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RÉSUMÉ 

Cette thèse se compose de trois articles qui traitent de la dynamique économique 

de l'utilisation soit d'un antibiotique ayant comme objectif de combattre une in­

fection bactériologique, soit d'un organisme génétiquement modifié ayant comme 

objectif de combattre une population de nuisibles. Nous nous intéressons au' con­

texte particulier créé quand de tels instruments peuvent perdre leur efficacité à 

l'usage. Pour chacun de ces instruments, nous modélisons l'efficacité comme une 

ressource renouvelable et déterminons leur utilisation optimale comme solution 

d'un problème de contrôle optimal. 

Dans le premier article, nous analysons l'exploitation d'un antibiotique dans 

un marché où les producteurs de cet antibiotique ont libre accès au stock commun 

d'efficacité de l'antibiotique et nous comparons l'équilibre qui en résulte à ce qui 

serait l'optimum social. La fonction de demande pour l'antibiotique est obtenue 

sous l'hypothèse que les individus diffèrent entre eux par rapport à leur valorisation 

d'être en bonne santé. La dynamique de l'efficacité de l'antibiotique est basée 

sur un modèle épidémiologique, qui décrit l'interaction dynamique entre le niveau 

d'efficacité et la population infectée. Il tient compte du fait qu'en raison de la 

sélection naturelle de bactéries résistantes, la consommation d'antibiotique pour 

combattre les infections tend à diminuer l'efficacité de l'antibiotique. Dans ce 

contexte, les producteurs d'antibiotiques ne s'intéressent qu'au stock courant de 

la population infectée, et au niveau courant de l'efficacité de l'antibiotique, ce 

qui détermine la volonté à payer pour le médicament de la part de la population 

malade. Ces producteurs entrent sur le marché jusqu'à ce que l'égalité du prix et 

du coût moyen soit atteinte. Quant à l'optimum social, la fonction d'objectif à 

maximiser tient compte du bien-être de la population totale, incluant la portion 

qui est en bonne santé ainsi que celle qui est infectée et qui ne consomme pas 

l'antibiotique. Cette maximisation tient aussi explicitement compte de l'effet du 

taux de traitement sur les niveaux futurs d'efficacité et de population infectée. 

Nos résultats montrent qu'en fonction des paramètres du modèle, plus parti-
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culièrement le coût de production et l'accroissement du taux de guérison attribuable 

au traitement, le niveau positif d'efficacité de l'antibiotique atteint à l'état station­

naire peut être plus élevé ou moins élevé que celui atteint en optimum social. Il 

existe même des configurations de paramètres pour lesquels les états stationnaires 

coïncident. Cependant, dans tous les cas, les sentiers menant vers ces états station­

naires en accès libre et à ceux en optimum social vont différer quant à la proportion 

de la population infectée qui reçoit un traitement. 

Dans le deuxième article, nous caractérisons la politique de prix d'un mono­

poleur détenant un brevet d'une durée limitée. Nous supposons qu'à l'expiration 

du brevet le monopoleur devient un producteur concurrentiel parmi d'autres dans 

l'industrie de libre accès vendant une version générique de l'antibiotique initiale­

ment breveté. Afin de maximiser la valeur présente de ses profits, le monopoleur 

gère, via sa politique de prix, l'efficacité de l'antibiotique ainsi que le stock de la 

population infectée. Ces variables représentent respectivement la qualité de son 

produit et la taille de son marché. Nous montrons que le monopoleur tend à main­

tenir ces variables à un niveau plus élevé que le ferait un monopoleur myope, c'est­

à-dire un monopoleur qui ne tiendrait pas compte des externalités dynamiques. 

Nous montrons également que sa politique de prix est caractérisée par une pro­

priété dite de tumpike : le système approche l'état stationnaire qui serait atteint 

par un monopoleur bénéficiant d'un brevet d'une durée infinie et va rester dans le 

voisinage de cet état stationnaire pour une période plus ou moins longue selon la 

durée du brevet et les paramètres bio-économiques. À l'approche de l'expiration du 

brevet, le monopoleur se comporte de plus en plus comme un monopoleur myope, 

avec le résultat que son prix se mettra à décroître pour finalement atteindre celui 

du monopoleur myope au moment où le brevet prend fin. Dès que l'industrie du 

générique prend la relève, le prix chute subitement. 

Dans le troisième article, nous étudions l'utilisation de semences génétiquement 

modifiées pour combattre une population nuisible. Nous nous servons d'un modèle 

entomologique qui inclut la diversité du pool génétique de la population nuisible, 

ainsi que le niveau même de la population. Une zone de refuge est utilisée en 



tant qu'instrument pour contrôler l'évolution de la sensibilité du pool génétique 

de la population nuisible face aux semences génétiquement modifiées. Nous carac­

térisons la zone de refuge qui minimise la somme des coûts actualisés reliés aux 

dommages causés par la population nuisible ainsi qu'au coût supplémentaire des 

semences génétiquement modifiées. Le modèle est calibré pour le maïs Bt et le 

nuisible de la pyrale européenne. En raison de la linéarité de la fonction d'objectif, 

la zone de refuge consiste en des contrôles extrême et singulier. Pour les paramètres 

calibrés du modèle et des variations raisonnables, le bio-système tend vers un état 

stationnaire dans lequel la sensibilité des nuisibles est renouvelable. Cependant, 

si le contrôle est restreint à être invariant dans le temps, tel que proposé aux 

États-Unis, le système tend généralement vers un état stationnaire où la sensibilité 

est réduite à zéro. Dans une telle situation, des configurations de paramètres très 

particulières sont nécessaires pour que le bio-système tende vers un état stationnaire 

intérieur. Pour le modèle calibré, nous sommes en mesure d'estimer la réduction 

de coût que procure l'utilisation d'une zone de refuge variable plutôt qu'une zone 

de refuge invariable. 

Mots-clés : économie de la résistance aux antibiotiques, gestion de la résistance 

des nuisibles, efficacité antibiotique, sensibilité du pool génétique, maïs Bt, ressource 

renouvelable, équilibre de libre accès, équilibre monopolistique, optimum social, 

contrôles extrêmes. 
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ABSTRACT 

This dissertation is composed of three essays dealing with the economic dyna­

mics of either the use of an antibiotic to combat bacterial infection or the use of a 

genetically modified crop to combat pests, when the efficacy of those instruments 

may decline with use. In each case, we model the efficacy variable as a renewable 

resouree and its optimal use is determined as the solution of an optimal control 

problem. 

In the first essay, we analyze the exploitation of an antibiotic in a market sub­

ject to open aceess on the part of antibiotic produeers to the common pool of 

antibiotic efficacy and compare it to the social optimum. Demand for the antibi­

otic is derived under the assumption that individu aIs differ with respect to their 

valuation of being in good health. The dynamics of the antibiotic efficacy is based 

on an epidemiological model which describes the dynamic interaction between the 

level of efficacy of the antibiotic and the level of infection in the population, in­

cluding the fact that antibiotic consumption tends to deplete the efficacy of the 

antibiotic in combating bacterial infections as the bacteria develop resistance to 

the antibiotic. The antibiotic producers care only about the variables that affect 

the instantaneous demand for the drug, namely the current stock of infected pop­

ulation and the current level of efficacy of the antibiotic, and enter the market 

until priee is driven down to average cost. The social optimum, on the other hand, 

takes into account the welfare of the entire population, including that portion of 

the population which is in good health and that which is infected but chooses not 

to consume the antibiotic, as weIl as the effect of the current treatment rate on the 

future efficacy of the treatment and the future stock of infected population. 

We show that depending on the parameters of the model, in particular the 

cost of production and the improvement in the recovery rate that results from 

treatment, the positive steady-state level of antibiotic efficacy to which the system 

tends under open access can be lower or higher than the level which should prevail 

in the socially optimal steady state. In fact there are parameter configurations for 
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which the steady states can be exactly the same. But no matter how the steady 

states compare, the soeially optimal and the open-aecess paths to steady state will 

differ and involve different paths for the treatment rates. 

In the second essay, we eharacterize the pricing poliey of a monopolist who 

is protected by a patent for a finite period of time. We assume that once the 

patent expires, the monopolist becomes a competitive producer in the open-access 

industry which sells the generic version of the initially patented antibiotic. In order 

to maximize his inter-temporal profits, the monopolist manages, via his pricing 

poHcy, the levels of antibiotie effieacy and of the infeeted population. These can 

be viewed, respectively, as the quality of his product and his market size. We 

show that he tends to maintain a higher level of effieacy and a higher level of 

infected population than a hypothetically myopie monopolist who does not take 

into account the dynamie externalities. We also show that his prieing poliey is 

characterized by a turnpike property. This me ans that the system approaehes the 

steady state that would be reaehed by an infinitely-lived monopolist and remains 

in its neighborhood for a period of time, the length of whieh depends on the length 

of the patent life and on the bio-economie parameters. As the patent is about to 

expire, the monopolist begins to behave more and more myopieally, leading to a 

continuous decrease in priee until it finally reaches the priee charged by a myopie 

monopolist. As soon as the open-aceess generie indu st l'y takes over, a discontinuous 

fall in priee occurs. 

FinaIly, in the third essay, we consider the use of a genetically modified crop 

to fight a pest population that feeds on the crop. Vve use an entomologie al model 

that captures the diversity of the pest population's gene pool, as weIl as the level of 

pest invasion itself. A refuge area is used as an instrument to control the evolution 

of the susceptibility of the pest's gene pool to the genetically modified crop. We 

characterize the refuge area that minimizes the SUffi of discounted costs related 

to the crop damage caused by the pest as well as the supplement al cost of the 

genetically modified crop. The model is calibrated for the use of Bt-corn to fight 

the European corn borer. Because of the linearity of the objective function, the 
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tends to an interior steady state where the level of pest-susceptibility is renewable. 

However, when the control is restricted to being constant over time, as is currently 

done in the United States, the system generaIly tends to a steady state where 

the susceptibility is completely exhausted. In that case, it takes very particular 

parameter constellations for the system to reach an interior steady state. "Te are 

able to assess, for the calibrated model, the cost reduction attained by using a 

refuge area that varies over time instead of a time-invariant one. 

Keywords: economics of antibiotic resistance, pest resistance management, an­

tibiotic efficacy, gene pool susceptibility, Et-corn, renewable resource, open-access 

equilibrium, monopoly pricing, social optimum, bang-bang control. 



CHAPITRE 2: MONOPOLY PRICING OF AN ANTIBIOTIC 

SUBJECT TO BACTERIAL RESISTANCE 47 

2.1 Introduction. 47 

2.2 The model . . 49 

2.2.1 The epidemiological model 49 

2.2.2 The demand . . . . . . . . 54 

2.3 The monopolistic pricing behavior . 55 

2.3.1 The myopic monopolist. . . 59 

2.3.2 The infinitely-lived monopolist . 64 

2.3.3 Finite patent life: T < 00 70 

2.4 Conclusion ............ . 

CHAPITRE 3: OPTIMAL REFUGE STRATEGIES TO FIGHT 

PEST RESISTANCE TO GM CROPS . 

3.1 Introduction. 

3.2 The model .. 

3.2.1 Biological constraints . 

3.2.2 Economic objective function 

3.2.3 Model calibration . 

3.3 Time-invariant refuge zone 

3.3.1 Benchmark analysis . 

3.3.2 Sensitivity analysis 

3.4 

3.5 

Optimal refuge zone ... 

3.4.1 Analytical analysis 

3.4.2 Numerical analysis 

Conclusion. 

CONCL USION .. 

BIBLIOGRAPHIE 

74 

90 

90 

92 

92 

96 

97 

98 

99 

100 

102 

103 

104 

108 

122 

126 



LISTE DES ANNEXES 

Annexe 1: Appendix of chapter 1 ...... . 

LI The socially optimal steady state with wSs' = 1 

1.2 The socially optimal steady state with fSS' = ~r 
rI 

Annexe II: Appendix of chapter 2 . 

II.1 The steady state with wSs = 1. . . . 

11.2 The intermediate steady state with fSS = ~r . 
rI 

Annexe III: Appendix of chapter 3. 

130 

130 

132 

134 

134 

135 

137 

IIL1 Foundations of the dynamic system . 137 

IIL2 Discrete-time version for numerical approximation 139 

IIL3 Approximation of the two pest generations per season model 140 



LISTE DES FIGURES 

1.1 Epidemiologica.l dynamics with 1 E [0, ~;) . 

1.2 Epidemiological dynamics with Il < h < ~; 

1.3 Epidemiological dynamics with 1 E Tf' 1] . 

1.4 Epidemiological dynamics with 1 
Tf 

1.5 Open-access dynamics with initial state of type 1 

1.6 Open-access dynamics with initial state of type II 

1. 7 Open-access dynamics with initial state of type III . 

1.8 Open-access dynamics with initial state of type IV . 

1.9 Convergence to steady state under open access ... 

xv 

36 

37 

38 

39 

40 

41 

42 

43 

44 

1.10 Convergence to steady state in the social optimum. 44 

1.11 Comparison of the steady states . . . . . . . . . . . 45 

1.12 Comparison of the socially optimal and open-access paths . 46 

1.13 Comparison of the socially optimal and open-access treatment rates 46 

2.1 The phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . .. 76 

2.2 Convergence to steady state under the myopie monopolistic pro-

gramme ........................... . 

2.3 Monopolistic interior solution lm at state (w, I) at time t 

2.4 Steady-state configurations 

2.5 

2.6 

2.7 

2.8 

2.9 

Convergence to interior steady state . 

Treatment rates converging to I SS = ~T 
Tf 

Priee paths departing from initial state of type II 

Convergence to steady state \vith wSs = 1 .... 

Treatment rates converging to steady state with wSs = 1 

77 

78 

79 

80 

81 

82 

83 

84 

2.10 Priee paths departing from initial state of type II . 85 

2.11 Evolution of state variables (I, w) and the turnpike 86 

2.12 Evolution of treatment rate 1 and the turnpike .. 87 

2.13 Priee paths departing from initial state of type II and the turnpike 88 



2.14 Evolution of treatment rate f with approximate turnpike 

3.1 The phase diagram . 

3.2 Benchmark dynamics 

3.3 Evolution of discounted costs 

3.4 Policy function . . . 

3.5 Policy contour lines 

3.6 Socially optimal trajectory of refuge (q) . 

3.7 Socially optimal state path (N) 

3.8 Socially optimal state path (Pr) 

3.9 Socially optimal path (N,Pr) .. 

3.10 Switching function O(t) and dynamic convergence 

3.11 Switching curve O(t) = 0 and the fitness cost c .. 

3.12 Switching curve O(t) = 0 and the additional cost è1 

3.13 Switching curve O(t) = 0 and the discount rate p . 

..... 89 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 



3.1 Parameter values 

3.2 Benchmark costs 

LISTE DES TABLEAUX 

3.3 Variation of fitness cost (c) . ' 

3.4 Variation of supplement al cost ((\) 

3.5 Variation of discount rate (p) ... 

XVll 

98 

100 

101 

101 

101 



INTRODUCTION 

La capacité à combattre les maladies infectieuses et les pertes de récoltes dues 

aux insectes nuisibles ont connu un progrès rapide au cours du XXe siècle. Avec 

la découverte du premier antibiotique, la pénicilline, par Alexander Fleming en 

1928, et le développement successif d'une grande gamme d'antibiotiques d'une 

part, et d'anti-viraux d'autre part, nous nous sommes dotés de puissants moyens 

qui ont permis de contrôler et de guérir une multitude de maladies infectueuses. 

L'utilisation de pesticides, ainsi que d'organismes génétiquement modifiés (OGM) 

introduits plus récemment, ont permis de leur côté de minimiser considérablement 

les pertes de récoltes. 

Il est cependant généralement admis aujourd'hui que ces moyens risquent de 

perdre - si ce n'est déjà fait - la totalité ou au moins une partie de leur efficacité. 

Cette perte est due à la croissance de la résistance des bactéries et des insectes 

nuisibles une fois qu'ils ont été en contact avec l'outil destiné à les combattre. La 

résistance d'organismes peut être causée par plusieurs mécanismes, dont la sélection 

naturelle d'organismes résistants. En effet, ce ne sont que les organismes sensibles à 

un traitement qui peuvent être combattu. Les organismes naturellement résistants 

profitent alors d'un avantage comparatif et peuvent devenir prépondérants dans le 

système biologique. 

La perte d'efficacité de plusieurs traitements a pu être comblé dans le passé en 

partie pas de nouvelles innovations. Mais rien ne garantit qu'il sera ainsi dans le 

futur. La gestion de l'efficacité de ces traitements devient alors un enjeu socio­

économique. 

En premier lieu, les intervenants, soit les patients, médecins, pharmaciens et 

entreprises pharmaceutiques, soit les agriculteurs et entreprises productrices de se­

mences OGM et de pesticides, n'ont pas les mêmes objectifs. Ils ne tiennent pas 

toujours compte de l'impact qu'ont leurs décisions sur leur environnement présent 

et futur. À titre d'exemple, il sera toujours avantageux pour un malade de prendre 

un antibiotique si celui-ci lui permet d'augmenter ses chances de guérison. Même 
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si le malade peut évaluer correctement l'impact espéré de la prise de l'antibiotique, 

c'est-à-dire son éventuelle guérison, il néglige les coûts associés à la résistance à 

laquelle feront potentiellement face les générations futures. Pour le malade, il s'agit 

seulement d'une dose d'antibiotique comparée à des milliers de doses prescrites au 

même moment à travers le monde. Du côté des entreprises, une fois le brevet échu, 

la formule biologique de l'antibiotique devient propriété intellectuelle commune et 

l'antibiotique peut être vendu sous forme générique. Les entreprises pharmaceu­

tiques qui opèrent dans une industrie générique, quant à elles, ne prendront pas en 

considéràtion que la vente accrue d'un antibiotique le rend inefficace dans le futur. 

Elles n'ont aucune incitation à maintenir le niveau d'efficacité de traitement élevé, 

car elles risquent de ne pas retirer le fruit de ce sacrifice étant donné que toutes les 

autres entreprises ont libre accès à ce stock d'efficacité. 

Cet exemple illustre le fait qu'il existe plusieurs externalités, tant au niveau des 

utilisateurs de traitements qu'au niveau des producteurs. L'analyse de ces exter­

nalités et de leur impact sur l'évolution de l'efficacité des traitements, et l'éventuelle 

correction de ces externalités est du domaine de l'économie. 

La problématique de la résistance a donné naissance à une littérature grandis­

sante reliant des modèles économiques à des modèles biologiques plus ou moins 

stylisés. Une première contribution qui traite de la résistance aux antibiotiques et 

qui utilise un modèle épidémiologique est due à Brown et Lay ton (1996). Les au­

teurs modélisent la résistance comme une externalité dynamique entre l'utilisation 

qui en est faite pour combattre des maladies humaines et l'utilisation faite dans 

l'élevage animal. 1 Laxminarayan et Brown (2001) considèrent l'utilisation opti­

male de deux antibiotiques dont l'efficacité représente respectivement une ressource 

non-renouvelable. Cette utilisation dépend de la vitesse de réduction de l'efficacité 

ainsi que du coût de traitement de chaque antibiotique. Modélisant l'efficacité de 

l'antibiotique comme une ressource renouvelable, Wilen et Msangi (2003) montrent 

qu'un antibiotique devrait être utilisé à long terme d'un point de vue social de sorte 

lSuivant la même idée, Laxminarayan (2002) analyse la couverture optimale d'un brevet at­
tribué à un antibiotique qui peut être utilisé pour guérir des maladies humaines ainsi qu'animales. 
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à ce que l'efficacité de l'antibiotique se renouvelle. 2 

Quelques travaux considèrent l'évolution de l'efficacité de l'antibiotique dans 

un cadre de marché. Tisdell (1982) figure parmi les premières contributions sur 

ce sujet. Dans le cadre d'un modèle très stylisé à deux périodes, il soutient qu'un 

monopole peut corriger pour l'exploita.tion sous-optimale de l'efficacité de traite­

ment d'antibiotiques ou d'insecticides qui en serait faite de la part d'une indus­

trie concurrentielle. Fischer and Laxminarayan (2004) considèrent l'exploitation 

séquentielle d'antibiotiques par un monopole. En fonction du nombre d'anti­

biotiques à découvrir, un monopole exploite la séquence d'antibiotiques d'une 

manière trop, ou pas assez rapidement d'un point de vue social, selon le cas. Dans 

le cadre d'un modèle biologique stylisé, Mechoulan (2007) montre qu'une structure 

de monopole, suivie de la concurrence peut partiellement corriger pour le problème 

de la résistance aux antibiotiques. 

Quant aux insectes nuisibles, plusieurs travaux traitent de la résistance aux 

pesticides et aux semences OGM. Hueth et Regev (1974) figurent parmi les pre­

miers à développer un cadre bio-économique traitant de la résistance aux pesticides. 

Ils modélisent la sensibilité des insectes comme une ressource non-renouvelable et 

montrent que le coût associé à l'utilisation individuelle de la sensibilité est zéro, 

tandis que le coût social de remplacer le pesticide peut être extrêmement élevé. 

Munro (1997) analyse l'effet de l'utilisation myope et non-myope de pesticides sur 

l'évolution du bio-système. 

La résistance aux OGM de la part d'insectes nuisibles a été le sujet de plusieurs 

travaux. La stratégie servant à contrôler pour la montée de résistance fait intervenir 

une zone de refuge, dans laquelle des semences naturelles sont cultivées. Une 

contribution importante est Hurley et al. (2001), qui présentent un modèle calibré 

2L'efficacité de traitement d'un antibiotique est intimement lié à la problématique générale 
des infections transmissibles, qui a été l'objet d'étude de plusieurs travaux économiques. Pour 
en citer que deux à ce sujet, Gersovitz et Hammer (2004) comparent des efforts individuels de 
prévention et de guérison à ce qui serait socialement optimal dans le contexte d'un modèle général 
emprunté à l'épidémiologie. Philipson (2000) présente une revue d'articles, notamment traitant 
du SIDA. 
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pour la résistance de la pyrale du maïs. Dans un modèle à horizon fini, les auteurs 

analysent différentes tailles d'une zone refuge invariable dans le temps, et leur 

impact sur les coûts liés à la perte de récolte. 

thèse suit l'approche de proposer un modèle combiné bio-économique: qui 

permet l'analyse de l'efficacité de deux outils différents. Les deux premiers essais 

de cette thèse analysent l'efficacité de traitement d'un antibiotique sous différentes 

formes d'industrie. L'optimum social est également caractérisé. troisième essai 

analyse la résistance d'une espèce d'insectes auprès d'une semence OGM, plus parti­

culièrement du maïs Bt (Bacillus thuringiensis). Les modèles biologiques présentés 

respectivement sont empruntés à l'épidémiologie et à l'entomologie, et permettent 

de modéliser l'efficacité de traitement de l'antibiotique ainsi que la susceptibilité 

du pool génétique d'insectes comme une ressource naturelle renouvelable. Pour 

traiter des problèmes de maximisation dynamique, nous avons recours au principe 

du maximum. La solution est présentée à l'aide de simulation numériques. 

