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Résumé 

   La stimulation électrique de certains sites cérébraux chez les animaux de laboratoire induit un 

effet de récompense suffisamment fort pour obtenir une réponse opérante; par exemple, les rats 

apprendront à appuyer sur un levier pour recevoir une salve de pulsions électriques dans ces 

régions. Ce comportement, appelé autostimulation intracérébrale (ASI), a été largement étudié 

pour caractériser les substrats neuronaux de la récompense et des comportements dirigés. Plusieurs 

études au cours des dernières années suggèrent que le système dorsal diencéphalique (SDC) ainsi 

que la queue de l'aire tegmentale ventrale (qATV) sont impliqués dans le phénomène de 

récompense induit par l’ASI. Cependant, malgré des progrès significatifs dans la recherche, les 

mécanismes par lesquels le SDC et qATV participent à la transmission du signal de récompense 

induit par l’ASI restent largement inconnus. 

   Le principal objectif de cette thèse est d'étudier le rôle du SDC et du qATV dans la récompense 

induite par stimulation intracérébrale. Trois articles de recherche sont présentés dans cette thèse. 

Le premier article évalue l'effet de lésions électrolytiques au niveau du SDC et du faisceau médian 

prosencéphalique (FMP) dans le phénomène de récompense induit par la stimulation électrique de 

l'hypothalamus latéral (HL) et du raphé dorsal (RD) chez le rat. Les résultats montrent que des 

lésions effectuées au niveau du SDC et du FMP produisent une plus grande atténuation du 

phénomène de récompense induit par l’ASI que des lésions effectuées sur une seule de ces voies 

seulement, et ont un effet plus important sur le signal de récompense induit par la stimulation 

électrique du HL. Dans le deuxième article de cette thèse, la technique de marquage immuno-

histochimique pour la protéine Fos a été utilisée en combinaison avec l’ASI et des lésions 

électrolytiques du SDC pour déterminer si les mêmes noyaux qui sont actifs chez des rats n’ayant 

pas reçu de lésion continuent à être actif après une lésion du SDC. Les résultats montrent que des 
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lésions du SDC réduisent l’expression de la protéine Fos induite par la stimulation électrique du 

HL dans certains sites du cerveau antérieur, du mésencéphale et du tronc cérébral. Enfin, le 

troisième article de cette thèse examine le rôle du qATV dans le phénomène de récompense induit 

par l’ASI et dans l'activité locomotrice. Une attention particulière a été accordée aux fonctions 

comportementales des récepteurs glutamatergique AMPA et NMDA, ainsi que les récepteurs 

opioïdes de type mu exprimés au niveau du qATV. Les résultats montrent que le blocage 

pharmacologique des récepteurs AMPA et NMDA, ainsi que l'activation des récepteurs opioïdes 

de type mu, dans certains sites du qATV entrainent une augmentation de l’activité locomotrice et 

de la récompense induite par l’ASI. Les résultats montrent aussi que la diminution de l’expression 

des récepteurs NMDA du qATV avec les petits ARN interférents ne modifie pas la récompense 

induite par l’ASI mais provoque une diminution marquée de la réponse opérante maximale. 

   Les résultats obtenus dans cette thèse apportent une meilleure compréhension du substrat 

neuronal de la récompense induite par l’ASI, et suggèrent que (i) le SDC constitue une voie fiable 

pour la transmission de la récompense induite par l’ASI, (ii) le SDC est connecté avec certaines 

régions du cerveau antérieur, du mésencéphale et du tronc cérébral, et que (iii) la transmission 

glutaminergique et opioïde au niveau du qATV régule l'activité locomotrice et le phénomène de 

récompense induit par l’ASI. Ce travail pourrait avoir d'importantes répercussions sur la 

compréhension des comportements appétitifs, tels que l'alimentation et la consommation d'alcool, 

ainsi que sur les troubles psychiatriques, tels que la dépression, la schizophrénie, et les troubles 

liés à l'utilisation de substances. 

 

Mots-clés: activité locomotrice; autostimulation intracérébrale; queue de l'aire tegmentale 

ventrale; récompense; système dorsal diencéphalique 



vi 
 

Abstract 

   Electrical stimulation of certain brain regions in laboratory animals induces a rewarding effect 

that is strong enough to support operant responding; for instance, rats will learn to press a lever to 

receive a short train of electrical pulses in these regions. This behavior, termed intracranial-self-

stimulation (ICSS), has been extensively employed to characterize the neural substrate underlying 

reward and goal-directed behaviors. Evidence over the past few years suggests that the dorsal 

diencephalic conduction system (DDC) and the tail of the ventral tegmental area (tVTA) are 

involved in the rewarding effect of ICSS (or brain stimulation reward). However, despite 

significant progress in research, the underlying mechanisms remain largely unknown. 

