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Résumé  

[TITRE] Classification taxonomique et analyse fonctionnelle spécifique àla position des 

séquences génomique des champignons mycorhiziens arbusculaires et les microorganismes 

qui leurs sont associés [PROBLÉMATIQUE ET CADRE CONCEPTUEL] Les champignons 

mycorhiziens arbusculaires (CMA) sont des symbiotes obligatoires des racines de la 

majoritédes plantes vasculaires. Les CMA appartiennent au phylum Glomeromycota et ils sont 

considérés comme une lignée fongique primitive qui a conservé la structure coenocytique des 

hyphes et la production des spores asexuées multinucléées. De nombeuses études ont 

démontréque plusieurs microorganismes sont associés avec les mycélia des CMA soit àla 

surface des hyphes et des spores mais aussi àl'intérieurs de celles-ci. Le séquençage des 

génomes des CMA cultivés in-vivo représente un défi considérable car il s’agit d’un 

métagénome constituédu génome du CMA lui-même et les génomes des microbes qui lui sont 

associés. Par conséquence, l’identification de l'origine taxonomique de chaque séquence 

représente une tâche extrêmement ardue. Dans mon projet, j’ai développédeux nouveaux 

programmes bioinformatiques qui permettent de classer les séquences selon groupe 

taxonomique et d’identifier les fonctions de celles-ci. J’ai crééune base de données avec 444 

génomes d'espèces appartenant à54 genres. Le choix de ces espèces des bactéries et des 

champignons a étébasésur leur abondance dans les sols). [MÉTHODOLOGIE] Le programme 

bioinformatique utilise le tableau des références des microorganismes et des méthodes 

statistiques pour la classification taxonomique des séquences. Par la suite, des tableaux des 

codons synonymes étaient créés àpartir des structures secondaires (SS) des bases de données 

de protéines (PDB) pour les séquences codantes (SC) et des motifs de composition pour les 

séquences non-codantes (SNC). Chaque tableau est composéde 3 niveaux - les 

caractéristiques d'acides aminés; l'utilisation des acides aminés synonymes correspondants, et 

l'utilisation des codons synonymes correspondants. En comparant les méthodes existantes qui 

utilisent les taux de substitution moyenne globale quelle que soit les spécificités des acides 

aminés dans diverses structures, mon programme fournit une classification àhaute résolution 

pour des séquences courtes (150-300 pb) parce que les biais dans l'utilisation des codons 

synonymes àpartir d'environ 8000 trimères d'acides aminés spécifiques des sous-unités de 

structure secondaire, ont étéextraits avec des substitutions d'acides aminés pris en 

considération dans chaque trimère spécifique. Pour l'analyse fonctionnelle, le programme crée 

dynamiquement des données comparatives de 54 genres microbiens basés sur leurs biais dans 

l'utilisation des codons synonymes d'appariement de trois codons d’ADN (9-mères) identifiés 
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dans une séquence de requête. Le programme applique une analyse en composantes 

principales basée sur la matrice de corrélation en association avec le partitionnement 

en k-moyennes aux données comparatives. [RETOMBÉES] Les taux de prédiction correcte de 

la CDS et les non-CDS étaient de 50 à71% pour les bactéries, et 65 à73% pour les 

champignons, respectivement. Pour les CMA, 49% des  

CDS et 72% des non-CDS ont étécorrectement classés. Ce programme nous permet d'estimer 

les abondances approximatives des communautés microbiennes associées au CMA. Les 

résultats de l'analyse fonctionnelle peuvent fournir des informations sur des sites d'interaction 

moléculaire importants impliqués dans la diversification des séquences et l’évolution des gènes. 

Les programmes sont disponibles gratuitement sur www.fungalsesame.org. 

 

Mots-clés: sesame, sesame PS function, les caractéristiques d'acides aminés, trois codons 

ADN 9-mères, structure secondaire, classification taxonomique, analyse fonctionnelle 

spécifique àla position; Code génétique; Post; Étude Comparative; Génome Mitochondrial  
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Abstract 

Arbuscular Mycorrhizal Fungi (AMF) are obligate plant-root symbionts belonging to the phylum 

Glomeromycota. They form coenocytic hyphae and reproduce through large multinucleated asexual 

spores. Numerous studies have shown that AMF interact closely or loosely with a myriad of 

microorganisms, particularly bacteria and fungi that live on the surface of or inside of their mycelia and 

spores. Whole genome sequencing (WGS) data of the AMF grown in-vivo (typically grown in root of a 

host plant in pot filled with soil) contain a large amount of sequences from microorganisms inhabiting 

in their spore along with their own genome sequences, resulting in a metagenome.  

The goal of my study was to develop bioinformatics programs for taxonomical classification and for 

functional analysis of the WGS data of the AMF. In the area of metagenomics, there are mainly two 

approaches for taxonomical classification: similarity-based (i.e., homology search) and 

composition-based (i.e., k-mers) methods. Similarity-based method solely depends on bioinformatics 

sequence databases and homology search programs such as BLAST program. The similarity-based 

method may not be suitable for ancient fungi AMF, because bioinformatics databases represent only a 

small fraction of the diversity of existing microorganisms, and gene prediction programs are highly 

biased towards intensively studied microorganisms. Considering that AMF have high inter/ intra 

genome variations, in addition to coenocytic and multi-genomic characteristics, probably due to their 

adaptation via various kinds of symbioses, composition-based method alone is not an effective 

solution for AMF, because it relies on base composition biases and focuses on taxonomical 

classification for prokaryotic organisms. 

In the first project, I a developed novel bioinformatics program, called SeSaMe (Spore associated 

Symbiotic Microbes), for taxonomical classification of the WGS data of the AMF. I selected 

microorganisms that were dominant in soil environment and grouped them into 54 genera which were 

used as references. I created a reference sequence database with a variable called Three codon DNA 

9-mer. They were created based on a large number of structure files from Protein Data Bank (PDB): 

approx. 224,000 Three codon DNA 9-mers encoding for subunits of protein secondary structures. 

Based on the reference sequence database, I created genus specific usage databases containing 

codon usage and amino acid usage per taxonomic rank- genus. The program distinguishes between 

coding sequence (CDS) and non-CDS, detects an open reading frame, and classifies a query 

sequence into a genus group out of 54 genera used as reference. The developed program enables us 

to estimate relative abundances of taxonomic groups and to assess symbiotic roles of taxonomic 

groups associated with AMF. The program can be applied to other microorganisms as well as soil 

metagenome data. The program has applications in applied environmental microbiology. The 

developed program is available for free of charge at www.fungalsesame.org. 

In the second project, I developed another bioinformatics program, called SeSaMe PS Function, 

for position specific functional analysis of the WGS data of the AMF. AMF may contain a large portion 

of genes with unknown functions for which we may not be able to find homologues in existing 

http://www.fungalsesame.org/
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sequence databases. While existing motif annotation programs rely on sequence alignment and have 

limitations for inferring functionality of novel genes, the developed program identifies potentially 

important interaction sites that are structurally and functionally distinctive from other subsequences, 

within a query sequence with exploratory data analysis. The program identifies matching Three codon 

DNA 9-mers in a query sequence, and dynamically creates comparative dataset of 54 genera, based 

on codon usage bias information retrieved from the genus specific usage databases. The program 

applies correlation Principal Component Analysis in conjunction with K-means clustering method to the 

comparative dataset. The program identifies outliers; Three codon DNA 9-mers, assigned into a 

cluster with a single member or with only a few members, are often outliers with important structures 

that may play roles in molecular interaction. 

In the third project, I developed a novel bioinformatics program called Posts (POsition Specific 

genetic code Tables) that assigns a codon into an amino acid group according to the codon position. 

The standard genetic code table may be more readily applicable to the genes whose genetic codes 

comply with the standard biological coding rules obtained from model organisms grown under 

laboratory condition. However, it may be insufficient for studying evolutions of genetic codes that may 

provide important information about codon properties. The mainstream hypotheses of genetic code 

origin suggested that codon position played important roles in the evolution of genetic codes. As a 

case study, we investigated irregular codons in 187 mitochondrial genomes of plants, lichen-forming 

fungi, endophytic fungi, and AMF. Each column of the Post contains 16 codons and the amino acids 

encoded by these are called an amino acid characteristics group (A.A. Char Group). Based on A.A. 

Char Group, an irregular codon can be classified into within-column type or trans-column type. The 

majority of the identified irregular codons belonged to the within-column type. The Post may offer new 

perspectives on codon property and codon assignment. The developed program is freely available at 

www.codon.kr. Taken together, the developed programs, the SeSaMe, the SeSaMe PS Function, and 

the Post, provide important research tools for advancing our knowledge of AMF genomics and for 

studying their symbiotic relations with associated microorganisms. 

 

Keywords: Sesame; Spore associated Symbiotic Microbes; Symbiosis; Sesame PS function; 

Arbuscular mycorrhizal fungi; Three codon DNA 9-mer; Amino acid characteristics; Secondary 

structure; Taxonomical classification; Position specific functional analysis; Position specific 

genetic code tables; Post; Comparative study; Mitochondrial genome 
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Definitions 

In the introduction section, a word whose definition is given has a superscript indicating a number in 

this definition section. All definitions in this section are cited as direct quotation according to online 

wikipedia- https://www.wikipedia.org or https://www.wiktionary.org unless another reference is 

indicated inside parentheses. These references, other than online wikipedia or wiktionary, are 

provided in the reference section. Use of quotation marks “” in the beginning and in the end of each 

definition has been omitted.  

 

1) A mycorrhiza (pl. mycorrhizae or mycorrhizas) is a symbiotic association between a fungus and the 

roots of a vascular host plant. 

2) Phytoremediation refers to the technologies that use living plants to clean up soil, air, and water 

contaminated with hazardous chemicals. 

3) Biodegradation is the disintegration of materials by bacteria, fungi, or other biological means. 

4) Biotrophic describes a parasite or symbiont that needs its host to stay alive.  

5) Mycelium is the vegetative part of a fungus or fungus-like bacterial colony, consisting of a mass of 

branching, thread-like hyphae.  

6) Fungal mycelia in which hyphae lack septa are known as "aseptate" or "coenocytic".  

7) Multinucleate cells (also called multinucleated or polynuclear cells) are eukaryotic cells that have 

more than one nucleus per cell, i.e., multiple nuclei share one common cytoplasm.  

8) A hypha (plural hyphae) is a long, branching filamentous structure of a fungus. 

9) A heterokaryon is a multinucleate cell that contains genetically different nuclei.  

10) A telomere is a region of repetitive nucleotide sequences at each end of a chromosome, which 

protects the end of the chromosome from deterioration or from fusion with neighboring chromosomes. 

11) Protoplast, in biology, it refers to the entire cell, excluding the cell wall, but currently has several 

definitions: a plant, bacterial or fungal cell that had its cell wall completely or partially removed using 

either mechanical or enzymatic means.  

12) An endophyte is an endosymbiont, often a bacterium or fungus that lives within a plant for at least 

part of its life cycle without causing apparent disease.  

13) QR code (abbreviated from Quick Response Code) is the trademark for a type of matrix barcode 

(or two-dimensional barcode) first designed for the automotive industry in Japan. 

14) Homoplasmy is a term used in genetics to describe a eukaryotic cell whose copies of 

mitochondrial DNA are all identical. 

15) Compositional biases are local shifts in amino acid or nucleotide frequencies that can occur as an 

adaptation of an organism to an extreme ecological niche, or as the signature of a specific function or 

localization of the corresponding protein (Antonets KS et al 2013) 

16) The term k-mer typically refers to all the possible substrings of length k that are contained in a 

https://en.wiktionary.org/wiki/parasite
https://en.wiktionary.org/wiki/symbiont
https://en.wiktionary.org/wiki/host
https://en.wiktionary.org/wiki/alive
https://en.wikipedia.org/wiki/Multinucleate
https://en.wikipedia.org/wiki/Cell_(biology)
https://en.wikipedia.org/wiki/Cell_nucleus
https://en.wikipedia.org/wiki/Endosymbiont
https://en.wikipedia.org/wiki/Bacterium
https://en.wikipedia.org/wiki/Fungus
https://en.wikipedia.org/wiki/Plant
https://en.wikipedia.org/wiki/Mitochondrial_DNA
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string. In computational genomics, k-mers refer to all the possible subsequences (of length k) from a 

read obtained through DNA Sequencing. 

17) The mycorrhizosphere is the region around a mycorrhizal fungus in which nutrients released from 

the fungus increase the microbial population and its activities. 

18) The English-language neologism omics informally refers to a field of study in biology ending in 

-omics, such as genomics, proteomics or metabolomics. 

19) Codon usage is a phenomenon of non-uniform usage of codons (Behura SK et al 2012) 

Codon usage bias refers to differences in the frequency of occurrence of synonymous codons in 

coding DNA. A codon is a series of three nucleotides (a triplet) that encodes a specific amino 

acid residue in a polypeptide chain or for the termination of translation (stop codons). 

There are 64 different codons (61 codons encoding for amino acids plus 3 stop codons) but only 20 

different translated amino acids. The overabundance in the number of codons allows many amino 

acids to be encoded by more than one codon. Because of such redundancy it is said that the genetic 

code is degenerate.  

20) Transcription  

Transcription proceeds in the following general steps: 

- RNA polymerase, together with one or more general transcription factors, binds to promoter DNA. 

- RNA polymerase creates a transcription bubble, which separates the two strands of the DNA helix. 

This is done by breaking the hydrogen bonds between complementary DNA nucleotides. 

- RNA polymerase adds RNA nucleotides (which are complementary to the nucleotides of one DNA 

strand). 

- RNA sugar-phosphate backbone forms with assistance from RNA polymerase to form an RNA 

strand. 

- Hydrogen bonds of the RNA–DNA helix break, freeing the newly synthesized RNA strand. 

- If the cell has a nucleus, the RNA may be further processed. This may include polyadenylation, 

capping, and splicing. 

- The RNA may remain in the nucleus or exit to the cytoplasm through the nuclear pore complex. 

21) Translation  

Messenger RNA (mRNA) carries information about a protein sequence to the ribosomes, the protein 

synthesis factories in the cell. It is coded so that every three nucleotides (a codon) corresponds to one 

amino acid. In eukaryotic cells, once precursor mRNA (pre-mRNA) has been transcribed from DNA, it 

is processed to mature mRNA. This removes its introns—non-coding sections of the pre-mRNA. 

Ribosomes link amino acids together in the order specified by messenger RNA(mRNA) molecules.  

22) The central dogma of molecular biology is an explanation of the flow of genetic information within 

a biological system. It was first stated by Francis Crick in 1958 

“The Central Dogma. This states that once ‘information’ has passed into protein it cannot get out again. 

In more detail, the transfer of information from nucleic acid to nucleic acid, or from nucleic acid to 

protein may be possible, but transfer from protein to protein, or from protein to nucleic acid is 

https://en.wikipedia.org/wiki/Synonymous_substitution
https://en.wikipedia.org/wiki/Codon
https://en.wikipedia.org/wiki/Nucleotide
https://en.wikipedia.org/wiki/Genetic_code
https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Polypeptide
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impossible. Information means here the precise determination of sequence, either of bases in the 

nucleic acid or of amino acid residues in the protein.” 

 

Definition Table 1 Three classes of information transfer suggested by the dogma 

General Special Unknown 

DNA → DNA RNA → DNA protein → DNA 

DNA → RNA RNA → RNA protein → RNA 

RNA → protein DNA → protein protein → protein 

(source: https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology) 

 

23) Protein folding is the physical process by which a protein chain acquires its native 3-dimensional 

structure, a conformation that is usually biologically functional, in an expeditious and reproducible 

manner. It is the physical process by which a polypeptide folds into its characteristic and 

functional three-dimensional structure from random coil.  

 

24) Codon context generally refers to sequential pair of codons in a gene (Behura SK et al 2012) 

25) Nucleic acid secondary structure is the base pairing interactions within a single nucleic acid 

polymer or between two polymers. It can be represented as a list of bases which are paired in a 

nucleic acid molecule. The secondary structures of biological DNA's and RNA's tend to be different: 

biological DNA mostly exists as fully base paired double helices, while biological RNA is single 

stranded and often forms complex and intricate base-pairing interactions due to its increased ability to 

form hydrogen bonds stemming from the extra hydroxyl group in the ribose sugar. 

https://en.wikipedia.org/wiki/Physical_process
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Native_state
https://en.wikipedia.org/wiki/3-dimensional
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https://en.wikipedia.org/wiki/Random_coil
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26) A thermophile is an organism—a type of extremophile—that thrives at relatively high temperatures, 

between 41 and 122 °C (106 and 252 °F). 

27) A mesophile is an organism that grows best in moderate temperature, neither too hot nor too cold, 

typically between 20 and 45 °C (68 and 113 °F). 

28) Psychrophiles or cryophiles (adj. psychrophilic or cryophilic) are extremophilic organisms that are 

capable of growth and reproduction in low temperatures, ranging from −20 °C to +10 °C. They are 

found in places that are permanently cold, such as the polar regions and the deep sea.  

29) In molecular biology, a reading frame is a way of dividing the sequence of nucleotides in a nucleic 

acid (DNA or RNA) molecule into a set of consecutive, non-overlapping triplets. Where these triplets 

equate to amino acids or stop signals during translation, they are called codons.  

 

https://en.wikipedia.org/wiki/Molecular_biology
https://en.wikipedia.org/wiki/Nucleic_acid_sequence
https://en.wikipedia.org/wiki/Nucleic_acid
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30) In molecular genetics, an open reading frame (ORF) is the part of a reading frame that has the 

potential to be translated. An ORF is a continuous stretch of codons that contain a start codon (usually 

AUG) and a stop codon (usually UAA, UAG or UGA).  

31) In molecular biology, DNA polymerases are enzymes that synthesize DNA molecules from 

deoxyribonucleotides, the building blocks of DNA. These enzymes are essential for DNA replication 

and usually work in pairs to create two identical DNA strands from a single original DNA molecule. 

During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that 

match the existing ones. 

32) RNA polymerase (ribonucleic acid polymerase), both abbreviated RNAP or RNApol, official name 

DNA-directed RNA polymerase, is a member of a family of enzymes that are essential to life: they are 

found in all organisms (species) and many viruses. RNAP locally opens the double-stranded DNA 

(usually about four turns of the double helix) so that one strand of the exposed nucleotides can be 

used as a template for the synthesis of RNA, a process called transcription. A transcription factor and 

its associated transcription mediator complex must be attached to a DNA binding site called a 

promoter region before RNAP can initiate the DNA unwinding at that position.  

33) In bacteria, all transcription is performed by a single type of RNA polymerase. This polymerase 

contains four catalytic subunits and a single regulatory subunit known as sigma (s). Interestingly, 

several distinct sigma factors have been identified, and each of these oversees transcription of a 

unique set of genes. Sigma factors are thus discriminatory, as each binds a distinct set of promoter 

sequences.  

Sigma factors are subunits of all bacterial RNA polymerases. They are responsible for determining the 

specificity of promoter DNA binding and control how efficiently RNA synthesis (transcription) is 

initiated (R.R. Burgess Encyclopedia of Genetics). 

34) In genetics, an enhancer is a short (50-1500 bp) region of DNA that can be bound 

by proteins (activators) to increase the likelihood that transcription of a particular gene will occur. 

These proteins are usually referred to as transcription factors.  

35) In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is 

a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by 

binding to a specific DNA sequence. TFs work alone or with other proteins in a complex, by promoting 

(as an activator), or blocking (as a repressor) the recruitment of RNA polymerase (the enzyme that 

performs the transcription of genetic information from DNA to RNA) to specific genes. 

36) An operon is a functioning unit of genomic DNA containing a cluster of genes under the control of 

a single promoter. A promoter is a region of DNA that initiates transcription of a particular 

gene. Promoters are located near the transcription start sites of genes, on the same strand and 

upstream on the DNA (towards the 5' region of the sense strand).  
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List of Abbreviations and Acronyms 

80% components: Components whose sum accounts for 80% of inertia 

A 

A.A. Char: Amino Acid Characteristic 

A.A. Char Group: Amino Acid Characteristics Group 

A.A. Char Trimer: Amino Acid Characteristic Trimer 

A.A. Group: Amino Acid Group 

aaRs: aminoacyl-tRNA synthetases 

AFE: Éducation et de l'Enseignement supérieur Quebec 

AM: Arbuscular Mycorrhizal 

AMF: Arbuscular mycorrhizal fungi 

ASD: Allosteric Site 

 

B 

BLAST: Basic Local Alignment Search Tool  

BLOSUM: BLOcks SUbstitution Matrix  

BothCA: Both CSA and ASD 

 

C 

CDS: Coding sequence 

CSA: Catalytic Site 

 

D 

DNA: Deoxyribonucleic acid 

 

F 

FESP: Faculté des études supérieures et postdoctorales de l'UdeM 

FS: Functional Segment 

 

G 

Genus Specific DB: Genus-Specific usage bias Database 

GPB: Genomics Proteomics Bioinformatics 

 

H 

HMG: High Mobility Group 
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IRBV: Institut de Recherche en Biologie Végétale de l'Université de Montréal 

ITS: Internal transcribed spacer  

 

K 

KW: Kruskal Wallis 

 

L 

lncRNAs: Long non-coding RNAs 

log10 (inverse of P value score): Base 10 logarithm of an approximated inverse of a rank sum based P 

value score. 

 

M 

MDR1: Multidrug Resistance 1  

MDS: multidimensional scaling 

MRE: Mycoplasma-Related Endobacteria 

 

N 

NADH: Reduced form of Nicotinamide adenine dinucleotide 

None: None of CSA nor ASD 

 

O 

ORF: Open reading frame 

 

P 

PAM: Point Accepted Mutation 

PCA: Principal Component Analysis 

PCA-Kmeans: PCA in conjunction with K-means clustering method 

PDB: Protein Data Bank 

Post: Position specific genetic code table 

 

R 

R. irregularis: Rhizophagus irregularis 

RNA: Ribonucleic acid 

rRNA: ribosomal RNA 

 

S 

SEM: Scanning electron microscopy 

SeSaMe: Spore associated Symbiotic Microbes 
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SeSaMe PS Function: SeSaMe Position Specific Function 

SSU: Small subunit  

 

T 

The First/Second components: The first principal component and the second component 

Trimer Ref. DB: Trimer Reference sequence Database 

 

W  

WGS: Whole genome sequencing  

WMS: whole metagenome sequencing 

 

Abbreviations of DNA, RNA  

C: Cytosine 

T: Thymine  

G: Guanine 

A: Adenine 

U: Uracil 

R: Purine 

Y: Pyrimidine 

 

Abbreviations of 20 amino acids and stop codon 

A: Alanine/ Ala 

R: Arginine/ Arg 

N: Asparagine/ Asn 

D: Aspartic acid/ Asp 

C: Cysteine/ Cys 

E: Glutamic acid/ Glu 

Q: Glutamine/ Gln 

G: Glycine/ Gly 

H: Histidine/ His 

I: Isoleucine/ Ile 

L: Leucine/ Leu 

K: Lysine/ Lys 

M: Methionine/ Met 

F: Phenylalanine/ Phe 

P: Proline/ Pro 

S: Serine/ Ser 

T: Threonine/ Thr 
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W: Tryptophan/ Trp 

Y: Tyrosine/ Tyr 

V: Valine/ Val 

* : Stop codons 

 

Mitochondrial genes 

cox1: mitochondrial  cytochrome c oxidase subunit I gene 

rnl: mitochondrial large ribosomal subunit RNA gene 

nad2: mitochondrial NADH dehydrogenase subunit 2 gene 

atp6: mitochondrial gene encoding the ATP synthase Fo subunit 6 

atp9: mitochondrial gene encoding the ATP synthase subunit 9 

cox2: mitochondrial gene encoding the Cytochrome c oxidase subunit 2 

cox3: mitochondrial gene encoding the Cytochrome c oxidase subunit 3 

cob: mitochondrial gene encoding cytochrome b- the component of the ubiquinol-cytochrome c 

reductase complex 

cytb: mitochondrial gene encoding subunit from the bc1 complex 

nad1: mitochondrial gene encoding NADH-ubiquinone oxidoreductase chain 1 

nad3: mitochondrial gene encoding NADH-ubiquinone oxidoreductase chain 3 

nad4: mitochondrial gene encoding NADH-ubiquinone oxidoreductase chain 4 

nad4L: mitochondrial gene encoding NADH-ubiquinone oxidoreductase chain 4L 

nad5: mitochondrial gene encoding NADH-ubiquinone oxidoreductase chain 5 

nad6: mitochondrial gene encoding NADH-ubiquinone oxidoreductase chain 6
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We cannot see microorganisms nor air with naked eyes. However they have existed long before us. 

Just because other beings cannot be seen, it does not mean that they do not exist. 

Although I cannot recognize their presence, I hope to become a better being, forming symbiosis with 

other beings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To other beings 

 

within me, among us, somewhere universe 

no worship but friendship 

no rejection but co-existence 

no greedy but fair 

seeking approval not of others but of true self  
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Thesis outline 

During my doctoral study, I developed three different types of bioinformatics programs for AMF 

research. I introduce them in this thesis. The thesis consists of five chapters. In the first chapter, I 

address the importance of AMF- effectiveness of AMF inoculants for sustainable agriculture and 

phytoremediation. I review literature to explain why the WGS data of the AMF result in metagenome: 

the nature of AMF harboring a large number of symbiotic microorganisms inside of their spores and 

mycelia. I summarize research articles about the complex genomic properties of AMF and explain the 

limitation of the available genome sequencing data for serving as a reference genome due to high 

inter/intra genome variations of AMF isolates. I survey the existing approaches for taxonomical 

classification of metagenome sequencing data and discuss why they are ineffective for analyzing the 

WGS data of the AMF.  

I summarize recent studies that have documented the important roles of codon usage and codon 

context in co-translational process and regulation of gene expression and gene products and their 

contribution to microbial adaptation in order to show the biological importance of the main variable of 

the developed programs. In the last section of this chapter, I state research problem, research 

objectives, and the contribution of the developed programs to AMF research.  

In the second chapter, I introduce the developed programs, the SeSaMe, for taxonomical 

classification of the WGS data of the AMF. One program classifies a query sequence into one of 54 

genera used as references and the other into one of 13 taxonomic groups with the higher taxonomic 

rank. In this chapter, I provide users with the details of the components of the programs, guidelines of 

how to interpret program results, and P value score tables for assessing the statistical significance of 

predicted outcome. In the third chapter, I introduce another developed program, the SeSaMe PS 

Function, for position specific functional analysis of the WGS data of the AMF. I provide users with the 

details of the methods and a case study for demonstrating how to detect outliers in a query sequence 

which is just one of many applications of the program. I used existing bioinformatics programs for 

inferring functions of the outliers that may play roles in undiscovered mechanisms. In the fourth 

chapter, I introduce the developed method, the Post, that assigns a codon with respect to codon 

position. It may provide systematic tools for studying novel properties of genetic codes and codon 

assignment. I discuss the method in detail, and provide a case study- identification of irregular codons 

in 187 mitochondrial genomes of various plants and fungi.  

The fifth chapter consists of conclusions, discussions, and future work.    

 

The articles in the second and the third chapters have been accepted by the journal, Genomics 

Proteomics Bioinformatics (GPB). The article in the fourth chapter is in preparation for submission. 
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Introduction 

1.1 Importance of AMF 

Arbuscular mycorrhizal fungi (AMF) are root colonizing symbiotic microorganisms that stimulate plant 

growth and improve soil structure (Hijri 2016, Roy-Bolduc and Hijri, 2011, Zarik et al 2016). They 

supply plants with essential mineral nutrients, protect them against soil-borne pathogens, and reduce 

their environmental stresses (Bunn et al 2009).  

Symbiosis between plants and AMF is widespread and it is well accepted that AMF form symbiosis 

with more than 80% of vascular plants worldwide (Smith and Read 2008). Arbuscular Mycorrhizal 

(AM) symbiosis has been studied in numerous disciplines including plant sciences, microbiology, 

mycology, ecology, environmental science, and agriculture. Plant scientists employ genomics and 

transcriptomics tools to study taxonomical classification and functional analysis of mycorrhizae1 

metagenome data and are particularly interested in symbiosis-related genes and their regulatory 

mechanisms (Vangelisti et al 2018, Handa et al 2015). Recent advances in high throughput 

sequencing technologies have enabled fungal scientists to study AMF genomics and symbiotic 

interactions of microbial community inhabiting in spores of AMF (Bianciotto et al 2011). Environmental 

scientists have applied AMF inoculants for cleaning up contaminated soils- phytoremediation2 (Iffis et 

al 2014). Researchers in the area of agriculture have made efforts to develop biofertilizers based on 

AMF inoculation (Zarik et al 2016, Hijri et al 2016).  

 

Figure 1 Carrot roots colonized by AMF. The extensive networks of mycelia increase absorbing surface of water and 
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nutrients (Source: Hijri’s labs). 

 

Chemical fertilizers in modern and intensive agriculture cause leaching of phosphate which is a 

nonrenewable natural resource (Roy-Bolduc and Hijri, 2011). Moreover, amendment of soil with 

phosphate has been shown to negatively influence the structure of soil microbial communities 

(Beauchemin et al 1999). In addition, it is well known that use of pesticide contaminates soil and water 

and deteriorates ago-ecosystems. A large number of researchers have documented positive 

contributions of AMF to agriculture (Hassan et al 2013, Zarik et al 2016, Hijri et al 2016). AMF 

inoculation helps plants uptake phosphorus and nitrogen in low input agriculture (Hassan et al 2013). 

Likewise, AMF inoculation increased yields of potatoes in large-scale agriculture due to improvement 

of nutrient uptake via their extensive networks of mycelia3 (Hijri 2016). Figure 1 shows that the carrot 

root colonized by AMF. Extensive AM fungal mycelia function as extension of root and significantly 

increase the absorbing area of nutrients (Roy-Bolduc and Hijri, 2011). Plants inoculated with AMF 

showed higher mineral uptake and hydration status compared to non-mycorrhized plants, which 

suggests that AMF ameliorate drought stress (Zarik et al 2016).  

 

 

Figure 2  Typical mycorrhized plant showing extraradical AMF hyphae. One of the principal host benefits is the increased 

uptake of phosphorus. Phosphate ions in soil are largely unavailable to roots because they form insoluble complexes with 

naturally occurring metal cations. Fungal hyphae are able to extend beyond the root depletion zone, taking up bioavailable 

phosphate which is outside the reach of the plant (source: Roy-Bolduc and Hijri 2011). 

 

Moreover, AMF colonization also stimulated bacterial growth in rhizosphere; the total number of 
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bacterial population was higher in mycorrhized plant than in non-mycorrhized plant (Johansson JF et 

al 2004). AMF inoculation is sustainable green technology based fertilizer as an alternative to chemical 

fertilizers and pesticides (Figure 2) (Roy-Bolduc and Hijri, 2011). 

In addition to the importance of AMF in agriculture, they also play key roles in phytoremediation 

(Iffis et al 2014). A number of researchers documented that AMF and their associated microbial 

communities inhabiting in plant's root are key determinants in the effectiveness of phytoremediation 

(Iffis et al 2014, Hassan et al 2014, Marchand et al 2016, de la Providencia I et al 2015, Chanda et al 

2014). Marchand et al investigated microbial capacity for biodegradation4 of contaminants with respect 

to soil origin, type of culture media, and strain taxonomy. They documented that only microbial 

taxonomy had a significant impact on the effectiveness of biodegradation of contaminants (Marchand 

et al 2017 (a)). In addition, aided phytoremediation in biopiles and co-planting effectively cleaned up 

co-contaminated soil containing multiple contaminants such as petroleum hydrocarbons and metals 

(Marchand et al 2017 (b)).  

