervix.

89 Age she starts 
contraceptive pills Num   

90 Number of years taking 
contraceptive pills Num   

91 
During those years, 
resting period of 
contraceptive pills 

1 Yes

2 No 

92 Number of years she stops 
contraceptive pills Num   

93 How many years since 
tubal ligation Num   

94 
How many years since 
vasectomy of your 
partners 

Num   

95 First time you use IUCD    

96 Still use IUCD 1 Yes 
2 No 

97 Frequency of using 
condom 

1 Rarely
2 Sometimes 
3 Always 

98 Frequency of using 
diaphragm 

1 Rarely 
2 Sometimes 
3 Always 

99 Spermicide use 
1 Sole method
2 Usually with diaphragm 
3 Usually with condom 

100 Practice of anal 
penetration 

1 Yes, often 
2 Yes, rarely 
3 No 

101 Number of partners with 
anal penetration Num   

102 
Practice of anal 
penetration BEFORE 
vaginal penetration 

1 Yes 
2 No 
3 Sometimes 

103 
Washing penis between 
anal and vaginal 
penetration  

1 Yes 
2 No 
3 Sometimes 
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104 
Changing condom 
between anal and vaginal 
penetration 

1 Yes 
2 No 
3 Sometimes 
4 Did not use condom

105 Practice of oral sex 
1 Yes, often 
2 Yes, rarely 
3 No 

106 Number of partners with 
oral sex Num   

107 
Partner practices vaginal 
penetration before oral 
penetration 

1 Yes 
2 No 
3 Sometimes

Note. Translated from Portuguese to English 


