
Université de Montréal

Sequence-to-sequence learning for machine translation and

automatic differentiation for machine learning software tools

par Bart van Merriënboer

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

Octobre, 2018

© Bart van Merriënboer, 2018.

Résumé

Cette thèse regroupe des articles d’apprentissage automatique et s’articule au-
tour de deux thématiques complémentaires.

D’une part, les trois premiers articles examinent l’application des réseaux de
neurones artificiels aux problèmes du traitement automatique du langage natu-
rel (TALN). Le premier article introduit une structure codificatrice-décodificatrice
avec des réseaux de neurones récurrents pour traduire des segments de phrases de
longueur variable. Le deuxième article analyse la performance de ces modèles de
‘traduction neuronale automatique’ de manière qualitative et quantitative, tout en
soulignant les difficultés posées par les phrases longues et les mots rares. Le troi-
sième article s’adresse au traitement des mots rares et hors du vocabulaire commun
en combinant des algorithmes de compression par dictionnaire et des réseaux de
neurones récurrents.

D’autre part, la deuxième partie de cette thèse fait abstraction de modèles par-
ticuliers de réseaux de neurones afin d’aborder l’infrastructure logicielle nécessaire à
leur définition et entrâınement. Les infrastructures modernes d’apprentissage pro-
fond doivent avoir la capacité d’exécuter efficacement des programmes d’algèbre
linéaire et par tableaux, tout en étant capable de différentiation automatique (DA)
pour calculer des dérivées multiples. Le premier article aborde les défis généraux
posés par la conciliation de ces deux objectifs et propose la solution d’une représen-
tation intermédiaire fondée sur les graphes. Le deuxième article attaque le même
problème d’une manière différente : en implémentant un code source par bande
dans un langage de programmation dynamique par tableau (Python et NumPy).

Mots-clés apprentissage automatique, réseaux de neurones, apprentissage pro-
fond, traitement automatique du langage naturel, traduction automatique, diffé-
rentiation automatique

ii

Summary

This thesis consists of a series of articles that contribute to the field of machine
learning. In particular, it covers two distinct and loosely related fields.

The first three articles consider the use of neural network models for problems
in natural language processing (NLP). The first article introduces the use of an
encoder-decoder structure involving recurrent neural networks (RNNs) to translate
from and to variable length phrases and sentences. The second article contains a
quantitative and qualitative analysis of the performance of these ‘neural machine
translation’ models, laying bare the difficulties posed by long sentences and rare
words. The third article deals with handling rare and out-of-vocabulary words
in neural network models by using dictionary coder compression algorithms and
multi-scale RNN models.

The second half of this thesis does not deal with specific neural network models,
but with the software tools and frameworks that can be used to define and train
them. Modern deep learning frameworks need to be able to efficiently execute
programs involving linear algebra and array programming, while also being able to
employ automatic differentiation (AD) in order to calculate a variety of derivatives.
The first article provides an overview of the difficulties posed in reconciling these
two objectives, and introduces a graph-based intermediate representation that aims
to tackle these difficulties. The second article considers a different approach to the
same problem, implementing a tape-based source-code transformation approach to
AD on a dynamically typed array programming language (Python and NumPy).

Keywords machine learning, neural networks, deep learning, natural language
processing, machine translation, automatic differentiation

iii

Contents

Résumé . ii

Summary . iii

Contents . iv

List of Figures . viii

List of Tables . x

1 Background . 1

1.1 Natural language understanding . 3
1.2 Machine learning . 4
1.3 Supervised learning . 6

1.3.1 Overfitting . 9
1.3.2 Bias-variance tradeoff . 10

1.4 Neural networks . 12
1.4.1 Perceptron . 13
1.4.2 Stochastic gradient descent 14
1.4.3 Logistic and multinomial logistic regression 16
1.4.4 Multilayer feedforward neural networks 19
1.4.5 Recurrent neural networks 20

1.5 Optimization . 23
1.5.1 Regularization . 24
1.5.2 Parameter initialization . 26

2 Sequence-to-sequence learning for machine translation 28

2.1 n-gram models . 29
2.2 Neural language models . 30

2.2.1 Feedforward language model 31
2.2.2 Recurrent language model 32

2.3 Phrase-based SMT . 33
2.3.1 Decoder . 34

iv

2.3.2 Translation evaluation . 36

3 Prologue to First Article . 38

3.1 Article Details . 38
3.2 Context . 38
3.3 Contributions . 39
3.4 Recent Developments . 39

4 Learning Phrase Representations using RNN Encoder-Decoder

for SMT . 41

4.1 Introduction . 41
4.2 RNN Encoder-Decoder . 42

4.2.1 Preliminary: Recurrent Neural Networks 42
4.2.2 RNN Encoder-Decoder . 43
4.2.3 Hidden Unit that Adaptively Remembers and Forgets 45

4.3 Statistical Machine Translation . 46
4.3.1 Scoring Phrase Pairs with RNN Encoder-Decoder 47
4.3.2 Related Approaches: Neural Networks in Machine Translation 48

4.4 Experiments . 50
4.4.1 Data and Baseline System 50
4.4.2 Quantitative Analysis . 54
4.4.3 Qualitative Analysis . 55
4.4.4 Word and Phrase Representations 57

4.5 Conclusion . 59

5 Prologue to Second Article . 61

5.1 Article Details . 61
5.2 Context . 61
5.3 Contributions . 62
5.4 Recent Developments . 62

6 On the Properties of Neural Machine Translation: Encoder–Decoder

Approaches . 63

6.1 Introduction . 63
6.2 Neural Networks for Variable-Length Sequences 64

6.2.1 Recurrent Neural Network with Gated Hidden Neurons . . . 64
6.2.2 Gated Recursive Convolutional Neural Network 66

6.3 Purely Neural Machine Translation 67
6.3.1 Encoder-Decoder Approach 67

6.4 Experiment Settings . 69
6.4.1 Dataset . 69
6.4.2 Models . 70

v

6.5 Results and Analysis . 73
6.5.1 Quantitative Analysis . 73
6.5.2 Qualitative Analysis . 75

6.6 Conclusion and Discussion . 78

7 Prologue to Third Article . 80

7.1 Article Details . 80
7.2 Context . 80
7.3 Contributions . 81
7.4 Recent Developments . 81

8 Multiscale sequence modeling with a learned dictionary 82

8.1 Introduction . 82
8.1.1 Tokenization . 83

8.2 Multi-scale sequence modeling . 85
8.2.1 Model characteristics . 86
8.2.2 Dictionary learning . 87
8.2.3 Dictionary coders . 88

8.3 Experiments . 89
8.3.1 Implementation . 89
8.3.2 Penn Treebank . 89
8.3.3 Text8 . 91

8.4 Related work . 92
8.5 Discussion . 93

9 Automatic differentiation for machine learning 95

9.1 Chain rule . 95
9.2 Automatic differentiation . 97

9.2.1 Forward mode . 98
9.2.2 Reverse mode . 98
9.2.3 Runtime and memory complexity 99
9.2.4 Higher-order differentiation and generalizations 100

9.3 Implementations . 101
9.3.1 Forward mode . 101
9.3.2 Reverse mode . 103

10 Prologue to First Article . 104

10.1 Article Details . 104
10.2 Context . 104
10.3 Contributions . 105

vi

10.4 Recent Developments . 106

11Automatic differentiation in ML: Where we are and where we

should be going . 107

11.1 Introduction . 107
11.2 Background and prior work . 108

11.2.1 Automatic differentiation . 109
11.2.2 Dataflow programming . 112
11.2.3 Programming languages and compilers 113

11.3 Graph-based direct intermediate representation 115
11.3.1 IR specification . 116
11.3.2 Source transformation . 117

11.4 Myia . 119
11.4.1 Python front end . 119
11.4.2 Type inference . 120
11.4.3 Optimization . 120

11.5 Conclusion . 121

12 Prologue to Second Article . 122

12.1 Article Details . 122
12.2 Context . 122
12.3 Contributions . 123
12.4 Recent Developments . 123

13 Tangent: AD using SCT for dynamically typed array programming124

13.1 Introduction . 124
13.2 Background . 125
13.3 Prior work . 126
13.4 Features . 127

13.4.1 Backward pass inlining . 129
13.5 Implementation . 129

13.5.1 Multiple dispatch . 131
13.5.2 Lazy evaluation . 131
13.5.3 Static optimizations . 132
13.5.4 Persistent data structures 133

13.6 Limitations . 135
13.7 Performance . 136
13.8 Conclusion . 137

14Discussion . 141

References . 143

vii

List of Figures

1.1 Expected, estimation and generalization error 11
1.2 Perceptron model . 13
1.3 The AND and XOR problems . 14
1.4 Logistic function . 17
1.5 Logistic regression . 18
1.6 Feedforward neural network . 19
1.7 Recurrent neural network . 21
1.8 LSTM unit . 23
1.9 Newton’s method in optimization 25

2.1 N-gram counts . 29
2.2 A phrase-mapping between French and English 34
2.3 Stack search in phrase-based decoder 35

4.1 RNN encoder-decoder . 44
4.2 Gated recurrent unit . 46
4.3 Correlation of log-probabilities of phrases under to the RNN encoder-

decoder and translation models . 56
4.4 2D embeddings of word representations 57
4.5 2D embeddings of phrase representations 58

6.1 RNN and GRU . 65
6.2 Recursive neural network . 66
6.3 RNN encoder-decoder . 68
6.4 BLEU scores by sentence length . 71
6.5 BLEU scores by sentence length for phrase-based system 76
6.6 Visualization of gated recurrent convolution 78

8.1 Character-level language model . 82
8.2 Word-level language model . 83
8.3 Multi-scale language model . 85
8.4 Training curves regular and multi-scale LSTM 90

11.1 Myia compilation pipeline . 118

13.1 Tangent RNN performance . 139

viii

13.2 Tangent AE performance . 140

ix

List of Tables

2.1 Example of a phrase table . 34

4.1 BLEU scores for RNN encoder-decoder scored phrase table 51
4.2 Top phrase translations for phrase table and RNN encoder-decoder 53
4.3 Samples from the RNN encoder-decoder 55

6.1 BLEU scores of RNN encoder-decoder and gated recursive convolu-
tion model. 70

6.2 Sample translations . 74

8.1 Tokens from the adapted BPE algorithm 90
8.2 Samples from the multi-scale model 91

9.1 Checkpointing algorithms . 100

x

List of abbreviations

AD Automatic differentiation

AI Artificial intelligence

ANN Artificial neural network

AST Abstract syntax tree

BLEU Bilingual Evaluation Understudy

BPE Byte pair encoding

CSLM Continuous space language model

DL Deep learning

GPU Graphics processing unit

GRU Gated recurrent unit

i.i.d. Independent and identically distributed

IL Intermediate language

IR Intermediate representation

JIT Just-in-time

LSTM Long short-term memory

ML Machine learning

MT Machine translation

MLP Multilayer perceptron

NLP Natural language processing

NNLM Neural net language model

NMT Neural machine translation

OO Operator overloading

OOV Out-of-vocabulary

PL Programming languages

RNN Recurrent neural network

SCT Source code transformation

SGD Stochastic gradient descent

SMT Statistical machine translation

ST Source transformation

SVM Support vector machine

xi

Notation

Vectors are denoted by lower case bold Roman letters such as x. The elements
of a vector are written with subscripts as in x = (x1, . . . , xn). Lower case
bold letters and parentheses are also used to denote sequences. Individual
elements are generally referred to with xi, unless there is a temporal aspect
in which case xt is used instead.

Matrices will be written with uppercase bold Roman letters such as A. The
identity matrix is denoted I

Scalars are written with lowercase italics e.g. b. Any set element that is not
explicitly a matrix or vector is also denoted with lowercase italics.

Diagonal matrices are denoted diag(x) where the vector x contains the diagonal
entries of the matrix. Reversely, diag(A) is a vector containing the diagonal
elements of the matrix A.

Derivatives are denoted using either the Lagrange notation, where f ′ is the
derivative of f , or the Leibniz notation, in which case f ′(x) where y = f(x) is
written as dy

dx
. The same notation is used for multivariate and vector-valued

functions i.e. for f : Rn → Rm we use f ′ to denote the Jacobian m×n matrix
of partial derivatives and dy

dx
to denote the Jacobian matrix evaluated at x.

Iverson brackets are written as [P] :=

{

1 if P is true

0 otherwise

Probability distributions are denoted by a lowercase p(x) or pX(x) where X is
the random variable (in uppercase Roman letters) of which p is the probability
mass or density function. The probability of a particular event happening is
denoted P (A), where A is an event, or P (X = x), where x is the realization
of a random variable X.

Sets are denoted with uppercase italic letters, and its individual elements are
denoted with subscripts i.e. X = {x1, . . . , xN}.

Functions are written with a variety of scripts. The notation f : A → B means
that the function f has the set A as its domain and the set B as its codomain.
We write f(x) where x is the argument to f and f(x) the resulting value. We
will write fθ(x) or f(x; θ) to highlight the different treatment of the input x
and the parameters θ, although both are technically arguments to the function
f . If a function f : R → R is applied to a vector or matrix we assume it’s
applied element-wise.

xii

Estimators will often be given a circumflex accent i.e. f̂ is an estimator of the
function f while ŷ is a model’s estimate of the target y.

Optimal values can be recognised by the superscript asterisk i.e. θ∗ is the best
possible set of parameters according to some criterion.

Expected value is given by a blackboard E[X]. Note that square brackets are
used for functionals such as E and Var.

Algebraic operations with specific symbols that are used include ⊙ for the
element-wise product and ⊕ for the XOR function.

Model inputs and outputs will usually be denoted by x and y (or xi and yi to
refer to specific examples in the dataset). The model parameters will be θ
and the parameter space Θ. In the context of neural networks we will use W
or w to refer to the weights and b or b for the biases. Intermediate layers are
usually denoted by h for ‘hidden’. We endeavour to reserve N for the size of
the dataset, n for the size of the input space and m for the size of the output
space.

Parenthesized superscripts are used to make a distinction between different
but similar variables e.g. W(h) and W(y) are two different weight matrices,
and φ(h) and φ(y) are two different activation functions.

Strings are denoted with lowercase bold letters, but their elements are not paren-
thesized as in s = s1, . . . , st, where si is a character. We write s = t1, . . . , tm
when s is a concatenation of subsequences ti.

xiii

1 Background

Machine learning is the study of algorithms that can learn from data. Learning

has been referred to as the “phenomenon of knowledge acquisition in the absence

of explicit programming” (Valiant, 1984), which defines it in juxtaposition with

rule-based systems, which perform a series of logical operations on premises in

order to deduce facts. The importance of learning for artificial intelligence was

recognised as early as 1950 in Alan Turing’s seminal paper “Computing machinery

and intelligence”.

Instead of trying to produce a programme to simulate the adult

mind, why not rather try to produce one which simulates the child’s?

If this were then subjected to an appropriate course of education one

would obtain the adult brain. [. . .] We have thus divided our problem

into two parts. The child programme and the education process. These

two remain very closely connected. We cannot expect to find a good

child machine at the first attempt. One must experiment with teaching

one such machine and see how well it learns. One can then try another

and see if it is better or worse. [. . .] We normally associate punishments

and rewards with the teaching process. Some simple child machines can

be constructed or programmed on this sort of principle. The machine

has to be so constructed that events which shortly preceded the oc-

currence of a punishment signal are unlikely to be repeated, whereas a

reward signal increased the probability of repetition of the events which

led up to it.

Machine learning endeavours to find good ‘child machines’ and ‘teaching methods’.

It is closely related to statistics, sharing methodology and theoretical foundations.

Seen through this prism, learning involves the estimation of a function operating

on a probability distribution p(x) given a series of samples from this distribution.

The goal is for the learning algorithm to generalize (Bishop, 2006) and correctly

estimate f(x) for unseen samples after the learning process has completed.

1

Deep learning is a subfield of machine learning that focuses on algorithms that

apply series of non-linear operations on the data in order to model high-level ab-

stractions more efficiently (Y. Bengio, 2009). The most common deep architectures

are artificial neural networks with multiple layers. Although modelled after bio-

logical neurons (McCulloch and Pitts, 1943), artificial neural networks are perhaps

better understood as a series of interleaved linear transformations and element-wise

non-linear functions applied to an input represented by a vector. Deep learning and

artificial neural networks are closely related to the field of representation learning.

Representation (or feature) learning is the process by which algorithms learn ab-

stract representations of the data that they process (Y. Bengio, Courville, and

Vincent, 2013). In the context of this work we consider distributed representations,

where data is represented by a pattern of activity (e.g. a vector) as opposed to

a localist representation (e.g. a single category). The activations of a layer in a

neural network can be considered to be such a representation. Deep learning and

representation learning are primary examples of a connectionist approach to arti-

ficial intelligence (Geoffrey E Hinton, James L McClelland, David E Rumelhart,

et al., 1986). Connectionism contends that intelligent systems are best modelled as

a form of emergence, a process in which patterns and behaviour arise through the

interaction of many smaller, simpler units (i.e. the neurons). In Section 1.2 I will

provide a short overview of the theoretical foundations of machine learning theory

followed by a more practical overview of deep learning models.

Machine learning, neural networks and connectionism have a tumultuous history

in artificial intelligence. Research in neural networks stagnated for several years

after a book by Minsky and Papert (1969) discussed the limitations of single-

layer neural networks (perceptrons). The AI community focused on symbolic, rule-

based systems instead. An efficient training algorithm for deep neural networks,

back-propagation, was introduced by Werbos (1974) but it was not until the mid-

1980s that research in connectionist approaches fully resumed with the work of

e.g. Hopfield (1982). Linear classifiers, such as support vector machines (SVMs),

overshadowed neural networks for most of the 1990s and early 2000s, but the late

2000s saw the advent of deep learning methods. An important contribution was

the development of a new pre-training method by Hinton (2006) that allowed for

deeper neural networks to be trained. Turing foresightfully argued in 1950 that

advancements in engineering were needed for his ‘learning machine’ to be feasible

2

and it was the availability of efficient and cheap parallel computation in the form

of graphics processing units (GPUs) that was one of the other main drivers behind

the resurgence of artificial neural networks (Jürgen Schmidhuber, 2015).

1.1 Natural language understanding and

artificial intelligence

The ability to read and understand natural language is by many considered a

prerequisite for general artificial intelligence (Russel and Norvig, 2003). When Tur-

ing introduced the Turing test in 1950 he based his measure of machine intelligence

on the ability to understand written natural language and reply appropriately.

The history of natural language processing (NLP) in many ways parallels that

of artificial intelligence. In the 1970s and 1980s many NLP systems used sets

of complex hand-written rules, grounded in the rationalist Chomskyan tradition

of linguistics (Christopher D. Manning and Schütze, 1999). In the late 1980s an

empiricist approach to language started taking hold, grounded in the belief that

the structure of language can be learned from data, in many ways mirroring the

growth of connectionism at the expense of computationalist/symbolic approaches

in artificial intelligence. Examples of this approach are counting models, such as n-

gram language models, as well as models that employ distributed representations

of words and documents, as in latent semantic analysis. Word embeddings (Y.

Bengio, Ducharme, et al., 2003) move beyond the surface level of the word; instead

of considering ‘cat’ and ‘dog’ as entirely separate words, they are embedded in a

vector space in such a way that distance relates to semantic similarity (Hill et al.,

2014; Mikolov, Sutskever, et al., 2013).

In the way that learning for artificial intelligence can be traced back to Turing

in the 1950s, when read from the perspective of a present-day machine learning

researcher, Wittgenstein’s Philosophical Investigations makes a case for statisti-

cal methods when proclaiming that “the meaning of a word is its use in the lan-

guage” (1953), effectively going on to argue for the need of distributed representa-

tions:

3

Consider for example the proceedings that we call “games” [to] look

and see whether there is anything common to all. [. . .] And the result

of this examination is: we see a complicated network of similarities over-

lapping and criss-crossing: sometimes overall similarities. I can think

of no better expression to characterize these similarities than “family

resemblances”; for the various resemblances between members of a fam-

ily: build, features, colour of eyes, gait, temperament, etc. etc. overlap

and criss-cross in the same way. — And I shall say: “games” form a

family. [. . .] I can give the concept ‘number’ rigid limits [. . .] that is,

use the word “number” for a rigidly limited concept, but I can also use

it so that the extension of the concept is not closed by a frontier. And

this is how we do use the word “game”. For how is the concept of a

game bounded? What still counts as a game and what no longer does?

Can you give the boundary? No. You can draw one; for none has so far

been drawn. (But that never troubled you before when you used the

word “game”.)

The idea that the meaning of a word can be derived from its use in language, the

principle that underlies most models that learn distributed word representations,

was more succinctly put by John Rupert Firth in 1957 as

You shall know a word by the company it keeps.

1.2 Machine learning

A semi-formal definition of machine learning can be given as (T. M. Mitchell,

1997):

Definition 1.2.1. A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P , if its performance at

tasks in T , as measured by P , improves with experience E.

This definition is comprehensive but abstract. To make the definitions of ‘com-

puter program’ (the model), E, T and P more concrete we first have to consider

three commonly recognised categories of machine learning:

4

Supervised learning In supervised learning the model is provided with a set of

input-output pairs (the experience E) and the goal is to learn a mapping

between the space of inputs to the space of outputs. In classification each

input is given a label from a finite set of classes, for example a set of images

each of which is labelled as containing a cat or dog. When each target output

is associated with a numeric value we refer to the task as regression, for

example when predicting life expectancy given a set of health indicators.

If the output is a structured object instead of a discrete or real value, the

problem is referred to as structured prediction, for example when predicting

a parse tree given a sentence.

Unsupervised learning In unsupervised learning the model is only given a set

of inputs and is expected to find structure. If the task is to divide the inputs

in a number of categories the problem is known as clustering. In density

estimation the algorithm is expected to model the probability distribution

from which the inputs were drawn. Unsupervised representation learning fo-

cuses on learning distributed representations of the inputs that can be used in

downstream tasks. Other tasks that can be considered unsupervised learning

are dimensionality reduction, where the inputs are to be mapped to a lower-

dimensional space while minimizing information loss, and anomaly detection,

where we need to find the outliers in the inputs that do not belong to some

structure or pattern.

Reinforcement learning In the reinforcement learning setting an agent interacts

with a dynamic environment. At each time step the agent observes (part of)

the environment and then chooses from a (constrained) set of actions which

affect the state of the environment, possibly in a stochastic manner. At each

step the agent receives a reward which depends on the environment’s state

and the action taken. The goal for the agent is to maximize its future rewards.

Note that these categorisations and tasks are not mutually exclusive. For example,

density estimation can be reframed as clustering by considering a mixture of dis-

tributions where we assign each example to the mixture component under which

it has the highest likelihood. Semi-supervised learning studies models which use a

combination of labelled and unlabelled data to improve performance.

Orthogonal to the categorization of tasks above, we can distinguish two types

of models:

5

Parametric models These models are defined by a finite, fixed number of pa-

rameters θ. For parametric learning the algorithm is expected to fit the

parameters to the training data i.e. find the model parameters that maximize

its performance.

Nonparametric models Any model which is not parametric. Examples include

models which are fully defined by the data, such as k-nearest neighbors classi-

fication. Models which have both parametric and nonparametric components

are sometimes referred to as semiparametric. For example, a neural network

with a predefined structure is parametric, but if the number of parameters

or its layers are selected based on the data (hyperparameter tuning) this

introduces a non-parametric aspect.

The archetypical example of a non-parametric model is the k-nearest neighbours

algorithm: Given a set of points in space with category labels as training data, the

model classifies unseen samples by assigning it the class that the majority of its

neighbours (by some distance metric) belong to. A simple example of a parametric

model is performing density estimation by fitting a Gaussian, which is parametrized

by its mean and variance, to a set of real valued numbers. Note that the k-nearest

neighbours model is not constrained and has infinite capacity i.e. the function it

describes can become arbitrarily complex given an infinite amount of training data.

The Gaussian on the other hand is limited in its complexity.

1.3 Supervised learning with parametric models

The models discussed in the chapters to follow are all parametric or semipara-

metric models where the parameters are trained with supervision, which is the

setting that is formalized in this section. For the remainder of this work we will

disregard unsupervised learning and reinforcement learning.

We consider a set of possible inputs, X , and outputs, Y .

Definition 1.3.1. Let (Ω, E , P) be the probability space induced by sample space

Ω = X × Y, a set of events E , and a probability measure P . Let X : Ω → I

and Y : Ω → O be a pair of co-occuring random elements. A dataset D consists

6

of N independent realizations of these random elements i.e. D = {(xi, yi) : i =

1, . . . , N}.

As an example, let X be a group of patients and let Y be their diagnosis. The

random variable X could be a set of n health indicators in Rn, while Y is a one-hot

encoding of the m possible diagnoses in Rm. A one-hot encoding is defined as a

vector with a single non-zero entry, ([1 = y], . . . , [m = y]) where y is the index

of the correct diagnosis. Note however that the definition allows for I and O to

contain more complicated elements e.g. in the case of structured prediction.

Definition 1.3.2. A model is a function fθ over the domain I in a function space F

parametrized by a non-empty set of parameters θ ∈ Θ, i.e. there exists a surjective

mapping g : Θ→ F .

The codomain of fθ is often O or the space of distributions over O. Building

on the previous example, a model could map the health indicators xi to a vector

ŷi = fθ(xi) containing scores for each diagnosis.

Definition 1.3.3. Let A be a space of actions. A decision function is a function,

δθ : I → A in a function space F ′, parametrized by the same set of parameters θ

as the model, fθ.

Often A is the same as the codomain of fθ, or a function of it. For example, the

space of actions could be to give the doctor a score for each diagnosis, or to issue

a single diagnosis for a specific patient xi by taking (δθ)i = argmax(fθ(xi)). One

can also imagine cases where additional actions such as ‘unknown’ are possible.

Definition 1.3.4. An error function or loss function is a function L : A×O → R

that assigns a cost to the decision taken, δθ(xi), given the correct answer, yi.

A loss function for the diagnosis example could be [δθ(xi) = argmax(yi)] i.e.

whether the class decided by the decision function is the correct one. The mean

of this, 1
n

∑n
i=1[δθ(xi) = argmax(yi)], is known as the classification rate. For

regression a possible loss function is ‖ŷi − yi‖.

The goal of learning is finding a set of parameters, θ∗, that minimizes the ex-

pected risk, R, of our decision function. Given the bivariate probability distribution

pX,Y (x, y) we define

R(δθ) =

∫

X

∫

Y
L(δθ(x), y)pX,Y (x, y)dxdy

7

Since we do not have access to the distribution pX,Y (x, y), we must consider the

empirical risk, R̂, instead, which is an unbiased estimator of the expected risk (since

our samples are independent realizations of a single pair of random elements).

R̂(δθ;D) =
1

N

N∑

i=1

L(δθ(xi), yi)

The principle of empirical risk minimization implies that learning takes the form

of finding the set of parameters

θ̂∗ = argmin
θ∈Θ

R̂(δθ;D)

However, this learning procedure results in the empirical risk no longer being an

unbiased estimator of the expected risk, since θ̂∗ has been optimized to minimize

the average loss over a strict subset of X × Y .

ED[R(δθ̂∗)− R̂(δθ̂∗ ;D)] ≥ 0

We refer to R̂(δθ̂∗ ;D) as the training error or empirical error and R(δθ̂∗) as the

expected error or generalization error. Their expected difference is referred to as

the generalization gap. Note that the generalization gap cannot, in general, be

explicitly computed; in statistical learning theory the objective is usually to find

upper bounds on this error. (A second concern in the field of statistical learning

theory is proving for specific function spaces F ′ that the empirical risk and expected

risk converge in probability to the same value as the number of examples N →∞.)

The fact that the empirical risk is a biased estimator means that we can not use

it as a performance measure of our model. This is why in practice the dataset is

split into two parts: the training set and the test set. The test set will not play any

part in the training process, but is only used at the end as an unbiased estimator

of the expected risk.

Let δ∗ : I → A be a decision function which minimizes R in the space of all pos-

sible functions mapping inputs to actions. We assume that our set of parametrized

decision functions F ′ (I → A. i We can now distinguish two types of error in our

i. Some argue that this assumption must be explicitly stated because even if we choose Θ =
(0, 1) the fact that this set is uncountably infinite means that any computable function could be
parametrized by it.

8

attempt to minimize the expected risk, both non-negative:

R(δθ̂∗)−R(δ∗) = R(δθ̂∗)−R(δθ∗)
︸ ︷︷ ︸

estimation error

+R(δθ∗)−R(δ∗)
︸ ︷︷ ︸
approximation error

(1.1)

The estimation error occurs because we are optimizing over a finite training set

and hence are unlikely to find the best function with respect to generalization

within our function space. The estimation error is what our learning algorithm

tries to minimize. The approximation error is due to the fact that the function

space parametrized by Θ does not necessarily include the optimal decision function

δ∗.

Starting from a singleton function space, it is clear that the estimation error

must start at 0. As we increase the size of the function space F ′, the value of R(δθ∗)

can only decrease. The value of R(δθ̂∗) is lower bounded by R(δθ∗). On the other

hand, the approximation error can only decrease since R(δ∗) is constant.

1.3.1 Overfitting

Considering equation 1.1 it might look like a good idea to make our function

space as large as possible since this decreases the approximation error. However,

it turns out that this is a bad idea. As the function space grows, it is actually

possible for R(δθ̂∗) to start increasing. If the estimation error grows faster than

the approximation error, the expected risk will actually start increasing. This is a

process known as overfitting.

The Vapnik-Chervonenkis (VC) dimension formalizes the concept of capacity,

the size or complexity of the function space F ′, and can be used to prove a proba-

bilistic upper bound that shows that overfitting is not only possible, but likely.

We define the VC dimension by considering the case of binary classification.

Similar definitions for capacity can be derived for e.g. regression and density esti-

mation, but they are more involved. We consider binary classification since mul-

ticlass classification can be reduced to a series of one-vs.-rest classifications. Con-

sider a set of points X = {x1, . . . ,xN} where xi ∈ Rn and corresponding labels

Y = {y1, . . . , yN} with yi ∈ {0, 1}.

Definition 1.3.5. A set of functions F is said to shatter the set X if and only if

∀Y ∈ {0, 1}N ∃f ∈ F such that f(xi) = yi for all i.

9

If f shatters X it means that it can classify all the points correctly for any set

of labels.

Definition 1.3.6. The Vapnik-Chervonenkis (VC) dimension h is a measure of

the capacity of a set of functions and is equal to the cardinality of the largest set

X that is shattered by F .

An example that is often given is the classification of points on the Euclidean

plane by separating them using a single straight line, as a perceptron would do (see

Section 1.4.1). Three points can always be separated (shattered) into two classes,

regardless of their labelling, but this is not the case for 4 points (Radon’s theorem).

Hence, the VC dimension of this classifer is 3.

In V. N. Vapnik (1995, chapt. 3) it is proven that for a training set size N and

a set of functions bounded by a and b with VC dimension h

P

(

R(f)− R̂(f) ≤
b− a

2

√

h(log(2N/h) + 1)− log(η/4)

N

)

≥ 1− η (1.2)

for all θ and with η > 0. The square root term increases monotonically. This

shows that as the capacity of the model increases our generalization error is likely

to increase and our empirical error might no longer be representative of the expected

error.

Vapnik’s bound on the generalization error shows that it is theoretically possible

for the expected error to increase in the case where the empirical risk goes down

more slowly than the probabilistic upper bound on the generalization gap.

1.3.2 Bias-variance tradeoff

We can analyze the occurence of overfitting by means of the bias-variance de-

composition, analyzing the generalization error as a sum of three terms: the bias,

variance, and irreducible error. Considering the following example following “The

Elements of Statistical Learning” (Hastie, Tibshirani, and Friedman, 2001). We

assume that our dataset consists of samples xi ∈ Rn and noised targets y′i = yi + ǫ

with yi ∈ R, E[ǫ] = 0 and Var[ǫ] = σ2. Consider a squared loss function,

10

h

R/R̂

Figure 1.1 – The expected error, R(δθ̂∗
), (solid), empirical error, R̂(δθ̂∗

;D), (dashed) and the
generalization error upper bound (see formula 1.2; dotted) as a function of the model capacity h.
Note that this is an extreme example which assumes that the empirical error shrinks at a slower
rate than the upper bound grows, resulting in the expected error increasing. From formula 1.2
alone it is not clear whether the expected error will start increasing or simply level off.

L(δθ(xi), yi) = (yi − δθ(xi))
2. Let ŷi = δθ(xi), then

E[(y′i − ŷi)
2
] = E[(y′i − yi + yi − ŷi)

2
]

= E[(y′i − yi)
2
] + E[(yi − ŷi)

2] + 2E[(y′i − yi)(yi − ŷi)]

= σ2 + E[(yi − ŷi)
2] + 2(E[(y′iyi)]− E[y2i]

︸ ︷︷ ︸
0

−E[y′iŷi] + E[yiŷi]
︸ ︷︷ ︸

0

)

= σ2 + E[(yi − E[ŷi] + E[ŷi]− ŷi)
2]

= σ2 + E[(yi − E[ŷi])
2] + E[(E[ŷi]− ŷi)

2] + 2E[(yi − E[ŷi])(E[ŷi]− ŷi)]
︸ ︷︷ ︸

0

= σ2 + E[(yi − E[ŷi])
2] + Var[ŷi]

The σ2 is the irreducible error and forms a lower bound on the generalization error.

The bias represents the error coming from the model. If the model is unable to

capture some patterns in the data (because it does not have enough capacity) the

bias will be high. The variance of the learning algorithm represents the sensitivity of

our model to the random sampling of training examples from the data distribution.

A high variance is likely to increase the generalization error because the model will

11

be fit to a distribution that is likely different from the underlying data distribution.

A similar decomposition can be derived for classification problems as well.

As we increase our model’s capacity the bias will be reduced, but the variance

will increase. If we increase capacity too much the variance will often increase

faster than the bias, giving rise to overfitting; at this point the model is memorizing

examples rather than modelling the underlying distribution. To avoid overfitting we

limit the capacity of our model. For example, by considering a smaller parameter

space, or through a regularization term which assigns a cost to each function,

Ω : F ′ → R, and a regularization weighting λ ∈ R.

θ̂∗ = argmin
θ∈Θ

1

N

N∑

i=1

L(δθ(xi), yi) + λΩ(δθ)

The regularization term penalizes the complexity of the function δθ in some way. It

can be seen as enforcing Occam’s razor, encouraging the solution to be the simplest

one that models the data. In many cases the regularization term can also be viewed

from the Bayesian perspective as a prior on the model parameters. We will discuss

regularization methods specific to neural networks in Section 1.5.1.

The theory discussed thus far underpins the training process that will be used

throughout this work, namely with a separate training and test set and a variety

of regularization methods in order to maximize the model performance.