 

1.2 AMF genetic structure 

It has never been successful to grow AMF in pure culture without a host plant due to their strict 

symbiotic interaction- biotrophic5 life-cycle (Kuhn 2003). Unlike most fungi, it is suggested that AMF 

may not undergo single-nucleus stage (Marleau et al 2011). Their mycelia are formed by coenocytic6 

and multinucleate7 hyphae8 that reproduce through asexual multinucleated spores. Nuclei massively 

migrate from parental hypha to a child spore during sporulation (Marleau et al 2011). Marleau et al. 

stained the nuclei with cytogreen and used confocal microscopy with time-lapse sequence monitoring 

system to observe how the nuclei move from parental hypha to a child spore. The stained nuclei 

moved unidirectionally into the spore. They discovered that the number of nuclei in a spore varies 

widely among individual AMF isolates from some hundreds up to some thousands, and it is estimated 

that a spore can contain up to thousands of nuclei. In addition, they also speculated that AMF may 

undergo mitosis although it may be a small portion of nuclei. Although the extent of heterogeneity is 

unknown, nuclei in a spore are believed to be heterogeneous. 

Boon et al used genetic markers to estimate the degree of polymorphism, and reported that AMF 

had a very high level of polymorphism- as high as 103- in some loci (Boon et al 2015). Comparisons of 

allele distributions among parent isolate and sister spores suggest that smaller genetic diversity 

passes onto sister spores during sporulation (Boon et al 2013). In addition, they performed the 

comparative study of the WGS data of AMF with those of other fungal genomes using clustering 

approach. They concluded that it is possible that AMF may be heterokaryons9. Assuming that AMF are 

heterokaryons, it is important to assess the extent of heterogeneity among nuclei. Hijri et al 

documented that telomere10 associated sequences are promising molecular markers for 

heterogeneous nuclei in AMF (2007). The variations in telomere regions may enable us to make 

inference about genetic variation among nuclei and to study genome structure of Glomus intraradices- 
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the multigenomic fungus.  

 

1.3 Microorganisms associated with AMF mycelia 

Numerous studies reported that AMF mycelia harbor a large number of microorganisms that are 

residing inside or on the surface of their spore and hyphae (Figure 3) (Lecomte et al 2011, Bonfante et 

al 2003).  

 

 

Figure 3  Bacterial growth patterns on Glomus sp. hyphae cultivated in-vitro and observed with a DIC microscope using a 

×63 objective (a) Bacillus simplex; (b) Kocuria rhyzophila; (c) Bacillus megaterium; (d) Variovorax paradoxus; (e) 

Sphingomonas sp.; (f) Microbacterium ginsengisoli; (g) Pseudomonas sp.; and (h) Escherichia coli. (a) and (g) bacteria are 

shown after 15 days of growth; (b) and (c) bacteria after 30 days of growth while (d)–(f) and (h) bacteria are shown after 45 

days of growth. Images in (d), (e) and (h) were acquired using confocal microscopy. Scale bars=10µm. (source: Lecomte et 

al 2011). 

 

We defined three types of symbiotic interactions between AMF and their associated 

microorganisms. The first type is the loose interaction between AMF and microorganisms in soils. The 

second type is the intimate interaction because microorganisms tightly adhere to the surface of the 

spore or of mycelia of AMF (Iffis et al 2016). The third type is the interaction between AMF and 

endosymbionts living inside of their spores and mycelia. Since the first report of the occurrence of 

bacteria-like organelles inside the spore of the AMF by MacDonald et al. (1982), a number of studies 

have documented different types of endosymbionts (Hijri et al 2002, Cruz et al 2008, Cruz et al 2012, 

Bonfante 2003, Naito et al 2015, Torres-Cortes et al 2015).  
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Figure 4  Electron micrographs shows similarities between the isolated fungi and fungal structures inside the Scutellospora 

castanea spores and also the presence of other microorganisms. Panels a and b show ultrastructural features of the Nectria 

sp. isolated from cloudy spores of S. castanea. Panel c shows Leptosphaeria sp. isolated from healthy spores of S. castanea. 

Panels d and e show ultrastructure of cloudy nonviable spores. Panel f and g show healthy S. castanea spores. Panel h 

shows healthy spores of S. castanea harboring virus-like particles. Panel i shows bacterium-like organisms present in healthy 

spores of S. castanea. Panel j shows other eukaryotic unidentifiable microorganisms observed inside S. castanea. B, 

bacterium-like organisms; DL, electron-dense layer; DV, electron-dense vacuole; H, hyphae; L, lipids; M, mitochondria; MS, 

membrane system; N, nucleus; PW, perforated wall; R, ribosomes; TL, electron-transparent layer; TV, electron-transparent 

vacuole; UM, unidentified microorganisms; V, virus-like particle; Va, vacuole; W, spore wall. (source: Hijri et al 2002). 

 

In studying endosymbiont, distinctions need to be made with respect to inheritability- capable of 

being inherited- and to the ability of free-living- capable of maintaining its own reproduction and 

metabolic systems. Some portions of inheritable endosymbiotic microbial organisms that have lost 

such systems and depended on AMF may be in the process of being endosymbiotic organelles. 

Endosymbiotic organelles- mitochondria and hydrogenosomes are known to exist in fungi (Hackstein 

et al 2007).  

Cruz et al have discovered presumably free-living bacteria in Gigaspora margarita (2008). The 

bacteria were isolated using osmosis method applied to a protoplast11 which was derived from a spore 

by treatment with series of enzymes. They were identified as bacteria close to Janthinobacterium 

lividum and Paenibacillus polymyxa. They were cultivated in cell-free media. They showed ability to 

solubilize phosphorus. J. lividum showed an ability to suppress plant pathogen. Further experiments 

on two bacteria increased a possibility that they were derived from inside of the spore. The same 

research group used another method- hypodermic ultrathin needle in Gigaspora margarita, isolated 

free-living endosymbionts, and identified them as Bacillus sp., Bacillus thuringiensis, and Paenibacillus 

rhizospherae (Cruz et al 2012). They documented that all of the bacteria made more than one of the 

following contributions: phosphorus solubilization, ethylene production, nitrogenase activity, and 

stimulation of hyphal growth. In addition to free-living bacteria, two filamentous fungal endosymbiont 
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were found inside spores of Scutellospora castanea using transmission electronic microscope (Figure 

4), and identified as fungi belonging to Necteria and to Leptosphaeria (Hijri et al 2002). The discovery 

supported the presence of fungal sequences other than those of glomalean origin in the WGS data of 

the AMF.  

In contrast, several researchers isolated obligate endosymbionts in major AMF species, and 

identified them as heritable endobacteria called Mycoplasma-Related Endobacteria (MRE). MRE have 

experienced genome reduction, especially genes relating metabolism (Naito et al 2015, Torres-Cortes 

et al 2015). Their genomes were distinct from each other due to a high degree of adaptation to their 

hosts via genome reduction, genetic recombination, mobile elements, trans-kingdom horizontal gene 

transfer from the fungal host, and plectroviral invasion. It was also documented that AMF harbored 

another kind of heritable obligate endosymbiont belonging to Candidatus Glomeribacter gigasporarum 

(Jargeat et al 2004). It is a beta-proteobacterium that has a close phylogenetic relation with 

Burkholderia. In addition, microorganisms associated with AMF were isolated and identified as 

bacteria belong to a novel unidentified group during the process of production of in-vitro AMF. Further 

experiments showed that the unidentified bacteria-like organisms were presumably obligate 

endophytes12 with bacterial origin (Gulbis et al 2013). 

 

1.4 Effectiveness of AMF inoculants in sustainable agriculture and 

phytoremediation 

AMF associated bacteria have a great impact not only on the fitness of host plant but also on that of 

AMF (Hafidi et al 2015, Iffis et al 2016). Johansson et al performed morphological, physiological, and 

biochemical experiments and showed that bacteria in mycorrhizosphere17 affect AMF in a number of 

different ways, such as activation/ inhibition of sporulation and promotion of mycorrhizal development 

through nitrogen fixation (2004). However, experiments in laboratory setting are restricted to bacteria 

culturable in laboratory conditions and to those with known functions. Microorganisms associated with 

AMF grown in-vivo provide invaluable information in studying evolution and symbiotic interactions. 

More than 99% of soil microorganisms are not culturable in laboratory conditions. Recent advances in 

high-throughput DNA/ RNA sequencing technologies have opened new ways in investigating a 

large-scale characterization of genes in sequencing data from AMF grown in-vivo and enabled 

researchers to study interactions between AMF and its associated microorganisms (Bonfante et al 

2009). Taxonomical classification is essential not only for the WGS of the AMF grown in-vivo but also 

for environmental data from AMF mycorrhizosphere and hyphosphere of agricultural and 

phytoremediation projects.  
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Figure 5  AMF colonized root of Solidago rugosa growing in petroleum contaminated soil was sampled and prepared for 

scanning electron microscopy (SEM). SEM shows that bacterial cells and bio-film like structures are attached to AMF hyphae 

(H) and propagules (P). Panel b and c shows the magnification of the selected section in panel a and d, respectively. Panel f 

shows many microorganisms attached to the cell wall of AMF spore isolated from the rhizospheric soil of S. rugoda after it 

was washed multiple times with sterilized water (Iffis et al 2014).  

 

Iffis et al showed that microorganisms were intimately associated with AMF that colonized roots of 
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plants growing in soils contaminated with petroleum (Figure 5) (2014). Several studies have shown 

that microbiota in hyphosphere are key determinants in optimizing phytoremediation process (Iffis et al 

2017). Bell et al showed the importance of microbiota containing a variety of microorganisms for 

effective phytoremediation. They assessed the efficiency of bioremediation with three different 

microcosms (2016). Initial soil was collected from place adjacent to former petroleum refinery in order 

to sample uncontaminated soil. Three microcosms were derived from the initial soil and prepared with 

sterilized soil: one reinoculated with initial soil, another with all bacteria isolated in regular media, and 

the other with all bacteria isolated in media containing crude oil. It showed that the sterilized soil 

reinoculated with initial soil showed maximum biodegradation capacity after 6 weeks. Soil reinoculated 

with initial soil showed higher efficiency compared to the other two, probably because the microcosm 

contains the most diversity of microorganisms and consequently the greatest variety of functional gene 

pools for dynamically governing the degradation of crude oil.  

AMF and their associated microbial communities are proven to be the key factors determining the 

success of sustainable agriculture as well. Recent discoveries also proved beneficial roles of 

endosymbionts inside of AMF spore, such as nitrogen-fixing, phosphate solubilizing, and plant growth 

promoting abilities (Cruz et al 2008, 2012). Considering over-fertilization disrupts the balance of 

ecosystems and has negative environmental impacts, AMF inoculation may be an efficient approach 

for replacing the inadequate agricultural practices and for establishing sustainable agroecosystem 

(Roy-Bolduc and Hijri, 2011, Barea et al 2002). 

However, AMF inoculation in agricultural practices has encountered challenges, because 

interactions between host plants and AMF species cannot be predicted due to high intra isolate 

variation of AMF and to the difficulty of marker development for AMF taxonomical identification 

(Zimmerman et al 2009). AMF genetics is poorly understood due to their coenocytic and multinucleate 

nature. With current molecular biology technology, we have limitations in studying the fundamental 

genetics of AMF such as genome segregation, a degree of heterogeneity of nuclei, and distribution of 

essential and functional genes across nuclei. Furthermore, it is challenging to remove and cure AMF 

from their associated microbes with current molecular biology technology. In contrast, with currently 

available omics18 technologies and a vast amount of sequencing data, computational biology and 

bioinformatics may be able to provide key insights to solve the bottlenecks encountered in AMF 

research. Therefore, it is important to develop bioinformatics programs for taxonomical classification 

and for functional analysis of the WGS data of the AMF. 

 

1.5 Commonly used methods for taxonomical classification of bacterial 

and fungal sequences from environmental samples  

Taxonomical classification of microorganisms had been solely dependent on phenotypic analyses- 

morphological, physiological, and biochemical characterization- until genotypic analyses based on 

DNA information became available several decades ago. Taxonomical classification based on small 
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subunit (SSU) ribosomal RNA (rRNA) has been most commonly used for prokaryotic organisms for 

past two decades (Stackebrandt et al 1997).  

SSU rRNA genes have advantage in making phylogenetic inference because they are much 

conserved among prokaryotic organisms. However, for the same reason, their discriminating power 

may not be sufficient for some microorganisms. Therefore, a number of researchers add 

complementary sequences such as protein coding sequence (CDS) in addition to SSU rRNA genes to 

improve the resolution. Several researchers have improved the method based on SSU rRNA by 

incorporating the sequence profiling signatures that have been widely used for taxonomical 

classification of prokaryotic organisms in the area of metagenomics; for example, nucleotide sequence 

patterns with high discriminating powers were identified in 16 SSU rRNA genes and incorporated into 

the method for taxonomical classification of Bacillus with different levels (More et al 2016). In addition, 

barcode system such as Quick Response13 has been employed for accelerating the process of the 

taxonomical classification. The strength of the taxonomical classification method based on the SSU 

rRNA genes includes the improvement made with sequence profiling features, informative databases, 

and numerous software programs that are convenient to use. However, recent studies have 

documented the mosaicism due to horizontal gene transfer in 16 SSU rRNA gene and heterogeneity 

of multiple rRNA genes within a single microorganism (Rajendhran 2010). The discovery has 

biologically significant importance for studying new mechanisms governing translational processes 

under environmental stresses. On the other hand, it has complicated the interpretation of taxonomical 

classification results.   

As an alternative to 16 SSU rRNA gene, protein-coding genes such as heat-shock proteins have 

been also used for prokaryotic taxonomical classification. When assigning a new strain, phylogeny 

study plays an important role. A large number of researchers have constructed prokaryotic 

phylogenetic trees based on protein coding genes (Golding et al 1995, Ahmad et al 1999). However, 

some researchers believe that protein coding genes have higher discriminating power but weaker 

representation of phylogeny (Glaeser et al 2015). To reduce a bias produced by single gene based 

method, multiple gene based method has been gaining its popularity. Furthermore, a new approach, 

multilocus sequence analysis, has been developed; DNA fragments of several protein coding genes 

are used for prokaryotic taxonomical classification, and concatenation of their fragments are used for 

phylogeny study (Glaeser et al 2015). In addition, a number of researchers have developed new 

approaches. For example, Gupta et al extracted entire coding genes per bacterial genome, and 

identified taxon-specific genes that were unique to each taxonomic group using eggNOG (a database 

of orthologous groups and functional annotation) and Blast program (2015). They documented that the 

taxon-specific gene approach provides more accurate method of bacterial taxonomical classification. 
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Table 1 rRNA : Prokaryotes (Escherichia coli) vs. Eukaryotes (human) 

Type Size Large subunit  Small subunit  

Prokaryotic 70S 50S (5S : 120 nt, 23S : 2906 nt) 30S (16S : 1542 nt) 

Eukaryotic 80S 60S (5S : 121 nt, 5.8S : 156 nt,  

        28S : 5070 nt) 

40S (18S : 1869 nt) 

Note : S in 16S represents Svedberg units. nt stands for length in nucleotide.  

(Source : https://en.wikipedia.org/wiki/Ribosomal_RNA) 

 

While SSU rRNA genes have been the most widely used markers for prokaryotic organisms, a 

variable region of mitochondrial cox1 gene has been formally chosen as barcode marker for animals 

(Schoch et al 2012). Consortium for the Barcode of Life chose the same region for fungi as well. 

However, another multi-laboratory consortium found that the region of the gene was too difficult to 

amplify. They chose six DNA regions as potential candidates, which included three protein coding 

genes (the largest subunit of RNA polymerase II, the second largest subunit of RNA polymerase II, 

and minichromosome maintenance protein). The protein coding genes had a higher correct 

percentage of taxonomical identification. But they were excluded as marker candidates due to the 

difficulty in amplication. They chose internal transcribed spacer (ITS) region as a marker for fungal 

taxonomical classification. In fungi, there are two ITSs- one located between 18S rRNA gene and 5.8S 

rRNA gene and the other located between 5.8S rRNA gene and 28S rRNA gene (Table 1). Two ITSs 

with the 5.8S rRNA gene between them are referred as ITS region. ITS region is commonly used for 

taxonomical classification of Dikarya because it has high inter-specific variations but low intra-specific 

variations (Lindahl 2013). However, ITS region is too variable to make an alignment of sequences 

from some fungal groups for phylogeny inference. To supplement the weakness, a new approach, the 

combination of ITS region with its secondary structures, has been developed for phylogeny study 

(Merget et al 2012).  

However, in case of AMF, rRNA genes from nuclei have limitations due to high variations of inter- 

and intra- specific DNA and RNA sequences of nuclear genes (Sarma et al 2017). For the same 

reason, ITS region has limitations in AMF taxonomical identification as well. A number of DNA regions 

have been evaluated for AMF marker development (Sarma et al 2017). For past years, mitochondrial 

genes have attracted AM fungal researchers because they have been found to be homoplasmic14 

(Sarma et al 2017, Lee et al 2009, Beaudet et al 2013). In mitochondrial genes, especially introns 

have been considered suitable candidates for marker development (Nadimi et al 2012, Nadimi et al 

2015). Mitochondrial genes, cox1 in combination with rnl or nad2, have also showed potentials for 

phylogeny study in AMF (Nadimi et al 2016). However, insufficient knowledge of mechanisms of the 

mitochondrial inheritance in addition to unknown genome structure of AMF have posed the challenges 

https://en.wikipedia.org/wiki/Ribosomal_RNA
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in AMF marker development (Sarma et al 2017). In addition to mitochondrial genes, Sokolski et al. 

documented partial sequences of inorganic phosphate transporter genes may be a good candidate for 

discriminating morphologically defined glomus species (2011). 

 

1.6 Taxonomical classification of the WGS data of the AMF 

1.6.1 Culturing methods and the WGS data of the AMF 

Complex genome structure of AMF has posed limitation not only in developing AMF markers but also 

in analyzing their WGS data. Additionally, due to the high intra/ inter genomic variations of AMF strains, 

there is no reference genome for AMF. Furthermore, the WGS data of a single AMF spore contain a 

considerable portion of non-AMF DNA sequences. Depending on AMF species and culturing methods, 

diversity and abundance of microbial communities associated with AMF vary widely. We need to 

define at least two types of culturing method: in-vivo culture (typically with a host plant in a pot filled 

with soil) and in-vitro culture. There are several types of in-vitro cultures. Axenic system refers only AM 

fungus grown on agar-like substrates. Monoaxenic system refers AM fungus and a root organ of plant 

grow in a plate. Dixenic system refers monoaxenic system with another organism grown on a plate 

(Declerck et al 2005). Because a wide spectrum of antibiotics are used to initiate in-vitro cultures 

(Bécard and Fortin 1988), antibiotic cocktails kill the symbiotic microorganisms on the surface and 

inside of AMF spore. It has been documented that only few AMF taxa are able to be cured and 

cultivated in axenic cultivation system, and most successful isolates in such system belong mainly to 

the genus- Rhizoglomus (Declerck et al 2005). It suggests that AMF may be a meta-organism. In other 

words, symbiotic bacterial and fungal partners are indispensable from AMF.  

The WGS of the AMF taxa has been achieved exclusively from those grown in monoaxenic system. 

With in-vitro culturing method, the WGS data of the AMF contain less non-AMF sequences. Downside 

of in-vitro cultivation is the use of the wide variety of antibiotics that kill AMF spore associated 

microorganisms that provide crucial information about AMF. In contrast to in-vitro culturing method, the 

WGS data of the AMF taxa grown in-vivo contain a large amount of non-AMF sequences from their 

associated microorganisms. Considering that a great majority of soil microorganisms are not 

culturable in laboratory conditions outside of soil and that sequence databases represents a tiny 

fraction of existing microorganisms (Jeffery et al 2010), sequence information from in-vivo culture 

provides invaluable information on symbiotic interactions of AMF with their associated microbial 

communities.  

 

1.6.2 Available genome of AMF and its limitation due to high inter- and intra- isolate 

variations  

A spore is the culturing and sequencing unit for AMF WGS, and contains hundreds or thousands of 

nuclei that are believed to be heterogeneous although the extent of heterogeneity is unknown. In 

addition, endosymbionts in their spore add extra levels of complexity to the WGS data of the AMF. It 
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was only a few years ago when Tisserant et al. published the genome information of Rhizophagus 

irregularis grown in-vitro (2013). They also published transcriptome information of R. irregularis and 

Rhizophagus diaphanus (Tisserant et al 2014). Although the published information of the genome and 

the transcriptome of Rhizophagus provide invaluable information for studying AMF genetics, it has 

limitations in serving as reference genome due to high inter/ intra isolate variations of AMF. The 

published genome and transcriptome may be a small portion of hundreds or even thousands of 

heterogeneous nuclei; due to high intra-isolate variations, the genome assembly of R. irregularis is 

challenging and the expression profiles in R. irregularis are incomplete. Due to unknown genome 

structure of AMF, we do not have a template that serves as guidelines for putting sequence puzzles 

together. In addition, the WGS data of the AMF contain sequences from symbiotic microorganisms 

inhabiting in the spore of AMF. For such reasons, I have taken the same approach as metagenome 

data analysis for taxonomical classification of the WGS data of the AMF grown in-vivo. In this thesis, I 

interchangeably use two terms -metagenome data and environmental data. 

 

1.6.3 Existing approaches for taxonomical classification of metagenome sequencing 

data 

In the area of metagenomics research, there are mainly two approaches for taxonomical classification: 

one is composition-based method that employs sequence profiling signatures such as compositional 

biases15 of nucleotides (k-mers16) and the other is similarity-based method such as homology search 

method (Kim et al 2013).  

 

 

Figure 6  The BLOSUM62 matrix used in similarity based method 

(source: https://en.wikipedia.org/wiki/BLOSUM) 

https://en.wikipedia.org/wiki/BLOSUM
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Homology search program such as BLAST (Basic Local Alignment Search Tool) is the most widely 

used bioinformatics program in many areas of bioinformatics. BLAST provides a user with different 

choices of scoring methods, performs pair-wise alignments of a query sequence with sequences in 

databases, and provides a list of hit sequences of statistical significance that have functional 

annotations. Scores are computed based on amino acid substitution matrices (20 amino acids in row 

and 20 amino acids in column) such as BLOSUM (BLOcks SUbstitution Matrix) and PAM (Point 

Accepted Mutation) (Figure 5). 

BLAST is often used for homology search in terms of protein function. When researchers have a 

sequence with unknown function, they use BLAST program to draw an inference about functions. 

However, because of lack of taxonomical classification programs for analyzing sequences from 

metagenomics data, BLAST has been also widely used not only for functional analysis but also for 

taxonomical classification. However, it is not suitable for taxonomical classification due to weak 

discriminating power. The amino acid substitution matrices such as BLOSUM were created based on 

multiple alignments of the most conserved regions of protein families from different species. The 20 by 

20 matrix created regardless of function and of taxonomical group provides low resolutions for 

taxonomical classification of environmental data.  

Contrary to the homology search programs, composition-based programs have been developed 

with the sole purpose- taxonomical classification of metagenome data. Unique sequence signatures 

have long been used to compare DNA sequences in many areas of bioinformatics. GC content and 

compositional biases have been used for taxonomic classification as well as for studying evolutions of 

different regions of the genome (Coenye et al 2003, Karlin et al 1997). Karlin et al documented that 

phylogenetically closely related groups of prokaryotes have similar patterns of compositional biases of 

nucleotides (1997). Dozens of metagenomics tools have been developed based on compositional 

biases for taxonomical classification and they have been gaining popularity.  

 

1.6.4 Existing programs for taxonomical classification of metagenome sequencing data 

Comprehensive pipelines such as Mothur and QIIME have been widely used for analyzing community 

sequence data based on 16S rRNA genes (Schloss et al 2009, Caporaso et al 2010). For fungal 

taxonomical classification, ITS regions of fungal species, that are available at the database UNITE, 

can be integrated with Mothur and QIIME (Kõljalg et al 2013). These programs have gained popularity 

for taxonomical classification of the community data from 16S rRNA gene amplicon sequencing. It has 

been also used for metagenome data that contain many different types of sequences- CDS, non-CDS, 

rDNA, and etc. In such case, researchers analyze microbial diversity with these pipeline software, and 

then separately apply homology search programs for inferring functionality of sequences. However, 

because the software does not have the capacity for taxonomical classification of sequences other 

than 16S rRNA gene, the approach has limitations in studying interactions of microorganisms. It 
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enables them to infer functionality only of a whole environmental sample but not of taxonomic group. 

Additionally, methods based on percent sequence similarity for defining operational taxonomic unit in 

Mothur and QIIME have been criticized for lack of consideration of evolutionary distances (Nguyen et 

al 2016). Furthermore, multiple copies of rRNA genes within a single isolate may hinder accurate 

estimation of microbial diversity and quantification of taxonomic groups.  

Composition-based approach has advantage over the SSU rRNA based method. It provides a 

means to classify not only rRNA genes but also other types of sequences such as protein coding 

genes. It enables users to draw a big picture of symbiotic roles of microorganisms in the community. 

Furthermore, estimation of taxonomical diversity and quantification of taxonomic groups can be 

calculated based on a large number of genes, which has less bias compared to single gene based 

method. Taxonomical classification programs based on composition-based methods include 

PhyloPythia, NBC, Phymm, Tacoa, and Taxsom (Kim et al 2013). Indus and Twarit are binning 

methods based on a range of biases of compositional patterns (Reddy et al 2012). In addition, 

sequence profiles have been used for gene/ exon predictor programs. Multiple gene predictors for 

eukaryotes have been developed based on sequence profiling features. Augustus is a gene prediction 

program for eukaryote genomes (Stanke et al 2004). GeneMark-ES employs unique features of fungal 

coding regions and unsupervised neural network to identify fungal genes (Ter-Hovhannisyan et al 

2008). Z-curve method utilized additional factor, frequencies of phase-specific mono-, di-, tri – 

nucleotides, to detect exons in eukaryotes (Gao et al 2004).  

 

1.7 Codon usage and codon context 

1.7.1 The importance of codon usage and codon context 

Over the last several decades, a number of studies have proven wrong the long presumed belief that 

codon usage19 serves no biologically meaningful functions in transciption20 and translation21, two main 

processes of the central dogma22 (Angov et al 2011). Although the mechanisms remain largely 

unknown, codon usage bias appears to play important roles in gene regulation (e.g., gene expression, 

diversification of gene products, translational efficiency and accuracy, mRNA stability, and protein 

folding23). Recent studies have documented the regulatory roles of codon usage and of codon 

context24: regulation of folding dynamics of mRNA and of protein in transcription and translation 

processes (Angov et al 2011, Bartoszewski et al 2016, Baeza et al 2015, Behura et al 2012, Del 

Campo et al 2015, Chevance et al 2014, Costafreda et al 2014, Jacobson et al 2016, Khabou et al 

2016, Komar 2016, Schieweck et al 2016, Yang 2017, Zhao et al 2017, Zhou et al 2016). Codon 

usage of multiple consecutive codons within mRNA secondary structures25 plays critical roles in 

co-translational protein folding during protein synthesis (Harigaya et al 2017, McCarthy et al 2017). 

Furthermore, it was documented that non-optimal codons regulate circadian rhythms in response to 

change in environmental condition, which implies regulatory roles of codon usage managing 

environmental changes (Xu et al 2013, Zhou et al 2013).  
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1.7.2 Microorganism's survival strategy- codon usage and codon context  

In general, mutational bias, genetic drift, and natural selection are believed to contribute to codon 

usage bias (Hershberg et al 2008). Ermolaeva DM reviewed the important factors that may affect 

codon usage preference: translational selection, GC composition, strand-specific mutational bias, 

amino acid conservation, protein hydropathy, transcriptional selection and RNA stability (2001). These 

factors are believed to make varying contributions to codon usage bias, which is one of 

microorganism's unique sequence signatures.  

A number of researchers have performed comparative analysis with various taxonomic groups to 

study factors affecting codon bias. Chen et al. found that genome GC content and context-dependent 

nucleotide bias well discriminated codon bias among different organisms by applying singular value 

decomposition to codon usage biases of 100 eubacterial and archaeal organisms (2004). They 

suggested that mutation was the primary cause while the translational selection was the secondary 

cause of codon usage bias. In the same vein, Suzuki et al. suggested that GC content contributed 

most while translational selection contributed less to the overall codon usage diversity, respectively 

(2009). Because translational selection is driving force of codon bias for more efficient and accurate 

translation, the process is related to codon optimization. They showed that because codon 

optimization correlates with mRNA levels, it may be able to detect the genes involved in a 

microorganism's adaptive changes in response to environmental stress in a thermophilic 

microorganism. Carbone et al. employed statistical methods for dimensionality reduction to study 

codon bias space (2005). They reported that codon preferences discriminated between thermophiles 

and mesophiles as well as between aerobic microorganisms and anaerobic microorganisms. 

Recent studies documented that a microbe has employed codon usage, codon context, and amino 

acid composition as its survival strategy to adapt to abiotic stresses (Su et al 2016, Ding et al 2012, 

Paul et al 2008, Sanjukta et al 2012). A microorganism has a unique range of synonymous codon 

usage due to individual's evolutionary path (Lee et al 2010, Akashi et al 1994, Grantham et al 1981). 

Because microorganism’s genome shows the adapted state at present rather than mutational changes 

over time, researchers have performed comparative study using omics data from extremophiles and 

non-extremophiles and provided useful insights into roles of codons (Su et al 2016, Ding et al 2012, 

Paul et al 2008, Sanjukta et al 2012). Comparative analysis on genomics from thermophilic26, 

mesophilic27, and psychrophilic28 fungi demonstrated that thermophiles and psychrophiles preferred G 

or C ending codons while mesophiles preferred A or T ending codons (Su et al 2016).  

In addition to codon usage bias, amino acid context has played important roles in microorganism's 

adaptation as well. Protein structural adaptation of extremophiles showed that amino acid composition 

reflects microorganism's evolution (Ueno et al 2016). Raymond-Bouchard et al. performed 

comparative analysis on 5 cryophilic permafrost bacteria and their mesophilic relatives and showed 

that cryophiles had more cold adapted proteins with more serine and fewer prolines/acidic residues 
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(2018). McDonald investigated what caused amino acid usage bias (2001). With an assumption of that 

asymmetrical pattern of amino acid substitution on mesophiles and thermophiles reflected selection 

toward a particular amino acid with respect to a range of temperature, he performed comparative 

analysis on patterns of the substitutional asymmetry in the mesophilic and thermophilic 

microorganisms belonging to the same genus or with closely related phylogeny. He concluded that the 

universal biochemical properties of amino acid and GC content were not sufficient to explain all the 

asymmetries. He suggested that taxon-specific properties of amino acid must have contributed to the 

asymmetry as well.  

   These studies all support our novel strategy; we have completed the development of novel 

bioinformatics programs for taxonomical classification of metagenome data from the WGS of the AMF 

based on usage bias and context bias of multiple consecutive codons and amino acids, because we 

have discovered that they are taxonomically unique sequence property.  

 

1.8 Research problem, research objectives, and the contribution of the 

developed programs to AMF research 

1.8.1 Research problem and objectives 

As I explained in the previous sections, a spore of single AMF isolate contains hundreds or even 

thousands of nuclei that are speculated to be heterogeneous (Boon et al 2013, Boon et al 2015, Hijri 

et al 2007). In addition, AMF harbor a large number of symbionts inside of their spores and mycelia, 

especially if they are grown in-vivo (Iffis et al 2016). Therefore, the WGS of the AMF results in 

metagenome. Due to the inter/ intra genomic variations among isolates, the available genome 

information has limitation for serving as a reference genome (Sarma et al 2017, Marleau et al 2011, 

Boon et al 2015, Hijri et al 2007). Moreover, inheritable symbionts inhabiting inside of AMF mycelia 

have experienced genomic evolution for host-dependent adaptation (Naito et al 2015, Torres-Cortes et 

al 2015). Due to lack of completely sequenced genomes of inheritable symbionts of the AMF as well 

as those associated with the AMF, taxonomical classification of the WGS data of the AMF grown 

in-vivo is a complex research problem.  

The main theme of my doctoral research was to develop bioinformatics programs for analyzing the 

WGS data of the AMF.  

More specifically,  

 

1) To develop a bioinformatics program for taxonomical classification of the WGS data of the 

AMF for studying symbiotic relationships of microorganisms associated with AMF 

2) To develop a bioinformatics program for studying functions of novel gene candidates from 

the WGS data of the AMF 
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3) To develop a bioinformatics tool for studying evolution of genetic codes and undiscovered 

properties of codons 

 

I developed three different types of bioinformatics programs according to the objectives. In the 

following section, I will explain the competitive advantages of each program compared to existing 

methods. 