Dans le premier essai, nous analysons l'exploitation de l'efficacité d'un antibi­

otique dans un marché où les producteurs de cet antibiotique ont libre accès au 

stock commun d'efficacité de l'antibiotique et nous comparons l'équilibre qui en 

résulte à l'optimum social. La fonction de demande pour l'antibiotique est dérivée 

sous l'hypothèse que les individus diffèrent par rapport à leur valorisation d'être 

en bonne santé. L'efficacité de l'antibiotique est modélisée comme une ressource 

naturelle renouvelable exploitée en accès libre. La dynamique de l'efficacité de 

l'antibiotique est basée sur un modèle épidémiologique, qui décrit l'interaction dy­

namique entre le niveau d'efficacité et la population infectée. Il tient compte du fait 

que la consommation d'antibiotique dans le but de combattre les infections tend à 

décroître l'efficacité de l'antibiotique, en raison de la sélection naturelle de bactéries 

résistantes. Dans ce contexte, les producteurs d'antibiotiques ne s'intéressent qu'au 

stock courant de la population infectée, ce qui détermine la taille de leur marché, 

et au niveau courant de l'efficacité de l'antibiotique, ce qui détermine la volonté à 

payer pour le médicament de la population malade. Ces producteurs entrent sur 

le marché jusqu'à ce que l'égalité du prix et du coût moyen soit atteinte. 
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Quant à l'optimum social, la fonction d'objectif à maximiser tient compte du 

bien-être de la population totale, incluant la portion qui est en bonne santé ainsi 

que celle qui est infectée et qui ne consomme pas l'antibiotique. Cette maximisation 

tient aussi explicitement compte de l'effet de la population actuelle traitée sur les 

niveaux futurs d'efficacité et de population infectée. Nos résultats montrent que 

dépendant des paramètres du modèle, plus particulièrement le coût de production 

et l'accroissement du taux de guérison dû au traitement d'antibiotique, le niveau 

positif d'efficacité de l'antibiotique atteint à l'état stationnaire en accès libre peut 

être plus élevé ou moins élevé que celui atteint en optimum social. Il existe même 

des configurations de paramètres pour lesquels les états stationnaires coïncident. 

Cependant, dans tous les cas, les sentiers menant vers ces états stationnaires en 

accès libre ainsi qu'en optimum social vont différer quant à la production de la 

population infectée qui reçoit un traitement. 

Le deuxième essai complète le premier dans la mesure que nous y présentons 

l'exploitation de l'efficacité de la part d'une firme monopolistique bénéficiant d'un 

brevet d'une durée finie. À l'encontre de l'industrie générique, cette firme tient 

compte des qu'a la fixation du prix de l'antibiotique sur le niveau futur 

de l'efficacité de traitement et de la population infectée. Afin de caractériser la 

politique de prix du monopole, nous envisageons deux points de référence: le 

monopole myope et le monopole bénéficiant d'un brevet de durée infinie. Nous 

montrons que le système dynamique est caractérisé par la propriété de turnpike: 

le système s'approche de l'état stationnaire qui serait atteint si la firme bénéficiait 

indéfiniment de sa situation de monopole et y demeure pour un certain intervalle 

de temps, lequel dépend de la durée du brevet. Le monopole devient plus myope 

vers la fin de vie du brevet et se comporte de manière parfaitement myope au mo­

ment de son expiration. Ceci est dû au fait qu'une fois le brevet échu, ses profits 

économiques seront nuls dans une industrie générique. Comme il attribue de moins 

en moins de valeur à l'efficacité de l'antibiotique et à la population infectée au fur 

et à mesure que le brevet approche de sa date d'expiration, le prix chargé par le 

monopole diminue, ce qui est accompagné d'une augmentation de la fraction de 
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population infectée qui reçoit. le traitement. Ceci entraîne une diminution de la 

population infectée et, selon les paramètres du modèle, une diminution du niveau 

d'efficacité de l'antibiotique. Un saut vers le bas survient finalement dans le prix 

au moment où l'antibiotique passe aux mains de l'industrie générique. 

Dans le troisième essai nous abordons la question de l'exploitation optimale de 

l'efficacité d'une semence OGM, plus particulièrement le maïs Bt. Pour ce faire, 

nous avons recours à un modèle entomologique calibré dans lequel la sensibilité 

du pool génétique des insectes représente une ressource renouvelable. La fonction 

d'objectif tient compte de la valeur présente des coûts liés à la perte de récolte due 

aux insectes, ainsi que du surcoût de maïs Bt. En absence d'une zone de refuge, 

le bio-système va converger vers un état stationnaire dans lequel la population 

d'insectes est complètement résistante au maïs Bt. 

Nous considérons en premier lieu une zone de refuge qui est contrainte à être 

constante à travers le temps. Pour les paramètres calibrés du modèle, il s'avère 

dans ce cas qu'une zone de refuge relativement faible est socialement optimale et 

que la population d'insectes devient complètement résistante au maïs Bt. Dans le 

cadre d'une analyse de sensibilité portant sur la valeur sélective des gènes résistants 

à l'OGM, le coût à l'achat de l'OGM ainsi que le taux d~actualisation social, nous 

trouvons que la convergence vers un état stationnaire dans lequel la population 

devient complètement résistante représente un résultat général. Uniquement pour 

un taux d'actualisation social égal à zéro ou un coût à l'achat de l'OG).1 par­

ticulièrement élevé, la zone de refuge est suffisamment élevée pour permettre de 

garder la sensibilité par rapport à l'OGM du pool génétique à un niveau renouve­

lable. 

En deuxième lieu, nous supposons que la zone de refuge peut varier dans le 

temps. Comme la fonction d'objectif est linéaire dans la variable de contrôle, le 

contrôle optimal peut faire intervenir des contrôles extrêmes et singulier. Pour les 

paramètres calibrés du modèle, nous montrons que la zone de refuge est initialement 

égale à zéro, puis saute à un niveau strictement entre 0% et 100% à partir duquel elle 

converge vers le niveau qui permet de maintenir la sensibilité du pool génétique 



à un niveau soutenable. Ceci représente un résultat général pour des variations 

raisonnables des paramètres bio-économiques. Pour le modèle calibré, nous sommes 

en mesure d'estimer la réduction de coût que procure l'utilisation d'une zone de 

refuge variable plutôt qu'une zone de refuge invariable. 
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ECONOMIC DYNAMICS OF ANTIBIOTIC EFFICACY UND ER 

OPEN ACCESS 

1.1 Introduction 

8 

It is a well established fact that antibiotic consumption tends to deplete the ef­

ficacy of many antibiotics in combating bacterial infections, as the bacteria develop 

resistance to the antibiotic. l The resulting reduction in the efficacy of antibiotic 

treatment of many diseases is a matter of growing concern, since it has serious 

consequences for public health and is the source of important economic costs to 

society.2 The problem is complicated by the fact that individual decision makers, 

acting in their own best interest, do not take into account the effect of their current 

decisions on the future efficacy of the antibiotic. To realize the social optimum in 

such a context would require cooperative decision making. Thus the market out­

come is unlikely to be socially optimal. 

A useful way to approach this problem from an economic perspective is to think 

of the efficacy of the antibiotic as a common pool resource, much like fisheries for 

instance. That is the approach we take in this paper. More precisely, we analyze 

the exploitation of antibiotic efficacy in a market subject to open access on the 

part of the antibiotic producers to the common pool of efficacy and compare it to 

the social optimum. 

An early contribution to the analysis of the market outcome in a context where 

the efficacy of a drug is declining in its use can be found in Tisdell (1982). In a 

highly stylized two-period model, he finds that the market outcome under perfect 

1 For a general overview of the problem of antibiotic resistance see Levy (2002). See also Levy 
and Marshall (2004) for a recent review of the biological and epidemiological literature on the 
subject. 

2See for instance Holmberg, Solomon and Blake (1987), Phelps (1989), US Congress, Office of 
Technology Assessment (1995), Elbasha (2003) and Laxminarayan (2003). 
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competition leads to lower efficacy of the drug than would be socially optimal. 

Our model differs considerably from that of Tisdell in a number of ways. First, 

we explicitly derive the demand function for the antibiotic under the assumption 

that individuals differ with respect to their valuation of being in good health. 

Second, we treat antibiotic efficacy as a corn mon pool renewable resource. Third, 

we explicitly take into account the dynamic interaction between the level of efficacy 

of the antibiotic and the level of infection in the population. The underlying 

dynamic system that describes the evolution of the two state variables, namely 

the level of antibiotic efficacy and the stock of infected population, is based on 

an epidemiological model (the SIS-model) borrowed from the biology literature. 

Fourth, the determination of the social optimum takes into account not only the 

surplus accruing to the consumers of the antibiotic, but also that of the infected 

individuals who choose not to buy it and that of the individuals in good health, in 

addition to the surplus derived by the producers of the antibiotic. 

The antibiotic producers care only about the current stock of the infected pop­

ulation, which determines market size, and the current level of antibiotic efficacy, 

which affects the wilhngness to pay of the sick population. They ignore the dy­

namic effects of their decisions. We find that in the open-access equilibrium, the 

level of antibiotic efficacy tends to a positive steady-state level in which the efficacy 

renews itself so as to maintain the steady state. It turns out, interestingly, that this 

steady-state level of antibiotic efficacy can be lower or higher than the level which 

should prevail in the socially optimal steady state. This will depend on the set of 

parameters of the model, such as the cost of production and the improvement in 

the recovery rate that results from treatment, but also the natural recovery rates 

when infected with a resistant or a susceptible bacterial strain, the rate of trans­

mission of the disease and the discount rate. The paths to steady state will also 

be different under open access and the social optimum and will involve different 

treatment rates. 

Our approach owes a lot to the papers of Laxminarayan and Brown (2001), 
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\i\Tilen and Msangi (2003) and Rowthorn and Brown (2003).3 We make use of 

the same epidemiological model to describe the dynamics of the antibiotic efficacy 

and of the infected population and their interaction. Rowever they do not model 

demand and do not study the market outcome, but concentrate their analysis on the 

determination of the socially optimal treatment rates. Their objective function is 

also less general, since it does not take into account the welfare of a11 the population, 

whether ill or not and whether being treated or not, as we do here. 

The rest of our paper is structured as follows. In section 1.2, we present the 

epidemiological model that serves as the basis for the biological dynamics that 

underlie both the open-access equilibrium and the social optimum. In section 1.3, 

we derive the demand function for the antibiotic. We characterize the open-access 

equilibrium in section 1.4 and the social optimum in section 1.5. In section 1.6, we 

compare the open-access outcome to the social optimum. We conclude in section 

1.7. 

1.2 The epidemiological constraints 

In this section we present the basic SIS epidemiological model that describes the 

population dynamics underlying both the open-access equilibrium and the social 

optimum. This model assumes that the total population at time t, N(t), can be 

compartmentalized into the population that is in good health but susceptible to 

the infection, S(t), and that which is infected, I(t). The infected population is 

further partitioned into those individuals infected with a drug-susceptible strain, 

Iw(t), and those infected with a drug-resistant strain, Ir(t). Rence, at any time t, 

N(t) = S(t) + I(t) = S(t) + Iw(t) + Ir(t).4 

3We should mention also the early contribution of Brown and Lay ton (1996), who model 
antibiotic resistance as a dynamic externality. More recently, Gersovitz and Hammer (2004) 
build on an epidemiologica.l model that is related to the one used here (a form of the so-called 
SIR-model) to study the economic control of infectious diseases. 

4The SIS-model is used to describe the dynamics of the population in the case of diseases 
where once an infected individual recovers he becomes susceptible again, as opposed to diseases 
where once an individual recovers he becomes immune (the SIR-model). These types of models 
were first developed by Ross (1911) and Kennack and McKendrick (1927) to study the spread of 
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Some of the uninfected hosts will become infected through contact with the in­

fected population. The SIS-model assumes that the rate of addition to the infected 

population in this way is given by (3S( t)I (t), where (3 denotes the rate of trans­

mission of the infection between the healthy and the infected population. Some of 

the infected will recover. In the absence of treatment the natmal rates of recovery 

are rr for those infected with the drug-resistant strain and rw for those infected 

with the drug-susceptible strain. If aIl the infected are treated with the antibi­

otic, the rate of recovery of those infected with the drug-resistant strain remains 

unchanged, while the rate of recovery of those infected with the drug-susceptible 

strain increases to r w + r,. If a fraction f E [0, 1] of the infected population is being 

treated with the antibiotic, the rate of recovery of those infected with the drug­

susceptible strain will be rw + fr,. Rence the total infected population decreases 

at the rate rrIr(t) + (rw + fr, )Iw(t).5 

Then, if E(t) is the new entries into the population (the births) and if the death 

rates of the healthy and the infected are respectively n and m, the population 

dynamics can be described by: 

s - E - nS - (3S(Iw + Ir) + rwIw + rrIr + f Iw r, (1.1 ) 

Iw = ((3S m - rw - fr,)Iw (1.2) 

ir = ((3S - m - rr )Ir. (1.3) 

We will henceforth assume E = n = m = 0, thus taking the total population 

to be constant. With a constant population, S = -i and equation (1.1) becomes 

redundant, being simply the sum of equations (1.2) and (1.3). Furthermore, we 

can use the fact that Ir = 1 - Iw to eliminate Ir, leaving two differential equations 

diseases in populations. We closely fûllow the formulation of the SIS-model use<! by Bonhoeffer, 
Lipsitch and Levin (1997) and by Wilen and Msangi (2003). 

5This type of models implicitly assumes that it is not possible to control whether the patient is 
infected with the resistant or with the susceptible bacteria. This is not an unrealistic assumption 
when the cost of controlling for the type of bacteria before deciding on the treatment is very high 
and/or the delays it imposes are long. This seems to be very often the case in practice. 
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in land Iw. Now define w(t) = Iw(t)II(t) as a measure of the efficacy of the 

antibiotic, as in Laxminarayan and Brown (2001) and Wïlen and Msangi (2003). 

The population dynamics can then be rewritten in terms of the two state variables 

w and Iw to give: 

w - w(l w)(L\r - rj!) 

j - ((3(N - 1) - rr)I + wI(L\r - rj!) 

(1.4) 

(1.5) 

where L\r rr rw measures what is called in the epidemiological literature the 

fitness cost of resistance. The expression "fitness cost" refers here to the fact that 

although resistance procures the advantage of being able to survive the antibiotic 

treatment, this advantage cornes at a biological cost for the resistant strain when 

L\r > O. This is because, with rr > rw, the resistant strain clears at a faster rate 

than the susceptible strain in the absence of treatment and hence the susceptible 

strain naturally ends up dominating the bacteria population in the long-run. 

When the fitness cost is zero it can be seen from equation (1.4) that the level 

of efficacy of the antibiotic can never be replenished, since f 2: O. In that sense the 

efficacy of the antibiotic can then be considered a nonrenewable resource. On the 

other hand, if the fitness cost is positive, the level of efficacy can be replenished by 

setting f < Llr Ir j and the efficacy of the antibiotic can be considered a renewable 

resource. Thus the fitness cost is an important element in the analysis of antibiotic 

resistance. We will assume the fitness cost to be positive, although it will be fairly 

straightforward to der ive the results for a zero fitness cost as a special case of the 

more general results. 

There exist three steady state configurations to the population dynamics de­

scribed by (1.4) and (1.5). Let wSs and I SS denote the steady-state values of w 

and l respectively. 

For any f =1= L\rlrj, we have w = 0 for w = 0 or w 1 and there are two 
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distinct steady states, given by: 

(1.6) 

and 

(ISS, wSS) = (,6N - r; - rff , 1) . (1. 7) 

For f = b.r/rf, we have 'li; = ° for any value of w and hence aIl 

(1.8) 

constitute steady states. We will assume throughout,6N -rr > ° and,6N -rw-rf > 

0, thus guaranteing the existence of positively valued steady states for J. 

Clearly, the dynamic system described by (1.4) and (1.5) depends in an im­

portant way on the proportion f of the population being treated. In particular, 

if an optimal policy happened to require f to vary over time, then the differential 

equation system would be non stationary. 

Before introducing economic and policy considerations, it is useful to charac­

terize in more detail in (J, w)-space the dynamic behavior of the system for aIl 

possible values of f. From (1.5) we verify that 

dwl 
dJ j=ü b.r - rf f ' 

(1.9) 

w hich is the slope of the isocline for J in (J, w)-space. This isocline must go through 

the point (I,w) = ((,6N - rr)/,6, 0). It is easily verified from equation (1.5) that J 

is increasing anywhere to the left of the isocline and it is decreasing anywhere to 

the right. 

Consider first the case of f E [0, b.r /r f). In that case the isocline for J is a posi­

tively sloped straight line through (I, w) = ((,6N - rr)/,6, 0) and w is increasing for 

any w E (0,1), as can be seen from equation (1.4). This is illustrated in Figure 1.1, 

where the arrows indicate the direction of the forces driving (I, w) over time. From 
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any initial state the system converges to the steady state (((3N - rw - rJJ)/(3, 1). 

Thus, with a relatively low and constant treatment rate the drug-susceptible bac­

teria will dominate the bacterial population and the efficacy of the antibiotic will 

be fully replenished in the long-run. This case includes the case where there is 

absence of treatment (f = 0) and can serve to illustrate the concept of fitness cost. 

Indeed, it is now immediate that if f = 0, then /:).r = rr - rw > ° implies that the 

susceptible strain will dominate in the long-run. 

Figure 1.2 illustrates the position of the j = ° isocline for two different values 

of f < /:).r/rJ. As f is increased from h to 12 > h, the j = ° isocline pivots to 

the left through the point (I,w) = (((3N - rr)/(3, 0). As a consequence the long­

run equilibrium will feature a lower steady-state level of infection when a higher 

(constant) fraction of the infected population is treated. 

Consider now the case of f E (/:).r/rJ, 1], which is illustrated in Figure 1.3. 

ln this case the isocline for j = ° is a negatively sloped straight line through 

(I,w) = (((3N - rr)/(3, O) and w is decreasing for any w E (0,1), as indicated 

by the direction of the arrows in Figure 1.3. Therefore from any initial state the 

system converges to the steady state (((3N -rr)/(3, O) and the resistant strain ends 

up dominating the bacterial population in the long-run.6 

There remains the case of f = /:).r /r J. In that case, the j = ° isocline is the 

verticalline going through (I,w) = (((3N - rr)/(3, 0), as illustrated in Figure 1.4. 

Any point on this vertical line is then a steady state, since the rate of treatment 

exactly compensates the fitness cost effect so as to keep the efficacy of the antibiotic 

stationary, no matter what its level. Hence if the treatment rate is fixed at /:).r / r J, 

the system will move horizontally to a stationary point on the l isocline which will 

de pend strictly on the initial level of efficacy of the antibiotic. 

Thus far our analysis has been purely descriptive, in the sense that we have 

limited our attention to the purely biological aspects of the population dynamics, 

6 As in the case of f E [0, D.r / r f ), the j = 0 isocline will pivot to the left through the point 
(l, w) = ((fJ N - r l' ) / fJ, 0) if f is increased. In this case however the loug-run steady state is 
independent of f since only the resistant strain remains in equilibrium and the level of efficacy of 
the antibiotic is driven to zero. 
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without considering how the treatment rate is determined. We now turn to the 

introduction of economic factors, beginning with the demand for antibiotics, which 

will allow us to characterize both the open-access equilibrium and the socially 

optimum uses of the antibiotic, subject to the biological constraints just described. 

1.3 The demand for antibiotics 

Let B represent an individual's valuation of being in good health, with B being 

distributed over the total population N with distribution function F(B). When 

infected, this individual can choose whether or not to buy the antibiotic at price 

p.7 It is assumed that the individual knows whether he is infected or not but, 

when infected, cannot tell whether he is infected with the drug-resistant or the 

drug-susceptible strain of the bacteria. 

When an individual is infected, the probability of being infected with a drug­

resistant strain is given by t = 1- w, in which case the recovery rate is rr whether 

he takes the antibiotic or not. On the other hand, there is a probability 1y- = w 

of being infected with the drug-susceptible strain, in which case he can expect to 

recover at the rate r w. Therefore the expected recovery rate without treatment is: 

7r(W) = wrw + (1 - w)rr. 

If the infected individual buys the antibiotic, he increases his chances of recovery 

only if the bacterial strain he is suffering from is susceptible to treatment. His 

expected recovery rate is then increased only by rfw when he buys the antibiotic, 

since there is a 1 - w chance that the bacteria is resistant. The utility derived from 

70ur approach to the derivation of demand begs the important question of the doctor-patient 
relationship, which is beyond the scope of this paper. Actually, it is the doctor who prescribes 
the antibiotic to the patient. The patient then decides whether to purchase the antibiotic or not. 
80 the demand function for the antibiotic should probably take into account the doctor's decision 
rule as to whether or not to prescribe the antibiotic as weil as the patient's decision process. 
Introducing the doctor's decision rule would make it possible to address the issue of the doctor's 
awareness of the dynamic effects of antibiotic consumption on the efficacy of antibiotic and its 
social welfare implications. 
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hea.lth considerations by the individual of type 0 will therefore be given by: 

{ 

0 if in good health 

u( 0) 7r( w)O if infected and not taking the antibiotic 

7r(w) + 'rfw]O if infected and taking the antibiotic. 

Denote by ii the individua.l type who is indifferent between buying the antibiotic 

or not when infected. The value of 0 is determined by: 

which means that 

ii =...L. (1.10) 
'rfw 

Individuals with 0 ;::: ii will thus buy the antibiotic and those with 0 < ii will not. If 

the whole population N were infected, the proportion of individuals willing to buy 

the antibiotic would be [1 F(ii)]. But this is not the case: uninfected individuals 

will not buy tl~e antibiotic. We will assume that the infection spreads equally 

over the population N, so that being infected and having a certain valuation 0 are 

independent events. Then the fraction of the infected population willing to buy the 

antibiotic is given by ~ [1 - F (ii)] and, sinee individuals have a unitary demand, 

total demand will be:8 

8Define the joint probability of an individual i being infected and having a valuation of good 
health higher than ê as Pr(i = infected, ei 2: è). Then, by independence, we have Pr(i = 

infected, e, 2: è) = Pr( i = infected) Pr( ei 2: è) = -Iv [1 - F (r :w ) ] . 
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Therefore the inverse demand function is: 

(1.11) 

For simplicity, let us assume that e is distributed uniformly over the population, 

with supports [0,1]. The inverse demand function then becomes: 

(1.12) 

Notice that the intereept of the inverse demand function is r fW and its slope is 

r fW / 1. The variable W can be viewed as an (endogenous) index of the quality of 

the drug, which can vary between zero and one. For W = 0, demand is identically 

zero. For a given size of the infected population, l, the inverse demand curve pivots 

upwards through the point (Q,p) = (I,O) as the quality of the antibiotic increases 

from zero to one and demand is at its highest when W = 1. 

Because of unitary demand, Q / l represents the fraction of the infected pop­

ulation treated and is thus equal to the parameter f in the dynamic constraints 

(1.4) and (1.5). The inverse demand function can therefore be rewritten as a func­

tion of the fraction of the infected population being treated and the efficacy of the 

antibiotic to give: 

P(J,W) = rfw(l- 1). (1.13) 

1.4 The open-access equilibrium 

In a regime where there is open access to the stock of antibiotic efficacy, an­

tibiotic producers will enter until, at equilibrium, priee equals average production 

costs, thus dissipating any rent that might be had on the common pool of antibiotic 

efficacy. We will assume that the antibiotic produeers are identical, each having a 

constant unit cost of production of c > O. If Q(t) is the total industry production 

and sales of the antibiotic under open access, then the open-access equilibrium is 
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eharaeterized by: 

P (Q(t) ) = l ,w c. (1.14) 

Substituting for the inverse demand funetion (1.12) derived above and assuming 

w =j:. 0, we find that: 

Q(t) = l(t) (1- c( )) , 
Tfw t 

(1.15) 

or: 

f( t) = Q(t) = 1 _ C 

I(t) Tfw(t)' 
(1.16) 

Henee, under open aecess, antibiotic production is economica1ly viable and the 

fraction of the infected population treated will be positive at any date t if and only 

if Tfw(t) > c. Note that sinee w(t) S 1, this requires Tf > C. 

We can now first characterize the different steady states under open-access 

equilibrium, before turning to the analysis of the transition to a steady state from 

different possible initial conditions. 

1.4.1 The steady states under open access 

Consider first the epidemiological steady state given by (1.6). Since the efficacy 

of the treatment is driven down to zero in this steady state (w = 0), so is demand. 

Any positive production would lead to losses, so that the equilibrium output of the 

antibiotic will be zero (Qss = 0) and nobody gets treated. This steady state would 

therefore be characterized in open access by: 

(f SS ISS W SS ) = (0 f3N - Tr 0) 
" 'f3'. (1.17) 

However, from (1.13) we know that with w = 0, PU, w) = O. Therefore, sinee 

C > 0, the equilibrium condition (1.14) eannot hold and such a steady state is ruled 

out in open aceess. 