1.4 Artificial neural networks

The term ‘neural networks’ has been used to describe a wide range of mod-

els. What these models have in common is that they can be interpreted as units

(neurons) connected by weights (synapses) forming a network. A set of neurons

is activated by the input data, after which they exchange information with the

neurons that they are connected to. These neurons often respond to the incoming

information in a non-linear way. The weights of the network are adaptive and can

be tuned by a learning algorithm.

Neural networks have their origins in simple mathematical models of biological

neural networks (McCulloch and Pitts, 1943; Rosenblatt, 1962), but the field has

12

x w y

Figure 1.2 – A visualization of the perceptron as a neural network with weights w going from
the input x to the output y. Note that the bias was ommitted for illustrative purposes.

since diverged into those that endeavour to develop biologically plausible models of

the nervous system (computational neuroscience), and those which develop efficient

models for machine learning. This work falls entirely in the second category.

For all the models discussed henceforth the events space of the decision function

is the same as the target space of the model, so we will use fθ instead of δθ.

Unless stated otherwise the models can be assumed to map from Rn to Rm and the

parameter space Θ = Rk.

1.4.1 Perceptron

One of the first, and simplest, neural networks developed was the perceptron,

visualized in figure 1.2. The model is a linear classifier parametrized by θ =

(w, b) ∈ Rn×R which assigns one of two classes to n-dimensional inputs, fθ : R
n →

{0, 1}. It is defined as xi 7→ [wTxi + b > 0].

The elements of the vector w are referred to as the weights, connecting the

inputs xi to the output neuron. The parameter b is referred to as a bias. i The

weighted sum of the inputs plus the bias, w · xi + b, is sometimes known as the

pre-activation of a neuron. An activation function transforms the pre-activation

into the neuron’s output activation, ŷi = fθ(xi). In the case of the perceptron the

activation function is the Heaviside step function H(x) = [x ∈ (0,∞)].

Geometrically the perceptron can be interpreted as drawing a hyperplane in

Rn, forming a decision boundary. The value of fθ(x) depends on which side of

i. Note that one can define an equivalent network without biases by augmenting the inputs
x′ = [x, 1] and using weights w′ = [w, b].

13

x1

x2

(a) The AND circuit in two dimensions. The two classes
(circles and discs) are linearly separable by any number
of lines.

x1

x2

(b) The XOR (exclusive-or) circuit in two dimensions.
The two classes (circles and discs) are not separable by
any line.

Figure 1.3

the hyperplane the point xi lies. The bias b allows the decision boundary to move

away from the origin. This interpretation makes clear that the perceptron can only

reach zero error if the two classes of points are linearly separable (i.e. if their convex

hulls are disjoint). A typical example of a non-linearly separable set of points is

x = (x1, x2) ∈ {0, 1}
2 whose class labels are determined by the XOR function,

y = x1 ⊕ x2 (see figure 1.3b).

1.4.2 Stochastic gradient descent

Neural networks are most often formulated in such a way that they are differ-

entiable and are trained with variations on the stochastic gradient descent (SGD)

algorithm (see algorithm 1). SGD is an online algorithm, which means that for each

Algorithm 1 Stochastic gradient descent (SGD) with mini-batches of size M

Initialize parameters θ
while not converged do

Let σ be a permutation of (1, . . . , N)
for j in 0, . . . , N

M
− 1 do

B = (σ(jM + 1), . . . , σ(jM +M)) ⊲ Select a mini-batch
θ ←[θ − η

∑

i∈B
∂
∂θ
L(fθ(xi),yi) ⊲ Estimate gradient

end for

end while

return θ

14

iteration it looks at a single example or a small subset of the dataset and approxi-

mates the derivative of the loss function with respect to the parameters. Although

theoretically each example should be taken at random from the training set, in prac-

tice SGD is often used by cyclically iterating over the training set to reduce the

number of random memory accesses. Given the approximation of the gradient, the

algorithm takes a gradient descent step in the parameter space in order to minimize

the loss, and repeats this action until convergence. The scaling of the step taken, η,

is known as the learning rate. A higher learning rate leads to faster minimization,

but if the learning rate is too high the algorithm can become unstable. Online

algorithms are feasible for our setting because our expected error is a linear combi-

nation of the loss for each sample in the dataset, R̂(fθ;D) =
1
N

∑N
i=1 L(fθ(xi),yi),

which makes it feasible to estimate R̂ using a subset of the data, given that this

subset was sampled i.i.d. from the data distribution.

The loss function of perceptron model previously discussed has a zero gradient

almost everywhere because of the Heaviside step function, which makes it unsuit-

able for gradient optimization. However, we can apply SGD on the pre-activation

value, f ′
θ(xi) = wTxi + b, instead. As a loss function we use L(f ′

θ(xi), yi) =

−yif
′
θ(xi)[fθ(xi) 6= yi], where yi ∈ {−1, 1} instead of yi ∈ {0, 1} to simplify no-

tation. This function assigns a non-zero loss to incorrectly classified examples

equal to their distance to the hyperplane.

∂L (f ′
θ(xi), yi)

∂w
= −

∂

∂w

(
yi
(
wTxi + b

))
[fθ(xi) 6= yi]

= −yixi[fθ(xi) 6= yi]

∂L (f ′
θ(xi), yi)

∂b
= −yi[fθ(xi) 6= yi]

If we apply these updates only when the model misclassifies a point, we have derived

the traditional perceptron training algorithm due to Rosenblatt (1958) as given in

algorithm 2. Each update in effect moves the decision boundary towards the point.

For the perceptron this learning algorithm is guaranteed to converge given that the

points are linearly separable. Note that this convergence guarantee does not apply

to neural networks in general since they are seldom convex. Optimization methods

will be discussed further in Section 1.5.

15

Algorithm 2 Perceptron algorithm

w←[~0, b←[0
i←[1
while ∃i s.t. [ŷi 6= yi] do ⊲ Until all examples are correctly classified

ŷi ← [wTxi + b
if [ŷi 6= yi] then ⊲ yi is incorrectly classified

w← [w + ηyixi ⊲ 0 < η <≤ 1
b←[b+ ηyi

end if

i←[(i mod N) + 1
end while

1.4.3 Logistic and multinomial logistic regression

The perceptron model has its shortcomings. One issue is that the perceptron

training algorithm does not distinguish between different hyperplanes that separate

the training data. Given the two lines in figure 1.3a for example, we would prefer

the dotted line over the dashed since it is more likely to generalize to unseen data.

Efforts to develop algorithms that maximize the margins between the hyperplane

and the training points resulted in what is now known as the linear support vector

machine (SVM) (Cortes and V. Vapnik, 1995). Another approach that maximises

the margins is logistic regression (Cox, 1958; Walker and Duncan, 1967). This

approach can be considered a variation of the perceptron model which allows for

a probabilistic interpretation by replacing the Heaviside step function with the

sigmoid function (Verhulst, 1845), σ : R → (0, 1), also called the logistic function

(see figure 1.4)

σ(x) =
1

1 + e−x

To simplify notation, we will consider a classification problem with labels yi ∈

{0, 1}. The sigmoid function allows for a probabilistic interpretation of our model

with fθ(xi) estimating the probability that our sample belongs to class 1, fθ(xi) =

P̂ (yi = 1 | xi; θ). Note that 1 − fθ(xi) = P̂ (yi = 0 | xi; θ). Since we assume

the samples in our dataset to be i.i.d. we can say that the conditional likeli-

hood under our model of the pairs of xi and yi in the dataset, P̂ (D), is equal

to
∏N

i=1 fθ(xi)
yi(1− fθ(xi))

1−yi . A reasonable thing to do is to maximize the likeli-

hood of the data, a principle known as maximum-likelihood estimation (MLE). In

16

x
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

1

0.5

σ(x)

Figure 1.4 – The logistic function (solid) and its derivative (dotted)

order for our cost function to be a linear combination of the samples we consider

the log-likelihood of our model instead, and to maintain the convention that we

want to minimize our cost function, we will use the negative log-likelihood as our

cost function. i

L(fθ(xi), yi) = − log(fθ(xi)
yi(1− fθ(xi))

1−yi)

= −yi log(fθ(xi))− (1− yi) log(1− fθ(xi)).

Note that since the logarithm is a monotonically increasing function, it does not

change the location of the minimum of our cost function.

The perceptron and logistic regression model can both be considered feedfor-

ward neural networks without hidden layers. A neural network layer is of the form

fθ(xi) = φ (Wxi + b)

where φ (·) is an activation function which is applied element-wise ii (see figure 1.5).

i. In the context of neural networks it is often said that we minimize cross-entropy. The
cross-entropy of the empirical data distribution, p, and our model’s output distribution, p̂, is
defined as H(p, p̂) = Ep[− log p̂]. Let p be a discrete distribution that gives the same probability
to each sample in our dataset x = {x1, . . . , xn} i.e. p(x) = 1

n

∑n
i=1

δ(x − xi). Then H(p, p̂) =
−
∫

X
p(x) log p̂(x)dx = − 1

n

∑n
i=1

log p̂(xi), which is the negative log-likelihood under our model.
Also note that H(p, p̂) = H(p) + DKL(p‖p̂) where H is the entropy and DKL is the Kullback-
Leibler divergence (also called relative entropy). Since H(p) is fixed, minimizing the cross-entropy
is equivalent to minimizing the KL-divergence.

ii. Note that convolutions are linear and can be represented by using Toeplitz matrices for
W. However, some activation functions in common use are not applied element-wise (e.g., max
pooling or maxout units).

17

x W y

Figure 1.5 – A single-layer neural network without hidden layer. If the softmax function is used
as the activation function, this is equivalent to multinomial logistic regression.

In order to use gradient descent methods like SGD we require φ to be differentiable

almost everywhere and not have a zero gradient almost everywhere. The input layer

x is fully connected to the output layer y through the matrix multiplication with

W. In the case of the perceptron and logistic regression y ∈ R1 andW ∈ R1×n, and

the Heaviside step function and logistic function were used as activation functions

respectively. In the case of regression the output does not need to be in the interval

[0, 1] and other activation functions, including the identity, can be used for the last

layer.

In general a neural network can be vector-valued, y ∈ Rm. For multiclass

classification a generalized version of the logistic function called the softmax func-

tion (Bridle, 1990) (or normalized exponential function) is often used in the output

layer. The softmax of a vector x = (x1, . . . , xn) is defined by

softmax (x)i =
exi

∑n
j=1 e

xj
.

This produces a valid categorical probability distribution as the output. In fact, a

single-layer perceptron with a softmax output is equivalent to multinomial logistic

regression. The softmax function is differentiable and has the same desireable

properties as the logistic function for gradient-based optimization methods.

Neural network models can also be used for multi-label classification, where

y ∈ Rm and multiple answers are correct, for example when predicting which

objects are present in a picture both ‘house’ and ‘tree’ could be correct at the

same time. In these cases the problem is often approached as a series of binary

18

x W(x) h W(y) y

Figure 1.6 – A neural network with a single hidden layer.

classifications by applying the sigmoid function to each output independently. Note

that this assumes conditional independence of the labels. However, since the binary

classifiers share the majority of the model parameters, the neural network can model

the shared factors (i.e. representations of labels that are highly correlated will end

up close together) (M.-L. Zhang and Zhou, 2006).

1.4.4 Multilayer feedforward neural networks

Layers can be stacked to form neural networks with multiple hidden layers, the

output of one layer forming the input to another (see figure 1.6). i

In 1974 Paul Werbos first proposed using the backpropagation algorithm to

train these multilayer networks (Werbos, 1974). The use of backpropagation for

the training of neural networks gained further recognition in the 1980s (David E.

Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, 1986), leading to a re-

newed interest in the field. The backpropagation algorithm is effectively an efficient

method of calculating the partial derivatives of the cost function with respect to the

model’s parameters (the weights and biases of each layer) using the chain rule. The

discovery of this algorithm can be traced back to the 1960s (Bryson and Denham,

1962; Dreyfus, 1962; Pontryagin et al., 1962). Backpropagation is in fact a special

case of reverse-mode automatic differentiation (AD), which is discussed in detail in

Chapter 9.

Multilayer neural networks are able to classify non-linearly separable data such

i. Often referred to as a multilayer perceptron (MLP), but this is technically a misnomer since
the method is only applicable to networks that unlike the perceptron use activation functions
that do not have a zero gradient almost everywhere.

19

as the XOR problem in figure 1.3b. Their power is given theoretical grounding

in the universal approximation theorem (Hornik, Stinchcombe, and White, 1989)

(sometimes called Cybenko theorem, after the person who proved one of the first

versions in 1989 (Cybenko, 1989)).

Theorem 1.4.1. Let φ be a non-constant, bounded, and monotonically-increasing

continuous function. Given any ε > 0 and continuous function f(x) : [0, 1]n → R

there exists a layer-size N , weight matrices W and w, and biases b such that a

neural network, F (x), with a single hidden layer and linear output,

F (x) =
N∑

i=1

wTφ(Wx+ b)

can approximate f(x) to within ε, that is, ∀x ∈ [0, 1]n

|F (x)− f(x)| < ε

More recent theoretical work has shown that the representational power of neu-

ral networks grows much faster by adding depth than by adding width (Montufar

et al., 2014; Poole et al., 2016). Despite their high complexity and non-convexity,

the learning dynamics for deep networks are relatively stable (Saxe, James L. Mc-

Clelland, and Ganguli, 2014; Choromanska et al., 2015; Dauphin et al., 2014).

1.4.5 Recurrent neural networks

Multilayer perceptrons are generally stateless; each data sample is processed in

isolation. Recurrent neural networks (RNNs) address this issue by introducing feed-

back connections in the hidden layers. Given a sequence of inputs x = (x1, . . . ,xT),

the hidden state and output are for example calculated as follows

ht = φ(h)
(
W(x)xt +W(h)ht−1 + b(h)

)

yt = φ(y)
(
W(y)ht + b(y)

)

RNNs are able to deal with variable length inputs and outputs, making them appro-

priate for time series prediction, signal processing, or natural language processing.

Note that in the ideal case there is a causal relationship between the subsequent

20

xt W(x) ht W(y) yt

W(h)

Figure 1.7 – A recurrent neural network. Note that the recurrent layer is normally fully con-
nected i.e. there should be arrows from all nodes in ht to all nodes in ht. For the sake of clarity
these lines were omitted here.

elements. Training is performed by backpropogation through time (BPTT) which

effectively “unfolds” the RNN as if it were a very deep MLP and performing regular

SGD. This can cause optimization problems such as the vanishing and exploding

gradient problem (Razvan Pascanu, Mikolov, and Y. Bengio, 2013; Y. Bengio,

Simard, and Frasconi, 1994; Hochreiter, 1991). Consider the gradient flow from ht

to h1

∂ht

∂h1

=
t∏

i=2

W(h) diag φ′(W(x)xi +W(h)hi−1 + b(h))

If ∃γ s.t. ρ(φ′(x)) < γ for all x, where ρ is the spectral radius, we can bound

ρ

(
∂ht

∂h1

)

≤ γt−1ρ
(
W(h)

)t−1

and use the properties of the spectral radius to conclude that ρ
(

∂ht

∂h1

)

→ 0 if

ρ(W(h)) < 1
γ
and ρ

(
∂ht

∂h1

)

→∞ if ρ(W(h)) > 1
γ
as t→∞. If we assume that Note

that we have γ = 1 for φ = tanh and γ = 1
4
for φ = σ. Exploding gradients can

be addressed by clipping the norm of the gradient (Razvan Pascanu, Mikolov, and

Y. Bengio, 2013).

Recurrent networks are sometimes trained on long sequences with truncated

backpropagation through time (TBPTT) (Ronald J Williams and Peng, 1990),

which means that gradient flows involving more than a certain number of tran-

21

sitions are ignored. This reduces the amount of memory that is required and also

reduces the chance of exploding gradients.

In applications where we can assume that the entire sequence is available be-

fore our model needs to produce an output it is possible to run a recurrent neural

network in two directions. This is known as a bidirectional recurrent neural net-

work (M. Schuster and Paliwal, 1997; Alex Graves and Jürgen Schmidhuber, 2005).

It involves two independent RNNs processing the sequence (x1, . . . , xT) and its re-

verse (xT , . . . , x1) respectively. The networks will produce two series of hidden

states, (h1, . . . , hT) and (h′
T , . . . , h

′
1). Two states ht and h′

t are then combined,

often by concatenating them or summing an affine transformation of them. The

result can be seen as a representation of the entire sequence, but possibly focused

around a single element of it.

LSTM

Besides being an optimization problem, vanishing gradients impede the learn-

ing procedure since they force the RNN to forget information over time when the

transition’s operator norm is smaller than 1. Long short-term memory (LSTM)

units were developed (Hochreiter and Jürgen Schmidhuber, 1997) in order to ad-

dress this problem. The core difference is that instead of overriding the state,

ht = f(ht−1,xt), the old state is partially carried over, allowing both the informa-

tion and the gradient to flow unaffected by the transition operator

ht = g(ht−1,xt)⊙ f(ht−1,xt) + (1− g(ht−1,xt))⊙ ht−1

The precise structure of the LSTM is more complicated (and different authors tend

to use slight variations). It is perhaps best understood graphically (see figure 1.8).

LSTMs have been battle-tested and studied extensively (Greff et al., 2017; Joze-

fowicz, Zaremba, and Sutskever, 2015) and are still the architecture of choice for

most RNN models. A commonly used, and computationally cheaper, alternative is

the GRU, which will be presented in Chapter 4.

22

optimization this is a common approach known as Newton’s method, where

θt+1 = θt − (H(f)(θ))−1∇f(θ)

Unlike gradient descent, which has linear convergence, Newton’s method converges

quadratically for convex functions. For a simple graphical interpretation, see fig-

ure 1.9.

Moreover, in the case of neural networks and large-scale optimization in general

calculating the Hessian explicitly is often infeasible. It requires 1
2
N(N +1) storage

and O(N2) computation, where N is the number of parameters. Inverting the

Hessian requires a further O(N3) computation. i Many of the methods previously

mentioned can be interpreted as performing some diagonal approximation of the

function’s curvature.

1.5.1 Regularization

In Section 1.3.2 we discussed the concept of overftting and explained that the

bias-variance tradeoff can be controlled by adding regularization. John von Neu-

mann famously said (Dyson, 2004)

With four parameters I can fit an elephant, and with five I can make

him wiggle his trunk.

This makes regularization particularly important for neural networks, which can

have billions of parameters (Jeffrey Dean et al., 2012) and are heavily overparametrized (De-

nil et al., 2013; G. Hinton, Vinyals, and Jeff Dean, 2015). An overview of the many

regularization techniques used in neural networks (Goodfellow, Y. Bengio, and

Courville, 2016) is beyond the scope of this work, but we will give a brief overview

of the regularization methods that will be mentioned and used in later sections:

Norm constraints Adding the L2-norm of parameters is a common form of reg-

ularization known as weight decay, limiting the function space F to those

defined by parameters lying more closely to the origin. Adding an L1-norm

penalty is a common way of promoting sparsity in the activations when

needed.

i. Inversion is the same complexity as matrix multiplication, so technically O(n2.37...) with
Coppersmith-Winograd algorithms, but in practice no faster than O(n2.807) using the Strassen
algorithm.

24

x

f(x)

-1 1

-1

1

0

Figure 1.9 – Consider the function f(x) = −(x3 + ǫx) with ǫ ≪ 1 (solid) being minimized
using a gradient method starting from the point (−1, 1 + ǫ). The norm of the gradient, f ′(x) =
−(3x2 + ǫ) determines the speed at which we progress i.e. the size of the step we take to the
right (dashed). Note that f ′(0) = ǫ, which can be arbitrarily small, so our optimization is
likely to progress very slowly around this point. Second order methods rely on the inverse of
the second derivative, f ′′(x) = −6x, to scale the step size. This means that we now take steps
of size f ′(x)/f ′′(x) = 1

2
x + ǫ

6x (dotted). Note the very different behaviour of this function: If
x is not near 0, we progress at a more even rate through parameter space. In the flat region
around 0 we do not slow down, instead the size of the steps actually increases, allowing us to
escape this region quickly. However, we can also see that at x = 0 our algorithm could become
unstable. Moreover, the use of the second derivative has reversed our step direction when x > 0.
Instead of minimizing the function by finding x→∞, Newton’s method for non-convex functions
converges to any criticial point i.e. where f ′′(x) = 0. We can remediate this by only using the
magnitude of the curvature, f ′(x)/|f ′′(x)|. Note that in the multivariate case, this implies using
the ‘absolute Hessian’, |H| = Q|Λ|QT where H = QΛQT is the eigendecomposition (Gould and
Nocedal, 1998; Greenstadt, 1967; Razvan Pascanu, Dauphin, et al., 2014). Trust region methods
and line searches with Wolfe conditions are other ways of improving Newton’s method’s stability
and avoiding convergence to saddle points (Nocedal and Wright, 2006).

25

Data augmentation Is a heuristic where we augment our dataset with samples

that were transformed in a way that we believe our model should be agnostic

to. For example, an object recognition model should be robust to images

being rotated slightly or flipped horizontally.

Noise Noise can be injected in many stages, and justified in multiple ways. When

noise is added to the inputs it can be considered a form of data augmentation.

If Gaussian noise is added to the weights it can be interpreted as a variational

Bayesian method with a uniform prior on the weights (Alex Graves, 2011).

Adding noise to the gradients themselves has also been shown to improve per-

formance, and could perhaps be likened to simulated annealing (Neelakantan

et al., 2015).

Dropout A special case of weight noise where all the incoming weights to half

the units are set to 0 during training (Srivastava et al., 2014). This can be

interpreted as training an exponential number of networks,
∏L

i=1

(
ni

ni/2

)
where

ni is the number of units in the ith layer, and averaging their predictions at

test time. Dropout can be used in RNNs, but is generally not applied to the

recurrent weights (V. Pham et al., 2014) or the same mask is applied across

time steps (Gal, 2016; Moon et al., 2015; Semeniuta, Severyn, and Barth,

2016).

Low rank approximation Instead of learning a weights matrix W ∈ Rn×m we

learn a low rank approximation in the form of W(1)W(2) with W(1) ∈ Rn×k,

W(2) ∈ Rk×m and k(n+m) < nm, forcing the network to represent the linear

transformation from n to m with fewer parameters.

1.5.2 Parameter initialization

The way in which parameters are initialized can be important. If the network

is deep and the gradient operator have a spectral radius far away from one, the

gradient signal can quickly vanish or explode; the explanation of the vanishing

gradient problem in 1.4.5 applies to deep networks as well. Glorot and Y. Bengio

(2010) analyze the variance of the gradients in a feedforward network and suggest

sampling the weights going from layer i to i + 1 from the uniform distribution

U(
√
6√

ni+ni+1
).

Saxe, James L. McClelland, and Ganguli (2014) analyze the learning dynam-

26

ics as the number of layers goes to infinity and discover that a particular class of

orthogonal weights matrices leads to stable learning dynamics. They show exper-

imentally that random orthogonal matrices too show such stable behaviour. An

intuitive explanation is that orthogonal matrices are norm-preserving. Following

our derivation for the exploding and vanishing gradient problem in Section 1.4.5

we see that this is a class of weights matrices for which the gradient norm remains

stable, assuming that our activation function’s gradient is also approximately one.

27

2

Sequence-to-sequence
learning for machine
translation

The field of natural language processing has the goal of allowing computers

to derive meaning from natural language. The field comprises many well-studied

subtasks. In this work we will consider two: language modelling and machine

translation. Language modelling is the task of assigning a probability to a text

(string). In the usual approach a string of characters is tokenized, splitting it up

into a sequence of words and punctuation (collectively referred to as tokens) using

heuristics. The set of distinct tokens E is referred to as the vocabulary or dictionary.

Our task is now to estimate p(e) where e = e1, . . . , en with ei ∈ E. This technically

is density estimation, an unsupervised learning task. However, we can apply the

probability chain rule to factorize P (e) into a series of conditional probabilities,

allowing us to use supervised models and auto-regressive architectures instead:

P (e1, . . . , en) =
n∏

i=1

P (ei | e1, . . . , ei−1)

Machine translation can abstractly be seen as conditional language modelling,

where we try to model the likelihood of a translation e in the target language

conditioned on the source (foreign) language f , P (e | f) (Philipp Koehn, Och, and

Marcu, 2003). The task of translation is then finding

e∗ = argmax
e∈E

P (e | f)

The next two sections will briefly discuss the traditional approaches to language

modelling and machine translation in statistical (empirical) natural language pro-

cessing.

28

n

C

1 2 3 4 5 6 7 8 9
0

108

Figure 2.1 – Number of distinct n-grams C of a given order n in the first 108 words of the
Common Crawl monolingual English corpus. For higher order n-grams we see that there as many
as there are words in the corpus, which means that most higher order n-grams only appear once.
Hence in practice language models do not employ n-grams above the order of ∼5.

2.1 n-gram language models

A naive approach is to estimate P (ei | e1, . . . , ei−1) by counting the number of

times the sequence (e1, . . . , ei) appears in a given training text, relative to all other

sequences (e1, . . . , ei−1, e
′
i) that appear in the text

P̂ (ei | e1, . . . , ei−1) =
C (e1, . . . , ei)

∑

e′
i
∈E C (e1, . . . , ei−1, e′i)

where C (e) is the number of times the sequence e appeared in a training set (often

referred to as a corpus). However, as the length of the sequence grows we quickly

run into problems of data sparsity (see figure 2.1). A sequence of more than ∼5

words is very unlikely to repeat itself, which is problematic. For example, if we

didn’t come across any other sentence containing the words “cat sat on the” our

model now estimates:

P̂ (mat | cat, sat, on, the) = 1

P̂ (ei | cat, sat, on, the) = 0, ∀ei ∈ E \ {mat}

Note that this is an extreme case of overfitting. n-gram models partially mitigate

this by limiting the length of the sequence considered

P̂ (ei | e1, . . . , ei−1) ≈ P̂ (ei | ei−n+1, . . . , ei−1)

29

A variety of other methods are used to handle this sparsity. Most methods

involve some combination of smoothing/discounting, interpolation and backing-off.

Discounting simply means assigning a fixed non-zero count to unseen n-grams so

that they are assigned a non-zero probability. Backing-off is a popular method that

estimates the probability of unseen n-grams by using their constituent lower order

n-grams (Katz, 1987). For example, given the two unseen 5-grams “dog sat on the

mat” and “dog sat on the moon” we estimate

P̂ (mat | dog, sat, on, the) ≈ P̂ (mat | sat, on, the)

P̂ (moon | dog, sat, on, the) ≈ P̂ (moon | sat, on, the)

where most likely P̂ (mat | sat, on, the) > P̂ (moon | sat, on, the).

The most popular smoothing approach for n-gram models is modified Kneser-

Ney smoothing (S. F. Chen and Goodman., 1996). It combines discounting with

backing-off, but when performing back off it takes into account the word histories.

To see why this is relevant consider the word “York”, which appears many times in

most English corpora as part of the bigram “New York”. When the n-gram model

needs to score the bigram “cat York” it is most likely forced to back-off to scoring

the unigrams “cat” and “York”, both of which are common words and hence the

bigram will be given a high likelihood. Modified Kneser-Ney scoring addresses this

by penalizing lower order n-grams which only appear as part of a limited set of

higher order n-grams. It was later shown that several n-grams models, such as

the interpolated Kneser-Ney model, can be derived from a Bayesian perspective

as an approximation to a Pitman-Yor process (a generalization of the Dirichlet

process) (Goldwater, Johnson, and Griffiths, 2005; Y. W. Teh, 2006).

The performance of language models is often measured using perplexity, 2−
1

|e|
log2 p̂(e).

Note that this is a simple transformation of the negative log-likelihood, − log p̂(e).

2.2 Neural language models

A shortcoming of n-gram models is that they do not take into account word

similarity. If ‘the cat sat on the mat’ appears many times in a corpus, it does not

increase the probability of ‘the dog sat on the mat’ because to the n-gram model

30

the words ‘cat’ and ‘dog’ are as distinct as ‘cat’ and ‘summer’. Neural networks

such as the one introduced in Y. Bengio, Ducharme, et al. (2003) can learn word

embeddings i.e. they will learn a distinct set of parameters which can be understood

to represent the semantics of each word. This allows neural networks to generalize

better than count-based models.

Note that in Section 1.4 we mentioned that neural networks usually take vector-

valued inputs with x ∈ Rn. We can map distinct words to Rn using a one-hot

encoding. Given a dictionary of words E = {e1, . . . , en} the one-hot mapping

f : E → Rn is defined as

f(ei) = ([i = 1], . . . , [i = n])

Note that the vector-matrix product f(ei)W is equivalent to extracting the ith

row from W ∈ Rn×m. The row corresponding to a word is called its embedding.

Note that a task like language modelling is often used as a proxy for learning these

embeddings, which can then be used for a variety of other tasks.

A neural network model that takes several words as inputs can perform a level

of semantic composition, deriving the meaning of a sentence or n-gram from the

semantics of the constituent words (represented by the embeddings) and rules that

combine them (the function learned by the network).

2.2.1 Feedforward language model

The neural net language model introduced in Y. Bengio, Ducharme, et al. (2003)

models P (ei | ei−n+1, . . . , ei−1), similar to an n-gram model. More specifically, its

parameters consist of an embedding matrixW(emb) ∈ R|E|×m, wherem is the dimen-

sion of our word embeddings, a weights matrix for the hidden layer, W(h) ∈ Rnm×h,

and a weights matrix for the softmax, W(y) ∈ Rh×|E|, and corresponding biases.

Note that the rows of the last matrix can also be considered word embeddings.

pj = ejW
(emb) for j = i− n+ 1, . . . , i− 1

p = [pi−n+1| . . . |pi−1]

h = tanh
(
W(h)p+ b(h)

)

ŷ = softmax
(
W(y)h+ b(y)

)

31

This approach showed a significant improvement over traditional n-gram models.

For computational considerations most neural net language models do not learn

embeddings for every single word, instead using a shortlist of the most frequent

ones, ESL ⊂ E. All other words are referred to as out-of-vocabulary (OOV) words,

and during training they are replaced by an unknown word token, The embedding

of this word is then learned as usual. i

An advantage of feedforward language models compared to the RNN models

discussed in the next section is that their computation can be parallelized i.e.

P̂ (ei | ei−n+1, . . . , ei−1) and P̂ (ei+1 | ei−n+2, . . . , ei) can be calculated simultane-

ously. This computational efficiency makes it possible to integrate them in the

stack search used in statistical machine translation (Vaswani, Zhao, et al., 2013)

(see Section 2.3.1). The log-likelihood given by the neural network language model

to a partial translation is added as a new feature in the log-linear model.

2.2.2 Recurrent language model

For counting n-gram models the length of the history is limited in order to

avoid data sparsity. Neural networks generalize better, which means that they

can take into account a longer history. The parameter space of the previously

discussed feedforward models scales linearly with the history size though, making

it unfeasible to consider very large contexts. Recurrent neural networks (discussed

in Section 1.4.5) on the other hand are an excellent option for language modelling,

since the number of parameters is independent of the length of the input.

Originally vanilla RNNs were introduced as language models, showing large im-

provements over n-gram models (Mikolov, 2012; Mikolov, Karafiát, et al., 2010).

Soon after LSTM versions were shown to lead to even more significant improve-

ments (Sundermeyer, Schlüter, and Ney, 2012). Although many variations have

i. Note that this approach is common (out of necessity) but should be used with caution,
because the performance of language models is only comparable on the exact same vocabu-
lary. It is easy to see that a smaller vocabulary will inflate the accuracy model since by tak-
ing P̂ (ei /∈ ESL) = P̂ (UNK) we are actually introducing an upper bound since P̂ (UNK) =
∑

ei /∈ESL
P̂ (ei) ≥ P̂ (ej) for all ej /∈ ESL. Consider the extreme case in which our dictionary has a

size of 1. For the English language this is most likely the word ‘the’ which accounts for 7% of all
word occurences. This means that the constant model P̂ (UNK) = 0.93 achieves a phenomenal
perplexity of 1.3, even though it has not actually learnt anything. The task of estimating P̂ (UNK)
also means that we are modelling whether a word’s frequency is below the threshold required to
be part of the dictionary, regardless of its semantics. This means we have unintentionally turned
our problem into a multi-task one, which could hurt performance on the task we care about.

32

been explored since, the current state of the art is still a large 2-layer LSTM model

(with thousands of hidden units) (Jozefowicz, Vinyals, et al., 2016).

2.3 Phrase-based statistical machine translation

The most succesful approach in statistical machine translation up to circa 2015

was phrase-based machine translation. Its underpinning theory begins by applying

Bayes’ theorem in order to split the problem of generating the translation e given

the source sentence f into two subproblems

argmax
e∈E

P (e | f) = argmax
e∈E

P (f | e)P (e)

The models for P (e) and P (f | e) are called the language model and translation

model respectively. The translation probability P (f | e) is difficult to estimate.

Hence the problem is traditionally approached by constructing a variety of feature

functions (mostly heuristics) and combining them in a log-linear model

argmax
e∈E

logP (f | e) ≈ argmax
e∈E

n∑

i=1

λifi (f , e)

where fi and λi are the different feature functions and their weights in the log-

linear model. The weights are then tuned to maximize the translation quality of

the system.

Most features depend on a mapping between words in the source and target

language. For example, a sentence where the German “Haus” is translated to the

English “house” should score highly. However, not each word in the source sentence

has a corresponding word in the target translation: The German “Hauskatze” cor-

responds to the English compound noun “domestic cat”. Hence a phrase-based

model (Philipp Koehn, Och, and Marcu, 2003) is used, where we try to find a map-

ping between groups of words in both languages instead (see figure 2.2). Note that

sometimes words in one language don’t have a translation in the other language,

in which case we map it to an “empty phrase”.

These alignments are learned from parallel corpora, also called bitexts, which

consist of sentence-aligned texts in two languages. This is popularly done using the

33

words that are difficult to translate. To counteract this bias the future cost of fully

developing a translation must be estimated. This is done by assuming that the

sentence will be translated without reordering. In this case finding the minimum

cost translation path can be solved efficiently using dynamic programming.

2.3.2 Translation evaluation

In practice many of the feature functions used in the log-linear model do not

output probabilities, instead outputting general numerical values such as the differ-

ence in length between the source and target sentence or the number of reorderings

performed. Our estimation of P̂ (f | e) is no longer normalized, which means we

cannot evaluate our translation system based on the likelihood, necessating the use

of other evaluation metrics.

One of the most common metrics is the Bilingual Evaluation Understudy (BLEU)

score (Papineni et al., 2002). Theoretically, the BLEU score can use multiple ref-

erence texts to reduce any bias caused by a single human translator. However, in

practice the cost of obtaining multiple high-quality human-translated texts is often

too high. A machine-translated text is a sequence of sentences (e1, . . . , em), where

each sentence ei is a sequence of words ei = e1i , . . . , e
ki
i . Define the set of n-grams

in sentence ei as

wn
i =

{(
e1i , . . . , e

n
i

)
, . . . ,

(
eki−n+1
i , . . . , ekii

)}

So w1
i is the set of all unigrams (words) in sentence ei, w

2
i the set of all bigrams,

etc. Given a human-translated reference text (e′1, . . . , e
′
m) define the set of n-grams

in each sentence e′i likewise

wn
i′ =

{(
e1i′, . . . , e

n
i′
)
, . . . ,

(

e
k′i−n+1
i′ , . . . , e

k′i
i′

)}

The BLEU score of a text (e1, . . . , em) considers the fraction of n-grams in the

machine translation that also appear in the reference translation for n = 1, . . . , 4

and takes the geometric mean of these values.