 

1.8.2 The contribution of the developed programs to AMF research 

1.8.2.1 SeSaMe: A novel program for taxonomical classification of the WGS data of the AMF 

In the previous sections, I reviewed several mainstream approaches for taxonomical classification of 

metagenome sequencing data which I will briefly recall here. Similarity-based method for taxonomical 

classification is ineffective tool due to low resolution especially for short sequences. Another widely 

used approach is based on 16S rRNA gene for amplicon sequencing data. In such case, researchers 

employ two methods: taxonomical classification method for estimating microbial diversity and 

homology search method for inferring functions of the whole metagenome sequencing data. However, 

researchers have difficulty in studying symbiotic relationships of microorganisms because the 

combination of these two methods does not offer a means to infer functionality of sequences within a 

taxonomic group. Compared to the approaches mentioned above, composition-based method 

classifies not only rRNA sequences but also CDS/ non-CDS, which enables user to study symbiotic 

relations of microorganisms in environmental sample. Moreover, this approach may have higher 

accuracy for estimating diversity and abundances of taxonomic groups, compared to single gene 

based method.  

However, existing programs of composition-based method are designed to classify prokaryote 

sequences. They calculate observed frequencies of k-mers in entire genome without distinction 

between CDS and non-CDS. Because bacteria frequently encounter environmental stresses that they 

need to adapt to, their CDS has unique genomic properties resulting from adaptive mechanisms such 

overlapping genes. Therefore, compositional biases alone may have enough discriminating power for 

prokaryotic taxonomical classification. However, composition-based method alone is insufficient for 

fungal taxonomic groups. Although existing programs had reasonable capacity for taxonomical 

classification of bacterial sequences, they classified most of fungal sequences into bacterial group. 

Therefore, I developed a bioinformatics program called SeSaMe for taxonomical classification of the 

WGS data of the AMF grown in-vivo.  

The major distinguished features of the developed program, compared to existing 

composition-based method, include the reference sequence database containing the sequence 

variables- A.A. Char Trimer, A.A. Trimer, and Three Codon DNA 9-mer that form a three level 
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hierarchy-, and genus specific bias databases containing numeric variables, trimer usage bias, A.A. 

Trimer usage, and three codon usage, computed based on observed frequency ratios of Three codon 

DNA 9-mers and their cognate A.A. Trimers. The sequence variables have been created based on a 

large number of amino acid trimers with structural roles- subunits of protein secondary structures from 

Protein Data Bank (PDB) (Figure 2 of Chapter 2). The main variable, trimer usage bias, was computed 

based on codon usage of Three codon DNA 9-mer not within A.A. Trimer but within A.A. Char Trimer 

where A.A. Char was defined as a group of amino acids whose side chains have similar properties in 

terms of volume, polarity, and charge. The main variable adopted a broader set of amino acid 

characteristics, because transcriptional and translational regulators may add additional information to 

3D structures of mRNA and protein, which may change biochemical properties of primary sequences. 

In general, trimer usage bias and three codon usage were shown to be taxonomically unique 

sequence property (Chapter 2). 

While existing composition-based method relies on frequency of k-mers without taking their 

biological properties into consideration, the developed program perceives nucleotide subsequences 

with structural roles differently from those without one. Combination of codon usage with 

compositional pattern of Three codon DNA 9-mer encoding for protein secondary structure not only 

distinguishes CDS from non-CDS but also identifies an open reading frame. The program draws an 

inference for fungal group based on six different scores calculated from all reading frames of a query 

sequence, and therefore has higher resolution for taxonomical classification of short bacterial and 

fungal sequences in the WGS data of AMF (Figure 1 of Chapter 2). It is freely available at 

www.fungalsesame.org. 

 

1.8.2.2 SeSaMe PS Function: a novel program for position specific functional analysis of the 

WGS data of the AMF 

Compared to genes of intensively studied organisms or of microorganisms culturable in laboratory 

conditions, the WGS data of the AMF may include a large portion of novel candidate genes which 

researchers may not be able to find homologues for in existing sequence databases. Moreover, 

considering a short history of molecular biology, biological systems of living organisms are so complex 

that a large portion of mechanisms remain to be unsolved. Even with recent advances in the molecular 

biology, further investigation may be required for not only novel genes but also genes with known 

function. Therefore, a majority of existing bioinformatics tools that rely on alignment with annotated 

sequences have low sensitivity toward undiscovered motifs with new structure and may not be 

sufficient to study novel properties of genes from the relatively ancient fungi- AMF.  

Recent studies documented important regulatory roles of codon usage and codon context in mRNA 

structure and protein folding (Yang 2017, Harigaya et al 2017, McCarthy et al 2017). DNA sequence 

encoding for protein secondary structure contains information of mRNA secondary structures under 

http://www.fungalsesame.org/
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assumption of their canonical base pairing. mRNA secondary structures have been documented to 

influence transcription initiation, to regulate mRNA splicing, and to guide protein folding by controlling 

translational elongation speed. A number of studies reported that changes in codon usage and codon 

context produced altered protein products. For example, Kimchi-Sarfaty et al documented that a 

synonymous single-nucleotide polymorphism in the gene- Multidrug Resistance 1 (MDR1) produced a 

protein product with altered substrate specificity. They hypothesized that the change from a frequent 

codon to a rare codon lengthened the time for co-translational folding, allowing an ion insertion into the 

structure. And their hypothesis implies the association between rare codon and a high degree of 

eccentricity from standard protein folding dynamics. For another example, McCarthy et al studied 

synonymous SNPs in disease related genes and documented that bicodons- synonymous SNP and its 

neighbor codon- had strong association with alteration of ribosome pause propensity. Codon context 

and codon usage of multiple consecutive codons also play important roles in protein folding. For 

example, rare codon and double stranded region of mRNA secondary structure have shown an 

association with slower velocity of translating ribosome that contributes to optimal folding of protein 

(Yang 2017). Several studies have made insightful suggestions linking mRNA structure to protein 

structure (Yang 2017). A role of codon usage may vary widely with respect to mRNA structure and the 

translated protein structure where the codon is located. Therefore, codon usage and codon context of 

multiple consecutive codons provide useful insights into their roles in folding of gene products.  

I developed a bioinformatics program called SeSaMe Position Specific Function (SeSaMe PS 

Function) for position specific functional analysis of the WGS data of AMF. In contrast to existing 

programs that rely on sequence alignment, the developed program uses statistical methods to extract 

important subsequences based on comparative data created from usage information of subsequences 

of a query sequence. The main variable of the developed program, that incorporates both codon 

usage and amino acid usage of multiple consecutive codons, may provide important insights into 

structural differences among subsequences of a query sequence.  

As a case study, we ran the program with 25 AMF CDS. The results showed that the program 

identifies outliers: subsequences with unique landscape pattern. Landscape pattern was defined as a 

XY scatter chart belonging to a subsequence where the variable on X-axis is taxonomic group and 

that on Y-axis is their usage bias value (Supplementary Figure 5 of Chapter 3). Each Three codon 

DNA 9-mer has its own landscape pattern. Landscape pattern is more accurate measurement 

because it indicates relative extents of usage information of 54 taxonomic groups. Sequences from 

454 sequencing had lengths of the range between 100bp and 300bp, and contained several dozens of 

Three codon DNA 9-mers matched to the reference sequence database. While a majority of 

landscape patterns with similar shape were assigned into one major cluster, outliers with unique 

landscape pattern were assigned into a cluster with a single member or with only a few members. 

Considering that codon usage of three codon DNA 9-mer may reflect intrinsic property of 

undiscovered mechanism of a taxonomic group, outliers may play distinctive roles involving in 
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molecular interactions. Because the program identifies outliers based solely on the comparative 

dataset measured in 54 genera, rather than based on sequence alignment of a query sequence 

against motifs with known function, it may have high sensitivity for novel motifs of undiscovered 

mechanisms. The program provides a useful means for studying novel genes from the WGS data of 

the AMF. SeSaMe PS Function is freely available at www.fungalsesame.org.  

 

1.8.2.3 Post: a novel bioinformatics program for studying codon property and codon 

assignment 

AMF are special in that they harbor a large number of microorganisms inside of their spores and 

mycelia. Recent studies have identified several obligate endosymbionts of AMF such as MRE and 

Candidatus Glomeribacter gigasporarum (Naito et al 2015, Torres-Cortes et al 2015, Jargeat et al 

2004). It is speculated that some of endosymbionts in AMF may be in the process of being 

endosymbiotic organelles. Besides, AMF are ancient fungi whose genome contains hundreds or even 

thousands of nuclei that are believed to be heterogeneous (Marleau et al 2011, Boon et al 2015, Hijri 

et al 2007). It is possible that some nuclei may result from inheritable symbionts that were acquired 

during AMF evolution. Inheritable endosymbionts may have retained properties of ancient 

transcriptional and translational apparatuses that have been lost in many free-living microorganisms. 

According to recent studies in mitochondria and chloroplasts, the number of genes included in these 

organellar genomes varies widely from a few genes to hundreds of genes. Genes for rRNA, tRNA, and 

ribosomal proteins are often encoded by the organellar genome. If some other factors including 

aminoacyl-tRNA synthetases (aaRs) are encoded by nuclear genome (Brandao et al 2011), nuclear 

genome often contains different versions of proteins involving in translation, e.g., one for nuclear 

genome and another for organellar genome. Furthermore, recent studies have documented that 

non-coding RNAs play important regulatory roles in transcriptional and translational processes (Sun et 

al 2015, Mathy et al 2017, Herriges et al 2018, Bazin et al 2017). Heterogeneous transcriptional and 

translational apparatuses tailored to mitochondrial genome may have contributed to the mitochondrial 

specific codon assignments that are different from the standard genetic code table, for example, UGA 

for Trp, AUA for Met, AGR for Ser and stop codon, AAA for Asn, CUN for Thr, and UAA for Tyr. 

Considering that AMF may have a large number of inheritable endosymbionts other than mitochondria, 

they may contain various transcriptional and translational apparatuses targeting endosymbionts. 

Consequently, their codon assignments may not comply with the standard genetic code table and vary 

considerably.  

Considering that the current knowledge of genes and proteins has been obtained mostly based on 

intensively studied model organisms, we may need to study the origin of the genetic code to expand 

our perspectives in codon property and assignment. Mainstream hypotheses addressing the origin of 

the genetic code claim that codon position has played important roles in its evolution; the standard 



  
Page 22 

 
  

genetic codes show an association between the property of the nucleotide either in the first or the 

second position and that of the cognate amino acid.  

We can assess the variation of codon (re)assignment and the diversity of the transcriptional and 

the translational apparatuses with an immeasurable amount of omics data (Hernández et al 2012). I 

developed a novel bioinformatics method- POsition Specific genetic code Table (Post) that assigns a 

codon with respect to nucleotide position in the codon. The developed program may provide 

researchers with a systematic tool for studying novel genes or new mechanisms in gene organization 

in context of codon property. The program is versatile and can be used for many types of research 

objectives. For example, it can be employed to conduct comparative study of irregular codons across 

different taxonomic groups as shown in a case study in the chapter 4. Or it may be also used to study 

long non-coding RNAs across different gene types. The Post is freely available at www.codon.kr. 
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2.1 Abstract 

Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that play key roles in plant growth and 

soil fertility. They are obligate biotrophic fungi that form coenocytic multinucleated hyphae and spores. 

Numerous studies have shown that diverse microorganisms live on the surface and inside their 

mycelia, resulting in a metagenome when whole genome sequencing (WGS) data are obtained from 

sequencing AMF cultivated in-vivo. The metagenome contains not only the AMF sequences, but also 

those from associated microorganisms. In this article, we introduce a novel bioinformatics program- 

SeSaMe- designed for taxonomic classification of short sequences obtained by next-generation DNA 

sequencing. A genus-specific usage bias database was created based on amino acid usage and 

codon usage of three consecutive codon DNA 9-mers encoding for an amino acid trimer in a protein 

secondary structure. The program distinguishes between coding sequence (CDS) and non-CDS and 
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classifies a query sequence into a genus group out of 54 genera used as reference. The average 

correct prediction percentages of the CDS and the non-CDS test sets at the genus level were 71% 

and 50% for bacteria, 65% and 73% for fungi (excluding AMF), and 49% and 72% for AMF 

(Rhizophagus irregularis), respectively. The program provides a means for estimating not only 

taxonomic diversity and abundance but also the gene reservoir of the reference taxonomic groups 

associated with AMF. Therefore, the program enables users to study the symbiotic roles of associated 

microorganisms. SeSaMe can be applicable to other microorganisms as well as soil metagenomes. It 

is freely available at www.journal.com and at www.fungalsesame.org.  

 

KEYWORDS: SeSaMe; Spore associated Symbiotic Microbes; Arbuscular mycorrhizal fungi; 

Taxonomic classification; Three Codon DNA 9-mer 

 

2.2 Introduction 

Arbuscular mycorrhizal fungi (AMF) are plant-root inhabiting fungi, of the subphylum Glomeromycotina, 

which form symbioses with more than 80% of vascular plants worldwide [1]. They supply plants with 

essential nutrients particularly phosphorus and nitrogen, protect them against soil borne pathogens, 

and alleviate their abiotic stresses [1–3]. Therefore, AMF based inoculants have been applied in 

agriculture as a biofertilizer and in phytoremediation for cleaning up contaminated soil [2,4–7]. Despite 

the ecological, agricultural, and environmental importance of AMF, their genetics is poorly understood 

due to their complex genome organization. They form coenocytic hyphae, reproduce through 

multinucleated asexual spores, and are strict symbionts [8]. Furthermore, it is suggested that AMF are 

heterokaryons, although this is under debate [9]. In addition, numerous studies reported that bacteria 

and fungi inhabit the surface and the interior of mycelia and spores [10–14]. In 2012 and 2013, 

Tisserant et al. published the transcriptome and the genome of the AMF Rhizophagus irregularis (R. 

irregularis) cultivated in-vitro [15,16]. However, only a few AMF taxa are able to grow in axenic in-vitro 

systems with transformed roots as a host. Thus, whole genome sequencing (WGS) data from AMF 

spore DNA originating from in-vivo cultures (conventional cultivation method in a pot culture with a 

host plant), contain a substantial number of non-AMF DNA sequences, but do provide important 

information on the microbial communities associated with AMF. In contrast, WGS data from in-vitro 

petri-dishes contain fewer non-AMF sequences, because antibiotics are used to initiate axenic 

cultures [17]. 

Taxonomic classification of WGS obtained from AMF cultivated in-vivo using current bioinformatics 

approaches is challenging because these data represent a complex metagenome containing 

sequences of prokaryotic and eukaryotic microorganisms. Two major approaches for taxonomic 

classification of random whole metagenome sequencing data (e.g., whole metagenome shotgun 

sequencing data) include composition-based methods and similarity-based search methods [18,19]. 

The latter ones include BLAST and its sister programs that are adequate for inferring functions of a 

http://www.journal.com/
http://www.passsesame.org/
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query sequence [19,20]. Nevertheless, they have limitations in taxonomic classification, because they 

calculate scores based on a 20 by 20 matrix containing the overall rates of the 20 amino acid 

substitutions created from the most conserved regions of proteins. The same matrix is applied to all 

types of query sequences, irrespective of functions, structures, and taxonomic group. However, due to 

a lack of bioinformatics tools for analyzing random whole metagenome data, similarity-based search 

methods have been commonly used for taxonomic classification. In addition to similarity-based 

methods, taxonomic classification pipelines, for analyzing targeted metagenome sequencing data (e.g., 

16S rRNA gene-based metagenome sequencing data), have been widely used for analyzing random 

whole metagenome sequencing data in combination with homology search program. Numerous 

repository databases and pipelines have been developed based on the 16S rRNA gene. However, 

recent studies have reported horizontal gene transfer of 16S rRNA genes in prokaryotic organisms 

and multiple heterogeneous rRNA genes within a single prokaryotic cell [28]. Therefore, they may 

cause misrepresentation of data if they are not properly dealt with, which may result in erroneous 

taxonomic classification.  

 

Figure 1  Unique advantage of SeSaMe over existing programs  

Existing programs calculate a score based on the frequencies of k-mers identified in a query sequence irrespective of 

properties of the k-mers, or its reading frame. In contrast, SeSaMe identifies k-mers that encode for the amino acids of 

protein secondary structures in each reading frame. In the figure, matching Three Codon DNA 9-mers of the Trimer Ref. DB 

are marked with a rectangle, where the rectangle’s color indicates its reading frame. The program calculates scores based on 

the three codon usages and the A.A. Trimer usages of the matching Three Codon DNA 9-mers in each reading frame. It 

classifies a query sequence into a taxonomic group based on the six scores computed from all reading frames.   
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Note: All sequences in this figure are randomly generated for illustration purposes only. 

 

Composition-based methods utilize unique sequence properties such as codon usage bias, 

compositional patterns in nucleotide sequences (k-mers), and GC content that have been widely used 

for studying microbial genome evolution in areas of bioinformatics [18,21–25]. K-mers are 

subsequences of length k in a DNA sequence (e.g., tetramer or 4-mer: ATGT). Composition-based 

methods using k-mers have been employed in bioinformatics programs for taxonomic classification of 

random whole metagenome data [26].  

They have a number of advantages over similarity-based search methods. It is estimated that 

more than 99% of existing microorganisms cannot be cultured in laboratory conditions [27] and 

microbial sequences available in bioinformatics databases represent only a tiny fraction of the diversity 

of existing microorganisms. Therefore, composition-based methods, that do not require sequence 

alignments but make predictions based on a microorganism's unique sequence signatures, 

supposedly excel in taxonomical classification of novel sequences. However, existing bioinformatics 

programs based on composition-based methods are designed for prokaryotic organisms and their 

utilization in fungi is inefficient. In this article, we introduce a novel bioinformatics program for random 

whole metagenome sequence classification, SeSaMe (Spore associated Symbiotic Microbes). It 

provides a means for estimating taxonomic diversity and abundance, as well as, the reservoir of genes 

of reference taxonomic groups in AMF metagenome. It therefore enables users to study symbiotic 

roles of taxonomic groups associated with AMF. In order to filter complex evolutionary signals and 

obtain comparable evolutionary footprints, we calculated codon usage bias based on the amino acid 

usage and the codon usage of three codon DNA 9-mer that encodes for three consecutive amino 

acids located in protein secondary structure. We joined three consecutive codons into one unit, and 

calculated the unit’s relative frequency among synonymous three codon DNA 9-mers, which will be 

hereafter referred to as three codon usage. Three codon usage has higher resolution than mono 

codon usage in assessing the differences among taxonomic groups because evolutionary forces 

acting on a codon and its encoded amino acid vary widely across protein secondary structures as well 

as across taxonomic groups. For example, the evolutionary forces acting on the codon AAA, encoding 

the amino acid Lysine (K) in TGGAAAGTG (WKV), will have been different from the evolutionary 

forces acting on the codon AAA in GACAAAGAA (DKE). We found that three codon usage of a three 

codon DNA 9-mer belonging to protein secondary structure is a taxonomically unique sequence 

property. SeSaMe calculates a score based on six sets of three codon DNA 9-mers from all reading 

frames (Figure 1), and distinguishes between coding sequence (CDS) and non-CDS. It has an 

advantage over existing composition-based methods that do not identify nucleotide subsequences 

with structural roles, or do not consider the biological importance of codon and reading frame. 

SeSaMe is freely available at www.journal.com and at www.fungalsesame.org.  

 

 

http://www.journal.com/
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2.3 Methods 

2.3.1 Bacterial and fungal sequence databases 

We selected bacterial genera that were dominant in soil based on a literature review [10,27,31–34]. 

While NCBI offered a broad selection of more than 2,300 completely sequenced bacterial genomes, 

we did not have many choices for the majority of fungal phyla. Most of the completely sequenced  
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Figure 2  Database design 

In this figure, A.A. Trimer Usage Table consists of the A.A. Trimer usages of the multiple members- RKK, RKR, and RRK 

belonging to the same A.A. Char Trimer- AAA. Three Codon Usage Table consists of the three codon usages of the 

synonymous Three Codon DNA 9-mers encoding the A.A. Trimer- RKK (e.g., AGA AAA AAA). The trimer usage bias of AGA 

AAA AAA is the multiplication of the A.A. Trimer usage of RKK and the three codon usage of AGA AAA AAA. 

Note: All sequences and usage information in this figure are not real, but randomly chosen for illustration purposes only. 
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fungal genomes in NCBI or JGI were Dikarya, while we needed diverse fungal genomes covering 

Mucoromycotina, AMF, Blastocladiomycota, Neocallimastigomycota, Microsporidia, and 

Chytridiomycota. We assigned the completely sequenced genomes of 444 bacteria and of 11 fungi, 

including R. irregularis, to 45 bacterial and 9 fungal genera respectively, and created CDS and 

non-CDS databases per genus based on CDS lists provided by NCBI, JGI, and Tisserant et al. [16]. 

The number of genomes per genus varied from 1 to 81, depending on their availability in public 

databases. The total number of the bacterial, and the fungal, genes and introns, per genus, are shown 

in Tables S1 and S2. Sequences with an ambiguous nucleotide or with a length shorter than nine—the 

minimum length of nucleotides required for three codon DNA 9-mers—were excluded. Cryptococcus 

and Agaricomycetes (Phanerochaete, Scleroderma, Sebacina) belong to the same subdivision, 

Agaricomycotina, and were grouped together in order to simplify the analysis. 

 

Table 1  Conversion table from A.A. and stop codon to A.A. Char 

A.A. Char  A.A.  Properties  A.A. Char  A.A.  Properties  

A  K,R    Positively charged     G  G  Special  

B  H    Special  H  P  Special  

C  D,E   Negatively charged   I  M  Special  

D  S,T   
Polar uncharged  

smaller volume  
J  A,I,L,V    

Hydrophobic  

smaller volume  

E  N,Q   
Polar uncharged  

larger volume  
K  F,W,Y  

Hydrophobic  

larger volume  

F  C   Special  L  * Stop codon   

Note: Amino acids were grouped according to their side chain's pKa values and charges at physiological pH (7.4) and their 

volumes 

 

2.3.2 Database design 

In selecting a parameter k of k-mer, we chose three codon DNA 9-mer as the length of amino acid and 

of nucleotide, considering the approximate number of amino acids required to form a turn in helix and 

a beta-strand. The program consists of two main components- databases and scoring methods. The 

major distinguishing feature is the trimer reference sequence database (Trimer Ref. DB). 126,093 

Protein Data Bank (PDB) entry files were processed with in-house developed parsing programs in 

order to extract 7,674 amino acid trimers, subunits of protein secondary structures, that were assigned 

to the sequence variable- A.A. Trimer [30]. 224,383 three codon DNA 9-mers, encoding 7,674 A.A. 

Trimers, were assigned to the sequence variable- Three Codon DNA 9-mer. In Trimer Ref. DB, the 

sequence variables- A.A. Char Trimer, A.A. Trimer, and Three Codon DNA 9-mer- form a three level 
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hierarchy where A.A. Char Trimer is the highest level (Figure 2). To create amino acid characteristic 

(A.A. Char), first, we assigned amino acids with similar properties into one group according to polarity 

and charge of their side chain, and secondly subdivided each group according to their volume (Table 

1). Cysteine, Glycine, Histidine, Methionine, and Proline have special properties; Cysteine forms 

disulfide bonds, Glycine is the simplest amino acid, Histidine can be a proton shuttle, Methionine is 

often the first amino acid, Proline is an imino acid. Therefore, each of them was assigned as a sole 

member of A.A. Char group. Generally, multiple A.A. Trimers with similar properties belong to one A.A. 

Char Trimer. An A.A. Char Trimer and an A.A. Trimer have A.A. Trimer table and Three Codon DNA 

9-mer table containing multiple members, respectively (Figure 2).  

Genus-specific usage bias database (Genus Specific DB) contains the main numerical variable, 

trimer usage bias. Trimer usage bias represents a three codon usage bias of Three Codon DNA 9-mer, 

and is calculated by multiplying the A.A. Trimer usage of A.A. Trimer by the three codon usage of 

Three Codon DNA 9-mer in Trimer Ref. DB (Figure 2). There are 54 CDS Genus Specific DBs and the 

same number of non-CDS Genus Specific DBs in the program. Each CDS Genus Specific DB contains 

1,296 A.A. Trimer Usage Tables and 7,674 Three Codon Usage Tables created based on the CDS 

database. Each non-CDS Genus Specific DB contains the same number of tables created based on 

the non-CDS database with the same sequence compositions as those in the CDS Genus Specific DB. 

We decided to accept inaccuracy in calculating the information frequency in the case of non-CDS in 

exchange for cost effective CDS and non-CDS classification. Because SeSaMe only needs to 

compare frequency information of 54 genera calculated based on the same standard genetic code 

table for the same Three Codon DNA 9-mers of a query sequence, inaccuracy in non-CDS is assumed 

to be insignificant.  

 

2.3.3 Scoring methods 

We developed two scoring methods, each equipped with a P value scoring method. The trimer usage 

probability scoring method classifies a query sequence into one out of 54 genus references, while the 

rank probability scoring method classifies a query sequence into one out of 13 taxon groups: Clostridia, 

Bacilli, Oscillatoriophycideae, Nostocales, Acidobacteriales, Betaproteobacteria, Deltaproteobacteria, 

Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, AMF (R. irregularis), Agaricomycotina, 

and Pezizomycotina. To avoid repetition, these taxonomic groups will be hereafter referred to as 13 

taxon groups, and represented in the same order. We provide users with two different programs, one 

with the trimer usage probability scoring method and the other with the rank probability scoring 

method. 
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Figure 3  Flow chart of the program 
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2.3.3.1 Trimer usage probability scoring method 

This method converts three codon DNA 9-mers in a query sequence into A.A. Char trimers and 

identifies those with structural roles by searching them against Trimer Ref. DB. For each matching A.A. 

Char Trimer, the method first searches the matching A.A. Trimer, and second, the matching Three 

Codon DNA 9-mer in Trimer Ref. DB (Figure 3). It retrieves trimer usage biases of the matching Three 

Codon DNA 9-mers from CDS Genus Specific DB per genus. It repeats the process in each of 6 

reading frames (3 forward reading and 3 reverse reading frames) of a query sequence. It repeats the 

same process with non-CDS Genus Specific DBs, calculating a trimer usage probability score per 

genus. It then compares the highest scores from CDS and non-CDS Genus Specific DBs, and selects 

a genus with the highest score (Figure 3). Users are provided with an option to include genera whose 

scores have little difference from the highest score calculated.  

 

2.3.3.2 Rank probability scoring method 

This method measures a standardized three codon usage relative to an expected three codon usage 

as computed from three individual mono codon usages. The Average A.A. Usage Table (20 amino 

acids and stop codons for 12 A.A. Char monomers) and the Average Codon Usage Table (64 codons 

for 20 amino acid monomers and stop codons) were created based on CDS database per genus. 

1,296 Expected A.A. Trimer Usage Tables with the same sequence compositions as the A.A. Trimer 

Usage Tables were created based on the Average Amino Acid Usage Table. 7,674 Expected Three 

Codon Usage Tables with the same sequence compositions as the Three Codon Usage Tables were 

created based on the Average Codon Usage Table (Figure 4).  

A standardized three codon usage was calculated by dividing a three codon usage in a Three 

Codon Usage Table by an expected three codon usage in an Expected Three Codon Usage Table. 

Based on trimer usage biases and standardized three codon usages, we calculated a group mean for 

each taxon group and Kruskal Wallis (KW) test's h-score on ranks of 13 taxon groups, from which we 

developed a rank probability score per Three Codon DNA 9-mer. The new genus specific score 

database contains the same number of the rank probability scores as Genus Specific DB, 224,383 

scores per genus. Per reading frame of a query sequence, the program retrieves scores for all of the 

matching Three Codon DNA 9-mers from the new database and multiplies the scores to produce a 

rank probability score per genus. It repeats the process for each of 6 reading frames and classifies a 

query sequence into one of 13 taxon groups. This method is applicable only to CDS. 

 

2.3.3.3 P value scoring method 

We applied the concept of the sum of rolled numbers from a pair of dice to develop the P value scoring 

method (http://www.lucamoroni.it/the-dice-roll-sum-problem/). We drew analogies between the number 

of faces of a dice and 54 genera and between the number of dices we roll and the number of matching 

Three Codon DNA 9-mers identified in a reading frame of a query sequence. There were 54 possible 

ranks computed based on trimer usage biases per matching Three Codon DNA 9-mer. P value scores 
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were calculated based on a sum of ranks of matching Three Codon DNA 9-mers. Computational costs 

of P values for all possible outcomes, sums of ranks, were too high, however, so to reduce the 

computational costs we approximated P values. We obtained sample data per number of matching 

Three Codon DNA 9-mers based on equation 1. 

 

Figure 4  Creation of expected usage tables for the rank probability scoring method 

Average A.A. Usage Table and Average Codon Usage Table were calculated from the CDS database per genus. Expected 

A.A. Trimer Usage Tables and Expected Three Codon Usage Tables were created based on the Average A.A. Usage Table 

and the Average Codon Usage Table, respectively  

Note: All sequences and expected usage information in this figure are not real, but randomly chosen for illustration purposes 

only. 
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Equation. 1:    

 

where p is the sum of ranks, n is the number of dices per roll, s is the number of faces of the dice, 54, 

and the range of k is between 0 and ](p-n)/s[ where ]x[ is the floor function (e.g., ]7.9[ = 7). We created 

a table of P value scores per number of matching Three Codon DNA 9-mers. If a rank sum was less 

than one with the highest P value score, the approximate mean of all of the rank sums in each table, 

we multiplied the P value score with -1, indicating statistically non-significant outcome. In the test sets, 

the number of matching Three Codon DNA 9-mers varied widely, with a minimum of 30 and a 

maximum of 97. We have 624 tables in the P value score database covering 2 – 625 matching Three 

Codon DNA 9-mers. P value scores are generated per genus in both the trimer usage probability, and 

the rank probability, scoring methods to provide users with the statistical significance of predicted 

outcomes. 

 

2.3.4 Implementation and program availability 

SeSaMe has been implemented using the Java programming language (www.java.net, 

www.oracle.com (Java 8)). We have provided two sets of the programs; one requires Apache 

commons math3 (3.3) and IO (2.4) libraries (www.apache.org), while the other does not. The 

programs consist of executable Java JAR files and Java class files for Linux/ Unix operating systems. 

SeSaMe has been tested and confirmed to work on Linux system- CentOS Linux 7 (www.centos.org) 

and is currently being used at the Biodiversity Center, Institut de Recherche en Biologie Végétale, 

Département de Sciences Biologiques, Université de Montréal. The trimer usage probability scoring 

method offered to the public produces output of smaller size, but is sufficient for the purpose of 

taxonomic classification and is freely available at www.fungalsesame.org. There are no restrictions to 

use the programs by academic, or non-academic, organizations as long as they comply with the terms 

and conditions of the license agreements.  

  

2.3.5 Input, output, and options 

SeSaMe utilizes a command-line interface. Input files should contain DNA sequence(s) in fasta format. 

The Java JAR files produce detailed output files with sequence information (seq_id, matching A.A. 

Char Trimers, A.A. Trimers, and Three Codon DNA 9-mers) and genus information (rank, scores, and 

P value score). The output details the information per reading frame per sequence. After processing 

the output file with Java class files, users are able to obtain a summary file containing one predicted 

outcome per query sequence. Java JAR files require users to give a mandatory command line 

argument- input file path. Java JAR files with the trimer probability scoring method may produce 

multiple genera as an answer if their scores have little differences. A user is given the option with 6 

http://www.jave.net/
http://www.oracle.com/
http://www.apache.org/
http://www.apache.org/
http://www.centos.org/
http://www.fungalsesame.org/


  
Page 35 

 
  

choices to select a cut-off value for the difference: 0.01, 0.05, 0.1, 0.15, 0.2, or 0.3. Users can give the 

option to the Java class file called compare_result_coding_non_coding.class. The default cut-off value 

is 0.05. The lower the cut-off value is, the fewer genera will be included in an answer. 