In the epidemiological steady state given by (1. 7), the quality of the drug is 

maximal (w = 1). Therefore, from (1.16), f = 1 - c/Tf and this steady state will 
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be characterized in open access by: 

(fSS ISS SS) = (1 _ ~ (3N - rw - r f + C 1) 
"W 'a' . 

rf fJ 
(1.18) 

The steady-state antibiotic production will in this case be 

Finally, steady states which satisfy (1.8) occur only when f = b.r/rf and are 

compatible with any value of w E [0,1] in the epidemiological model. But, from 

(1.16), we see that f = b.r/rf can be the open-access equilibrium treatment rate 

only if 
b.r = 1 _ C 

rf rfw(t)· 
(1.19) 

This means that w must take on the unique value that satisfies (1.19) in order for 

the system to be in such a steady state under open access. Rence there is a unique 

steady state of this type in open access, given by: 

(fSS ISS SS) = (b.r (3N - T r C ) 
"w 'a' A· rf fJ rf - ~r 

(1.20) 

In this steady state the aggregate antibiotic production will be 

QS S = (3 N - r r (1 _ r f - b. r) . 
(3 rf 

Notice that the steady-state configurations (1.18) and (1.20) are mutually ex­

clusive. Which one is relevant will depend on the values of the parameters. To be 

more precise, if c = rf-b.r, they are indistinguishable and w Ss = 1. If c < rf-b.r, 

then (1.20) must be the relevant steady-state configuration, since this is incompat­

ible with (1.16) when evaluated at w Ss = 1. If c > rf - b.r then (1.18) must be the 

relevant steady-state configuration, since it must then be the case that wSs = 1 

and fSS = 1 - c/rf < b.r/rf. 

Notice also that if c = rf - b.r then c < rf and therefore fSS > O. Furthermore, 
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if c 2: rf, then c > rf - .0.r, which means that w SS = 1 and hence fSS = o. 

1.4.2 The transition to steady state under open access 

At time t = 0, a stock of infected population 1(0) = 10 E (0, N] and a stock 

of efficacy w(O) = Wo E (0,1) are inherited. The initial state is therefore interior, 

except for possibly 1 = N. 9 As long as w > c/rf' the antibiotic production is 

economically viable and the firms will enter and produce a positive amount of the 

antibiotic. 

Consider first the case where c :S rf - .0.r. From the initial state (Jo, wo) 

the open-access equilibrium will then converge asymptotically to the steady state 

defined in (1.20). To see this, distinguish between four types of states, according as 

to whether 1 lies in (J, w)-space to the left or to the right of the j = 0 isocline and 

w is greater or sm aller than W SS . Let 1 and II denote states for which w > w Ss and 

III and IV denote states for which w < wSs , with states of type 1 and III lying to 

the left of the 1 = 0 isocline and those of type II and IV to its right. We know from 

the open-access equilibrium condition (1.16) that f = 1 - c/rfw and that in the 

steady state given by (1.20), w Ss = c/(rf - .0.r). Therefore w ~ w Ss is equivalent 

to f ~ .0.r/rf in equilibrium. 

We have se en in Section 1.2 that for states of types 1 and II the 1 = 0 isoclines 

will be negatively sloped and that w will be decreasing over time. As for the 

stock of infected population, l, it will be increasing over time when to the left 

of the isocline and decreasing when to the right. We are therefore in a situation 

such as the one depicted in Figure 1.3 for a fixed f > .0.r/rf. However, in open 

9\\Te explicitly ignore the trivial case of 10 = 0, in which case the population remains healthy 
forever according to equation (1.5). We thereby implicitly assume that sorne exogenous event 
occurs initially which causes a portion of the population to become infected by the bacteria. We 
also assume that a portion of the initially infected population suffers from the resistant strain and 
a portion suffers from the susceptible strain, so that Iw(O) and Ir(O) are both strictly positive. It 
then follows that wo(= Iw(O)/I(O)) is strictly between zero and one. Ifwe had Wo = 0 (everyone 
is initially infected with the resistant strain) or Wo = 1 (no one is initially infected with the 
resistant strain), then w remains constant (see equation (1.4)) and the system would converge to 
either the steady state defined in (1.17) if Wo = 0 or in (1.18) if Wo = 1. 
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access, as the equilibrium qua.lity of the antibiotic decreases so will the demand 

for it and, consequently, the fraction of the infected population treated. But since 

the l = 0 isocline is not independent of f, this means that the system is non 

stationary: the j = 0 isocline will pivot over time towards the right through the 

point (((3N - rr)/(3, 0), as can be seen from equation (1.9). 

Consider then an initial state (Jo, wo) with an infected population that is rel­

atively low and an antibiotic efficacy relatively high, so that it belongs to type 1. 

Then the dynamics will be as depicted in Figure 1.5. Over time, w decreases and 

l increases, while the j = 0 isocline continuously pivots toward the vertical line 

through (((3N - rr)/(3, 0). At the time at which the (J(t),w(t))-path crosses the 

isocline corresponding to f(O) = c/r JWO, sayat t = t 1 > 0, the isocline corre­

sponding to f(td = c/rjw(td will be further to the right of the initial isocline, 

as is illustrated in Figure 1.5. The state therefore remains of type 1 and the path 

is still decreasing over time. The state will in this way converge asymptotically 

to the steady state defined in (1.20), as f(t) converges to l1r/rj and the isocline 

converges to the vertical line through (((3 N - r r ) / (3, 0). 

The situation is different when the initial state is characterized by sufficiently 

high values of both the efficacy of the antibiotic and the stock of infected popula­

tion, so as to be of type II, with, as for type l, f(t) > l1r/rj. Then, at first, both 

land w will be decreasing as will be f. As for type 1 the isocline is negatively 

sloped and it is pivoting towards the right as f falls. But this means that at some 

time, say t = tl, the (I(t),w(t))-path will hit the isocline corresponding to f(td. 

At that date, the system switches to the regime in which the state is of type 1 and 

I(t) goes from decreasing to increasing. The state again converges in the same way 

to the steady state defined in (1.20). Such a case is illustrated in Figure 1.6. 

A pattern that is in some way similar will occur if the initial state happens to 

be of type III, with still a relatively high stock of infected population, but now a 

relatively low level of efficacy of the antibiotic. This is illustrated in Figure 1. 7. In 

this case, since f (t) < l1r / r j, w is increasing (see (1.4)) and the j = 0 isocline is 

positively sloped and pivoting towards the left as f increases with w (see (1.9)). 
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For any state of this type, both land w will be increasing along the equilibrium 

path. But since the isocline is pivoting towards the left, this means that the state 

trajectory must, at say t = tl, hit the isocline corresponding to f(td. When this 

occurs, it must be the case that l(td > I ss , since the isocline is positively sloped. 

At that point, there is a switch to a regime in which the state is of type IV, as the 

stock of infected population goes from increasing to decreasing, and the isocline 

continues to pi vot towards the vertical line through (((3 N - r r ) / (3, 0). 

For any initial state of type IV, the dynamic forces will be pushing w up and l 

down and f will be increasing with w. The state converges in this way to the steady 

state defined in (1.20), as the isocline simultaneously converges to the verticalline 

through (((3N - rr)/(3, 0). This is the case illustrated in Figure 1.8. 

Figure 1.9 summarizes these long-run outcomes for the four types of initial 

states. In all cases, there is convergence to the same steady state, with fSS = 

b.r/rJ, I sS = ((3N - rr)/(3 and wSs = c/(rJ - b.r). \iVhen beginning from initial 

states of type 1 and IV, the state converges directly to this steady state. When 

beginning from initial states of type II or III, there is a form of overshooting, in 

the sense that the stock of infected population moves beyond its steady-state level 

before, at sorne point, reversing its direction to converge to that steady state. For 

an initial state of type II, l is initially higher than I ss , then falls below it before 

eventually beginning to increase in or der to reach I sS again in the long-run. For a 

type IV initial state, l is initially lower than its steady-state level, moves beyond it 

and, at sorne point, begins to decrease towards it in order reach it in the long-run. 

To see why the overshooting occurs wh en the initial state is characterized by ei­

ther relatively high antibiotic efficacy and high stock of infected population (type II) 

or relatively low antibiotic efficacy and low stock of infected population (type III), 

divide both sides of (1.4) by 1 - w and both sides of (1.5) by 1, and subtract one 

from the other to get: 

~ - ~ = (3[ISS - 1], 
l 1-w 

(1.21) 

where I sS = ((3N - rr) / (3, the long-run stationary stock of infected population. 
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We immediately see that if the initial state is of either type 1 or type IV, both 

sides of this equation are of the same sign, since land w are initially moving in 

opposite directions. This will remain so until the steady-sta,te is reached, at which 

point we have j = w = 0 and 1 = lSs. There can be no overshooting in those 

cases. 

On the other hand, if the initial states are of either type II or type III, then 

1 and w are initially moving in the same direction, with [t - l~W] being initially 

negative if of type II and positive if of type III and, in both cases, tending to zero 

over time as 1 tends to ISs. The left-hand side will go through zero and change sign 

when 1 first reaches ISs, with t = l~W' At that point, land w will both still be, 

moving in the same direction. But the isocline is pivoting in the direction opposite 

to the movement of 1. Therefore 1 will eventually have to change direction, since 

it must at sorne point cross the j isocline. 

Consider for example the case of an initial state of type II. Since the antibiotic is 

very effective and the stock of infected population is high, demand for the antibiotic 

is high and a large fraction of the infected population gets treated. As a result, 

both 1 and w will be decreasing initially. At sorne point 1 will reach I Ss , but with 

still w > wSs . At that time, 1 and w are still decreasing, the state still being 

of type II since the j -isocline is negatively sloped. lO But the isocline is pivoting 

towards the right as the treatment rate decreases and 1 will eventuaIly have to hit 

it, after which point l begins to increase, the state having become of type 1. We 

will from that point on have 1 increasing and w decreasing, until the steady state 

is reached. While aIl this is occurring, the treatment rate has been continuously 

decreasing (see (1.16)), until it also reaches its steady state value of fSS b..r/rf. 

The same type of reasoning applies when the initial state is of type III. 

Notice that if c = rf b..r, then the initial states are necessarily either of 

type III or type IV. The dynamics is as described above for initial states of those 

types, with the particularity that the steady state is characterized by wSs 1. As 

lOThis can be seen by setting j = 0 in (1.5) and remembering that f > !::::.rlrf when the state 
is either of type II or type 1. 
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already noted in the previous section, if c = r f - L:::.r then c < r f and therefore 

fSS > o. 
If the endogenous quality of the drug was initially lower than the economically 

viable level, that is if w < c/rf' then no antibiotic is produced and the fraction 

treated is initially zero. But with f = 0, w will be increasing. As for l, it will 

be increasing if of type III (the case illustrated in Figure 1.9) and decreasing if 

of type IV. Therefore in both cases the state will eventually reach a point where 

production becomes profitable and producers enter. 

We have so far been considering the case where c ~ r f - L:::.r, so that the 

steady state is as defined in (1.20). Consider now the case where c > rf - L:::.r. 

Production cost is then relatively high and, as was the case for c = rf - L:::.r, 

f < L:::.r / r f, so that initial states are necessarily of either type III or type IV. 

The corresponding dynamics will be as described above for those types of states, 

except for the fact that the level of antibiotic efficacy will now attain w = 1 

before the stock of infected population can reach the level l = ((3 N - r r ) / (3. The 

relevant steady state configuration is then that given by (1.18), with w Ss = 1 and 

I SS = ((3N - rw - rf + c)/ (3 > ((3N - rr)/ (3. Because of the relatively high cost, 

the treatment rate will be relatively low. In particular, if c 2: rf, which implies 

c > r f - L:::.r, the open-access steady state will be of this type, but with fSS = 0, 

as well as f = 0 all along the path leading to it. 

1.5 The social optimum 

The instantaneous social welfare is given by the sum of the surplus of aIl con­

sumers, whether or not they are infected and, when infected, whether or not they 

buy the antibiotic, and the surplus of the antibiotic producers. It can be written 

L--___________________ _______ __ _ _______ _ 
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as: 

W(f,w,I) 

N 11 u(B)dB - cf 1 

(N-I) t BdB + I rë
(p)7r(w)edB+I ( {[7r(w)+rfw]B-p} dB+[p-c]fI 

h h h~ 
= !(N - I) + !7r(w)I + !rfwlf2 + [rfw(l- 1) - clfI, (1.22) 

2 2 2 

where p = P(f, w) = rfw(l - 1) is the priee of the antibiotic and, exactly as in 

(1.10), iJ(p) = P(~~t2'w) = (1 - 1) defines the consumer who is indifferent between 

buying or not buying the antibiotic. 

The first of those four terms is the surplus derived by that portion of the 

population which is in good health, B = 1/2 being the mean valuation of good 

health. The second term is the surplus accruing to that portion of the infected 

population which values good health at less than iJ(p) and hence chooses not to 

buy the antibiotic. They recover at the natural recovery rate 7r( w). The third term 

is the surplus that accrues to those who choose to buy the treatment at priee p, 

since they have a valuation of good health higher than iJ(p). They recover at the 

augmented rate 7r(w) + rfw. The last tenn is the surplus of the producers of the 

antibiotic. 

Determining the social optimum means choosing the path of f (t) so as to max-

imize: 100 

e-ptW(f(t), w(t), I(t))dt (1.23) 

subject to the differential equations (1.4) and (1.5), which determine the evolution 

of the state variables w( t) and I( t), and to 0 ::; f ::; 1. The given initial conditions 

are w(O) = Wo and 1(0) = la where, by assumption, Wo E (0,1) and la E (0, N] 

(see footnote 9). Il 

llThe state variables are also constrained, since we must have w(t) E [0,1] and I(t) E [0, N]. 
We neglect those constraints, since, if w(t) reaches either 1 or 0, it will stay there forever. As 
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The current value Hamiltonian for this problem is given by: 

( ) 1 ) 1 1 2 H f, w,J, J-L, À = 2(N - 1 + 2 7f (w)I + rfwfI - 2rfwlf - cf 1 

+J-Lw(l- w)(,6.r - rf!) 

+ÀI[(;3(N - 1) - rr + w(,6.r - rf!)] (1.24) 

and its derivative with respect to the control variable fis: 

(1.25) 

where J-L and À are the shadow values associated to the level of antibiotic efficacy 

and to the stock of infected population respectively. 

The following conditions, as weIl as (1.4) and (1.5), are necessary for an opti-

mum: 

8H < 
8f - 0, 

8H 
8f f = 0, f 2:: ° 

pÀ - À 

or 
8H 
->0 8f - , 

8H 
8f (1 -!) = 0, f5:1 

(1.26) 

(1.28) 

Condition (1.26) is the first-order condition for the maximization of the Hamilto­

nian with respect to f(t) at each t. Conditions (1.27) and (1.28) are the arbitrage 

equations that determine the evolution of J-L( t) and À( t). 

for I(t), for any interior value to the left of the j = 0 isocline, the dynamic forces always push it 
away from 0, and, for any value to the right of the j = 0 isocline, including 1 = N, those forces 
always push it away from N. See the discussion of the epidemiological dynamics of Section 1.2. 
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In the case of an interior solution for f, condition (1.26) can be written: 

(1.29) 

The left-hand side of this equation is the price of the antibiotic. The condition 

says that the price of the antibiotic must be equal to the full marginal cost of 

treatment, which is the sum of the marginal cost of producing the antibiotic, c, 

and the marginal opportunity cost - through its effect on both the quality of the 

antibiotic, w, and the stock of infected population, 1, - of using it to treat a 

fraction f of the infected population. 

The variable /1 measures the marginal shadow price of antibiotic efficacy. The 

variable w( = Iwj 1) being the level of antibiotic efficacy, its complement, 1 - w 

(= Ir j 1), measures the level of anti biotic resistance. Hence /1 (1 - w) eval uates 

the level of antibiotic resistance at the marginal shadow priee /1. The variable 

>. measures the marginal shadow co st of infection. 12 Hence >'1 is the implicit 

(negative) value of the stock of infected population, evaluated at >.. The sum of 

those two terms, [/1 ( 1-w) + >'1], can be either positive or negative and can possibly 

change sign over time. When positive (negative), the overall net opportunity cost 

- in exeess of the marginal cost of production c -, of marginally increasing the 

fraction of the infected population treated is positive (negative). The socially 

optimal price of the antibiotic at that date will then be higher (lower) than the 

marginal cost of production. 

Contrary to the competitive producers in an open-access regime, the socially 

optimal solution takes into account the fact that the current treatment decision 

affects both the future level of efficacy of the antibiotic and the future stock of 

infected population. This is refl.ected in the expression [/1(1 - w) + >'1] and its 

sign. In open aceess the producers act myopically and enter until priee is driven 

to average cost. As shown in Section 1.4, this means that f = 1 - cjrfw in 

12Numerical simulations indicate that À is indeed negative, as expected, whereas J.L is positive. 
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equilibrium. 13 If we now denote by an asterisk the socially optimal values of the 

variables, then, using (1.29), we can write, for any t: 

f(t) - j*(t) = (w(t\) w*?}) c + 11( ) [j./(t)(l - w*(t)) + À*(t)I*(t)]. (1.30) 
rfw t w* t * t 

We see that for identical levels of antibiotic efficacy - for instance at t = 0 -, 

the fraction treated un der open access will be greater than is socially optimal if 

[J-l( 1 - w) > - Àl], since the full social cost of treatment then exceeds the cost of 

producing the antibiotic. The reverse is true if [J-l(1- w) < -Àl]. 

1.5.1 The steady states in the social optimum 

Setting w = j = /1 = ~ = 0 generates a socially optimal steady state. Consider 

first the epidemiological steady state given by (1.6). The antibiotic is completely 

in efficient in this steady state (w = 0). Therefore no socially valuable production 

can take place and the steady state of this type at the social optimum is: 

(1.31) 

This steady state turns out to be unstable so that, when starting from an initial 

state (Jo, wo) which is interior, the system will move away from it. 14 We can 

therefore ignore it in what follows. 

In the epidemiological steady state given by (1.7), antibiotic efficacy is at its 

maximum level (w = 1). Setting w = 1 in (1.26), in (1.5) with j = 0 and in (1.28) 

with À = 0 yields three equations in 1, À and f whose solution for those three 

variables will depend strictly on the parameters of the problem. This is shown in 

13Marginal cast is what matters for the deterl11ination of the social optimal priee, whereas 
average cast is what matters in the deterl11ination of the open-access equilibriul11 priee. Because 
of our assumption that the unit cast of production is constant, we have marginal cast equal ta 
average cast. 

14Linearizing the system of differential equations (1.4), (1.5), (1.27) and (1.28) with f satisfying 
(1.26), it is verified that the trace of the l11atrix of the linearized system is positive when evaluated 
at this steady state. 
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t.he Appendix, \\There it is also shown that any f E [0, 1] can be part of the solution 

to those equations given appropriate values of the parameters. The socially optimal 

fraction of the sick population treated at. this steady state will therefore depend 

on the parameters of the model l'\,nd can t.ake on any value from zero to one. This 

means that when this is the relevant steady state configuration, we will have: 

(fSS*, ISs', w Ss.) = (f E [0,1], f3N - ~ rd, 1) (1.32) 

Finally, the relevant description of the steady state can be of the type chara.c­

terized by (1.8). This steady state is shown in the Appendix to be given by: 

(f SS' lSS' SS") = (t.r (3N - r, _~ J(~)2 _ K) 
, 1 W rf ' f3 ' 2H + 2H H (1.33) 

where 

The steady state configurations (1.33) and (1.32) are mutually exclusive. In 

fact, when w Ss' = 1 in (1.33) they are indistinguishable. This will occur when (see 

the A ppendix) : 

c 
_() Llr[~r_(f3N-rT+p)] (f3N-rT+p+~-~(Llr+rT)) 
c rf = + rf' f3N - rT + P - Llr ,BN - rT + P - t::..r 

(1.34) 

For c :::; c(rf), the socially optimal steady state will be as defined in (1.33). For 

c> c(rf), it will be as defined in (1.32). 

Notice also that in order to have wSs' = ° in (1.33), it must be the case that 

K O. But this is not possible, since c > O. Therefore the socially optimal level 
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of antibiotic efficacy will be strictly positive. 

As shown in the Appendix, when wSs' = 1, we must have: 

if c < ( 
1- r ) 1+ w 

2(f3N - rw + p) rJ 
(1.35) f 

if c> ( 
1 - rw ) 

1 + 2(f3N _ rw + p) rJ > rJ' 

1.5.2 The transition to steady state in the social optimum 

The social planner takes into account the full marginal cost of treatment, which 

reflects the shadow values attached to the efficacy of the drug and to the infected 

population in addition to the unit cost of production. Because of this it is not 

the case that w ~ w Ss' corresponds to f ~ .6.r/rJ, as it was in the open-access 

equilibrium. The definitions of the four types of state introduced in Section 1.4.2 

are still valid after replacing w Ss by w Ss', but they cannot be expressed in terms of 

f being greater or sm aller than .6.r / r J anymore. This means that the direction of 

movement of w may change as f goes from, say, f > .6.r/rJ to f < .6.r/rJ although 

the state remains of the same type. It therefore becomes mu ch more complicated 

to fully describe analytically the dynamic forces within each type of state, which 

themselves depend on the parameters and on the initial state. For this reason, 

we rely on numerical simulations to explore the transition to steady state. 15 We 

report here, for illustrative purposes, simulations for a set of parameters su ch that 

c < c( r J ), so that the steady state is as defined in (1.33). The simulations show 

that the system converges to this steady state when beginning from an initial state 

which satisfies 1 E (0, N] and w E (0,1). Similar simulations have been carried 

15For simulations purposes, the continuous time and continuous variables problem was approx­
imated by a discrete time and a discrete variables problem. The numerical simulations were then 
performed by formulating the optimal control problem in a recursive way. We used the value 
function iteration procedure (see Judd (1998), pages 412-413) to determine the value function 
V that satisfies the Bellman equation corresponding to the recursive formulation. The simula­
tions were run with numerous parameter sets in order to verify the robustness of the results. \Ve 
a1so verified that the steady-state results obtained numerically for the state, co-state and control 
variables correspond to those obtained analytically. In particular, we have made sure that the 
co-state variables J1, and À satisfy J1, = av law and À = av laI at the steady state. 
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out for the case of c > è(r f), with similar results. Recall that in this last case, the 

states can only be of either type III or type IV. 

Figure 1.10 illustrates the evolution of (I, w) beginning from the four possible 

types of initial states, each with the same properties as in the corresponding Fig­

ure 1.9 for the open-access equilibrium: 16 one with the initial state to the left of 

the j = 0 isocline (type I) and one to its right (type II), both with Wo > w ss'; 

one with the initial state to the left of the isocline (type III) and one to its right 

(type IV), both with Wo < W SS . 17 

As with the open-access equilibrium, the system tends in the long-run to a 

steady state in which the treatment rate is such that antibiotic efficacy renews 

itself in order to maintain its steady state level. The steady-state stock of infected 

population ((j3N - rr)/j3) and the steady-state treatment rate (t:1r/rf) will be the 

same as in the open-access equilibrium. The steady-state quality of the antibiotic 

will in general be different, although it is conceivable that it be the same as weIl. 

But in aIl cases, the approach to the steady state will differ. 

1.6 Comparing the socially optimal and the open-access steady states 

\Vhether the steady-state level of antibiotic efficacy in the social optimum is 

higher or lower than in the open-access regime depends crucially on the values of 

the parameters. In what follows we concentrate on the parameters r f and c, which 

measure respectively the increase in the recovery rate resulting from treatment and 

the unit cost of production of the antibiotic. 

Equating the steady-state values for w in (1.20) and (1.33), we find that we will 

16The simulations represented in Figure 1.10 were run with the following parameter values: 
(3 = 0.6, rr = 0.25, rw = 0.15, rj = 0.3, N = 1, c = 0.1, cS = 0.971, where cS represents the time 
discrete discount factor. 