   The overarching goal of this thesis is to investigate the role of the DDC and the tVTA in brain 

stimulation reward. Three research articles are presented in this thesis. The first article evaluates 

the effect of serial electrolytic lesions at the DDC and the medial forebrain bundle (MFB)—

another pathway involved in brain stimulation reward—on the reward signal triggered by ICSS of 

the lateral hypothalamus (LH) and the dorsal raphe (DR) in rats. Results show that lesions at both 

the DDC and MFB produce larger and longer-lasting attenuations in brain stimulation reward than 

individual lesions at either pathway alone, and are more effective in attenuating the reward signal 

induced by LH self-stimulation. In the second article of the thesis, stimulation-induced Fos-like 

immunoreactivity (FLIR), a marker of cellular activity, was combined with electrolytic lesions at 

the DDC to determine whether the same nuclei that are active in lesion-naïve rats continue to be 

active following the lesions. Results show that electrolytic lesions at the DDC cause a marked 

reduction in stimulation-induced FLIR in certain forebrain, midbrain and brainstem regions that 

are activated by ICSS. Finally, the third article of the present thesis examines the role of the tVTA 

in brain stimulation reward and locomotor activity. Special attention was given to the behavioral 
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functions of the glutamate receptors AMPA and NMDA, as well as the mu opioid receptors 

(MORs) expressed in the tVTA. Results show that pharmacological blockade of AMPA and 

NMDA receptors as well as activation of MORs in certain sites of the tVTA produce rewarding 

and locomotor stimulant effects. Results also show that downregulation of NMDA receptors in the 

tVTA using the small interfering RNA (siRNA) technique fails to alter brain stimulation reward, 

but causes a marked decrease in the maximal rate of operant responding for ICSS. 

   The findings obtained from this thesis shed new light on the neural substrate underlying brain 

stimulation reward with respect to brain regions, connectivity, and neurotransmitter systems. They 

suggest that (i) the DDC constitutes a viable route for the transmission of brain stimulation reward 

and merges with the MFB on a common reward integrator, (ii) the DDC is functionally connected 

to forebrain, midbrain and brainstem regions that are activated by ICSS, and that (iii) glutamate 

and opioid transmission in the tVTA are major regulators of brain stimulation reward and 

locomotor activity. This work could have important implications for understanding appetitive 

behaviors, such as eating and drinking, and psychiatric conditions, such as substance use disorder, 

depression and schizophrenia. 

 

Keywords: brain stimulation reward; dorsal diencephalic conduction system; intracranial self-

stimulation; locomotor activity; tail of the ventral tegmental area 
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 Intracranial self-stimulation: a putative model to study the brain reward system 

1.1.1 Context and discovery 

   Throughout their lives, humans learn different patterns of behavior to adapt to their environment 

and meet their vital needs. One of the most fundamental processes of learning is the ability to 

effectively associate different stimuli for acquiring or strengthening a behavior. In the early 20th 

century, Ivan Pavlov, a Russian physiologist, introduced the notion of classical conditioning, in 

which subjects learn to associate a previously neutral stimulus to an unconditioned stimulus that 

reliably elicits a response (Pavlov, 1927). In his experiments, he observed that dogs would 

normally salivate upon presentation of food (the unconditioned stimulus). However, dogs would 

also drool whenever they saw the lab coats that were worn by the technicians who normally feed 

them, even when there was no food in sight. Pavlov therefore conducted an experiment in which 

a bell was rung every time food was presented to the animals. As predicted, the sound of the bell 

(the neutral stimulus) was able to trigger the salivation response in dogs. Pavlov concluded that 

any event or object that the animals learn to associate with a reward (in this case food) would 

trigger the same behavioral response obtained upon presentation of the reward itself. Pavlov's 

research on classical conditioning have set the ground for much of the subsequent research on 

conditioning, and stills serves as a historical backdrop for current learning theories. Influenced by 