 

Table 2  Correct prediction percentages at the levels of genus and of higher taxonomic rank of the 13 

taxon groups 

Genus CDS Non-CDS Genus CDS Non-CDS 

 
Correct  
genus % 

Correct  
taxon  
group % 

Correct 
genus % 

Correct  
taxon  
group % 

 
Correct  
genus % 

Correct  
taxon  
group % 

Correct 
genus % 

Correct  
taxon  
group % 

Acidithiobacillus 57 78 51 72 Microbacterium 87 96 60 89 

Acidobacterium 62 62 40 40 Micrococcus 93 97 48 89 

Agrobacterium 65 84 50 65 Myxococcus 88 89 27 39 

Anabaena 41 57 56 78 Nitrobacter 66 90 42 71 

Azorhizobium 87 97 49 80 Nitrosococcus 51 66 42 69 

Azotobacter 75 87 55 71 Nitrosomonas 45 45 33 33 

Bacillus 53 53 64 64 Nitrosospira 60 60 70 72 

Bdellovibrio 61 64 63 66 Nocardia 79 89 25 44 

Beijerinckia 65 83 56 66 Nostoc 58 60 62 68 

Bradyrhizobium 84 88 41 61 Oscillatoria 58 58 66 66 

Caulobacter 79 91 43 59 Pseudanabaena 76 77 48 53 

Clostridium 81 85 90 92 Pseudomonas 77 95 52 64 

Cyanobacterium 72 73 61 61 Pseudonocardia 88 96 29 74 

Desulfotomaculum 49 54 43 69 Rhizobium 70 81 48 60 

Desulfovibrio 43 52 52 55 Rhodobacter 85 94 32 66 

Erwinia 71 87 47 81 Rickettsia 68 68 67 67 

Frankia 72 90 18 50 Shewanella 75 83 83 86 

Geobacter 61 67 47 54 Sinorhizobium 67 83 51 69 

Klebsiella 79 95 59 77 Sphingomonas 76 92 31 71 

Kocuria 88 97 52 89 Streptomyces 89 96 55 56 

Leuconostoc 62 72 41 73 Variovorax 85 85 41 41 

Mesorhizobium 70 90 40 58 Xanthomonas 91 94 48 60 

Methylococcus 76 87 60 82 Total 3185 3587 2238 2970 

 Mean 
(Bacteria) 

71% 80% 50% 66% 

AMF 49 49 72 72 Oidiodendron 68 68 71 71 

Aspergillus 72 72 77 77 Phanerochaete 52 67 66 91 

Cenococcum 54 66 88 90 Scleroderma 76 87 68 89 

Cryptococcus 72 87 78 89 Sebacina 58 89 66 90 

Mycosphaerella 88 93 69 81 Total 589 678 655 750 

     Mean (Fungi) 65% 75% 73% 83% 
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Note: After genus in an answer was converted to a corresponding taxonomic group in the 13 taxon groups, the mean of the 

correct prediction percentages (Correct taxon group %) was calculated. 

 

 

2.3.6 Program evaluation 

We assessed the accuracy of the classification program by conducting classification experiments. We 

created metagenome test sets, ran the programs with them, and calculated the correct prediction 

percentages. We showed the relationship between the correct prediction proportion and the P value 

score in order to provide users with useful examples in assessing the statistical significance of 

predicted outcomes.  

 

2.3.6.1 Metagenome test sets  

We randomly chose 100 sequences from each of the CDS and non-CDS databases for each genus. 

We randomly selected a starting base pair position in each of the chosen sequences. From the 

starting position, we randomly selected an ending base pair position so that a sequence length is 

within the range of 150 ~ 300 bp. Both of the CDS and the non-CDS test sets consisted of 4,500 

bacterial and 900 fungal sequences (including AMF). 

 

2.3.6.2 Correct prediction percentages from the trimer usage probability scoring method 

The means of the correct prediction percentages of the CDS and the non-CDS test sets at the genus 

level were 71% and 50% for the bacterial group, 65% and 73% for the fungal group (excluding AMF), 

and 49% and 72% for AMF, respectively. AMF showed the lowest prediction percentage among the 

CDS genus test set possibly due to a large number of heterogeneous nuclei and horizontal gene 

transfers from a variety of endobacteria during their evolution [8,10–14]. The means of correct 

prediction percentages at the genus level and at higher taxonomic ranks of the 13 taxon groups are 

shown in Table 2.  

SeSaMe produced more than one genus as an answer per query sequence when multiple genera 

had little differences in their scores. We converted each predicted genus into one of the 13 taxon 

groups and calculated a proportion of the correct taxon group in answer per query sequence. We 

calculated the mean and the standard deviation of the proportions in each genus test set; 1 

represented that answers contained correct taxon groups only, while 0 represented that answers 

contained incorrect taxon groups only (Tables S3, S4). The mean was 0.9 for the bacterial CDS test 

set, which indicated that in average 90% of the taxon groups in an answer were correct. 

SeSaMe produced only one genus as an answer in 60% and 46% of correctly predicted sequences 

from the bacterial CDS and non-CDS test sets, respectively (Figure S1, Table S5). A correct taxon 

group occurred in the first rank in 90% and 76% of correctly predicted sequences in the bacterial CDS 

and non-CDS test sets, respectively (Figure S2, Table S6). Only 1% ~ 5% of the sequences in the 

bacterial and the fungal test sets had AMF in an answer (Table S7). Although the trimer usage 
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probability scoring method provides us not with the individual trimer usage biases but with the result of 

multiplying all of the trimer usage biases identified in a query sequence, we can often derive general 

ideas about the query sequence from its answer. Does it contain only one genus in the answer? Or 

what other genera does it contain in answer? (Figures S3, S4) For example, an AMF test sequence 

that contains Clostridium and AMF in the answer may imply that the query sequence may have been 

acquired by horizontal gene transfer from a bacterium ancestor to an AMF ancestor during evolution. 

 

2.3.6.3 Correct prediction percentages from the rank probability scoring method 

The mean of the correct prediction percentages of the CDS test set was 82% for the bacterial group, 

72% for the fungal group (excluding AMF), and 42% for AMF. The mean and the standard deviation of 

the correct prediction percentages of the CDS test set were 64% ± 4.2%, 71% ± 6.4%, 84% ± 2.5%, 

70% ± 2.8%, 73% ± 0%, 83% ± 8%, 74% ± 10%, 81% ± 7.8%, 88% ± 9.2%, 85% ± 5.9%, 42% ± 0%, 

65% ± 6.4%, and 79% ± 6.7% for the 13 taxon groups, respectively. Compared to the trimer usage 

probability scoring method, the rank probability scoring method produced the higher mean and the 

smaller standard deviation, 82% ± 9.4% for the bacterial group. In general, the rank probability scoring 

method showed improvement in performance. Although the means for Clostridia and 

Gammaproteobacteria were lower, their standard deviations were much smaller in the rank probability 

scoring method than the trimer usage probability scoring method: 4.2% vs 22% and 7.8% vs 9.4%, 

respectively. The trimer usage probability scoring method showed better performance in Actinobacteria 

that had low within-group variation of trimer usage bias. In contrast, the rank probability scoring 

method showed better performance in genera that had relatively flat peakness in a frequency 

distribution curve of synonymous Three Codon DNA 9-mers, in addition to genera that had relatively 

large within-group variation of trimer usage bias.  

 

2.3.6.4 Relationship between correct prediction proportion and P value score 

The mean of the correct prediction proportions per number of matching Three Codon DNA 9-mers 

calculated based on the result of the trimer usage probability scoring method is shown in Figure S5A 

and Table S8. The means of correct prediction proportions per base 10 logarithm of an approximated 

inverse of a rank sum based P value score (log10 (inverse of P value score)) calculated based on 

result of the trimer usage probability scoring method and of the rank probability scoring method are 

shown in Figure S5B and Table S9 and Figure S5C and Table S10, respectively. We divided the 

results of each genus test set into quartiles and calculated the range of (log10 (inverse of P value 

score)), the mean and the standard deviation of the correct prediction proportions in each quartile. 

They are shown in Tables S11 and S12 for the trimer usage probability scoring method and the rank 

probability scoring method, respectively. The first ranked genus with the highest probability score that 

was selected as an answer of a test sequence always had positive P value score. In general, as (log10 

(inverse of P value score)) became higher—i.e., as positive P value score became lower—the correct 

prediction proportion increased in all test sets. The frequencies of fungal sequences that had a correct 
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taxon group in the 1st, 2nd, 3rd, 4th, or 5th rank, in an answer were comparable due to similarity of 

Dikarya (Figure S2, Table S6). Because the data for Figure S5B were generated based only on the  
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Figure 5  Trimer usage biases of 11
th

 Three Codon DNA 9-mer- GATGATCAT in 54 genera 

Note: Genera belonging to the same taxonomic group are indicated by the same background color. 

first rank, the fungi showed relatively weak correlation between correct prediction proportion and (log10 

(inverse of P value score)). The AMF database contains only one species, R. irregularis, therefore, 

results from both methods showed little difference.  

 

2.3.6.5 Classification of an example sequence 

Here we demonstrate the analysis of a query sequence selected from the AMF CDS test set. The 

example sequence was 156 bp 

(AAATCCCAATGTCAGAATAAAGAAACTACCAGATGATCATCCTGTTTATCCTGGGTATGGATTATTT

GCTAACAAAGATCTTAAAAAATTTAATCTAGTCGTTTGTTATACTGGCAAAGTTACAAAAAGAGAAAT

TGGGGGTGAAGAAGGAAGTGA). The sequence had the highest trimer usage probability score in 

the second reading frame translation, which was then assumed as the open reading frame. SeSaMe 

identified 49 matching Three Codon DNA 9-mers in the second reading frame that were matched to 

Trimer Ref DB. The program correctly classified the example sequence into CDS of AMF. Firmicutes, 

Cyanobacteria, Rickettsia, and AMF had higher trimer usage biases than Proteobacteria, 

Actinobacteria, and Dikarya in a majority of Three Codon DNA 9-mers. Figure 5 shows trimer usage 

biases of the 11th Three Codon DNA 9-mer- GATGATCAT in 54 genera. GATGATCAT belongs to A.A. 

Char trimer- CCB and to A.A. Trimer- DDH. The multidimensional scaling (MDS) method was applied 

to a matrix containing trimer usage biases; it had 54 genera in rows and matching Three Codon DNA 

9-mers identified in the open reading frame in columns 

(http://www.inf.uni-konstanz.de/algo/software/mdsj/) [35]. It visualized proximity relationships among 

54 genera in XY axis graph (www.jfree.org). It showed that Actinobacteria, Alphaproteobacteria, and 

Dikarya were compactly clustered, while Betaproteobacteria were spread out in the left side of the 

graph (Figure S6). Nostocales, Oscillatoriophycideae, Bacilli, and Clostridia were scattered across in 

the right side. AMF, Cyanobacterium, and Rickettsia were located in the far-right side.  

 

2.4 Future Work 

Microorganisms contain a number of heterogeneous alternative sigma factors that are selectively 

induced in response to environmental stress [36]. They not only provide functionally specialized RNA 

polymerase subpopulations, but are also involved in regulating the expression of a set of target genes, 

or regulon [37,38]. In contrast to sigma factors, regulatory systems governing heterogeneous 

alternative ribosome subpopulations in response to environmental stress remain largely unknown. 

Since multiple heterogeneous rRNA genes within a single isolate do not necessarily correlate with the 

extent of heterogeneity of functionally specialized ribosomes, sequence comparison of rRNA genes 

and ribosomal coding genes within a single isolate, as well as among closely related organisms, will 

be required in order to study their influence on adaptation of microorganism [39,40].  

A codon is an attribute of a set of codes based on which transcriptional and translational regulators 

http://www.inf.uni-konstanz.de/algo/software/mdsj/
http://www.jfree.org/
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produce a gene product from a nucleotide sequence. Codon usage and codon context have been 

documented to play various important roles in these processes. If there are multiple types of the 

heterogeneous alternative regulators, there may be multiple sets of codes. Trimer usage biases of the 

Genus Specific DB were calculated based on the CDS database within a genus without considering 

alternative regulators and regulons. We may need to further anatomize evolutionary forces acting on 

multiple consecutive codons into greater detail, which may increase the accuracy of taxonomic 

classification. Moreover, comparative studies on alternative regulator subpopulations may provide 

useful insights into the development of genetic markers with which we can detect changes in microbial 

community structures in response to environmental stress (Figure S7). It may lead to new 

perspectives and strategies for improving the analysis of metagenome data, especially AMF inoculant 

field data sampled from highly stressful environments.  

 

2.5 Authors’ contributions  

KJE designed the program and implemented it using the Java programming language. CA gave 

advice on developing scoring methods. HM provided knowledge on AMF experiments, the goals of the 

program, information on recent studies in AMF research, and helped to draft the manuscript. All 

authors read and approved the final manuscript. 

 

2.6 Competing interests 

The authors have declared no competing interests. 

 

2.7 Acknowledgements 

The authors gratefully acknowledge AFE (Éducation et de l'Enseignement supérieur Quebec), FESP 

(Faculté des études supérieures et postdoctorales de l'UdeM), and IRBV (Institut de Recherche en 

Biologie Végétale de l'Université de Montréal) for awarding scholarships to KJE. The authors gratefully 

acknowledge insightful comments from Bachir Iffis, David Walsh, Etienne Yergeau, Franck Stefani, 

Ivan de la Providencia, Jesse Shapiro, Sylvie Hamel, and Yves Terrat. We also thank Andrew Blakney 

for English editing. 

 

2.8 References 

[1] Roy-Bolduc A, Hijri M. The use of mycorrhizae to enhance phosphorus uptake: a way out the 

phosphorus crisis. J Biofertil Biopestic 2011; 2: 104.  

[2] Hijri M. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly 

significant increases in yield. Mycorrhiza 2016; 26: 209–14. 

[3] Zarik L, Meddich A, Hijri M, Hafidi M, Ouhammou A, Ouahmane L, et al. Use of arbuscular 

mycorrhizal fungi to improve the drought tolerance of Cupressus atlantica G. C R Biol  2016; 



  
Page 41 

 
  

339: 185–96.  

[4] Hassan SE, Bell T, Stefani FOP, Denis D, Hijri M, Yergeau E, et al. Contrasting the community 

structure of arbuscular mycorrhizal fungi from hydrocarbon-contaminated and uncontaminated 

soils following willow (Salix spp. L.) planting. PLoS One 2014; 9: e102838.  

[5] Iffis B, St-Arnaud M, Hijri M. Bacteria associated with arbuscular mycorrhizal fungi within roots of 

plants growing in a soil highly contaminated with aliphatic and aromatic petroleum hydrocarbons. 

FEMS Microbiol Lett 2014; 358: 44–54.  

[6] de la Providencia I, Stéfani FOP, Labridy M, St-Arnaud M, Hijri M. Arbuscular mycorrhizal fungal 

diversity associated with Eleocharis obtusa and Panicum capillare growing in an extreme 

petroleum hydrocarbon-polluted sedimentation basin. FEMS Microbiol Lett 2015; 362: fnv081. 

[7] Chanda D, Sharma GD, Jha DK, Hijri M. Associations of arbuscular mycorrhizal (AM) fungi in the 

phytoremediation of trace metal (TM) contaminated soils. J Res Biol 2014; 4: 1247–63.  

[8] Marleau J, Dalpe Y, St-Arnaud M, Hijri M. Spore development and nuclear inheritance in arbuscular 

mycorrhizal fungi. BMC Evol Biol 2011; 11: 51.   

[9] Boon E, Halary S, Bapteste E, Hijri M. Studying genome heterogeneity within the arbuscular 

mycorrhizal fungal cytoplasm. Genome Biol Evol 2015; 7: 505–21. 

[10] Hijri M, Redecker D, Petetot JAM-C, Voigt K, Wöstemeyer J, Sanders IR. Identification and 

isolation of two Ascomycete fungi from spores of the arbuscular mycorrhizal fungus. Appl 

Environ Microbiol 2002; 68: 4567–73. 

[11] Cruz AF, Horii S, Ochiai S, Yasuda A, Ishii T. Isolation and analysis of bacteria associated with 

spores of Gigaspora margarita. J Appl Microbiol 2008; 104: 1711–7. 

[12] Bonfante P. Plants, mycorrhizal fungi and endobacteria: a dialog among cells and genomes. Biol 

Bull 2003; 204: 215–20.  

[13] Naito M, Morton JB, Pawlowska TE. Minimal genomes of mycoplasma-related endobacteria are 

plastic and contain host-derived genes for sustained life within Glomeromycota. Proc Natl Acad 

Sci U S A 2015; 112: 7791–6. 

[14] Torres-Cortes G, Ghignone S, Bonfante P, SchuSsler A. Mosaic genome of endobacteria in 

arbuscular mycorrhizal fungi: transkingdom gene transfer in an ancient mycoplasma-fungus 

association. Proc Natl Acad Sci U S A 2015; 112: 7785–90. 

[15] Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, et al. The 

transcriptome of the arbuscular mycorrhizal fungus Glomus Intraradices (DAOM 197198) 

reveals functional tradeoffs in an obligate symbiont. New Phytol 2012; 193: 755–69. 

[16] Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, et al. Genome of an 

arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad 

Sci U S A 2013; 110: 20117–22.  

[17] Bécard G, Fortin JA. Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA 

transformed roots. New Phytol 1988; 108: 211–8. 

[18] Pride DT, Meinersmann RJ, Wassenaar TM, Blaser MJ. Evolutionary implications of microbial 



  
Page 42 

 
  

genome tetranucleotide frequency biases. Genome Res 2003; 13: 145–58.  

[19] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol 

Biol 1990; 215: 403–10 

[20] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and 

PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 

25: 3389–402. 

[21] Akashi H. Synonymous codon usage in Drosophila Melanogaster: natural selection and 

translational accuracy. Genetics 1994; 136: 927–35. 

[22] Gao F, Zhang CT. Comparison of various algorithms for recognizing short coding sequences of 

human genes. Bioinformatics 2004; 20: 673–81.  

[23] Grantham R, Gautier C, Gouy M, Jacobzone M, Mercier R. Codon catalog usage is a genome 

strategy modulated for gene expressivity. Nucleic Acids Res 1981; 9: r43–74. 

[24] Karlin S, Mrázek J, Campbell AM. Compositional biases of bacterial genomes and evolutionary 

implications. J Bacteriol 1997; 179: 3899–913. 

[25] Sueoka N. On the genetic basis of variation and heterogeneity of DNA base composition. Proc 

Natl Acad Sci U S A 1962; 48: 582–92. 

[26] Kim M, Lee KH, Yoon SW, Kim BS, Chun J, and Yi H. Analytical Tools and Databases for 

Metagenomics in the Next-Generation Sequencing Era. Genomics Inform 2013; 11: 102–113. 

[27] Jeffery S, Gardi C, Jones A, Montanarella L, Marmo L, Miko L, et al. European atlas of soil 

diodiversity. Luxembourg: Publications Office of the European Union; 2010.  

[28] Rajendhran J, Gunasekaran P. Microbial phylogeny and diversity: small subunit ribosomal RNA 

sequence analysis and beyond. Microbiol Res 2011; 166: 99–110. 

[29] Sharp P.M., Bailes E., Grocock R.J., Peden J.F., Sockett R.E. Variation in the strength of selected 

codon usage bias among bacteria. Nucleic Acids Res 2005; 33: 1141–53.  

[30] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. 

Nucleic Acids Res 2000; 28: 235–42. 

[31] Spain AM, Krumholz LR, Elshahed MS. Abundance, composition, diversity and novelty of soil 

Proteobacteria. ISME J 2009; 3: 992–1000.  

[32] Bonfante P, Anca IA. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev 

Microbiol 2009; 63: 363–83. 

[33] Lecomte J, St-Arnaud M, Hijri M. Isolation and identification of soil bacteria growing at the 

expense of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 2011; 317: 43–51. 

[34] Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Fungal 

biogeography. global diversity and geography of soil fungi. Science 2014; 346: 1256688.  

[35] Algorithmics Group. MDSJ: Java library for multidimensional scaling (Version 0.2) [Internet]. 

Konstanz: University of Konstanz; 2009, http://www.inf.uni-konstanz.de/algo/software/mdsj/. 

[36] Paget MS. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. 

Biomolecules 2015; 5: 1245–65.  

http://www.inf.uni-konstanz.de/algo/software/mdsj/


  
Page 43 

 
  

[37] Zhang N, Buck M. A perspective on the enhancer dependent bacterial RNA polymerase. 

Biomolecules 2015; 5: 1012–9. 

[38] Fisher MA, Grimm D, Henion AK, Elias AF, Stewart PE, Rosa PA, et al. Borrelia burgdorferi 

sigma54 is required for mammalian infection and vector transmission but not for tick colonization. 

Proc Natl Acad Sci U S A 2005; 102: 5162–7. 

[39] Byrgazov K, Vesper O, Moll I. Ribosome heterogeneity: another level of complexity in bacterial 

translation regulation. Curr Opin Microbiol 2013; 16: 133–9. 

[40] Klappenbach JA, Dunbar JM, Schmidt TM. rRNA operon copy number reflects ecological 

strategies of bacteria. Appl Environ Microbiol 2000; 66: 1328–33  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
Page 44 

 
  

2.9 Supplementary material 

 

Supplementary Figure 1  Histogram of the number of genera produced per answer 

X-axis represents how many genera the trimer usage probability scoring method produced in an answer of a 

query sequence. 
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Supplementary Figure 2  Histogram of the rank of correct taxon group in answer 

X-axis represents at which rank a correct taxon group occurred for the first time in an answer of a query 

sequence. 
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Supplementary Figure 3  

Genera with similar trimer usage 

probability scores (Bacteria)  

The number of occurrences of 

each genus included in the correct 

answers was counted in the 

bacterial genus CDS and non-CDS 

test sets. The figure shows the 

genera with relatively high 

occurrences. In general, the 

genera that had little difference in 

their trimer usage probability 

scores belonged to the same 

phylum. 
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Supplementary Figure 4  Genera with similar trimer usage probability 

scores (Fungi)  

The number of occurrence of each genus included in the correct answers 

was counted in the fungal genus CDS and non-CDS test sets. The figure 

shows the genera with relatively high occurrences. Clostridium occurred the 

second highest in the AMF test set based on trimer usage probability scoring 

method. Both Agaricomycotina and Pezizomycotina belong to Dikarya, and 

the former occurred the second highest in the answers of the latter, and vice 

versa. 
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Supplementary Figure 5  Scatter plot of correct prediction proportion and (log10 (inverse of P value 

score)) 
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A. The mean of the correct prediction proportions was calculated per number of matching Three Codon 

DNA 9-mers in the bacterial, the fungal, and the AMF CDS test sets. For example, 22 sequences had 97 

matching Three Codon DNA 9-mers and 20 of them were correctly classified in the bacterial test set; the 

mean was 0.91. B, C. We calculated (log10 (inverse of P value score)) in order to show a relationship 

between the correct prediction proportion and P value score. For example, the multiplicative inverses of 

both P value scores- 1.0E-10 and 9.0E-10- were approximated to be 1.0E10, and base 10 logarithm of 

1.0E10 was 10. B was based on the result from the trimer usage probability scoring method, while C 

was based on the result from the rank probability scoring method. 
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Supplementary Figure 6  Visualization of proximity relationships among 54 genera using MDS  

The XY axis graph represents proximity relationships among 54 genera based on trimer usage biases of Three 

Codon DNA 9-mers identified in the presumably open reading frame of the example sequence.  

Note: Genera belonging to the same taxonomic group in 13 taxon groups are indicated by the same background 

color. 
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Supplementary Figure 7  Heterogeneous regulator subpopulations within a single isolate 

The symbols and question marks in the figure indicate the following questions from left to right. Under an optimal 

growth condition, do alternative regulators transcribe/translate genes? Does sigma factor regulate the 

expression of functionally specialized ribosomal rRNA and protein coding genes? Do heterogeneous regulator 

subpopulations produce structurally different gene products? Under environmental stress, do major regulators 

transcribe/translate genes?  
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Supplementary Table 1  Total number of the bacterial genes per genus 

Bacterial genus Total number of genes Bacterial genus Total number of genes 

Acidithiobacillus  12252 Microbacterium  3676 

Acidobacterium  7924 Micrococcus  2236 

Agrobacterium  22773 Myxococcus  22658 

Anabaena  16055 Nitrobacter  7448 

Azorhizobium  4717 Nitrosococcus  9744 

Azotobacter  15105 Nitrosomonas  11481 

Bacillus  392788 Nitrosospira  2805 

Bdellovibrio  9939 Nocardia  19851 

Beijerinckia  3784 Nostoc  16970 

Bradyrhizobium  38418 Oscillatoria  12156 

Caulobacter  17132 Pseudanabaena  3854 

Clostridium  168122 Pseudomonas  321496 

Cyanobacterium  6268 Pseudonocardia  6797 

Desulfotomaculum  21547 Rhizobium  52249 

Desulfovibrio  51438 Rhodobacter  20963 

Erwinia  31931 Rickettsia  46400 

Frankia  29711 Shewanella  102711 

Geobacter  34729 Sinorhizobium  65703 

Klebsiella  69640 Sphingomonas  15561 

Kocuria  2356 Streptomyces  149826 

Leuconostoc  16970 Variovorax  18984 

Mesorhizobium  30388 Xanthomonas  65650 

Methylococcus  2960   
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Supplementary Table 2  Total number of the fungal genes and introns per genus 

Fungal genus Total number of genes Total number of introns 

AMF 21929 52385 

Aspergillus 19695 38513 

Cenococcum 14748 27036 

Cryptococcus 13174 68068 

Mycosphaerella 13107 33856 

Oidiodendron 16703 32542 

Phanerochaete 10048 48688 

Scleroderma 21012 65184 

Sebacina 15312 58256 
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Supplementary Table 3  Correct taxon group proportion in an answer in the bacterial test sets 

Genus CDS Non-CDS Genus CDS Non-CDS 

Genus Mean SD Mean SD Genus Mean SD Mean SD 

Acidithiobacillus 0.691 0.327 0.552 0.344 Microbacterium 0.948 0.166 0.892 0.229 

Acidobacterium 0.825 0.303 0.616 0.379 Micrococcus 0.979 0.096 0.857 0.261 

Agrobacterium 0.860 0.236 0.646 0.317 Myxococcus 0.912 0.216 0.562 0.317 

Anabaena 0.762 0.311 0.745 0.299 Nitrobacter 0.911 0.187 0.767 0.295 

Azorhizobium 0.922 0.188 0.708 0.294 Nitrosococcus 0.632 0.344 0.577 0.351 

Azotobacter 0.788 0.287 0.792 0.298 Nitrosomonas 0.776 0.343 0.719 0.384 

Bacillus 0.758 0.334 0.610 0.322 Nitrosospira 0.826 0.297 0.722 0.351 

Bdellovibrio 0.886 0.247 0.715 0.358 Nocardia 0.850 0.254 0.755 0.285 

Beijerinckia 0.834 0.279 0.662 0.341 Nostoc 0.927 0.169 0.770 0.305 

Bradyrhizobium 0.928 0.175 0.696 0.289 Oscillatoria 0.830 0.297 0.696 0.357 

Caulobacter 0.897 0.203 0.815 0.269 
Pseudanabaen

a 
0.939 0.184 0.643 0.344 

Clostridium 0.864 0.252 0.792 0.285 Pseudomonas 0.840 0.250 0.664 0.327 

Cyanobacterium 0.960 0.150 0.736 0.328 Pseudonocardia 0.972 0.127 0.911 0.202 

Desulfotomaculum 0.782 0.308 0.662 0.304 Rhizobium 0.896 0.191 0.673 0.336 

Desulfovibrio 0.592 0.330 0.504 0.317 Rhodobacter 0.934 0.190 0.687 0.267 

Erwinia 0.841 0.279 0.585 0.339 Rickettsia 0.904 0.234 0.823 0.290 

Frankia 0.907 0.201 0.841 0.277 Shewanella 0.773 0.336 0.715 0.337 

Geobacter 0.770 0.299 0.594 0.344 Sinorhizobium 0.855 0.239 0.776 0.304 

Klebsiella 0.893 0.236 0.746 0.331 Sphingomonas 0.917 0.181 0.757 0.267 

Kocuria 0.967 0.130 0.885 0.238 Streptomyces 0.953 0.158 0.848 0.262 

Leuconostoc 0.838 0.282 0.594 0.296 Variovorax 0.938 0.195 0.684 0.337 

Mesorhizobium 0.876 0.214 0.729 0.304 Xanthomonas 0.904 0.215 0.751 0.319 

Methylococcus 0.796 0.289 0.698 0.346 Mean 0.87 0.25 0.72 0.32 

Note: After genera in an answer were converted to the 13 taxon groups, the proportion of the correct taxon group was 

calculated per sequence in the genus test set. The mean and the standard deviation of the proportions of the correct taxon 

group are shown in the table. 
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Supplementary Table 4  Correct taxon group proportion in an answer in the fungal test sets 

Genus 
CDS Non-CDS 

Genus 
CDS Non-CDS 

Mean SD Mean SD Mean SD Mean SD 

AMF 0.706 0.302 0.689 0.317 Oidiodendron 0.385 0.280 0.326 0.233 

Aspergillus 0.450 0.294 0.367 0.258 Phanerochaete 0.593 0.297 0.608 0.261 

Cenococcum 0.467 0.276 0.429 0.282 Scleroderma 0.556 0.244 0.563 0.248 

Cryptococcus 0.668 0.280 0.523 0.265 Sebacina 0.605 0.272 0.499 0.226 

Mycosphaerella 0.650 0.309 0.457 0.255 Mean 0.567 0.298 0.498 0.28 

Note: After genera in an answer were converted to the 13 taxon groups, the proportion of the correct 

taxon group was calculated per sequence in the genus test set. The mean and the standard deviation 

of the proportions of the correct taxon group are shown in the table. 
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Supplementary Table 5  Frequency of the number of genera produced per answer 

 1 2 3 4 5 6 7 8 9 10 11 12 Sum 

Bact. CDS: correct 2160 627 361 210 115 56 33 17 2 4 1 1 3587 

Bact. CDS: incorrect 281 189 143 126 80 49 23 16 6 0 0 0 913 

Fung. CDS: correct 170 125 121 87 90 50 23 10 2 0 0 0 678 

Fung. CDS: incorrect 87 62 41 14 9 6 1 1 0 1 0 0 222 

            Total 5400 

Bact. non-CDS: correct 1358 539 418 242 163 108 67 37 18 14 5 1 2970 

Bact. non-CDS: incorrect 521 363 222 165 144 58 38 15 3 0 1 0 1530 

Fung. non-CDS: correct 121 130 121 154 101 63 45 10 3 1 1 0 750 

Fung. non-CDS: incorrect 52 50 26 14 5 3 0 0 0 0 0 0 150 

            Total 5400 

Note: The table shows the frequencies of how many genera the trimer usage probability scoring 

method produced in an answer of a query sequence in the correct and the incorrect results in the 

bacterial (bact.) and the fungal (fung.) CDS and non-CDS test sets. Data for Supplementary Figure 1. 
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Supplementary Table 6  Frequency of the rank of correct taxon group in answer 

 0 1 2 3 4 5 6 7 8 9 10 Sum Total 

Bact. CDS 3218 208 86 33 29 9 1 3 0 0 0 3587 4500 

Bact. non-CDS 2260 368 178 75 38 28 9 5 5 2 2 2970 4500 

Fung. CDS 422 138 76 25 10 6 0 1 0 0 0 678 900 

Fung. non-CDS 453 177 60 36 19 5 0 0 0 0 0 750 900 

Note: The table shows the frequency of at which rank the trimer usage probability scoring method 

produced a correct taxon group for the first time in an answer of a query sequence in the correct 

results in the bacterial (bact.) and the fungal (fung.) CDS and non-CDS test sets. Data for 

Supplementary Figure 2. 
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Supplementary Table 7  Percentage of the other group in answers 