17The case where the initial state is of type III in Figure 1.10 illustrates a situation where 
W goes from negative to positive while the state (1, w) remains of type III. This is because the 
optimal treatment rate is initially greater that l:!.r/rj but decreasing. When it reaches l:!.r/rj it 
continues to decrease for some time before beginning to increase again to reach f = l:!.r/rj at 
the steady state. But as f goes from greater to smaller than l:!.r/rj, w goes from decreasing to 
increasing and moves over time towards its steady state level w Ss•. 
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have w Ss' = w Ss for: 

c = _ !:::.r(f3N - rr + p) + (!:::.r(f3N - rr + p) + p(rr - 1)) r . 
f3N - rr + 2p !:::.r(f3N - rr + 2p) j 

( 1.36) 

This is a straight line in (rj, c) space. Its intercept is negative and the sign of its 

slope depends on the sign of !:::.r(f3N - r r + p) + p( r r - 1).18 For any point above that 

line, we will have w Ss' :s w Ss (with strict inequality as long as w Ss' < 1), while for 

any point below it we have w Ss' > w Ss . Thus for any given value of r f, if the cost 

of producing the antibiotic is sufficiently large, the open-access equilibrium will 

result in a higher steady-state level of antibiotic efficacy than is socially optimal. 

In fact, if the slope of this line is negative, this will always be the case. On the other 

hand, when the slope is positive, there will exist sorne values of r j such that for a 

low enough cost of production the social optimum will require a higher steady-state 

level of antibiotic efficacy than what would result in open-access. This is the case 

represented in Figure 1.11, where condition (1.36) is drawn as a solid line. Notice 

that the slope will be positive for p sufficiently small and it will be positive for any 

pif !:::.r > 1 - rr. 

From the analysis of the open-access steady state in section 1.4, we know that 

for c 2:: r j - !:::.r we will have w Ss = 1. The condition c = r j - !:::.r is drawn as 

a dashed line in Figure 1.11. This line will always lie above the line representing 

w Ss' = w Ss in the positive quadrant. For points on it, the open-access steady­

state configurations (1.18) and (1.20) are indistinguishable. For points above it, 

the open-access steady state is as defined in (1.18), with w Ss = 1 and lSS = 

(f3N - rw - rj + c)/f3 > (f3N - rr)/f3. The open-access steady state has fSS > 0 

for points between the li ne c = rj - !:::.r and the forty-five degree line c = rj, but 

fSS = 0 for points above the line c = r j. 

Aiso depicted in Figure 1.11 is the straight line defined by c = c( r j ). For 

points on it w Ss' = 1 and the socially optimal steady-state configurations (1.33) 

18Recall that f3N - Tr was assumed positive from the outset, in order to guarantee the existence 
of positive steady states. 
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and (1.32) are indistinguishable. For points above it, we have wSs' = 1 but with 

lSs' = (j3N - rw - rtf)/j3 > (j3N - rr)j3 as in the socially optimal steady-state 

configuration (1.32). As can be seen from (1.35), when wSs' = 1 and 

( 
1- r ) 

rf < C < 1 + 2(j3N _ r: + p) rI, 

the socially optimal rate of treatment will be positive, whereas the firms would 

find it unprofitable to pro duce the drug in open-access equilibrium and hence the 

treatment rate would be zero. This steady-state threshold level of social profitabil­

ity is higher than is the threshold level of private profitability, sinee the socially 

optimal solution takes into account the welfare of the whole population and the 

epidemiological dynamics, contrary to the firms in open aceess. 

For illustrative purposes, Figure 1.12 depicts numerical simulations that com­

pare the transitions to steady state for a case where the initial state (Jo, wo) is of 

type II (see Figures 1.9 and 1.10) and the steady-state level of antibiotic efficacy 

is lower in the social optimum than in open aceess. The evolution of the state 

paths have in common the" overshooting" pattern in the level of infection, which 

is stronger in the social optimum than in open aceess. This means that although 

in both cases it will end up at the same steady-state level, for a good part of the 

socially optimal trajectory the stock of infected population will be maintained be­

low the minimal level reached under open aceess. The level of antibiotic efficacy 

decreases in a monotone fashion in each case and it is always higher in open ac­

eess than what it would be in the social optimum for the same stock of infected 

population, except for a single point where the two paths cross. This suggests 

that the socially optimal fraction of the infected population treated at each instant 

will be greater than under open aceess, exeept asymptotically as both tend to the 

same steady state value of b.r/rf. This is indeed verified numerically, as shown in 

Figure 1.13. 

Similar numerical simulations with initial states of types l, III or IV and with 

wSs' greater, sm aller or equal to wSs yield, mutate mutandis, similar qualitative 
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results. 

1. 7 Conclusion 

We have modeled the level of efficacy of an antibiotic in treating a bacterial 

infection as a resource stock which is depleted by consumption of the antibiotic, 

as the bacteria become resistant, but which may be renewed if managed properly. 

This has served as the basis for analyzing the economic dynamics of the use of 

the antibiotic to treat a bacterial infection under two scenarios. One is the market 

equilibrium in which antibiotic producers have open access to the common pool 

of antibiotic efficacy and enter until price is driven down to average cost. They 

care only about their production cost and the determinants of current demand for 

their product, which are its quality, as measured by the current level of efficacy of 

the antibiotic, and the current stock of infected population, but they ignore their 

individual effects on the evolution of those state variables. The other is the social 

optimum, which takes into account, in addition to the surplus of the producers, 

the welfare of aIl the population, whether healthy or infected and, when infected, 

whether treated with the antibiotic or not. 

It turns out that the comparison of the steady-state level of antibiotic efficacy 

under the two scenarios is ambiguous. Consider a parameter configuration such 

that the steady state level of antibiotic efficacy is less than one in both the open 

access equilibrium and the social optimum. Then, whether the steady-state level 

of efficacy in open-access equilibrium is lower or higher than in the socially optimal 

steady-state will depend on the epidemiological and the economic parameters. For 

instance, for a given cost of production of the antibiotic, if the increase in the 

. recovery rate that results from treating the infection is sufficiently high, then the 

socially optimal steady-state level of antibiotic efficacy can be higher than in the 

open-access equilibrium, but the reverse is true if the increase in the recovery rate 

is sufficiently low. In both cases, the steady-state stock of infected population and 

the steady-state treatment rate will be the same in the open-access equilibrium as 



in the social optimum. But the trajectories leading to those long-mn steady-states 

will always differ considerably. 

There in fact exist some parameter configurations such that the steady state 

level of efficacy would be equaJ to one under open access while it would be less 

than one at the social optimum. This will involve a unit cost of production which 

is relatively high and hence a relatively low treatment rate under open access. 

Should the unit cost of production exceed the improvement in the recovery rate 

that results from treatment, the open access treatment rate would be zero in such 

an open-access steady state, since the firms would find it unprofitable to produce. 

The threshold cost level for social profitability of treatment is however higher than 

this, because, contrary to the firms under open access, the social optimum takes 

into account the welfare of aIl the population, whether healthy or not, as weIl as 

the epidemiological dynamics. 

The open-access equilibrium and the social optimum are two benchmark cases. 

Pharmaceutical companies are usually given patent rights for the production of the 

drug they have discovered in order to encourage research and development, with 

the result that they benefit from a monopoly situation for a finite period of time. 

The open-access scenario can be viewed as a good approximation of the situation 

which arises after the expiration of the patent. An obvious next step, which is 

the subject of ongoing research, is to analyze and compare to the social optimum 

a situation where a producer has monopoly rights for a finite period of time and 

becomes one of many producers in open access once those monopoly rights expire. 

The analyses and comparisons carried out in this paper provide useful inputs for 

further research in this direction. They should also have useful implications for the 

analysis of optimal policies towards antibiotic use in general, although, given the 

complicated dynamics involved and the ambiguities encountered in comparing the 

two benchmark scenario, one cau expect the task to be arduous. 



w 

w=o 
1~----------------------~------~-

j 

o 
W=O 

1 

Figure 1.1: Epidemiological dynamics with f E [0, ~;) 

36 



w 
j = Olf=12 j = olf=h 

1 

w=O 
lr-----------------~------7_----~~ 

o /3N-r T ISSI --/3-- 12 

w=O 
N 1 

Figure 1.2: Epidemiological dynamics with ft < h < bor 
rf 

37 



w 

w=o 
1~--~--------------------------~-

o j3N -rw-rf f 
13 

1=0 

j3N-rT 

-13-

w=o 
N l 

Figure 1.3: Epidemiological dynamics with f E (~;) 1] 

38 



39 

w 

1~------------~----------~----~ 

j 0 

A~~ __________ ~ ________________ ~~-O 

l 

Figure 1.4: Epidemiological dynamics with f 



w O<h<oo 
+. . . 
i l = 0lt=o l = 0lt=tI l = 0lt=oo 

Ir. ____ ~--------\,_--------_.:--------~---w 0 

o 

\ 
\ 

{3N -rr 
-{3-

o 
N 

Figure 1.5: Open-access dynamics with initial state of type l 

40 

l 



w 

j = 0lt=o j = 0lt=tl j = 0lt=t2 j 0lt=oo 
11---""..--___ \;---___ I,-___ ,..-___ --:-__ W = ° 

\ 

Wo·· 

r 

° 

\ 

\ 
\ 

W=O 

Figure 1.6: Open-access dynamics with initial state of type II 

41 

1 



w 

1 

o 
10 /3N-rr -/3-

1 

1 
1 

1 
1 

1 

1 
1 

w=o 
N 

Figure 1.7: Open-access dynamics with initial state of type III 

42 

1 



W 

1 

Wo 

O<h<oo 

j = 0lt=oo j = 0lt=tl j = 0lt=o 
1 W=O 

f = ~T 
Tf 

I/·HU 
.i2.. ...................................................... ··li .................................................. . 
Tf w=O 

o f3N-TT 
-f3- N 

Figure 1.8: Open-access dynamics with initial state of type IV 

43 

1 



w 

w= 0 
1~--------------~--------------~----

l II 

C 

T f-t:.T ~------------~~r-~------------~-j' - t:.T W-O - Tf' -

IV 
c 
TflH w = 0 

o {3N -Tr 
- (3 - N 

Figure 1.9: Convergence to steady state under open access 

0.9 

0.8 

~ 0.7 

>. 
u 0.6 
'" u 
lE 
Q) 

0.5 u 
'Ë 
;e 0.4 'E 
cl; 

0.3 

0.2 

0.1 

0 
0 

III •• .. .... ..... .... ........ 

• Il .. . . . 

wSS ' 

•••• •• • • • IV 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Stock of infected population (/) 

l 

Figure 1.10: Convergence to steady state in the social optimum 

44 



c 

-6.r 

1 •.• ·· 

.1 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

l ' C = rf 
.{ 

/ 
1/ 

/1 

<WSS = 1 / / / 1 

/ 
/ 

/ 

/ 
/ 

/ 

/ 1 

/ 

/ / w SS' < w SS < 1 : 

(3N - rw 

c = rf - 6.r 

Figure 1.11: Comparison of the steady states 

45 



46 

• Socially optimal path 

Open-access path 

0.8 . '.' 
~ 0.7 

>-
ü 0.6 
'" ü 
le 
Cl 0.5 
.~ 

wSS 

ë 
;g 0.4 ë « 

0.3 

0.2 

0.1 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Stock of infected population (1) 

Figure 1.12: Comparison of the socially optimal and open-access paths 

0.9 

0.8 

0.7 

::~~ 
0.4 -------

0.3 
---------~IY / ri 

0.2 

0.1 

OL-______ -L ________ L-______ -L ________ ~ ______ ~ 

o 50 100 150 200 250 
Time 

Figure 1.13: Comparison of the socially optimal and open-access treatment rates 



CHAPITRE 2 

MONOPOLY PRICING OF AN ANTIBIOTIC SUBJECT TO 

BACTERIAL RESISTANCE 

2.1 Introduction 
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The quality of pharmaceutical drugs, notably antibiotics, depends on the effi­

cacy of the treatment the drug can procure to the patient. In the case of antibiotics, 

treatment efficacy is affected by the infected individual's environment, in particu­

lar by the overall use that is and has been made within that environment. This 

externality is caused by the natural selection of bacterial strains that are resistant 

to anti biotic treatment. 1 

Pharmaceutical firms that produce an antibiotic are usually given temporary 

monopoly power through a patent, granted in order to recover the investment in 

R&D. The granting of this monopoly power ignores the fact that this a1so gives 

the firm some control over the level of efficacy of the drug and the level of infected 

population. The purpose of this paper is to study this aspect of the pricing policy 

of a monopolist whose market is protected by a patent and who is aware of the 

existing externalities. 

Bacteria1 resistance to antibiotics has recently attracted the interest of economists. 

Most have put the emphasis on the determination of the socially optimal use of the 

antibiotic over time, ignoring the analysis of the market out come. These include 

Laxminarayan and Brown (2001), Wilen and Msangi (2003), Rowthorn and Brown 

(2003) and Gersovitz and Hammer (2004). Very few have considered explicitly how 

the market will a.llocate the antibiotic use over time. Fischer and Laxminarayan 

(2005) is an exception, as are Herrmann and Gaudet (2007) and Mechoulan (2007). 

Fischer and Laxminarayan (2005) treat the problem as that of the sequential ex-

1 By natural selection we understand the fact that the antibiotic-resistant bacterial strain 
will eventually dominate the infected population when a relatively intensive use is made of the 
antibiotic over time. See Levy (1992) for a useful overview of the subject of antibiotic resistance. 
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ploitation by a monopolist of exhaustible resourees pools (the stock of efficacy of 

the antibiotics) when a setup cost must be incurred to aceess the next pool of re­

source (the next antibiotic). They show that whether the monopolist exploits the 

efficacy of the existing antibiotic faster or slower, and hence introduees the new 

drugs sooner or later than is socially optimal, may depend on whether there are 

many or few new drugs left to be developed. Herrmann and Gaudet (2007) model 

a generic industry as composed of antibiotic producers that have open aceess to the 

common resouree pool of antibiotic efficacy and compare the market out come in 

this case to the social optimum. It is shown that, depending on the bio-economic 

parameters of the model, in particular the cost of production and the increase in 

the recovery rate that results from treatment, the steady-state level of antibiotic ef­

ficacy that results from the generic industry may be lower or higher than is socially 

optimal. Mechoulan (2007) shows that while a social planner prefers eradication 

of infection (if possible), a monopolist achieves a steady state with a positive level 

of infection. He concludes that extending patent rights may be socially desirable if 

the increase in resistance is sufficiently high. 2 

It is shown in this paper that a monopolist who benefits from a patent on the 

sale of an antibiotic, and who takes into account the effect of his sales on the 

efficacy of his antibiotic (the quality of his product) and on the evolution of the 

infected population (his market size), will tend to priee so as to spend a period of 

time in the neighborhood of the steady-state priee of an infinitely-lived monopolist. 

The length of the period of time in question will depend on the patent life. Thus, 

if the patent life is long enough, the priee path will at first decrease towards the 

steady-state priee of the infinitely-lived monopolist, remain in the neighborhood 

of this priee (or possibly exactly on it) for an interval of time, and leave it as the 

end of the patent approaches. In that final phase, the monopolist acts more and 

more as a myopic monopolist, that is one who neglects the impact of his decision 

21n a mu ch earlier contribution, Tisdell (1982) has argued that a monopoly may result in a 
socially optimal use of the drug, given the externality that results from antibiotic use. More re­
cently Horowitz and Moehring (2004) have argued, using a diagrammatic analysis, that antibiotic 
resistance will tend to increase when the patent on an antibiotic expires. 
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on the evolution of the antibiotic efficacy and the stock of infected population. As 

a result, priee decreases until it reaches the priee charged by a myopie monopolist, 

just as the patent expires. The industry is then taken over by generic produeers, 

with open access to the stock of efficacy of the antibiotic, and the priee jumps down 

to average cost. \i\Thether the turnpike property just described is exact or not and 

what length of time is spent near or at the infinitely-lived monopoly priee depends 

on the bio-economic parameters and on the length of the patent life. 

The paper is structured as follows. In Section 2.2, the epidemiological and 

economic models are presented. The monopolistic programme is characterized in 

Section 2.3. Two benchmark cases, which are the myopie monopolist and the 

infinitely lived monopolist are also considered for comparison in that section. We 

conclude in Section 2.4. 

2.2 The model 

The model has an epidemiological and an economic component. The epidemio­

logical component (the so-called SIS-model) is borrowed from the epidemiological 

literature (see for instanee Bonhoeffer et al., 1997). It has already been used 

before in the economics literature by, among others, Laxminarayan and Brown 

(2001), Wilen and Msangi (2003) and Herrmann and Gaudet (2007). The eco­

nomic component involves the interaction of the monopolist (on the supply side) 

with a derived demand for the antibiotic first presented in Herrmann and Gaudet 

(2007). We present the epidemiological model and the demand side of the economic 

component in what follows. 

2.2.1 The epidemiological model 

We assume that there is only one antibiotic treatment available to fight a par­

ticular infection. The infected population (1) is made up of those suffering from 

a drug-suseeptible version of the infection (1w) and those suffering from the drug­

resistant version (Ir), both versions being naturally present in the system. The 
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problem of antibiotic resistance arises as the bacterial strain causing the drug­

resistant version of the infection becomes predominant in the system, since the 

drug-susceptible bacterial strain clears at higher rate under antibiotic treatment. 

This effect is generally referred to as natural selection, on which we will concentrate 

here. 3 In such a context, an appropriate measure of antibiotic treatment efficacy 

(w) is the ratio of the population being infected with the drug-suspectable version 

to the overall infected population, i.e. w = Iw/(Iw + Ir) = Iw/I. 

Vve assume the overaU population to be constant and equal to N. The healthy 

population is th en given by S = N - I. Let (3 be the rate of transmission of the 

infection between the healthy and the infected population. The SIS-model assumes 

that the rate of addition at time t to the infected population, either drug-resistant 

or drug-susceptible, is given by (3S(t)Ir (t) and (3S(t)Iw (t) respectively. The in­

fected individuals may recover naturally, that is without taking the antibiotic. We 

denote the natural recovery rates from the drug-resistant and the drug-susceptible 

infection by r rand r w respectively. If all the infected individuals are treated with 

the antibiotic, the rate of recovery of those infected with the drug-resistant strain 

remains unchanged, while the rate of recovery of those infected with the drug­

susceptible strain increases to rw + rf. If a fraction f E [0,1] of the infected 

population is being treated with the antibiotic, the rate of recovery of those in­

fected with the drug-susceptible strain will be rw + frf. Rence the total infected 

population decreases at the rate rrlr(t) + (rw + frw)Iw(t). 

The population dynamics can be summarized by the following system of differ-

3 Antibiotic resistance may not only be caused by natural selection, but also by the mutation 
of drug-susceptible strains when being continualJy in contact with the antibiotic, or by the trans­
fer of plasmids, i.e. genetic material transferred from resistant towards susceptible strains and 
containing information on how to be resistant. See for instance Levy (1992). 
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ential equations: 

Iw = ((3S - rw - Irj )Iw 

Ir ((3S - rr )Ir (2.1) 
. . . 

-I=-Iw-Ir· 

Note that the evolution of the healthy population (3) is the complement of the 

evolution of the infected population (Ï), since we have assumed the overall popu­

lation to be constant. 4 Using this fact and the definition of antibiotic efficacy, we 

can rewrite system (2.1) as: 

w 

l 

w(1 - w)[~r - rj Il 
I((3(N - 1) - rr + w[~r - rj Il) 

(2.2) 

(2.3) 

where ~r = rr - rw measures what is called in the epidemiological literature the 

fitness cost of resistance. The fitness cost can be understood as an opportunity co st 

of the resistant bacterial strains: they remain unaffected by antibiotic treatment, 

but this ability cornes at the co st that they clear at a higher rate than drug­

susceptible strains in the absence of antibiotic treatment. 

We can now point out two important effects in the biological system that are 

apparent in equation (2.2): a positive fitness co st 6.r implies renewability of the 

resource of antibiotic efficacy (fitness cost effect), while the addition al recovery rate 

r j helps clear drug-susceptible infections, leading potentially to the dominance of 

the drug-resistant version of the infection (natural selection effect). If a fraction 

1 = 6.r/rj of the infected population is treated with the antibiotic, those two 

effects cancel out. For all other admissible values of l, either one effect dominates, 

4Biological parameters must be su ch that less individuals become infected than are susceptible 
to infection, thus ruling out that the overall system is dominated by infection. Assume the 
extreme case that no recovery from infection occurs: rw = rr = ri = o. Then the overall increase 
in infection is given by j3S(Ir + Iw) = j3SI and must satisfy j3 < 1/ I. For values of infection close 
to N we must have j3 < 1/ N which represents a sufficient condition that no more individuals 
become infected than are susceptible to infection if recovery rates satisfy rw, rr, ri ;::: o. 
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leading to an increase or decrease in the level of antibiotic efficacy. Vve will assume 

throughout the paper that .6.r) r J < 1, so that both the fitness cost effect and the 

natural selection effect are apparent in the system. 

There exist three steady-state configurations to the epidemiological dynamics 

described by (2.2) and (2.3). Let w Ss and I SS denote the steady-state values of w 

and 1 respectively. For any 1 =1= .6.r/rJ, we have 'li; = 0 for w = 0 or w = 1 and 

there are two distinct steady states, given by: 

(2.4) 

(2.5) 

For 1 = .6.r / r J, we have 'li; = 0 for any value of w and hence aIl 

(JSS , wSS) = ((3N - r
T E [0 Il) (3 ,w , (2.6) 

constitute steady states. Vve will assume throughollt (3N -rT > 0 and (3N -rw-rJ > 

0, thus guaranteing the existence of positively valued steady states for J. 5 

If the treatment rate 1 were to remain constant over time, then, in order to 

reach the steady state at which w Ss = 1, the fraction, say Il, of the infected 

population being treated must satisfy fI < .6.r / r J' The steady state wSs = 0 will 

be reached if a fraction, say 12, gets treatment over·time \Vith 12 > .6.r/rJ. For the 

corresponding steady-state levels of the infected population, this implies 

(3N - rT 

(3 

Thus the steady state at which antibiotic efficacy reaches its upper bound (wSS = 

1), corresponds to a relatively higher level of the infected population than the 

5We rule thus out that infection may be eradicated from the system in steady state. Notice 
that the steady-state levels of infection are increasing in the contagion rate f3 and decreasing in 
the recovery rates. 
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steady state at which antibiotic efficacy is lowest (wSS = 0). For an interior steady 

state of w, which is reached if a fraction, say h, of the infected population gets 

treatment, with h = ~T, the steady-state level of infection is equal to ((3N - r T) / (3. 
Tf 

A representative evolution of the state variables starting from an interior state 

(Jo, wo) and corresponding to the cases fI and h just described is illustrated in 

Figure 3.1. Figure 3.1 represents a phase diagram and shows the I-isocline and the 

corresponding forces driving the system when away from the isocline (as indicated 

by the arrows) under the two different regimes corresponding to the treatment 

rates fI or h. 6 In the case of fI < b.r / r J the continuous hnes apply, and the 

system tends to the steady state at which wSs = 1, since the fitness cost effect 

dominates. In the case of h > b.r / r J the dashed hnes apply, and the system tends 

to the steady state at which wSs = 0, since the natural selection effect of resistant 

bacterial strains dominates. For f = ~T, both effects cancel out so that the level 
Tf 

of antibiotic efficacy remains constant and the system converges to a steady state 

as defined in (2.6). 

The crucial point is that the dynamic system is non-stationary with respect to 

the treatment rate f. If f changes over time, the j-isoclines will also change. Values 

of f closer to the critical value b.r/rJ imply steeper j-isoclines. If the sequence of 

f converges monotonously to b.r / r J from above or from below, the isoclines will 

pivot around the point (((3 N - r T ) / (3, 0) and the dynamic system will converge to 

an interior steady state. 7 

6Analytically, the j-isocline is derived by setting j = 0, which gives 1 = 0 or w = w(I) = 
f3~~!!;!+f'" For f < 6..r/rJ, the isocline has a positive slope, while it is negative for f > 6..r/rJ. 