BLEU = BP ·
1
4

√
√
√
√

4∏

n=1

(∑m
i=1 |w

n
i ∩ wn′

i |
∑m

i=1 |w
n
i |

)

36

BP is the brevity penalty, which is only applied if the total length of the reference

translation is longer than the machine translation,
∑m

i=1 m
′
i >

∑m
i=1 mi, in which

case it is defined to be

BP = exp

(

1−

∑m
i=1 m

′
i

∑m
i=1 mi

)

Without the brevity penalty a translation model could inflate its BLEU score by

producing short sentences with high precision but low recall i.e. produce short

sentences with only the words that it is sure will match. A BLEU score is strictly

speaking a value between 0 and 1, but it is often reported on a scale of 0 to 100

instead. Note that the BLEU score is often 0 when calculated on a sentence level,

because correct 4-grams are uncommon.

37

3 Prologue to First Article

3.1 Article Details

Learning Phrase Representations using RNN Encoder-Decoder for

Statistical Machine Translation.

Cho, KyungHyun, Bart van Merriënboer, Çağlar Gülçehre, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. 2014. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing, Doha, Qatar, October 25–

29: 1724–1734.

Personal Contribution.

As second author my primary contributions to this paper were in the applica-

tion area of statistical machine translation (SMT) whereas the primary author,

KyungHun Cho, must be credited for the development of the encoder-decoder

model and the gated recurrent unit (GRU). I researched and conceptualized ways

of integrating generative language models into the SMT pipeline, which resulted in

the idea of scoring phrase pairs in the phrase table (the central application of the

model in this paper). I performed the majority of the experiments that involved

data preprocessing and the SMT system, Moses.

3.2 Context

Following the introduction of neural network language models in Y. Bengio,

Ducharme, et al. (2003) and recurrent neural network languages in Mikolov, Karafiát,

et al. (2010), neural networks were applied to a variety of other tasks in NLP such as

speech recognition, paraphrase detection, and reasoning. Machine translation is an

important goal in NLP, and neural network language models were quickly adopted

to score the quality of translations, either in isolation (Schwenk, Costa-Jussà, and

38

Fonollosa, 2006) or with the source sentence as additional context (Schwenk, 2012;

H.-S. Le, Allauzen, and Yvon, 2012; Zou et al., 2013). A convolutional encoder-

decoder model was used as a translation model in Kalchbrenner and Blunsom

(2013), and was evaluated by rescoring n-best translation lists.

The goal of this research was to evaluate neural network models which were not

only able to rescore translations proposed by a phrase-based system, but to generate

different translations by being more tightly integrated into the stack search.

3.3 Contributions

The contributions of this work are threefold.

Firstly, it introduced the combination of two recurrent neural networks in order

to model p(x|y) where both x and y are variable-length sequences. We refer to this

model as the RNN encoder-decoder. The use of neural networks to model variable

length inputs and outputs is presently more commonly known as ‘sequence-to-

sequence learning’.

The second contribution of this paper is a new RNN cell, which we refer to as the

gated recurrent unit (GRU) in later work. Similarly to the well-known LSTM unit,

the GRU unit helps learning long-term dependencies by sidestepping the exploding

and vanishing gradient problem. However, the GRU is computationally simpler

and hence scales more easily.

Lastly, it introduced the scoring of a phrase table as an application of this new

model and RNN cell. This deeper integration into the translation pipeline allowed

us to achieve performance improvements in machine translation beyond what is

possible by rescoring the n-best lists.

3.4 Recent Developments

This work was one in a series of closely related papers, starting with Kalch-

brenner and Blunsom (2013), which founded the field of neural machine translation

(NMT). In work that was performed in parallel to ours (Sutskever, Vinyals, and Q.

39

Le, 2014) it was shown that RNN encoder-decoder models can reach competitive

translation performance compared with phrase-based methods, given large enough

model sizes and the use of beam search.

The year following the publication of this work the first NMT system competed

in the EMNLP 2015 Workshop on Machine Translation (WMT) translation task.

By 2016 over 90% of the top translations systems in WMT16 were NMT systems.

The improvement in translation quality over legacy systems saw NMT systems

adopted quickly by industry, and Google’s Neural Machine Translation (GNMT)

system was launched before the end of 2016.

A large body of follow up work on NMT has since been produced. Direc-

tions of research include character-level translation instead of word-level transla-

tion (Chung, Cho, and Y. Bengio, 2016; Ling et al., 2015; Lee, Cho, and Hofmann,

2017), training the model and the sampling technique (beam search) jointly (Wise-

man and Rush, 2016), curriculum learning (S. Bengio et al., 2015), adressing the

quadratic memory complexity of attention models (Luong, H. Pham, and Christo-

pher D Manning, 2015), alternatives to RNN-based encoder-decoder models such

as convolutional based models (Kalchbrenner, Espeholt, et al., 2016; Gehring et al.,

2017) and feed-forward models (Vaswani, Shazeer, et al., 2017), the use of mono-

lingual data (Gulcehre et al., 2015), multilingual translation (Firat, Cho, and Y.

Bengio, 2016), and the rare word problem (Luong, Sutskever, et al., 2014; Sennrich,

Haddow, and Birch, 2015).

40

4

Learning Phrase
Representations using RNN
Encoder-Decoder for SMT

4.1 Introduction

Deep neural networks have shown great success in various applications such

as objection recognition (see, e.g., Krizhevsky, Sutskever, and Geoffrey E Hinton

(2012)) and speech recognition (see, e.g., Dahl et al. (2012)). Furthermore, many

recent works showed that neural networks can be successfully used in a number

of tasks in natural language processing (NLP). These include, but are not lim-

ited to, language modeling (Y. Bengio, Ducharme, et al., 2003), paraphrase de-

tection (Socher et al., 2011) and word embedding extraction (Mikolov, Sutskever,

et al., 2013). In the field of statistical machine translation (SMT), deep neural

networks have begun to show promising results. Schwenk (2012) summarizes a

successful usage of feedforward neural networks in the framework of phrase-based

SMT system.

Along this line of research on using neural networks for SMT, this paper focuses

on a novel neural network architecture that can be used as a part of the conventional

phrase-based SMT system. The proposed neural network architecture, which we

will refer to as an RNN Encoder-Decoder, consists of two recurrent neural networks

(RNN) that act as an encoder and a decoder pair. The encoder maps a variable-

length source sequence to a fixed-length vector, and the decoder maps the vector

representation back to a variable-length target sequence. The two networks are

trained jointly to maximize the conditional probability of the target sequence given

a source sequence. Additionally, we propose to use a rather sophisticated hidden

unit in order to improve both the memory capacity and the ease of training.

The proposed RNN Encoder-Decoder with a novel hidden unit is empirically

evaluated on the task of translating from English to French. We train the model

to learn the translation probability of an English phrase to a corresponding French

phrase. The model is then used as a part of a standard phrase-based SMT system

41

by scoring each phrase pair in the phrase table. The empirical evaluation reveals

that this approach of scoring phrase pairs with an RNN Encoder-Decoder improves

the translation performance.

We qualitatively analyze the trained RNN Encoder-Decoder by comparing its

phrase scores with those given by the existing translation model. The qualitative

analysis shows that the RNN Encoder-Decoder is better at capturing the linguistic

regularities in the phrase table, indirectly explaining the quantitative improvements

in the overall translation performance. The further analysis of the model reveals

that the RNN Encoder-Decoder learns a continuous space representation of a phrase

that preserves both the semantic and syntactic structure of the phrase.

4.2 RNN Encoder-Decoder

4.2.1 Preliminary: Recurrent Neural Networks

A recurrent neural network (RNN) is a neural network that consists of a hidden

state h and an optional output y which operates on a variable-length sequence

x = (x1, . . . , xT). At each time step t, the hidden state h〈t〉 of the RNN is updated

by

h〈t〉 = f
(
h〈t−1〉, xt

)
, (4.1)

where f is a non-linear activation function. f may be as simple as an element-wise

logistic sigmoid function and as complex as a long short-term memory (LSTM)

unit (Hochreiter and Jürgen Schmidhuber, 1997).

An RNN can learn a probability distribution over a sequence by being trained

to predict the next symbol in a sequence. In that case, the output at each timestep

t is the conditional distribution p(xt | xt−1, . . . , x1). For example, a multinomial

distribution (1-of-K coding) can be output using a softmax activation function

p(xt,j = 1 | xt−1, . . . , x1) =
exp

(
wjh〈t〉

)

∑K
j′=1 exp

(
wj′h〈t〉

) , (4.2)

42

for all possible symbols j = 1, . . . , K, where wj are the rows of a weight matrix W.

By combining these probabilities, we can compute the probability of the sequence

x using

p(x) =
T∏

t=1

p(xt | xt−1, . . . , x1). (4.3)

From this learned distribution, it is straightforward to sample a new sequence

by iteratively sampling a symbol at each time step.

4.2.2 RNN Encoder-Decoder

In this paper, we propose a novel neural network architecture that learns to

encode a variable-length sequence into a fixed-length vector representation and

to decode a given fixed-length vector representation back into a variable-length

sequence. From a probabilistic perspective, this new model is a general method

to learn the conditional distribution over a variable-length sequence conditioned

on yet another variable-length sequence, e.g. p(y1, . . . , yT ′ | x1, . . . , xT), where one

should note that the input and output sequence lengths T and T ′ may differ.

The encoder is an RNN that reads each symbol of an input sequence x sequen-

tially. As it reads each symbol, the hidden state of the RNN changes according to

Eq. (4.1). After reading the end of the sequence (marked by an end-of-sequence

symbol), the hidden state of the RNN is a summary c of the whole input sequence.

The decoder of the proposed model is another RNN which is trained to generate

the output sequence by predicting the next symbol yt given the hidden state h〈t〉.

However, unlike the RNN described in Sec. 4.2.1, both yt and h〈t〉 are also condi-

tioned on yt−1 and on the summary c of the input sequence. Hence, the hidden

state of the decoder at time t is computed by,

h〈t〉 = f
(
h〈t−1〉, yt−1, c

)
,

and similarly, the conditional distribution of the next symbol is

P (yt|yt−1, yt−2, . . . , y1, c) = g
(
h〈t〉, yt−1, c

)
.

for given activation functions f and g (the latter must produce valid probabilities,

43

4.2.3 Hidden Unit that Adaptively Remembers and For-

gets

In addition to a novel model architecture, we also propose a new type of hidden

unit (f in Eq. (4.1)) that has been motivated by the LSTM unit but is much simpler

to compute and implement. i Fig. 4.2 shows the graphical depiction of the proposed

hidden unit.

Let us describe how the activation of the j-th hidden unit is computed. First,

the reset gate rj is computed by

rj = σ
(

[Wrx]j +
[
Urh〈t−1〉

]

j

)

, (4.5)

where σ is the logistic sigmoid function, and [.]j denotes the j-th element of a

vector. x and ht−1 are the input and the previous hidden state, respectively. Wr

and Ur are weight matrices which are learned.

Similarly, the update gate zj is computed by

zj = σ
(

[Wzx]j +
[
Uzh〈t−1〉

]

j

)

. (4.6)

The actual activation of the proposed unit hj is then computed by

h
〈t〉
j = zjh

〈t−1〉
j + (1− zj)h̃

〈t〉
j , (4.7)

where

h̃
〈t〉
j = φ

(

[Wx]j +
[
U
(
r⊙ h〈t−1〉

)]

j

)

. (4.8)

In this formulation, when the reset gate is close to 0, the hidden state is forced

to ignore the previous hidden state and reset with the current input only. This

effectively allows the hidden state to drop any information that is found to be

irrelevant later in the future, thus, allowing a more compact representation.

On the other hand, the update gate controls how much information from the

previous hidden state will carry over to the current hidden state. This acts similarly

i. The LSTM unit, which has shown impressive results in several applications such as speech
recognition, has a memory cell and four gating units that adaptively control the information flow
inside the unit, compared to only two gating units in the proposed hidden unit. For details on
LSTM networks, see, e.g., Alex Graves (2012b).

45

where the first term at the right hand side is called translation model and the

latter language model (see, e.g., P. Koehn (2005)). In practice, however, most

SMT systems model log p(f | e) as a log-linear model with additional features and

corresponding weights:

log p(f | e) =
N∑

n=1

wnfn(f , e) + logZ(e), (4.9)

where fn and wn are the n-th feature and weight, respectively. Z(e) is a normaliza-

tion constant that does not depend on the weights. The weights are often optimized

to maximize the BLEU score on a development set.

In the phrase-based SMT framework introduced in Philipp Koehn, Och, and

Marcu (2003) and Marcu and Wong (2002), the translation model log p(e | f) is

factorized into the translation probabilities of matching phrases in the source and

target sentences. i These probabilities are once again considered additional features

in the log-linear model (see Eq. (4.9)) and are weighted accordingly to maximize

the BLEU score.

Since the neural net language model was proposed in Y. Bengio, Ducharme,

et al. (2003), neural networks have been used widely in SMT systems. In many

cases, neural networks have been used to rescore translation hypotheses (n-best

lists) (see, e.g., Schwenk, Costa-Jussà, and Fonollosa (2006)). Recently, however,

there has been interest in training neural networks to score the translated sentence

(or phrase pairs) using a representation of the source sentence as an additional

input. See, e.g., Schwenk (2012), H.-S. Le, Allauzen, and Yvon (2012) and Zou

et al. (2013).

4.3.1 Scoring Phrase Pairs with RNN Encoder-Decoder

Here we propose to train the RNN Encoder-Decoder (see Sec. 4.2.2) on a table

of phrase pairs and use its scores as additional features in the log-linear model in

Eq. (4.9) when tuning the SMT decoder.

When we train the RNN Encoder-Decoder, we ignore the (normalized) frequen-

cies of each phrase pair in the original corpora. This measure was taken in order

i. Without loss of generality, from here on, we refer to p(e | f) for each phrase pair as a
translation model as well.

47

(1) to reduce the computational expense of randomly selecting phrase pairs from a

large phrase table according to the normalized frequencies and (2) to ensure that

the RNN Encoder-Decoder does not simply learn to rank the phrase pairs accord-

ing to their numbers of occurrences. One underlying reason for this choice was

that the existing translation probability in the phrase table already reflects the

frequencies of the phrase pairs in the original corpus. With a fixed capacity of the

RNN Encoder-Decoder, we try to ensure that most of the capacity of the model is

focused toward learning linguistic regularities, i.e., distinguishing between plausi-

ble and implausible translations, or learning the “manifold” (region of probability

concentration) of plausible translations.

Once the RNN Encoder-Decoder is trained, we add a new score for each phrase

pair to the existing phrase table. This allows the new scores to enter into the

existing tuning algorithm with minimal additional overhead in computation.

As Schwenk points out (2012), it is possible to completely replace the existing

phrase table with the proposed RNN Encoder-Decoder. In that case, for a given

source phrase, the RNN Encoder-Decoder will need to generate a list of (good)

target phrases. This requires, however, an expensive sampling procedure to be

performed repeatedly. In this paper, thus, we only consider rescoring the phrase

pairs in the phrase table.

4.3.2 Related Approaches: Neural Networks in Machine

Translation

Before presenting the empirical results, we discuss a number of recent works

that have proposed to use neural networks in the context of SMT.

Schwenk (2012) proposed a similar approach of scoring phrase pairs. Instead

of the RNN-based neural network, he used a feedforward neural network that has

fixed-size inputs (7 words in his case, with zero-padding for shorter phrases) and

fixed-size outputs (7 words in the target language). When it is used specifically for

scoring phrases for the SMT system, the maximum phrase length is often chosen to

be small. However, as the length of phrases increases or as we apply neural networks

to other variable-length sequence data, it is important that the neural network can

handle variable-length input and output. The proposed RNN Encoder-Decoder is

well-suited for these applications.

48

Similar to Schwenk (2012), Devlin et al. (2014) proposed to use a feedforward

neural network to model a translation model, however, by predicting one word in

a target phrase at a time. They reported an impressive improvement, but their

approach still requires the maximum length of the input phrase (or context words)

to be fixed a priori.

Although it is not exactly a neural network they train, the authors of Zou et al.

(2013) proposed to learn a bilingual embedding of words/phrases. They use the

learned embedding to compute the distance between a pair of phrases which is used

as an additional score of the phrase pair in an SMT system.

In Chandar A P et al. (2014), a feedforward neural network was trained to learn

a mapping from a bag-of-words representation of an input phrase to an output

phrase. This is closely related to both the proposed RNN Encoder-Decoder and

the model proposed in Schwenk (2012), except that their input representation of a

phrase is a bag-of-words. A similar approach of using bag-of-words representations

was proposed in J. Gao et al. (2013) as well. Earlier, a similar encoder-decoder

model using two recursive neural networks was proposed in Socher et al. (2011), but

their model was restricted to a monolingual setting, i.e. the model reconstructs an

input sentence. More recently, another encoder-decoder model using an RNN was

proposed in Auli et al. (2013), where the decoder is conditioned on a representation

of either a source sentence or a source context.

One important difference between the proposed RNN Encoder-Decoder and the

approaches in Zou et al. (2013) and Chandar A P et al. (2014) is that the order of

the words in source and target phrases is taken into account. The RNN Encoder-

Decoder naturally distinguishes between sequences that have the same words but

in a different order, whereas the aforementioned approaches effectively ignore order

information.

The closest approach related to the proposed RNN Encoder-Decoder is the Re-

current Continuous Translation Model (Model 2) proposed in Kalchbrenner and

Blunsom (2013). In their paper, they proposed a similar model that consists of an

encoder and decoder. The difference with our model is that they used a convolu-

tional n-gram model (CGM) for the encoder and the hybrid of an inverse CGM

and a recurrent neural network for the decoder. They, however, evaluated their

model on rescoring the n-best list proposed by the conventional SMT system and

computing the perplexity of the gold standard translations.

49

4.4 Experiments

We evaluate our approach on the English/French translation task of theWMT’14

workshop.

4.4.1 Data and Baseline System

Large amounts of resources are available to build an English/French SMT sys-

tem in the framework of the WMT’14 translation task. The bilingual corpora

include Europarl (61M words), news commentary (5.5M), UN (421M), and two

crawled corpora of 90M and 780M words respectively. The last two corpora are

quite noisy. To train the French language model, about 712M words of crawled

newspaper material is available in addition to the target side of the bitexts. All

the word counts refer to French words after tokenization.

It is commonly acknowledged that training statistical models on the concatena-

tion of all this data does not necessarily lead to optimal performance, and results in

extremely large models which are difficult to handle. Instead, one should focus on

the most relevant subset of the data for a given task. We have done so by applying

the data selection method proposed in Moore and Lewis (2010), and its extension

to bitexts (Axelrod, He, and J. Gao, 2011). By these means we selected a subset

of 418M words out of more than 2G words for language modeling and a subset of

348M out of 850M words for training the RNN Encoder-Decoder. We used the test

set newstest2012 and 2013 for data selection and weight tuning with MERT, and

newstest2014 as our test set. Each set has more than 70 thousand words and a

single reference translation.

For training the neural networks, including the proposed RNN Encoder-Decoder,

we limited the source and target vocabulary to the most frequent 15,000 words for

both English and French. This covers approximately 93% of the dataset. All the

out-of-vocabulary words were mapped to a special token ([UNK]).

The baseline phrase-based SMT system was built using Moses with default

settings. This system achieves a BLEU score of 30.64 and 33.3 on the development

and test sets, respectively (see Table 4.1).

50

Models
BLEU

dev test

Baseline 30.64 33.30
RNN 31.20 33.87
CSLM + RNN 31.48 34.64
CSLM + RNN + WP 31.50 34.54

Table 4.1 – BLEU scores computed on the development and test sets using different combinations
of approaches. WP denotes a word penalty, where we penalizes the number of unknown words to
neural networks.

RNN Encoder-Decoder

The RNN Encoder-Decoder used in the experiment had 1000 hidden units with

the proposed gates at the encoder and at the decoder. The input matrix between

each input symbol x〈t〉 and the hidden unit is approximated with two lower-rank

matrices, and the output matrix is approximated similarly. We used rank-100

matrices, equivalent to learning an embedding of dimension 100 for each word.

The activation function used for h̃ in Eq. (4.8) is a hyperbolic tangent function.

The computation from the hidden state in the decoder to the output is implemented

as a deep neural network (Razan Pascanu et al., 2014) with a single intermediate

layer having 500 maxout units each pooling 2 inputs (Goodfellow, Warde-Farley,

et al., 2013).

All the weight parameters in the RNN Encoder-Decoder were initialized by sam-

pling from an isotropic zero-mean (white) Gaussian distribution with its standard

deviation fixed to 0.01, except for the recurrent weight parameters. For the recur-

rent weight matrices, we first sampled from a white Gaussian distribution and used

its left singular vectors matrix, following Saxe, James L. McClelland, and Ganguli

(2014).

We used Adadelta and stochastic gradient descent to train the RNN Encoder-

Decoder with hyperparameters ǫ = 10−6 and ρ = 0.95 (Zeiler, 2012). At each

update, we used 64 randomly selected phrase pairs from a phrase table (which was

created from 348M words). The model was trained for approximately three days.

Details of the architecture used in the experiments are explained in more depth

in the supplementary material.

51

Source Translation Model RNN Encoder-Decoder

at the end of the a la fin de la
ŕ la fin des années
être supprimés à la fin de la

à la fin du
à la fin des
à la fin de la

for the first time r © pour la premirëre fois
été donnés pour la première fois
été commémorée pour la pre-
mière fois

pour la première fois
pour la première fois ,
pour la première fois que

in the United
States and

? aux ?tats-Unis et
été ouvertes aux États-Unis et
été constatées aux États-Unis
et

aux Etats-Unis et
des Etats-Unis et
des États-Unis et

, as well as ?s , qu’
?s , ainsi que
?re aussi bien que

, ainsi qu’
, ainsi que
, ainsi que les

one of the most ?t ?l’ un des plus
?l’ un des plus
être retenue comme un de ses
plus

l’ un des
le
un des

(a) Long, frequent source phrases

Neural Language Model

In order to assess the effectiveness of scoring phrase pairs with the proposed

RNN Encoder-Decoder, we also tried a more traditional approach of using a neural

network for learning a target language model (CSLM) (Schwenk, 2007). Especially,

the comparison between the SMT system using CSLM and that using the proposed

approach of phrase scoring by RNN Encoder-Decoder will clarify whether the con-

tributions from multiple neural networks in different parts of the SMT system add

up or are redundant.

We trained the CSLM model on 7-grams from the target corpus. Each input

word was projected into the embedding space R512, and they were concatenated

to form a 3072-dimensional vector. The concatenated vector was fed through two

rectified layers (of size 1536 and 1024) (Glorot, Bordes, and Y. Bengio, 2011–

2014). The output layer was a simple softmax layer (see Eq. (4.2)). All the weight

parameters were initialized uniformly between −0.01 and 0.01, and the model was

trained until the validation perplexity did not improve for 10 epochs. After training,

52

Source Translation Model RNN Encoder-Decoder

, Minister of
Communications
and Transport

Secrétaire aux communications
et aux transports :
Secrétaire aux communications
et aux transports

Secrétaire aux communications
et aux transports
Secrétaire aux communications
et aux transports :

did not comply
with the

vestimentaire , ne corre-
spondaient pas à des
susmentionnée n’ était pas
conforme aux
présentées n’ étaient pas
conformes à la

n’ ont pas respecté les
n’ était pas conforme aux
n’ ont pas respecté la

parts of the
world .

© gions du monde .
régions du monde considérées .
région du monde considérée .

parties du monde .
les parties du monde .
des parties du monde .

the past few
days .

le petit texte .
cours des tout derniers jours .
les tout derniers jours .

ces derniers jours .
les derniers jours .
cours des derniers jours .

on Friday and
Saturday

vendredi et samedi à la
vendredi et samedi à
se déroulera vendredi et samedi
,

le vendredi et le samedi
le vendredi et samedi
vendredi et samedi

(b) Long, rare source phrases

Table 4.2 – The top scoring target phrases for a small set of source phrases according to the
translation model (direct translation probability) and by the RNN Encoder-Decoder. Source
phrases were randomly selected from phrases with 4 or more words. ? denotes an incomplete
(partial) character. r is a Cyrillic letter ghe.

the language model achieved a perplexity of 45.80. The validation set was a random

selection of 0.1% of the corpus. The model was used to score partial translations

during the decoding process, which generally leads to higher gains in BLEU score

than n-best list rescoring (Vaswani, Zhao, et al., 2013).

To address the computational complexity of using a CSLM in the decoder a

buffer was used to aggregate n-grams during the stack-search performed by the de-

coder. Only when the buffer is full, or a stack is about to be pruned, the n-grams are

scored by the CSLM. This allows us to perform fast matrix-matrix multiplication

on GPU using Theano (Bergstra et al., 2010; Frédéric Bastien et al., 2012).

53

Source Samples from RNN Encoder-Decoder

at the end of the à la fin de la (×11)

for the first time pour la première fois (×24)
pour la première fois que (×2)

in the United States and aux États-Unis et (×6)
dans les États-Unis et (×4)

, as well as , ainsi que
,
ainsi que
, ainsi qu’
et UNK

one of the most l’ un des plus (×9)
l’ un des (×5)
l’ une des plus (×2)

(a) Long, frequent source phrases

4.4.2 Quantitative Analysis

We tried the following combinations:

1. Baseline configuration

2. Baseline + RNN

3. Baseline + CSLM + RNN

4. Baseline + CSLM + RNN + Word penalty

The results are presented in Table 4.1. As expected, adding features computed

by neural networks consistently improves the performance over the baseline perfor-

mance.

The best performance was achieved when we used both CSLM and the phrase

scores from the RNN Encoder-Decoder. This suggests that the contributions of

the CSLM and the RNN Encoder-Decoder are not too correlated and that one can

expect better results by improving each method independently. Furthermore, we

tried penalizing the number of words that are unknown to the neural networks (i.e.

words which are not in the shortlist). We do so by simply adding the number of

unknown words as an additional feature the log-linear model in Eq. (4.9). i However,

i. To understand the effect of the penalty, consider the set of all words in the 15,000 large

54

Source Samples from RNN Encoder-Decoder

, Minister of Communi-
cations and Transport

, ministre des communications et le transport
(×13)

did not comply with the n’ tait pas conforme aux
n’ a pas respect l’ (×2)
n’ a pas respect la (×3)

parts of the world . arts du monde . (×11)
des arts du monde . (×7)

the past few days . quelques jours . (×5)
les derniers jours . (×5)
ces derniers jours . (×2)

on Friday and Saturday vendredi et samedi (×5)
le vendredi et samedi (×7)
le vendredi et le samedi (×4)

(b) Long, rare source phrases

Table 4.3 – Samples generated from the RNN Encoder-Decoder for each source phrase used in
Table 4.2. We show the top-5 target phrases out of 50 samples. They are sorted by the RNN
Encoder-Decoder scores.

in this case we were not able to achieve better performance on the test set, but

only on the development set.

4.4.3 Qualitative Analysis

In order to understand where the performance improvement comes from, we

analyze the phrase pair scores computed by the RNN Encoder-Decoder against the

shortlist, SL. All words xi /∈ SL are replaced by a special token [UNK] before being scored by
the neural networks. Hence, the conditional probability of any xi

t /∈ SL is actually given by the
model as

p (xt = [UNK] | x<t) = p (xt /∈ SL | x<t)

=
∑

xj
t /∈SL

p
(

xj
t | x<t

)

≥ p
(
xi
t | x<t

)
,

where x<t is a shorthand notation for xt−1, . . . , x1.
As a result, the probability of words not in the shortlist is always overestimated. It is possible

to address this issue by backing off to an existing model that contain non-shortlisted words
(see Schwenk (2007)) In this paper, however, we opt for introducing a word penalty instead,
which counteracts the word probability overestimation.

55

−60 −50 −40 −30 −20 −10 0
−14

−12

−10

−8

−6

−4

−2

0

RNN Scores (log)

T
M

 S
c
o
re

s
 (

lo
g
)

Figure 4.3 – The visualization of phrase pairs according to their scores (log-probabilities) by
the RNN Encoder-Decoder and the translation model.

corresponding p(f | e) from the translation model. Since the existing translation

model relies solely on the statistics of the phrase pairs in the corpus, we expect its

scores to be better estimated for the frequent phrases but badly estimated for rare

phrases. Also, as we mentioned earlier in Sec. 4.3.1, we further expect the RNN

Encoder-Decoder which was trained without any frequency information to score

the phrase pairs based rather on the linguistic regularities than on the statistics of

their occurrences in the corpus.

We focus on those pairs whose source phrase is long (more than 3 words per

source phrase) and frequent. For each such source phrase, we look at the target

phrases that have been scored high either by the translation probability p(f | e)

or by the RNN Encoder-Decoder. Similarly, we perform the same procedure with

those pairs whose source phrase is long but rare in the corpus.

Table 4.2 lists the top-3 target phrases per source phrase favored either by

the translation model or by the RNN Encoder-Decoder. The source phrases were

randomly chosen among long ones having more than 4 or 5 words.

56

Figure 4.4 – 2–D embedding of the learned word representation. The left one shows the full
embedding space, while the right one shows a zoomed-in view of one region (color-coded). For
more plots, see the supplementary material.

In most cases, the choices of the target phrases by the RNN Encoder-Decoder

are closer to actual or literal translations. We can observe that the RNN Encoder-

Decoder prefers shorter phrases in general.

Interestingly, many phrase pairs were scored similarly by both the translation

model and the RNN Encoder-Decoder, but there were as many other phrase pairs

that were scored radically different (see Fig. 4.3). This could arise from the pro-

posed approach of training the RNN Encoder-Decoder on a set of unique phrase

pairs, discouraging the RNN Encoder-Decoder from learning simply the frequencies

of the phrase pairs from the corpus, as explained earlier.

Furthermore, in Table 4.3, we show for each of the source phrases in Table 4.2,

the generated samples from the RNN Encoder-Decoder. For each source phrase,

we generated 50 samples and show the top-five phrases accordingly to their scores.

We can see that the RNN Encoder-Decoder is able to propose well-formed target

phrases without looking at the actual phrase table. Importantly, the generated

phrases do not overlap completely with the target phrases from the phrase table.

This encourages us to further investigate the possibility of replacing the whole or

a part of the phrase table with the proposed RNN Encoder-Decoder in the future.

4.4.4 Word and Phrase Representations

Since the proposed RNN Encoder-Decoder is not specifically designed only for

the task of machine translation, here we briefly look at the properties of the trained

57

Figure 4.5 – 2–D embedding of the learned phrase representation. The top left one shows the
full representation space (5000 randomly selected points), while the other three figures show the
zoomed-in view of specific regions (color-coded).

model.

It has been known for some time that continuous space language models using

neural networks are able to learn semantically meaningful embeddings (See, e.g., Y.

Bengio, Ducharme, et al. (2003) and Mikolov, Sutskever, et al. (2013)). Since the

proposed RNN Encoder-Decoder also projects to and maps back from a sequence

of words into a continuous space vector, we expect to see a similar property with

the proposed model as well.

The left plot in Fig. 4.4 shows the 2–D embedding of the words using the word

embedding matrix learned by the RNN Encoder-Decoder. The projection was done

by the recently proposed Barnes-Hut-SNE (Maaten, 2013). We can clearly see that

semantically similar words are clustered with each other (see the zoomed-in plots

in Fig. 4.4).

The proposed RNN Encoder-Decoder naturally generates a continuous-space

58

representation of a phrase. The representation (c in Fig. 4.1) in this case is a

1000-dimensional vector. Similarly to the word representations, we visualize the

representations of the phrases that consists of four or more words using the Barnes-

Hut-SNE in Fig. 4.5.

From the visualization, it is clear that the RNN Encoder-Decoder captures both

semantic and syntactic structures of the phrases. For instance, in the bottom-left

plot, most of the phrases are about the duration of time, while those phrases that

are syntactically similar are clustered together. The bottom-right plot shows the

cluster of phrases that are semantically similar (countries or regions). On the other

hand, the top-right plot shows the phrases that are syntactically similar.

4.5 Conclusion

In this paper, we proposed a new neural network architecture, called an RNN

Encoder-Decoder that is able to learn the mapping from a sequence of an arbitrary

length to another sequence, possibly from a different set, of an arbitrary length.

The proposed RNN Encoder-Decoder is able to either score a pair of sequences (in

terms of a conditional probability) or generate a target sequence given a source

sequence. Along with the new architecture, we proposed a novel hidden unit that

includes a reset gate and an update gate that adaptively control how much each

hidden unit remembers or forgets while reading/generating a sequence.

We evaluated the proposed model with the task of statistical machine transla-

tion, where we used the RNN Encoder-Decoder to score each phrase pair in the

phrase table. Qualitatively, we were able to show that the new model is able

to capture linguistic regularities in the phrase pairs well and also that the RNN

Encoder-Decoder is able to propose well-formed target phrases.

The scores by the RNN Encoder-Decoder were found to improve the overall

translation performance in terms of BLEU scores. Also, we found that the contri-

bution by the RNN Encoder-Decoder is rather orthogonal to the existing approach

of using neural networks in the SMT system, so that we can improve further the

performance by using, for instance, the RNN Encoder-Decoder and the neural net

language model together.

59

Our qualitative analysis of the trained model shows that it indeed captures the

linguistic regularities in multiple levels i.e. at the word level as well as phrase level.

This suggests that there may be more natural language related applications that

may benefit from the proposed RNN Encoder-Decoder.

The proposed architecture has large potential for further improvement and anal-

ysis. One approach that was not investigated here is to replace the whole, or a part

of the phrase table by letting the RNN Encoder-Decoder propose target phrases.

Also, noting that the proposed model is not limited to being used with written lan-

guage, it will be an important future research to apply the proposed architecture

to other applications such as speech transcription.

60

5 Prologue to Second Article

5.1 Article Details

On the Properties of Neural Machine Translation: Encoder-Decoder

Approaches.

Cho, KyungHyun, Bart van Merriënboer, Dzimitry Bahdanau, and Yoshua Ben-

gio. 2014. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and

Structure in Statistical Translation, Doha, Qatar, October 25, 2014: 103–111.

Personal Contribution.

As second author my primary contribution was performing the experiments

(data preprocessing, model training) and analysis looking at the properties of NMT

models, whereas the primary author developed the new gated recursive convolu-

tional neural network presented in this paper.