 Correct prediction  

percentages (genus) 
The other group in answers AMF in answers 

Bact. CDS 3185/4500: 71% 197/3185: 6% 119/4500: 3% 

Bact. non-CDS 2238/4500: 50% 489/2238: 22% 229/4500: 5% 

Fung. CDS 589/900: 65% 93/589: 16% 6/800: 1% 

Fung. non-CDS 655/900: 73% 157/655: 24% 10/800: 1% 

AMF CDS 49/100: 49% 24/49: 49%  

AMF non-CDS 72/100: 72% 35/72: 49%  

Note: The column, The other group in answers, indicates the percentage of the fungal (fung.) and the 

bacterial (bact.) group in answers of the bacterial and the fungal test sets, respectively, while it 

indicates the percentage of the bacterial group in case of the AMF test sets. The column, AMF in 

answers, indicates the percentage of AMF in answers of the bacterial and the fungal test sets. 
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Supplementary Table 8  Correlation between the correct prediction proportion and the number 

of matching Three Codon DNA 9-mers 

Bacteria Fungi AMF 

No. of  

matching  

Three Codon  

DNA 9-mers 

Correct 

prediction  

proportion 

No. of 

matching  

Three Codon  

DNA 9-mers 

Correct 

prediction 

proportion 

No. of 

matching  

Three Codon  

DNA 9-mers 

Correct  

prediction 

proportion 

34 0.5 30 1 48 0.33 

38 0.33 38 0.6 49 0.71 

40 0.14 42 0.33 50 0.5 

42 0.13 43 0.33 51 1 

43 0.04 44 0.22 52 0.67 

44 0.44 45 0.14 53 1 

45 0.15 46 0.27 54 0.33 

46 0.35 47 0.27 55 0.5 

47 0.31 48 0.32 56 1 

48 0.47 49 0.25 58 0.5 

49 0.53 50 0.44 59 0.33 

50 0.55 51 0.58 60 0.33 

51 0.43 52 0.5 61 0.43 

52 0.56 53 0.4 62 0.5 

53 0.46 54 0.3 63 0.67 

54 0.49 55 0.4 64 1 

55 0.61 56 0.4 65 0.5 

56 0.56 57 0.29 68 1 

57 0.56 58 0.29 69 1 

58 0.55 59 0.36 70 0.67 

59 0.58 60 0.39 76 1 

60 0.6 61 0.31 78 0.33 

61 0.62 62 0.36 79 1 
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62 0.58 63 0.25 80 1 

63 0.53 64 0.39 82 1 

64 0.57 65 0.42 83 0.5 

65 0.55 66 0.18 84 1 

66 0.6 67 0.26 85 0.33 

67 0.56 68 0.35 87 1 

68 0.66 69 0.53 88 1 

69 0.65 70 0.31 91 1 

70 0.7 71 0.11 93 1 

71 0.5 72 0.4   

72 0.56 73 0.39   

73 0.61 74 0.5   

74 0.62 75 0.4   

75 0.66 76 0.25   

76 0.68 77 0.39   

77 0.59 78 0.58   

78 0.71 79 0.64   

79 0.64 80 0.42   

80 0.69 81 0.36   

81 0.69 82 0.57   

82 0.64 83 0.27   

83 0.76 84 0.47   

84 0.62 86 0.6   

85 0.66 87 0.33   

86 0.71 88 0.27   

87 0.79 89 0.5   

88 0.62 90 0.36   

89 0.65 91 0.57   

90 0.78 92 0.75   
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91 0.65 93 0.5   

92 0.76 94 0.57   

93 0.79 95 0.5   

94 0.73 96 0.8   

95 0.84 97 1   

96 0.82     

97 0.91     

Note: Data for Supplementary Figure 5.A. 
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Supplementary Table 9  Correlation between the correct prediction proportion of the trimer 

usage probability scoring method and P value score 

Bacteria Fungi AMF 

Log10 

(Inverse of  

P value score) 

Correct 

prediction  

proportion 

Log10 

(Inverse of  

P value 

score)  

Correct  

prediction  

proportion 

Log10 

(Inverse of 

P value 

score) 

Correct  

prediction  

proportion 

4 0 4 0 6 0 

5 0.0833 5 0 8 0 

6 0.0879 6 0.21 9 0 

7 0.116 7 0.314 10 0.333 

8 0.152 8 0.236 11 0.125 

9 0.206 9 0.349 12 0 

10 0.232 10 0.277 13 0.333 

11 0.338 11 0.424 14 0.333 

12 0.457 12 0.22 15 0.25 

13 0.447 13 0.333 16 0.2 

14 0.562 14 0.393 17 0 

15 0.613 15 0.377 18 1 

16 0.609 16 0.465 19 1 

17 0.678 17 0.388 20 0.666 

18 0.715 18 0.406 21 1 

19 0.698 19 0.47 22 1 

20 0.746 20 0.555 23 0.8 

21 0.787 21 0.642 24 0.5 

22 0.818 22 0.166 25 0.666 

23 0.804 23 0.857 26 0.833 

24 0.809 24 0.75 27 1 

25 0.837 25 0.333 28 0.333 

26 0.822 26 1 29 0.5 
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27 0.863 27 0.857 30 1 

28 0.912 28 0.666 31 1 

29 0.864 29 0.5 32 0.75 

30 0.862 30 0.666 34 0 

31 0.845 32 0.5 35 0.5 

32 0.94 36 1 36 1 

33 0.944 37 0 37 1 

34 0.925   38 1 

35 0.933   39 1 

36 0.903   40 0 

37 0.948   41 1 

38 0.875   43 0 

39 0.966   44 1 

40 0.972   45 1 

41 0.925   46 1 

42 0.809   48 1 

43 0.952   52 1 

44 0.941   55 1 

45 1     

46 0.888     

47 0.875     

48 1     

49 1     

50 0.9     

51 1     

52 1     

53 1     

54 1     

55 1     
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57 1     

58 1     

62 1     

63 1     

Note: The mean of the correct prediction proportions per (log10 (Inverse of P value score)) was 

calculated based on the first ranked genus with the highest probability score in the result from the 

trimer usage probability scoring method applied to the bacterial, the fungal, and the AMF CDS test 

sets. Data for Supplementary Figure 5.B.  
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Supplementary Table 10  Correlation between the correct prediction proportion of the rank 

probability scoring method and P value score 

Bacteria Fungi AMF 

Log10 

(Inverse of  

P value score) 

Correct 

prediction  

proportion 

Log10 

(Inverse of  

P value score)  

Correct  

prediction  

proportion 

Log10 

(Inverse of 

P value score) 

Correct  

prediction  

proportion 

5 0.166 5 0 6 0 

6 0.325 6 0.315 7 0 

7 0.386 7 0.363 8 0 

8 0.445 8 0.565 9 0.25 

9 0.612 9 0.74 10 0 

10 0.676 10 0.762 11 0.142 

11 0.717 11 0.674 12 0.166 

12 0.768 12 0.767 13 0.285 

13 0.821 13 0.805 14 0.6 

14 0.828 14 0.847 15 0.3 

15 0.881 15 0.871 16 0.5 

16 0.929 16 0.763 17 0.666 

17 0.922 17 0.794 18 1 

18 0.939 18 0.933 19 0.75 

19 0.952 19 0.833 20 0.666 

20 0.916 20 0.8 21 0 

21 0.964 21 0.857 22 1 

22 0.965 22 1 23 0.333 

23 0.961 23 1 24 1 

24 0.989 24 1 25 1 

25 0.95 25 0.5 26 0 

26 0.942 26 0 29 1 

27 0.98 29 1 30 1 

28 0.96 30 1 31 0.5 



  
Page 66 

 
  

29 0.975 41 1 32 1 

30 0.941   34 1 

31 0.941   35 1 

32 0.923     

33 1     

34 1     

35 1     

36 1     

37 1     

38 1     

39 1     

40 1     

42 1     

43 1     

47 1     

52 1     

Note: The mean of the correct prediction proportions per (log10 (Inverse of P value score)) was 

calculated based on the first ranked genus with the highest probability score in the result from the rank 

probability scoring method applied to the bacterial, the fungal, and the AMF CDS test sets. Data for 

Supplementary Figure 5.C.  
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Supplementary Table 11  Relationship between the correct prediction proportion of the trimer 

usage probability scoring method and P value score in quartiles 

Genus 
0 - 25th percentile 26 - 50th percentile 51 - 75th percentile 76 - 100th percentile 

Range Mean SD Range Mean SD Range Mean SD Range Mean SD 

Acidithiobacillus 5-8 0.151 0.18 9-13 0.41 0.217 14-19 0.461 0.402 20-32 0.6 0.547 

Acidobacterium 6-10 0.276 0.18 11-15 0.564 0.223 16-20 0.62 0.073 21-28 0.875 0.306 

Agrobacterium 4-9 0.045 0.0622 10-14 0.425 0.139 15-19 0.733 0.278 20-30 0.444 0.455 

Anabaena 5-13 0.157 0.329 14-22 0.327 0.321 23-32 0.529 0.425 33-51 0.85 0.337 

Azorhizobium 7-15 0.333 0.388 16-23 0.75 0.277 24-31 0.975 0.0707 32-43 1 0 

Azotobacter 6-12 0.276 0.34 13-20 0.783 0.357 21-27 0.959 0.107 28-41 1 0 

Bacillus 5-12 0.182 0.227 13-21 0.416 0.333 22-30 0.679 0.22 31-47 0.833 0.25 

Bdellovibrio 6-11 0.205 0.186 12-18 0.669 0.308 19-25 0.821 0.144 26-37 0.928 0.188 

Beijerinckia 5-9 0.08 0.109 10-15 0.473 0.279 16-21 0.906 0.0924 22-34 1 0 

Bradyrhizobium 4-11 0.178 0.237 12-19 0.667 0.237 20-26 0.857 0.196 27-40 0.937 0.176 

Caulobacter 6-13 0.328 0.37 14-22 0.781 0.213 23-31 0.982 0.0505 32-42 1 0 

Clostridium 6-20 0.424 0.389 21-32 0.83 0.211 33-45 1 0 47-63 0.972 0.0962 

Cyanobacterium 7-19 0.233 0.344 20-30 0.903 0.205 31-41 0.893 0.238 42-54 1 0 

Desulfotomaculum 5-10 0.201 0.178 11-16 0.42 0.291 17-22 0.48 0.43 23-38 0.69 0.365 

Desulfovibrio 6-10 0.253 0.31 11-15 0.276 0.145 16-20 0.23 0.338 21-30 0.0833 0.204 

Erwinia 5-10 0.163 0.146 11-16 0.488 0.289 17-22 0.877 0.142 23-34 1 0 

Frankia 5-12 0.272 0.309 13-20 0.72 0.197 21-27 0.45 0.326 28-46 0.375 0.443 

Geobacter 6-9 0.243 0.204 10-14 0.464 0.232 15-18 0.69 0.359 19-28 0.85 0.223 

Klebsiella 5-10 0.236 0.409 11-17 0.642 0.135 18-23 0.979 0.051 24-32 1 0 

Kocuria 6-15 0.275 0.415 17-27 0.75 0.403 29-38 0.987 0.0395 39-54 0.977 0.0753 

Leuconostoc 7-14 0.166 0.288 15-23 0.854 0.242 24-31 0.979 0.0589 32-44 1 0 

Mesorhizobium 5-10 0.116 0.139 11-16 0.546 0.345 17-22 0.682 0.205 23-31 0.597 0.395 

Methylococcus 6-10 0.14 0.219 11-15 0.711 0.309 16-20 0.763 0.152 21-30 0.934 0.106 

Microbacterium 7-16 0.0937 0.265 17-26 0.922 0.171 27-34 0.933 0.128 37-50 1 0 
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Micrococcus 10-19 0.15 0.253 20-30 0.91 0.156 31-40 0.983 0.0527 41-55 1 0 

Myxococcus 6-16 0.461 0.373 17-25 0.869 0.182 26-34 1 0 35-49 1 0 

Nitrobacter 6-10 0.155 0.175 11-15 0.467 0.193 16-20 0.5 0.204 21-40 0.611 0.443 

Nitrosococcus 4-8 0.0333 0.0745 9-14 0.12 0.138 15-19 0.762 0.146 20-27 0.777 0.403 

Nitrosomonas 5-10 0.203 0.211 11-16 0.449 0.192 17-22 0.875 0.209 23-48 0.833 0.408 

Nitrosospira 6-9 0.106 0.093 10-14 0.644 0.328 15-19 0.883 0.111 20-25 0.8 0.447 

Nocardia 6-12 0.226 0.229 13-19 0.717 0.271 20-26 0.826 0.149 27-36 0.802 0.35 

Nostoc 5-12 0.168 0.252 13-20 0.509 0.151 21-28 0.676 0.232 29-41 0.388 0.485 

Oscillatoria 6-11 0.194 0.155 12-18 0.63 0.143 19-25 0.821 0.256 26-34 1 0 

Pseudanabaena 6-12 0.161 0.203 13-19 0.778 0.246 20-26 0.952 0.125 27-41 0.875 0.353 

Pseudomonas 7-12 0.255 0.389 13-18 0.691 0.196 19-24 0.885 0.18 25-35 0.773 0.368 

Pseudonocardia 9-19 0.323 0.404 20-30 0.815 0.229 31-40 0.966 0.105 41-55 1 0 

Rhizobium 5-9 0.125 0.19 10-15 0.222 0.178 16-21 0.376 0.287 22-28 0.805 0.305 

Rhodobacter 7-14 0.216 0.357 15-22 0.848 0.217 23-30 0.921 0.175 32-48 1 0 

Rickettsia 5-21 0.399 0.459 22-33 0.845 0.2 34-44 0.85 0.312 45-62 1 0 

Shewanella 5-9 0.333 0.471 10-15 0.619 0.344 16-22 0.646 0.186 23-30 0.777 0.403 

Sinorhizobium 4-10 0.16 0.158 11-15 0.288 0.208 16-20 0.616 0.273 21-30 0.7 0.447 

Sphingomonas 6-13 0.135 0.274 14-21 0.689 0.327 22-29 0.907 0.202 30-40 1 0 

Streptomyces 5-15 0.101 0.154 16-24 0.765 0.193 25-33 0.856 0.194 34-50 0.796 0.328 

Variovorax 6-15 0.222 0.44 16-25 0.93 0.113 26-35 1 0 36-49 1 0 

Xanthomonas 7-13 0.454 0.252 14-20 0.83 0.187 21-28 0.94 0.104 29-42 1 0 

AMF 6-16 0.157 0.15 17-26 0.746 0.315 27-37 0.708 0.358 38-55 0.818 0.404 

Aspergillus 6-10 0.405 0.234 11-15 0.24 0.205 16-20 0.116 0.162 21-37 0.2 0.447 

Cenococcum 6-10 0.165 0.205 11-15 0.331 0.158 16-20 0.133 0.217 21-32 0.25 0.418 

Cryptococcus 6-10 0.228 0.435 11-16 0.292 0.285 17-23 0.475 0.404 24-32 0.833 0.408 

Mycosphaerella 4-8 0.266 0.326 9-13 0.56 0.308 14-18 0.518 0.153 19-26 0.542 0.366 

Oidiodendron 5-9 0.15 0.223 10-14 0.325 0.129 15-19 0.526 0.345 20-25 0.533 0.505 

Phanerochaete 6-9 0.471 0.11 10-14 0.424 0.157 15-19 0.373 0.127 21-30 0.6 0.547 

Scleroderma 5-9 0.04 0.0894 10-14 0.287 0.149 15-19 0.388 0.146 20-36 0.9 0.223 

Sebacina 5-9 0.0833 0.117 10-14 0.357 0.153 15-19 0.558 0.275 20-28 1 0 
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Note: Range represents a minimum and a maximum of (log10 (Inverse of P value score)) values per 

quartile. After the result from each genus test set was divided into quartiles, the range of (log10 

(Inverse P value score)) and the mean and the standard deviation of the correct prediction proportions 

were calculated per quartile. The result was based on the trimer usage probability scoring method. 

Data for Supplementary Table 9 and Supplementary Figure 5.B.  
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Supplementary Table 12  Relationship between the correct prediction proportion of the rank 

probability scoring method and P value score in quartiles 

Genus 
0-25

th
 percentiles 26-50

th
 percentiles 51-75

th
 percentiles 76-100

th
 percentiles 

Range Mean SD Range Mean SD Range Mean SD Range Mean SD 

Acidithiobacillus 6-9 0.278 0.242 10-13 0.748 0.0505 14-17 0.968 0.0625 18-40 1 0 

Acidobacterium 6-10 0.277 0.277 11-15 0.82 0.106 16-20 1 0 21-26 1 0 

Agrobacterium 6-9 0.718 0.359 10-14 0.923 0.07 15-19 1 0 20-27 1 0 

Anabaena 7-12 0.189 0.244 13-18 0.721 0.37 19-24 0.901 0.113 25-31 1 0 

Azorhizobium 7-12 0.762 0.237 13-19 1 0 20-25 1 0 26-34 1 0 

Azotobacter 6-11 0.567 0.343 12-17 0.894 0.117 18-24 1 0 25-43 0.833 0.408 

Bacillus 5-11 0.244 0.308 12-18 0.77 0.226 19-24 0.777 0.194 25-37 1 0 

Bdellovibrio 7-11 0.712 0.188 12-16 0.923 0.104 17-21 0.96 0.0894 22-27 1 0 

Beijerinckia 5-10 0.6 0.383 11-15 0.9 0.173 16-20 1 0 21-34 1 0 

Bradyrhizobium 7-11 0.712 0.209 12-16 0.95 0.0684 17-21 1 0 22-29 1 0 

Caulobacter 7-11 0.689 0.317 12-16 0.971 0.0638 17-21 0.92 0.178 22-29 1 0 

Clostridium 7-13 0.122 0.19 14-20 0.439 0.255 21-26 0.891 0.174 27-40 0.857 0.377 

Cyanobacterium 11-17 0.516 0.273 18-24 0.823 0.262 25-31 0.976 0.0629 32-43 1 0 

Desulfotomaculum 6-10 0.133 0.217 11-15 0.617 0.0981 16-20 0.893 0.153 22-35 1 0 

Desulfovibrio 6-9 0.254 0.176 10-13 0.647 0.109 14-17 0.85 0.191 18-24 1 0 

Erwinia 5-10 0.513 0.484 11-16 0.826 0.0847 17-22 1 0 23-30 1 0 

Frankia 5-8 0.107 0.214 9-13 0.729 0.219 14-18 1 0 19-23 0.95 0.111 

Geobacter 6-9 0.502 0.413 10-13 0.697 0.0762 14-17 1 0 18-22 0.9 0.223 

Klebsiella 5-10 0.548 0.325 11-15 0.913 0.123 16-20 0.93 0.109 21-26 1 0 

Kocuria 7-12 0.516 0.449 13-18 0.944 0.136 19-24 0.875 0.209 25-34 1 0 

Leuconostoc 8-12 0.243 0.265 13-17 0.682 0.171 18-22 0.971 0.0638 23-27 1 0 

Mesorhizobium 6-10 0.86 0.167 11-15 0.937 0.0908 16-20 1 0 21-28 1 0 

Methylococcus 7-10 0.5 0.408 11-15 0.853 0.123 16-19 1 0 20-24 1 0 

Microbacterium 7-11 0.4 0.418 12-17 0.877 0.113 18-23 1 0 24-32 1 0 

Micrococcus 8-13 0.549 0.389 14-19 0.933 0.0831 20-24 1 0 25-35 1 0 

Myxococcus 6-11 0.222 0.186 12-17 0.733 0.188 18-23 0.979 0.051 24-34 1 0 

Nitrobacter 6-10 0.671 0.393 11-15 1 0 16-20 1 0 21-40 1 0 

Nitrosococcus 5-8 0.583 0.3 9-13 0.752 0.11 14-17 0.937 0.125 18-24 1 0 

Nitrosomonas 6-11 0.546 0.328 12-17 0.88 0.117 18-22 0.933 0.149 23-52 1 0 

Nitrosospira 5-9 0.253 0.347 10-14 0.956 0.0603 15-19 1 0 20-26 1 0 
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Nocardia 6-10 0.283 0.298 11-16 0.767 0.183 17-21 0.98 0.0447 22-35 1 0 

Nostoc 8-12 0.511 0.5 13-17 0.662 0.197 18-22 0.9 0.136 23-31 0.916 0.204 

Oscillatoria 6-10 0.336 0.232 11-16 0.886 0.137 17-21 1 0 22-29 1 0 

Pseudanabaena 6-12 0.236 0.29 13-19 0.927 0.0922 20-26 0.984 0.0419 27-38 1 0 

Pseudomonas 6-9 0.602 0.225 10-14 0.807 0.155 15-19 0.981 0.0406 20-28 1 0 

Pseudonocardia 7-13 0.553 0.375 14-19 1 0 20-24 1 0 25-32 1 0 

Rhizobium 6-9 0.493 0.359 10-14 0.918 0.0784 15-18 0.958 0.0833 19-25 1 0 

Rhodobacter 6-11 0.726 0.405 12-18 0.947 0.0899 19-24 1 0 25-38 1 0 

Rickettsia 8-17 0.199 0.247 18-25 0.67 0.242 26-33 0.651 0.342 34-47 1 0 

Shewanella 5-9 0.25 0.204 10-14 0.708 0.136 15-18 0.947 0.0611 19-27 1 0 

Sinorhizobium 5-8 0.875 0.25 9-13 0.923 0.104 14-18 0.98 0.0447 19-24 1 0 

Sphingomonas 6-11 0.56 0.347 12-17 0.883 0.204 18-24 0.972 0.068 25-33 1 0 

Streptomyces 5-10 0.139 0.219 11-16 0.863 0.141 17-22 1 0 23-32 1 0 

Variovorax 7-12 0.291 0.367 13-18 0.715 0.172 19-24 0.986 0.034 25-31 1 0 

Xanthomonas 7-11 0.516 0.207 12-17 0.839 0.202 18-23 1 0 25-39 1 0 

AMF 6-11 0.0654 0.106 12-18 0.502 0.284 19-25 0.678 0.386 26-35 0.785 0.393 

Aspergillus 5-8 0.398 0.377 9-12 0.87 0.0933 13-16 0.873 0.148 17-26 0.75 0.5 

Cenococcum 6-9 0.625 0.25 10-13 0.82 0.208 14-17 0.703 0.216 18-41 0.72 0.414 

Cryptococcus 6-9 0.339 0.282 10-14 0.61 0.286 15-18 0.825 0.236 19-25 0.8 0.447 

Mycosphaerella 6-9 0.816 0.137 10-13 0.83 0.05 14-17 0.895 0.125 18-25 1 0 

Oidiodendron 6-8 0.555 0.509 9-12 0.794 0.151 13-16 0.958 0.0833 17-22 0.816 0.213 

Phanerochaete 5-7 0.154 0.135 8-11 0.488 0.213 12-15 0.78 0.182 16-21 0.775 0.262 

Scleroderma 6-10 0.474 0.245 11-15 0.679 0.164 16-20 0.971 0.0638 21-30 1 0 

Sebacina 7-9 0.466 0.416 10-13 0.69 0.183 14-17 0.843 0.119 18-23 1 0 

Note: Range represents a minimum and a maximum of (log10 (Inverse of P value score)) values per quartile. 

After the result from each genus test set was divided into quartiles, the range of (log10 (inverse P value score)) 

and the mean and the standard deviation of the proportions of the correct taxon group were calculated per 

quartile. The result was based on the rank probability scoring method. Data for Supplementary Table 10 and 

Supplementary Figure 5.C.  
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3.1 Abstract 

In this article, we introduce a novel bioinformatics program- SeSaMe PS Function (Spore associated 

Symbiotic Microbes Position Specific Function)- for position-specific functional analysis of short 

sequences derived from metagenome sequencing data of the arbuscular mycorrhizal fungi. The 

unique advantage of the program lies in databases created based on genus-specific sequence 

properties derived from protein secondary structure, namely amino acid usages, codon usages, and 

codon contexts of three codon DNA 9-mers. SeSaMe PS Function searches a query sequence against 

reference sequence database, identifies three codon DNA 9-mers with structural roles, and creates 

comparative dataset containing the codon usage biases of the three codon DNA 9-mers from 54 

bacterial and fungal genera. The program applies correlation Principal Component Analysis in 

conjunction with K-means clustering method to the comparative dataset. Three codon DNA 9-mers 

clustered as a sole member or with only a few members are often structurally and functionally 

mailto:jennifer.kang@umontreal.ca
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distinctive sites that provide useful insights into important molecular interactions. The program 

provides a versatile means for studying functions of short sequences from metagenome sequencing 

and has a wide spectrum of applications. 

 

KEYWORDS: SeSaMe PS Function; Spore associated Symbiotic Microbes Position Specific 

Function; Outlier; Metagenome 

 

3.2 Introduction 

Arbuscular mycorrhizal fungi (AMF) are plant root colonizing symbiotic microorganisms that promote 

plant growth and improve soil quality [1−3]. AMF increase the effectiveness of phytoremediation and 

improve crop yields in agroecosystems [1,4−10]. Despite the importance of AMF, their genetics is 

poorly understood, due in large part to their coenocytic multinucleate nature and strict symbiotic 

partnership with plants [11]. A number of studies reported strong evidence that AMF interact closely- 

tightly adhering to the surface or in the interior of mycelia and spores- or loosely with a myriad of 

microorganisms covering major bacterial and fungal taxa [6,12−16]. These microorganisms can be 

removed from AMF by using cocktails of antibiotics in axenic cultivation systems [17]. Yet, only few 

AMF taxa are able to be cured and cultivated in-vitro, and most successful isolates in such systems 

mainly belong to the genus Rhizoglomus [18]. Given that the majority of AMF have not been 

successfully cultured axenically, it is possible that AMF may be meta-organisms, inseparable from their 

bacterial and fungal partners.  

   Whole genome sequencing (WGS) of AMF taxa has been achieved exclusively from those grown 

in-vitro. Although they provide important insights into AMF genetics, they have limitations in serving as 

reference genome due to large intra and inter isolate genome variations [19,20]. Furthermore, 

sequence analysis of the WGS of AMF taxa grown in vivo, typically in a pot culture with a host plant, 

can be challenging because the sequencing data contain a large proportion of sequences belonging to 

AMF associated microorganisms; the WGS data of AMF represent a complex metagenome [16,21]. 

However, they provide invaluable information about the associated microbial community because a 

great majority of the associated microorganisms cannot be cultured in laboratory conditions. 

Taxonomic classification of the whole metagenome sequencing (WMS) data is essential for studying 

AMF genomics and their interactions with the associated microorganisms. We introduced the 

bioinformatics program- SeSaMe (Spore associated Symbiotic Microbes) - for taxonomic classification 

of the WMS of AMF [22]. In this article, we introduce a novel bioinformatics program- SeSaMe Position 

Specific Function (SeSaMe PS Function). It predicts important position-specific functional sites in a 

query sequence, based on amino acid usages, codon usages, and codon contexts of three codon 

DNA 9-mers derived from protein secondary structures extracted from Protein Data Bank (PDB) 

(rcsb.org) [23]. 

   Recent studies have documented the multiple regulatory roles of codon usage and of codon 
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context in transcription and translation (e.g., regulation of gene expression, diversification of gene 

products, translational efficiency and accuracy, and protein degradation efficiency) [24−30]. Several 

studies have emphasized the regulatory roles of codon usage and codon context of multiple 

consecutive codons [25,29,30]. In addition, synonymous codons are believed to be a key factor in 

determining the active folding state of a gene product in response to environmental changes. One 

recent study showed that a gene with multiple synonymous mutations produced a protein with 

increased tolerance to abiotic stresses [31]. Moreover, non-optimal codons serve specific roles in 

regulating circadian rhythms in response to changes of environmental conditions [32,33]. Therefore, 

codon usage and codon context must have been playing important roles in the adaptation of 

microorganisms to abiotic stresses [34,35]. We are beginning to scratch the surface of the regulatory 

roles of codon usage and codon context, and these studies appear to be just a tip of iceberg.  

   The main variable of the program- trimer usage bias- takes usages and contexts of both amino 

acids and nucleotides into consideration; it is the product of amino acid usage and three codon usage 

of a sequence variable called Three codon DNA 9-mer. Generally, trimer usage bias has a broad 

range of variations among taxonomic groups but low variations among microorganisms belonging to 

the same taxonomic group. Trimer usage bias reflects the important attributes of multiple consecutive 

codons. Codon composition- i.e., codon context of three consecutive codons- is an important 

determinant of properties of mRNA structure that plays key roles in transcription and translation. 

Codon usage is associated with pauses in translation and determines biochemical properties of gene 

products. Both of the attributes affect protein folding. 

SeSaMe PS Function identifies three codon DNA 9-mers with structural roles in a query sequence, 

and creates comparative dataset based on their trimer usage biases that are retrieved from 54 

genus-specific bias databases (Figure 1). SeSaMe PS Function applies correlation Principal 

Component Analysis (PCA) in conjunction with K-means clustering method (PCA-Kmeans) to the 

comparative dataset. It enables users to identify three codon DNA 9-mers with distinctive 

characteristics: outliers. Outliers are often important position-specific functional sites that provide 

useful insights into molecular interactions. 

In this article, we analyzed one example sequence to demonstrate how to use the program for 

studying the structure and the function of a query sequence: one of the program’s various applications. 

The program helped to identify the outliers with potentially important functions. Existing bioinformatics 

programs predicted that most of the outliers belonged to stem-loops, stems, and stem transitions in 

mRNA structures [36]. Some of the outliers were matched to elements that play roles in promotor 

regions or in cis-regulatory mechanisms [37−39]. Other bioinformatics programs predicted that the 

example sequence may bind to DNA/RNA [23,40]. These results suggest that the outliers may 

contribute to binding activities in undiscovered mechanisms that may have attributes similar to 

cis-regulatory mechanism.  
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Figure 1  Dynamic creation of comparative dataset per query sequence 

The program uses a query sequence to search matching A.A. Char Trimers, A.A. Trimers, and Three Codon DNA 9-mers in 

Trimer Ref. DB, and retrieves the A.A. Trimer usages of the matching A.A. Trimers and the three codon usages of the 

matching Three Codon DNA 9-mers from 54 Genus Specific DBs. It calculates the trimer usage biases of the matching Three 

Codon DNA 9-mers, and generates comparative dataset for the query sequence. 

   

A majority of existing bioinformatics tools for position-specific sequence annotation rely on 

sequence alignments, which have low sensitivity toward hypervariable sequence motifs with flexible 

structures and various functions. Although they provide important information about a query sequence, 

their usage is limited to a particular set of motifs with known functions. In contrast, SeSaMe PS 

Function employs PCA to identify outliers based on internal structure of comparative dataset that 

contains usage information of structural units of a query sequence measured in 54 genera. Therefore, 

it may reveal important molecular interaction sites not only in known but also in undiscovered 

mechanisms. It has been only several decades since advances have been made in molecular biology. 

Therefore, it is believed that only a small fraction of mechanisms in biological system have been 

discovered. SeSaMe PS Function provides a useful tool for studying functions of short sequences 

from metagenome sequencing data. It is available for download free of charge at 

www.fungalsesame.org.  

 

 

 

 

http://www.fungalsesame.org/
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3.3 Methods 

3.3.1 Database design and comparative dataset creation 

The databases were originally created for the metagenome taxonomic classifier- SeSaMe, and then 

incorporated into SeSaMe PS Function [22]. While NCBI offered a large number of completely 

sequenced bacterial genomes, only a small number of fungal genomes were completely sequenced. 

The completely sequenced genomes of 444 bacteria and of 11 fungi, known to be present in soil, were 

downloaded and assigned into 45 bacterial and 9 fungal genera, respectively. CDS database per 

genus was created based on CDS lists provided by NCBI, JGI, or Tisserant et al. [19].  