If f equals the critical fraction 6..r/rJ, the j-isocline is a vertical line passing through I SS as 
defined in (2.6). 

71n Herrmann and Gaudet (2007), it is shown that the treatment rates under the open-access 
market outcome approach the critical value 6..r / r J monotonously from above or below, depending 
on the parameters and the initial state of the system. 
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2.2.2 The demand 

The market demand for the antibiotic is derived under two main assumptions. 

First, we assume that individuals are vertically differentiated with respect to their 

valuation () of being in good health, the distribution function of which is F( ()) 

over the population N. Second, we assume that infected individuals do not know 

whether they suffer from the drug-resistant or the drug-susceptible versions of the 

disease. However, we assume that they know the current treatment efficacy of the 

antibiotic, w(t), and the natural recovery rates from either infection. In such a 

context, the probability of recovering from infection without antibiotic treatment 

is 1l"(w) = wrw + (1 - w)rr. 8 With antibiotic treatment, recovery from infection 

will occur with a higher probability of [1l"(w) + wrfl. 

The gross utility derived from health considerations by the individu al of type () 

will therefore be given by: 

if in good health 

if infected and not taking the antibiotic 

if infected and taking the antibiotic. 

Only infected individuals whose valuation of being in good health is sufficiently 

high will buy the antibiotic. Denote by e the type who is indifferent between 

buying the antibiotic or not when infected. The value of () is determined by: 

which means that 
- p 
()=-. (2.7) 

rfw 

Thus infected individuals with () 2:: e will buy the antibiotic and those with () < e 
will not. The fraction of the infected population willing to buy the antibiotic is 

BThe weighted sum 7r( w) represents the probability of recovery if the spread of infection and 
the valuation of being in good health are independent events and no antibiotic is taken. 
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[1 - F(ê)], and, since individual demand is unitary, total demand is given by: 

Q = J [1 - F (L)] . 
rf'w 

Therefore the inverse demand function is: 

For simplicity, us assume that 0 is distributed uniformly over the population, 

with supports [O,IJ. The inverse demand function then becomes: 

Notice that the intercept of the inverse demand is rfw and its slope is rfwj J. The 

variable w can be viewed as an (endogenous) index of the quality of thedrug, which 

can vary between zero and one, while J is the market size for the antibiotic. For 

w = 0, demand is identically zero. For a given value of the infected population, J, 

the inverse demand curve pivots upwards through the point (Q,p) = (I, 0) as the 

quality of the antibiotic increases from zero to one and demand is at its highest 

when w 1. 

The ratio Q j J represents the fraction of the infected population treated and 

is thus equal to the parameter f in the dynamic constraints (2.2) and (2.3). The 

inverse demand function can therefore be rewritten as a function of the fraction of 

the infected population being treated and the efficacy of the antibiotic to 

pu, w) = rfw(1 - f). (2.8) 

2.3 The monopolistic pricing behavior 

We assume that a patent exists, assigning exclusive rights to a monopolistic 

firm to sell the antibiotic for an exogenously given period of time TE (0,00], after 
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which the antibiotic is sold by a generic industry.9 A farsighted monopolist is char­

acterized by the fact that he takes into account the impact of his current decisions 

on future levels of antibiotic efficacy and infection, and thus on the evolution of the 

quality of his product and its market size over time. Renee, the quality and market 

size of the antibiotic are determined endogenously in the system. The instantaneous 

profit function of the monopolist is given by rr(t) = [rfw(t)(l - f(t)) - cl!(t)I(t), 

where c is the constant unit cost of the antibiotic. For ease of reference to the epi­

demiological model, we will treat the fraction of the infected population to which 

the antibiotic is sold, f(t), as the control variable, and infer the market clear­

ing price p(t) from the inverse demand function. The objective function of the 

monopolist is given by: 

max fT e-ptrr(t)dt + V9(T) 
{09(t)9} Jo (2.9) 

subject to the equations (2.2) and (2.3). The bequest function V9(T) accounts for 

the profits of the former monopolist once he has become one of the competitive 

produeers of the generic industry after the expiration of the patent. Assuming that 

aIl generic produeers have access to the same technology as the monopolist does, 

the equilibrium in that generic industry will be such that priee equals the average 

production cost and economic profits are zero. lO Renee V9(T) = O. 

The current-value Ramiltonian associated to problem (2.9) is given by: 

HU, w, l, J-L, À) [rfw(l - 1) - cl! 1 

+J-Lw(l - w)[~r - rf fl + ÀI((3(N - 1) - rr + w[~r - ~ffJI~) 

9We thus abstract from the R&D process before the patent is granted. Kingston (2000) 
presents historical notes on the R&D of the first antibiotics, and addresses aspects related to the 
patenting process of antibiotics. 

lOSuch a generic industry and the resulting evolution of ant.ibiotic efficacy and infection are 
addressed in Herrmann and Gaudet (2007). In that paper, compet.itive producers have open 
access to the market of the antibiotic drug, and by this to the stock of efficacy. Producers enter 
the market up to the point when ail economic rents have been dissipated. They thus behave in 
a myopie way. 
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and its derivative with respect to the control variable fis: 

(2.11) 

where p,and >. are the shadow values associated to the level of antibiotic efficacy 

and the stock of infected population respectively. 

The following conditions, as weIl as (2.2) and (2.3), are necessary for inter­

temporal profit maximization: 

8H 
-
8f 

< 

8H 
> 

8f 
p, - pp, = 

>. - p>. = 

lim e-rtw(T) > t--'>T 
lim e-rt 1(T) > t-->T 

8H 
f?O 0, 8f f = 0, or 

0, 
8H 
8f (1 - J) = 0, f'5:1 

(~r - rIf)[p,(2w - 1) - >'1]- rf1(1 - J)f 

>'[2,81 -,8N + rr - w(~r - rIf)] 

-rfw(1- J)f + cf 

0, lim e-rt p,(T) ? 0, 
t-->T lim e-rt p,(T)w(T) = ° t-->T 

0, lim e-rt >'(T) ? 0, 
t-->T lim e-rt >'(T)1(T) = ° t-->T 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Condition (2.12) is the first-order condition for the maximization of the Hamilto­

nian with respect to f(t) at each instant t. It can never be optimal for the monop­

olist to sell the antibiotic to the overall infected population (J = 1). This makes 

current profits negative without generating compensating future profits. Indeed 

setting f = 1 inevitably decreases the level of antibiotic efficacy and infection, or 

at least decelerates the increase in the level of infection, and thus negatively affects 

the future quality and market size of the antibiotic. We will therefore necessarily 

have 8H/8f ~ O. However, it may be optimal to have f = 0, thus postponing 

production and allowing antibiotic efficacy and infection to rise as fast as possible. 

Conditions (2.13) and (2.14) are the arbitrage equations that determine the 

evolution of p,(t) and >.(t) over time. Conditions (2.15) and (2.16) are the transver­

salit y conditions. In the case of a finite patent life, they state that whenever there 
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is a strictly positive stock of antibiotic efficacy or of the infected population left at 

the end of the patent lifetime (w(T) > 0, I(T) > 0), then that stock must be of 

no value to the non-myopie monopolist. The same reasoning applies in the limit 

as t tends to infinity in the case of an infinitely long lasting patent. 

In the case of an interior solution, (0 < fm < 1) , equation (2.12) can be written 

as: 

(2.17) 

Condition (2.17) states that the marginal revenue (the left-hand side of equation 

(2.17)) must be equal to the full marginal cost of treatment (the right-hand-side). 

Both shadow values will be positive. This refiects the fact that the stock of the in­

fected population can be viewed as an "asset" by the monopolist, since it represents 

market size when the antibiotic is economically viable. 

An interior solution rn is represented graphically in Figure 2.3, where the solid 

and dotted lines represent the downward-sloping demand and marginal revenue 

function respectively. This figure shows a momentary view of the monopolist's 

choice given the dynamic system is in state (w, 1) at time t. As in the standard 

static monopoly model, the monopolist will always serve a fraction such that de­

mand is elastic, ruling out admissible values of f in the interval (1/2,1]. The reason 

for this is the same as the reason why f = 1 cannot be an optimal policy for the 

monopolist. Incurring a loss at a current instant of time would have to be com­

pensated by higher profits somewhere in the future. But this is not the case, since 

su ch a policy would lead to lower levels of quality and market size and thus cannot 

lead to higher profits. This implies that whenever b.r Ir J E [1/2, 1], the fitness cost 

effect dominates, i. e. the level of antibiotic efficacy will be increasing over time, as 

the optimal fraction f served by the monopolist will al ways be lower than 1/2 (for 

c> 0). For b.r/rJ E [0,1/2), the fraction served by the monopolist may be lower, 

equal or higher than the critical value of b.r / r J, implying an increasing, constant 

or decreasing movement of antibiotic efficacy over time. 

Before turning to the monopolist that benefits from a limited patent lifetime, 
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we will address two useful benchl11ark cases. The first is that of a 1110nopolist who 

ignores the effect of his actions on the future state, which we will calI a myopie 

monopolist. The second is that of an infinitely-lived monopolist. 

2.3.1 The myopie monopolist 

In this section we consider the pricing policy, and its impact on the dynamies of 

antibiotic efficacy and infection, when the antibiotic is sold by a myopie monopolist. 

The myopie monopolist maximizes the flow of discounted profits without taking 

into account the impact of his current decision, f(t), on future levels of antibiotic 

efficacy, and on the future stock of the infected population. He thus attributes a 

zero shadow value to the quality and market size of the antibiotie, whieh implies 

p,(t) = 0 and >.(t) = O. Using this fact in equation (2.12), the first order condition 

for an interior solution cau be written as: 

T'fW(l 2f)I = cI. (2.18) 

Denote by fOO(t) the fraction of the infected population buying the antibiotie when 

sold by a myopie monopolist, and by pOO(t) the corresponding priee. From condition 

(2.18) we obtain: 

, if T'fW > C 

, otherwise. 

With the inverse clemand function stated in (2.8), we get: 

, if T'fW > C 

, otherwise. 

(2.19) 

(2.20) 

If the antibiotic is economically viable, the myopie monopolist sells it to a positive 

fraction of the infected population and charges the eorresponding market clearing 

priee. If the antibiotie is not economically viable, he charges the ehoke priee T' fW) 
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and does not sell at aIl. Both, the fraction of the infected population buying the 

antibiotic, f'X!(t) , as well as the price charged by the myopie monopolist, pOO(t), 

are increasing in the level of antibiotic efficacy, the qua1ity aspect of the antibiotic, 

while fOO(t) is decreasing and pOO(t) is increasing in the unitary production cost c. 

Notice that they are both independent of the level of infection. 

2.3.1.1 The steady states under myopie monopolistie pricing 

Consider first the epidemiological steady state given by (2.4), at which the level 

of antibiotic efficacy is exhausted completely (wSS = 0) and demand vanishes. Any 

positive production of the antibiotic would lead to losses for the myopie monopolist, 

so that the monopolist would find it optimal not to pro duce at aU by setting 

fSS = O. The steady state would therefore be characterized by: 

(2.21) 

With a positive production cost c > 0, this steady state can be ruled out. This is 

because the myopie monopolist, by setting fOO(t) = 0 whenever the antibiotic is 

not economically viable, allows the level of antibiotic efficacy to recover ('li; > 0), 

and therefore it cannot reach its lower limit at which wSs = O. 

In the epidemiological steady state given by (2.5), the quality of the drug is 

maximal. From (2.19), we find foo = (1- c/rf )/2. Therefore, the steady state will 

be characterized by: 

(fSS lSS SS) = (~ (1-~) (3N - rw - ~(rf - c) 1) 
"w 2 rf' (3 ,. (2.22) 

Finally, steady states as defined in (2.6) occur when foo = 6.r / r f, which is only 

optimal for the myopie monopolist whenever the level of antibiotic efficacy w(t) 

satisfies: 

6.r 1 ( c) 
--;:; ="2 1 - rfw(t) . (2.23) 
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Renee the unique steady state of this type is given by: 

(2.24) 

Notice that the steady-state configurations (2.22) and (2.24) are mutually ex­

clusive. Which one is relevant depends on the bio-economic parameters of the 

model. To be more precise, if c = r f - 2.6.r, they are indistinguishable at w Ss = 1. 

Whenever c < rf - 2.6.r, then (2.24) must be the relevant steady-state config­

uration, because this is incompatible with (2.19) when evaluated at w Ss = 1. 

Whenever the parameters satisfy cj(rf - 2.6.r) > 1 then (2.22) must be the rel­

evant steady-state configuration, because it must then be the case that w Ss = 1 

and fSS = (1- cjrf)j2 < .6.rjrf Y 

2.3.1.2 The transition to steady state under myopie monopolistie prie­

ing 

The stock of infected population 1(0) = 10 E (0, N] and the stock of antibiotic 

efficacy w(O) = Wo E (0,1) are given exogenously in the system at time t = O. 

From the initial state (Jo, wo) the system will tend asymptotically to the relevant 

steady-state configuration. Let 1 and II denote states for which w > w Ss and III 

and IV denote states for which w < w Ss , with states 1 and III lying to the left of 

the j = 0 isocline, while states II and IV lie to its right in (I, w)-spaee. This is 

shown in Figure 2.2, where the j = 0 isocline is represented for foo = .6.rjrf.12 

The evolution of the levels of antibiotic efficacy w( t) and infection 1( t) depends 

on the fraction of the infected population fOO(t) to which the myopie monopolist 

II We have implicitly assumed that r f - 2~r > 0, which guarantees a positive value for w Ss in 
steady state (2.24). The condition can be rewritten as 1/2 > ~r/rf' If it is not satisfied, only 
steady-state configuration (2.22) with wSs = 1 is relevant. This is because the myopic monopolist 
behaves like a static one, and thus always sells on the elastic part of the demand curve, implying 
foo < 1/2 < ~r/rf for c > 0 in that case, and thus w > 0 and wSs = l. 

12 The j = 0 isocline is non-stationnary. Rel11ind foot note 6. In Figure 2.2, we represellt the 
steady-state configuration of type (2.24). The anaJysis however also applies to the steady-state 
configuration with wSs = 1 where the initial state (Io, wo) is either of type III and IV. 
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sells the antibiotic over time, or equivalently, on the priee charged poo (t). VVe first 

coneentrate on the characterization of foo (t), poo (t) and w (t), before addressing 

the evolution of the level of infection and the transition to steady state in general. 

Differentiating equations (2.19) and (2.20) with respect to time for any steady-state 

configuration gives: 

(2.25) 

(2.26) 

Suppose for now the antibiotic to be economically viable. If the steady-state con­

figuration is of type (2.22), we have w(t) ~ wSs = 1 with t E [0,00) so that: 

f (t) = - 1 - < - 1 - - <-, 00 1 ( c) 1 ( c ) !:::.r 
2 rfw(t) 2 rf rf 

implying by equation (2.2) the level of antibiotic efficacy w(t) to be increasing over 

time for initial states of types III and IV. This steady-state configuration occurs 

only when c/(rf - 2!:::.r) > 1 or rf - 2!:::.r < 0 and thus implies, by equations (2.25) 

and (2.26), that the fraction served as weIl as the priee charged by the myopie 

monopolist must be increasing over time. This is because the increase in quality 

shifts the demand and marginal revenue curves upwards (for any given level of 

infection). As the level of antibiotic efficiency approaches its upper bound, the 

increase in the treatment rate and in the priee slow down as f and p tend to zero. 

If the steady-state configuration is of type (2.24), we have for any t E [0,00): 

t - 1- -f OO( ) _ 1 ( c) 2: !:::.r 
- 2 rfw(t) < rf w(t) ~ c = wSs 

< rf - 2!:::.r ' 

where wSs is the steady-state level of antibiotic efficacy in that configuration. 

Renee, the fraction foo (t) is larger, sm aller or equal to the cri tical fraction !:::. r / r f 

depending on whether the current level of antibiotic efficacy w(t) is larger, sm aller 

or equal to the long-run steady-state level wSs . It follows that w(t) is decreasing 
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over time when the initial state is of type 1 or II, and increasing when it is of type 

III or IV. If Wo = wSs , then the level of antibiotic efficacy remains constant over 

time (w = 0). Convergence of w(t) to steady state will occur monotonously (from 

above or from below). As w(t) approaches the long-run steady state wSs , j and 

p tend to zero, and the fraction served must tend to the critical value of b..r / r f. 

\i\lhen the steady-state value for antibiotic efficacy is reached, wSs = c/(rf - 2b..r) , 

we must simultaneously have ro = b..r/rf from equation (2.23) and f'oo = 0 from 

equation (2.25). 

We have seen so far that the evolution of the variables w, foo and poo can be 

characterized independently from the level of infection, or the market size of the 

antibiotic, l, the evolution of which we now consider. Equation (2.3), which de­

termines the evolution of the level of infection, can be rewritten, after substituting 

for foo and rearranging, as: 

l ss 1 [SS ] - = j3(I - 1) + - (rf - 2b..r) w - w 
l 2 

(2.27) 

where ISS and w Ss are defined as in the relevant steady-state configuration (2.22) 

or (2.24). Equation (2.27) states that the relative increase in the level of infection is 

a function of the relative distance of the state variables from their long-run steady­

state levels. Suppose (r f - 2b..r) > 0 such that no steady-state configuration can 

be excluded from the outset. Then, unambiguously, j < 0 as long as the state is of 

type II and j > 0 if of type III as can be seen from equation (2.27). The evolution 

of the level of infection can be either in- or decreasing if the state is of type 1 or IV. 

Suppose that 10 = ISS and w > w Ss . Then, byequation (2.27), j(O) < 0, and the 

level of infection falls below its steady-state level, such that ISS - l > 0 initially 

(type 1). The level of infection will decrease, as will the difference ISS - l, while 

wSs - w( < 0) decreases as shown earlier. 13 

13We exclude the possibility that the decrease in the level of infection eventua.lly leads to its 
eradication from the biological system. A sufficient condition for this is that the j = 0 isocline 
shown in Figure 3.1, when evaluated at h = 1 has an intercept greater than w = 1. 
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The first tenu on the right-hand side of equation (2.27) eventually cancels the 

second one, with j = 0 at that point of time, after which j > 0, and both ISS - 1 and 

wSs - w decrease. This continues until a steady-state is reached. The overshooting 

of the level of infection which may occur when departing from an initial state of 

type l is reversed when departing from a state of t.ype IV. 14 

2.3.2 The infinitely-lived monopolist 

The case of an infinitely-lived monopolist (T = (0) represents another bench­

mark for the analysis of how a non-myopic monopolist subject to a patent manages 

antibiotic efficacy and infection over time. As it turns out, the infinitely-lived mo­

nopolist tends to achieve higher levels of antibiotie efficacy over time and in steady 

state than the myopie monopolist. It also prevents the level of infection from falling 

as sharply below its steady-state value as in the myopic outcome. 

2.3.2.1 The steady states 

Setting w = j = fi, = ~ = 0 generates the set of steady states that may be 

reached when the antibiotic is sold by a non-myopie monopolist. The epidemio­

logical steady state of type (2.4), at which the antibiotic is completely inefficient 

(w = 0), and whieh we found cou Id not be reached under the myopic monopolistic 

programme, cannot be reached either under the non-myopic programme. As be­

fore, the monopolist would incur losses by selling the antibiotic when its efficacy 

is below the economic viability level (w < cl r f ). He would prefer not to sell at aIl 

(f = 0), allowing the level of anti biotic efficacy to increase. 

14If c/(Tf - 2~T) > 1 holds, the level of antibiotic efficacy tends to its upper bound. The 
steady state is then as defined in (2.22). Unambiguously, i > 0 for states of type III, while the 
overshooting pattern may occur for states of type IV (I> I SS temporarily). The same steady 
state is reached if the condition Tf - 2~T < 0 holds, and i< 0 for states of type IV and the 
overshooting pattern with respect to the level of infection may then occur for initial states of type 
III. 

The discussion in the text shows that the system will reach the neighborhood of the relevant 
steady state, and in connection with the local stability of that steady state (w hi ch can be shown by 
standard methods of linearizing the dynamic system around the relevant steady state), establishes 
its global stability under the myopic monopolistic programme. 
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In the epidemiological steady state given by (2.5), antibiotic efficacy is at its 

upper bound (w 1). Replacing w = 1 in (2.12) and in (2.14) with). = 0 yields two 

equations in f and À, the unknowns of which can be solved for (see the Appendix). 

At this steady state we will therefore have: 

where a and b are determined in the Appendix as: 

2 
a - 3 [p +,BN - IW + 'f - cl 

If 

b = 
(1 fJ)(p+,BN-,w) 

Finally, there is a unique steady state of the type characterized by (2.6). This 

steady state is shown in the Appendix to be given by: 

(fSS [ss SS) = (~I ,SN - 'r _~ 
, ,w 'f ' ,B , 2.4. + (2.29) 

where 

A 
,BN - 1 

~,(rf ~r) ( (.IN r ) 
PP+fJ -'r 

If - ~, ~,C 
('f - 2~,) - ~, + ----

P P +,BN - rr 

Steady-state configurations (2.28) and (2.29) are mutually exclusive. In fact, when 

wSs = 1 in (2.29) they are indistinguishable with respect to the level of antibiotic 

efficacy. This will occur when the bio-economic parameters satisfy 

c 
_( ) _ -~, [2(,BN - 'r + p) - ~rl 
C 'f - (.IN A + 'f, fJ - rr + P - UI 

(2.30) 

which can be derived from setting w Ss = 1 and solving for the cost c. For c :::; 
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c(rf), the monopolistic steady state will be defined as in (2.29), whiIe fort: > 

c(r f) the steady state will be defined as in (2.28). Equation (2.30) represents 

a positively sloped straight line in (r f, c) -space, the intercept of whieh may be 

positive, negative or zero. 15 

Figure 2.4 shows the lineè(rf) for the case (3N rr+P b:.r > 0, as weIl as the 

economic viability condition c = r f in the (r f, c) -space. 16 For parameter values 

implying a positive intercept of c( r f), the steady-state configuration is al ways as 

specified in (2.29) when the antibiotic is economically viable, as assumed from the 

outset. 

Ceteris pari bus, for any given value of the cost c, higher values of the additional 

recovery rate r f (and thus lower values of the critical fraction b:.r 1 r f ) imply an 

interior steady-state level of antibiotic efficacy (configuration (2.29)). This is be­

cause the optimal fraction of the infected population served by the monopolist, f, 
as defined in (2.12), is then higher than the critical fraction b:.rlrf' which leads 

to a decreasing level of antibiotic efficacy and makes the steady-state configura­

tion given by (2.28) unattainable. Stated differently, a. high value of the addition al 

recovery rate r f implies a relatively high selective pressure on the drug-sensitive 

version of the infection (Iw), rendering the achievement of the maximum value of 

antibiotie efficacy (wSS = 1) impossible. 

Comparing the interior steady-state configurations of the myopie and the non­

myopie monopolist as defined in (2.24) and (2.29) shows that both the fraction of 

the infected population that buys the antibiotic, fSs, and the level of the infected 

population, ISs, are identical. The steady-state levels of antibiotic efficacy differ 

however in this steady-state configuration. It can be shown, assuming cl (r f -

2b:.r) < 1, that the non-myopie steady-state level wSs is always higher than the 

15Whenever the denominator in the right-hand side of equation (2.30) is positive, the ordinat.e is 
negative. For a negative denominator, the ordinate lUay be positive, negative or zero, depending 
on whether [ss = {3N-r,. ~ Ar-2p 

{3 < 2{3' 

16 Admissible values of the additional recovery rate rf lie in the interval (é:J.r, (3N - rw ), which 
assures é:J.rjrf < 1 and a strictly positive steady-state value for infection in configuration (2.28). 
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one reached under the myopie programme: 

The locus of parameter configurations such that w~s = 1 is given by c = r f - 2b.r 

and is also shown in Figure 2.4. 