5.2 Context

Soon after the publication of the first article, Sutskever, Vinyals, and Q. Le

(2014) introduced a larger-scale model which was used to translate full sentences

instead of phrases. This second article seeks to analyze encoder-decoder models

that are trained on full sentences in more detail: How does the fixed-size sentence

representation in NMT models affect translation quality for long sentences? How

does the NMTmodel handle rare and out-of-vocabulary words? By gaining a deeper

understanding of the behavior of NMT models, and comparing this behavior to

traditional phrase-based models, the goal is to identify future directions of research

on NMT models.

61

5.3 Contributions

This work helped improve the understanding of NMT models and identified

several directions of research in order to improve their performance. In particular,

it made explicit the difficulty that fixed-size sentence representations pose when

dealing with long sentences, as well as the inability of NMT models to effectively

handle rare or out-of-vocabulary words.

This work also introduced and explored the use of a recursive neural network

for machine translation in order to compare its performance to the recurrent ap-

proaches.

5.4 Recent Developments

In follow-up work from the same year (Bahdanau, Cho, and Y. Bengio, 2015)

an alignment model is introduced that helps overcome the information bottleneck

present in the encoder-decoder model. A larger body of research has since focused

on addressing the rare word problem in NMT e.g. through the use of subword

tokens (Sennrich, Haddow, and Birch, 2015), backing off to phrase tables (Luong,

Sutskever, et al., 2014), and character-level models (Ling et al., 2015).

62

6

On the Properties of Neural
Machine Translation:
Encoder–Decoder
Approaches

6.1 Introduction

A new approach for statistical machine translation based purely on neural net-

works has recently been proposed (Kalchbrenner and Blunsom, 2013; Sutskever,

Vinyals, and Q. Le, 2014). This new approach, which we refer to as neural ma-

chine translation, is inspired by the recent trend of deep representational learning.

All the neural network models used in Sutskever, Vinyals, and Q. Le (2014) and

Cho et al. (2014) consist of an encoder and a decoder. The encoder extracts a fixed-

length vector representation from a variable-length input sentence, and from this

representation the decoder generates a correct, variable-length target translation.

The emergence of the neural machine translation is highly significant, both

practically and theoretically. Neural machine translation models require only a

fraction of the memory needed by traditional statistical machine translation (SMT)

models. The models we trained for this paper require only 500MB of memory

in total. This stands in stark contrast with existing SMT systems, which often

require tens of gigabytes of memory. This makes the neural machine translation

appealing in practice. Furthermore, unlike conventional translation systems, each

and every component of the neural translation model is trained jointly to maximize

the translation performance.

As this approach is relatively new, there has not been much work on analyzing

the properties and behavior of these models. For instance: What are the properties

of sentences on which this approach performs better? How does the choice of

source/target vocabulary affect the performance? In which cases does the neural

machine translation fail?

It is crucial to understand the properties and behavior of this new neural ma-

chine translation approach in order to determine future research directions. Also,

understanding the weaknesses and strengths of neural machine translation might

63

lead to better ways of integrating SMT and neural machine translation systems.

In this paper, we analyze two neural machine translation models. One of them

is the RNN Encoder-Decoder that was proposed recently in Cho et al. (2014).

The other model replaces the encoder in the RNN Encoder-Decoder model with a

novel neural network, which we call a gated recursive convolutional neural network

(grConv). We evaluate these two models on the task of translation from French to

English.

Our analysis shows that the performance of the neural machine translation

model degrades quickly as the length of a source sentence increases. Furthermore,

we find that the vocabulary size has a high impact on the translation performance.

Nonetheless, qualitatively we find that the both models are able to generate correct

translations most of the time. Furthermore, the newly proposed grConv model is

able to learn, without supervision, a kind of syntactic structure over the source

language.

6.2 Neural Networks for Variable-Length

Sequences

In this section, we describe two types of neural networks that are able to process

variable-length sequences. These are the recurrent neural network and the proposed

gated recursive convolutional neural network.

6.2.1 Recurrent Neural Network with Gated Hidden Neu-

rons

A recurrent neural network (RNN, Fig. 6.1 (a)) works on a variable-length

sequence x = (x1,x2, . . . ,xT) by maintaining a hidden state h over time. At each

timestep t, the hidden state h(t) is updated by

h(t) = f
(

h(t−1),xt

)

,

64

The new activation h̃
(t)
j is computed as usual:

h̃
(t)
j = φ

(

Wlh
(t)
j−1 +Wrh

(t)
j

)

,

where φ is an element-wise nonlinearity.

The gating coefficients ω’s are computed by






ωc

ωl

ωr




 =

1

Z
exp

(

Glh
(t)
j−1 +Grh

(t)
j

)

,

where Gl,Gr ∈ R3×d and

Z =
3∑

k=1

[

exp
(

Glh
(t)
j−1 +Grh

(t)
j

)]

k
.

According to this activation, one can think of the activation of a single node at

recursion level t as a choice between either a new activation computed from both

left and right children, the activation from the left child, or the activation from the

right child. This choice allows the overall structure of the recursive convolution

to change adaptively with respect to an input sample. See Fig. 6.2 (b) for an

illustration.

In this respect, we may even consider the proposed grConv as doing a kind of

unsupervised parsing. If we consider the case where the gating unit makes a hard

decision, i.e., ω follows an 1-of-K coding, it is easy to see that the network adapts

to the input and forms a tree-like structure (See Fig. 6.2 (c-d)). However, we leave

the further investigation of the structure learned by this model for future research.

6.3 Purely Neural Machine Translation

6.3.1 Encoder-Decoder Approach

The task of translation can be understood from the perspective of machine

learning as learning the conditional distribution p(f | e) of a target sentence (trans-

67

this approach to provide an additional score for the existing phrase table.

In this paper, we concentrate on analyzing the direct translation performance,

as in Sutskever, Vinyals, and Q. Le (2014), with two model configurations. In both

models, we use an RNN with the gated hidden unit (Cho et al., 2014), as this is

one of the only options that does not require a non-trivial way to determine the

target length. The first model will use the same RNN with the gated hidden unit

as an encoder, as in Cho et al. (2014), and the second one will use the proposed

gated recursive convolutional neural network (grConv). We aim to understand

the inductive bias of the encoder-decoder approach on the translation performance

measured by BLEU.

6.4 Experiment Settings

6.4.1 Dataset

We evaluate the encoder-decoder models on the task of English-to-French trans-

lation. We use the bilingual, parallel corpus which is a set of 348M selected by the

method in Axelrod, He, and J. Gao (2011) from a combination of Europarl (61M

words), news commentary (5.5M), UN (421M) and two crawled corpora of 90M

and 780M words respectively. i We did not use separate monolingual data. The

performance of the neural machien translation models was measured on the news-

test2012, news-test2013 and news-test2014 sets (3̃000 lines each). When comparing

to the SMT system, we use news-test2012 and news-test2013 as our development

set for tuning the SMT system, and news-test2014 as our test set.

Among all the sentence pairs in the prepared parallel corpus, for reasons of

computational efficiency we only use the pairs where both English and French

sentences are at most 30 words long to train neural networks. Furthermore, we use

only the 30,000 most frequent words for both English and French. All the other

rare words are considered unknown and are mapped to a special token ([UNK]).

i. All the data can be downloaded from http://www-lium.univ-lemans.fr/~schwenk/cslm_

joint_paper/.

69

6.4.2 Models

We train two models: The RNN Encoder-Decoder (RNNenc)(Cho et al., 2014)

and the newly proposed gated recursive convolutional neural network (grConv).

Note that both models use an RNN with gated hidden units as a decoder (see

Sec. 6.2.1).

We use minibatch stochastic gradient descent with AdaDelta (Zeiler, 2012) to

train our two models. We initialize the square weight matrix (transition matrix)

as an orthogonal matrix with its spectral radius set to 1 in the case of the RNNenc

and 0.4 in the case of the grConv. tanh and a rectifier (max(0, x)) are used as the

element-wise nonlinear functions for the RNNenc and grConv respectively.

The grConv has 2000 hidden neurons, whereas the RNNenc has 1000 hidden

neurons. The word embeddings are 620-dimensional in both cases. i Both models

were trained for approximately 110 hours, which is equivalent to 296,144 updates

and 846,322 updates for the grConv and RNNenc, respectively.

Model Development Test

RNNenc 13.15 13.92
grConv 9.97 9.97
Moses 30.64 33.30

Moses+RNNenc⋆ 31.48 34.64
Moses+LSTM◦ 32 35.65

No UNK

RNNenc 21.01 23.45
grConv 17.19 18.22
Moses 32.77 35.63

(a) All lengths

Model Development Test

RNNenc 19.12 20.99
grConv 16.60 17.50
Moses 28.92 32.00

No UNK

RNNenc 24.73 27.03
grConv 21.74 22.94
Moses 32.20 35.40

(b) 10–20 words

Table 6.1 – BLEU scores computed on the development and test sets. The top three rows show
the scores on all the sentences, and the bottom three rows on the sentences having no unknown
words. (⋆) The result reported in Cho et al. (2014) where the RNNenc was used to score phrase
pairs in the phrase table. (◦) The result reported in Sutskever, Vinyals, and Q. Le (2014) where
an encoder-decoder with LSTM units was used to re-rank the n-best list generated by Moses.

i. In all cases, we train the whole network including the word embedding matrix. The em-
bedding dimensionality was chosen to be quite large, as the preliminary experiments with 155-
dimensional embeddings showed rather poor performance.

70

Source She explained her new position of foreign affairs and security policy representative
as a reply to a question: “Who is the European Union? Which phone number should I
call?”; i.e. as an important step to unification and better clarity of Union’s policy towards
countries such as China or India.

Reference Elle a expliqué le nouveau poste de la Haute représentante pour les affaires
étrangères et la politique de défense dans le cadre d’une réponse à la question: “Qui est
qui à l’Union européenne?” “A quel numéro de téléphone dois-je appeler?”, donc comme
un pas important vers l’unicité et une plus grande lisibilité de la politique de l’Union face
aux états, comme est la Chine ou bien l’Inde.

RNNenc Elle a décrit sa position en matière de politique étrangère et de sécurité ainsi
que la politique de l’Union européenne en matière de gouvernance et de démocratie.

grConv Elle a expliqué sa nouvelle politique étrangère et de sécurité en réponse à un
certain nombre de questions: “Qu’est-ce que l’Union européenne?”.

Moses Elle a expliqué son nouveau poste des affaires étrangères et la politique de sécurité
représentant en réponse à une question: “Qui est l’Union européenne? Quel numéro de
téléphone dois-je appeler?”; c’est comme une étape importante de l’unification et une
meilleure lisibilité de la politique de l’Union à des pays comme la Chine ou l’Inde.

Source The investigation should be complete by the end of the year when the findings will
be presented to Deutsche Bank’s board of managing directors — with recommendations
for action.

Reference L’examen doit être terminé d’ici la fin de l’année, ensuite les résultats du
conseil d’administration de la Deutsche Bank doivent être présentés — avec recomman-
dation, d’ habitude.

RNNEnc L’étude devrait être terminée à la fin de l’ année, lorsque les conclusions seront
présentées au conseil d’administration de la Deutsche Bank, conseil d’association avec des
mesures.

grConv L’enquête devrait être terminée à la fin de l’année où les conclusions seront
présentées par le conseil d’administration de la BCE à la direction des recommandations.

Moses L’enquête devrait être terminé d’ici la fin de l’année lorsque les résultats seront
présentés à la Deutsche Bank conseil des directeurs généraux — avec des recommanda-
tions.

72

Source And there are thorny mechanical questions that must be resolved during that
time, like how to balance the state’s mandate of “adequate access” to licensed marijuana
with its prohibitions on cannabis businesses within 1,000 feet of a school, park, playground
or child care center.

Reference Pendant ce temps, des questions pratiques restent en suspens: comment
équilibrer le mandat de l’état qui garantit un accès approprié à la marijuana agréée et
interdit l’installation de commerces de vente de cannabis dans un rayon de 30 km autour
d’une école, d’un parc, d’un terrain de jeu ou d’une crèche.

RNNEnc Il y a des questions préventives qui se posent quant à l’équilibre des droits de
l’enfant dans les limites d’une entreprise de collecte de sang.

grConv De façon générale, il y a des raisons de sécurité pour que les entreprises aient
accès à des milliers de centres de pêche, d’eau ou de recherche.

Moses Et il y a des problèmes mécaniques complexes qui doivent être résolues au cours
de cette période, comme la manière d’équilibrer le mandat de “l’accès adéquat” permis
de marijuana avec l’interdiction du cannabis aux entreprises de 1000 pieds d’une école de
jeu ou de parc, le service de garde.

(a) Long Sentences

6.5 Results and Analysis

6.5.1 Quantitative Analysis

In this paper, we are interested in the properties of the neural machine trans-

lation models. Specifically, the translation quality with respect to the length of

source and/or target sentences and with respect to the number of words unknown

to the model in each source/target sentence.

First, we look at how the BLEU score, reflecting the translation performance,

changes with respect to the length of the sentences (see Fig. 6.4). Clearly, both

models perform relatively well on short sentences, but suffer significantly as the

length of the sentences increases.

We observe a similar trend with the number of unknown words, in Fig. 6.4 (c).

As expected, the performance degrades rapidly as the number of unknown words

increases. This suggests that it will be an important challenge to increase the size of

vocabularies used by the neural machine translation system in the future. Although

we only present the result with the RNNenc, we observed similar behavior for the

grConv as well.

73

Source There is still no agreement as to which election rules to follow.

Reference Toutefois il n’existe toujours pas d’accord selon quel règlement de vote il faut
procéder.

RNNEnc Il n’y a pas encore d’accord sur les règles électorales.

grConv Il n’y a pas encore d’accord sur la question des élections à suivre.

Moses Il y a toujours pas d’accord sur l’élection des règles à suivre.

Source Many of these ideas may have been creative, but they didn’t necessarily work.

Reference Beaucoup de ces idées étaient créatives mais elles n’ont pas forcément fonc-
tionné.

RNNEnc Bon nombre de ces idées ont peut-être été créatrices, mais elles ne
s’appliquaient pas nécessairement.

grConv Beaucoup de ces idées peuvent être créatives, mais elles n’ont pas fonctionné.

Moses Beaucoup de ces idées ont pu être créatif, mais ils n’ont pas nécessairement.

Source There is a lot of consensus between the Left and the Right on this subject.

Reference C’est qu’il y a sur ce sujet un assez large consensus entre gauche et droite.

RNNEnc Il existe beaucoup de consensus entre la gauche et le droit à la question.

grConv Il y a un consensus entre la gauche et le droit sur cette question.

Moses Il y a beaucoup de consensus entre la gauche et la droite sur ce sujet.

Source According to them, one can find any weapon at a low price right now.

Reference Selon eux, on peut trouver aujourd’hui à Moscou n’importe quelle arme pour
un prix raisonnable.

RNNEnc Selon eux, on peut se trouver de l’arme à un prix trop bas.

grConv En tout cas, ils peuvent trouver une arme à un prix très bas à la fois.

Moses Selon eux, on trouve une arme à bas prix pour l’instant.

(b) Short Sentences

Table 6.2 – The sample translations along with the source sentences and the reference transla-
tions.

74

In Table 6.1 (a), we present the translation performances obtained using the

two models along with the baseline phrase-based SMT system. i Clearly the phrase-

based SMT system still shows the superior performance over the proposed purely

neural machine translation system, but we can see that under certain conditions (no

unknown words in both source and reference sentences), the difference diminishes

quite significantly. Furthermore, if we consider only short sentences (10–20 words

per sentence), the difference further decreases (see Table 6.1 (b)).

Furthermore, it is possible to use the neural machine translation models together

with the existing phrase-based system, which was found recently in Cho et al.

(2014) and Sutskever, Vinyals, and Q. Le (2014) to improve the overall translation

performance (see Table 6.1 (a)).

This analysis suggests that that the current neural translation approach has its

weakness in handling long sentences. The most obvious explanatory hypothesis is

that the fixed-length vector representation does not have enough capacity to encode

a long sentence with complicated structure and meaning. In order to encode a

variable-length sequence, a neural network may “sacrifice” some of the important

topics in the input sentence in order to remember others.

This is in stark contrast to the conventional phrase-based machine translation

system (Philipp Koehn, Och, and Marcu, 2003). As we can see from Fig. 6.5, the

conventional system trained on the same dataset (with additional monolingual data

for the language model) tends to get a higher BLEU score on longer sentences.

In fact, if we limit the lengths of both the source sentence and the reference

translation to be between 10 and 20 words and use only the sentences with no

unknown words, the BLEU scores on the test set are 27.81 and 33.08 for the

RNNenc and Moses, respectively.

Note that we observed a similar trend even when we used sentences of up to 50

words to train these models.

6.5.2 Qualitative Analysis

Although BLEU score is used as a de-facto standard metric for evaluating the

performance of a machine translation system, it is not the perfect metric (see,

e.g., Song, Cohn, and Specia (2013) and C. Liu, Dahlmeier, and Ng (2011)). Hence,

i. We used Moses as a baseline, trained with additional monolingual data for a 4-gram language
model.

75

Translations NLL

Obama est le Président des États-Unis. 2.06

Obama est le président des États-Unis. 2.09
Obama est le président des Etats-Unis. 2.61
Obama est le Président des Etats-Unis. 3.33

Barack Obama est le président des États-Unis. 4.41

Barack Obama est le Président des États-Unis. 4.48
Barack Obama est le président des Etats-Unis. 4.54

L’Obama est le Président des États-Unis. 4.59

L’Obama est le président des États-Unis. 4.67

Obama est président du Congrès des États-Unis. 5.09

(b) The top-10 translations generated by the grConv. The numbers given are the negative log-probability.

Figure 6.6

6.6 Conclusion and Discussion

In this paper, we have investigated the property of a recently introduced family

of machine translation system based purely on neural networks. We focused on

evaluating an encoder-decoder approach, proposed recently in Kalchbrenner and

Blunsom (2013), Cho et al. (2014), and Sutskever, Vinyals, and Q. Le (2014), on

the task of sentence-to-sentence translation. Among many possible encoder-decoder

models we specifically chose two models that differ in the choice of the encoder;

(1) RNN with gated hidden units and (2) the newly proposed gated recursive

convolutional neural network.

After training those two models on pairs of English and French sentences, we

analyzed their performance using BLEU scores with respect to the lengths of sen-

tences and the existence of unknown/rare words in sentences. Our analysis revealed

that the performance of the neural machine translation suffers significantly from

the length of sentences. However, qualitatively, we found that the both models are

able to generate correct translations very well.

These analyses suggest a number of future research directions in machine trans-

lation purely based on neural networks.

Firstly, it is important to find a way to scale up training a neural network both

in terms of computation and memory so that much larger vocabularies for both

source and target languages can be used. Especially, when it comes to languages

78

with rich morphology, we may be required to come up with a radically different

approach in dealing with words.

Secondly, more research is needed to prevent the neural machine translation sys-

tem from underperforming with long sentences. Lastly, we need to explore different

neural architectures, especially for the decoder. Despite the radical difference in

the architecture between RNN and grConv which were used as an encoder, both

models suffer from the curse of sentence length. This suggests that it may be due

to the lack of representational power in the decoder. Further investigation and

research are required.

In addition to the property of a general neural machine translation system, we

observed one interesting property of the proposed gated recursive convolutional

neural network (grConv). The grConv was found to mimic the grammatical struc-

ture of an input sentence without any supervision on syntactic structure of lan-

guage. We believe this property makes it appropriate for natural language process-

ing applications other than machine translation.

79

7 Prologue to Third Article

7.1 Article Details

Multi-scale sequence modeling with a learned dictionary.

Van Merriënboer, Bart, Amartya Sanyal, Hugo Larochelle, and Yoshua Ben-

gio. 2017. Paper presented at the Workshop on Machine Learning in Speech and

Language Processing, Sydney, Australia, August 11, 2017.

Personal Contribution.

As primary author I was the main contributor to the conceptualization of this

paper, its experiments, and its writing.

7.2 Context

The neural machine translation (NMT) models proposed in the previous two

articles operate on sequences of words in both the encoder and decoder. However,

unlike the traditional phrase-based machine translation approach, the runtime of

NMT models grows linearly with the size of their input and output vocabularies.

Moreover, these models are unable to deal with a long tail of out-of-vocabulary

(OOV) words. These concerns revived an interest in character-level language mod-

elling (Chung, Cho, and Y. Bengio, 2016; Kim et al., 2015) and subword-level

language modelling (Sennrich, Haddow, and Birch, 2015). Since character-level

counterparts are generally less performant and harder to train than their word-

level equivalents (Sutskever, Martens, and Geoffrey E. Hinton, 2011) the subword-

level language modelling approach, where rare words are split into smaller subword

units, was adopted in large-scale production systems such as Google’s GNMT sys-

tem (Yonghui Wu et al., 2016).

80

7.3 Contributions

The work in this article was inspired by the subword-level machine translation

approach, which uses a simple form of non-parametric data compression called byte

pair encoding (BPE) to determine subword tokens. In this work we extend this

semi-parametric approach, using a BPE-variant over the entire sentence for the

application of language modelling. Further, although BPE compression outputs a

single segmentation of a string, there are in reality many valid segmentations. In

this work, we take a more principled approach and marginalize over all possible

segmentations. This requires the implementation of custom GPU kernels which

are able to handle the irregular access patterns presented by this model.

7.4 Recent Developments

The work in Buckman and Neubig (2018) was published soon after this work-

shop paper and introduces a nearly identical model. To avoid the need for writing

custom GPU kernels able to handle irregular data access, the authors restrict them-

selves to regular lattices, which means that all character n-grams up to a certain

order are part of the dictionary. This work considers a wider range of strategies

for averaging incoming states, and the model is evaluated on several languages.

Encouraging is that their research shows similar results on English (a small im-

provement over the baseline) but much more significant improvements on Chinese.

81

8

Multiscale sequence
modeling with a learned
dictionary

8.1 Introduction

Sequence modeling is the task of learning a probability distribution over a set

of finite sequences. We consider sequences of elements drawn from a finite set of

symbols, st ∈ Σ. In the context of language modeling this is the probability mass

function of a set of strings given some alphabet of characters.

p (s1 . . . sn) , st ∈ Σ (8.1)

Most approaches in language modeling follow Shannon (1948) and model sequences

as acyclic Markov chains, exploiting the fact that natural languages have strong

temporal dependencies (see figure 8.1).

p (s1 . . . sn) ≈
n∏

t=1

p (st | s1 . . . st−1) , st ∈ Σ (8.2)

ε H He Hel Hell Hello Hello·

G

Hf

Hek

Hem

Helk

Hellp

H e l l o ·

G

f

k

m

k

p

Figure 8.1 – Diagrammatic representation of a character-level language model as a Markov
chain. The probability of the string “Hello” is the probability of reaching the absorbing state
“Hello·” starting from the empty string (ε), where · is a special end-of-string (EOS) token. Each
state transition is analogous to concatenating a token from the dictionary Σ to the state.

82

Recurrent neural networks (RNNs) can be used to efficiently model these Markov

chains (Mikolov, 2012; Mikolov, Karafiát, et al., 2010). The hidden state of the

network can encode the subsequence that is conditioned on (s1 . . . st−1) using con-

stant memory. Let xt be an embedding of symbol st, then an RNN model is of the

form

ht = f(xt,ht−1) (8.3)

yt = g(ht) (8.4)

Typically the function f is a long-short term memory (LSTM) unit or gated

recurrent unit (GRU), and g is a linear transformation followed by a softmax acti-

vation.

8.1.1 Tokenization

Natural language is naturally represented as a sequence of characters (Sutskever,

Martens, and Geoffrey E. Hinton, 2011; Mikolov, 2012; Alex Graves, 2013). How-

ever, in practice text is usually ‘tokenized’ and modeled as a sequence of words

instead of characters (see figure 8.2). Word-level models display superior per-

formance to character-level models, which we argue can be explained by several

factors.

ε Hello Hello·

Hallo

Hi

Hello
world

Hello
there

Hello ·

Hallo

Hi

world

there

Figure 8.2 – A word-level language model, requiring fewer transitions in order to reach the
state “Hello·”. The state space is significantly reduced, which means that many strings cannot be
modeled.

83

Training difficulties

Tokenization reduces the length of the sequences to model. Learning long-

term dependencies with RNNs can be difficult (Razvan Pascanu, Mikolov, and Y.

Bengio, 2013; Y. Bengio, Simard, and Frasconi, 1994; Hochreiter, 1991), and in

natural language dependencies such as agreement in number or case can span tens

or even hundreds of characters.

Furthermore, the softmax generally used in neural networks can never assign a

probability of exactly 1 to the correct token. The product of many probabilities

less than 1 in equation 8.2 causes the probability of a sequence to decay quickly as

it grows longer. To counteract this behaviour a network will quickly learn to fully

saturate the softmax. However, this slows down learning (LeCun, Bottou, et al.,

1998).

Compositionality

In the context of natural language it can be argued that character-level and

word-level language modeling are fundamentally different.

Word-level models rely on the principle of compositionality (Szabó, 2017) and

can learn to represent the meaning of a sentence by combining the semantic repre-

sentations of its constituent words (J. Mitchell and Lapata, 2008). This mapping

is arguably ‘smooth’: If words have similar semantics, the sentences they form are

likely to have a similar meaning and representation as well.

A character-level model performs a second, different task: Mapping a sequence

of characters to the semantic representation of a morpheme. The principle of

compositionality does not apply in this case. It is a lookup operation which is

entirely non-linear: ‘the’, ‘then’ and ‘they’ are entirely unrelated. It is possible

that character-level RNN models perform worse than word-level models because

RNNs are ill-suited to perform this lookup operation. It is feasible that other

application domains have a similar hierarchical structure in their sequential data

e.g. sequence motifs in genetics.

84

8.2 Multi-scale sequence modeling

In typical sequence models, we model the likelihood of the next symbol individ-

ually. A single symbol (e.g. a character) is selected from a dictionary of mutually

exclusive options. In this paper we propose a more general setting in which at each

step we make predictions over multi-symbol tokens, potentially multiple of which

are correct if they share a prefix (see figure 8.3).

ε H He Hel Hell Hello Hello·

Hi Help Hellos

H e l l

Hell

o

o·

lo

·

Hi
i p s

Figure 8.3 – The multi-scale model allows multiple outgoing transitions, maintaining the flex-
ibility of a character-level model while incorporating many of the benefits of word-level models.
Any path through the Markov chain from ε to Hello· is a segmentation of the string Hello using
the tokens in the dictionary. The probability of the state Hello· is the sum of the likelihood of
each segmentation. When modeled using an RNN, each state corresponds to a hidden state ht,
and each arrow corresponds to the application of the transition function f which takes inputs ht

and token embedding xi.

Formally, given a set of symbols Σ, consider a dictionary of multi-symbol tokens

T , where Σ ⊂ T . (This condition guarantees that the space of sequences we can

model is the same as for typical symbol-level models.) Let |ti| denote the number

of symbols in token ti. The Markov chain (see figure 8.3) for a sequence s1 . . . sn,

st ∈ Σ, can be modeled using an RNN as follows:

ht =
1

|Tt|

∑

Tt

f(xi,ht−|ti|), (8.5)

Tt = {ti : ti ∈ T, ti = st−|ti|+1 . . . st} (8.6)

yt = g(ht) (8.7)

where xi is an embedding of token ti. Note that a typical RNN model (e.g. a

character-level language model) is a special case of this model where T = Σ.

The likelihood of this model is tractable and can be easily calculated using

85

dynamic programming. We can optimize this likelihood directly using gradient

descent. This is similar to the forward-backward algorithm used in hidden Markov

models and connectionist temporal classification (CTC) (A. Graves et al., 2006).

p (s1 . . . st) =
∑

Tt

p
(
ti|s1 . . . st−|ti|

)
p
(
s1 . . . st−|ti|

)
(8.8)

This approach can be used in general for the modeling of Markov chains without

cycles in the case of a finite set of transitions (even if the state space is infinite).

The recurrent neural network predicts the transition probabilities over this finite

set of transitions for each state using a representation of the state and a learned

representation of each transition. We believe this is a novel approach to modelling

acyclical Markov chains using RNNs.

In this work we consider a multiscale generalization of LSTM networks. For

transition functions, f , with multiple operations we can perform the averaging

at any point. We choose to average the cell states and output gates. Note that

performing the averaging earlier on reduces the amount of computation.









fi

ii

oi

gi









= Whht−|ti| +Wxxi + b

ct =
1

N

N∑

i=1

(
σ(fi)⊙ ct−|ti| + σ(ii)⊙ tanh(gi)

)

ht = σ(
1

N

N∑

i=1

oi)⊙ tanh(ct)

8.2.1 Model characteristics

The computational complexity of a regular RNN model grows as a function of

the sequence length, O(T). The multiscale model’s complexity instead grows as a

function of the number of arcs. The number of arcs in a sequence is theoretically

bounded by T (T+1)
2

, but in practice it grows sublinearly with the size of the dictio-

nary. For example, for a dictionary with 16384 tokens we find an average of 2.7

arcs per time step for the text8 dataset.

86

It should be noted that the computation of arcs can be entirely parallelized,

so on a parallel computer (e.g. a GPU) the span (depth) of the computation is

equivalent to that of a normal RNN, O(T).

During training time the memory usage of an RNN model grows as O(T) be-

cause of the need to store the hidden states for the backward propagation. The

multiscale model’s memory usage grows the same and does not depend on the num-

ber of arcs, since the averages (see formula 8.5) can be calculated by accumulating

values in-place. The need to keep token embeddings in memory means that the

memory usage grows as O(T +D) where D is the dictionary size.

In conclusion, the multiscale model is both computationally and memory effi-

cient. On a parallel architecture it has a the same computational complexity as a

regular RNN and only requires a small amount of extra memory in order to store

the token embeddings.

8.2.2 Dictionary learning

The formulation of our multi-scale model requires the construction of a dic-

tionary of multi-symbol tokens. Heuristically speaking, we would simplify our

modeling problem if we construct a dictionary which allows each sequence to be

segmented into a short sequence of tokens, minimizing the shortest path length

through the graph (see figure 8.3).

In natural language processing, word-level models usually construct a dictionary

by splitting strings on whitespace and punctuation. The dictionary then consists

of the N most frequent tokens, with the rest of the words replaced with a special

out-of-vocabulary (OOV) token. Note that many other application domains (e.g.

modeling DNA sequences) don’t have any straightforward heuristics to tokenize

the data.

Even in language modeling this type of tokenization is problematic for a vari-

ety of reasons. The number of words in natural language is effectively infinite for

synthetic languages, which means there will always be OOV tokens. Furthermore,

it is arguably arbitrary from a linguistic perspective. Whereas English is a rather

isolating language, with ∼1.67 morphemes per word (Greenberg, 1960) on average,

synthetic languages such as Turkish or Eskimo have ∼2.33 and ∼3.70 morphemes

per word respectively. For example, the Dutch word meervoudigepersoonlijkhei-

87

dsstoornis (multiple personality disorder) contains 10 morphemes. For these types

of languages, we might want to consider a tokenization that contains subword units.

On the other hand, for highly isolating languages we might want to model several

words as a single token e.g. chúng tôi, Vietnamese for ‘we’.

8.2.3 Dictionary coders

Instead of arbitrarily splitting on whitespace, a more principled approach is to

to ‘learn’ the tokens to be modeled. Here we propose an approach which is grounded

in text compression and inspired by the byte-pair encoding (BPE) algorithm. BPE

has been used in the domain of neural machine translation to learn subword units,

reducing the number of OOV tokens (Sennrich, Haddow, and Birch, 2015).

Dictionary coder algorithms like BPE learn dictionaries of tokens with the pur-

pose of representing strings with as few tokens as possible, increasing the level of

compression. This reduces the effective depth of the unrolled RNN network (i.e.

the shortest path through the graph in figure 8.3), which is a reasonable learning

objective for our dictionary.

Algorithm 3 Adapted byte-pair encoding algorithm

Require: Tmax, T = {s1, . . . , sm}, s = si1 , . . . , sin ⊲ Initial dictionary T = Σ,
string s

while true do

j, k ←[argmaxj,k paircount(sj, sk)
snew ←[[sj|sk], T ←[T

⋃
{snew}

if |T | = Tmax then

break

end if

Substitute each occurrence of sj, sk in s with snew
for all l ∈ {l : count(sl) < count(snew)} do

T ← [T \ {sl}
Substitute each occurrence of sl in s with so, sp s.t. [so|sp] = sl

end for

end while

return T

Regular BPE starts with a dictionary of characters and consecutively replaces

the most frequent pairs of tokens with a single new token, until a given dictionary

size Tmax is reached. We extend the algorithm by reversing the merger of two tokens

88

whenever a token becomes too rare. As a motivating example consider the string

abcabcabc. . .. In this case a and b are merged into ab, followed by a merger between

ab and c into abc. Our extension makes sure that the token ab, which now occurs

zero times, is removed from the dictionary. This removal prevents us from wasting

space in the dictionary on rare tokens.

Our implementation of this algorithm uses a bit array of the size of the input

data, where each element signifies whether the corresponding character is merged

with the subsequent character. We maintain two d-ary heaps of tokens and token

pairs sorted by their frequency. The algorithm proceeds by repeatedly popping

the most common pair from the heap and searching the text and bit array for

occurences. If an occurence is found, the bit array is updated to represent the

merge, and the d-ary heaps are updated to reflect the new token and pair counts.

This requires a minimum of D passes over the data to construct a dictionary of

size D but uses a relatively small amount of memory.

8.3 Experiments

8.3.1 Implementation

The irregular, data-dependent access pattern makes the multiscale model dif-

ficult to implement in a performant manner using existing GPU-accelerated deep

learning frameworks such as Theano and Torch. Hence, experiments were per-

formed with a hand-written CUDA implementation of both the model (including

layer normalization) and the dynamic programming forward and backward sweeps.

Our implementation was able to exploit the parallelism inherent in the model, fully

utilizing the K20 and K80 NVidia GPUs that the models were trained on.

8.3.2 Penn Treebank

We evaluate the multiscale model on the widely used Penn Treebank dataset

using the training, validation and test split proposed by Mikolov, Karafiát, et

al. (2010). Our baseline is an LSTM with 1024 hidden units and embeddings of

dimension 512 trained with truncated backpropagation-through-time (TBPTT) on

89

Token

1 and·
2 a·
3 the·
7 s·
8 of·the·

11 in·the·
12 ed·
17 ing·
65 ation·
239 people·
245 man
296 ed·by·the·
525 external·links·
540 at·the·end·of·the·
565 at·the·university·of·
608 united·states·

1468 in·the·united·states·
2727 one·of·the·most·

Table 8.1 – A sample from the tokens in the dictionary of size 8192 constructed using the text8
dataset by our adapted BPE algorithm. Spaces are visualized with the · character. The most
common tokens are similar to the ones traditionally found in word-level models e.g. ‘and ’, ‘the
’, and ‘a ’. The dictionary also contains common suffixes such as ‘s ’ (for plural nouns and third
person singular verbs), ‘ing ’ (for gerunds and verbal actions), and ‘ed ’ (for adjectives, past tenses
and past participles), as well as multi-word tokens e.g. ‘of the’, ‘and the’, ‘in the’, etc. and longer
phrases.