The program consists of two types of databases and a PCA-Kmeans method. 126,093 structure files 

were downloaded from PDB. 7674 amino acid trimers were selected among protein secondary 

structures from PDB, and then assigned to the sequence variable- A.A. Trimer in the trimer reference 

sequence database (Trimer Ref. DB) (Figure 2) [41−44]. Amino acid characteristic (A.A. Char) is 

defined as a group of amino acid(s) with similar property(s), and consists of 12 groups: A (Lysine (K), 

Arginine (R)), B (Histidine (H)), C (Aspartic acid (D), Glutamic acid (E)), D (Serine (S), Threonine (T)), 

E (Asparagine (N), Glutamine (Q)), F (Cysteine (C)), G (Glycine (G)), H (Proline (P)), I (Methionine 

(M)), J (Alanine (A), Isoleucine (I), Leucine (L), Valine (V)), K (Phenylalanine (F), Tryptophan (W), 

Tyrosine (Y)), and L (stop codons). Trimer Ref. DB consists of three sequence variables that form a 

three level hierarchy: amino acid characteristic trimer (A.A. Char Trimer), A.A. Trimer, and Three 

Codon DNA 9-mer (Figure 1). 

Genus-specific usage bias database (Genus Specific DB) contains the numerical variables- A.A. 

Trimer usage of A.A. Trimer and three codon usage of Three Codon DNA 9-mer. The main numerical 

variable, trimer usage bias, is calculated by multiplying A.A. Trimer usage by three codon usage. 

There are 54 Genus Specific DBs where each Genus Specific DB consists of 1296 A.A. Trimer Usage 

Tables and 7674 Three Codon Usage Tables created based on the CDS database (Figure 2). 

   For each reading frame of a query sequence, the program uses a query sequence to search 

against Trimer Ref. DB, identifying matching A.A. Char Trimers, A.A. Trimers, and Three Codon DNA 

9-mers. It retrieves the trimer usage biases of the matching Three Codon DNA 9-mers from 54 Genus 

Specific DBs, and creates a comparative dataset of 54 genera (Figure 1). The input matrix to the 

correlation PCA method is the comparative dataset with 54 genera in rows (observations) and the 

matching Three Codon DNA 9-mers in columns. The input matrix will be called hereafter Z (I x J).  

 

3.3.2 Annotation for catalytic and allosteric sites 

According to Catalytic Site Atlas and Allosteric Database, A.A. Trimers were divided into 4 subgroups 

based on the property of their second amino acid- catalytic site (CSA), allosteric site (ASD), both CSA 

and ASD (BothCA), and none of them (None) [45,46]. An A.A. Trimer in CSA, ASD, or BothCA groups 

was annotated with the list of functions of PDB molecules that contained the A.A. Trimer. This feature 

is for making inferences about functionality not of a query sequence but of its A.A. Trimers. 
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Figure 2  Database Design 

A large number of PDB entry files were processed to extract 7674 A.A. Trimers- subunits of protein secondary structures. A 

table of three codon usage was created per A.A. Trimer and per genus in Genus Specific DB.  

Note: The PDB IDs of the protein structures in the top of the figure from left are 2ZTI, 3DWH, 2VSL, and 3DRP. Their 

citations are included in the reference section [41–44]. Images of the protein secondary structures and the nucleotide 

structures in the first box and in the second box are from https://en.wikipedia.org/wiki/Alpha_helix and 

https://en.wikipedia.org/wiki/Alpha_helix
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https://en.wikipedia.org/wiki/RNA, respectively.  

 

3.3.3 Implementation of the correlation PCA-Kmeans method  

The correlation PCA method was implemented based on the method reported by Abdi et al. (2010) 

[47], which provides important definitions and multiple examples to help readers understand the 

concepts underlying PCA [47]. Interpretation of the result from SeSaMe PS Function also relies on 

Abdi et al. (2010) because eigenvalue decomposition is mathematically closely related to singular 

value decomposition and has similar underlying concepts. Pearson's correlation method is applied to 

the centered Z and produces a correlation matrix X (J x J). Eigenvalue decomposition is applied to X 

and produces components. V is an eigenvector matrix with J x J dimensions and is also called a 

loading matrix.  

 

3.3.3.1 Loadings: elements of the loading eigenvector matrix V 

The program calculates an eigenvector matrix V. Loading is defined as the element of V. V has 

matching Three Codon DNA 9-mers in rows and the same number of components in columns. The 

program examines loadings on components whose sum accounts for 80% of inertia (80% 

components) in addition to loadings on the first principal component and the second component (the 

First/Second components) [47]. The program creates two different input matrices based on V called L1 

and L2. They have the same number of Three Codon DNA 9-mers in the rows. L1 has 80% 

components in columns while L2 has the First/Second components in columns. The program 

separately applies the K-means clustering method (default k = 13) to L1 and L2.  

    

3.3.3.2 Taxon scores of 54 genera in component spaces 

The program calculates taxon scores of 54 genera observations. Taxon score matrix (I x J) results 

from multiplying centered Z by V. Inertia of a component is defined as a sum of squared taxon scores 

in corresponding component column [47]. The program creates two matrices based on taxon score 

matrix called T1 and T2. They have 54 genera observations in rows. T1 has 80% components in 

columns, while T2 has the First/Second components in columns. The program separately applies the 

K-means clustering method (default k = 10) to T1 and T2.  

 

3.3.4 Program availability 

The program was implemented in Java programming language (www.java.net, www.oracle.com 

(Java8)). We used the Pearson's correlation, the eigenvalue decomposition, and the K-means 

clustering methods in the Apache Commons Math3 library (3.3). The program requires the Apache 

Commons Math3 (3.3) and IO (2.4) libraries (www.apache.org). The program has been made to run 

on Linux/ Unix operating systems, packaged into an executable Java JAR file, and tested and 

confirmed to work on Linux system- CentOS Linux 7 (www.centos.org). The program that is being 

introduced in this article is version 1 and was implemented with the correlation PCA only. The program 

https://en.wikipedia.org/wiki/RNA
http://www.jave.net/
http://www.oracle.com/
http://www.apache.org/
http://www.centos.org/


  
Page 79 

 
  

(version 2) was implemented both with the covariance PCA and with the correlation PCA. They have 

been used at the Biodiversity Center, Institut de Recherche en Biologie Végétale, Département de 

Sciences Biologiques, Université de Montréal. They are available for download free of charge at 

www.journal.com and www.fungalsesame.org. There are no restrictions for using the programs by 

academic or non-academic organizations as long as a user complies with the license agreement. 

 

3.3.5 Input, output, and options 

The program has a command-line interface. Input files should contain DNA sequence(s) in fasta 

format. It requires a command-line argument- input file path. SeSaMe PS Function produces three 

different types of outputs per query sequence. One is the standard PCA output: the sequence 

information of matching Three Codon DNA 9-mers, the percentage of an explained inertia by a 

component, and the contribution of an observation to a component [47]. Another is the loading cluster 

output with the loading information. Three Codon DNA 9-mers are annotated with subgroups- CSA/ 

ASD/ BothCA/ None and the functions of PDB molecules. The other is the genus cluster output with 

the taxon scores. It should be noted that the cluster result is different for every run, because the 

K-means clustering method in the Apache Commons Math library randomly chooses initial centers for 

multiple iterations to decrease chances of poor clustering. 

   SeSaMe PS Function version 1 and version 2 have an option to specify the k parameter in the 

K-means clustering method both for genus clusters and for loading clusters (e.g., 11_15). The 

program version 2 has an additional option called “auto”. If a user wants to run SeSaMe PS Function 

for a large number of query sequences with varying lengths, he can use the prefix “auto” to set the k 

parameter for loading clusters according to a simple equation: the number of matching Three Codon 

DNA 9-mers divided by a user specified number. For example, if the user gives the following option 

“auto_14_8”, it will automatically set one eighth of the number of matching Three Codon DNA 9-mers 

as the k parameter for loading clusters while it will set 14 as the k parameter for genus clusters. A 

suitable k value may vary widely depending on the length and the complexity of a query sequence. 

User can supply the option following the input file path (e.g., /home/input-file auto_14_8). 

 

3.3.6 Demonstration of the program usage 

3.3.6.1 Selection of the example sequence  

We selected 25 correctly predicted sequences out of 100 AMF CDS test sequences that were used for 

evaluating the accuracy of the metagenome taxonomic classifier, SeSaMe [22]. From 25 sequences, 

we selected one example sequence that had the largest number of Three Codon DNA 9-mers where 

AMF had the highest trimer usage bias among 54 genera.  

http://www.journal.com/
http://www.fungalsesame.org/
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Figure 3  Loading clusters of the example sequence 

The figure shows elements of the loading matrix V on the space of the First/Second components.  

Note: Abbreviation: a name of Three Codon DNA 9-mer was abbreviated to the second amino acid of its A.A. Trimer. For 

example, Three Codon DNA 9-mer (AACTGGACC), encoding for the A.A. Trimer NWT, was abbreviated to W (Table S1). A 

digit next to the abbreviation indicates the order of its position in the example sequence. A digit in the colored box is 
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abbreviation of Three Codon DNA 9-mer. For example, 22 under Cluster 10 in the box stands for ATTAATAGT that encodes 

for the A.A. Trimer INS whose order of the position is 22. CSA, ASD, BothCA, and None stand for catalytic site, allosteric site, 

both catalytic and allosteric site, and none of these sites, respectively.  

 

The example query sequence is 

TGAGTTTAAAAACTGGACCAGTGAAAATGAAATAATTGATAATCTTATTTTAGAAATGCAATTAAAAAT

TAATAGTACATATGATAAAATAGTTGAATGGATACCATACAATCAGTTTATTAACATTAACGAAATAGGA

AAAGTTGGTGATAATACTGCTGTATATTCAGCAATATGGAAAAATGGTCCACTATATTATAGAAAGAAA

TGGATAAGGAAATCCAATGAAAAAGTTGTATTAAATTACTTAACATTAGATATTAAGGAATT.  

 

3.3.6.2 Outlier's unique pattern of the trimer usage bias and of the three codon usage    

Landscape pattern is the comparison of 54 genera based either on the trimer usage bias or on the 

three codon usage of a Three Codon DNA 9-mer. It provides an accurate way to estimate the relative 

measure of the usage information across 54 genera. In this article, we abbreviate Three Codon DNA 

9-mer according to the order of its position in DNA sequence and its A.A. Trimer (Table S1). For 

example, AATACTGCT is the 51st matching Three Codon DNA 9-mer and encodes for the amino acids 

NTA. Because the program is zero-based, its abbreviation is 50 NTA. Graphs showing the landscape 

patterns of three codon usages and of trimer usage biases retrieved from 54 genera were generated 

for 17 EMQ and 67 KKW and for 18 MQL and 3 NWT, respectively.  

 

3.3.6.3 Comparison of the frequencies of a nucleotide among 13 loading clusters  

We counted the frequencies of the nucleotide- adenine (A) in each of the individual Three Codon DNA 

9-mers and applied a one-way ANOVA test to compare the means among 13 clusters. We repeated 

the same process for the nucleotides cytosine (C), guanine (G), and thymine (T).  

 

3.3.6.4 Comparison between the trimer usage bias and the three codon usage in functional 

segment 

We assigned matching Three Codon DNA 9-mers into functional segments (FSs) based on the loading 

clusters with 80% components and based on the prediction result of the protein secondary structure 

from a bioinformatics tool- SCRATCH [48].  

   We created two matrices per FS; one was based on the three codon usage, and the other was 

based on the trimer usage bias. Each matrix consisted of the usage information of the matching Three 

Codon DNA 9-mers retrieved from 54 genera; it had the Three Codon DNA 9-mers of an FS in rows 

and the 54 genera in columns. After centering each matrix, we applied Pearson's correlation to the 

matrix to yield a correlation matrix (I x I), and calculated the mean of the correlations per pair of 

taxonomic groups- Clostridia, Bacilli, Oscillatoriophycideae, Nostocales, Acidobacteria, 

Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, AMF, 

Agaricomycotina, and Pezizomycotina. From the mean of the correlations of a pair of genera 
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belonging to the same taxonomic group in each FS, we calculated the mean and the standard 

deviation per taxonomic group. In the same way, we calculated the mean of the correlations for pairs 

of taxonomic groups- Firmicutes, Cyanobacteria, Proteobacteria, Actinobacteria, AMF, a group of 7 

Dikarya, and Phanerochaete in each FS.  

 

3.3.7 Results of the selected analysis 

3.3.7.1 Loading clusters 

The example sequence had 270 bp. When we ran the metagenome taxonomic classifier- SeSaMe- 

with the example sequence, it had the highest trimer usage probability score in the 2nd reading frame 

translation [22]. It had 87 matching Three Codon DNA 9-mers in the 2nd reading frame translation. 

The PCA method applied to the comparative dataset showed that 51 components represented 80% 

components, while the First/Second components explained approximately 29% of total inertia.  

The K-means clustering method (k = 13) applied to the loadings of 80% components identified 

outliers, 14 Three Codon DNA 9-mers in 12 clusters. Ten clusters had a sole member (50 NTA, 63 LYY, 

72 KSN, 4 WTS, 69 WIR, 73 SNE, 24 STY, 30 VEW, 80 NYL, and 51 TAV) while two clusters had two 

members (33 IPY and 61 GPL and 39 INI and 86 IKE). One major cluster had 73 members.  

   Structural homology search in PDB and inference of DNA-binding residues in DRNApred 

suggested that the example sequence may be a DNA/RNA binding protein [23,40]. We used the 

outliers to search publicly available bioinformatics databases containing DNA motifs with known 

functions. RSAT indicated that the outlier and its adjacent Three Codon DNA 9-mer (4 WTS and 3 

NWT) were matched to motifs involved in cis-regulatory mechanisms, one in the + strand and the 

other in the – strand [37]. BPROM (Prediction of bacterial promoters) predicted that the outliers 30 

VEW and 33 IPY were promoter-related elements [38]. GPMiner indicated that three outliers (4 WTS, 

33 IPY, and 61 GPL) were matched to statistically significant over-represented oligonucleotides in the 

promoter region [39]. RNA structure prediction tools predicted that most outliers formed stem-loops, 

stems, and transition routes to stem in mRNA structure of the example sequence (Figure S1) [36]. A 

large number of studies have documented stem-loop and stem structures in mRNAs as important 

regulatory sites and binding sites [49,50]. Considering that we are just beginning to understand the 

regulatory roles of codon usage and codon context, considerable portions of outliers and their 

adjacent Three Codon DNA 9-mers identified by the program may serve important roles in 

undiscovered mechanisms. 

The loading clusters with the First/Second components based on the trimer usage bias are  

shown in Table S1. It should be noted that Table S1 indicates the three codon usages for comparison 

purpose, which will be discussed in another section. The loadings of Three Codon DNA 9-mers with 

the catalytic or with the allosteric site in the second amino acid were plotted on the space of the 

First/Second components (Figure 3). A majority of Three Codon DNA 9-mers where Firmicutes, 

Cyanobacteria, Rickettsia, or AMF had the highest three codon usage were aggregately located on the 
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far-right side (Figure 3). In contrast, those where Deltaproteobacteria, Gammaproteobacteria, or  

 

 

Figure 4  Genus clusters of the example sequence 

Taxon scores of 54 genera are plotted on the space of the First/Second components. 
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Actinobacteria had the highest three codon usage were dispersed across the left side and the middle 

of the graph. For example, 3 NWT where Kocuria had the highest value was located on the far-left 

side (Table S1). 

 

3.3.7.2 Genus clusters 

The genus clusters based on 80% components indicated that genera with close phylogenetic 

relationships were assigned to the same cluster. In the scatter plot of taxon scorers on the space of 

First/Second components, Firmicutes, Cyanobacteria, Rickettsia, and AMF that frequently had high 

trimer usage biases were located on the right while most members of Actinobacteria and 

Proteobacteria (cluster 1) that frequently had low values were located on the far-left side (Figure 4).  

    

3.3.7.3 Outlier's unique landscape pattern of the trimer usage bias and of the three codon 

usage 

For each of the Three Codon DNA 9-mers in loading clusters with the First/Second components, we 

ranked 54 genera in order of decreasing three codon usage. We then, ranked the Three Codon DNA 

9-mers in each subgroup (CSA/ ASD/ BothCA/ None) of the clusters based on a maximum of the three 

codon usages (Table S1). The mean of the maxima was 0.256. AMF, Clostridium, and Rickettsia 

frequently had the maximum.    

Most of Three Codon DNA 9-mers in the major cluster demonstrated similar landscape patterns of the 

three codon usage and of the trimer usage bias. For example, 17-EMQ-GAAATGCAA and 

18-MQL-ATGCAATTA had the frequently demonstrated landscape pattern (Figures S2 and S3). 

Outliers had a unique landscape pattern; for example, genera belonging to Dikarya had a higher value 

than AMF both in 67-KKW-AAGAAATGG and in 3-NWT-AACTGGACC (Figures 5 and S4). 

 

3.3.7.4 Comparison of the frequencies of a nucleotide among 13 loading clusters  

One-way ANOVA tests showed that the means of the frequencies of G and C in each of the individual 

Three Codon DNA 9-mers were significantly different among 13 clusters; F-statistics and p-value of A, 

T, G, and C among 13 clusters were 0.69 (0.76), 1.26 (0.26), 1.91 (0.047), and 3.09 (0.0014), 

respectively. 
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Figure 5  Landscape pattern of the three codon usage of 67-AAK-KKW-AAGAAATGG 

54 genera are arranged into 13 taxonomic groups. 
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3.3.7.5 Comparison between the trimer usage bias and the three codon usage in FS 

We merged some of the outliers in 12 clusters according to their proximity in the example sequence, 

which produced 8 groups. The merged outliers were 50 NTA with 51 TAV, 33 IPY and 61 GPL with 63 

LYY, and 69 WIR with 72 KSN and 73 SNE. This was done to simplify the analysis, and is not 

recommended for real case analyses. Examining the protein tertiary structure predicted by SCRATCH, 

we added another group (20 LKI), a member of alpha helix, which made a total of 9 groups [48]. We 

assigned 87 Three Codon DNA 9-mers into 9 FSs according to the outliers: FS1: 4 WTS (from Three 

Codon DNA 9-mer 0 – 12); FS2: 20 LKI (alpha helix1: 13 – 21); FS3: 24 STY (22 – 29); FS4: 30 VEW 

(30 – 32); FS5: 33 IPY, 61 GPL, 63 LYY (33 – 35, 52 – 65); FS6: 39 INI, 86 IKE (36 – 41, 82 – 86); 

FS7: 50 NTA, 51 TAV (42 – 51); FS8: 69 WIR, 72 KSN, 73 SNE (66 – 73); FS9: 80 NYL (alpha helix2: 

74 – 81) (Figure S5).  

   Generally, the mean of the correlations of a pair of genera belonging to the same taxonomic group 

was the highest in each taxonomic group for all 9 FSs (Tables S2 and S3). Table S4 shows the mean 

and the standard deviation of 9 FSs calculated from the mean of the correlations of a pair of genera 

belonging to the same taxonomic group in a FS.  

   The mean of the correlations of a pair of taxonomic groups based on three codon usage (left) and 

the mean based on trimer usage bias (right) are shown in Table S3. Most of them had strong 

correlations in both alpha helices – FS2 and FS9. This may suggest that roles of amino acids and of 

codons in alpha helices may be relatively more conserved across taxonomic groups due to functional 

and structural constraints compared to those in random coils and loops of which flexible structures are 

equipped for a variety of functions.  

 

3.3.7.6 Comparable properties of 25 selected sequences in AMF CDS test set 

In order to show that the program provided outliers of Three Codon DNA 9-mers in loading clusters 

based on 80% components not only in the example sequence but also in all 25 sequences, we 

included the cluster results of 5 additional query sequences. Genus clusters and loading clusters of 

the sequences are shown in Supplementary Tables 5 and 6, respectively. The early diverged bacteria 

and AMF were often clustered as a sole member or with each other. A great majority of Three Codon 

DNA 9-mers were grouped together into one major cluster, while outliers were clustered as a sole 

member or with only one other member.  

  

3.4 Future work  

Recent studies have documented that long non-coding RNAs (lncRNAs) play important roles in 

various cellular processes [51]. Because a large number of lncRNAs contain putative ORF, it is 

challenging to distinguish them from protein CDS [51]. They have been intensively studied only in 

mammalian species and other model organisms. AMF CDS list, presumably created based on results 

from a number of gene prediction programs, may contain lncRNAs. In future, we may make two types 
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of sequence databases, protein CDS and lncRNA, and take a different approach depending on 

whether a query sequence is classified into lncRNA or into protein CDS. 

Recent studies have documented that codon usage and mRNA structure regulate protein folding 

[25,26,28,30]. For example, some studies showed association between rare codons or double 

stranded mRNA structures and a decrease of translational speed [26,30]. Other studies have 

documented relationships between protein secondary structure and mRNA structure; double stranded 

mRNA regions tend to have an association with alpha helix and beta-strand while single stranded 

mRNA regions tend to have an association with random coils [52,53]. However, the roles of the 

codons involved in these rules may vary widely across taxonomic groups. Furthermore, while we need 

defined structures across various taxa, they are mostly from a small number of model organisms. 

Therefore, it is challenging to study associations between mRNA structures and their corresponding 

protein structures in metagenome sequencing data. We may be able to improve SeSaMe PS Function 

by incorporating a new feature that predicts mRNA single and double stranded regions in a query 

sequence.  
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3.9 Supplementary Materials 
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Supplementary Figure 1  Outliers in the predicted mRNA secondary structures  

The structures were generated by the bioinformatics program- RNAstructure 

(https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html).  

A. The example DNA sequence with T replaced with U was submitted as RNA. The secondary 

structure was predicted based on the algorithm called Fold. B. The example DNA sequence was 

submitted as DNA. The secondary structure was predicted based on the algorithm called MaxExpect. 
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Supplementary Figure 2  Landscape pattern of the three codon usage of 

17-CIE-EMQ-GAAATGCAA 

54 genera are arranged into 13 taxonomic groups. 

 



  
Page 95 

 
  

 

Supplementary Figure 3  Landscape pattern of the trimer usage bias of 

18-IEJ-MQL-ATGCAATTA  

54 genera are arranged into 13 taxonomic groups. 
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Supplementary Figure 4  Landscape pattern of the trimer usage bias of 

3-EKD-NWT-AACTGGACC  

54 genera are arranged into 13 taxonomic groups. 
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Supplementary Figure 5  FSs of the predicted protein tertiary structure  

The structure was predicted by the bioinformatics program- SCRATCH 

(http://scratch.proteomics.ics.uci.edu/). The PDB file format was converted to Cn3D format by another 

bioinformatics program- Vast (https://www.ncbi.nlm.nih.gov/Structure/VAST/vastsearch.html). The 

3-dimensional structure was viewed by Cn3D 

(https://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml).  
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Supplementary Table S1  Loading clusters according to the First/Second components 

cluster type rank three_genus max char_aa three_codon 

0 ASD 0 Cyanobacterium 0.28 15_JJC:ILE 15_ATTTTAGAA 

0 ASD 1 Rickettsia 0.07 80_EKJ:NYL 80_AATTACTTA 

0 Both 0 Cyanobacterium 0.2 50_EDJ:NTA 50_AATACTGCT 

0 None 1 Klebsiella 0.29 1_KAE:FKN 1_TTTAAAAAC 

0 None 0 Cyanobacterium 0.36 16_JCI:LEM 16_TTAGAAATG 

0 None 2 Pseudanabaena 0.27 36_EEK:NQF 36_AATCAGTTT 

0 None 4 Bacillus 0.06 81_KJD:YLT 81_TACTTAACA 

0 None 3 Pseudanabaena 0.16 85_CJA:DIK 85_GATATTAAG 

1 Both 0 AMF 0.14 34_HKE:PYN 34_CCATACAAT 

1 CSA 0 AMF 0.16 53_JKD:VYS 53_GTATATTCA 

1 None 1 AMF 0.26 54_KDJ:YSA 54_TATTCAGCA 

1 None 2 AMF 0.11 55_DJJ:SAI 55_TCAGCAATA 

1 None 0 Clostridium 0.38 57_JKA:IWK 57_ATATGGAAA 

2 ASD 1 Leuconostoc 0.25 46_AJG:KVG 46_AAAGTTGGT 

2 ASD 2 Clostridium 0.07 51_DJJ:TAV 51_ACTGCTGTA 

2 ASD 0 AMF 0.34 75_CAJ:EKV 75_GAAAAAGTT 

2 Both 1 Rickettsia 0.12 12_CEJ:DNL 12_GATAATCTT 

2 Both 0 Clostridium 0.16 66_AAA:RKK 66_AGAAAGAAA 

2 CSA 0 Leuconostoc 0.45 11_JCE:IDN 11_ATTGATAAT 

2 CSA 5 Cyanobacterium 0.22 20_JAJ:LKI 20_TTAAAAATT 

2 CSA 2 Rickettsia 0.38 27_CAJ:DKI 27_GATAAAATA 

2 CSA 3 Leuconostoc 0.27 47_JGC:VGD 47_GTTGGTGAT 

2 CSA 1 Rickettsia 0.43 48_GCE:GDN 48_GGTGATAAT 

2 CSA 4 Clostridium 0.26 6_DCE:SEN 6_AGTGAAAAT 

2 CSA 6 Bacillus 0.09 77_JJJ:VVL 77_GTTGTATTA 

2 None 9 Bacillus 0.09 14_JJJ:LIL 14_CTTATTTTA 

2 None 2 Cyanobacterium 0.35 21_AJE:KIN 21_AAAATTAAT 

2 None 3 Rickettsia 0.34 49_CED:DNT 49_GATAATACT 

2 None 8 Clostridium 0.11 52_JJK:AVY 52_GCTGTATAT 



  
Page 99 

 
  

2 None 7 Rickettsia 0.13 63_JKK:LYY 63_CTATATTAT 

2 None 0 Clostridium 0.61 7_CEC:ENE 7_GAAAATGAA 

2 None 1 Clostridium 0.53 74_ECA:NEK 74_AATGAAAAA 

2 None 6 AMF 0.15 76_AJJ:KVV 76_AAAGTTGTA 

2 None 4 Clostridium 0.18 78_JJE:VLN 78_GTATTAAAT 

2 None 5 Clostridium 0.15 83_DJC:TLD 83_ACATTAGAT 

3 ASD 0 AMF 0.09 13_EJJ:NLI 13_AATCTTATT 

3 Both 0 AMF 0.27 25_DKC:TYD 25_ACATATGAT 

3 CSA 0 AMF 0.2 45_GAJ:GKV 45_GGAAAAGTT 

3 None 4 AMF 0.18 10_JJC:IID 10_ATAATTGAT 

3 None 0 AMF 0.59 18_IEJ:MQL 18_ATGCAATTA 

3 None 3 Clostridium 0.21 44_JGA:IGK 44_ATAGGAAAA 

3 None 2 AMF 0.21 60_EGH:NGP 60_AATGGTCCA 

3 None 1 Clostridium 0.34 64_KKA:YYR 64_TATTATAGA 

3 None 5 Clostridium 0.05 70_JAA:IRK 70_ATAAGGAAA 

4 ASD 0 Clostridium 0.12 69_KJA:WIR 69_TGGATAAGG 

4 None 0 Rhodobacter 0.63 67_AAK:KKW 67_AAGAAATGG 

5 None 0 AMF 0.5 31_CKJ:EWI 31_GAATGGATA 

5 None 2 AMF 0.4 32_KJH:WIP 32_TGGATACCA 

5 None 3 AMF 0.1 33_JHK:IPY 33_ATACCATAC 

5 None 1 AMF 0.49 56_JJK:AIW 56_GCAATATGG 

6 ASD 0 Erwinia 0.14 5_DDC:TSE 5_ACCAGTGAA 

6 None 2 Klebsiella 0.23 0_CKA:EFK 0_GAGTTTAAA 

6 None 0 Klebsiella 0.71 2_AEK:KNW 2_AAAAACTGG 

6 None 1 Klebsiella 0.28 37_EKJ:QFI 37_CAGTTTATT 

6 None 3 Pseudanabaena 0.17 38_KJE:FIN 38_TTTATTAAC 

6 None 4 Klebsiella 0.17 41_JEC:INE 41_ATTAACGAA 

7 CSA 0 Geobacter 0.02 71_AAD:RKS 71_AGGAAATCC 

7 None 0 Bradyrhizobium 0.32 35_KEE:YNQ 35_TACAATCAG 

8 None 0 AMF 0.14 4_KDD:WTS 4_TGGACCAGT 

9 ASD 0 Kocuria 0.69 3_EKD:NWT 3_AACTGGACC 
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10 ASD 2 Clostridium 0.08 24_DDK:STY 24_AGTACATAT 

10 ASD 0 Clostridium 0.19 28_AJJ:KIV 28_AAAATAGTT 

10 ASD 1 Leuconostoc 0.11 39_JEJ:INI 39_ATTAACATT 

10 Both 0 Cyanobacterium 0.16 22_JED:INS 22_ATTAATAGT 

10 CSA 2 Rickettsia 0.09 79_JEK:LNY 79_TTAAATTAC 

10 CSA 0 Cyanobacterium 0.28 84_JCJ:LDI 84_TTAGATATT 

10 CSA 1 Pseudanabaena 0.13 86_JAC:IKE 86_ATTAAGGAA 

10 None 0 AMF 0.77 17_CIE:EMQ 17_GAAATGCAA 

10 None 2 AMF 0.36 19_EJA:QLK 19_CAATTAAAA 

10 None 3 Rickettsia 0.12 23_EDD:NST 23_AATAGTACA 

10 None 4 Sebacina 0.09 40_EJE:NIN 40_AACATTAAC 

10 None 1 Leuconostoc 0.37 59_AEG:KNG 59_AAAAATGGT 

11 ASD 0 Bdellovibrio 0.15 73_DEC:SNE 73_TCCAATGAA 

11 None 0 Nitrosomonas 0.18 72_ADE:KSN 72_AAATCCAAT 

12 ASD 1 Clostridium 0.17 29_JJC:IVE 29_ATAGTTGAA 

12 ASD 0 Cyanobacterium 0.8 58_KAE:WKN 58_TGGAAAAAT 

12 ASD 2 Rickettsia 0.11 65_KAA:YRK 65_TATAGAAAG 

12 CSA 0 AMF 0.55 26_KCA:YDK 26_TATGATAAA 

12 CSA 3 Nitrosospira 0.09 42_ECJ:NEI 42_AACGAAATA 

12 CSA 1 Clostridium 0.4 8_ECJ:NEI 8_AATGAAATA 

12 CSA 2 AMF 0.1 82_JDJ:LTL 82_TTAACATTA 

12 None 0 AMF 0.56 30_JCK:VEW 30_GTTGAATGG 

12 None 2 Clostridium 0.22 43_CJG:EIG 43_GAAATAGGA 

12 None 5 Rickettsia 0.03 61_GHJ:GPL 61_GGTCCACTA 

12 None 4 Leuconostoc 0.05 62_HJK:PLY 62_CCACTATAT 

12 None 1 Clostridium 0.35 68_AKJ:KWI 68_AAATGGATA 

12 None 3 AMF 0.16 9_CJJ:EII 9_GAAATAATT 

 

Note: A maximum of three codon usages among 54 genera and a genus with the maximum for each Three 

codon DNA 9-mer is indicated in the column- three_max and three_genus, respectively.   
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Supplementary Table 2  Correlations of a pair of genera based on trimer usage bias 

 

To download the supplementary table 2 (xls file), please click here (at the same time, press Ctrl key) 

 

If the link does not work, please copy and paste the following web address in your browser. 

 

www.codon.kr/thesis/chapter3/supple_table_2.xls 
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Supplementary Table 3  The mean of the correlations in 9 FSs 

To download the supplementary table 3 (docx file), please click here (at the same time, press Ctrl key) 

 

If the link does not work, please copy and paste the following web address in your browser. 

 

www.codon.kr/thesis/chapter3/supple_table_3.docx 
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Supplementary Table 4  The mean and the standard deviation of the correlations of 9 FSs 

 

To download the supplementary table 4 (xls file), please click here (at the same time, press Ctrl key) 

 

If the link does not work, please copy and paste the following web address in your browser. 