2.3.2.2 The transition to steady state 

Because of the complex nature of the dynamic system involved in the monop­

olistic optimal control problem, numerical simulations have been used to explore 

the transition to the steady stateY Those simulations show that depending on the 

bioeconomic parameters of the model, the system may tend to the steady state as 

defined in (2.28), for which w Ss = 1, or to the "interior" steady state as defined in 

(2.29), for which fSS = b.r Ir f. In what foIlows, we concentrate our analysis on the 

production cost c and the additional recovery rate r f, and refer to the classification 

of steady states as presented in Figure 2.4. 

Case A: fSS = C.r 
rf 

In this case, the parameter configuration of c and r f is such that they faIl 

below the line c( r f ), and the steady state reached is interior for the monopolist as 

defined in (2.29).18 Starting from the four different types of initial states (Jo, wo), 

indicated by 1 to IV, the trajectories of the state variables and of the evolution of 

the monopolistic treatment rate are shown in Figures 2.5 and 2.6 respectively. For 

comparison, we have also drawn the paths resulting under the myopie programme. 

In Figures 2.5 and 2.6 non-myopie paths are indicated by thicker lines. AIl state 

paths have in common that they converge towards their respective steady state, 

indicating that the dynamic system is stable under both regimes, with the non-

17We make use of a standard value function iteration algorithm, as proposed in Judd (1998, 
page 413) for a discrete time version of the mode!. 

18Parameters used for that simulation are f3 = 0.6, N = l, Tr = 0.17, Tw = 0.15, b.T = 0.02, 
Tf = 0.3, c = 0.27 p = 0.03. 
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myopie steady-state level of antibiotie effieaey being greater than the myopie one, 

i.e. wSs > wfl. 

Consider the paths departing from initial states of types III and IV, whieh lie 

below the eeonomie viability level cjrJ, sueh that no antibiotie is sold initially 

under any regime. Sinee the evolution of antibiotic effieaey w is independent of 

1, myopie and non-myopie state paths departing from an initial state of types III 

and IV eoincide as long as f = O. When the antibiotie has beeome economically 

viable, the myopie monopolist immediately starts selling to a fraction j'Xl as defined 

in (2.19), whieh again does not depend on the level of infection. The two state 

and control paths therefore continue to coincide and converge to the steady state 

(2.24). That convergence occurs with a slight overshooting in the level of infection 

as deseribed in section 2.3.1.2. The non-myopie monopolist reaches the economic 

viability level a.t the sa.me time as the myopie one. However, he starts selling later 

as ean be seen from Figure 2.6. 19 This is beeause he attributes positive shadow 

values to the levels of antibiotie effieacy and infection, implying a full marginal eost 

higher than c, and waits for the quality to ri se even more in order to compensate for 

the full marginal eost. For the non-myopie monopolist, the positive overshooting 

pattern is more pronounced than for the myopie one, as he has an interest in facing 

a 'high' demand in the future. 

Consider now the initial sta.tes of type 1 and II in Figure 2.5, characterized by 

a high level of antibiotic efficacy and a relatively low (type 1) or high (type II) 

level of infection. When departing from an initial state of type l, the monopolist 

manages the level of infection (the market size), in sueh a way as to have it inerease 

faster than the myopie monopolist while keeping high values of antibiotic effieaey. 

Comparing the treatment rates in Figure 2.6 under both regimes in this case reveals 

that the non-myopie monopolist sells to a low fraction of the infeeted population 

initially, thus allowing the level of infection to inerease relatively fast. 20 When 

19Trajectories of the treatment rates completely coincide for initial states III and IV for the 
non-myopie Illonopolist, as the state paths (l, w) departing from initial states III and IV join 
each other before the antibiotic becomes economically viable and are identical thereafter. 

20The level of antibiotic efficacy also increases initially, something which cannot occur under 
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departing from an initial state of type II, the non-myopIe monopolist serves a 

deereasing fraction, at a lower level than the myopie monopolist (initially). This 

allows him to soften the overshooting of infection below its steady-state level, thus 

assuring a higher market size over time. 

Figure 2.7 displays the evolution of priees and the level of antibiotic effieaey 

when the initial state is of type II. Priees are deereasing under both regimes and 

reflect the evolution of antibiotie effieaey. We have also drawn the hypothetieal 

priee pH (t), that a myopie monopolist would charge if he were to be at the same 

state (I, w) as the non-myopie one. The priees eharged by the non-myopie monop­

olist would be higher than those eharged by the hypothetieal myopie monopolist, 

thus restricting the fraction of the infected population to whieh the antibiotie is 

sold, and finally leading to a higher steady-state value of antibiotie effieaey. 

Case B: w Ss = 1 

ln this case, bio-eeonomie parameters c and r f belong to the region lying be­

tween the line è( r f) and the eeonomie viability line (c = r f ), as depieted in Figure 

2.4. 21 Figures 2.8 and 2.9 show the convergence to steady state for the state vari­

ables (I, w) and the control f for the non-myopie monopolist. The trajeetory for 

the myopie monopolist are also shown. The level of antibiotie effieaey in initial 

states of types 1 and II is set at cjr f, so that the anti biotie is just eeonomically 

viable, whereas in initial states of types III and IV it is not eeonomieally viable. 

When departing from initial states of types 1 and II, the myopie monopolist starts 

selling immediately, while the non-myopie monopolist waits sorne time before doing 

so. This is due to the faet that the non-myopie monopolist faces at eaeh instant 

of time a full marginal co st whieh is higher than the marginal eost of production 

leading to aH/af < 0 initially. When aH/af = 0 the non-myopie monopolist 

starts selling. For a given level of antibiotie effieaey, equalizing the higher full 

the myopie regime 
21 Parameters used for this simulation are identical to the ones used in the former simulation, 

exception being the cost of production c = 0.27. 
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marginal cost to the marginal revenue can only occur at a treatment rate which is 

lower than under the myopic outcome. As a result, antibiotic efficacy evolves at a 

higher level in the non-myopic out come than in the myopic outcome, as can be seen 

from the trajectory of the level of antibiotic efficacy depicted in Figure 2.10 for the 

case that the initial state is given by II. The pricing scheme undèr the myopic and 

non-myopic regimes are a1so depicted in Figure 2.4. Priees reflect the evolution of 

antibiotic efficacy un der both outcomes. The level of antibiotic efficacy increases 

faster towards w Ss = 1 when managed by the non-myopic monopolist, who charges 

higher priees than would a hypothetical myopic monopolist. 

2.3.3 Finite patent life: T < 00 

Consider now the case of a patent of finite duration (T < (0). The antibiotic is 

then sold by a monopolist during the life of the patent and by a generic industry 

afterwards. Sinee the monopolist knows that he will make zero economic profits 

after the expiration of the patent, he will attach no importance to the levels of 

antibiotic efficacy and infection that are left for the generic industry. At time T, 

he should thus attribute zero value to the levels of antibiotic efficacy and infection, 

if positive, and behave like a myopic monopolist. This is indeed the case, as can 

be seen from the transversality conditions (2.15) and (2.16). As the monopolist 

cannot operate below the economic viability level, c/rJ, nor eradicate infection 

from the epidemiological system, we must have w(T) > 0 and I(T) > 0, which 

from equations (2.15) and (2.16) implies: 

fL(T) = >'(T) = O. (2.31) 

Henee, at the instant the patent expires, the pricing policy of the non-myopIc 

monopolist must be identical to the myopic one defined in (2.19) and (2.20) and 

evaluated at state (I(T), w(T)). The shadow values will evolve continuously over 

time as described by equations (2.13) and (2.14) and will reach fL(T) = >'(T) = 0 
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at time T. 22 At T, we can calculate the rate of change in the shadow values making 

use of (2.31) and obtain: 

fJ,(T) -rf I(T)(l - f(T))f(T) < 0, 

5..(T) -rfw(T)(l - f(T))f(T) < O. 

Due to the continuity in the evolution of the shadow values, we can conclude that 

the shadow values are positive and decreasing at least during a time period before 

the patent's expiration. This implies a decreasing full marginal co st for given levels 

of antibiotic efficacy and of the infected population, leading to an increase in the 

fraction of the infected population served towards the end of the patent life time in 

order to satisfy equation (2.12). The non-myopie monopolist thus behaves "more 

and more myopically" as the patent approaches its expiration date. 

In our numerical analysis we refer again to two different scenarios which de­

pend on the bio-economic parameters and the implied infinite-horizon steady-state 

configurations as described in section 2.3.2.1. If the parameter configuration is 

such that the interior steady state, as defined in (2.29), were to be reached in the 

infinite horizon problem, the non-myopie monopolistic programme is characterized 

by a turnpike property with the steady state (lss, w SS ) serving as the turnpike. If 

T, the length of the patent life, is sufficiently large, then the turnpike is "exact": 

the system reaches the steady state and remains there for a finite period of time 

before leaving it at sorne point before the patent expires. 

Figure 2.11 and Figure 2.12 show the trajectories of antibiotic efficacy and 

infection, as well as the fraction of the infected population that buys the antibiotic 

when it is sold by a non-myopie monopolist. We also plot the out come under the 

myopie monopolistic regime for purpose of comparison. The approach to the steady 

state is identical to that of the infinite horizon problem. At the interior steady state 

22JUlllpS in the shadow values could be caused by binding constraints on the state variables. 
This can however be excluded as w Ss = 0 and w Ss = 1 cannot be reached in finite time and 
infection cannot be eradicated nor dominate the whole system because of the parallleter values 
assullled in section 2.2.1. 
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= t:.r Ir f' What is of interest in the case of a finite patent 

life is the monopolistic policy once the path leaves the turnpike. The monopolist 

then sells to an increasing fraction of the infected population, f (t) > fSs, as can 

be seen in Figure 2.12. This leads to a decrease in the levels of antibiotic efficacy 

and infection (the state trajectory moves in the south-western direction in Figure 

2.11), and thus to a decreasing priee as shown in Figure 2.13. This occurs because 

the monopolist associates lower shadow values to the quality aspect of the drug 

(w) and to the market size (l), as he knows that he will make zero profits after the 

patent has expired and tends to behave more and more like a myopie monopolist. 

At time T, the non-myopic monopolist behaves exactly like a myopic monopolist 

and charges the myopie priee as defined in (2.20). To see this, con si der the priees 

charged by a hypothetical myopie monopolist pH (t) who faces the same state as 

the non-myopic one in Figure 2.13. It is at T that the pricing schemes p(t) and 

pH (t) represented by the thin continuous and dotted lines joïn. 

For an insufficiently long patent life, the turnpike property of the monopolis­

tic programme is not exact: the path approaches the steady state (lss, wSS ) and 

remains in its neighborhood for a finite period of time before leaving to satisfy 

the transversality conditions. This is shown in Figure 2.14, where we depict the 

trajectories of the fraction of the infected population buying the antibiotic as an 

example. The heavy lin es indicate the treatment rates f(t) for the non-myopie 

monopolist, which approach the steady-state level of t:.r Ir f from above when de­

parting from initial states of type 1 and II, and which approach it from below, when 

departing from initial states of type III and IV.23 In a11 cases, the treatment rate 

f(t) increases towards the end of the patent and trajectories of f(t) eventually joïn 

and reach the same level, which is higher than the critical level (t:.r 1 r f ).24 

23The approach is 11l0notonous in aIl cases, except when the initial state isof type 1. In that 
case, the initiallevel of infection is low, while the level of antibiotic efficacy is high. This leads 
the monopolist to Înitially sell the antibiotic to relatively low fractions (j(t) < /}.r/rj), aUowing 
the market size and quality of the antibiotic to increase. 

24The question arises of what is the critical patent life T for an exact turnpike to exist. And 
in such a case, when is the turnpike reached, and when is it left again. The critical value of 
T is determined implicitly by the necessary conditions (2.12) to (2.16) charaderizing the profit-
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\iVhen the patent expires, the generic industry takes over, and an upward jump 

in the level of f(t), accompanied by a fall in price occur. As the full marginal cost 

faced by the monopolist is equal to c at time T, the corresponding monopolistic 

priee pm(T) is neeessarily higher than the price of the generic industry which is 

given by pg = c. 

Finally, consider the parameter configuration under which the infinitely-lived 

monopolist would reach the steady state of type (2.28). In this case, if the patent 

life is sufficiently long, the system is again characterized by an exact turnpike, 

with the level of antibiotic efficacy reaching its upper bound, w = 1. The level of 

w will remain unchanged, even after leaving the turnpike in order for the costate 

variables to satisfy the transversality conditions. The decrease in the full marginal 

cost, which occurs after leaving the turnpike, is due strictly to the decrease in 

the shadow value of infection, À. This can be seen from equation (2.17), which 

simplifies for w = 1 to 

As in the previous case, a falling full marginal cost is accompanied by an increase in 

the treatment rate, leading to a decrease in the level of infection. What differs un der 

this parameter configuration, which is characterized by a marginal production cost 

(c) that is high relative to the increase in the recovery rate (r f), is that the generic 

industry now inherits a perfectly effective antibiotic drug. The problem of antibiotic 

resistanee is non-existing after the generic industry takes over. 

One should however not interpret this result as arguing in favor of the monopo­

listic industry from a social optimum point of view. The upper bound of antibiotic 

maximizing monopolistic programme. Suppose T to be sufficiently long such that a turnpike 
exists. Denote by t l and t2 the points of time when the turnpike is reached, and when it is left 
again. In order to obtain those dates, one would have to solve the differential equations w, i, jL, 
). satisfying condition (2.12) and the boundary conditions w(O) = wo, 1(0) = la, w(td = W(t2) = 
wSs , l(tl) = 1(t2) = lSS, J-L(td = J-L(t2) = J-LSS, >.(t l ) = >.(t2) = >.SS and J-L(T) = 0 as weIl 
as >'(T) = O. One wou Id first solve for t2, and then for tl. The critical value for a turnpike to 
exist, T, is then defined by T = tl + t2. AlI those conditions should suffice to determine a unique 
trajectory of the state, co-state and control variables. The analytica.l resolution of the dynamic 
system however represents arduous task. 
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efficacy may also be attained by a generic industry under similar parameter con­

figurations (see Herrmann and Gaudet, 2007). It is the relatively high marginal 

production cost compared to the increase in the recovery rate that makes the mo­

nopolist conservationist on the one side, and the generic industry disciplined on the 

_ other. In the real world, one may conjecture that the R&D costs are most impor­

tant and that the marginal production cost is relatively low in the pharmaceutical 

industry. 

2.4 Conclusion 

This paper has focused on the pricing of an antibiotic drug by a farsighted 

producer whose monopoly power is protected by a patent, in the context where the 

efficacy of the antibiotic (its quality) and the overallievei of infection (the market 

size) are endogenously determined by antibiotic sales over time. We show that 

the bio-economic system is characterized by a turnpike property. This means that 

priee will move towards the steady-state price level that would be charged by an 

infinitely-lived monopolist and will remain in the neighborhood of that priee for a 

period of time. The period of time in question will depend on the length of the 

patent life. Towards the end of the patent protection, the monopolist will begin 

acting more and more myopically, leading to a continuous decrease in priee. When 

the patent expires, a discontinuous fall in priee occurs as the generic industry takes 

over. We argue that, for reasonable bio-economic parameters of the model, the 

steady state which is targeted by the monopolist brings two effects into balanee: 

the fitness cost effect (benefiting antibiotic efficacy) and the natural selection effect 

(favoring a dominanee of the drug-resistant version of the bacterial population). 

Thus, antibiotic efficacy will generally find itself somewhere between its upper and 

lower bound over a period of time. In that case, it will, in the end, start decreasing, 

as will the level of infection, reftecting the fact that the monopolist attaches less 

and less value to the quality and the market size of the antibiotic as the patent 

nears expiration. 
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It should be pointed out that those results are obtained under sorne assumptions 

concerning the strategies available to the monopolist onee the patent expires. For 

instance, the monopolist may have the possibility of practicing priee discrimination 

for a while, by selling the brand name at a high priee, and selling his own generic 

version before the patent has expired. This might lead to a Stackelberg-type market 

structure during the generic phase of the industry. Another possibility that has 

not been taken into account is that the monopolist may attempt to "improve" 

the biological formula of the drug slightly, at a cost, in the hope of getting a 

new patent protection. Taking those addition al possibilities into account would of 

course have an impact on the priee path during the period of patent protection, but 

would not neeessarily alter the underlying turnpike property described here. How 

exactly the priee path would be affected is however a matter for further research. 

Another important avenue for further research would consist in endogenizing R&D 

expenditures, which have been treated as a sunk cost here, and considering the 

socially optimal patent protection in a context where bacterial resistance to the 

drug is a significant issue. 

--------------------- --------
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CHAPITRE 3 

OPTIMAL REFUGE STRATEGIES TO FIGHT PEST RESISTANCE 

TO GM CROPS 

3.1 Introduction 

Cenetically modified (CM) crops have been introduced in the commercial agri­

culture, notably in the US and Canada to prevent severe loss due to pest invasions. 

A prominent example is that of Bt-corn which can resist the European corn borer. 1 

However, concern with the potential rise of Bt-resistant pest populations in the fu­

ture has led to the introduction of mandatory refuge areas by the US Environmental 

Protection Agency (EPA) , and thus limits the use farmers can made of Bt-corn. 

In the absence of a refuge zone, natural selection of the Bt-resistant pest pop­

ulation occurs. This is because the Bt-susceptible pests are unable to feed on CM 

corn and die, so that their genetic information will not be able to spread within 

the pest population over time. By introducing a refuge area in which regular corn 

is planted in the neighborhood of the Bt-corn, the selective pressure put on the 

susceptible pests is reduced and, by this, the genetic pool can possibly preserve 

its susceptibility to Bt-corn. The size of the refuge area thus provides a tool to 

manage pest resistance. 

The EPA policy gave ri se to sorne contributions in the fields of natural re­

source and agricultural economics that try to assess the impact of the refuge on 

the pest population and the damage caused to production. Sorne research work 

also questions the design of the pest resistance strategy (size of the refuge, loca­

tion, alternative regulation to manage pest resistance). 2 Most of the papers rely on 

simulations using a combined biological and economic model. For instance, Hurley 

et al. (2001) provide an assessment of pest resistance and population dynamics, 

IThis type of GM corn expresses the microorganism Bacillus thuringiensis into the corn 
genome. By this it becomes poisonous to the pest. 

2See for instance Bourguet et al. (2005) and Vacher et al. (2006). 
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as weIl as the farmer's profits, based on real-world estimated parameters within 

an exogenously given finite time horizon. Laxminarayan and Simpson (2002) com­

plement this approach with sorne analytical results. They explicitly derive the 

optimality conditions for the refuge area in a stylized dynamic model adapted from 

epidemiology. Their dynamic control problem is rather complex, due to the coex­

istence of two dynamic equations that constrain the objective of minimization of 

the damage caused to the crop. Laxminarayan and Simpson manage to solve it by 

focusing on a particular steady state in which pest resistance is neither eradicated 

nor dominates the whole population. At this particular steady state, the effect of 

an increase in resistance due to the use of the Bt-crop is compensated by the effect 

of a (higher) fitness cost incurred by resistant pests. 3 

The objective of this paper is to provide a broader analysis of the dynamic of 

pest resistance and its management strategy, particularly when out of the steady 

state. We deal with a dynamic biological model which takes into account both 

the gene frequency and the pest population. 4 It is combined with an economic 

objective: to maximize profits or, equivalently, to minimize costs caused by the 

pest attack and the use of GM corn. 

The paper is structured as follows. In section 3.2, we present the bio-economic 

model. We investigate the evolution and the long-run steady states of the bio­

logical system. We show that Laxminarayan and Simpson's steady state is quite 

restrictive. It is one of three possible steady states, the other two being character­

ized by either the eradication or the full spread of the resistance gene. In section 

3.3, we address the size of the socially optimal time-invariant refuge zone. Sev­

eral simulations are presented which point out the richness of the dynamic paths. 

3This steady state can be maintained by a refuge zone, the size of which lies strictly between 
0% and 100% of the overall cultivated surface. However, since their objective function is linear 
in the refuge zone (the control variable of the dynamic problem), attention should be paid to the 
lower and upper bound of 0% and 100%, since the optimal solution will generally be characterized 
by the bang-bang property, possibly combined with a singular solution. 

4The entomological model we present here is a continuous time version of Hurley et al. (2001) 
with one generation of pests per season. We believe that it has greater validity than that proposed 
by Laxminarayan and Simpson (2002) as it is derived from a population growth model, were the 
overall growth rate of the population is determined by the average genetic fitness of the population. 
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Slight variations of parameters may lead to a different steady-state. Among the 

key parameters are the discount rate, the supplementary cost of the Bt-corn and 

the fitness cost of the resistant pests. In section 3.4, we state the optimal control 

problem, and show that the optimal solution of the refuge size is of the bang-bang 

type and involves a singular control. A sensitivity analysis with respect to the 

bio-economic parameters indicates for which values of the gene frequency and the 

pest population a singular solution is mandated. We conclude in section 3.5. 

3.2 The model 

The model is made up of a set of constraints coming from the biological lit­

erature to which is added an economic objective function. We first turn to a 

description of the biological model. 

3.2.1 Biological foundations 

The biological dynamics are based on the Fisher-Haldane-Wright model, which 

analyzes the evolution of a population's genetic diversity and its population size 

over time.5 In the particular case under consideration here, we refer to a popu­

lation of insects which, depending on their genetic information, may be resistant 

or susceptible to GM organisms like Bt-corn. Each insect inherits the information 

for being resistant or susceptible from its parents. In biological terms, we assume 

a genetic system of one locus with two alleles.6 We consider a deterministic envi­

ronment in which natural selection drives the evolution of the population and its 

genetic composition over time. 

Omitting the time indices, we let PT (respectively Ps) represent the fraction of 

5See for instance Roughgarden (1998), chapter 5. 
6 As stated in Roughgarden (1998), "[F]or our purposes, a "locus" is a spot on a chromosome. 

Two different genes that can occupy the same spot are called "alleles". Typically, an organism 
has one chromosome from its father and a matching chromosome from its mother. Therefore, it 
has two alleles at each locus, and the pair of alleles at a locus is called its "genotype" at that 
locus. If both organism's alleles at a locus are the same it is called a "homozygote", otherwise 
it is called a "heterozygote". (p.152) 
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alleles in the system that are resistant (respectively susceptible) to Bt-corn at time 

t. At any time t, we have Pr+Ps = 1. These alleles stem either from the resistant or 

susceptible homozygotic, TT, SS, and heterozygotic genotypes TS or ST. Assuming 

random mating, the frequency of resistant genotype TT is p;. The population of 

pests with genotype ij at time t is denoted Nij for every i,j = T, S. The number 

of alleles i is Ni for i = T, S. The overall pest population in the ecosystem is N. 

We assume that the population of insects grows logistically. More precisely, fol­

lowing Ginzburg (1983), chapter 2, we model the growth rate of the pest population 

of genotype i, j as 

(3.1) 

where Eij is the intrinsic growth rate (i. e. the growth rate in the absence of density 

dependence) and '"Y captures the density dependence caused by the pest population 

competing for resources. 