0 1,000 2,000 3,000 4,000 5,000
1

1.5

2

2.5

3

Updates

B
it
s
p
er

ch
ar
ac
te
r

Training curves

Regular LSTM
Multiscale LSTM

Figure 8.4 – Training curves of the regular and multiscale LSTM. Note how the multiscale
LSTM training loss starts lower because of the learned dictionary, which shows that the use of
compression algorithms for dictionary construction is effective.

90

Samples

the ·independ·ence ·in the ·third quarter ·the ·chief ·ex·port ·stock ·prices ·for
the ·year· ·and ·into the ·disa·ster·l·and

gains ·so ·on the ·economy ·because ·in addition ·to a ·compl·ex ·closed ·higher
·comm·ut·e ·pres·sure ·of ·his ·company

meeting ·in ·the ·trust ·is ·expected to ·be ·an·ticip·ated · $ · ·offic·es ·during the
·past

actu·ally ·have ·spok·es·man ·with ·hous·ing ·their ·junk ·bond ·due · $ N billion
from ·most ·important ·next ·day ·at

Table 8.2 – Samples from the multiscale model trained on Penn Treebank. Token boundaries
are marked with the · symbol. The samples show the model’s ability to model a sentence by
predicting entire words or phrases (‘in addition’, ‘into the’) at a time, while also being able
to exploit subword structure (‘comm·ut·e’) and maintaing the flexibility of character language
models to output unseen words (‘disa·ster·l·and’).

sequences of length 400. These optimal values were found using a grid search. We

train using the Adam (Kingma and J. Ba, 2015) optimizer (learning rate of 0.001)

and to increase convergence speed we use layer normalization (J. L. Ba, Kiros, and

Geoffrey E Hinton, 2016).

Our baseline model achieves a score of 1.43 bits per character. The multiscale

model is trained using the exact same configuration but using a dictionary of 2048

tokens. It achieves a test score of 1.42 bits per character. Note that the multiscale

models improvements are orthogonal to what can be achieved by straightforwardly

increasing the capacity of the network. The regular LSTM networks with more than

1024 units showed decreased performance in our experiments due to overfitting.

Moreover, our network is able to achieve better performance with far fewer

parameters. The multiscale model with 512 hidden units, embeddings of size 256,

and 2048 tokens has 51% fewer parameters compared to our baseline, but achieves

a score of 1.41 bpc, compared to 1.48 bpc for a regular LSTM with the same

embedding and hidden state size.

8.3.3 Text8

Text8 (Mahoney, 2006) is a text dataset of 100 million characters built from the

English Wikipedia. The characters are limited to the 26-letter alphabet and spaces.

91

We use the traditional split of 90, 5 and 5 million for the training, validation and

test set respectively.

We compare the performance of our multi-scale model with a single-layer character-

level language model with 2048 units. The same training procedure as described

in the previous subsection is used. The baseline achieves a score of 1.45 bits per

character. The multiscale model improves on this performance using a dictionary

of 16,384 tokens, achieving a test score of 1.41 bits per character.

8.4 Related work

In language modeling a variety of approaches have attempted to bridge the

gap between character and word-level models. The approach in Kim et al. (2015)

is to apply a convolutional neural network (CNN) with temporal pooling over the

constituent characters of a word. The CNN filters of this network can be interpreted

as character n-gram detectors. The output of this network is used as the input to

an LSTM network which models the word-level dynamics. Note that the resulting

model still requires information about word-boundaries.

Other approaches use multi-scale RNN architectures. The model in Bojanowski,

Joulin, and Mikolov (2016) uses both a word-level and character-level RNN, the

latter being conditioned on the former. This model too still requires knowledge of

word boundaries. The approach in Chung, Ahn, and Y. Bengio (2017) does not

require word boundaries, and instead uses the straight-through estimator to learn

the latent hierarchical structure directly. Their model does not learn separate

embeddings for the segments however, and can only output a single character at a

time.

The latent sequence decomposition (LSD) model introduced in Chan et al.

(2017) is related to our multiscale model, and was shown to improve performance

on a speech recognition task. Instead of using compression algorithms the LSD

model uses a dictionary of all possible n-grams. Since the number of n-grams

grows exponentially, this limits the the dictionary to very short tokens only. The

LSD model uses a regular RNN which is trained on a set of sampled segmenta-

tions instead of averaging the hidden states using dynamic programming. This

92

complicates training and makes the likelihood of the model intractable. The re-

cent Gram-CTC model (H. Liu et al., 2017) is also related and does use dynamic

programming but still uses a dictionary of character n-grams.

Although our model is competitive with recent methods such as MI-LSTM (Yuhuai

Wu et al., 2016) and td-LSTM (X. Zhang, Lu, and Lapata, 2016-06), which achieve

1.44 and 1.63 bits per character on the text8 dataset respectively, other recent mod-

els such as HM-LSTM (Chung, Ahn, and Y. Bengio, 2017) have achieved lower

scores (1.29 bpc). Since many of the LSTM variations in the literature can be ex-

tended to the multiscale model, we believe it is possible to improve the performance

of multiscale models further in the future. Similarly, deeper multi-layer extensions

to our model are feasible.

8.5 Discussion

Through arithmetic encoding it can be shown that modeling data is equivalent

to compressing it Mahoney (1999). Using neural networks to improve upon text

compression algorithms is a common technique (Mahoney, 2000), but as far as we

are aware the reverse has not been researched. One can see our model as a mix

between non-parametric and parametric approaches: As discussed in Section 8.1.1,

character-level models learn a parametric mapping from constituent characters to

semantic representations of morphemes. Word-level models avoid learning this

highly non-linear function by constructing a dictionary and learning a represen-

tation for each word, which is non-parametric. Our multiscale model generalizes

this approach, combining non-parametric dictionary coders and parametric RNN

models. The size of the dictionary allows us to choose the balance between the two

approaches.

A rough parallel can be drawn between our multiscale approach for sequences

and superpixels in the computer vision domain (Ren and Malik, 2003), where pixels

are clustered in order to improve computational and representational efficiency

The multiscale model can also be related to work on text segmentation. The

hierarchical Pitman-Yor language model in Mochihashi, Yamada, and Ueda (2009)

learns how to segment a string of characters into words, while simultaneously learn-

ing a word-level n-gram model. Each path through the graph of the multiscale

93

model (figure 8.3) can be considered a single segmentation of the text, with the

likelihood of the string being the marginalization over all possible segmentations.

A large number of combinations of data compression and neural network se-

quence modeling are still open to investigation. Besides BPE, there are many

other dictionary coder algorithms out there. Another consideration would be to

learn the dictionary and the sequence model jointly. Subsequently, a variety of

neural network models can conceivably be adapted to work with the multi-scale

representation of text used in this paper e.g. bag-of-words (BOW) models could be

replaced with bag-of-token models instead, similar to the approach in Bojanowski,

Grave, et al. (2017) which uses character n-grams.

94

9
Automatic differentiation
for machine learning

All of the machine learning models discussed so far were optimized using varia-

tions of the gradient descent algorithm that was introduced in Section 1.4.2. These

algorithms require efficient access to the gradient of the loss with respect to the

parameters. The second half of this thesis will focus on automatic differentiation

(AD, sometimes called algorithmic differentiation), a set of techniques and algo-

rithms for calculating derivatives of mathematical functions defined by computer

programs.

Automatic differentiation is not to be confused with numerical differentiation

(finite differences), which computes an approximation f ′(x) ≈ f(x+∆)−f(x)
∆

. It is

also distinct from symbolic differentiation, which is the differentiation of formulae

represented as data structures whereas AD is concerned with the differentiation of

computer programs i.

9.1 Chain rule

To bridge the gap from calculus to numerical computing, we will begin by de-

riving the gradient of a simple network using the chain rule while paying particular

attention to the dimensionality of the variables involved. The model is a binary

classifier with a single m-dimensional hidden layer with inputs x ∈ Rn and labels

y ∈ {0, 1}:

a = Wx

h = σ(a)

o = wTh

ŷ = σ(o)

(9.1)

i. Although this distinction between symbolic formulae and computer programs is commonly
made, it is quite tenuous when considering purely functional languages (Elliott, 2018).

95

where σ is the logistic function 1
1+e−x . The loss L we aim to minimize is the cross-

entropy between the model output, ŷ, and the target label, y.

L = − (y log(ŷ) + (1− y) log(1− ŷ))

The gradient of the loss with respect to the input can be derived by hand through

application of the chain rule.

dL

dx
=

dL

dŷ

dŷ

do

do

dh

dh

da

da

dx
(9.2)

The first two terms on the right hand side are scalar derivatives given by

dL

dŷ
= −

y

ŷ
+

1− y

1− ŷ

=
ŷ − y

ŷ(1− ŷ)

dŷ

do
= σ(o)σ(−o)

The next term, do
dh
, is no longer a scalar derivative. Since o ∈ R and h ∈ Rm it is

in fact a gradient with a constant value, do
dh

= wT . The subsequent term, dh
da
, is

Jσ(a) where Jσ is the m×m Jacobian matrix of the element-wise logistic function

Jσ(x) =









σ′(x1) 0 · · · 0

0 σ′(x2) · · · 0
...

...
. . .

...

0 0 · · · σ′(xm)









The last term, da
dx
, is a Jacobian matrix of size m × n, which in this case has the

constant value W.

96

9.2 Automatic differentiation

We will now consider how to evaluate equation 9.2 for a given x and y us-

ing automatic differentiation. AD is based on the observation that any numerical

program can be broken down into a series of primitives (elementary operations)

such as addition and multiplication. The original program (primal computation) is

transformed (or interpreted with non-standard semantics) as to produce a new pro-

gram with different semantics which calculates derivatives. To calculate gradients,

this transformation requires each numerical primitive to have an accompanying

vector-Jacobian product (VJP) or Jacobian-vector product (JVP). For example,

to support a 2D rotation as a primitive either of the functions given in listing 9.1

would have to be defined.

def rot(x, theta):

R = array([

[cos(theta),

-sin(theta)],

[sin(theta),

cos(theta)]])

return R @ x

def rot_vjp(x, theta,

v):

R = ...

return v @ R

def rot_jvp(x, theta,

v):

R = ...

return R @ v

Listing 9.1 – The rotation primitive and its JVP and VJP functions. Note that the infix operator
@ signifies matrix-vector multiplication.

Mathematically speaking, one could replace the JVP and VJP functions with a

single function that calculates the Jacobian matrix. However, for many functions

(e.g. element-wise functions or convolutions) this would be inefficient. For example,

the JVP Jσ(x)y is more efficiently expressed as diag (Jσ(x))⊙ y.

Note that any function can be part of the numeric basis of the language, i.e.,

any function can be a primitive. In traditional AD systems primitives were usu-

ally limited to elementary arithmetic and, e.g., trigonometric, logarithmic, and

exponential functions. In modern machine learning frameworks primitive functions

include matrix multiplications, convolutions, batch normalization, or even entire

RNNs with LSTM units.

97

9.2.1 Forward mode

Note that in order to evaluate dŷ
dxi

we must have evaluated the primal computa-

tion, ŷ = σ(o). This is true for most non-linear functions. Given this observation

we can adopt a greedy evaluation strategy in which we calculate the derivatives as

soon as possible, in lockstep with the original program evaluation.





y

dx

dxi

= ([i = 1], . . . , [i = n])

a = Wx
da

dxi

= W
dx

dxi

h = σ(a)
dh

dxi

= Jσ(a)
da

dxi

o = wTh
do

dxi

= wT dh

dxi

ŷ = σ(o)
dŷ

dxi

= σ(o)σ(−o)
do

dxi

L = − (y log(ŷ) + (1− y) log(1− ŷ))
dL

dxi

=
ŷ − y

ŷ(1− ŷ)

dy

dxi





y

(9.3)

Note that the equations on the right-hand side can be evaluated using Jacobian-

vector products. This is referred to as performing AD in the forward accumulation

mode (Wengert, 1964) or simply forward mode.

9.2.2 Reverse mode

Note that to calculate dL
dx

using forward mode we have to calculate dL
dxi

for

i = 1, . . . , n, which means that calculating our gradient is O(n) times as expensive

as evaluating the model. Can we do better?

Looking at equation 9.2 we evaluated the terms from right to left. We could

instead evaluate the terms from left to right, which gives rise to reverse accumula-

tion mode AD (reverse mode). In the context of reverse mode AD we often refer

to the the forward pass, which is the primal computation augmented with machin-

ery to store intermediate values for use in the backward pass. The backward pass

(reverse pass) computes derivatives using a series of vector-Jacobian products and

the values stored during the forward pass.

98





y

a = Wx
dL

dx
=

dL

da
W

h = σ(a)
dL

da
=

dL

dh
Jσ(a)

o = wTh
dL

dh
=

dL

do
wT

ŷ = σ(o)
dL

do
=

dL

dŷ
σ(o)σ(−o)

L = − (y log(ŷ) + (1− y) log(1− ŷ))
dL

dŷ
=

dL

dL

ŷ − y

ŷ(1− ŷ)

dL

dL
= 1

x





(9.4)

9.2.3 Runtime and memory complexity

Looking at our reverse mode AD calculation we note that the backward pass

has approximately the same number of operations as the forward pass. This is true

in general: For functions f : Rn → R which involve n operations, reverse mode AD

can evaluate the gradient f ′ in O(cn) operations where c ≤ 3 or c ≤ 5 (depending

on whether we consider memory accesses) (Griewank and Walther, 2008).

Looking at the forward mode algorithm, we note that it would require O(cn2)

operations to evaluate dL
dx
. This is in fact also a general observation: The runtime

complexity of forward mode grows with the number of inputs respectively, whereas

reverse mode’s runtime complexity grows with the number of outputs. Hence re-

verse mode is much more efficient for functions f : Rn → Rm where m ≪ n, and

vice versa forward mode is preferable when m≫ n.

In theory, the terms in equation 9.2 can be evaluated in any order by mixing

forward and reverse mode. However, finding the optimal evaluation order is an NP-

complete problem (Naumann, 2008) and rarely used in practice, although there are

some models which are handcrafted to allow for the mixing of the two modes (Gori,

Y. Bengio, and Mori, 1989).

A second important consideration is the memory complexity. In forward mode,

each variable additionally requires its partial derivative to be stored. This means

that the memory complexity of the differentiated program can be expected to

approximately double. For reverse mode AD, however, all of the intermediate

variables on the left hand side of equation 9.4 must be stored before the partial

99

Table 9.1 – Overview of checkpointing algorithms. Non-adaptive algorithms require the number of operations to be
known in advance. Some algorithms assume that the execution time of each operation, ti, is uniform. Note that each of
these algorithms assumes that the number of checkpoints is fixed in advance.

Non-adaptive Adaptive

Uniform ti Binomial checkpointinga(Griewank, 1992) a-revolve (Hinze and Sternberg, 2005)

Non-uniform ti
Dynamic programming (Walther, 2004)

Heuristic (Sternberg, 2002)
Heuristic (Sternberg, 2002)

a Proven optimal in Grimm, Pottier, and Rostaing-Schmidt (1996) and implemented in Griewank
and Walther (2000). Rediscovered in the context of neural networks in Gruslys et al. (2016)

derivatives can be calculated. Hence, the memory complexity of reverse mode AD

grows with the number of primitive operations in the original function.

Checkpointing

For long-running programs this increase in memory complexity can be pro-

hibitive. Checkpointing is the ability to trade off a decrease in memory complexity

for an increase in runtime complexity by deleting intermediate variables and re-

computing them when they are needed during the backward pass. An alternative

approach is to move variables to higher levels in the memory hierarchy i.e. moving

the variables from memory to disk, or from GPU to CPU memory.

Determining which variables to checkpoint (i.e. keep in memory) is a well stud-

ied problem in the AD literature (see table 9.1 for an overview). However, these

approaches assume that all variables are scalars which allows the number of check-

points to be fixed. In the context of deep learning more heuristic techniques are used

such as moving variables from GPU to CPU with a least-recently used (LRU) cache,

or determining which variables to recompute by considering their computation-to-

memory ratio (Linnan Wang et al., 2018).

9.2.4 Higher-order differentiation and generalizations

Some AD implementations are closed under their own operations, which means

that forward and reverse mode can be applied multiple times in order to calculate

higher-order derivatives. For example, the second-order derivative of a function

f : Rn → Rm can be calculated using forward-over-forward which would have

an overhead of O(n2). Alternatively reverse-over-forward, forward-over-reverse,

or reverse-over-reverse could be used. These methods are theoretically equiva-

100

lent (Christianson, 2012) with an overhead of O(nm), but ease of implementation

and differences in the efficiency of the generated derivative programs means that

certain combinations are preferred over others (Naumann, 2012). In particular, for

scalar-valued functions the forward-over-reverse algorithm is preferred to calculate

the Hessian matrix. Advanced algorithms such as edge pushing (Gower and Mello,

2012) and the live variable-centered Hessian algorithm (M. Wang, Gebremedhin,

and Pothen, 2016) improve on the naive forward-over-reverse algorithm by exploit-

ing the symmetry of the Hessian matrix.

The principles of AD can be used not only to calculate n-th order derivatives,

but also to efficiently calculate Hessian-vector products (Barak A Pearlmutter,

1994), the Gauss-Newton matrix times a vector (Schraudolph, 2002; Martens,

Sutskever, and Swersky, 2012), and the uncentered covariance matrix of the gradi-

ents i times a vector (Schraudolph, 2002).

9.3 Implementations

9.3.1 Forward mode

The use of forward and reverse mode tells us which computations to perform

and in which order. We will now consider how to turn this algorithm into actual

code.

Forward mode can be implemented in a straightforward manner through the

use of dual numbers (Rall, 1986): Each variable y is augmented with a second

variable which holds the value of the partial derivative dy
dxi

to form the dual number

y + dy
dxi

ǫ. Primitives are then overloaded to operate on dual numbers, returning

a new dual number constructed by performing the regular computation as well as

the Jacobian-vector product. See listing 9.2 for a minimal example.

i. When the gradients are weighted according to the samples’ errors this matrix is sometimes
referred to as the ‘empirical Fisher matrix’, which would imply that these products can be used
to implement the natural gradient descent algorithm (Le Roux, Manzagol, and Y. Bengio, 2008).
In fact, this is a common misunderstanding since the Fisher matrix and uncentered covariance
matrix are only equivalent when the model distribution and data distribution are same, which is
not the case in general during training.

101

@dataclass

class Dual:

val: float

eps: float

def __mul__(x, y):

eps = x.val * y.eps + x.eps * y.val

return Dual(x.val * y.val, eps)

def __add__(x, y):

return Dual(x.val + y.val, x.eps + y.eps)

x = Dual(2, 1) # x = 2, d/dx(x) = 1

y = Dual(3, 0) # y = 3, d/dx(y) = 0

d/dx (x^2 + x * y)

z = x * x + x * y

assert z.eps == 7

d/dx(x * d/dy(x + y)) (fails)

x = y = Dual(1, 1)

assert (x * Dual((x + y).eps, 0)).eps == 1

Listing 9.2 – A minimal example of a forward mode AD implementation.

It must be noted that the implementation of higher-order forward mode requires

more care since a naive implementation will lead to a common class of bugs called

perturbation confusion (Siskind and Barak A Pearlmutter, 2005). For example,

when one tries to naively evaluate d
dx

(

x
(

d
dy
x+ y

))

for x, y = 1 using our minimal

implementation in listing 9.2 the result will be 2 instead of 1 because the imple-

mentation cannot distinguish between the partial derivatives of the first and second

application. A variable tagging system is normally used to address this issue.

The concept of dual numbers was extended to hyper-dual numbers which allow

for the calculation of higher order derivatives in a single pass (Karczmarczuk, 2001;

Barak A Pearlmutter and Siskind, 2007; Fike and Alonso, 2012).

102

9.3.2 Reverse mode

Forward mode is relatively easy to implement because the partial derivatives

are calculated in step with the original computation. Reverse mode is more compli-

cated, since it involves reversing the control flow of the original program. Moreover,

during the backward pass the program might need access to the intermediate vari-

ables from the forward pass.

Different implementation methods will have trade-offs in terms of their ease

of implementation and performance. The paper introduced in the next chapter

contains a review of the different methods and their trade-offs.

103

10 Prologue to First Article

10.1 Article Details

Automatic differentiation in ML: Where we are and where we should

be going.

Van Merriënboer, Bart, Olivier Breuleux, Arnaud Bergeron, and Pascal Lam-

blin. 2018. In Advances in Neural Information Processing Systems 31 (NeurIPS

2018), Montréal, Canada, December 2–8, 2018.

Personal Contribution.

The Myia compiler and framework is the result of a research and development

project that I initiated summer 2016. As the project leader I was responsible for the

vision and conceptualization of Myia and the writing of several early prototypes.

In the spring of 2017 the project was joined by Olivier Breuleux and Maxime

Chevalier-Boisvert who wrote two more prototypes. In the fall of 2017 I worked with

Olivier to synthesise the different prototypes into a preliminary software package

that integrated dataflow programming with a functional closure based approach to

AD. The development of Myia has since been taken over by Olivier Breuleux and

Arnaud Bergeron. With regards to the paper I was the main author of the review

section and jointly authored the section on Myia with Olivier Breuleux.

10.2 Context

TensorFlow (Abadi et al., 2016) was introduced in late 2015, building on the

source code transformation and dataflow programming approach pioneered by Theano

(Al-Rfou et al., 2016). However, shortcomings of this approach in handling models

with large amounts of control flow had started becoming apparent, leading to the

104

popularization of operator-overloading libraries such as Chainer (Tokui et al., 2015)

and torch-autograd.

Myia was born out of the desire to reconcile the flexibility and usability of op-

erator overloading frameworks with the performance of the dataflow programming

and source code transformation (SCT) approaches. It attempts to do so by com-

bining and generalizing the dataflow programming approaches from TensorFlow

and Theano with the powerful closure-based AD approach introduced in Barak A

Pearlmutter and Siskind (2008).

10.3 Contributions

This paper consists of two parts: The first part is a short literature review of

reverse mode AD in the context of ML, which attempts to bridge the gap between

the ML, AD, and compiler/PL communities by relaying some of the lesssons that

were learned from implementing Myia.

The second part of the paper introduces Myia, a compiler pipeline which uses

a novel graph-based representation inspired by A-normal form which is tailored

towards supporting reverse mode AD through the use of closures as well as reaching

high-performance in typical deep learning workloads through vectorization and

parallelization.

Although the focus of Myia is the exploration of closure-based AD transforma-

tions on a new graph-based representation, the development of a prototype pipeline

required the implementation of several other components: It performs type infer-

ence and optimizations, and includes a runtime that eagerly evaluates the program.

Note that Myia’s optimizations give preference to speed over semantic equivalence,

e.g., unused computations such as multiplications with zero are aggressively re-

moved, similar to deep learning frameworks such as Theano. Note that this can

change the runtime behavior of the program in a similar way as GCC’s -ffast-

math optimizations.

Since Myia can be compiled using backends such as XLA and NNVM which are

used by the TensorFlow and MXNet frameworks, theoretically Myia can achieve

similar performance. However, achieving such performance was left to later work,

105

with this paper focusing most strongly on the trade-offs involved when choosing a

IR for ML frameworks.

10.4 Recent Developments

Implementing general purpose AD algorithms that are able to reach high-

performance for deep learning workloads is still an active area of research. Recent

additions include Lantern, which uses delimited continuations in Scala to imple-

ment reverse mode AD using callbacks (F. Wang, X. Wu, et al., 2018; F. Wang

and Rompf, 2018).

106

11

Automatic differentiation in
ML: Where we are and
where we should be going

11.1 Introduction

Recent advances in ML, and deep learning in particular, have in part been

driven by advances in hardware (LeCun, Y. Bengio, and G. Hinton, 2015; Jürgen

Schmidhuber, 2015). This increase in computational power has spurred the de-

velopment of a large number of software libraries, compute kernels, programming

languages, and compiler toolchains in order to exploit it. We distinguish some

features and objectives that separate these ML frameworks from traditional array

programming frameworks.

Firstly, many machine learning models use optimization algorithms which re-

quire access to derivatives of the model. Automatic differentiation (Griewank and

Walther, 2008) comprises a collection of techniques that can be employed to calcu-

late the derivatives of a function specified by a computer program, and is a central

feature of popular ML frameworks such as TensorFlow (Abadi et al., 2016) and

PyTorch (Paszke et al., 2017).

ML frameworks also put heavy emphasis on being able to iterate quickly on new

models using high-level, dynamically typed languages, while maintaining high per-

formance through aggressively exploiting resources (e.g., through parallelism, dis-

tributed computing, accelerators, static optimization). Moreover, since the deriva-

tive code is generated programmatically using AD, frameworks cannot always rely

on users writing hand-tuned code and must instead provide compiler optimizations.

Despite the growth in ML frameworks, many have been developed in isolation

of the AD community, and many of their insights regarding language design and

interactions between source transformation and compiler optimizations have gone

largely ignored. Moreover, although many ML frameworks have slowly been adopt-

ing functional language concepts (such as pure functions, immutable variables, lazy

evaluation) many of the standard approaches in use by functional language compil-

107

ers to guarantee high performance (A-normal form and continuation passing style

representations, persistent data structures, heap recycling, etc.) have not been

applied.

In some cases popular ML frameworks have sacrificed flexibility and generality

compared to popular array programming packages such as NumPy (Walt, Colbert,

and Varoquaux, 2011) in order to provide AD and achieve high performance. On

the one hand, frameworks relying on computation graphs such as TensorFlow and

Theano (Al-Rfou et al., 2016) do not support higher-order functions or recursion,

even though some ML models (e.g. Tai, Socher, and Christopher D Manning (2015))

are more naturally expressed using recursion than loops. On the other hand, frame-

works relying on operator overloading such as PyTorch and Autograd (Maclaurin,

Duvenaud, and Adams, 2015) see performance degradation for models with scalars

or small vectors. i

11.2 Background and prior work

The development of ML frameworks has been driven by a wide range of fields

and perspectives—systems programming, automatic differentiation, programming

languages, compiler design, applied machine learning, etc.–which has lead to du-

plicated research and confused terminology (e.g. define-by-run and operator over-

loading). To contextualize our proposed framework, the first half of this paper

consists of a review which aims to synthesise these different perspectives. We will

begin with explaining the nature of AD and the various challenges associated with

it. Then we will review the different approaches to AD and relevant prior work

from different domains, such as graph representations from the compiler litera-

ture, and language and IR design from functional languages. We will discuss the

uses of these approaches in existing frameworks and how they affect performance,

expressive power, and usability.

Given this insight, our goal is to outline in the subsequent sections a proof of

concept of a high-performance ML framework with first-class support for AD, but

which has the flexibility and expressive power of a generic, high-level programming

i. https://github.com/pytorch/pytorch/issues/2518

108

language so that it does not restrict the ability of ML researchers to explore novel

models and algorithms.

11.2.1 Automatic differentiation

Automatic differentiation (AD, also called algorithmic differentiation) relies on

the ability to decompose a program into a series of elementary operations (prim-

itives) for which the derivatives are known and to which the chain rule can be

applied. AD allows for the calculation of derivatives of any order up to working

precision.

AD has been studied since the 60s and 70s and has been employed in fields such

as computational fluid dynamics, astronomy, and mathematical finance (Griewank

and Walther, 2008). Both its implementation and its theory are still an active

area of research (e.g., Siskind and Barak A. Pearlmutter (2016) and M. Wang,

Gebremedhin, and Pothen (2016)). We recommend Griewank and Walther (2008)

and Baydin, Barak A. Pearlmutter, et al. (2018) for a review of AD in general and

in the context of machine learning respectively. From an application perspective,

AD affects and interacts with the entire toolchain, from language design through

intermediate representations, static analysis, to code generation and program exe-

cution.

The runtime and memory complexity of AD depends on the order in which

the chain rule is evaluated. Evaluating the chain rule from right to left (from

inputs to outputs) is referred to as forward mode, whereas evaluating it from left to

right (from outputs to inputs) is called reverse mode. Forward mode has constant

memory requirements and its runtime complexity scales with the number of inputs.

Reverse mode’s runtime complexity scales with the number of outputs, and its

memory complexity grows with the number of intermediate variables. In principle,

forward and reverse mode can be mixed, but finding the optimal way of doing so

is NP-complete (Naumann, 2008).

In forward mode, the partial derivatives of intermediate variables are calculated

in step with the original program. As such, forward mode is relatively straight-

forward to implement, e.g. using dual numbers (Clifford, 1873). In reverse mode,

the chain rule is evaluated in reverse order of the original program. This is a more

complex program transformation: an adjoint program must be constructed whose

109

control flow is the reverse of the original (or primal) program. First, the primal

program is run to obtain the output, and then the adjoint program is run to com-

pute the gradient, starting from that output and going backwards. In order to do

so efficiently, each statement in the adjoint must have access to the intermediate

variables of the original program. Hence, the AD transformation must guarantee

that the intermediate variables are not destroyed or mutated.

In ML applications, large matrices of input parameters are typically updated

using gradient descent on a scalar output cost. Since the number of inputs is

significantly larger than the number of outputs, reverse mode AD is to be preferred.

The term ‘backpropagation’ is used to refer to the specialized application of reverse

mode AD in machine learning.

Two implementation methods of AD are generally distinguished: operator over-

loading (OO) and source transformation (ST, also called source code transforma-

tion). Each method has its advantages and disadvantages in terms of usability,

implementation, and efficiency (C. H. Bischof and Bücker, 2000). We will briefly

discuss them in the context of reverse mode AD.

Operator overloading

OO relies on a language’s ability to redefine the meaning of functions and op-

erators. All primitives are overloaded so that they additionally perform a tracing

operation: The primitive is logged onto a ‘tape’, along with its inputs to ensure that

those intermediate variables are kept alive. At the end of the function’s execution,

this tape contains a linear trace of all the numerical operations in the program.

Derivatives can be calculated by walking this tape in reverse.

The main advantage of OO is that it is straightforward to implement. Because

the tracing passes through function calls and control flow, the AD logic is simplified.

A significant downside is that a separate ‘derivative interpreter’ is needed for the

adjoint program. Having an embedded interpreter inside of the host language can

complicate debugging and performance analysis. Moreover, since the program is

traced and reversed at runtime, OO incurs overhead on each function call which

can be particularly problematic if the primitives are fast to execute relative to the

tracing operation. OO also does not allow for ahead-of-time optimizations on the

adjoint program.

OO is the technique used by PyTorch, Autograd, and Chainer (Tokui et al.,

110

2015). Non-ML oriented AD frameworks using OO include ADOL-C (Griewank,

Juedes, and Utke, 1996) and CppAD (Bell, 2003).

Source transformation

ST explicitly constructs the adjoint program. Unlike OO, ST needs to explic-

itly construct a program with a reversed control flow, which means that it needs

transformation rules for function calls and control flow statements such as loops

and conditionals. Whereas OO operates within the language, ST requires tooling

such as parsers, tools to manipulate intermediate representations, and unparsers.

The advantage of ST is that the AD transformation is done only once per program

and hence doesn’t incur overhead at runtime, which makes ST performant for a

wider range of workloads. Moreover, the full adjoint program is available during

compilation and can therefore be optimized ahead of time.

Although ST does not have to deal with the AD transformation at runtime, it

must still ensure that intermediate variables from the forward pass are accessible

by the adjoint. There are a variety of approaches to deal with this.

Tape-based Frameworks such as ADIFOR (C. Bischof et al., 1996) and Tape-

nade (Hascoët and Pascual, 2013) for Fortran and C use a global stack also called

a ‘tape’ i to ensure that intermediate variables are kept alive. The original (primal)

function is augmented so that it writes intermediate variables to the tape during

the forward pass, and the adjoint program will read intermediate variables from the

tape during the backward pass. More recently, tape-based ST was implemented

for Python in the ML framework Tangent (Merriënboer, Moldovan, and Wiltschko,

2018).

A problem of this approach is that the tape is a data structure constructed at

runtime, analysis of which requires custom compiler passes (Hascoët, Naumann,

and Pascual, 2003; Hascoët and Pascual, 2013). Moreover, adjoint programs have

a particular symmetric structure where intermediate variables from the first primal

statements are used by the last adjoint statements. This highly non-local structure

is unsuitable for traditional compiler optimizations which act locally. Ways of

addressing this interaction between AD and compiler optimizations is an ongoing

i. The tape used in ST stores only the intermediate variables, whereas the tape in OO is a
program trace that stores the executed primitives as well.

111

research topic (Siskind and Barak A. Pearlmutter, 2016; Hascoët, 2017). Finally,

reading and writing to the tape need to be made differentiable in order to compute

higher-order derivatives which involve multiple applications of reverse mode. For

this reason most tape-based systems do not support reverse-over-reverse.

Closure-based To address some of the shortcomings of the tape-based approach,

alternative approaches have been proposed which employ closures (Barak A Pearl-

mutter and Siskind, 2008) or delimited continuations (F. Wang and Rompf, 2018).

In both cases, tools from functional programming are used which can capture the

environment of a statement during the forward pass, and execute the correspond-

ing adjoint within that environment. The advantage of this approach is that no

AD-specific compiler passes are needed: a functional language compiler will recog-

nize the non-local use of the intermediate variables by the fact that they are free

variables in the generated closure or continuation. This avoids the need for custom

compiler passes, and allows for the application of all the tooling from functional

compilers on the generated adjoint program (Shivers, 1991; Siskind and Barak A

Pearlmutter, 2008).

11.2.2 Dataflow programming

Popular ML frameworks such as Theano, TensorFlow, and MXNet (T. Chen,

Li, et al., 2015) follow the dataflow programming paradigm (Johnston, Hanna, and

Millar, 2004) and use computation graphs as their intermediate representation.

These graph representations do not have scoping or recursive function calls, which

means that AD is much easier to implement with ST. Since the adjoint program

is part of the same dataflow graph, it can access the intermediate variables from

the forward pass directly from the global scope, so neither tapes nor closures are

required. Additionally, a simple liveness analysis makes it easy to keep intermediate

values from the primal alive only for as long as required by the adjoint computation.

Using dataflow graphs without function calls i nor scoping ii introduces limita-

tions. Some of these limitations are addressed by the use of metaprogramming,

i. TensorFlow and Theano implement a type of subroutine through their Defun and OpFrom-

Graph constructs, but these must be explicitly constructed by the user and don’t support recur-
sion.

ii. TensorFlow has a concept it refers to as ‘scoping’, but these scopes are not lexical and can
be reentered at any time, so the lifetime of a value is not affected by its scope.

112

but others affect the end-user (e.g., the lack of recursion and higher-order func-

tions reduces the expressiveness of the language) and the compiler pipeline (e.g.,

loops cannot be represented in a principled way, which complicates their imple-

mentation).

An advantage of dataflow programming is that graphs are a natural repre-

sentation for distributed computing (Akidau et al., 2015). This allows different

operations to be easily distributed across different hosts, devices, and cores.