Pavlov's experiments on classical conditioning, John B. Watson, an American psychologist, 

established the first basic principles of behaviorism, which are described in the article “Psychology 

as the behaviorist views it” (Watson, 1913). In this article, Watson argued that psychology should 

be viewed as an objective experimental branch of science whose theoretical goal is the 

understanding of the behavior of humans or animals, rather than their consciousness or internal 
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state. Watson's theory of behaviorism played a significant role in paving the way for the changes 

in psychological research that ensued. In 1938, Burrhus F. Skinner introduced the notion of operant 

conditioning based on the observation that animals would quickly learn to press a lever (the operant 

response) in order to receive food (Skinner, 1938). He coined the terms positive reinforcers for 

stimuli that increase the likelihood of the operant response to occur, and punishers for stimuli that 

decrease the likelihood of the operant response to occur. Most of Skinner’s ideas, however, are 

built upon Edward Thorndike’s law of effect, which states that the behavioral responses that are 

followed by pleasant consequences are more likely to occur again in the same situation, while the 

behavioral responses that are followed by unpleasant consequences are less likely to be repeated 

(Thorndike, 1911). Nonetheless, Skinner’s theories on conditioning behavior differ from those of 

Thorndike insofar as they established a distinction between positive and negative reinforcers, the 

latter being defined by stimuli whose removal increases the likelihood of the operant response to 

occur. An example of negative reinforcement is when animals need to press a lever to avoid 

receiving aversive stimuli such as electrical foot shocks. Skinner also found that the way in which 

reinforcers are scheduled can significantly affect the rate of lever press (or operant response rate) 

and the rate at which the operant response is extinguished (or extinction rate) (Fesrter and Skinner, 

1957). For instance, a continuous reinforcement, where food is delivered after every lever press, 

would produce a slow rate of responding and a relatively fast extinction rate, whereas a variable 

ratio reinforcement, where food is delivered after an unpredictable number of lever presses, will 

tend to sustain high rates of responding with relatively slow extinction rates (Fesrter and Skinner, 

1957). 

   Although research on classical and operant conditioning in the first half of the 20th century has 

shaped our understanding of motivated behaviors, it failed to characterize its underlying neural 
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basis. One of the first studies that provided insights into the neural substrate underlying reward 

and motivated behaviors was by James Olds and Peter Milner in the early 1950s. In their 

experiments, the electrode that was initially intended to be implanted into the reticular formation 

missed its target and ended up in the septal area. They discovered that the subject would readily 

press a lever to receive trains of electrical stimulation within this region, implying that the 

stimulation was intrinsically rewarding (Olds and Milner, 1954). In additional experiments, Olds 

and Milner demonstrated that rats would also press the lever for stimulation of other brain areas, 

including the tegmentum, subthalamus, and cingulate gyrus of the cortex (Olds and Milner, 1954). 

This behavioral paradigm was termed intracranial-self stimulation (ICSS) on the basis that rats had 

to perform a specific response to receive a train of electrical pulses. The discovery that ICSS of 

certain brain areas could serve as a reinforcer spurred intense interest among psychologists and 

neuroscientists, and led to a wide array of subsequent experiments on the neural substrate 

underlying brain stimulation reward. An urgent requirement at that time was to discover all the 

brain areas that could support ICSS, and to determine whether this behavior could be reproduced 

in other species (Milner, 1991). Following Olds and Milner’s observations, the reinforcing 

properties of ICSS have been described in numerous brain regions (Milner, 1991) and in several 

species, including monkeys (Bursten and Delgado, 1958), dogs (Sadowski, 1972), cats (Wilkinson 

and Peele, 1963), chicks (Andrew, 1967), and humans (Bishop et al., 1963).  

 

1.1.2 Reinforcing properties of ICSS  

   The usefulness of the ICSS paradigm stems from the fact that the rewarding effectiveness of the 

electrical stimulation can by-pass sensory systems and natural physiological processes such as 

satiation, thus providing a powerful tool to directly study the brain reward system (Wise, 2002). 
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Electrical stimulation of certain brain regions triggers a remarkably strong operant behavior in 

rodents, so strong that they will continuously press a lever over a long period of time to receive 

the rewarding stimulation (Olds, 1958a). When given the choice between palatable food and 

electrical stimulation, rats will vigorously work for the rewarding stimulation to the point of self-

starvation (Routtenberg and Lindy, 1965). Rats will also exert extra effort, such as crossing a foot-

shock-delivering floor grid  (Olds, 1958b) or galloping uphill along a runway (Edmonds and 

Gallistel, 1974) to access the lever that elicits the delivery of the rewarding stimulation.  