We model Eij = gWij, in which we separate a genotype-independent birth minus 

death rate 9 and the genotype-dependent survival rate on Bt and refuge Wij. Our 

formulation of the genotype-dependent survival rates is a particular case of the 

ones proposed in Lenormand and Raymond (1998), Bourguet et al. (2000), and 

Vacher et al. (2005). Pests with genotypes TS, ST and ss die on the Bt-field but 

survive on the refuge area. We refer to them as susceptible pests. Formally, their 

genotype-dependent survival rate is 0 on Bt-corn and 1 on the refuge. Given a 

refuge of size q, their average genotype-dependent survival rate is W rs = W sr = 

W ss = q x 1 + (1 - q) x 0 = q. Pests with genotype TT survive on both, Bt and 

refuge areas, but face a fitness cost of resistance c irrespectively of the corn variety 

on which they feed. Their genotype-dependent survival rate is thus W rr = 1 - c in 

Bt and refuge areas. We refer to them as resistant pests. 7 

7Lenormand and Raymond (1998) and Vacher et al. (2005) include cases with a fitness cost of 
resistance for heterozygotes and with partial survival of susceptible pests on Bt. For simplicity 
matters, we abstract from such cases. 
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The average genotype-dependent survival rate of the allele T is 

W r Pr(1 c) (1 Pr )q. (3.2) 

This is because the allele T might be associated with an allele T (which happens 

with probability pr in average) to form the genotype TT or to S (which happens 

with probability Ps 1 Pr) to form the genotype TS or ST. The growth rate of 

allele T is 
Nr N 

= gWr ~ " Nr 
(3.3) 

with W r defined in (3.2). Lastly, the overall genotype-dependent survival rate is 

(3.4) 

It weights the survival rate 1 - c of genotype TT by its frequency in the pest 

population, P;, and the average survival rate q of the susceptible genotypes TS, ST 

and SS, with their respective frequencies Pr(1 Pr), (1- Pr)Pr and (1- Pr)2. The 

growth of the population is 
N 
N =gw- N" (3.5) 

with w defined in (3.4). 

:We now derive the dynamic of alleles T. Since each pest has two alleles, N 

pests yield 2N alleles. Since the alleles T are in proportion Pr in the 2N alleles, the 

number N r of alleles T in the pest population is 

(3.6) 

DifIerentiate (3.6) with respect to time yields 

(3.7) 
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Combining the last equality with (3.2) (3.5) yields the following laws of motion: 

Pr 

N 

p;(l - Pr)g(1 c q) 

N 9 (p;(1- c q) q) "(N2 

(3.8) 

(3.9) 

The above two equations summarize the dynamic of the biological model. They link 

the variation of two state variables of interest, namely pest resistance as measured 

by the frequency of the resistance allele in the gene pool Pr, and the pest population 

N, with the endogenous control variable q E [0, 1] which is the percentage of 

refuge area. The variation of the two state variables depends on three exogenous 

parameters: the genotype-independent growth rate of the population g, the fitness 

cost of the G M resistent pests c and the intraspecific competition within the pest 

population captured by "(. They are aIl strictly positive and c < 1. 

Consider equation (3.8). The susceptibility of the gene pool, measured by 

Ps 1 - PT? is the "mirror image" of its resistance and can be understood as a 

renewable resource. Without a refuge (q 0 for aIl t), the level of pest resistance 

Pr will necessarily increase up to its upper bound of 1, since then Pr > O. At the 

same time, pest susceptibility, Ps, decreases until exhaustion (Ps = 0). Conversely, 

without GM seed (q = 1 for aIl t), Pr < 0 because of the higher fitness cost of 

resistant pests. Pest resistance in the gene pool decreases down to Pr = 0 and, 

therefore, the resistant gene is eradicated. As a consequence, susceptibility grows 

up to fill aIl the gene pool. 

3.2.2 Dynamic of the biological model 

Before introducing the economic assumptions, we examine of the dynamic of 

the biological mode} summarized by the two differential equations (3.8) and (3.9). 

Consider first the evolution of genetic resistance (3.8). It is kept constant when 

q 1 - c (i. e. when the size of the refuge exactly matches the fitness cost). For a 

greater refuge size, pest resistance decreases, while it increases for a smaller refuge. 

As expected, the refuge might contain or even reduce pest resistance over time due 



96 

to the fitness cost C, 8 

The second equation (3,9) can be rewritten as a logistic function which is stan­

dard in the renewable natural resource literature: 

with 

N 
N G(pn q) (1 (N)) 

K Pnq 

p;g(l - c - q) + gq 
G(Prl q) 

l 
(3,10) 

where G(pn q) is the overall population growth rate, and K(Pn q) is the carrying 

capacity, which are both endogenously determined as a function of the fraction 

of resistant aIleles, Pr, as weIl as the refuge size q, In contrast with the logistic 

functions commonly used in natural resource economics, both G(Pr, q) and K(Pr, q) 

depend on the pest gene pool Pr, which varies over time, and the refuge strategy 

q, which may vary over time, 

We now describe the steady states of the dynamic biological system defined by 

(3,8) and (3.9). Setting Pr N 0 defines the foIlowing three steady states: 

SO 

and SI 

(NSO,p~O) = (~,o), 

(NSl,p~l) = (9(1; c), 1) . 
(3,11) 

(3,12) 

(3.13) 

A quick examination of the dynamic system allows us to describe the convergence 

pro cess to steady states for a refuge which is constant over time, ij. If ij > 1 - c 

(constant high refuge area), and therefore Pr < 0 for any value of Pr, the resistance 

allele frequency decreases and therefore tends toward its lower bound p~o 0 and 

8See for instance Tabashnik and Carrière (2004) and the references cited therein, 
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the steady state 50. Resistance converges to eradication and the pest population 

reaches the steady-state level N SO = gëj/'Y. If ëj < 1 - c (~onstant low refuge area), 

and therefore Pr > 0, the resistance allele frequency increases and therefore tends 

toward its upper bound p;l = 1, that is steady state 51. The resistance genotype 

spreads out to the whole pest population which converges to a steady-state pest 

population N SI = g( 1 - c) / f. It is lower than the steady-state pest population 

if resistance tends to be eradicated (1'150 ) thanks to the fitness cost c. Lastly, if 

ëj 1 - c, i. e. the percentage of refuge exactly matches to resistance fitness cost 

c, then Pr = 0 for any value of Pr' Resistance is contained at the level Pr which 

defines a set of interior steady states Si. The pest population converges towards 

NSi g(l- c)/'Y = N S1 . 

To analyze in more detail the dynamic of the biological system, in particular the 

simultaneous motion of both state varaibles Pr and N, we draw a phase diagram in 

the (N x Pr) space in Figure 3.1 below. The isoclines for Pr and N are the geometric 

loci where Pr = N = O. vVe also represent by arrows the dynamic forces driving the 

system when out of the isoclines. Three different regimes must be distinguished 

depending on whether q ~ l-c. Setting Pr 0 in equation (3.8) yields the isoclines 

Pr 0 and Pr = 1 for the resistant allelic frequency, on which lie the corner steady 

states 50 and 51 respectively. If the refuge area takes the critical value q = 1 - c, 

the Pr = 0 isocline is horizontal at sorne level strictly between 0 and 1 (not shown 

in Figure 3.1). Setting N = 0 in equation (3.9), yields the N = 0 isocline as a 

function of Pr: 

'Y 
(3.14) 

It is concave (convex) in Pr whenever q is greater (smaller) than 1-c. In the special 

case when q = 1 - c, which allows to keep the level of pest resistance Pr constant, 

the N = 0 isocline is a verticalline passing through N = g(1 - c)/'Y (not shown in 

Figure 3.1).9 

9The forces driving the pest population N when out of the N-isocline are derived by calculating 
the derivative âN(Pr)/âpr = 2gPr(1- c - q)fr ~ 0 for q < 1 - c. Thus for values of Pr above 
the JÎ1 0 isocline, N must increase. The converse is true for a value of pr below the N-isocline, 



98 

We are now able to address the simultaneous behavior of the two state variables 

Pr and N of the biological system for a constant refuge q(t) = q starting from the 

initial state (No,Pro) represented in Figure 3.1. For q < 1- c, the driving dynamic 

forces are represented in Figure 3.1 by the dashed arrows and the dashed line 

N = 0 (the plain li ne N = 0 do es not apply). Since the refuge are a is small, pest 

resistance monotonously increases over time (see equation (3.8)). The level of the 

pest population decreases initially and eventually crosses the N = 0 isocline. From 

that point of time, the pest population increases up to its long-run steady-state 

value. The arc of arrows shows the qualitative evolution of the state variables over 

time from the interior initial state to the steady state SI, at which Bt-corn has 

lost all its efficacy (Pr = 1). For q > 1 - c, the dynamic is represented by the solid 

arrows and line. A large refuge reduces resistance over time. For the initial state 

shown, the level of the pest population increases monotonously over time. The 

dynamic system converges to SO. Finally consider the case, wh en the refuge area 

takes the critical value fi = 1 - c. The pest resistance Pr (t) remains unchanged and 

equal to its initial value Pro and the pest population converges to g(l - c)/"(, i.e. 

the interior steady state Si is reached. 

From this preliminary analysis, we can already posit sorne principles on the 

constant refuge as a pest resistance management strategy. First, the extensive 

use of Bt-corn through a low refuge zone reduces the pest population at a cost 

of (almost) exhausting susceptibility to Bt in the long run (steady state SI as 

defined in (3.12)). Second, the objective of keeping the ecological system (almost) 

completely free from Bt-resistant genotypes cornes at a cost of a higher steady-state 

level of pests in the long run (steady state as in (3.11) with q > 1 - c). Third, the 

interior steady state (as in (3.13)), in which resistance is neither eradicated nor fully 

spread in the pest population, but controlled for to be constant, is obtained with a 

unique constant refuge area. It is the only steady state analyzed by Laxminarayan 

and Simpson (2002), whereby the over-mortality of susceptible pests is exactly 

implying a decreasing level of the pest population. 
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compensated by the fitness cost of resistant pests. 

3.2.3 Economic Objective 

The economic objective is to maximize the total discounted costs of producing 

one unit of corn. It is computed as follows. Let Y be the pest-free corn yield at 

instant t in tons per hectare. It can be reduced due to pest attack. Assume that 

the loss in corn yield due to one pest per plant is d% with 1 > d > O. The yield 

from the fraction q of one hectare planted with conventional corn (the refuge) is 

Y(l dN). On the 1 - q fraction of Bt-corn, only the fraction p; of pests with 

resistant genotypes damage production, which leads to a yield Y(l p;dN). The 

production of one hectare with a refuge area q is thus Y[l (q + (1 q)p;)dN]. 

Denote Cl > 0 the additional cost of planting Bt-corn instead conventional, 

mostly due to more expensive seeds. lO Let py be the priee of a ton of corn. The 

profit of one hectare of corn with refuge q net of (conventional corn) production 

costs is: 

Il = py y [1 - (q + (1 - q)p;)dN] (1 q)Cl (3.15) 

From (3.15) we compute the total cost due to pest damages with a refuge q: 

C(q,Pn N) = dpyY[(l q)p; q]N + (1- q)CI' (3.16) 

Divide (3.16) through by pyY to get the relative cost due to pests 

(3.17) 

where Cl = cd (py Y) is the Bt-cost per crop value if no pest damage occurs. The 

first right-hand term in (3.16) represents the cost associated to pest attack. It is 

increasing in the refuge area q in the short run as long as Pr < 1, i. e. there are some 

lOHurley et al. (2001) mention that a supplementaI cost of Bt-corn may result from higher 
quaIity control costs of the Bt-seed. 
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susceptible genotypes. However, in the long fUn, pest resistanee Pr may increase, 

implying rising costs caused by pests. The current refuge q also affects the future 

pest population N which, in turn, affects future co st C and, therefore, C. Henee 

there is a clear inter-temporal tradeoff between the short and long term impact of 

the refuge zone q on the farmer's cost. The second right-hand term captures the 

additional priee of the Bt-technology. 

The economic objective is to minimize the discounted instantaneous relative 

costs C with respect to q: 

(3.18) 

where C(q,PnN) is defined in (3.17), subject to the laws of motion of the state 

variables Pr, and N, as defined in (3.8) and (3.9) and the control constraint 0 ~ 

q ~ 1. 

3.2.4 Model calibration 

We have calibrated the parameters of our model on the basis of several studies 

related to the subject of Bt-resistanee. Unless specified differently, Table 3.1 sum­

marizes the parameter values used in the simulations presented later in this paper. 

1 Parameter 1 1 Value 1 

No initial average pest population per plant 1.5 

Pro initial resistanee allele frequency 0.05 
C fitness co st 0.05 
g growth rate 0.94 
'"'( intraspecific competition 0.625 
d damage rate 0.043 

Cl additional cost of Bt-seed 0.03 
p discount rate 0.04 

Tableau 3.1: Parameter values 
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Due to the lack of confirmed cases of resistance of the European corn borer to 

Bt-toxins, resistance genetic parameters are unknown. As in Vacher et al. (2005), 

we assume a fitness cost of 0.05 in the benchmark simulation. We assume an initial 

resistant allelic frequency of Pro 0.05. The initiallevel of the pest population is 

assumed to be at its carrying capacity K(Pr, q) defined in (3.10), with q = 1, i.e. no 

use is made of Bt-seed initially. In that case, we have K(0.05, 1) = 1.5. To compare 

our benchmark simulation results with Hurley et al. (2001), we approximate 9 and 

l from their model of two pest generations per season to our model of one pest 

generation per season as explained in Appendix III.2. We assume an initial 6.4% 

reduction in grain yield on corn per season (Calvin 1995). Given our initial number 

of 1.5 pests per plant, we obtain a constant marginal yield loss per pest per plant 

of d = 6.4%/1.5 4.3%. The ratio Cl is the additional cost of Bt-seed of lO$/acre, 

réported in Onstad and Guse (1999), divided by the value of the crop without 

damage of 305$/acre in Hurley et al. (2001). 

3.3 Time-invariant refuge zone 

We first analyze the constant refuge zone which is the pest resistance man­

agement strategy mandated by the V.S. Environmental Protection Agency. It is 

appealing due to its simple nature, but it is unlikely to be optimal in our context: 

an optimal refuge strategy will generally change over time and adjust to the state 

of the dynamic system. The optimal time-variant strategy will be considered in 

Section 3.4. 

The time-invariant refuge il minimizes discounted costs subject to the dynamic 

constraints of the mode!. Formally, it solves program (3.18) with the additional 

constraint q(t) il held constant over time t. 

3.3.1 Benchmark analysis 

Before addressing the socially optimal time-invariant refuge zone, we present a 

benchmark analysis for the cases where a constant refuge zone il takes the value 0 
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! Refuge (q) 1 Discounted Costs 1 

• a 0.7856 
1 1.6566 

1 - c 1.5457 

Tableau 3.2: Benchmark costs 

(no refuge), 1 (no use of Bt-seed) and l-c (control of pest resistance). Figure 3.2 

shows the evolution of the state variables (N,PT) over time for each benchmark. 

Consider first the case of a refuge set to zero. This leads to a sharp decrease in 

the level of the pest population initially, combined with a relatively small increase 

in the level of the resistant allelic fraction. The increase in the level of the resistant 

allelic fraction becomes eventually more pronounced and, as the pest population 

becomes more resistant, the Bt-plantings lose their efficacy, so that pest population 

increases. The system converges to the steady state SI in which the overall pest 

population becomes resistant towards the Bt-seed but the steady-state level of the 

pest population is relatively low (see (3.12)). Consider now the option ofnot using 

Bt-seed, formally li = 1. The system converges to the steady state sa as defined in 

(3.11). Resistance decreases monotonously and is eradicated in steady state, while 

the level of the pest population increases slightly (admittedly difficult to see from 

the Figure 3.2) and reaches its steady state, with a higher level than in SI. Finally, 

consider the case where li = 1 C over time. As can be seen from equation (3.8), 

the level of resistance remains constant, and the pest population decreases to its 

steady-state. The steady state is of the type Si as defined in (3.13). 

The evolution of the discounted costs associated to the state dynamics just 

presented, is shown in Figure 3.3. The overall discounted costs are summarized in 

Table 3.2. The lowest costs are associated to the case where no refuge is planted. 

Using only Bt-seed over time leads, as described earlier, to a sharp decrease in the 

number of pests per plant, thus limiting considerably the damage caused to the 

crop initially. The negative effect of rising resistance, combined to a rising pest 
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population occurs in later periods only. This can be seen in Figure 3.3. Though 

discounted costs eventually lie above the costs associated to the other two bench­

mark scenarios, the low discounted costs that occur initially in the case of zero 

refuge dominate. 

3.3.2 Sensitivity analysis 

In what follows we present a sensitivity analysis on how the fitness cost of 

the resistant pest population (c), the additional co st of Bt-seed (Cl), as weIl as the 

discount rate (p) affect the constrained time-invariant refuge zone (q). In Table 3.3, 

we represent the time-invariant cost minimizing refuge zone q and the associated 

cost determined by the integral V(Pro, No) defined in (3.18) for a variation of the 

fitness cost c. As the fitness cost increases, the time-invariant refuge decreases, 

as do es the discounted co st associated to pest damage and Bt-expenses. For all 

parameter configurations, we have q < 1 - c, so that it is optimal to tend towards 

the steady state SI, in which allelic resistance is at its maximum level. For higher 

values of the fitness cost, the steady-state level of the overall pest population will 

be lower, implying lower costs in the future. 

c o 0.05 0.10 0.20 0.35 0.55 

q 0.192 0.187 0.183 0.177 0.172 0.170 
V(.) 0.7506 0.7480 0.7458 0.7431 0.7413 0.7407 

Tableau 3.3: Variation of fitness co st (c) 

o 0.03 0.06 0.10 0.1136 0.116 1 0.120 1 

q 0 0.187 0.477 0.832 0.950 0.970 1 
V(.) 0.018 0.7480 1.2602 1.615 1.652 1.655 1.657 

Tableau 3.4: Variation of supplement al cost (cd 
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The sensitivity analysis with respect to the supplemental co st of Bt-seed is 

summarized in Table 3.4. It indicates that the refuge area is increasing in the 

supplemental cost. The parameter configuration considered here shows that for a 

large range of Cl < 0.1136, the refuge are a is such that ij < 1 - c, implying that the 

system tends to the steady state characterized by the maximum level of resistance 

S1. For Cl = 0.1136, the system tends to the steady state Si, at which the level of 

susceptibility of the pest population is a renewable resource. For higher values of 

Cl, the system tends to the steady state SO in which resistance is eradicated. The 

refuge zone reaches its upper bound for Cl ~ 0.12. 

0 0.02 0.04 0.06 0.1 0.12 

0.939 0.309 0.188 0.134 0.047 0.00 
00 1.550 0.748 0.511 0.319 0.270 

Tableau 3.5: Variation of discount rate (p) 

In Table 3.5, we show the results of the sensitivity analysis with respect to the 

discount rate. It reveals that the time-invariant refuge are a (ij) is decreasing in the 

level of the discount rate (p). As less weight is attached to costs in future periods 

for higher discount rates, the regulator cares less about future levels of resistance, 

implying a lower value of refuge to be optimal. For a positive discount rate, it is 

optimal to have ij < 1 - c, so that the dynamic system tends to the steady state SI 

with the highest resistance level, as defined in (3.12). Minimized discounted costs, 

V (. ), are decreasing in the discount rate. Though lower refuge areas imply higher 

expenses on Bt-seed over time, as weIl as higher levels of resistance, the overall 

discounted sum decreases. ll 

llWhen the discount rate takes the value p = 0, the inter-temporal cost V(.) goes to infinity. 
This is because current costs are strictly positive as expenditures on Bt-seeds occur, as well as 
damage from the pest population, which cannot be eradicated. 
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3.4 Time variant refuge zone 

The time variant refuge zone q(t) minimizes discounted costs subject to the 

dynamic constraints of the model. Formally, it solves program (3.18). 

3.4.1 Analytical analysis 

The current value Hamiltonian function associated to the dynarnic minimization 

problem is given by (we omit the time indices): 

H(Pn N, tt, À, q) = -C(Pn N, q) + ttp;(1- Pr )g(1 c - q) 

+À [Ng (p;(1- c - q) + q) -yN2
] , (3.19) 

where tt and À represent the shadow values associated to the level of allelic resis­

tance and the pest population respectively. The Hamiltonian function is linear in 

the control. The partial derivative of the Hamiltonian function with respect to the 

control variable is: 

(3.20) 

An optimal solution must satisfy the following necessary conditions: 

8H 
0, 8H >0 q ? 0, (3.21) -q or 

8q 8q - , 

8H (1- q) 0, 
8H 
-<0 8q - , q ::; 1 (3.22) 

{1, Ptt d(1 - q)2PrN - g(1 - c q)Pr[tt(2 3Pr) + 2ÀN] (3.23) 

À - pÀ d[(1 - q)p; + q] À[g(p;(1- c q) q) - 2-yN] (3.24) 

If we define the switching function O(t) 8H/8q, the optimal refuge zone can be 

expressed as 
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1
0 ifn(t) <0 

q(t)= ij(t) E [0,1] if n(t) = 0 

1 if n(t) > 0 

(3.25) 

where ij is the singular control that applies whenever the switching function n(t) 

is zero. 

The costate variables IL and À will be negative. Sinee only the damage caused by 

susceptible pests can be controlled at a given point of time by the refuge zone, it is 

the marginal damage caused by the susceptible pest population, d(l- p;)N, that is 

corn pared to the full marginal cost of using Bt-seed, Cl ILP; (1 - Pr ) 9 + (1 - p;) N 9 À. 

The shadow values IL and À being negative, the full marginal cost is decreasing in 

IL and increasing in À. Use of the Bt-seed will be made when the marginal damage 

caused is higher than the full marginal cost related to its use (rl(t) ;; 0). 

3.4.2 Numerical analysis 

In order to characterize the optimal solution and evaluate the social costs as­

sociated to the use of Bt-seed, we use numerical simulations. 12 Figure 3.4 displays 

the optimal control as a function of the state variables. It is generally referred 

to as the optimal policy function. A projection of Figure 3.4 in the state space 

(N,Pr) is provided in Figure 3.5. It is divided into two regions of extreme controls, 

with q = 0 and q = 1 respectively. If the allelic resistanee frequency of the pest 

population, PT) is zero, there exists a threshold level for the pest population per 

plant, N, given by approximately 0.7 pests per plant (on average), for which zero 

refuge is required (see Figure 3.5). The higher the level of allelic resistance, the 

12We applied the value function iteration approach to the discrete time analogue of the con­
tinuous model, which is presented in Appendix 1111. A detailed discussion of this approach is 
given in Judd (1998), pp. 412-13. In order to iterate on the value function, the state space is 
represented by a fine grid of values for the state variables N, and Pr' We have also applied other 
approaches, notably modified policy function iteration, parametric value function iteration with 
regression and Chebyshev polynomial interpolation. These approaches were aU dominated by 
the value function iteration on a fine grid. Lenhart and Workman (2007) point out sorne of the 
problems arising when dealing numericaUy with linear control problems. 
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higher is this threshold level for the pest population. This characterizes the arc at 

which the step in the policy function from q = 0 to q = 1 occurs. As can seen from 

Figures 3.4 and 3.5, a singular control is optimal in the vicinity of the arc. 13 

In our infinite horizon problem, the optimal evolution of the refuge area may 

be characterized by two different patterns. The first pattern involves a singular 

control (possibly combined to an extreme control), while the second refers to an 

alternate extreme control (possibly combined to a singular control). Suppose the 

initial state (No,Pro) lies in the region where q = 0 is optimal. The level of the 

allelic resistance frequency increases inevitably, and eventually reaches the vicinity 

of the arc, where a singular control applies. Either a singular control is followed 

forever, converging possibly to q = 1 - c, which implies an interior steady state Si 

with controlled resistance level. Alternatively, the system reaches the region where 

q = 1, which in turn implies a decreasing level of allelic resistance frequency, so 

that the vicinity of the singular arc is hit again. This movement of switching from 

one region of an extreme control to another, potentially involving singular controls 

for sorne time interval, may continue indefinitely and eventually converges to the 

vicinity of the interior steady state Si. 

In what follows, we present simulation evidence for the dynamics of the control 

and state variables. The parameters of the model are calibrated as in Table 3.1. 