Graph-based IRs are generally useful for compilers, since the absence of an ex-

plicit ordering can simplify certain optimizations and scheduling. Theano’s graph

representation in particular was based on the representations used by computer

algebra systems (CAS), enabling aggressive algebraic simplification and pattern

matching. An SSA i-based graph representation (Click and Paleczny, 1995; Linden-

maier et al., 2005), sometimes referred to as sea-of-nodes, is used by the HotSpot

Java compiler and the V8 TurboFan JavaScript compiler, and a graph represen-

tation using continuation-passing style (CPS, an IR commonly used in functional

languages) called Thorin also exists (Leißa, Köster, and Hack, 2015).

11.2.3 Programming languages and compilers

Theano was one of the first software packages to refer to itself as a ‘linear al-

gebra compiler’. Since then, more frameworks started approaching the definition

and execution of ML models as a compiler problem. In the case of Theano and

TensorFlow, they can be considered compilers of a custom language which must

be metaprogrammed using Python as a metalanguage. The dataflow graph is an

intermediate representation which is optimized using a series of compiler passes.

The resulting program is compiled (e.g., XLA) and/or interpreted (e.g., the Ten-

sorFlow/Theano runtimes). Similarly, PyTorch has started optimizing its traced

Python programs using just-in-time (JIT) compiler approaches.

More recently, projects such as DLVM (Wei, Schwartz, and Adve, 2017) and

Swift for TensorFlow ii have attempted to extend existing compiler toolchains such

as LLVM and Swift’s intermediate language (SIL) with array programming and

AD in order to create frameworks better suited for ML workflow needs.

i. Static single assignment, which essentially means each variable is assigned to exactly once.
ii. https://www.tensorflow.org/community/swift

113

Viewing ML frameworks as compiler toolchains raises several questions. For

example, on what intermediate representations is it the easiest to apply AD and

aggressive optimizations? IRs with closures as first-class objects will be able to use

closure-based approaches to AD, whereas traditional SSA-based representations

(such as SIL) would need to use a tape-based approach. And which IRs are most

suitable for the heavy use of parallelism and distributed computing in ML?

Secondly, what should the source language be? The ML community is highly in-

vested in Python, an interpreted, dynamically typed programming language which

does not have built-in support for multidimensional arrays. More recently, frame-

works have suggested using Swift (DLVM) or Julia (JuliaDiff, Revels, Lubin, and

Papamarkou, 2016), languages with static typing and built-in multidimensional ar-

rays respectively. On the other hand, frameworks such as Theano and TensorFlow

do not have an exposed source language but can only be metaprogrammed. In

the AD community, there has been strong push away from traditional imperative

languages such as Fortran and C to purely functional languages, since they sim-

plify the implementation of AD and are easier to optimize. Examples of this are

VLAD, a dialect of Lisp which is compiled with the Stalin∇ compiler (Siskind and

Barak A. Pearlmutter, 2016; Barak A Pearlmutter and Siskind, 2008; Siskind and

Barak A Pearlmutter, 2008), DVL i, and DiffSharp (Baydin, Barak A Pearlmutter,

and Siskind, 2016).

Python

Because Python plays an important role in the ML community many popular

ML frameworks are Python-based. However, the language’s characteristics make

it difficult to implement a high-performance AD-enabled ML framework in Python

directly. The reference implementation of Python, CPython, has effectively no

support for concurrency, and the interpreter is relatively slow. Moreover, its highly

dynamic nature makes source transformation difficult (Tangent imposes several

restrictions on the use of Python in order for it to perform ST). Python does

not have built-in support for multidimensional arrays, which are only supported

through third-party frameworks such as NumPy.

How to reconcile users’ desire to work in Python because of its flexibility with

the need for high performance and speed is an open question. ML frameworks have

i. https://github.com/axch/dysvunctional-language

114

focused on metaprogramming and using C extensions, but other approaches are

possible. For example, Cython (Behnel et al., 2011) is a superset of Python which

compiles to Python modules, whereas Numba (Lam, Pitrou, and Seibert, 2015) can

compile individual Python functions using LLVM.

11.3 Graph-based direct intermediate

representation

We endeavor to combine several of the aforementioned techniques and insights

from the compiler and AD literature in order to provide a flexible basis for an ML

framework. This requires a well-tailored intermediate representation which avoids

the pitfalls of previous methods, while keeping their strengths. Concretely, we

propose an IR with the following properties:

Graph based Similar to Theano or TensorFlow, programs are represented as

graphs. Graphs have the advantage of being easy to optimize and flexible about

execution order, as operations that do not depend on each other in the graph may

be executed in any order, or in parallel. Unlike Theano and TensorFlow, however,

functions may be called recursively and they are first-class objects. Functions may

be passed as parameters to other functions, or returned from a function and then

called. A large variety of control flow constructs, ranging from simple loops to graph

traversals, can be implemented using these capabilities. Other graph frameworks

tend to implement only a few of these as specialized operators, such as Theano’s

scan or TensorFlow’s while, leading to an IR which is both more complex and

less powerful than the general one we are proposing. A general IR does require

more work to transform and optimize in a provably correct way in the context of

automatic differentiation, but this work only needs to be done once.

Purely functional Mutation and side effects are problematic for reverse mode

AD, where the backward pass requires access to the unchanged intermediate vari-

ables from the forward pass. They also interact poorly with complex optimizations

115

because of aliasing. Restricting our language to be purely functional therefore al-

lows us to implement more robust AD and more advanced optimizations compared

to imperative languages.

Note that Myia’s intended use case is not the writing of efficient low-level ker-

nels, which often requires fine-grained memory control. Similarly to, e.g., Ten-

sorFlow, the user can write efficient low-level kernels and their derivatives in a

low-level language such as CUDA or XLA, and expose them to Myia as primitives.

Closure representation AD on functional languages involves storing the pri-

mal’s intermediate results into closures which are then connected together to form

the adjoint. It is therefore important to have a natural representation for closures.

As in Thorin, we represent a function’s graph’s free variables as direct pointers to

nodes that belong to other graphs, thereby creating an implicit nesting relationship

between them (a graph Gc is “nested” in Gp if it points to a node in Gp, or to a

graph nested in Gp, or to a node in a graph nested in Gp). This facilitates joint

optimization of a closure with the functions it is nested in. Closures are also a great

means for abstraction and a natural way to represent the methods of objects, so

there is a concrete advantage in expressiveness from the user’s perspective, which

cannot be found in other frameworks.

Strongly typed In its canonical form, every node must be associated with a

concrete type. This is important to maximize performance. This is also important

in ML applications, because operations tend to be very costly and it is best to

catch errors as early as possible. In addition to data types, there is also a need to

infer other properties such as the dimensions of vectors and matrices so that we

can guarantee that the inputs of all operations have compatible dimensions prior

to executing them. Type and shape inference are more complex and powerful on

our proposed IR than in dataflow graphs because of the need to support recursive

calls and higher order functions.

11.3.1 IR specification

Concretely, our representation represents a function as a graph object with a list

of parameter nodes and a single return node (multiple return values are supported

through tuples). A node represents a function application and has an ordered list

116

of incoming edges. The first incoming edge is a pointer to the function to apply,

and the rest point to the arguments. Constants are represented as nodes with no

incoming edges and a value field. Links between nodes are bidirectional, so that

graphs can be traversed in either direction. Each non-constant node belongs to a

single graph. See Figure 11.1 for a visual representation of the IR.

Compared to other representations, our representation is more expressive than

dataflow graphs, and more flexible than SSA or CPS representations which tend to

be rigid about execution order. It is closest to A-normal form (ANF, Flanagan et

al., 1993), where every intermediate computation is assigned a unique name, but it

is graphical rather than syntactic and therefore easier to manipulate algorithmically.

11.3.2 Source transformation

AD can be implemented for this IR using ST with a closure-based method.

We closely follow the approach described in Barak A Pearlmutter and Siskind

(2008). The transformed program constructs a chain of closures during the forward

computation. These closures contain the adjoint code required to compute the

derivatives along with the intermediate variables from the forward pass that are

needed.

The transformation proceeds as follows: Each function call is transformed to

return an additional value, which is a closure called the ‘backpropagator’. The back-

propagator computes the derivative with respect to the inputs given the derivatives

with respect to the outputs. The backpropagators of primitives are known, whereas

the backpropagators of user-defined functions can be easily constructed by calling

the backpropagators of the function calls in the body in reverse order.

In order to ensure that our transformation can be applied again on the trans-

formed program (so we can use reverse-over-reverse to compute second-order deriva-

tives), it must be able to handle functions with free variables. To this end, each

backpropagator will return the partial derivatives with respect to the inputs of the

original function, as well as an ordered set of partial derivatives with respect to

the free variables. The backpropagator of the function that built the closure is

responsible for unpacking these partial derivatives so that it can add contributions

to the free variables that belong to it, this unpacking being the adjoint of closure

creation. Closures are first class functions: when given as inputs of other closures,

117

they are treated like any other input.

11.4 Myia

Myia is a functioning proof of concept of a toolchain that uses the proposed

graph representation i. Myia performs type inference given the input types, and

applies a series of optimizations such as inlining, common expression elimination,

constant propagation, closure conversion, and algebraic simplifications. The final

code can be executed using an interpreter, and we also implemented a prototype

which compiles the straight-line parts of the graph using TVM (T. Chen, Moreau,

et al., 2018).

11.4.1 Python front end

Due to Python’s popularity in the ML community, we feel it is important to

offer a front end in that language. Users can write models in a subset of Python 3.6

and have them compiled to our IR. This requirement is ostensibly at odds with our

IR being pure and strongly typed, for Python is neither of these things. We solve

that apparent contradiction by selecting a pure subset of Python, and running an

advanced type inference algorithm on the functions the user asks to compile. In

that sense, our approach is similar to that of Numba and Cython, or the recently

introduced @script decorator in PyTorch ii. Functions that should be compiled

with Myia are denoted using the @myia decorator, and can be freely mixed with

Python code in the same file.

Most of Python’s features, such as functions, conditionals, and loops, can read-

ily be parsed into our functional representation. However, Python does include

some statements such as index assignment (x[i] = v) and augmented assignment

statements (x += y) which imply mutability. We currently forbid these statements

in Myia, although it may be possible to support principled use of them in the future

through techniques like uniqueness typing (Barendsen and Smetsers, 1993; Vries,

Plasmeijer, and Abrahamson, 2007).

i. Code available at https://github.com/mila-udem/myia
ii. https://pytorch.org/2018/05/02/road-to-1.0.html

119

Myia uses Python’s inspect module to parse the function into an abstract syn-

tax tree (AST), and converts that AST into the graph representation we previously

described. Source transformation as described in Section 11.3.2 is used to generate

the code for derivatives. See Figure 11.1 for an illustration of how a Python func-

tion is parsed into the proposed IR, its adjoint program is created using ST, and

finally optimized to produce an efficient derivative function.

11.4.2 Type inference

Python is a dynamically typed language, but for the sake of optimization and

eager error reporting, it is important to be able to infer concrete types for all

expressions. While it is possible to write optional type annotations in Python 3.6,

they are not widely used in practice, and we wish to minimize the amount of work

one has to do in order to port existing code to Myia.

When a Myia function is called, we use the types of the user-provided arguments

as a starting point for type inference, which allows us to compile a specialized

version of the function for these types. No type annotations are required, even

when using higher order functions such as map or grad. Myia functions can be

polymorphic: Myia will specialize each use of a function according to the input type

signature for that call site. This means users can write highly dynamic programs

just as they are used to in Python, and Myia will check them.

The inferrer operates on an untyped version of the IR. It can infer types as

well as values (constant propagation) and shapes. Inference for other properties

can easily be added in the future. The inferrer is implemented using coroutines:

to infer a certain property through a certain primitive, one may write a coroutine

(async def in Python) that asynchronously requests any number of properties

from any number of nodes and combines the results using arbitrary logic.

11.4.3 Optimization

Reverse mode AD in Myia poses a few specific challenges for optimization that

we have to tackle. As may be seen in Figure 11.1, the AD transform produces

graphs that are substantially larger than the original source. These graphs typically

contain many computations that are not necessary, such as gradients with respect

to constants, and a lot of tuple packing and unpacking. These graphs can be

120

simplified using inlining and local optimizations. Figure 11.1 demonstrates the

resulting simplification.

11.5 Conclusion

In this work we examined the different approaches and techniques used in de-

veloping AD-enabled ML frameworks, drawing insights from functional languages,

graph-based IRs, and AD. To address some of the shortcomings in existing frame-

works, we propose a novel graph-based intermediate representation and describe a

proof of concept toolchain called Myia to show its advantages.

The result is a system that can achieve performance similar to compiled frame-

works such as TensorFlow, while providing the flexibility of OO frameworks such

as PyTorch with e.g. support for recursion and higher-order functions.

We believe that as AD frameworks will slowly move towards being full-fledged

languages and compilers, developers will benefit from building on many other ideas

from these fields. For example, other techniques from functional languages that

could be beneficial include the use of monads to handle random number genera-

tors, and using higher-order functions for kernel programming (similar to Tensor

Comprehensions i).

i. https://facebookresearch.github.io/TensorComprehensions/

121

12 Prologue to Second Article

12.1 Article Details

Tangent: Automatic differentiation using source-code transformation

for dynamically typed array programming.

Van Merriënboer, Bart, Alexander B. Wiltschko, and Dan Moldovan. 2018. In

Advances in Neural Information Processing Systems 31 (NeurIPS 2018), Montréal,

Canada, December 2–8, 2018.

Personal Contribution.

The idea of applying SCT was due to Alex Wiltschko, the second author. As

primary author, I architected and wrote the majority of the Tangent framework. I

conceptualized and implemented the use of persistent arrays in AD.

12.2 Context

Tangent was motivated by similar considerations as the Myia project introduced

in Chapter 10, but does so by adapting traditional tape-based SCT approaches

to Python and ML workloads, which implies handling dynamic typing and array

programming. It was also an exploration of the application of traditional AD

techniques such as source code preprocessors to a deep learning setting with the

aim of discovering application specific problems that have to be addressed.

122

12.3 Contributions

This work introduces Tangent, the first successful application of AD in the form

of a source code preprocessor to a dynamically typed array programming language.

Previous applications of SCT to dynamically typed languages such as Scheme took

the form of compiler plugins or extensions (Siskind and Barak A. Pearlmutter,

2016; Barak A Pearlmutter and Siskind, 2008; Siskind and Barak A Pearlmutter,

2008). As such, Tangent addresses several problems specific to this setting involving

gradient initialization, higher-order differentiation, and dynamic types.

As a result, Tangent is the first framework to successfully separate the reverse

mode AD transformation entirely from the execution of Python code, allowing it

to integrate into the wider Python ecosystem. Tangent focuses in particular on the

CPython interpreter for the Python language, since array programming packages

such as TensorFlow Eager and NumPy are not well supported in other Python

implementations such as PyPy.

Tangent is also one of the first frameworks to propose the use of persistent arrays

in a machine learning context. In the regular use case where a small part of a single

array is repeatedly mutated, persistent arrays can lead to significant speedups. It

must be noted that, like persistent data structures in general, persistent arrays can

be significantly slower in some edge cases (e.g., when two versions of an array are

updated in alternating fashion). This can be seen as trading runtime performance

for lower memory usage. Since Tangent supports both regular and persistent arrays,

the user is able to make decisions regarding these trade-offs.

12.4 Recent Developments

The recent developments in the space of AD frameworks for ML were discussed

in Section 10.4.

In retrospect, the lazy evaluation of zero gradients used by Tangent is similar

to the bold-faced zero used in Barak A Pearlmutter and Siskind (2008).

123

13

Tangent: AD using SCT for
dynamically typed array
programming

13.1 Introduction

Many applications in machine learning rely on gradient-based optimization, or

at least the efficient calculation of derivatives of models expressed as computer

programs. Researchers have a wide variety of tools from which they can choose,

particularly if they are using the Python language (Paszke et al., 2017; Maclaurin,

Duvenaud, and Adams, 2015; Tokui et al., 2015; Al-Rfou et al., 2016; Abadi et al.,

2016). These tools can generally be characterized as trading off research or pro-

duction use cases, and can be divided along these lines by whether they implement

automatic differentiation using operator overloading (OO) or SCT. SCT affords

more opportunities for whole-program optimization, while OO makes it easier to

support convenient syntax in Python, like data-dependent control flow, or advanced

features such as custom partial derivatives. We show here that it is possible to offer

the programming flexibility usually thought to be exclusive to OO-based tools in

an SCT framework.

Tangent is the first AD framework using SCT in a dynamically typed language.

We produce efficient derivatives using a novel combination of multiple dispatch, lazy

evaluation, and static optimizations. Further, Tangent has mutable multidimen-

sional arrays as first class objects, implemented using persistent data structures for

performance in the context of reverse mode AD. By operating directly on Python

source code, Tangent is able to achieve a separation of concerns that other AD

libraries do not. Specifically, we achieve compositionality with tools in the Python

ecosystem, such as debuggers, profilers and other compilers. Tangent makes it easy

and efficient to express machine learning models, and is open source i.

i. Source code and documentation available at https://github.com/google/tangent

124

13.2 Background

Automatic differentiation (AD) is a set of techniques to evaluate derivatives of

mathematical functions defined as programs (Griewank and Walther, 2008), and is

heavily used in machine learning (Baydin, Barak A. Pearlmutter, et al., 2018). It is

based on the insight that the chain rule can be applied to the elementary arithmetic

operations (primitives) performed by the program. This allows derivatives to be

calculated up to machine precision (Naumann, 2012) with only a constant overhead

per operation. AD is different from symbolic differentiation (which applies to math-

ematical expressions instead of programs) and numerical differentiation (where the

gradient is approximated using finite differences).

For multidimensional functions, f : Rn → Rm, where f is a composition of

primitives with known derivatives, the application of the chain rule results in a

series of matrix-vector multiplications involving the primitives’ Jacobians and par-

tial derivatives of intermediate values. The order in which these multiplications

are evaluated determines the runtime complexity. Forward-mode AD evaluates

the chain rule from inside to outside and is efficient for functions where m > n.

The implementation of forward mode is relatively straightforward, since the partial

derivatives are evaluated in step with the primitives. Forward mode is commonly

implemented by replacing numbers with dual numbers, which can be interpreted as

a variable’s value along with its partial derivative with respect to one of the inputs.

Reverse-mode AD, where the chain rule is evaluated from outside to inside, is more

efficient in the case where n > m. Reverse mode is more complex to implement

because evaluation of the partial derivatives requires reversing the execution order

of the original program. This reversal gives rise to a non-local program transfor-

mation where the beginning of the original program interacts with the generated

derivative program.

Two methods of implementing reverse-mode AD are commonly distinguished:

operator overloading (OO) and source code transformation (SCT). In the OO ap-

proach primitives are overloaded so that at runtime each numerical operation is

logged onto a tape (a linear trace) along with its inputs. The chain rule can then

be evaluated by walking this tape backward. SCT, on the other hand, explicitly

transforms the original program (primal) prior to execution to produce a separate

derivative function (adjoint) whose control flow is the reverse of the original pro-

125

gram. Both approaches have different implementation, performance, and usability

trade-offs (C. H. Bischof and Bücker, 2000).

OO is easier to implement and since it only requires tracing, it naturally sup-

ports all the features of the host language such as higher-order functions, recursion,

and classes. If the control flow of the program is data dependent, the function must

be retraced for each function call, which can cause significant overhead when the

runtime of the primitives is small compared to the cost of tracing. Since the adjoint

program is run by a separate ‘derivative interpreter’ (the algorithm that walks the

tape in reverse), there is no adjoint program that can be inspected, optimized or

compiled.

SCT is harder to implement, since it requires tooling to transform intermediate

representations of computer programs. Further, the AD tool must explicitly sup-

port all of the features of the host language, including function calls, loops, classes,

etc. If a language feature is not explicitly handled by the AD system, the user

cannot take derivatives of code using those features. For some languages like C

and C++ this requires a separate toolchain, but reflective languages such as Lisp

and Python contain the necessary tools to capture, transform, and output program

representations. The advantage of SCT is that there is no runtime overhead, and

that generated derivative code can be statically analyzed and optimized.

13.3 Prior work

AD packages using either approach have long existed for, e.g., C, C++, For-

tran, (see Baydin, Barak A. Pearlmutter, et al., 2018, for an overview) and have

been used in fields such as computational fluid dynamics, atmospheric sciences,

and astronomy. In the machine learning community different needs have led to the

development of a separate set of tools. In particular, the community has a strong

attachment to Python and its models rely heavily on multidimensional arrays.

Theano (Al-Rfou et al., 2016) and TensorFlow (Abadi et al., 2016) are two

popular machine learning frameworks with support for SCT AD. Although Python-

based, they do not perform AD on the Python code. Instead, Python is used as

a metaprogramming language to define a dataflow graph (computation graph) on

which SCT is performed. Since these dataflow graphs only operate on immutable

126

values and do not have function calls or lexical scoping, the AD logic is simplified.

The same graph representation is then used for static analysis, optimizations, and

code generation.

OO has been used to implement AD in Python in packages such as Auto-

grad (Maclaurin, Duvenaud, and Adams, 2015), Chainer (Tokui et al., 2015), and

PyTorch (Paszke et al., 2017).

Although OO frameworks are easier to implement, their runtime performance

falls short of that of frameworks using SCT for workloads that do not spend most

of their time in hand-optimized compute primitives. On the other hand, existing

frameworks that use SCT require the user to metaprogram computation graphs,

significantly complicating the definition of ML models. Tangent applies SCT di-

rectly on the Python language in order to combine the performance achieved by

SCT with the usability of programming directly in Python.

13.4 Features

Tangent supports reverse mode and forward mode, as well as function calls,

loops, and conditionals. Higher-order derivatives are supported, and reverse and

forward mode can readily be combined. To our knowledge, Tangent is the first SCT-

based AD system for Python and moreover, it is the first SCT-based AD system for

a dynamically typed language. As a consequence of performing SCT directly on the

Python source code, the generated programs can be run, inspected, profiled, and

debugged with standard Python tools. Tangent supports array programming on

both CPU and GPU through the NumPy (Oliphant, 2006) and TensorFlow Eager

libraries. A modular design makes it possible to extend Tangent to support other

numeric libraries.

The ability to write code directly in Python makes Tangent less verbose and

more idiomatic than the metaprogramming approach used by Theano and Tensor-

flow (see Listing 13.1a). Moreover, the metaprogrammed code requires a separate

compiler and/or runtime, separate debugging tools, etc.

The OO approach can be problematic for debugging and usability as well as

performance (see Listing 13.2). When an adjoint function grad(f) is called, the

127

x = tf.placeholder(tf.float32)

y = x * x

dx, = tf.gradients(y, x)

with tf.Session() as sess:

dx_ = sess.run(

dx, feed_dict={x: 3})

def f(x):

return x * x

df = grad(f)

dx = df(3)

(a) TensorFlow requires the programmer to define
the variable x as part of the dataflow graph. After
the program (dataflow graph) has been constructed,
its evaluation must be triggered by creating a ses-
sion and providing values for the arguments.

(b) Tangent and libraries such as Autograd allow
the user to write pure Python.

Listing 13.1 – Comparison between metaprogramming and direct programming approaches.

function f is executed with non-standard semantics, since each function and opera-

tor has been overloaded to log onto a tape, after which the tape is walked in reverse

using a loop that is internal to the framework. This means that each function call

incurs tracing overhead, and errors that occur during execution will potentially

have tracebacks involving tracing logic that can be hard for a user to decipher.

def f(x):

while x < 10000:

x = x + 1

return x

Listing 13.2 – In the case that x is
a scalar, this trivial program and its
derivative contain a tight loop. Since
it does not require tracing, Tangent’s
derivative of this function is approx-
imately 30% faster than PyTorch’s,
even though PyTorch is given type in-
formation about x whereas Tangent’s
derivative is dynamically typed.

Generated gradient function

def dfdx(x, by=1.0):

Grad of: y = x * x

_bx = tangent.unbroadcast(by * x, x)

_bx2 = tangent.unbroadcast(by * x, x)

bx = _bx

bx = tangent.add_grad(bx, _bx2)

return bx

Listing 13.3 – Source code of the gradient of
def f(x): return x * x in Tangent. The un-

broadcast function is responsible for reversing the
broadcasting performed by NumPy when performing
element-wise operations on differently-sized multidi-
mensional arrays.

The adjoint code generated by Tangent is regular Python (see Listing 13.3),

which means that it can be debugged using standard debuggers such as pdb, profiled

using, e.g., line_profiler, optimized by JIT compilers such as Numba (Lam,

Pitrou, and Seibert, 2015) and Pythran (Guelton et al., 2015). The adjoint code

can readily be inspected by users, and Tangent tries to ensure that is human-

128

readable and commented, which is useful for debugging as well as for didactic

purposes.

Unlike most existing ML frameworks, arrays in Tangent are mutable without

incurring unnecessary performance loss (see Section 13.5.4 for implementation de-

tails).

13.4.1 Backward pass inlining

Many algorithms use approximations or modifications of the gradient. For ex-

ample, for performance reasons recurrent neural networks (RNNs) are often trained

using truncated backpropagation through time (Ronald J Williams and Peng, 1990)

(TBPTT) and/or gradient clipping (Razvan Pascanu, Mikolov, and Y. Bengio,

2013). In other cases, custom gradients are used to train models with discontinu-

ous functions (e.g. straight-through estimators) or for many other applications (Y.

Bengio, Léonard, and Courville, 2013; Ganin et al., 2016; Oord, Vinyals, and

Kavukcuoglu, 2017; Heess et al., 2015; Jang, Gu, and Poole, 2017; Nøkland, 2016;

Lillicrap et al., 2016). A user might also be interested in accessing the values of

gradients for logging or debugging.

Existing AD frameworks support this functionality by allowing the user to define

custom adjoints for functions. Tangent provides this functionality as well, but uses

Python’s context manager syntax to introduce a second, novel way of allowing the

user to inject arbitrary code into the gradient computation (see Listing 13.4). We

believe this syntax provides a more succinct and readable way of modifying the

adjoint code in many cases.

13.5 Implementation

Tangent uses Python’s built-in machinery to inspect and transform the ab-

stract syntax tree (AST) of parsed source code. AD can be performed line by

line Griewank and Walther, 2008, Proposition 4.2. Hence, for each piece of sup-

ported Python syntax we have implemented a rule indicating how to rewrite an AST

node into its primal and adjoint. We have defined adjoints for e.g. mathematical op-

erators, function calls to NumPy methods, and constructs such as if-statements and

129

Original function

def f(x):

with insert_grad_of(x) as dx:

if dx > 10:

print('Clipping', dx)

dx = 10

return x * x

Generated gradient function

def dfdx(x, bx_times_x=1.0):

x_times_x = x * x

Grad of: dx = 10

_bx = tangent.unbroadcast(

bx_times_x * x, x)

_bx2 = tangent.unbroadcast(

bx_times_x * x, x)

bx = _bx

bx = tangent.add_grad(bx, _bx2)

Inserted code

if bx > 10:

print('Clipping', bx)

bx = 10

return bx

Listing 13.4 – Gradient clipping implemented using Tangent. The code inside of the context
manager is inserted directly into the derivative function.

for-loops. The adjoints are defined using a custom template programming syntax

(see Listing 13.5) which makes it easy for users to add new or custom derivatives.

Templates are Python functions

@adjoint(numpy.multiply)

def adjoint_multiply(z, x, y):

d[x] = y * d[z]

d[y] = x * d[z]

If the primal contains...

c = numpy.multiply(a, b)

...Tangent will expand the template...

new_ast = tangent.template.replace(

adjoint_multiply,

z='c', x='a', y='b')
...generating the following adjoint

b_a = b * b_c

b_b = a * b_c

Listing 13.5 – Tangent’s source generation uses templating. The template takes the form of a
Python function which is parsed into its AST. The variable names in the AST are substituted
and variables for the partial derivatives are constructed, before the AST is inserted into the code
of the adjoint function.

Generated derivative code is constructed using the built-in Python AST. The

alternative program representations are Python bytecode, which changes across

Python versions, and a formatting-aware AST used in the Python 2-to-3 conversion

tool, 2to3, which has little tooling and is more cumbersome to use. We acquire and

manipulate the Python AST with the inspect and ast modules from the standard

library, and standardize small differences between the Python 2 and Python 3 AST

with gast and use astor to invert ASTs into readable source code.

To support dynamic typing and array programming while maintaining efficiency,

130

Tangent relies on a novel combination of multiple dispatch, lazy evaluation, persis-

tent data structures, and static optimizations.

13.5.1 Multiple dispatch

Python is a dynamic language which uses dynamic typing, late binding and op-

erator overloading. These fundamental features of the language make it impossible

to determine ahead of time how a statement will be executed, which means it is

impossible to determine ahead of time what the adjoint program should be. Instead

of enforcing static types (for example by using type annotations and MyPy i), Tan-

gent embraces late binding and generates adjoints that will use the runtime types

to determine what derivative computation to execute.

For example, x * y where x and y are scalars at runtime results in a scalar

multiplication. However, if either of the two variables is a NumPy ndarray ob-

ject, the multiplication operator is dispatched to perform broadcasting followed by

element-wise multiplication. The adjoint of this operation requires summing over

the broadcasted axes. Tangent will generate code that uses type checking to ensure

that the correct adjoint calculation is performed based on the runtime types.

Similarly, the initialization and addition of gradients cannot be generated stat-

ically. We introduce add_grad and init_grad operators which use multiple dis-

patch. For example, init_grad(x) will return 0 if x is a scalar, but will return

numpy.zeros_like(x) if x is an ndarray.

13.5.2 Lazy evaluation

A common performance bottleneck in the context of AD and array programming

is that initializing the gradient of a large array results in allocating a large zero ar-

ray. When gradients are accumulated later on this large array of zeros is added to a

partial gradient, which is effectively a no-op. In general, the gradient initialization

and addition might happen in different functions, making it non-trivial to stati-

cally optimize this case. To address this issue, Tangent lazily initializes gradients:

Instead of allocating an array of zeros, Tangent returns a special ZeroGrad object.

The add_grad operator uses multiple dispatch to return the other argument when

either argument is of the type ZeroGrad.

i. http://mypy-lang.org/

131

13.5.3 Static optimizations

When constructing the adjoint of a function, some of the code of the forward

pass might become dead code. The opportunity for removing unused code only

grows when taking higher order derivatives. One of the advantages of SCT is

that the resulting code can be optimized by an optimizing compiler whose dead

code elimination (DCE) pass would address this problem. However, Python is an

interpreted language, and very few optimizations are applied before its execution.

For this reason, Tangent includes a small Python optimizing compiler toolchain

which constructs a control-flow graph (CFG) on which forward dataflow analysis

is performed. Tangent uses this to perform dead code elimination on generated

adjoints. The same machinery is used to perform algebraic simplifications and

constant propagation. Note that although these optimizations are hard to perform

on Python in general, we can exploit the fact that Tangent operates on a more

limited subset of Python which is more amenable to analysis (see Section 13.6 for

details).

Note that these optimizations are aimed at removing dead code or simplifying

trivial expressions (such as multiplication by 1) generated by the AD algorithm.

Unlike frameworks such as XLA and TVM (T. Chen, Moreau, et al., 2018), we

expressly do not attempt to optimize the numerical kernels themselves. Since

Tangent outputs regular Python code, functions can be passed to an optimizing

Python compiler such as Numba for this purpose.

A central problem in reverse mode AD is that intermediate values are required

to be kept alive after they go out of scope since they might be needed by their

adjoint. For example, if a function contains z = x * y the variables x and y cannot

be deleted after the function returns since the backward pass requires their values

to calculate dx = dz * y and dy = dz * x. Tangent, like most SCT frameworks,

uses a global stack (tape) to store intermediate variables on in order to ensure

they are kept alive. Hence, before the function returns, x and y are pushed onto

this stack and they will be popped off the stack right before the adjoint calculation.

Note that the trace used in OO is also referred to as a tape, the difference being that

the tape in OO stores not only the intermediate variables, but also the operations

performed.

In order to perform DCE effectively on the generated code, our dataflow analysis

follows variable uses through their respective pushes (reads) and pops (writes) in

132

Raw generated code

def dfdx(x, by=1.0):

Initialize the tape

_stack = tangent.Stack()

y = None

Beginning of forward pass

tangent.push(_stack, y, '_19429e9f')
y = x

Beginning of backward pass

_y = y

Grad of: y = x

y = tangent.pop(_stack, '_19429e9f')
_bx = tangent.copy(by)

by = tangent.init_grad(y)

bx = _bx

return bx

Optimized generated code

def dfdx(x, by=1.0):

y = x

Grad of: y = x

_bx = tangent.copy(by)

bx = _bx

return bx

Listing 13.6 – A simple example of Tangent’s optimization capabilities as applied to the gradient
function of def f(x): y = x; return y. Note that the original transformation includes the
writing and reading of y to and from the tape, and contains dead code in initializing the gradient
of y which is never returned. Tangent’s dataflow analysis is able to match the tape reads and
writes and understands that the value of y is the same, allowing it to aggressively optimize the
function.

the primal and adjoint code. This highlights the close interaction required between

the optimizing compiler and the AD machinery for maximum performance. To

enable the dataflow analysis to match reads and writes they are augmented in the

source code with unique hashes (see Listing 13.6).

13.5.4 Persistent data structures

AD is problematic in the context of mutability. If x and y from the previous

example are mutable arrays, their value could have been changed by an in-place

operation, resulting in an incorrect adjoint calculation. For this reason, arrays are

in principle immutable in existing AD frameworks for ML such as TensorFlow, Au-

tograd, and Theano. PyTorch allows users to mutate arrays if they can guarantee

that the previous version will not be needed by the backward pass, otherwise an

error will be thrown. This makes algorithms which rely on mutating arrays in place

inefficient and difficult to express.

Persistent data structures (Driscoll et al., 1989) are data structures that are

133

100 300 500 700 900
0

2

4

6

8

Outer loop length (iterations)

R
u
n
ti
m
e
(s
) Immutable arrays

Persistent array

def f(x, OUTER):

r = numpy.zeros(DIM)

for _ in range(OUTER):

x = append(x, r)

for _ in range(INNER):

y = numpy.add(x[-1], 1.)

x = setitem(x, -1, y)

return numpy.mean(x)

Listing 13.8 – Runtime for a simplified version of a lattice language model with dimension 2000
and inner loop of 15 iterations. Results are an average of 10 runs.

dimensionality of d, the complexity of this algorithm is O(n2md) for immutable

arrays. When using regular NumPy arrays, Tangent will intelligently handle index

assignments and only copy the affected subarray onto the tape, bringing the com-

plexity down to O(n2d + ndm). When a persistent array is used, the complexity

goes down to O(ndm). When using persistent arrays, Tangent’s runtime and mem-

ory complexity is determined only by the amount of data that is inserted, deleted

or modified. In contrast, most libraries will have the gradient’s runtime and mem-

ory complexity grow linearly with the number of times an array is modified. The

technique described in Rae et al. (2016) for memory-augmented networks is also a

special case of using persistent arrays.