 

www.codon.kr/thesis/chapter3/supple_table_4.xls 
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Supplementary Table 5  Genus clusters of five additional sequences 

  seq252 seq284 seq337 seq475 seq528 

Cluster 0 

0,1,2,4,5,9,10,16,17,1

9,21,22,23,24,25,26,2

9,30,34,35,36,37,40,4

1,42,43,44,49,51 

4,5,17,22,34,37,

41,43,44  

1,4,5,9,10,16,19,

21,22,23,24,25,2

6,30,34,35,36,37

,40,41,42,43,44,

51 

7,13,28,33 

1,2,4,5,8,9,10,16,

19,21,22,23,24,2

5,26,30,34,35,36,

37,40,41,42,43,4

4,51 

Cluster 1 32,39 3,12,20,31,38  12,20 11,45 11,45 

Cluster 2 38 
7,13,27,32,39,47

,50,52,53 
13,31 

4,5,9,10,16,19,2

2,23,24,25,30,34

,35,37,41,42,43,

44 

6,12 

Cluster 3 6,20 11,45 38,45 
27,29,39,47,48,5

0,52,53 
3,20 

Cluster 4 
7,8,14,15,18,46,47,48

,52,53  
6,33 27,33 6,12 27,33 

Cluster 5 11,45 9 
7,8,14,15,29,39,

47,50,52,53 

0,1,2,18,21,26,3

6,40 
28,32,39 

Cluster 6 33,50 1,2,21,26,36,40 
0,2,17,18,46,48,

49 
3,20 38 

Cluster 7 12 28,29 3,6 38 7,13,31 

Cluster 8 3,13 
0,8,14,15,18,46,

48,49,51 
11 

8,14,15,17,46,49

,51 

14,15,18,29,47,4

8,50,52,53 

Cluster 9 27,28,31 
10,16,19,23,24,2

5,30,35,42 
28,32 31,32 0,17,46,49 

Note: The numbers in the table stand for the genera: 

0:Acidithiobacillus,1:Acidobacterium,2:Agrobacterium,3:Anabaena,4:Azorhizobium,5:Azotobacter,6:Bacillus,7:Bdellovibrio,8:

Beijerinckia,9:Bradyrhizobium,10:Caulobacter,11:Clostridium,12:Cyanobacterium,13:Desulfotomaculum,14:Desulfovibrio,15:

Erwinia,16:Frankia,17:Geobacter,18:Klebsiella,19:Kocuria,20:Leuconostoc,21:Mesorhizobium,22:Methylococcus,23:Microba

cterium,24:Micrococcus,25:Myxococcus,26:Nitrobacter,27:Nitrosococcus,28:Nitrosomonas,29:Nitrosospira,30:Nocardia,31:N

ostoc,32:Oscillatoria,33:Pseudanabaena,34:Pseudomonas,35:Pseudonocardia,36:Rhizobium,37:Rhodobacter,38:Rickettsia,

39:Shewanella,40:Sinorhizobium,41:Sphingomonas,42:Streptomyces,43:Variovorax,44:Xanthomonas,45:AMF,46:Aspergillus,

47:Cenococcum,48:Cryptococcus,49:Mycosphaerella,50:Oidiodendron,51:Phanerochaete,52:Scleroderma,53:Sebacina 
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Supplementary Table 6  Loading clusters of five additional sequences   

seq252 seq284 seq337 seq475 seq528 

Cluster 0  
69_JEJ_VNL_GTGAATTTG 
 

Cluster 1  
59_EKA_NWK_AATTGGAAA 
 

Cluster 2  
34_AJE_RAN_AGAGCAAAT 
 

Cluster 3  
30_GAJ_GKV_GGTAAAGTG 
 

Cluster 4  
Major cluster  
 

Cluster 5  
37_KKC_WFD_TGGTTTGAT 
 

Cluster 6  
1_BDK_HTF_CATACATTC 
 

Cluster 7  
70_EJA_NLK_AATTTGAAA,  
71_JAD_LKS_TTGAAAAGT 
 

Cluster 8  
26_ACC_KDE_AAAGATGAG 
 

Cluster 9  
18_JKC_LYD_TTGTATGAC 
 

Cluster 10  
31_AJK_KVY_AAAGTGTAT 
 

Cluster 11  
40_GEJ_GNI_GGGAACATA 
 

Cluster 12  
36_EKK_NWF_AATTGGTTT 

Cluster 0  
74_HGA_PGK_CCAGGAAAG 
 

Cluster 1  
36_JJD_IVT_ATAGTGACT 
 

Cluster 2  
27_JHJ_LPI_TTGCCGATT 
 

Cluster 3  
52_CHJ_EPI_GAACCAATC,  
64_JJD_ILS_ATTTTGTCA 
 

Cluster 4  
1_GEH_GNP_GGTAACCCA 
 

Cluster 5  
Major cluster  
 

Cluster 6 
43_AJA_KLR_AAACTACGC 
 

Cluster 7 

26_CJH_ELP_GAATTGCCG 
 

Cluster 8 

17_AAE_RRN_CGTAGAAAC 
 

Cluster 9 

37_JDC_VTE_GTGACTGAA 
 

Cluster 10 

45_AKA_RYR_CGCTATAGA 
 

Cluster 11 

57_KIE_YMQ_TATATGCAA 
 

Cluster 12 

78_KJI_YLM_TATCTCATG 

Cluster 0  
12_KKJ_YFL_TATTTTCTC 
 

Cluster 1  
Major cluster 
 

Cluster 2  
8_DDK_TSF_ACATCTTTT 
 

Cluster 3  
46_ICJ_MDA_ATGGATGCA 
 

Cluster 4  
40_AKC_KFE_AAATTTGAG 
 

Cluster 5  
52_AJE_KLQ_AAACTTCAA 
 

Cluster 6  
27_AEG_RNG_CGTAATGGG 
 

Cluster 7  
2_JJD_LVS_TTGGTATCA 
 

Cluster 8  
5_DAK_TKY_ACTAAGTAT 
 

Cluster 9  
22_EKJ_QFI_CAATTCATA 
 

Cluster 10  
4_DDA_STK_TCAACTAAG 
 

Cluster 11  
53_JEJ_LQI_CTTCAAATA 
 

Cluster 12  
7_KDD_YTS_TATACATCT,  
35_KCH_YEP_TATGAACCA,  
36_CHJ_EPI_GAACCAATT,  
37_HJA_PIK_CCAATTAAA 

Cluster 0  
51_DDD_SSS_AGTTCGAGT 
 

Cluster 1  
45_DGD_SGT_TCAGGTACT 
 

Cluster 2  
43_GDD_GTS_GGTACTTCA 
 

Cluster 3  
24_EAD_NKS_AATAAATCA,  
56_EAK_QKY_CAAAAATAT 
 

Cluster 4  
11_CAJ_DKL_GACAAATTA,  
26_DJC_SAE_TCAGCTGAA 
 

Cluster 5  
Major cluster 
 

Cluster 6  
40_AJA_RLR_AGATTACGA 
 

Cluster 7  
27_JCE_AEQ_GCTGAACAG 
 

Cluster 8  
28_CEG_EQG_GAACAGGGA 
 

Cluster 9  
14_CCD_DDT_GACGACACA 
 

Cluster 10  
33_CJA_EAR_GAAGCTAGG 
 

Cluster 11  
29_EGE_QGN_CAGGGAAAT 
 

Cluster 12  
37_DKK_SFY_AGTTTTTAT 

Cluster 0  
7_AGJ_KGA_AAAGGAGCA 
 

Cluster 1  
Major cluster  
 

Cluster 2  
24_AEJ_KNA_AAAAATGCG 
 

Cluster 3  
31_JDA_ASK_GCCTCGAAA 
 

Cluster 4  
17_AEK_RNF_AGAAATTTT 
 

Cluster 5  
25_EJA_NAK_AATGCGAAA 
 

Cluster 6  
20_EKK_NYY_AATTATTAT 
 

Cluster 7  
36_AJH_KAP_AAAGCTCCA 
 

Cluster 8  
30_CJD_DAS_GATGCCTCG 
 

Cluster 9  
1_CDJ_ESL_GAATCTCTT 
 

Cluster 10  
11_JJJ_LLI_TTATTAATC,  
34_JDA_ITK_ATTACAAAA 
 

Cluster 11  
5_JDA_ATK_GCTACAAAA,  
18_EKE_NFN_AATTTTAAT 
 

Cluster 12  
13_JED_INT_ATCAACACT 

Note: The major cluster contains the rest of the Three Codon DNA 9-mers that were omitted from the table. 

seq252:GCACATACATTCTATGAAGTAAATAATGCATTAGAATGGATACCTTATGATAAATTGTATGACATTAAATAT

ATTACGAAAGATGAGTTAGGTAAAGTGTATAGAGCAAATTGGTTTGATGGGAACATAATTGATAAATATTATAGTT

ATAATTATTGGGGTGATGTATTAAAACATAATTGGAAAAGAAACTATCCTAATATGTTTGTGAATTTGAAAAGTTT

AAATTCTCCAAATGATCTTAC ;  

seq284:CCAATGGTAACCCAAATGGAAATGATAATGGTAATGGCAATGGTACAGAACGACGTAGAAACGTAGAA

GATCTTTATTCTGAATTGCCGATTGATAGTAAAACTAAGGAAATAGTGACTGAAGTTAATGCAAAACTACGCTAT

AGATATGTAAATATGGAACCAATCAAGCTTTATATGCAAGTTTGCCAATTTATTTTGTCATTATTTCCTGATGTAC

CGGATCCAGGAAAGTTATATCTCATGTTTCCGGATGGTAAAA ;  

seq337:TATTTATTTGGTATCAACTAAGTATACATCTTTTTTATATTTTCTCTTTCCAAAATTAACAAATTTACAATTC
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ATAAGAATACGTAATGGGGATAATATTAATAATTATGAACCAATTAAAAAATTTGAGGAATACGCAATGGATGCAA

GTTATTATAAACTTCAAATACTTGAGT ;  

seq475:AGCTCAATACAATCTTGGAGTTATTTATGAAACTGACAAATTAGACGACACAATTGCAGCACTGTATTG

GTATAATAAATCAGCTGAACAGGGAAATCATGAAGCTAGGGAAAGTTTTTATAGATTACGAGGTACTTCAGGTA

CTAAGACTGTTAGTTCGAGTAGTATACAAAAATATGGTTCTATGGGTAT ;  

seq528:CTTGAATCTCTTCTTGCTACAAAAGGAGCAGAGTTATTAATCAACACTTTAAGAAATTTTAATTATTATAA

AAAAAATGCGAAAGAACAAGATGCCTCGAAAATTACAAAAGCTCCAAAAATTAAAAAAGAAATGAGTAAAATTA

AGTGGTCACAAATT  
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4.1 Abstract 

Although most synonymous codons in the standard genetic code table differ only in the third position, 

synonymous codons encoding for Leucine, Arginine, and Serine differ in the first and/or the second 

position. Furthermore, a large number of irregular codons have been identified in nuclear and 

mitochondrial genomes of various organisms. Mainstream hypotheses addressing the origin of the 

genetic code claim that codon position has played important roles in its evolution; the current genetic 

codes show an association between the property of the nucleotide either in the first or the second 

position and the cognate amino acid. In this article, we introduce a novel bioinformatics program- Post 

(POsition Specific genetic code Table) that provides new perspectives on studying codon assignment. 

We have developed three different codon tables called Posts according to the codon position. As a 

mailto:jennifer.kang@umontreal.ca
mailto:jennifer.kang@umontreal.ca
mailto:mohamed.hijri@umontreal.ca
mailto:mohamed.hijri@umontreal.ca
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case study, we investigated frequencies of irregular codons in 187 mitochondrial genomes of plants 

and fungi. While there are two different possible types of irregular codons, those that vary 

within-column and those that vary trans-column type, we observed that the majority of the identified 

irregular codons belonged to the within-column type. The result suggests that the Post provides a 

useful means for studying codon assignment.   

 

Keywords: Position specific genetic code tables; Post; Arbuscular mycorrhizal fungi; Codon 

assignment;  

 

4.2 Introduction 

An amino acid except Methionine and Tryptophan can be encoded by multiple synonymous codons 

according to the standard genetic code table. Most synonymous codons have a different nucleotide in 

the third position, an observation explained by the wobble hypothesis. According to the hypothesis, the 

wobble base pairing between the first RNA in the anticodon of a tRNA and the third RNA in the codon 

of a mRNA is less specific (1). Therefore, one tRNA is responsible for translating more than one 

codon; the minimum number of tRNAs required for translating 20 amino acids is much less than 61 

(1).  

   Evolutionary forces acting on codons are known to vary widely for the nucleotides at the first, 

second, and third position. The second position is known to be under the highest selection pressure 

while the third position is under the lowest selection pressure, because many of the changes in the 

third position result in synonymous mutations (2). However, synonymous codons for leucine and 

arginine exhibit less specificity toward nucleotides not only in the third position but also in the first 

position; leucine can be encoded by CTN or TTR where N represents adenine (A), thymine (T), G, and 

cytosine (C) and R represents purines. Similarly, arginine can be encoded by CGN or AGR. 

Furthermore, Serine showed less specificity in all three positions, as it can be encoded by TCN and 

AGY where Y represents pyrimidines. In addition to these synonymous changes, some organisms 

also contain what are termed irregular codons. For example, irregular stop codons that have been 

found to encode tryptophan, serine, glycine, and glutamine were identified in a human microbiome 

study (3). Selenocysteine and Pyrrolysine can be also encoded by stop codons. CTGLeu encodes for 

Serine in Candida albicans, CTG-clade fungi, and some mitochondrial genomes (4). A number of 

irregular codons have been found in mitochondrial genomes of various organisms. In addition, in 

plants’ mitochondrial genomes, atypical start codons such GTGVal and ACGThr and atypical stop 

codons such as CAAGln and CGAArg  have been found (5). Interestingly, GTGVal serving as a start 

codon has been observed in algae, bryophytes and pteridophyte, while ACGThr serving as a start 

codon has been observed in most land plants (5).  
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Mainstream hypotheses addressing the origin of the genetic code include the stereochemical 

hypothesis and the coevolution hypothesis. The stereochemical hypothesis suggested that the origin 

of the genetic code resulted from the interactions between pre-tRNA molecules and amino acids. The 

interactions were driven by affinity until they were replaced by aminoacyl-tRNA synthetases (6). The 

codon-correspondence hypothesis, claiming that the genetic codes arose from direct interactions 

between nucleotides and their cognate amino acids, is consistent with the claims that the genetic 

codes emerged before or during the RNA world (7). It has been suggested that the last universal 

common ancestor already had nearly all components of the translational apparatus, including 

aminoacyl-tRNA synthetases (8). Ribosomes, found in all living organisms and known to be highly 

conserved, may have brought some consistency into codon assignments across various taxonomic 

groups. However, detailed comparison of ribosome structures across diverse organisms remains to be 

assessed, because ribosomal structures have been solved only for intensively studied model 

organisms. Evidence supporting the stereochemical hypothesis came from chromatography and 

experiments involving fitting a cavity in a B-DNA construct with an amino acid (9). Both types of 

experiment supported the idea that the polarity of an amino acid correlates with the property of the 

nucleotide in the second position of its cognate tRNA anticodon (9,10). Coevolution hypothesis 

suggested that mechanisms involving codon assignment and amino acid biosynthesis coevolved 

through interactions between peptides and RNA-like molecules. It claimed that closely related amino 

acids should be defined in terms of their biosynthetic pathways and differ by no more than a single 

base (11). They assigned amino acids into 6 groups: pyruvate (GCN/Ala/A, GTN/Val/V, 

CTN-TTR/Leu/L); aspartate (GAY/Asp/D, ATY-ATA/Ile/I, ATG/Met/M, ACN/Thr/T, AAY/Asn/N, 

AAR/Lys/K); glutamate (GAR/Glu/E, CAR/Gln/Q, CCN/Pro/P, CGN-AGR/Arg/R); aromatic (TTN/Phe/F, 

TAY/Tyr/Y, TGG/Trp/W); serine (GGN/Gly/G, TCN-AGY/Ser/S, TGY/Cys/C); histidine (CAY/His/H) 

(10). They suggested that codons belonging to the same amino acid group often have the same 

nucleotide in the first position.  

The origin and evolution of codons is a fundamental question that has an enormous impact on a 

number of areas of biological sciences. However, for decades, the research has been limited to a 

small number of model organisms. With a vast amount of omics data, variation of codon 

(re)assignment and the diversity of the translation apparatus can be more fully assessed (12). In order 

to study association between codon position and genetic code using omics data, we developed a 

novel bioinformatics method- POsition Specific genetic code Table (Post) that assigns a codon with 

respect to nucleotide position in the codon. It is widely accepted that position in the codon is an 

important factor reflecting the evolutionary dynamics of the genetic code. The Post assigns a codon 

into an amino acid group solely based on codon position in order to analyze evolutionary forces acting 

on genetic code with respect to codon position. Based on the Post, an irregular codon can be 

classified either into within-column type or trans-column type. An irregular codon of within-column type 

encodes for abnormal amino acid that is located in the same column as its cognate standard amino 
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acid in the Post, while that of trans-column type does in a different column. A great majority of irregular 

codons identified in this study were classified into within-column type. This new method provides a 

useful tool for studying codon assignment.  

We conducted a case study on arbuscular mycorrhizal fungi (AMF), which are plant-root inhabiting 

fungi that form symbiosis with more than 80% of vascular plants worldwide (13). They provide plants 

with nutrients, protect them against soil-borne pathogens, and increase tolerance to environmental 

stresses (14-17). AMF associated microbial community contains beneficial microorganisms such as 

nitrogen-fixing, phosphate solubilizing, and plant growth promoting microorganisms. A number of 

researchers have developed AMF inoculants as biofertilizer in order to reduce the use of pesticides 

and chemical fertilizers that deteriorate agroecosystem (18). In addition to its contribution in 

establishing sustainable agricultural practice, AMF inoculation has been utilized to clean up soil 

contaminated with petroleum hydrocarbons, metals, uranium, and iron-cyanide complexes (19-21).  

 

Table 1  The first position specific genetic code table 

 

Note: G in the red box stands for A.A. Group. For example, G1 stands for A.A. Group 1. 
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Table 2  The second position specific genetic code table 

 

Note: G in the red box stands for A.A. Group. For example, G1 stands for A.A. Group 1. 

 

Table 3  The third position specific genetic code table 

 

Note: G in the red box stands for A.A. Group. For example, G1 stands for A.A. Group 1. 
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We conducted comparative mitochondrial genomics using a total of 187 mitochondrial genomes of 

taxonomically diverse organisms covering plants and fungi including lichen-forming fungi and AMF. 

We restricted our analyses to irregular codons, those codons whose nucleotide sequence and its 

cognate protein sequence provided by NCBI do not conform with the standard genetic code table 

(although it is unclear whether it was a result of (pre/post) transcription or (pre/post) translation related 

processes). The goal of this study was to assess the degree of variations in the occurrences of 

irregular codons, to classify an irregular codon into within-column type or trans-column type, and to 

assess the differences of codon frequencies in mitochondrial genomes according to the Post.  

 

4.3 Methods 

4.3.1 The Post: new perspectives for studying codon property and codon assignment 

The Post was created to facilitate analysis of the position of a nucleotide in a codon. Each Post 

contains 16 amino acid groups contained in a 4 x 4 matrix. Each amino acid group (A.A. Group) 

consists of 4 codons where one codon position can be A, T (U), G, or C, while the other two positions 

are fixed (Tables 1-3). For example, TTC, CTC, ATC, and GTC belong to the same A.A. Group in the 

first Post (Post 1) (Table 1). A.A. Groups located in the same column of the table were assigned into 

what we will hereafter refer to as an amino acid characteristics group (A.A. Char group). For example, 

A.A. Group1 (TTT, TCT, TAT, TGT), A.A. Group2 (TTC, TCC, TAC, TGC), A.A. Group3 (TTA, TCA, 

TAA, TGA), and A.A. Group4 (TTG, TCG, TAG, TGG) belong to A.A. Char Group 1 in the second Post 

(Post 2) (Table 2). Codons belonging to the same A.A. Char Group in the Post 2 have the same 

nucleotide in the first position, while those in the Post 1 have the same nucleotide in the second 

position.  

In this study, a codon frequency is defined as an observed frequency ratio of a codon within an A.A. 

Char Group. The program calculates a codon rank based on codon frequency in increasing order; 

ranks range from 0 to 15 with rank 0 the lowest codon frequency. Codons belonging to an A.A. Char 

Group of Post 1 are identical to those of the Post3. Therefore both of the Post 1 and the Post3 will be 

hereafter referred as to the Post 1st/3rd. The Post program compares DNA sequence with its provided 

amino acid sequence, and identifies those codons whose translated amino acid, indicated in the 

amino acid sequence, does not conform with the standard genetic code table. Although DNA 

sequences and their amino acid sequences are not given an annotation to identify what might have 

caused an irregular codon, e.g., nucleotide substitution, RNA editing, amino acid substitution, or codon 

substitution, we used the term, irregular codon, to describe all of these throughout the article. The 

program identifies an irregular codon in a query sequence and indicates whether the normally 
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encoded amino acid and the actually encoded amino acid are from the same A.A. Char Group either 

in the Post 1st/3rd or in the Post 2. An irregular codon is classified into one of four types: WW, WT, 

TW, and TT. WW and WT stand for Within-column type in Post1st/3rd and Within-column type in 

Post2, and for Within-column type in Post1st/3rd and Trans-column type in Post2, respectively. TW 

and TT stand for Trans-column type in Post1st/3rd and Within-column type in Post2, and for 

Trans-column type in Post1st/3rd and Trans-column type in Post2, respectively. 

 

4.3.2 Implementation and program availability 

The Post has been implemented using the Java programming language (www.java.net, 

www.oracle.com (Java8)). The programs have been tested and confirmed to work on Linux system- 

CentOS Linux 7 (www.centos.org), and are currently being used at the Biodiversity Center, Institut de 

Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal. They 

are freely available for download at www.codon.kr. There are no restrictions to use the programs by 

academic or non-academic organizations as long as they comply with the terms and conditions of the 

license agreement.  

4.3.3 Input, output, and options 

The Post utilizes a command-line interface. There are several Post programs available. The Post 

program introduced in this paper requires users to give two mandatory command line arguments (e.g., 

/home/input-file each). The first argument is an input file path that should contain DNA sequence(s) in 

fasta format. The second argument should be either “each” or “all” to indicate whether a user wants 

the program to calculate codon frequencies in “each” query sequence or in “all” the sequences in an 

input file. The Post produces output files containing two different types of information per reading 

frame. One is codon frequency according to the Post and the other is identification of irregular codons 

such as shown in the case study in the following section. Another Post programs identify irregular 

codons based on the protein sequence that a user provides. Each program comes with the instruction 

file that explains how to use the program.  

 

4.3.4 A case study: an example application for the program 

4.3.4.1 Sequence databases 

We created two sequence databases based on a batch file called mitochondrion.1.genomic provided 

by the NCBI GenBank; one contains DNA coding sequences and the other contains their cognate 

protein sequences from 179 plant and 8 fungal mitochondrial genomes. We assigned sequences from 

187 genomes into 23 taxonomic groups: 20 plants, 2 lichen-forming fungi (Xylariaceae and Peltigera), 

and 1 AMF (Gigaspora and Rhizoglomus). The databases were highly skewed in terms of the number 

of genomes available. While a large number of mitochondrial genomes have been completely 

http://www.jave.net/
http://www.oracle.com/
http://www.centos.org/
http://www.codon.co.kr/
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sequenced for the seed plants belonging to Spermatophyta, only a few mitochondrial genomes have 

been sequenced for the early diverged plants and fungi. The databases were created without manual 

curation. If an exon contained a large mismatching gap that does not match to its provided protein 

sequence, it was excluded. Per taxonomic group, we created sub-databases according to the 

following gene groups: atp6, atp9, cox1, cox2, cox3, cob, cytb, nad1, nad2, nad3, nad4, nad4L, nad5, 

nad6, and orf. Only the listed genes were included in this study.  

 

 

Figure 1.  Position specific nucleotide substitution of stop codons- TGA and TAG 

Note: Circles indicate the irregular codons belonging to the list of a pair of amino acids. 

 

4.3.4.2 Rank database- codon rank per gene group and per taxonomic group 

Per taxonomic group and per gene group in the sequence databases, we calculated codon rank based 

on codon frequency in a gene according to the Post 1st/3rd and the Post 2. In most of the cases, there 

were multiple genes per gene group because more than one genome belonged to a taxonomic group. 

We calculated the mean of the ranks of a codon from multiple genes belonging to the same gene 

group according to the Post 1st/3rd and the Post 2, excluding those having 0 frequency per gene 

group and per taxonomic group. The rank data will be called hereafter gene-taxon rank data. We 

created two different sets of gene-taxon rank data, one with all the genes and the other only with 

genes containing at least one irregular codon.  

 

4.3.4.3 Mann Whitney U Tests applied to the gene-taxon rank data  

For the identified irregular codons of within-column type, we made a list of amino acid pairs, where the 

first one is what an irregular codon is supposed to encode according to the standard genetic code 

table and the second one is what an irregular codon actually encoded as indicated in its protein 

sequence: *_R, R_W, *_L, R_L, T_M, *_W, *_Q, R_C, P_S, H_Y, L_F, L_I, A_V, S_L, S_F, P_L, and 

T_I where * stands for stop codon. For Mann Whitney U Tests, we analyzed only the within-column 
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type in the list. For example, TAG is supposed to be a stop codon according to the standard genetic 

code table. However, its cognate amino acid written in its protein sequence was leucine. We included 

the irregular codon TAG in this study, because the stop codon and leucine belonged to the same A.A. 

Group 4 and consequently to the same A.A. Char Group 1 in the Post 2 (Figure 1). We applied the 

Mann Whitney U Test to each codon of the list in two different sets of gene-taxon rank data in order to 

assess the equality of the ranks of the codon between two different sets of genes where one set 

contains all the genes regardless of the occurrence of the irregular codons and the other contains only 

the genes containing the irregular codons.  

 

Table 4  Frequencies of irregular codons with the type- WW/WT/TW/TT 

A.A. Codon WW WT TW TT 

* TAG 0 *_Q:7 *_L:250 0 

* TGA *_W:2317 *_R:21 0 *_Q:1 

* TAA 0 *_Q:51 0 0 

A GCG 0 A_P:1 A_D:1:A_V:4 A_Y:1 

A GCC 0 A_P:1:A_S:1 A_E:1:A_V:6 A_F:2:A_I:2:A_K:1:A_M:2 

A GCT 0 A_S:3:A_T:1 A_V:2:A_G:1 
A_C:2:A_F:2:A_I:2:A_Y:2: 
A_L:4:A_M:3 

A GCA 0 A_T:1 A_D:1:A_V:2:A_G:2 A_Q:1:A_R:1:A_L:1 

C TGC C_S:1 C_G:1 0 C_N:1 

C TGT C_S:1 0 C_F:1 C_N:1:C_A:1:C_I:1:C_H:1 

D GAC 0 D_K:1 0 D_F:2:D_I:1 

D GAT D_E:1 D_K:1:D_N:1:D_Q:2 D_A:2:D_V:1 D_L:1:D_M:1:D_F:1 

E GAG 0 E_Q:1 E_G:2 E_L:1:E_R:1:E_I:1 

E GAA 0 E_Y:1 E_A:1:E_V:1 0 

F TTC F_L:4 F_M:1 F_W:1 
F_K:1:F_N:1:F_P:1:F_R:1: 
F_Q:1:F_T:1:F_D:1:F_E:1: 
F_G:3 

F TTT F_L:3 F_I:2:F_V:1 F_Y:1:F_C:2:F_S:2:F_W:1 
F_P:1:F_R:1:F_A:4:F_Q:2: 
F_T:3:F_E:1:F_H:1:F_G:1 

G GGG 0 G_S:1:G_R:1 0 G_I:1:G_Y:1:G_L:1:G_N:1 

G GGA 0 G_S:2:G_W:1 G_A:1:G_D:1:G_V:1 
G_I:1:G_Y:1:G_K:1:G_L:1: 
G_F:3 

G GGC 0 G_S:1 G_V:1 G_I:1:G_Y:1:G_P:1 

G GGT 0 G_C:1:G_S:1 G_A:3:G_D:1 G_I:1:G_L:1:G_P:1 

H CAC 0 H_Y:21 0 H_A:1 

H CAT 0 H_Y:54:H_D:1 H_L:1 H_A:2:H_T:1:H_F:1 

I ATA 0 I_V:1:I_L:3 I_K:1:I_S:1:I_T:1 I_G:1:I_A:2:I_P:1 

I ATC 0 I_F:1:I_L:2 I_S:2 0 

I ATT 0 I_F:2:I_V:1:I_L:2 I_S:2:I_T:1 I_G:2:I_H:3:I_P:2:I_C:1:I_E:1 



  
Page 116 

 
  

K AAG 0 K_Y:1 K_M:1:K_R:1 0 

K AAA 0 K_D:1 K_S:1:K_R:1 K_G:1:K_A:3 

L CTA 0 L_F:1:L_V:1:L_I:2 0 L_T:2:L_K:1 

L CTC 0 L_F:20:L_I:1:L_M:1 0 L_Y:1:L_A:2 

L CTG 0 L_F:1 0 L_S:1:L_A:1 

L CTT 0 L_F:44:L_V:1:L_I:1 L_Q:3 L_G:1:L_A:2 

L TTG 0 L_V:1:L_I:1 0 L_G:3:L_N:2:L_R:1:L_A:2 

L TTA L_F:2 L_I:3:L_M:1 L_S:1 
L_D:1:L_E:1:L_G:1:L_R:1: 
L_A:1:L_Q:1 

M ATG M_I:3 M_V:1:M_L:3 M_S:1:M_R:2:M_T:1:M_N:1 M_E:1:M_G:2:M_A:1 

N AAC 0 N_D:1:N_Y:1 N_S:1 N_F:1 

N AAT N_K:1 N_D:1:N_H:1 N_R:2:N_S:2:N_M:1 N_A:1:N_V:1:N_P:1 

P CCC 0 P_T:1:P_S:18 P_L:29 
P_D:1:P_F:15:P_V:1:P_I:1: 
P_Y:1 

P CCG 0 P_S:2 P_L:66 0 

P CCT 0 P_T:1:P_S:56 P_R:1:P_L:79 P_F:7:P_I:1:P_M:1 

P CCA 0 P_T:1:P_S:27 P_L:94 P_V:1:P_M:1 

Q CAG 0 Q_N:1 0 Q_A:1:Q_I:1 

Q CAA 0 Q_D:1 Q_R:1:Q_L:3 Q_S:1:Q_T:2:Q_F:1:Q_V:1 

R AGG 0 R_C:1 0 R_V:1 

R CGG 0 R_W:99 R_L:1 R_K:1 

R AGA R_S:1 0 R_N:1 R_L:1 

R CGA 0 R_C:1 R_L:3 R_A:1:R_D:1:R_V:1:R_I:1 

R CGC 0 R_C:23:R_W:1 0 0 

R CGT 0 R_C:53 R_L:1 R_F:1 

S TCC 0 S_A:1:S_P:1 S_F:89 S_K:1 

S TCG 0 0 S_L:98:S_F:2:S_Y:1 S_D:1:S_G:1:S_V:2:S_H:1 

S AGC 0 0 0 S_L:1:S_V:1:S_F:1 

S TCT 0 S_A:1:S_T:1 S_L:2:S_W:1:S_F:153:S_Y:1 S_N:1:S_V:2 

S AGT 0 S_G:2 S_T:2 S_L:1:S_A:2:S_Q:2:S_V:1 

S TCA 0 S_P:1:S_T:1 S_L:221:S_F:3:S_Y:1 S_G:1 

T ACG T_S:1 T_A:1 T_M:22 0 

T ACT T_S:3 T_P:1 T_K:1:T_N:1:T_M:1:T_I:11 
T_L:2:T_C:1:T_F:2:T_G:3: 
T_W:1 

T ACA 0 T_A:1 T_R:1:T_I:22 T_F:2:T_V:1 

T ACC 0 0 T_I:8 T_Y:1 

V GTC 0 V_I:1:V_L:1:V_F:1 0 V_N:1:V_R:1:V_S:2 

V GTA 0 0 V_A:1:V_D:1:V_G:3 V_N:1:V_P:1:V_T:1:V_S:1 

V GTG 0 V_I:2 0 V_T:1 

V GTT 0 V_I:1:V_L:1:V_F:1 V_A:1:V_G:1 V_S:1 
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W TGG W_S:1 0 W_L:1:W_F:2 W_I:1:W_E:1 

Y TAC 0 0 Y_L:1:Y_S:1 Y_P:1:Y_T:2 

Y TAT 0 Y_N:1:Y_E:1 Y_L:1:Y_S:4 Y_G:1:Y_M:1:Y_A:1:Y_T:1 

Total 2,339.00 591 1258 234 

Note: Pair of amino acids indicates standard amino acid and actual amino acid that an irregular codon 
encoded for. It is followed by a number that indicates the frequency of the irregular codon.  