Furthermore, we assume Pro = 0.05, and the initial number of pests per plant 

is derived from (3.14) evaluated at q = 1, such that No = 1.5. The optimal 

control is characterized by an initially extreme control with q = 0, so that only 

Bt-seed is planted (as can be seen from Figure 3.6). This is because the initial 

value of the resistant allelic fraction is low and Bt-plantings allow the level of pests 

per plant to fall abruptly (as can be seen from Figure 3.7). The control then 

jumps to the singular control and converges to the interior steady state at which 

qSi = 1 - c = 0.95. The level of the pest population per plant converges to its 

13 Analytically, a singular solution can only occur when the state of the system is exactly on 
the arc at which O(t) = O. In a numerical approach, we must allow for an approximate, relatively 
thick, arc. 
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steady state Si in which the pest population is NSi = g(1- c)/,y 1.43. The level 

of the resistant allelic fraction evolves continuously to its steady state level which 

is in the proximity of 0.675 as can be seen from Figure 3.8. 14 Figure 3.9 shows the 

evolution of the state variables in the state space N x Pro The minimum discounted 

cost associated to the optimal control computed in this simulation is of 0.7030, and 

is around 6% lower than the one reported for the constant control il for c 0.05 

in Table 3.3. 

Using the evidence from this simulation in combination with the dynamic forces 

driving the bio-economic system, we can conjecture the qualitative pattern which 

the state and control variables will follow. Consider Figure 3.10, in which we have 

combined the geometric locus where the switching function vanishes, O(t) = 0, 

with the dynamic forces driving the system when q(t) < 1 c. At an initial state 

with a non-negligible pest population per plant and a relative low allelic resistance 

(No,Pro) it is optimal to set q(t) = a for a certain period of time, say [to, td. The 

state path evolves to the north-west, and hits the switching curve O(t) a at time, 

say, tl' A singular control will apply from there on, with q(t) S 1 c. Notice that 

an instant after the switching function has been hit, sayat t l + the fi 0 isocline 

will lie to the right of its initial position, having a less concave shape. The state 

variables (N,Pr) evolve along the switching function in the north-east direction, 

such that the increasing level of allelic resistance mandates higher levels of the 

refuge area. This behavior implies a continuous pivoting movement of the fi = a 
isocline around point SI. As the singular control q increases further and eventually 

converges to 1 - c, the fi = a isocline will become the vertical li ne passing through 

NS i g(1 C)j,.15 

We finally discuss how the location of the switching curve with O(t) = 0 is 

14Some discontinuities occur with respect to the control variable, particularly before conver­
gence occurs. The control however remains piecewise continuous, which is required by optimal 
control theory. We believe that this only represents a numerical artefact. 

15If the initial state (No,Pro) were to lie in the vicinity of the switching function and to the 
right of Si, we conjecture that the biological system converges on the switching locus towards 
the interior steady state, with values of the singular control il ;::: 1 c. As this corresponds to 
relatively high values of allelic resistance for which no evidence exists, we neglect this possibility. 
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affected by a change in the bio-economic parameters. 16 In Figure 3.11 we draw the 

switching curve in space N x Pr when the fitness cost changes. Below the switching 

curve, only Bt-seed is planted, while above that curve no Bt-seed is planted in 

the social optimum. Figure 3.11 shows an upward shift in the switching curve 

when the fitness cost decreases. Thus the region where it is socially optimal to set 

q = 0 increases. This implies that for lower levelsof the fitness cost, it is optimal 

to set q = 0 for lower threshold levels of the pest population N given a level of 

allelic resistance Pro An interpretation for this is that lower fitness costs go hand 

in hand with a faster increase in the pest population (the average fitness of the 

overall population increases), which can only be slowed down by making more use 

of Bt-corn. 

Figure 3.12 shows the effect of an increase in the supplemental cost of Bt-corn 

(Cl) on the switching curve. As can be expected, an increase in decreases the 

region where q 0 is optimal. For a given level of allelic resistance, a higher level 

of the pest population is necessary to justify the complete absence of a refuge zone. 

Finally, an increase in the level of the discount rate p leads to an upward shift in 

the switching curve as shown in Figure 3.13. As less weight is attributed to future 

costs, creating no refuge is justified only for higher levels of allelic resistance, at 

given levels of the pest population.17 

The preceding discussion shows that the steady state will remain of type Si for 

all the parameter configurations considered here. Graphical1y, it is given by the 

intersection of the switching line and the vertical li ne passing through NS i g(1-

c)/"I. (For the baseline parameters stated in table 3.1, we have NSi 1.43). It is 

clear that different outcomes may arise for different parameter values. A sufficiently 

high additional cost of Bt-seed for instance will render its use unfavorable to society, 

16 As was already stated, we implicitly allow for "thick" switching curves. The contour line 
shown in the following figures corresponds to the level where the singular control takes the critical 
level q 1 - c. 

17Results seem ambiguous for values of the pest population below one. This, we believe, is 
due to the fact that we have allowed for the switching curve to be a "thick" line, with the result 
that a certain level of inaccuracy may become apparent when the switching functions lie closely 
together. 
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such that the bio-economic system would tend to the steady state SO, at which the 

gene pool is completely susceptible to the GM crop. 

3.5 Conclusion 

In this paper we have addressed the use of a refuge area to control for the 

susceptibility of a pest population's gene pool with respect to a GM crop, notably 

Bt-seed. The objective is the minimization of the discounted social cost, consisting 

of the crop damage caused by the pest population and the supplemental cost of 

using Bt-seed. We have considered two different types of control. One that is 

restricted to remain constant over time, as well as one which may change over 

time. For the calibrated model, it turns our that for a time-invariant refuge area, 

it is optimal to exhaust the susceptibility of the gene pool completely. Such a steady 

state is reached for most of the parameter configurations under consideration here. 

Only for sufficiently high levels of the supplemental co st of Bt-seed will the refuge 

area be equal or higher than the critical level which allows to avoid a rise of pest 

resistance. That criticallevel is such that the induced natural selection of resistant 

pests is exactly compensated by the over-mortality of those pests, which is captured 

by their fitness cost. 

For the case where the refuge area is allowed to vary over time, we formulate 

the optimal control problem. We show that the socially optimal control consists of 

a combination of extreme and singular controls and that the bio-economic system 

converges to a steady state, where the susceptibility of the gene pool is renewable. 

For the calibrated model, the time-variable refuge zone lowers the social costs by 

a magnitude of 6% as compared to the time-invariant refuge zone. 
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CONCLUSION 

Dans cette thèse, nous avons analysé la dynamique économique d'un traitement 

antibiotique et d'un organisme génétiquement modifié (OGM) quand leur utilisa­

tion peut engendrer une perte d'efficacité. Plus particulièrement, nous avons carac­

térisé l'exploitation de l'efficacité d'un antibiotique par un marché qui se constitue 

d'un monopole bénéficiant d'un brevet, suivi d'une industrie vendant une version 

générique de l'antibiotique. L'optimum social en a également été caractérisé. Pour 

ce qui est de l'efficacité d'un OGM visant à combattre une population de nuisibles, 

nous nous sommes concentrés sur l'optimum social. Le point commun des modèles 

biologiques utilisés est qu'ils permettent de considérer comme une ressource renou­

velable l'efficacité du traitement antibiotique d'une part, ainsi que la sensibilité du 

pool génétique d'insectes nuisibles à un OGM d'autre part. 

Dans le premier chapitre, nous avons modélisé une industrie générique qui vend 

un antibiotique destiné à combattre une infection bactériologique. Cette industrie 

est constituée de firmes qui ont un accès libre au stock commun d'efficacité de 

l'antibiotique. Dans leur prise de décision, ces firmes ne tiennent compte que de 

l'état courant de l'efficacité de l'antibiotique et de la population infectée, négligeant 

l'effet de leurs décisions sur les états futurs. L'équilibre du marché est alors carac­

térisé par l'égalité du prix au coût moyen. Pour des fins de référence, nous avons 

également modélisé l'optimum social, qui tient compte du bien-être de tous les in­

dividus, infectés et non-infectés, du surplus de l'industrie, ainsi que de l'externalité 

reliée à la consommation de l'antibiotique. 

Nous montrons que le niveau d'efficacité de l'antibiotique atteint à l'état sta­

tionnaire peut être selon les paramètres bio-économiques supérieur ou inférieur 

au niveau d'état stationnaire socialement optimal. Les paramètres clés sont le 

coût de production ainsi que le taux de guérison supplémentaire dû à la prise 

de l'antibiotique. Ainsi, si le taux de guérison supplémentaire est relativement 

élevé comparativement au coût de production, l'état stationnaire de l'efficacité de 

l'antibiotique atteint en optimum social est plus élevé que celui atteint en accès 
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libre. Le contraire est vrai si le taux de guérison additionnel est relativement faible. 

Cependant, la fraction de la population infectée achetant l'antibiotique ainsi que 

la population infectée elle-même sont identiques à l'état stationnaire sous les deux 

régimes. 

Nous montrons qu'il existe aussi une configuration particulière de paramètres 

qui fait coïncider l'état stationnaire atteint en accès libre et en optimum social; 

la trajectoire qui y mène sous chaque régime sera cependant différente. Ceci est 

dû à la présence d'externalités dynamiques. Premièrement, traiter des individus 

au delà du niveau auquel la volonté marginale à payer égalise le coût marginal 

de production, serait non-profitable pour une firme en accès libre, mais peut être 

socialement optimal si cela permet de diminuer davantage le niveau d'infection 

présent et futur. Cette externalité fait en sorte que l'industrie générique tend à 

sous-utiliser l'antibiotique. Deuxièmement, la valeur implicite associée à l'efficacité 

de l'antibiotique augmente son coût d'utilisation. Puisqu'elle ne tient pas compte 

de cette externalité, l'industrie générique tend à sur-utiliser l'antibiotique. Laquelle 

de ces externalités domine dépend des paramètres bio-économiques. 

Dans le deuxième chapitre, nous avons modélisé l'exploitation de l'efficacité de 

l'antibiotique par un monopole bénéficiant d'un brevet. Nous supposons que le 

monopoleur se comporte comme une firme en accès libre une fois le brevet échu. 

Ceci nous a permis de caractériser la politique de prix du monopoleur. 

Contrairement à un producteur myope, le monopoleur tient compte des exter­

nalités dynamiques lors de sa prise de décision sur le prix et gère, de cette manière, 

sa taille de marché et la qualité de l'antibiotique. Ainsi, dans le but de max­

imiser ses profits inter-temporels, le monopoleur génère par sa politique de prix 

des niveaux généralement plus élevés de la population infectée et de l'efficacité de 

l'antibiotique, si on les compare à ceux qui seraient atteints par un monopoleur 

myope. Plus particulièrement, nous avons montré que le système bio-économique 

est caractérisé par une propriété de turnpike. Ceci signifie que le prix s'approche 

du voisinage du prix d'état stationnaire qui serait atteint par un monopoleur 

bénéficiant d'un brevet de durée infinie et y demeure durant un intervalle de temps 
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qui dépend de la durée de vie du brevet. A l'approche de la date d'expiration du 

brevet, le monopoleur se comporte de façon de plus en plus myope. Ceci se reflète 

dans une diminution continue du prix, jusqu'à ce que la recette marginale égalise le 

coût marginal de production. Ce mouvement est accompagnée d'une diminution de 

la population infectée et, généralement, par une diminution du niveau de l'efficacité 

de l'antibiotique. Au moment de l'expiration du brevet, le monopoleur accorde une 

valeur implicite nulle à la taille du marché et à la qualité de l'antibiotique. Avec 

l'arrivée de l'industrie générique, une chute du prix survient, menant ainsi à une 

hausse de la fraction de la population infectée qui achète l'antibiotique. Le bio­

système évolue ensuite de la manière décrite dans le premier chapitre pour atteindre 

un nouvel équilibre de long terme. 

Dans le troisième chapitre, nous avons modélisé la sensibilité à un OGM d'une 

population de nuisibles qui peut être gérée à l'aide d'une zone de refuge. L'objectif 

est de minimiser la valeur présente du coût associé à la perte de récolte due aux 

nuisibles ainsi que le coût supplémentaire associé à l'utilisation de l'OGM. Nous 

montrons que l'état stationnaire atteint par une zone de refuge variable dans le 

temps est généralement caractérisé par un niveau de sensibilité de ce pool qui 

se situe entre 0% et 100% de la surface totale. Il y aura alors présence de gènes 

résistants à l'OGM, mais sans qu'ils ne dominent le bio-système à long terme. Cette 

zone de refuge socialement optimale est une combinaison d'un contrôle extrême et 

singulier. Par contre, si la zone de refuge est contrainte à être constante dans le 

temps, la convergence vers un tel état stationnaire nécessite une configuration très 

particulière de paramètres bio-économiques, à savoir un taux d'actualisation social 

nul ou un coût d'utilisation de l'OGM relativement élevé comparé au coût calibré. 

Pour une zone de refuge invariable dans le temps, nous trouvons, pour le modèle 

calibré ainsi que la grande majorité de configurations de paramètres considérés, 

que le système bio-économique converge vers un état stationnaire dans lequel la 

sensibilité du pool génétique est complètement épuisé, de sorte que l'OGM perd 

son efficacité à long terme. Le coût social associé à une zone de refuge constante 

dans le temps est de 6% plus élevé que celui associé à une zone de refuge qui peut 



varIer. 

Cette thèse a abordé la perte potentielle d'efficacité d'un traitement antibio­

tique et d'un OGM comme un problème d'exploitation d'une ressource renouvelable 

d'un point de vue économique. L'approche retenue nous a permis de caractériser 

la gestion socialement optimale de ces ressources biologiques et de faire ressortir 

plusieurs externalités dont un marché ne tient pas nécessairement compte. Une 

piste de recherche future consisterait à analyser des outils économiques visant à 

corriger ces externaltités. 
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Annexe 1 

Appendix of chapter 1 

We first recall the full dynamic system, involving the state and co-state vari­

ables, which the socially optimal solution must satisfy. It is given by: 

w(l- w)(~r - rff) 

1 I({3(N 1) - rr + w(~r - rff)) 

1 1 2 1 PI-i + 2~rI - rffI + 2rff 1 - (~r - rff)[I-i(2w - 1) -).1 

1 1 
p>.. + 2(1 1l'(w)) - rfwf + 2rfwP + cf 

->..[{3(N - 21) - rr + w(~r - rff)] 

(1.1 ) 

(1.2) 

(1.3) 

(1.4) 

ln addition, the first-order condition (1.26) for the maximization of the Hamiltonian 

must be satisfied at every point in time, including at a steady state. A steady state 
. . 

solution is given by tù = 1 = M = >.. O. 

1.1 The socially optimal steady state with wSs' = 1 

. . 
Setting w = 1 in (11.1), we have tù = O. Setting 1 = 0, >.. = 0 and w = 1 in 

(11.2) and (11.4) gives: 

1 
{3N - rw­

(3 

f(rf c) 
p+ {31 

For convenience, we rewrite the first-order condition (1.26) as: 

(1.5) 

(1.6) 

(1.7) 
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where 0"0 and 0"1 are the Lagrange multipliers associated to the constraints 1 2 0 

and 1 ~ 1 respectively and 

0"01 = 0, 0"1(1 - f) = 0, 0"0 2 0, 0"120. 

Equation (1.5), (1.6) and (1.7) together determine ISs*, )..SS* and I ss*. 

Setting 1 = 0, we find: 

0"0 = - 1- - + . rf(f3N - rw) (c 1 - rw ) 
f3 rf 2(f3N - rw + p) 

This expression is negative if c ~ r f. This means that if c ~ r f the treatment 

rate must be positive, since 0"0 must be non-negative. However if c > rf, then 

for c sufficiently high the expression in parentheses will be negative and 0"0 will be 

positive, which means that the optimal treatment rate is 1 = O. In fact, we must 

have 

and 

Setting 1 = 1, we find: 

(1.8) 

Clearly there exist admissible values of the parameters for which 0"1 2 0 and 1 = 1 

is a solution. 

An interior solution for 1 must satisfy (1.5), (1.6) and (1.7) with 0"0 = 0"1 = O. 

It is easy to verify numerically that there exist values of the parameters for which 

the solution for 1 is interior. 

We therefore conc1ude that I ss* can take any value from zero to one, with the 

exact value depending on the set of parameters. 
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1.2 The socially optimal steady state with fSs' = D.r rf 

For an interior solution to the maximization of the Hamiltonian, f must satisfy 

equation (1.29), in addition to (11.1)-(11.4). Setting f = fSs* = !J.r /rJ, we have 

W 0, from (11.1), and from (11.2): 

f3N - rr 
f3 

(1.9) 

Setting ft 0 in (II.3) and substituting for fSs* and ISs*, we get the steady-state 

solution for J-t: 

J-t SS* = !J.r [1 _ !J.r] [f3N - rr] . 
2p rJ f3 

(1.10) 

We still need to determine the steady-state levels of antibiotic efficacy, wSs', 

and of the shadow cost of infection, >.ss'. Setting). = 0 in (II.4) and substituting 

for fSs' and ISs' we get: 

1.( 1)..f.. !!J.r [1 _ D.r] 2 rr rf 2 rf -------'- + w 
P + f3N - rr P + f3N - rr 

(1.11 ) 

which is a positively-sloped straight line in (w, >') space. 

Substituting for fSs' and ISs' into (1.29), we get: 

!J.r] (1 _ !J.r) _ ~~ + !J.r [1 _ !J.r] w 
r J 2p r J w 2p r J 

(1.12) 

which represents a hyperbola with a vertical asymptote at w = 0 and an oblique 

asymptote with a positive slope. These two curves will intersect to the right of 

the vertical asymptote, i.e. where w > O. This is because the ratio of the slope 

of the oblique asymptote and the slope of (II.14) is (p + f3N - rr)/P > 1 and 

the hyperbola (1.12) approaches its oblique asymptote from below. The point of 

intersection yields wss', which is given by: 

K 
H 

(1.13) 



where 

H 

J 

K 
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(
A) ~r(rr - f3N) 

rf - Ur 
2p 

(~r ) rf (rf - ~r)(p + f3N - rr) 2P - 1 + 2(rr - 1) - c~r 

c(p + f3N - Tr). 

Depending on the set of parameters we have wSs* < 1 or wSs* = 1. The analysis 

of the parameter space concentrates on the space (Tf'c) E (~r,f3N -rwl x (0,00). 

The lower bound on rf guarantees that ~r/rf < 1, which implies that the level 

of antibiotic efficacy decreases if the whole infected population is treated. There 

exists an arbitrage between keeping the level of efficacy high and keeping that of 

infection low. The upper bound on r f guarantees that the level of infection is non­

negative at f = 1 in the steady state defined by (1.7). The admissible interval for 

c guarantees that the unit co st of production is positive, as assumed. 

From (1.13) we find that w Ss* = 1 implies: 

_() ~r[~r_(f3N-rr+P)] (f3N-rr+P+~-H~T+rr)) 
c=crf = + rf' 

f3N - rr + p - ~r f3N - Tr + P - ~r 
(1.14) 

This equation represents a straight line that divides the (r f, c )-space. Everything 

else equal, for a small enough fitness cost we have f3N - rr + p - ~r > 0 and this 

line is then positively-sloped and has a negative intercept. We then have wSs* < 1 

below the line and wSs* = 1 above it. 



Annexe II 

A ppendix of chapter 2 

We first recall the full dynamic system, involving the state and co-state vari­

ables, which the monopoly solution must satisfy. It is given by: 

W w(l w)(~r - rff) (11.1 ) 

1 1((3(N 1) rr + w(~r - rff)) (11.2) 

M PM (~r - rfJ)[M(2w 1) .\1] - r f1(1 - J)f (11.3) 

.x p.\ .\[2(31 - (3N rr w(~r - rfJ)]- rfw(l- J)f + cf (11.4) 

ln addition, the first-order condition (2.12) for the maximization of the Hamiltonian 

must be satisfied at every point in time, inc1uding at a steady state. A steady-state 

solution is given by w 1 -:- iL .\ = O. 

II.1 The steady state with wSs = 1 

Setting w 1 in (11.1), we have 'li; = O. Setting j = 0, .x = 0 and w 1 in 

(11.2) and (11.4) gives: 

1 
(3N-rw -rff 

(3 

rf(1- f)f - cf 
p+ (31 

(II.5) 

(II.6) 

For convenience, we rewrite the first-order condition in (2.17) evaluated at wSs 1 

(11.7) 
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Replacing (II.6) into (II. 7) gives an expression in the treatment rate f, which we 

solve for to obtain: 

where 

a 

b = 

2 
-[p+ {3N - rw +rf - cl 
3rf 

(1 - ~ ) (p + (3N - rw) 

3rf 

(11.8) 

(II.9) 

(11.10) 

Both values of iI,2 are admissible solutions, and we cannot exclude any of them 

analytically. Our numerical simulations however suggest that the solution is unique 

and given by: 

II.2 The intermediate steady state with fSS = 6.r 
rf 

(II. 11 ) 

For an interior solution to the maximization of the Hamiltonian, f must satisfy 

equation (2.17), in addition to (II.1)-(IIA). Setting f = fSS = /}.r Irf' we have 

11; 0, from (11.1), and from (II.2): 

1SS = ,eN - rr 
{3 . (11.12 ) 

Setting j.L = 0 in (11.3) and substituting for fSs' and 1SS' l we get the steady-state 

solution for fL: 

(11.13) 

We still need to determine the steady-state levels of antibiotic efficacy, wSs , 

and of the shadow priee of infection, )..SS. Setting ~ = 0 in (IIA) and substituting 

for fSS and 1sS we get: 
)..=/}.rw(rf /}.r)-c 

ri p+{3N-rr 
(II. 14) 
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Since fSS = !:1r / r f is the monopoly solution in this steady state, priee p = r fW( 1-­

!:1r / r f) must be higher than the marginal production co st c, implying a positive 

value of À. Substituting for fSs, 1SS , {Lss and À from (11.14) into (2.17), we get a 

binomial in w, the solutions of which are: 

where 

A 

B 

B 
w=--± 

2A 

(3N - rT 

!:1r(rf - !:1r) ( (3N ) pp + - r T 

r f - !:1r !:1rc 
(rf - 2!:1r) - !:1r + (3N 

p p + - rT 

(II.15) 

The expression for A is positive, while the sign of B depends on the parameters 

of the model. In order to exclude solutions with w < 0 for an B, the admissible 

solution for w is 
B 

w Ss = --+ 
2A 

c (B)2 
A + 2A (11.16) 

Depending on the set of parameters, we have wSs < 1 or w Ss = 1. The condition 

w Ss ::; 1 can be written as: 

A !:1r - 2(p + (3N - r T ) 

c < ur + rf. 
- p + (3N - r T -!:1r 

(II.17) 

In the case of a zero fitness cost !:1r = 0, the condition (II.17) becomes c ::; r f, 

which is always verified if the antibiotic is economically viable at the maximum 

value of antibiotic efficacy (w = 1). 

------------------- --------------



Annexe III 

Appendix of chapter 3 

IILI Discrete-time version for numerical approximation 

For numerical simulations we make use of a discrete-time version of the mode} 

given byequations (3.8) and (3.9) respectively. Following Ginzburg (1983, chapter 

1), we write the discrete-time version of equation (3.8) as: 

.0..' Vr V Pr = Pr - Pr = pr V (IlL 1 ) 

where \lij 1 + Eij.0..t, and \Ii and V are defined as function of \lij as before, while 

.0..t is the length of the time period. After substituting for Vr and V, equation 

(111.1) becomes: 

(IIL2) 

The discrète-time version of equation (3.9) is given by: 

.0..N = N' - N = (Ml 1)N, (III.3) 

where lllij 1 + .0..t lij, and Wi and Ml are defined as a function of Wij as before. 

Substituting for Ml, equation (III.3) becomes: 

(III.4) 

IIL2 Approximation of the two pest generations per season model 

Let 91 and 92 denote the two successive generations of insects and let t denote the 

year in the simulation model of Hurley et al. (2001). Assuming heavy suppression 

in their simulation mode} in the absence of Bt plantings, the population of the 
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second generation in year t + 1 is determined as a function of the population of the 

second generation in year t by two successive logistic equations: 

or equivalently: 

0.243Nt ,g2 0.053 (Nt ,g2)2 

8.76NH1,gl - 10.30 (NH1 ,gJ2 , 

We approximate this equation using OLS with the logistic function: 

which gives the evolution of the pest population in the absence of Bt-plantings. 

We then have 0.94 g(l - CPr5) ~ 9 and 0.625 f. 