13.6 Limitations

SCT relies on the ability to perform dataflow analysis to determine which vari-

ables are ‘active’ i.e. which variables affect the output of the function whose deriva-

135

tive we are constructing. To this end, Tangent is restricted to a subset of Python

where these analyses are feasible. Note that these restrictions only apply to state-

ments involving active variables.

1. Functions that modify a variable in-place must also return that variable.

Hence, numpy.add(a, b, out=a) is disallowed and should be written as

a = numpy.add(a, b). Likewise, a user-defined function that modifies x

in-place using x[i] = v, must have x as a returned value.

2. Closures are not supported since closures with free variable references lead

to a problem sometimes referred to as ‘perturbation confusion’ (Siskind and

Barak A Pearlmutter, 2005), which is non-trivial to address. Additionally,

Python uses lexical, not dynamic scoping, so writing adjoint values into the

same scope where primal values are read is not straightforward.

3. Object methods are not currently supported because it is non-obvious what

the partial derivative with respect to a member variable is.

4. In order to perform AD, the function and its source code must be resolvable

at the time that the AD transformation is applied. This means that higher-

order functions and nested function definitions are not supported. Tangent

could apply additional AD passes at runtime to avoid this limitation.

5. Some Python syntax is not (yet) supported i e.g. try and except statements,

as well as break and continue.

If the return value of a function is not used, it is assumed that its inputs were

unchanged. This allows statements such as print(numpy.mean(x)) to be used

without interfering with the AD transformation.

13.7 Performance

Tangent was not designed with raw performance in mind. Instead, it intends

to strike a balance between usability and good software design practices, while

i. For an up to date overview of supported AST nodes please refer to the code in tan-

gent/fence.py.

136

26 27 28 29 210 211 212 213
10−4

10−3

10−2

10−1

Model size

S
ec
on

d
s
p
er

b
at
ch

(s
)

Tangent
Autograd
TensorFlow

def logsumexp(x):

return numpy.log(numpy.sum(numpy.exp(x),

axis=-1, keepdims=True))

def logsoftmax(logits):

return logits - logsumexp(logits)

def softmax_xent(logits, y):

return -numpy.sum(

logsoftmax(logits) * y, axis=-1)

def mlp(x, w1, b1, wout, bout, label):

h1 = numpy.tanh(numpy.dot(x, w1) + b1)

out = numpy.dot(h1, wout) + bout

loss = numpy.mean(softmax_xent(out,label))

return loss

autograd_dmlp = autograd.multigrad(

mlp, argnums=(1, 2, 3, 4))

tangent_dmlp = tangent.grad(

mlp, wrt=(1, 2, 3, 4))

Listing 13.9 – Runtime for a simple feedforward neural network with a single hidden layer. We
vary the input size and hidden layer size, which are set to the same value. The reported runtime
is averaged over 50 runs with a batch size of 16. Run on a Xeon E5-1650 v3 @ 3.5 GHz, 64GB
of RAM, with Ubuntu 14.04 on Python 2.7 with MKL. Note that for sufficiently large models
the runtime of the numerical kernels dominates, which means that the frameworks have similar
runtimes irrespective of their AD implementation.

exploring the feasibility and implementation details of applying SCT to dynami-

cally typed languages. That said, Tangent’s lack of runtime overhead combined

with static optimizations and lazy gradient initialization means that its runtime

performance is competitive with existing frameworks (see Listing 13.9).

13.8 Conclusion

In this work we introduced the AD library Tangent. Tangent is the first ap-

plication of source-code transformation on a dynamically typed language such as

Python. It uses several novel approaches, such as persistent data structures and

137

lazy evaluation to ensure good performance. Machine learning models are natu-

ral and easy to express and debug in Tangent using many features that are not

available in other frameworks e.g. mutable arrays, inspectable derivative code, and

modifying gradients by injecting arbitrary code in the backward pass.

We believe Tangent is an important step on the path to fully general differ-

entiable programming. Instead of an ML-framework, Tangent can be seen as the

addition of the gradient operator to the Python language, without the need for

metaprogramming or separate derivative interpreters (OO). This means that the

user can write normal Python code while the entire Python ecosystem including

debuggers, profilers, and introspection capabilities, become part of the ML toolkit.

This allows users to express models more naturally and debug them more easily.

Appendix: Performance

In the performance comparison between Tangent, Autograd, and TensorFlow

Eager, it should be considered that the performance of a machine learning frame-

work consists of several components.

Numerical kernels The actual numerical computation is performed by third-

party libraries. TensorFlow Eager uses the Eigen numerical library, whereas

Tangent and Autograd are linked to BLAS libraries through NumPy. The

runtime of these kernels will dominate for large models with relatively few

primitives.

Overhead A variety of implementation details can impact the performance. For

example, frameworks that are written using CPython’s C-API can have sig-

nificant overhead if they repeatedly release and acquire the global interpreter

lock (GIL). For very small models, this cost can easily dominate. On the

other hand, libraries such as TensorFlow Eager can perform the backward

pass entirely outside of the Python interpreter. In the case of long-running

models, this can lead to significant speedups.

AD implementation Naive AD implementations can display bad performance,

e.g., when explicitly initializing zero arrays, not reusing buffers of partial

derivatives, or having inefficient gradients of primitives defined.

138

26 27 28 29 210 211
10−2

10−1

Input and model size

S
ec
on

d
s
p
er

ex
am

p
le

(s
)

Tangent
Autograd
TensorFlow

Figure 13.1 – Runtime for a simple Elman RNN where the network receives a single input at
time step t = 1, and produces a single softmax prediction at time step t = 128. The benchmark
was run on a MacBook Pro (15 inch, 2017 model) with a 2.8 GHz Intel Core i7 using a batch size
of 16 and the OpenBLAS library. Results were averaged over 10 runs.

When considering Tangent’s performance, we are primarily interested in show-

ing that its AD transformation does not give rise to unnecessary slowdowns. The

original benchmarks in the paper highlight that this is indeed the case.

Additional benchmarks show that these performance results should not be in-

terpreted as Tangent consistently outperforming other frameworks. In Figure 13.1

we can see that for larger models TensorFlow Eager outperforms Autograd and

Tangent, which perform identically. This could be because Eigen outperforms the

OpenBLAS library in this case, or possibly because TensorFlow Eager’s execution

engine in C++ is faster than the Python-based backward pass in Tangent and

Autograd.

The results in Figures 13.1 and 13.2 suggest that for models where the numerical

kernels do not dominate, the three frameworks can often perform identically.

139

26 27 28 29 210 211
10−2

10−1

Input size

S
ec
on

d
s
p
er

ex
am

p
le

(s
)

Tangent
Autograd
TensorFlow

Figure 13.2 – Runtime for a simple autoencoder using an L2 loss and a hidden dimension of 16.
The benchmark was run on a MacBook Pro (15 inch, 2017 model) with a 2.8 GHz Intel Core i7
using a batch size of 16 and the OpenBLAS library. Results were averaged over 10 runs.

140

14 Discussion

The first set of articles presented in this thesis represent a natural scientific

progression.

The first article squarely aims to push the boundaries of neural networks on the

task of machine translation. This endeavor was very successful. Neural networks

are now the industry standard for machine translation. Moreover, it led to the

development of new architectures such as sequence-to-sequence models and gated

recurrent units. Deep learning has seen several other endeavors which aim solely to

achieve state-of-the-art performance on specific tasks such as ImageNet (Krizhevsky,

Sutskever, and Geoffrey E Hinton, 2012) or Go (Silver et al., 2016).

However, achieving good performance on a specific task is engineering rather

than science if we do not ask the question ‘Why?’ The second article in this thesis

asks this question and aims to improve our understanding of the behaviour and lim-

itations of sequence-to-sequence models. We should aim to use this understanding

not only to improve our models’ performance on specific tasks, but also to simplify

our models and make them more generally applicable. The third article seeks to

achieve exactly this by removing some of the common tokenization preproccessing

steps used in language and translation models.

Much room remains for future research in machine translation and language

modelling. Neural language models still have difficulty dealing with low frequency

words and long-range dependencies. Moreover, the application of sequence models

in different domains (e.g., gene sequences) represents a new set of challenges in

terms of sequence length and tokenization that will be exciting to explore.

As discussed in the first article, many state-of-the-art neural network models

are computationally intensive. To make training of these models feasible, a wide

range of highly specialized kernels, frameworks, and software packages has been

developed. For example, our machine translation research led us to develop the

GroundHog library i and subsequently the Blocks and Fuel libraries (Van Merriën-

i. https://github.com/lisa-groundhog/GroundHog

141

boer et al., 2015). In general, the need for fast computation in deep learning has

resulted in the development of highly specialized tools. However, this can be a

hindrance to the development of novel models: If a model cannot readily be ex-

pressed in an existing framework, a significant amount of low-level programming

can be required to implement a model efficiently. The third article in this thesis is

an example of this.

The desire to develop a set of tools which is simultaneously performant, usable,

and general purpose enough for cutting-edge machine learning research is what

drives the research presented in the second half of this thesis. A lot of work re-

mains in this space, as deep learning presents a unique combination of requirements.

Practitioners desire high-level interfaces in dynamic languages such as Python to

be able to iterate quickly over models, but simultaneously want their code to be

executed efficiently on accelerators. In addition, machine learning requires full

program transformations such as automatic differentiation and vectorization. So-

lutions for many of these components exist, but a single stack that integrates all of

these parts has yet to emerge.

Acknowledgments

I would like to thank my advisor, prof. Yoshua Bengio, whose passion for science

and research is an inspiration, and who supported my research even as I changed

research directions repeatedly.

Thanks also goes to my parents, Jeroen van Merriënboer and Ankie Hersbach,

and my siblings who have always supported and encouraged me in my academic

studies. I would also like to thank my partner, Julio Méndez, for being patient and

supporting throughout even the most stressful periods of my studies.

This thesis also would not have been possible without my collaborators, my

internship hosts, my thesis committee, and the many students and researchers I

crossed paths and had fruitful discussions with at Mila, Facebook, Twitter and

Google.

142

Bibliography

Abadi, Mart́ın et al. (Nov. 2016). “TensorFlow: A System for Large-Scale Ma-

chine Learning.” In: Proceedings of the 12th USENIX Symposium on Operat-

ing Systems Design and Implementation (Savannah, Georgia, USA, Nov. 2–4,

2016), pp. 265–283. url: https://www.usenix.org/conference/osdi16/

technical-sessions/presentation/abadi.

Akidau, Tyler et al. (Aug. 2015). “The dataflow model: a practical approach to

balancing correctness, latency, and cost in massive-scale, unbounded, out-of-

order data processing”. In: Proceedings of the VLDB Endowment 8.12. Ed. by

Chen Li and Volker Markl, pp. 1792–1803. url: http://www.vldb.org/pvldb/

vol8/p1792-Akidau.pdf.

Auli, Michael et al. (Oct. 2013). “Joint Language and Translation Modeling with

Recurrent Neural Networks”. In: Proceedings of the 2013 Conference on Em-

pirical Methods in Natural Language Processing (Seattle, Washington, USA).

Ed. by David Yarowsky et al., pp. 1044–1054. url: http://aclweb.org/

anthology/D13-1106.

Axelrod, Amittai, Xiaodong He, and Jianfeng Gao (2011). “Domain Adaptation

via Pseudo In-Domain Data Selection”. In: Proceedings of the 2011 Conference

on Empirical Methods in Natural Language Processing (Edinburgh, Scotland,

UK, July 27–31, 2011). Ed. by Regina Barzilay and Mark Johnson, pp. 355–362.

url: http://aclweb.org/anthology/D11-1033.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E Hinton (2016). Layer normal-

ization. arXiv: 1607.06450.

Bahdanau, Dzmitry, KyungHyun Cho, and Yoshua Bengio (2015).“Neural Machine

Translation by Jointly Learning to Align and Translate”. In: Proceedings of

the 2015 International Conference on Learning Representations (San Diego,

California, USA, May 7–9, 2015). arXiv: 1409.0473.

Barendsen, Erik and Sjaak Smetsers (1993). “Conventional and uniqueness typing

in graph rewrite systems”. In: Proceedings of the 13th Conference on Foun-

143

dations of Software Technology and Theoretical Computer Science (Bombay,

India, Dec. 15–17, 1993). Ed. by Rudrapatna K. Shyamasundar. Berlin and

Heidelberg, pp. 41–51. doi: 10.1007/3-540-57529-4_42.

Bastien, Frédéric et al. (2012). Theano: new features and speed improvements. Pre-

sented at the Deep Learning and Unsupervised Feature Learning NIPS 2012

Workshop. arXiv: 1211.5590.

Baydin, Atılım Güneş, Barak A. Pearlmutter, et al. (Apr. 2018). “Automatic dif-

ferentiation in machine learning: a survey”. In: Journal of Machine Learning

Research 18.153, pp. 1–43. url: http://jmlr.org/papers/v18/17-468.html.

Baydin, Atılım Güneş, Barak A Pearlmutter, and Jeffrey Mark Siskind (2016). Diff-

Sharp: An AD Library for .NET Languages. Presented at the 7th International

Conference on Algorithmic Differentiation. arXiv: 1611.03423.

Behnel, Stefan et al. (Mar.–Apr. 2011). “Cython: The best of both worlds”. In:

Computing in Science & Engineering 13.2, pp. 31–39. doi: 10.1109/MCSE.

2010.118.

Bell, Bradley M (2003). CppAD: a package for C++ algorithmic differentiation.

url: https://coin-or.github.io/CppAD/.

Bengio, Samy et al. (2015).“Scheduled sampling for sequence prediction with recur-

rent neural networks”. In: Advances in Neural Information Processing Systems

28 (Montréal, Canada, Dec. 7–12, 2015). Ed. by Corinna Cortes et al., pp. 1171–

1179. url: https://papers.nips.cc/paper/5956-scheduled-sampling-

for-sequence-prediction-with-recurrent-neural-networks.

Bengio, Yoshua (2009). “Learning Deep Architectures for AI”. In: Foundations and

Trends in Machine Learning 2.1, pp. 1–127. doi: 10.1561/2200000006.

Bengio, Yoshua, Nicolas Boulanger-Lewandowski, and Razvan Pascanu (2013).

“Advances in Optimizing Recurrent Networks”. In: Proceedings of the 2013 IEEE

International Conference on Acoustics, Speech and Signal Processing (Vancou-

ver, British Columbia, Canada, May 26–31, 2013). doi: 10.1109/ICASSP.2013.

6639349.

Bengio, Yoshua, Aaron Courville, and Pascal Vincent (2013).“Representation Learn-

ing: A Review and New Perspectives”. In: IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence 35.8, pp. 1798–1828. doi: 10.1109/TPAMI.2013.

50.

144

Bengio, Yoshua, Réjean Ducharme, et al. (2003). “A neural probabilistic language

model”. In: Journal of Machine Learning Research 3.Feb, pp. 1137–1155. url:

http://www.jmlr.org/papers/v3/bengio03a.html.

Bengio, Yoshua, Nicholas Léonard, and Aaron Courville (2013). Estimating or

Propagating Gradients Through Stochastic Neurons for Conditional Computa-

tion. arXiv: 1308.3432.

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994). “Learning Long-Term

Dependencies with Gradient Descent is Difficult”. In: IEEE Transactions on

Neural Networks 5.2, pp. 157–166. doi: 10.1109/72.279181.

Bergstra, James et al. (2010). “Theano: a CPU and GPU Math Expression Com-

piler”. In: Proceedings of the 9th Python in Science Conference (Austin, TX,

June 28–July 3, 2010). Ed. by Stéfan van der Walt and Jarrod Millman, pp. 3–

10. url: http://conference.scipy.org/proceedings/scipy2010/bergstra.

html.

Bischof, Christian H and H Martin Bücker (2000). “Computing derivatives of com-

puter programs”. In: Modern Methods and Algorithms of Quantum Chemistry.

Proceedings, Second Edition (Jülich, Germany, Feb. 21–25, 2000). Vol. 3. Jülich,

pp. 315–327. url: http://juser.fz-juelich.de/record/44658.

Bischof, Christian et al. (1996). “ADIFOR 2.0: Automatic differentiation of Fortran

77 programs”. In: IEEE Computational Science and Engineering 3.3, pp. 18–32.

doi: 10.1109/99.537089.

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Infor-

mation Science and Statistics. Springer-Verlag. isbn: 978-0-387-31073-2.

Bojanowski, Piotr, Edouard Grave, et al. (2017). “Enriching word vectors with

subword information”. In: Transactions of the Association for Computational

Linguistics 5. Ed. by Hinrich Schutze, pp. 135–146. url: http://aclweb.org/

anthology/Q17-1010.

Bojanowski, Piotr, Armand Joulin, and Tomáš Mikolov (2016). “Alternative struc-

tures for character-level RNNs”. In: Proceedings of the 2016 International Con-

ference on Learning Representations. Workshop Track (San Juan, Puerto Rico,

May 2–4, 2016). url: https://openreview.net/forum?id=wVqzL1ypocG0qV7mtLqm.

Boulanger-Lewandowski, Nicolas, Yoshua Bengio, and Pascal Vincent (2013). “Au-

dio Chord Recognition with Recurrent Neural Networks”. In: Proceedings of the

14th International Society for Music Information Retrieval Conference (Cu-

145

ritiba, Brazil, Nov. 4–8, 2013). Ed. by Alceu de Souza Britto Jr., Fabien Gouyon,

and Simon Dixon, pp. 335–340. url: http://www.ppgia.pucpr.br/ismir2013/

wp-content/uploads/2013/09/243%5C_Paper.pdf.

Bridle, John S (1990). “Probabilistic interpretation of feedforward classification

network outputs, with relationships to statistical pattern recognition”. In: Neu-

rocomputing. Algorithms, Architectures and Applications. Proceedings of the

NATO Conference on Neurocomputing (Les Arcs, France, Feb. 1989). Ed. by

Françoise Fogelman Soulié and Jeanny Hérault. Vol. 68. NATO ASI Series.

Berlin and Heidelberg, pp. 227–236. doi: 10.1007/978-3-642-76153-9_28.

Bryson, Arthur E and Walter F Denham (1962). “A steepest-ascent method for

solving optimum programming problems”. In: Journal of Applied Mechanics

29.2, pp. 247–257. doi: 10.1115/1.3640537.

Buckman, Jacob and Graham Neubig (2018). “Neural Lattice Language Models”.

In: Transactions of the Association for Computational Linguistics 6. Ed. by

Holger Schwenk, pp. 529–541. url: https://transacl.org/ojs/index.php/

tacl/article/view/1261.

Chan, William et al. (2017). “Latent sequence decompositions”. In: Proceedings

of the 2017 International Conference on Learning Representations (Toulon,

France, Apr. 24–26, 2017). url: https : / / openreview . net / forum ? id =

SyQq185lg.

Chandar A P, Sarath et al. (2014). “An Autoencoder Approach to Learning Bilin-

gual Word Representations”. In: Advances in Neural Information Processing

Systems 27 (Montréal, Canada, Dec. 8–13, 2014). Ed. by Zoubin Ghahramani

et al., pp. 1853–1861. url: https://papers.nips.cc/paper/5270- an-

autoencoder-approach-to-learning-bilingual-word-representations.

Chen, Stanley F. and Joshua T. Goodman. (1996).“An Empirical Study of Smooth-

ing Techniques for Language Modeling”. In: 34th Annual Meeting of the Asso-

ciation for Computational Linguistics. Proceedings of the Conference (Santa

Cruz, California, USA, June 24–27, 1996), pp. 310–318. url: http://aclweb.

org/anthology/P96-1041.

Chen, Tianqi, Mu Li, et al. (2015).MXNet: A Flexible and Efficient Machine Learn-

ing Library for Heterogeneous Distributed Systems. Presented at the NIPS 2015

Workshop on Machine Learning Systems. arXiv: 1512.01274.

146

Chen, Tianqi, Thierry Moreau, et al. (2018). “TVM: An Automated End-to-End

Optimizing Compiler for Deep Learning”. In: Proceedings of the 13th USENIX

Symposium on Operating Systems Design and Implementation (Carlsbad, Cal-

ifornia, USA, Oct. 8–10, 2018), pp. 578–594. url: https://www.usenix.org/

conference/osdi18/presentation/chen.

Cho, KyungHyun et al. (2014).“Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation”. In: Proceedings of the 2014 Con-

ference on Empiricial Methods in Natural Language Processing (Doha, Qatar,

Oct. 25–29, 2014).

Choromanska, Anna et al. (2015). “The loss surface of multilayer networks”. In:

Proceedings of the Eighteenth International Conference on Artificial Intelli-

gence and Statistics (San Diego, California, USA, May 9–12, 2015). Ed. by

Guy Lebanon and S. V. N. Vishwanathan. Vol. 38. Proceedings of Machine

Learning Research, pp. 192–204. url: http://proceedings.mlr.press/v38/

choromanska15.html.

Christianson, Bruce (2012). “A Leibniz Notation for Automatic Differentiation”.

In: Lecture Notes in Computational Science and Engineering 87. Ed. by Shaun

Forth et al., pp. 1–9. doi: 10.1007/978-3-642-30023-3_1.

Chung, Junyoung, Sungjin Ahn, and Yoshua Bengio (2017). “Hierarchical Multi-

scale Recurrent Neural Networks”. In: Proceedings of the 2017 International

Conference on Learning Representations (Toulon, France, Apr. 24–26, 2017).

url: https://openreview.net/forum?id=S1di0sfgl.

Chung, Junyoung, KyungHyun Cho, and Yoshua Bengio (2016). “A character-level

decoder without explicit segmentation for neural machine translation”. In: 54th

Annual Meeting of the Association for Computational Linguistics. Proceedings

of the Conference (Berlin, Germany, Aug. 7–12, 2016), pp. 1693–1703. doi:

10.18653/v1/P16-1160.

Click, Cliff and Michael Paleczny (1995). “A simple graph-based intermediate rep-

resentation”. In: Papers from the 1995 ACM SIGPLAN workshop on Intermedi-

ate Representations (San Francisco, California, USA, Jan. 22, 1995). New York,

pp. 35–49. doi: 10.1145/202529.202534.

Clifford, William Kingdon (1873). “Preliminary sketch of biquaternions”. In: Pro-

ceedings of the London Mathematical Society 4.1, pp. 381–395. doi: 10.1112/

plms/s1-4.1.381.

147

Cortes, Corinna and Vladimir Vapnik (1995). “Support Vector Networks”. In: Ma-

chine Learning 20.3, pp. 273–297. doi: 10.1007/BF00994018.

Cox, David R (1958). “The regression analysis of binary sequences”. In: Journal of

the Royal Statistical Society. Series B (Methodological) 20.2, pp. 215–242. url:

http://www.jstor.org/stable/2983890.

Cybenko, George (1989). “Approximation by Superpositions of a Sigmoidal Func-

tion”. In: Mathematics of Control, Signals and Systems 2.4, pp. 303–314. doi:

10.1007/BF02551274.

Dahl, George E. et al. (2012). “Context-Dependent Pre-trained Deep Neural Net-

works for Large Vocabulary Speech Recognition”. In: IEEE Transactions on

Audio, Speech, and Language Processing 20.1, pp. 30–42. doi: 10.1109/TASL.

2011.2134090.

Dauphin, Yann N et al. (2014). “Identifying and attacking the saddle point problem

in high-dimensional non-convex optimization”. In: Advances in Neural Informa-

tion Processing Systems 27 (Montréal, Canada, Dec. 8–13, 2014). Ed. by Zoubin

Ghahramani et al., pp. 2933–2941. url: https://papers.nips.cc/paper/

5486-identifying-and-attacking-the-saddle-point-problem-in-high-

dimensional-non-convex-optimization.

Dean, Jeffrey et al. (2012). “Large Scale Distributed Deep Networks”. In: Ad-

vances in Neural Information Processing Systems 25 (Lake Tahoe, Nevada,

USA, Dec. 3–8, 2012). Ed. by Fernando Pereira et al., pp. 1223–1231. url:

https://papers.nips.cc/paper/4687-large-scale-distributed-deep-

networks.

Denil, Misha et al. (2013). “Predicting Parameters in Deep Learning”. In: Ad-

vances in Neural Information Processing Systems 26 (Lake Tahoe, Nevada,

USA, Dec. 5–10, 2012). Ed. by Christopher J. C. Burges et al., pp. 2148–2156.

url: https://papers.nips.cc/paper/5025-predicting-parameters-in-

deep-learning.

Devlin, Jacob et al. (2014). “Fast and Robust Neural Network Joint Models for

Statistical Machine Translation”. In: 52nd Annual Meeting of the Association

for Computational Linguistics. Proceedings of the Conference (Baltimore, Mary-

land, USA, June 22–27, 2014). Ed. by Kristina Toutanova and HuaWu, pp. 1370–

1380. doi: 10.3115/v1/P14-1129.

148

Dreyfus, Stuart E. (1962). “The numerical solution of variational problems”. In:

Journal of Mathematical Analysis and Applications 5.1, pp. 30–45. doi: 10.

1016/0022-247X(62)90004-5.

Driscoll, James R et al. (1989). “Making data structures persistent”. In: Journal of

computer and system sciences 38.1, pp. 86–124. doi: 10.1016/0022-0000(89)

90034-2.

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive Subgradient Meth-

ods for Online Learning and Stochastic Optimization”. In: Journal of Machine

Learning Research 12, pp. 2121–2159. url: http://jmlr.org/papers/v12/

duchi11a.html.

Dyson, Freeman (2004). “A meeting with Enrico Fermi”. In: Nature 427, pp. 297–

297. doi: 10.1038/427297a.

Elliott, Conal (2018). “The simple essence of automatic differentiation”. In: 2, p. 70.

doi: 10.1145/3236765.

Fike, Jeffrey A and Juan J Alonso (2012). “Automatic differentiation through the

use of hyper-dual numbers for second derivatives”. In: Lecture Notes in Com-

putational Science and Engineering 87. Ed. by Shaun Forth et al., pp. 163–173.

doi: 10.1007/978-3-642-30023-3_15.

Firat, Orhan, KyungHyun Cho, and Yoshua Bengio (2016). “Multi-way, multilin-

gual neural machine translation with a shared attention mechanism”. In: Pro-

ceedings of the 2016 Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language Technologies (San Diego,

California, USA, June 12–17, 2016). Ed. by Kevin Knight, Ani Nenkova, and

Owen Rambow, pp. 866–875. doi: 10.18653/v1/N16-1101.

Flanagan, Cormac et al. (1993). “The essence of compiling with continuations”.

In: Proceedings of the ACM SIGPLAN 1993 conference on Programming lan-

guage design and implementation (Albuquerque, New Mexico, USA, June 21–

25, 1993), pp. 237–247. doi: 10.1145/155090.155113.

Gal, Yarin (2016). “A Theoretically Grounded Application of Dropout in Recurrent

Neural Networks”. In: Advances in Neural Information Processing Systems 29

(Barcelona, Spain, Dec. 5–10, 2016). Ed. by Daniel D. Lee et al., pp. 1019–1027.

url: https://papers.nips.cc/paper/6241-a-theoretically-grounded-

application-of-dropout-in-recurrent-neural-networks.

149

Ganin, Yaroslav et al. (2016). “Domain-adversarial training of neural networks”. In:

Journal of Machine Learning Research 17, pp. 2096–2030.

Gao, Jianfeng et al. (2013). Learning Semantic Representations for the Phrase

Translation Model. arXiv: 1312.0482.

Gehring, Jonas et al. (2017). “Convolutional Sequence to Sequence Learning”. In:

Proceedings of the 34th International Conference on Machine Learning (Sydney,

Australia, Aug. 6–11, 2017). Ed. by Doina Precup and Yee Whye Teh. Vol. 70.

Proceedings of Machine Learning Research. PMLR, pp. 1243–1252. url: http:

//proceedings.mlr.press/v70/gehring17a.html.

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of train-

ing deep feedforward neural networks”. In: Proceedings of the Thirteenth In-

ternational Conference on Artificial Intelligence and Statistics (Sardinia, Italy,

May 13–15, 2010). Ed. by Yee Whye Teh and Mike Titterington. Vol. 9. Pro-

ceedings of Machine Learning Research. PMLR, pp. 249–256. url: http://

proceedings.mlr.press/v9/glorot10a.html.

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio (Apr. 11, 2011–Apr. 13, 2014).

“Deep Sparse Rectifier Neural Networks”. In: Proceedings of the Fourteenth

International Conference on Artificial Intelligence and Statistics (Fort Laud-

erdale, FL, USA). Ed. by Geoffrey Gordon, David Dunson, and Miroslav Dud́ık.

Vol. 15. Proceedings of Machine Learning Research. PMLR, pp. 315–323. url:

http://proceedings.mlr.press/v15/glorot11a.html.

Goldwater, Sharon, Mark Johnson, and Thomas L Griffiths (2005). “Interpolating

between types and tokens by estimating power-law generators”. In: Advances

in Neural Information Processing Systems 18 (Whistler, British Columbia,

Canada, Dec. 5–8, 2005). Ed. by Yair Weiss, Bernhard Schölkopf, and John C.

Platt, pp. 459–466. url: https://papers.nips.cc/paper/2941-interpolating-

between-types-and-tokens-by-estimating-power-law-generators.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT

Press. url: http://www.deeplearningbook.org.

Goodfellow, Ian, David Warde-Farley, et al. (2013). “Maxout Networks”. In: Pro-

ceedings of the 30th International Conference on Machine Learning (Atlanta,

Georgia, USA, June 17–19, 2013). Ed. by Sanjoy Dasgupta and David McAllester.

Vol. 28. Proceedings of Machine Learning Research 3. PMLR, pp. 1319–1327.

url: http://proceedings.mlr.press/v28/goodfellow13.html.

150

Gori, Marco, Yoshua Bengio, and Renato De Mori (1989). “BPS: a learning al-

gorithm for capturing the dynamic nature of speech”. In: International 1989

Joint Conference on Neural Networks (Washington, District of Columbia, USA,

June 18–22, 1989). Vol. 2, pp. 417–423. doi: 10.1109/IJCNN.1989.118276.

Gould, Nicholas I. M. and Jorge Nocedal (1998). The modified absolute-value fac-

torization norm for trust-region minimization. Ed. by Renato De Leone et al.

Springer, pp. 225–241. doi: 10.1007/978-1-4613-3279-4_15.

Gower, Robert Mansel and Margarida P Mello (2012). “A new framework for the

computation of Hessians”. In: Optimization Methods and Software 27.2, pp. 251–

273. doi: 10.1080/10556788.2011.580098.

Graves, A. et al. (2006). “Connectionist Temporal Classification: Labelling Unseg-

mented Sequence Data with Recurrent Neural Networks”. In: Proceedings of the

23rd International Conference on Machine Learning (Pittsburgh, Pennsylvania,

USA, June 25–29, 2006), pp. 369–376. doi: 10.1145/1143844.1143891.

Graves, Alex (2011). “Practical Variational Inference for Neural Networks”. In: Ad-

vances in Neural Information Processing Systems 24 (Grenada, Spain, Dec. 12–

17, 2011). Ed. by J. Shawe-Taylor et al., pp. 2348–2356. url: https://papers.

nips.cc/paper/4329-practical-variational-inference-for-neural-

networks.

— (2012a).“Sequence Transduction with Recurrent Neural Networks”. In: Proceed-

ings of the 29th International Conference on Machine Learning. Representation

Learning Workshop. arXiv: 1211.3711.

— (2012b). Supervised Sequence Labelling with Recurrent Neural Networks. Vol. 385.

Studies in Computational Intelligence. Springer. doi: 10.1007/978-3-642-

24797-2.

— (2013). Generating Sequences With Recurrent Neural Networks. arXiv: 1308.

0850.

Graves, Alex and Jürgen Schmidhuber (2005). “Framewise phoneme classification

with bidirectional LSTM and other neural network architectures”. In: Neural

Networks 18.5, pp. 602–610. doi: 10.1016/j.neunet.2005.06.042.

Greenberg, Joseph H (1960). “A quantitative approach to the morphological ty-

pology of language”. In: International Journal of American Linguistics 26.3,

pp. 178–194. url: http://www.jstor.org/stable/1264155.

151

Greenstadt, John (1967). “On the relative efficiencies of gradient methods”. In:

Mathematics of Computation 21.99, pp. 360–367. url: http://www.jstor.

org/stable/2003238.

Greff, Klaus et al. (2017). “LSTM: a search space odyssey”. In: IEEE Transactions

on Neural Networks and Learning Systems 28.10, pp. 2222–2232. doi: 10.1109/

TNNLS.2016.2582924.

Griewank, Andreas (1992). “Achieving logarithmic growth of temporal and spatial

complexity in reverse automatic differentiation”. In: Optimization Methods and

software 1.1, pp. 35–54. doi: 10.1080/10556789208805505.

Griewank, Andreas, David Juedes, and Jean Utke (1996). “Algorithm 755: ADOL-

C: a package for the automatic differentiation of algorithms written in C/C++”.

In: ACM Transactions on Mathematical Software (TOMS) 22.2, pp. 131–167.

doi: 10.1145/229473.229474.

Griewank, Andreas and Andrea Walther (2000). “Algorithm 799: revolve: an im-

plementation of checkpointing for the reverse or adjoint mode of computational

differentiation”. In: ACM Transactions on Mathematical Software 26.1, pp. 19–

45. doi: 10.1145/347837.347846.

— (2008). Evaluating derivatives: principles and techniques of algorithmic differ-

entiation. 2nd ed. Society for Industrial and Applied Mathematics. doi: 10.

1137/1.9780898717761.

Grimm, José, Löıc Pottier, and Nicole Rostaing-Schmidt (1996). Optimal time and

minimum space-time product for reversing a certain class of programs. research

report RR-2794. INRIA. url: https://hal.inria.fr/inria-00073896.

Gruslys, Audrunas et al. (2016). “Memory-efficient backpropagation through time”.

In: Advances in Neural Information Processing Systems 29 (Barcelona, Spain,

Dec. 5–10, 2016). Ed. by Daniel D. Lee et al., pp. 4125–4133. url: https:

//papers.nips.cc/paper/6221- memory- efficient- backpropagation-

through-time.

Guelton, Serge et al. (2015). “Pythran: Enabling static optimization of scientific

python programs”. In: Computational Science & Discovery 8.1, p. 014001.

Gulcehre, Caglar et al. (2015). On using monolingual corpora in neural machine

translation. arXiv: 1503.03535.

152

Hascoët, Laurent (2017). Some highlights on Source-to-Source Adjoint AD. Pre-

sented at NIPS Autodiff Workshop. url: https://openreview.net/pdf?id=

r1tLym8T-.

Hascoët, Laurent, Uwe Naumann, and Valérie Pascual (2003). TBR Analysis in

Reverse-Mode Automatic Differentiation. research report RR-4856. INRIA. url:

https://hal.inria.fr/inria-00071727.