 

4.3.5 Results of the case study 

4.3.5.1 Irregular codons 

The most frequently occurring irregular codon was TGA (WW type) in the sequence databases. The 

second and third most frequent irregular codons were TAG (TW type) and TCA (TW type) (Table 4). 

Irregular codons of within-column type either or both in Post1st/3rd and Post2 occurred far more 

frequently than those of TT type. The great majority of the irregular codons belonged to the 

within-column type either or both in Post1st/3rd and Post2. Irregular codons with a frequency of 20 or 

higher were only found in WW, WT, or TW types. Most of frequently occurring irregular codons had 

ring structure in the side chain of either or both of standard amino acid and actually encoded amino 

acid (Table S1). They also frequently showed either or both uncharged polar and hydrophobic 

properties.   

Table 5  Irregular codons and P values from Mann Whitney U test 

Pair 
Irr. 
codon 

Post 
P value 
min. 

P value 
max. 

Pair 
Irr. 
codon 

Post 
P value 
min. 

P value 
max. 

R_C CGC 1st/3rd 0.05 0.73 S_L TCA 2nd 0.04 0.95 
R_C CGT 1st/3rd 0.04 0.68 S_L TCG 2nd 0.09 0.95 
L_F CTC 1st/3rd 0.23 0.82 T_M ACG 2nd 0.15 0.88 
L_F CTT 1st/3rd 0.06 0.89 P_S CCA 1st/3rd 0.03 0.88 
S_F TCC 2nd 0.11 0.96 P_S CCC 1st/3rd 0.04 0.94 
S_F TCT 2nd 0.01 0.93 P_S CCG 1st/3rd 0.37 0.37 
L_I CTC 1st/3rd 0.23 0.23 P_S CCT 1st/3rd 0.12 0.96 
T_I ACA 2nd 0.04 0.49 A_V GCA 2nd 0.93 0.93 
T_I ACC 2nd 0.57 0.57 A_V GCC 2nd 0.23 0.23 
T_I ACT 2nd 0.89 0.99 A_V GCG 2nd 0.52 0.89 
P_L CCA 2nd 0.02 0.84 A_V GCT 2nd 0.01 0.69 
P_L CCC 2nd 0.05 0.62 R_W CGG 1st/3rd 0.00 0.89 
P_L CCG 2nd 0.00 0.81 H_Y CAC 1st/3rd 0.02 0.3 
P_L CCT 2nd 0.01 0.93 H_Y CAT 1st/3rd 0.04 0.77 
R_L CGG 2nd 0.02 0.02      

 

   The most widely spread irregular codon in the mitochondrial genomes was the stop codon TGA (*) 

actually encoding for Tryptophan. This is a well-documented phenomenon in the mitochondrial 

genomes of various organisms. In plant taxonomic groups, Bangiophyceae, Florideophyceae, 

Pedinophyceae, and Prasinophytes had only this irregular codon. In the fungal taxonomic groups 

(Glomeromycota, Xylariaceae, and Peltigerales) in the database, only this irregular codon was 
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observed as well. It is noteworthy that this irregular codon is a within-column type both of Post1st/3rd 

and of Post2. 

In contrast to the widely observed irregular codon, TGA (*) encoding for tryptophan, Chlorophyceae 

had less common irregular stop codon- TAG (*) encoding leucine. Lycopodiidae included a few 

irregular stop codons (TAG and TAA) encoding Glutamine. Irregular codons encoding amino acids are 

shown in the Table 5; irregular stop codons were excluded due to a high number of occurrences. In 

Anthocerotophyta, irregular codons were dispersed across species. Anthocerotophyta had three stop 

codons (TAA, TAG, and TGA) encoding Arginine and Glutamine and CGCArg encoding Cysteine. 

Spermatophyta had the highest occurrences of irregular codons as well as the most diverse irregular 

codons (Table S2). Interestingly, the widely spread irregular stop codon was not observed in the 

Spermatophyta, the most evolved plant division. 

 

4.3.5.2 Mann Whitney U Tests applied to gene-taxon rank data  

Mann Whitney U Tests, applied to two different sets of gene-taxon rank data, indicated that the 

irregular codons- CCGPro of the pair P_L and CGGArg of the pair R_W, that occurred in the gene- 

nad4 in Spermatophyta, had the lowest P values (Table 5, Table S2). While most irregular codons 

showed a wide range of P values across various gene groups, CACHis of the pair H_Y showed the 

low P values. Irregular codons that occurred in only one gene group of one taxonomic group had only 

one P value, the same P value for both the minimum and the maximum: CTCLeu of the pair L_I, 

ACCThr of the pair T_I, CGGArg of the pair R_L, CCGPro of the pair P_S, GCAAla of the pair A_V, 

and GCCAla of the pair A_V. 

 

4.4 Discussions 

The case study showed that the irregular stop codon, UGA encoding for Tryptophan, was WW type. 

This irregular codon was by far the most frequently observed phenomenon in mitochondrial genomes. 

It was also the only observed irregular codon in the ancient plants, Rhodophyta and Chlorophyta 

(Bangiophyceae, Florideophyceae, Pedinophyceae, and Prasinophytes), as well as in the fungi 

(Glomeromycota, Xylariaceae, and Peltigerales) in this study. Another frequent irregular stop codon, 

TAG encoding for Leucine, was TW type, and observed only in the green algae, Chlorophyceae. The 

stop codons encoding for Glutamine or Arginine were mostly WT type, and observed in non-vascular 

plant, Anthocerotophyta, and the oldest lineage of vascular plant, Lycopodiidae. The most evolved 

plant division, Spermatophyta, had the most diverse irregular codons. However, none of isolates 

belonging to them have the widespread irregular stop codon, UGA encoding for Tryptophan. These 

observations lead to a question whether a taxonomic group has preference in type of irregular codons. 
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If so, do four types of irregular stop codons (WW, WT, TW, and TT) reflect taxonomically specific 

property? In addition, a category of non-coding RNA may be a key determinant in gene regulation and 

codon assignment, considering that it is speculated that the genetic code emerged in (pre) RNA world. 

A large number of studies have documented that non-coding RNAs play crucial roles in many steps of 

(pre/post) transcriptional and translational processes (21-24). Transcriptional and translational 

components may vary considerably with respect to a category of non-coding RNA.  

 AMF harbor a large number of microorganisms inside of their spores and mycelia, some of 

which are obligate endosymbionts (25-32). If AMF contain different types of transcriptional and 

translational components tailored to their endosymbionts, their codon assignments may not abide by 

the standard genetic code table and vary considerably. In future, we may utilize Post in order to 

conduct comparative study in codon assignments of endosymbionts with respect to category of the 

non-coding RNA across taxonomic groups as well as across gene types.  
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4.8 Supplementary tables 

Supplementary Table 1  Relationship between amino acid properties and types of irregular 

codons: WW/WT/TW/TT 

 

To download Supplementary Table 1, please click here (at the same time, press Ctrl key) 

If the link does not work, kindly copy and paste the following website address in your browser 

 

www.codon.kr/thesis/chapter4/supple_table_1_relationship.xls 
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Supplementary Table 2  P values from Mann Whitney U tests 

 

To download Supplementary Table 2, please click here (at the same time, press Ctrl key) 

 

If the link does not work, kindly copy and paste the following website address in your browser 

 

www.codon.kr/thesis/chapter4/supple_table_2_mann_whitney_test.xls 
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Conclusions, discussions, and future work 

5.1 Conclusions 

5.1.1 SeSaMe  

Among existing approaches for taxonomical classification of metagenome sequencing data, two 

methods, 16S rRNA based method and composition-based method, have been widely used. The 

former only classifies rRNA for estimating microbial diversity and the latter focuses on prokaryotic 

organisms and is inefficient for taxonomical classification of fungal sequences in metagenome data. In 

contrast to the composition-based method that relies on frequency of k-mers without considering their 

biological properties, the SeSaMe distinguished between CDS and non-CDS, identifies an open 

reading frame, and classifies a query sequence into one genus group out of 54 genera used as 

references. It provides a useful means for taxonomical classification for the WGS of the AMF grown 

in-vivo. In addition, P-value scores may serve as guidelines to help users to judge whether a query 

sequence comes from a predicted reference genus.  

After applying the SeSaMe to the AMF WGS data, a user may use homology search methods to 

draw inference about functionality of a query sequence within a frame of reference genus. Therefore, 

the developed program enables users to identify gene reservoir of each reference genus and to study 

symbiotic interactions of AMF with their associated microbial community. In addition to the WGS data 

of the AMF, the program can be applied to environmental data from hyphosphere/ rhizosphere and to 

the WGS data of other organisms grown in soil.  

 

5.1.2 SeSaMe PS Function  

While existing bioinformatics tools for position-specific sequence annotation depend on alignment of a 

query sequence to annotated sequences in motif databases, SeSaMe PS Function identifies outliers 

of Three codon DNA 9-mers by applying PCA to comparative data created based on trimer usage 

biases of Three codon DNA 9-mers identified in a query sequence. The outliers with unique landscape 

patterns are often structurally and functionally distinctive sites. The program offers higher sensitivity 

toward undiscovered motifs with unknown functions and structures. Considering that existing 

bioinformatics databases and gene prediction programs are biased toward intensively studied model 

organisms and those culturable under laboratory conditions, the developed program may provide an 

efficient means for studying novel properties of genes from the relatively ancient fungi- AMF. The 

program is versatile for studying gene functions with a wide spectrum of applications, for example 

identifying a novel gene or studying new mechanisms in a known gene. SeSaMe and SeSaMe PS 

Function are freely available at www.fungalsesame.org. 

http://www.fungalsesame.org/
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5.1.3 Post 

Recent studies have documented important regulatory roles of codon usage and codon context. 

Codon appears to play key roles both in transcriptional and translational processes. Considering that 

the standard genetic code table offers a limited view of codon property, we may be able to understand 

fundamental properties of the genetic codes by studying their origin. Mainstream hypotheses of 

genetic code origin support the ideas that codon position is a key determinant of codon assignment. 

The Post assigns a codon into amino acid group with respect to codon position. Although only a 

limited number of 3-D structures belonging to transcriptional and translational apparatuses are 

available, we can use a vast amount of sequencing data for studying the diversity of the transcriptional 

and the translational apparatuses. By applying the Post to the immense amount of omics data, we 

may be able to advance our knowledge of the flow of the genetic information. The Post is a versatile 

program with many applications. For example, it may enable us to conduct comparative analysis of 

transcriptional/ translational apparatuses and codon assignment of their target genes.  

 

5.2 Discussions 

5.2.1 SeSaMe 

Genera belonging to the same taxonomic group demonstrated considerable similarities with each 

other in terms of trimer usage bias of Three codon DNA 9-mer derived from protein secondary 

structure. However, AMF showed a similar range of trimer usage bias most frequently with Firmicutes, 

Cyanobacteria and Rickettsia but much less frequently with Dikarya. With respect to fungal lifestyles, 

AMF and Dikarya have developed different survival strategies. While most fungi belonging to Dikarya 

have a variety of digesting enzymes to get carbon sources, AMF have evolved to form a mutualistic 

symbiosis with plant root from which they acquire carbon, and consequently lost some digesting 

enzymes (Tisserant et al 2013). Recent discoveries of fossil records and molecular analysis suggest 

that it appears likely that lichenization and de-lichenization events have independently occurred across 

different fungal lineages- not exclusively to Dikarya- during evolution, and rates of loss of lichenization 

were higher than those of gain (Hawksworth 2015). The same research group documented that some 

fungi might have formed symbioses that were similar to but not strictly lichenization not only with 

photosynthetic partners but also with non-photosynthetic bacterial and fungal partners. There have 

been several fossil records implicating AMF forming a lichenization like symbiosis. For example, a 

fossil evidence from marine deposits documented that Cyanobacteria and fungal filaments formed 

lichen like structures where the fungi produced spores recalling AMF rather than Ascomycota 

(Hawksworth 2015, Yuan et al 2005). A recent study has documented that putative horizontal gene 

transfer of class I ribonuclease III protein coding genes occurred from autotrophic cyanobacteria 

genomes to the AMF- R. irregularis. It is likely that other horizontal gene transfer events could have 
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occurred between Firmicutes and AMF during evolution (Lee et al 2018). 

   The most preferred three codon DNA 9-mers of AMF, Fimicutes especially Clostridium, Bacillus, 

and Leuconostoc, Cyanobacteria particularly Anabaena, Cyanobacterium, and Nostoc, and Rickettsia 

were extremely biased towards A/T- ending codons in all three positions in the CDS Genus Specific 

DB; the similarity between AMF and the early diverged bacteria were shown in a majority of 7674 most 

preferred Three codon DNA 9-mers computed based on the entire CDS within a genus. John et al. 

(1975) hypothesized that Rickettsia is the mitochondrial progenitor 285 (John et al 1975). Whatley et 

al. hypothesized that hydrogenosome has multiple origins, evolved from Clostridium like bacterium, 

and is an ancestor of mitochondrion (1979). If the hypotheses hold true, they are the progenitors of 

endosymbiont organelles- hydrogenosome, mitochondrion, and plastid that AMF showed considerable 

similarities with. Xia discovered that distributions of A-ending codons are higher in mitochondria due to 

high ATP concentration (1996). Tisserant et al. documented that AMF contain an exceptionally higher 

number of High Mobility Group (HMG) box genes compared to Dikarya, Rhizopus oryzae, and 

Dictyostelium discoideum (2013), and recent studies have reported that roles of HMG box proteins 

include mitochondrial quality control (Tang et al 2011). Furthermore, recent studies have discovered 

the presence of heritable endosymbiont bacteria called MRE inside mycelia of AMF as well as 

evidences of horizontal gene transfer between MRE and their host- AM fungus (Naito et al 2015, 

Torres-Cortes 2015). Trachtenberg hypothesized that Mollicutes have been derived from Clostridia 

(1998). The hypotheses, the documented observations, the program test results, and the bias towards 

A/T ending codons all raise questions on the same subject- endosymbiont organelles: i) Have AMF 

harbored a considerable number of hydrogenosome like and/ or Clostridium like endosymbiont 

organelles? Had AMF once harbored and lost a large number of Clostridium like organelles during 

evolution and had their genes been integrated into AMF genomes via horizontal gene transfer?, ii) 

Given that AMF harbor a considerable number of associated microorganisms inside their mycelia 

(Bonfante 2003), to what extent intimately associated bacteria and endosymbionts have contributed to 

acquisitions of genes via horizontal transfer during AMF evolution? Numerous studies have 

documented that a majority of plants' and animals' mitochondrial genes have migrated to their nuclear 

genomes (Berg et al 2000, Farrelly et al 1983, Henze et al 2001). However, in the case of AMF, little is 

known about a degree of heterogeneity of nuclei within an isolate and the extent of the complexity of 

its genome organization.  

It should be noted that the genera in the program are limited to those that are dominant in soil 

environment. Several studies documented that AMF are capable of performing dark CO2 fixation at a 

significant level (Bago et al 1999). CO2 fixation is an important means for microorganisms inhabiting in 

aquatic habits for producing organic matters (Santoro et al 2013). Rates of horizontal gene transfer 

between microorganisms are extremely higher in aquatic environment (Hermansson et al 1994). Some 

chytrid fungi have hydrogenosome (Hackstein et al 2007), and those living in aquatic environment may 

have capacity for CO2 fixation (Amon 1986). Therefore, comparison of AMF with early diverged fungi 

such as chytrid fungi may provide additional insights into AMF evolution.  
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It should be taken into consideration that publicly available gene prediction programs are highly biased 

towards genes that comply with a set of standard coding rules created based on most frequently 

studied organisms, and microbial sequences in public bioinformatics databases represent a small 

fraction of existing microorganisms. Therefore, considerable portions of AMF's genes may not be 

detectable with currently available programs. Consequently, genes detectable with conventional 

approaches are probably overrepresented in CDS lists of AMF. Due to the small sample size of AMF 

test set, we could not estimate a proportion of sequences that showed similarities with the early 

diverged bacteria in the entire repertoire of genes in R. irregularis, but made a relative comparison 

with Dikarya. In addition, given that AMF have high inter/ intra genome variations, we should 

investigate various species of AMF in order to assess whether the attributes shown in R. irregularis 

are common within Glomeromycotina or limited only to the individual fungus. It is plausible to assume 

that high inter/ intra genome variations of AMF reflect evolutionary history of genome diversification 

stimulated by adaptations associated with various types of symbioses (Joy 2013). The program has 

provided a platform for studying diversification of AMF genomes in the context of symbiosis associated 

adaptations; Comparative study on program results of WGS data of various AMF species may enable 

us to compare repertoires of proteins distinctive of the species and of its associated microorganisms, 

and provides insights into AMF genome diversification influenced by evolution of their symbiotic 

interactions.  

 

5.2.2 SeSaMe PS Function  

The Trimer Ref. DB was created based on secondary structures extracted from PDB where a majority 

of proteins with solved structures involve in binding activities. In PDB, A.A. trimers with polar amino 

acid are overrepresented. Therefore, Trimer Ref. DB is also biased toward A.A. trimers with polar 

amino acid.  

Trimer usage biases of the Genus Specific DB were calculated based on all CDS within a genus 

irrespective of species, gene family and domain, polycistronic mRNA, regulon, and molecular 

evolutionary origin. Additionally, overlapping ORFs adds another layer of complexity to interpretation of 

the loading clusters. Therefore, some three codon DNA 9-mers within Genus Specific DB may have 

large intra variations. They may also have large inter variations due in part to that folding signatures of 

three codon DNA 9-mer vary widely across different taxonomic groups. For such reasons, loading 

clusters with 80% components may have higher detection capacity for outliers- functionally/ 

structurally distinctive sites. Due in part to the same reasons, the First/Second components represent 

more complicated properties than a single factor such as protein secondary structure or solvent 

accessibility, and so interpretation of loading clusters is not straight forward. We may be able to add a 

feature- reference map connecting Three codon DNA 9-mer with its regulatory role(s)- in future when 

more sequences are annotated with roles of codon usage and of codon context.  

We created a conversion rule, in other words based on which properties we group similar amino 
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acids into an amino acid characteristics, with respect to general biochemical properties to acquire 

comparability of amino acids among various taxonomic groups. The program calculates codon usage 

bias within amino acid characteristics rather than within amino acid (Berman 2000). Both three codon 

usage and trimer usage bias showed comparable prediction capacity in taxonomical classification, 

which may suggest that they may provide coherent explanation to describe the undiscovered 

regulatory mechanisms. 

 

5.2.3 Post 

AMF harbor a large number of microorganisms inside of their spores and mycelia, some of which are 

obligate endosymbionts. Considering that most proteins and RNAs involving in transcriptional and 

translational processes of mitochondria are different from those of nuclear genome, the 

heterogeneous transcriptional and translational apparatuses may have, at least partially, contributed to 

the mitochondrial specific codon assignments. If AMF contain different versions of transcriptional and 

translational apparatuses specific for their endosymbionts, their codon assignments may not abide by 

the standard genetic code table and vary considerably. Developing endosymbiont-specific Post and 

incorporating it into the SeSaMe may enable us to identify novel genes from endosymbionts in the 

WGS of the AMF and to study their symbiotic roles in AMF adaptation. 

 

5.3 Future work 

5.3.1 Heterogeneous regulators of DNA replication, transcription, and translation 

A large number of researchers have documented that AMF inoculation is a promising candidate for 

phytoremediation that cleans up contaminated soil (Chanda et al 2014, Marchand et al 2017 (b), Iffis et 

al 2014). AMF and their associated microbial community need to adapt to environmental stresses in 

contaminated soil. Recent studies reported that biases of codon usage, codon context, and amino acid 

composition play important roles in microbial adaptation in response to abiotic stresses (Su et al 2016, 

Ding et al 2012, Paul et al 2008, Sanjukta et al 2012). The Genus Specific DB of the developed 

programs was created based on bias information of codon usage and codon context obtained from 

completely sequenced genomes of microorganisms mostly grown in optimal condition. Due to lack of 

completely sequenced genomes of microorganisms sampled from the phytoremediation field study, we 

will need to incorporate the new factors (environmental stresses) into the developed program. We will 

need to understand the dynamics underlying sequence modification during microbial adaptation in 

response to environmental stresses, especially with respect to transcriptional and translational 

apparatuses.      

 

5.3.1.1 Different types of DNA polymerase in response to environmental stresses 

It is well documented that microorganisms have multiple heterogeneous DNA polymerase31 

subpopulations, some of which have error-prone activities to increase adaptability. For example, the 
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SOS system responds to DNA damages caused by environmental stresses. SOS-induced DNA 

polymerases are capable of repairing damaged DNA sequences; they produce DNA sequences with 

high rates of mutations to increase the chances of survival under environmental stress (Radman 1999, 

Yeiser et al 2002).  

Bacteria increase mutational rates under environmental stress via mutagenesis mechanisms. 

Rosenberg et al documented that a network with 93 genes, involving in sensing and activating stress 

response system, promoted mutagenesis under stress (2014). They also suggested that a local cluster 

of mutations and mutational hotspots implied that some mutations were not random. The assumption 

of non-random mutation leads to another important question; if it is alternative regulator that produces 

mutations, what rules they may have other than Watson-Crick base pairs? A number of researchers 

have employed molecular biology methods to identify gene regulatory networks in response to 

environmental stresses and to understand what are happening inside of regulators during DNA repair, 

mRNA synthesis, and protein synthesis. We will need to study the heterogeneous regulators to 

improve the developed programs tailored to analyze metagenome data from phytoremediation 

projects. 

 

5.3.1.2 Heterogeneous transcriptional regulator, RNA polymerase, in response to 

environmental stresses 

Bacterial RNA polymerase32 has subunits called sigma. Sigma factors33, belonging to sigma subunit, 

play key roles in recognition of promotors in transcription initiation process (Saecker et al 2011). A 

microorganism contains a number of heterogeneous sigma factors that are induced in response to 

environmental stresses. They not only provide functionally different RNA polymerase subpopulations 

but also involve in regulation of a regulon- a set of a large number of target genes. A major sigma 

factor σ70, that is also called RpoD, manages most of transcription activities during active growth 

while alternative sigma factors, such as sigma factor σ54 that is also called RpoN, regulate a variety of 

adaptive responses according to environmental stresses in E. coli. RNA polymerase with sigma factor 

σ54 requires enhancer34 recognition and a specialized transcription activator35 with ATP hydrolysis in 

initiation process (Paget 2015, Zhang et al 2015). With microarray analyses, sigma factor 54s were 

shown to regulate expressions of 100s of target genes in Borrelia burgdorferi (Fisher et al 2005). It 

suggests that prokaryotes fine tune their activities via transcriptional regulator with respect to cellular 

stress. In addition, error-prone DNA polymerases can be induced by sigma factor RpoS, which 

promotes mutagenesis (Foster et al 2007). It remains unknown what roles the structural change of 

RNA polymerase plays in terms of codon assignment. Comparison and contrast of sequence 

properties of regulons regulated by different heterogeneous regulator subpopulations will promote 

understanding of the association between codon assignment and a type of stress. 

 

5.3.1.3 Heterogeneous translational regulators in response to environmental stresses 

Pseudomonas sp. UW4 had multiple copies of rRNA genes whose operons36 were differentially 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Saecker%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=21371479
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activated under varying environmental situations in terms of temperature, nutrient availability, and 

developmental stage (Duan et al 2014). In order to differentially express rRNA operons under varying 

environmental conditions, it is possible that transcription factors, activators and repressors, may play 

important roles. Their operons had unique promotors, some of which were similar to those of heat 

shock proteins recognized by heat shock sigma factor. It implies a possibility that alternative 

transcriptional regulator may control overall cellular processes including alternative translational 

regulator. Another researcher has implied a view with slight differences; while heterogeneous 

transcriptional regulator subpopulation regulates expressions of regulon under relatively severe and 

prolonged environmental stresses, heterogeneous translational regulator subpopulation may provide 

an express lane in managing immediate environmental stresses (Sauert et al 2015).  

rrnDB is a public database that provides rRNA operon copy number for bacteria and archaea via 

web service at rrndb.umms.med.umich.edu (Stoddard et al. 2014). It also provides links to completely 

sequenced genomes used in their calculation. The tool can be useful for studying the association 

between rRNA operon and microbial adaptation to environmental stresses. To investigate effects of 

heterogeneity of translational regulator subpopulations within a single isolate in context of codon 

assignment, sequence comparison of rRNA genes within a single isolate as well as among closely 

related taxa will be required. In addition, it seems also important to investigate whether there are 

associations between hypervariable regions of heterogeneous regulators and environmental stimuli.  

 

5.3.2 Incorporation of heterogeneous regulator into analysis of mycorrhizosphere 

microbiota sampled from stressed environments 

Most of completely sequenced genomes in public databases are from microorganisms grown in their 

optimal growth conditions. Analysis of environmental data sampled from stressful environment proves 

to be challenging, because we need to make inference about evolved microbiota based on their prior 

sequences obtained when they were under their optimal growth conditions.  

Microorganism's adaptation process varies widely according to its morphological, physiological, 

and biochemical characteristics. For example, the impact of environmental stress becomes stronger 

when a microorganism does not have protective components such as cell wall. Fadiel et al 

experimented on Mycoplasma genitalium, M. pneumoniae, and Ureaplasma urealyticum to study 

properties of codon usages using complete transcriptomes of the microorganisms (2005). All of them 

belong to Mollicutes that lack of cell wall. Comparative study revealed that M. genitalium and U. 

urealyticum exhibited more similarity in transcriptome structure although M. genitalium and M. 

pneumoniae were phylogenetically more closely related to each other. Cell wall and cell membranes 

are one of the most important contributors that protect prokaryotes from environmental stresses. The 

study suggests that an environmental factor has stronger impact on microorganisms compared to 

phylogeny, especially if they are not equipped with cellular components that help them to cope with 

environmental stresses. Therefore, a degree of impact of an environmental stress on microorganism is 
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assumed to vary widely across different taxa. In addition, different types of environmental factors are 

considered to have varying degrees of effect on microbial adaptation across taxa. We will need to 

employ computational biology and bioinformatics approach to conduct comparative study on how the 

heterogeneous regulator subpopulations affect codon assignment in their target genes across 

taxonomic groups. Then, we may be able to create taxo-specific Posts or one similar to it, which we 

will need to incorporate into the developed programs, SeSaMe and SeSaMe PS Function. 
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Appendix I Methods for finding an optimal k- the number 

of clusters 

 

For SeSaME PS Function, it may be helpful to provide users with an additional method for finding an 

optimal k- the number of clusters. Here, I outline the methods for finding an optimal k value for k 

parameter of k-means clustering method. For a range of k values, the following methods will produce 

scores for evaluating the k values. The first method is elbow method using the sum of squared errors 

that is also called within cluster sum of squares (SSE) (Eqn. 1). SSE belongs to internal index and 

measures a degree of cluster cohesion without considering external information. For this method, an 

optimal k value is found at the point looking like an elbow where the line chart looks like an arm, when 

we make XY axis scatter chart where SSE is in Y axis and k value is in X axis. The second method is 

SSB_SSE, a sum of SSB/SSE where SSB is between cluster sum of squares that measures cluster 

separation (Eqn. 2). An optimal k has the maximum of SSB_SSE. The third method is from a JAVA 

class called SumOfClusterVariances under the package ml.evaluation in apache math 3.6. It is similar 

to the first method. The fourth and the fifth methods are silhouette coefficient that incorporates both 

cluster cohesion and cluster separation for individual points as well as for clusters. An optimal k has 

the highest silhouette coefficient. Silhouette coefficient 1 results from averaging all silhouette 

coefficients while the method called silhouette coefficient 2 calculates an average of silhouette 

coefficients belonging to each cluster and then calculates an average of the averages of all clusters. 

Eqn 1. SSE =  

where there are k clusters. Point x belongs to cluster i. There are y members in cluster i. mi is the 

centroid of cluster i. 

Eqn 2. SSB_SSE =     

 

Where SSB =   |Ci| is the size of cluster i. m is the centroid of the overall data, mi 

is the centroid of cluster i. 

If data include a cluster with a single member (version 1), for the cluster SSB/SSE = 0 

 

Silhouette coefficients s = 1 – a/b if a < b, or s = b/a -1 if a >= b 
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Where a = average distance of i to the points in its cluster, b = min (average distance of i to points in 

another cluster). If data include a cluster with a single member (version 1), a = 0 for the cluster. 

 

Each method has two versions depending on whether it includes a cluster with a single member in 

calculation; version 1 includes it while version 2 excludes it.  

 

I implemented the five methods with Java programming language. I ran the program, SeSaMe PS 

Function, with 5 newly selected sequences and the example sequence (chapter 3). I provided the 

option to specify k values (5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29). Then, I applied the 

implemented methods to the coordinates of component spaces, the result data from SeSaMe PS 

Function. Because the result of 80% components contained the coordinates in the components 

spaces that accounted for 80% inertia, the number of dimensions was larger than that of the 

first/second components, representing the data with higher resolution. Consequently, the data were 

more dispersed compared to the first/second components. Therefore, XY axis scatter chart, created 

based on 80% components, where SSE is in Y axis and k value is in X axis, had a shape of linear line 

with a negative slope, while the first/ second components had a usual shape of converged line that 

has an elbow. 

Determining a single optimal K value was risky because both SSB_SSE and silhouette coefficients 

had large fluctuations, probably due to the complex properties of the main variable- trimer usages 

(Table 1). With real world data, it may be more realistic to find an optimal range of k values, rather than 

a single optimal k. For example, we may find an intersection of optimal ranges of k values from 

multiple methods. I will provide users with an access to the methods for evaluating k values to find an 

optimal k value or an optimal range of k values for his/ her query sequence. In near future, they will be 

available at the website, www.fungalsesame.org 

 

To download the Table 1, please click here (at the same time, press Ctrl key). 

If the link does not work, please copy and paste the following website address in your browser. 

 

www.codon.kr/thesis/appendixI/appendixI_table1.xls 

 

 

 

 

 

http://www.codon.kr/thesis/appendixI/appendixI_table1.xls
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Appendix II  Publications and Conference Presentations 

 

Publications 

Two articles (the second and the third chapters) have been accepted to the journal, Genomics 

Proteomics, and Bioinformatics (GPB) in August 2018. 

  

1) Jee Eun Kang1*, Antonio Ciampi2, Mohamed Hijri1 

SeSaMe PS Function: Functional Analysis of the Whole Metagenome Sequencing Data of the 

Arbuscular Mycorrhizal Fungi 

 

2) Jee Eun Kang1*, Antonio Ciampi2, Mohamed Hijri1 

SeSaMe: Metagenome Sequence Classification of Arbuscular Mycorrhizal Fungi Associated 

Microorganisms 

 

3rd article (chapter 4) has been in preparation for submission. 

 

Conference presentations 

1) 2017 ISERD – 125th International Conference on Environment and Natural Science (ICENS)  

Sponsored by the IIER (International Institute of Engineers and Researchers).  

Jan. 2017 Seoul, Republic of Korea 

Abstract submission/ Oral presentation - Position Specific Genetic Code Approach for Comparative 

Study of Mitochondrial Genomes in Plant, Lichen associated Fungi, and Arbuscular Mycorrhizal Fungi  

 

2) 2016 5th International Conference on Environment, Energy, and Biotechnology 

May 23-25, 2016 Jeju Island, Republic of Korea 

ICEEB 2016 

Abstract submission/ Oral presentation - Taxonomical Classification of the Genome Sequencing Data 

from Arbuscular Mycorrhizal Fungi and their Associated Bacteria 