Hascoët, Laurent and Valérie Pascual (2013). “The Tapenade Automatic Differ-

entiation tool: principles, model, and specification”. In: ACM Transactions on

Mathematical Software 39.3, p. 20. doi: 10.1145/2450153.2450158.

Hastie, Trevor, Rober Tibshirani, and Jerome Friedman (2001). The elements of

statistical learning. Data mining, inference and prediction. Springer Series in

Statistics. Springer. doi: 10.1007/978-0-387-84858-7.

Heess, Nicolas et al. (2015). “Learning continuous control policies by stochastic

value gradients”. In: Advances in Neural Information Processing Systems 28.

Ed. by Corinna Cortes et al., pp. 2944–2952. url: https://papers.nips.cc/

paper/5796-learning-continuous-control-policies-by-stochastic-

value-gradients.

Hill, Felix et al. (2014). “Not All Neural Embeddings are Born Equal”. In: NIPS

2014 Workshop on Learning Semantics. arXiv: 1410.0718.

Hinton, Geoffrey (2012). Neural Networks for Machine Learning. Coursera.

Hinton, Geoffrey E., Simon Osindero, and Yee Whye Teh (2006). “A fast learning

algorithm for deep belief nets”. In: Neural Computation 18.7, pp. 1527–1554.

doi: 10.1162/neco.2006.18.7.1527.

Hinton, Geoffrey E, James L McClelland, David E Rumelhart, et al. (1986). “Dis-

tributed representations”. In: Parallel distributed processing. Explorations in the

microstructure of cognition. Ed. by Jerome A. Feldman, Patrick J Hayes, and

David E Rumelhart. Vol. 1. Computational Models of Cognition and Perception.

The MIT Press. Chap. 3, pp. 77–109. isbn: 9780262181204.

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean (2015). “Distilling the knowledge in

a neural network”. In: NIPS 2014 Deep Learning Workshop. arXiv: 1503.02531.

Hinze, Michael and Julia Sternberg (2005).“A-revolve: an adaptive memory-reduced

procedure for calculating adjoints; with an application to computing adjoints of

the instationary Navier–Stokes system”. In: Optimization Methods and Software

20.6, pp. 645–663. doi: 10.1080/10556780410001684158.

153

Hochreiter, Josef (1991). “Untersuchungen zu dynamischen neuronalen Netzen”.

PhD thesis. Technische Universität München.

Hochreiter, Josef and Jürgen Schmidhuber (1997). “Long short-term memory”. In:

Neural Computation 9.8, pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735.

Hopfield, John J. (1982). “Neural Networks and Physical Systems with Emergent

Collective Computational Abilities”. In: Proceedings of the National Academy

of Sciences 79.8, pp. 2554–2558. doi: 10.1073/pnas.79.8.2554.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989). “Multilayer Feed-

forward Networks Are Universal Approximators”. In: Neural Networks 2.5, pp. 359–

366. doi: 10.1016/0893-6080(89)90020-8.

Jang, Eric, Shixiang Gu, and Ben Poole (2017). “Categorical reparameterization

with Gumbel-softmax”. In: Proceedings of the 2017 International Conference

on Learning Representations (Toulon, France, Apr. 24–26, 2017). url: https:

//openreview.net/forum?id=rkE3y85ee.

Johnston, Wesley M., J. R. Paul Hanna, and Richard J. Millar (2004). “Advances in

dataflow programming languages”. In: ACM Computing Surveys 36.1, pp. 1–34.

doi: 10.1145/1013208.1013209.

Jozefowicz, Rafal, Oriol Vinyals, et al. (2016). Exploring the limits of language

modeling. arXiv: 1602.02410.

Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever (2015). “An Empirical

Exploration of Recurrent Network Architectures”. In: Proceedings of The 32nd

International Conference on Machine Learning (Lille, France, July 6–11, 2015),

pp. 2342–2350.

Kalchbrenner, Nal and Phil Blunsom (2013). “Recurrent Continuous Translation

Models”. In: Proceedings of the 2013 Conference on Empirical Methods in Nat-

ural Language Processing (Seattle, Washington, USA, Oct. 18–21, 2013). Ed. by

David Yarowsky et al., pp. 1700–1709. url: http://aclweb.org/anthology/

D13-1176.

Kalchbrenner, Nal, Lasse Espeholt, et al. (2016). Neural machine translation in

linear time. arXiv: 1610.10099.

Karczmarczuk, Jerzy (2001). “Functional differentiation of computer programs”.

In: Higher-Order and Symbolic Computation 14.1, pp. 35–57. doi: 10.1023/A:

1011501232197.

154

Katz, Slava M. (1987). “Estimation of Probabilities from Sparse Data for the Lan-

guage Model Component of a Speech Recognizer”. In: IEEE Transactions on

Acoustics, Speech, and Signal Processing 35.3, pp. 400–401. doi: 10.1109/

TASSP.1987.1165125.

Kim, Yoon et al. (2015). “Character-aware neural language models”. In: Proceedings

of the Thirtieth AAAI Conference on Artificial Intelligence (Phoenix, Arizona,

USA, Feb. 12–17, 2016), pp. 2741–2749. arXiv: 1508.06615.

Kingma, Diederik and Jimmy Ba (2015). “Adam: A Method for Stochastic Op-

timization”. In: Proceedings of the 2015 International Conference on Learning

Representations (San Diego, California, USA, May 7–9, 2015). doi: 11245/1.

505367.

Koehn, P. (2005).“Europarl: A Parallel Corpus for Statistical Machine Translation”.

In: Proceedings of the Tenth Machine Translation Summit (Phuket, Thailand,

Sept. 12, 2005–Sept. 16, 2009), pp. 79–86. url: http://www.mt-archive.

info/MTS-2005-Koehn.pdf.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu (2003). “Statistical Phrase-

based Translation”. In: Proceedings of the 2003 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language

Technologies (Edmonton, Canada, May 27–June 1, 2003), pp. 48–54.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Classi-

fication with Deep Convolutional Neural Networks”. In: Advances in Neural In-

formation Processing Systems 25. Ed. by Fernando Pereira et al., pp. 1097–1105.

url: https://papers.nips.cc/paper/4824-imagenet-classification-

with-deep-convolutional-neural-networks.

Lam, Siu Kwan, Antoine Pitrou, and Stanley Seibert (2015). “Numba: A LLVM-

based Python JIT compiler”. In: Proceedings of the Second Workshop on the

LLVM Compiler Infrastructure in HPC (Austin, Texas, USA, Nov. 15, 2015),

p. 7. doi: 10.1145/2833157.2833162.

Le Roux, Nicolas, Pierre-Antoine Manzagol, and Yoshua Bengio (2008). “Top-

moumoute online natural gradient algorithm”. In: Advances in Neural Infor-

mation Processing Systems 20. Ed. by John C. Platt et al., pp. 849–856. url:

http://papers.nips.cc/paper/3234- topmoumoute- online- natural-

gradient-algorithm.

155

Le, Hai-Son, Alexandre Allauzen, and François Yvon (2012). “Continuous Space

Translation Models with Neural Networks”. In: Proceedings of the 2012 Confer-

ence of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies (Montréal, Canada, June 3–8, 2012).

Ed. by Eric Fosler-Lussier, Ellen Riloff, and Srinivas Bangalore, pp. 39–48. url:

http://aclweb.org/anthology/N12-1005.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In:

Nature 521, pp. 436–444. doi: 10.1038/nature14539.

LeCun, Yann, Léon Bottou, et al. (1998).“Efficient Backprop”. In: Neural Networks:

Tricks of the Trade. Ed. by Grégoire Montavon, Geneviève B. Orr, and Klaus-

Robert Müller. Vol. 7700. Lecture Notes in Computer Science, pp. 9–48. doi:

10.1007/978-3-642-35289-8_3.

Lee, Jason, KyungHyun Cho, and Thomas Hofmann (2017). “Fully character-level

neural machine translation without explicit segmentation”. In: Transactions of

the Association for Computational Linguistics 5. Ed. by Adam Lopez, pp. 365–

378.

Leißa, Roland, Marcel Köster, and Sebastian Hack (2015). “A graph-based higher-

order intermediate representation”. In: Proceedings of the 13th Annual IEEE/ACM

International Symposium on Code Generation and Optimization (San Francisco,

California, USA, Feb. 7–11, 2015), pp. 202–212.

Lillicrap, Timothy P et al. (2016). “Random feedback weights support learning in

deep neural networks”. In: Nature Communications 7, p. 13276. doi: 10.1038/

ncomms13276.

Lindenmaier, Götz et al. (2005). Firm, an intermediate language for compiler re-

search. technical report. Fakultät für Informatik, Universität Karlsruhe. url:

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000003172.

Ling, Wang et al. (2015). Character-based neural machine translation. arXiv: 1511.

04586.

Liu, Chang, Daniel Dahlmeier, and Hwee Tou Ng (2011).“Better evaluation metrics

lead to better machine translation”. In: Proceedings of the 2011 Conference on

Empirical Methods in Natural Language Processing (Edinburgh, United King-

dom, July 27–31, 2011), pp. 375–384.

Liu, Hairong et al. (2017). “Gram-CTC: Automatic Unit Selection and Target De-

composition for Sequence Labelling”. In: Proceedings of the 34th International

156

Conference on Machine Learning (Sydney, Australia, Aug. 6–11, 2017). Ed. by

Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning

Research. PMLR, pp. 2188–2197. url: http://proceedings.mlr.press/v70/

liu17f.html.

Luong, Minh-Thang, Hieu Pham, and Christopher DManning (2015).“Effective ap-

proaches to attention-based neural machine translation”. In: Proceedings of the

2015 Conference on Empirical Methods in Natural Language Processing (Lis-

bon, Portugal, Sept. 17–21, 2015). Ed. by Llúıs Màrquez, Chris Callison-Burch,

and Jian Su, pp. 1412–1421. doi: 10.18653/v1/D15-1166.

Luong, Minh-Thang, Ilya Sutskever, et al. (2014). “Addressing the rare word prob-

lem in neural machine translation”. In: Proceedings of the 53rd Annual Meeting

of the Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Beijing, China, July 26–31, 2015),

pp. 11–19. doi: 10.3115/v1/P15-1002.

Maaten, Laurens van der (2013).“Barnes-Hut-SNE”. In: Proceedings of the 2013 In-

ternational Conference on Learning Representations (Scottsdale, Arizona, USA,

May 2–4, 2013). arXiv: 1301.3342.

Maclaurin, Dougal, David Duvenaud, and Ryan P Adams (2015). Autograd: Effort-

less Gradients in NumPy. Presented at the ICML 2015 AutoML Workshop.

Mahoney, Matthew V (1999). “Text compression as a test for artificial intelligence”.

In: Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence (Or-

lando, Florida, USA, July 18–22, 1999), p. 970.

— (2000). “Fast Text Compression with Neural Networks”. In: Proceedings of the

Thirteenth International Florida Artificial Intelligence Research Society Con-

ference (Orlando, Florida, USA, May 21–23, 2000), pp. 230–234.

— (2006). Large text compression benchmark. url: http://mattmahoney.net/

dc/text.html (visited on 10/25/2018).

Manning, Christopher D. and Hinrich Schütze (1999). Foundations of Statistical

Natural Language Processing. 6th ed. Cambridge, Massachusetts, USA: MIT

Press. isbn: 0-262-13360-1.

Marcu, Daniel and WilliamWong (2002).“A Phrase-based, Joint Probability Model

for Statistical Machine Translation”. In: Proceedings of the 2002 Conference on

Empirical Methods in Natural Language Processing (Philadelphia, Pennsylva-

157

nia, USA, July 6–7, 2002), pp. 133–139. url: https://aclanthology.info/

papers/W02-1018/w02-1018.

Martens, James, Ilya Sutskever, and Kevin Swersky (2012).“Estimating the Hessian

by back-propagating curvature”. In: Proceedings of the 29th International Con-

ference on Machine Learning (Edinburgh, Scotland, United Kingdom, June 25–

July 1, 2012).

McCulloch, Warren S. and Walter Pitts (1943). “A Logical Calculus of Ideas Im-

manent in Nervous Activity”. In: The bulletin of mathematical biophysics 5.4,

pp. 115–133. doi: 10.1007/BF02478259.

Merriënboer, Bart van, Dan Moldovan, and Alexander B. Wiltschko (2018). “Tan-

gent: Automatic differentiation using source-code transformation for dynami-

cally typed array programming”. In: Advances in Neural Information Process-

ing Systems 31 (Montréal, Canada, Dec. 2–8, 2018). Ed. by Samy Bengio et

al. url: https : / / papers . nips . cc / paper / 7863 - tangent - automatic -

differentiation-using-source-code-transformation-for-dynamically-

typed-array-programming.

Mikolov, Tomáš (2012). “Statistical Language Models based on Neural Networks”.

PhD thesis. Brno University of Technology. url: http://www.fit.vutbr.cz/

~imikolov/rnnlm/thesis.pdf.

Mikolov, Tomáš, Martin Karafiát, et al. (2010). “Recurrent neural network based

language model”. In: Proceedings of the 11th Annual Conference of the Interna-

tional Speech Communication Association (Makuhari, Chiba, Japan, Sept. 26–

30, 2010), pp. 1045–1048.

Mikolov, Tomáš, Ilya Sutskever, et al. (2013). “Distributed representations of words

and phrases and their compositionality”. In: Advances in Neural Information

Processing Systems 26 (Stateline, Nevada, USA, Dec. 5–10, 2013). Ed. by

Christopher J.C. Burges et al., pp. 3111–3119. url: https://papers.nips.

cc/paper/5021-distributed-representations-of-words-and-phrases-

and-their-compositionality.

Minsky, Marvin L. and Seymour A. Papert (1969). Perceptrons. An Introduction to

Computational Geometry. Cambridge, Massachusetts, USA: MIT Press. isbn:

0-262-63022-2.

Mitchell, Jeff and Mirella Lapata (2008).“Vector-based Models of Semantic Compo-

sition”. In: Proceedings of the 2008 Conference of the North American Chapter

158

of the Association for Computational Linguistics: Human Language Technolo-

gies (Columbus, Ohio, USA, June 16–18, 2008). Ed. by Johanna D. Moore et

al., pp. 236–244. url: https://aclanthology.info/papers/P08-1028/p08-

1028.

Mitchell, Tom M. (1997). Machine Learning. New York City, New York, USA:

McGraw-Hill. isbn: 0070428077.

Mochihashi, Daichi, Takeshi Yamada, and Naonori Ueda (2009). “Bayesian unsu-

pervised word segmentation with nested Pitman-Yor language modeling”. In:

Proceedings of the Joint Conference of the 47th Annual Meeting of the Associa-

tion for Computational Linguistics and the 4th International Joint Conference

on Natural Language Processing (Suntec, Singapore, Aug. 2–7, 2009), pp. 100–

108.

Montufar, Guido F. et al. (2014). “On the Number of Linear Regions of Deep

Neural Networks”. In: Advances in Neural Information Processing Systems 27

(Montréal, Canada, Dec. 8–13, 2014). Ed. by Zoubin Ghahramani et al. url:

https : / / papers . nips . cc / paper / 5422 - on - the - number - of - linear -

regions-of-deep-neural-networks.

Moon, Taesup et al. (2015). “RNNDROP: A novel dropout for RNNs in ASR”.

In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding

(ASRU) (Scottsdale, Arizona, USA, Dec. 13–17, 2015). doi: 10.1109/ASRU.

2015.7404775.

Moore, Robert C. and William Lewis (2010). “Intelligent Selection of Language

Model Training Data”. In: Proceedings of the ACL 2010 Conference Short Pa-

pers (Upssala, Sweden, July 11–16, 2010). Ed. by Jan Hajič et al., pp. 220–224.

url: https://aclanthology.info/papers/P10-2041/p10-2041.

Naumann, Uwe (2008).“Optimal Jacobian accumulation is NP-complete”. In:Math-

ematical Programming 112.2, pp. 427–441. doi: 10.1007/s10107-006-0042-z.

— (2012). The art of differentiating computer programs. An introduction to al-

gorithmic differentiation. Philadelphia, Pennsylvania, USA: Society for Indus-

trial and Applied Mathematics. isbn: 978-1-61197-206-1. doi: 10.1137/1.

9781611972078.

Neelakantan, Arvind et al. (2015). Adding Gradient Noise Improves Learning for

Very Deep Networks. arXiv: 1511.06807.

159

Nesterov, Yu (1983). “A method for solving the convex programming problem with

convergence rate O(1/k2)”. In: Dokl Akad Nauk 269, pp. 543–547.

Nocedal, Jorge and Stephen J. Wright (2006). Numerical Optimization. 2nd ed.

New York City, New York, USA: Springer. isbn: 978-0-387-30303-1. doi: 10.

1007/978-0-387-40065-5.

Nøkland, Arild (2016). “Direct feedback alignment provides learning in deep neural

networks”. In: Advances in Neural Information Processing Systems 29 (Barcelona,

Spain, Dec. 5–10, 2016). Ed. by Daniel D. Lee et al., pp. 1045–1053.

Och, Franz Josef and Hermann Ney (2003). “A systematic comparison of various

statistical alignment models”. In: Computational linguistics 29.1, pp. 19–51.

Oliphant, Travis E (2006). A guide to NumPy. 2nd ed. CreateSpace Independent

Publishing Platform. isbn: 978-1517300074.

Oord, Aaron van den, Oriol Vinyals, and Koray Kavukcuoglu (2017). “Neural Dis-

crete Representation Learning”. In: Advances in Neural Information Process-

ing Systems 30 (Long Beach, California, USA, Dec. 4–9, 2017). url: https:

/ / papers . nips . cc / paper / 7210 - neural - discrete - representation -

learning.

Papineni, Kishore et al. (2002). “BLEU: A method for automatic evaluation of

machine translation”. In: Proceedings of the 40th Annual Meeting of the Associ-

ation for Computational Linguistics (Philadelphia, Pennsylvania, USA, July 7–

12, 2002), pp. 311–318.

Pascanu, Razan et al. (2014).“How to Construct Deep Recurrent Neural Networks”.

In: Proceedings of the 2014 International Conference on Learning Representa-

tions (Banff, Canada, Apr. 14–16, 2014).

Pascanu, Razvan, Yann N Dauphin, et al. (2014). On the saddle point problem for

non-convex optimization. arXiv: 1405.4604.

Pascanu, Razvan, Tomáš Mikolov, and Yoshua Bengio (2013). “On the difficulty of

training recurrent neural networks”. In: Proceedings of the 30th International

Conference on Machine Learning (Atlanta, Georgia, USA, June 17–19, 2013).

Ed. by Sanjoy Dasgupta and David McAllester. Vol. 28. 3. PMLR, pp. 1310–

1318. url: http://proceedings.mlr.press/v28/pascanu13.html.

Paszke, Adam et al. (2017). Automatic differentiation in PyTorch. Presented at the

NIPS 2017 Autodiff Workshop.

160

Pearlmutter, Barak A (1994). “Fast exact multiplication by the Hessian”. In: Neural

Computation 6.1, pp. 147–160.

Pearlmutter, Barak A and Jeffrey Mark Siskind (2007). “Lazy multivariate higher-

order forward-mode AD”. In: Proceedings of the 34th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages (Nice, France,

Jan. 17–19, 2007), pp. 155–160.

— (2008). “Reverse-mode AD in a functional framework: Lambda the ultimate

backpropagator”. In: ACM Transactions on Programming Languages and Sys-

tems 30.2, pp. 1–30. doi: 10.1145/1330017.1330018.

Pham, Vu et al. (2014). “Dropout improves recurrent neural networks for handwrit-

ing recognition”. In: Proceedings of the 14th International Conference on Fron-

tiers in Handwriting Recognition (Heraklion, Greece, Sept. 1–4, 2014). IEEE,

pp. 285–290. doi: 10.1109/ICFHR.2014.55.

Pontryagin, LS et al. (1962). The mathematical theory of optimal processes. Gordon

and Breach Science Publishers. isbn: 2-88124-077-1.

Poole, Ben et al. (2016). “Exponential expressivity in deep neural networks through

transient chaos”. In: Advances in Neural Information Processing Systems 29

(Barcelona, Spain, Dec. 5–10, 2016). Ed. by Daniel D. Lee et al., pp. 3360–3368.

url: https://papers.nips.cc/paper/6322-exponential-expressivity-

in-deep-neural-networks-through-transient-chaos.

Rae, Jack et al. (2016). “Scaling memory-augmented neural networks with sparse

reads and writes”. In: Advances in Neural Information Processing Systems 29

(Barcelona, Spain, Dec. 5–10, 2016). Ed. by Daniel D. Lee et al., pp. 3621–3629.

url: https://papers.nips.cc/paper/6298-scaling-memory-augmented-

neural-networks-with-sparse-reads-and-writes.

Rall, Louis B (1986). “The arithmetic of differentiation”. In: Mathematics Magazine

59.5, pp. 275–282. doi: 10.2307/2689402.

Ren, Xiaofeng and Jitendra Malik (2003). “Learning a Classification Model for Seg-

mentation”. In: Proceedings Ninth IEEE International Conference on Computer

Vision (Nice, France, Oct. 13–16, 2003), pp. 10–17. doi: 10.1109/ICCV.2003.

1238308.

Revels, Jarrett, Miles Lubin, and Theodore Papamarkou (2016). Forward-Mode Au-

tomatic Differentiation in Julia. Presented at the 7th International Conference

on Algorithmic Differentiation. arXiv: 1607.07892.

161

Al-Rfou, Rami et al. (2016). Theano: A Python framework for fast computation of

mathematical expressions. arXiv: 1605.02688.

Rosenblatt, Frank (1958). “The perceptron: A probabilistic model for information

storage and organization in the brain”. In: Psychological Review 65.6, pp. 386–

408.

— (1962). Principles of Neurodynamics. Perceptrons and the theory of brain mech-

anisms. New York City, New York, USA: Spartan Books.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986).“Learning

Representations by Back-Propagating Errors”. In: Nature 323, pp. 533–536. doi:

10.1038/323533a0.

Russel, Stuart J. and Peter Norvig (2003). Artificial Intelligence. A Modern Ap-

proach. 3rd ed. Prentice Hall. isbn: 0-13-604259-7.

Saxe, Andrew M., James L. McClelland, and Surya Ganguli (2014). “Exact solu-

tions to the nonlinear dynamics of learning in deep linear neural networks”. In:

Proceedings of the 2014 International Conference on Learning Representations

(Banff, Canada, Apr. 14–16, 2014).

Schmidhuber, Jürgen (2015). “Deep Learning in Neural Networks: An Overview”.

In: Neural Networks 61, pp. 85–117. doi: 10.1016/j.neunet.2014.09.003.

Schraudolph, Nicol N (2002). “Fast curvature matrix-vector products for second-

order gradient descent”. In: Neural Computation 14.7, pp. 1723–1738. doi: 10.

1162/08997660260028683.

Schuster, M. and K. Paliwal (1997). “Bidirectional recurrent neural networks”. In:

IEEE Transactions on Signal Processing 45.11, pp. 2673–2681. doi: 10.1109/

78.650093.

Schwenk, Holger (2007).“Continuous Space Language Models”. In: Computer Speech

and Language 21.3, pp. 492–518. doi: 10.1016/j.csl.2006.09.003.

— (2012). “Continuous Space Translation Models for Phrase-Based Statistical Ma-

chine Translation”. In: Proceedings of the 24th International Conference on

Computational Linguistics (Mumbai, India, Dec. 8–15, 2012). Ed. by Martin

Kay and Christian Boitet, pp. 1071–1080. url: https://aclanthology.info/

papers/C12-2104/c12-2104.

Schwenk, Holger, Marta R. Costa-Jussà, and José A. R. Fonollosa (2006). Contin-

uous space language models for the IWSLT 2006 task. Presented at the Inter-

national Workshop on Spoken Language Translation.

162

Semeniuta, Stanislau, Aliaksei Severyn, and Erhardt Barth (2016). “Recurrent

Dropout without Memory Loss”. In: Proceedings of the 26th International Con-

ference on Computational Linguistics (Osaka, Japan, Dec. 11–16, 2016). Ed. by

Yuji Matsumoto and Rashmi Prasad, pp. 1757–1766. url: https://aclanthology.

info/papers/C16-1165/c16-1165.

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2015).“Neural machine trans-

lation of rare words with subword units”. In: 54th Annual Meeting of the Asso-

ciation for Computational Linguistics. Proceedings of the Conference (Berlin,

Germany, Aug. 7–12, 2016), pp. 1715–1725. doi: 10.18653/v1/P16-1162.

Shannon, Claude E. (1948). “A Mathematical Theory of Communication”. In: Bell

System Technical Journal 27.3, pp. 379–423.

Shivers, Olin (1991). “Control-flow analysis of higher-order languages”. PhD thesis.

Carnegie Mellon University.

Silver, David et al. (2016). “Mastering the game of Go with deep neural networks

and tree search”. In: Nature 529.7587, p. 484.

Siskind, Jeffrey Mark and Barak A Pearlmutter (2005). Perturbation confusion and

referential transparency: Correct functional implementation of forward-mode

AD. Ed. by Andrew Butterfield. Presented at the 17th International Workshop

on Implementation and Application of Functional Languages.

— (2008). Using polyvariant union-free flow analysis to compile a higher-order

functional-programming language with a first-class derivative operator to effi-

cient Fortran-like code. Tech. rep. 367. Purdue University.

— (2016). Efficient implementation of a higher-order language with built-in AD.

Presented at the 7th International Conference on Algorithmic Differentiation.

Socher, Richard et al. (2011). “Dynamic Pooling and Unfolding Recursive Autoen-

coders for Paraphrase Detection”. In: Advances in Neural Information Process-

ing Systems 24 (Grenada, Spain, Dec. 12–17, 2011). Ed. by J. Shawe-Taylor et

al., pp. 801–809. url: https://papers.nips.cc/paper/4204- dynamic-

pooling - and - unfolding - recursive - autoencoders - for - paraphrase -

detection.

Song, Xingyi, Trevor Cohn, and Lucia Specia (2013). “BLEU deconstructed: De-

signing a Better MT Evaluation Metric”. In: Proceedings of the 14th Interna-

tional Conference on Intelligent Text Processing and Computational Linguistics

(Samos, Greece, Mar. 24–30, 2013).

163

Srivastava, Nitish et al. (2014). “Dropout: A Simple Way to Prevent Neural Net-

works from Overfitting”. In: Journal of Machine Learning Research 15, pp. 1929–

1958. url: http://jmlr.org/papers/v15/srivastava14a.html.

Sternberg, Julia (2002). “Adaptive Umkehrschemata für Schrittfolgen mit nicht-

uniformen Kosten”. PhD thesis. Diplomarbeit, 2002. Techn. Univ. Dresden.

Sundermeyer, Martin, Ralf Schlüter, and Hermann Ney (2012).“LSTM Neural Net-

works for Language Modeling”. In: Proceedings of the 13th Annual Conference

of the International Speech Communication Association, pp. 194–197.

Sutskever, Ilya, James Martens, and Geoffrey E. Hinton (2011). “Generating text

with recurrent neural networks”. In: ICML’2011, pp. 1017–1024.

Sutskever, Ilya, Oriol Vinyals, and Quoc Le (2014).“Sequence to Sequence Learning

with Neural Networks”. In: Advances in Neural Information Processing Systems

27 (Montréal, Canada, Dec. 8–13, 2014). Ed. by Zoubin Ghahramani et al. url:

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-

with-neural-networks.

Szabó, Zoltán Gendler (2017). “Compositionality”. In: The Stanford Encyclopedia

of Philosophy. Ed. by Edward N. Zalta. Summer 2017. Metaphysics Research

Lab, Stanford University.

Tai, Kai Sheng, Richard Socher, and Christopher D Manning (2015). “Improved se-

mantic representations from tree-structured long short-term memory networks”.

In: Proceedings of the Joint Conference of the 43rd Annual Meeting of the Asso-

ciation for Computational Linguistics and the 7th International Joint Confer-

ence on Natural Language Processing (Beijing, China, July 26–31, 2015). Ed. by

Chengqing Zong and Michael Strube, pp. 1556–1566. doi: 10.3115/v1/P15-

1150.

Teh, Yee Whye (2006). “A hierarchical Bayesian language model based on Pitman-

Yor processes”. In: Proceedings of the 21st International Conference on Compu-

tational Linguistics and the 44th annual meeting of the Association for Com-

putational Linguistics (Sydney, Australia, July 17–18, 2006), pp. 985–992. doi:

10.3115/1220175.1220299.

Tokui, Seiya et al. (2015). Chainer: a next-generation open source framework for

deep learning. Presented at the NIPS 2015 LearningSys Workshop. url: http:

//learningsys.org/papers/LearningSys_2015_paper_33.pdf.

164

Turing, Alan M (1950). “Computing machinery and intelligence”. In: Mind 59.236,

pp. 433–460.

Valiant, Leslie G. (1984). “A Theory of the Learnable”. In: Communications of the

ACM 27.11, pp. 1134–1142. doi: 10.1145/1968.1972.

Van Merriënboer, Bart et al. (2015). Blocks and fuel: Frameworks for deep learning.

arXiv: 1506.00619.

Vapnik, Vladimir Naumovich (1995). The Nature of Statistical Learning Theory.

2nd ed. New York: Springer. doi: 10.1007/978-1-4757-3264-1.

Vaswani, Ashish, Noam Shazeer, et al. (2017). “Attention is all you need”. In: Ad-

vances in Neural Information Processing Systems 30 (Long Beach, California,

USA, Dec. 4–9, 2017), pp. 5998–6008.

Vaswani, Ashish, Yinggong Zhao, et al. (2013). “Decoding with Large-Scale Neural

Language Models Improves Translation”. In: Proceedings of the 2013 Conference

on Empirical Methods in Natural Language Processing (Seattle, Washington,

USA, Oct. 18–21, 2013). Ed. by David Yarowsky et al., pp. 1387–1392. url:

http://aclweb.org/anthology/D13-1140.

Verhulst, Pierre-François (1845).“Recherches mathématiques sur la loi d’accroissement

de la population.” In: Nouveaux mémoires de l’académie royale des sciences et

belles-lettres de Bruxelles 18, pp. 14–54.

Vries, Edsko de, Rinus Plasmeijer, and David M. Abrahamson (2007). “Uniqueness

Typing Simplified”. In: (Freiburg, Germany, Sept. 27–29, 2007). Ed. by Olaf

Chitil, Zoltán Horváth, and Viktória Zsók, pp. 201–218. doi: 10.1007/978-3-

540-85373-2.

Walker, Strother H and David B Duncan (1967). “Estimation of the probability of

an event as a function of several independent variables”. In: Biometrika 54.1-2,

pp. 167–179. doi: 10.1093/biomet/54.1-2.167.

Walt, Stéfan van der, S. Chris Colbert, and Gael Varoquaux (2011). “The NumPy

array: a structure for efficient numerical computation”. In: Computing in Science

& Engineering 13.2, pp. 22–30. doi: 10.1109/MCSE.2011.37.

Walther, Andrea (2004). “Program reversals for evolutions with non-uniform step

costs”. In: Acta Informatica 40.4, pp. 235–263.

Wang, Fei and Tiark Rompf (2018). “A Language and Compiler View on Dif-

ferentiable Programming”. In: url: https://openreview.net/forum?id=

SJxJtYkPG.

165

Wang, Fei, Xilun Wu, et al. (2018). Demystifying Differentiable Programming:

Shift/Reset the Penultimate Backpropagator. arXiv: 1803.10228.

Wang, Linnan et al. (2018). “Superneurons: dynamic GPU memory management

for training deep neural networks”. In: Proceedings of the 23rd ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (Vienna, Aus-

tra, Feb. 24–28, 2018), pp. 41–53.

Wang, Mu, Assefaw Gebremedhin, and Alex Pothen (2016). “Capitalizing on live

variables: new algorithms for efficient Hessian computation via automatic differ-

entiation”. In: Mathematical Programming Computation 8.4, pp. 393–433. doi:

10.1007/s12532-016-0100-3.

Wei, Richard, Lane Schwartz, and Vikram Adve (2017). “DLVM: A modern com-

piler framework for neural network DSLs”. In: Proceedings of the 2018 Interna-

tional Conference on Learning Representations (Vancouver, Canada, Apr. 30–

May 3, 2018). url: https://openreview.net/forum?id=HJxPq4ywz.

Wengert, Robert Edwin (1964). “A simple automatic derivative evaluation pro-

gram”. In: Communications of the ACM 7.8, pp. 463–464. doi: 10 . 1145 /

355586.364791.

Werbos, Paul J. (1974).“Beyond Regression: New Tools for Prediction and Analysis

in the Behavioral Sciences”. PhD thesis. Harvard University.

Williams, Ronald J and Jing Peng (1990). “An efficient gradient-based algorithm

for on-line training of recurrent network trajectories”. In: Neural computation

2.4, pp. 490–501. doi: 10.1162/neco.1990.2.4.490.

Wiseman, Sam and Alexander M Rush (2016). “Sequence-to-sequence learning as

beam-search optimization”. In: Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing (Austin, Texas, Nov. 1–5, 2016). Ed.

by Jian Su, Kevin Duh, and Xavier Carreras, pp. 1296–1306. doi: 10.18653/

v1/D16-1137.

Wittgenstein, Ludwig (1953). Philosophical Investigations. Oxford, England, United

Kingdom: Macmillan Publishing Company. isbn: 978-1405159289.

Wu, Yonghui et al. (2016). Google’s neural machine translation system: Bridging

the gap between human and machine translation. Tech. rep. arXiv: 1609.08144.

Wu, Yuhuai et al. (2016). “On multiplicative integration with recurrent neural net-

works”. In: Advances in Neural Information Processing Systems 29 (Barcelona,

Spain, Dec. 5–10, 2016). Ed. by Daniel D. Lee et al., pp. 2856–2864.

166

Zeiler, Matthew D. (2012). ADADELTA: an adaptive learning rate method. arXiv:

1212.5701.

Zhang, Min-Ling and Zhi-Hua Zhou (2006).“Multilabel neural networks with appli-

cations to functional genomics and text categorization”. In: IEEE Transactions

on Knowledge and Data Engineering 18.10, pp. 1338–1351. doi: 10.1109/TKDE.

2006.162.

Zhang, Xingxing, Liang Lu, and Mirella Lapata (2016-06). “Top-down Tree Long

Short-Term Memory Networks”. In: Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies (San Diego, California, USA, June 12–17, 2016),

pp. 310–320. url: http://www.aclweb.org/anthology/N16-1035.

Zou, Will Y. et al. (2013). “Bilingual Word Embeddings for Phrase-Based Machine

Translation”. In: Proceedings of the 2013 Conference on Empirical Methods in

Natural Language Processing (Seattle, Washington, USA, Oct. 18–21, 2013).

Ed. by David Yarowsky et al., pp. 1393–1398. url: http://aclweb.org/

anthology/D13-1141.

167