   In a typical ICSS paradigm, rodents are individually placed in stimulation chambers and trained 

to self-administer a rewarding electrical stimulation through electrodes implanted in certain 

regions of their brain (Figure 1A). Operants such as nose poke or lever press can be used to study 

the behavior of the animal in response to the rewarding electrical stimulation. Only neural elements 

that are located directly around the uninsulated electrode tip and within a certain radius will be 

stimulated. A common first step in the ICSS procedure is the adjustment of the current intensity 

for each subject. A reliable estimation of the suprathreshold radius of stimulation for a given 

current intensity can be obtained by the equation r² = I/k, where I is the current intensity of the 

stimulation in μAmp, k the current density in μAmp/mm2, and r = the radius of stimulation around 

the electrode tip in mm2 (Fouriezos and Wise, 1984; Yeomans et al., 1986). This estimation is, 

however, only valid for reward-relevant axons and for selected values of k, and provided that each 

pulse generates a single action potential, and that the impedance around the electrode as well as 

the density of activated neurons remain homogeneous within a given radius (Fouriezos and Wise, 

1984; Yeomans et al., 1986). An electrical stimulation of high current intensity will activate a high 

proportion of reward-relevant neurons, but may also activate neural elements that are not involved 

in reward (Figure 1B), thus  resulting in  unwanted  motoric effects. Conversely, a stimulation of  
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Figure 1: ICSS apparatus and properties. (A) Operant self-stimulation chamber. Each lever press 

triggers the delivery of a short train of electrical pulses to a specific brain region through an 

implanted electrode. The stimulation electrode is electrically insulated except for the dome-shaped 

tip. Reproduced from Schultz, 2015. (B) Influence of the current intensity and frequency of the 

stimulation on the activation of neural elements. The current intensity determines the population 

of neurons that are activated, while the frequency determines the number of times a given neuron 

is activated. 

 

low current intensity will  activate  a  small  proportion  of  reward-relevant  neurons  (Figure 1B). 

Therefore, caution should be taken while choosing the current intensity of the stimulation during 

an ICSS test. Ideal parameters of stimulation should be able to sustain a reliable rate of responding 

with minimal motoric effects. 

   The reinforcing properties of ICSS also depend on the stimulation frequency (Gallistel and Leon, 

1991; Mark and Gallistel, 1993). Increasing the frequency of the stimulation will trigger more 

action potentials in the directly stimulated neurons, which will then increase the rewarding value 

of the stimulation. One fundamental property of the rewarding electrical stimulation is the ability 

to add the reinforcing effect of several pulses arriving over a short period of time; a property 

referred to as temporal summation (Gallistel, 1974; Milner, 1991). When the duration of the 
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stimulation is constant, the total number of firings in the population of the directly stimulated 

neurons is determined by the product of the pulse frequency and the current intensity (Gallistel, 

1974). Thus, an x-fold increase in current intensity (spatial integration) will have the same effect 

on the reward intensity as an x-fold increase in pulse frequency (temporal integration) assuming 

an even density of reward-relevant neurons within the radius of the stimulation. This model of 

spatial-temporal integration has been dubbed the “counter model” (Gallistel, 1978; Gallistel et al., 

1981). When the current intensity of the stimulation remains constant, the rewarding value of the 

stimulation becomes a function of the pulse frequency; rats will respond more vigorously for 

stimulation of higher frequencies, and will stop responding at very low stimulation frequencies. 

The function that describes the relationship between the resulting operant response and the 

frequency of the stimulation follows a curve of quasi-sigmoidal shape known as the 

response/frequency (R/F) curve. 

 

1.1.3 Response-frequency function and the curve-shift paradigm 

   In the curve-shift paradigm of ICSS, animals are tested during several trials of varying 

stimulation frequencies and a constant current intensity so as to maintain the population of neurons 

that is stimulated unchanged. Although the parameters used for ICSS can greatly vary from one 

study to another, each trial typically begins with a 15 s inter-trial interval during which no electrical 

stimulation is provided, followed by the delivery of 5 trains of non-contingent priming stimulation, 

and a 5 s adaptation period (Figure 2).  The priming trains of stimulation are typically delivered 

at a rate of 1 Hz, and are used to signal the arrival of discrete 55 s trials during which the animals 

will be allowed to self-stimulate at constant stimulation parameters (Figure 2). At the end of each 

trial, the frequency (i.e. the number of pulses per train of stimulation) is lowered by approximately  
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Figure 2: Schematic illustration of representative parameters used during an ICSS paradigm. The 

nose poke response or number of lever presses of the animal is recorded during discrete 55 s trials. 

Trials are separated by a 15 s inter-trial interval (or time-out period), followed by the delivery of 

5 trains of priming stimulation (delivered over 5 s) and a 5 s adaptation period. The stimulation 

frequency is reduced by approximately 0.1-log unit after each trial, and at the end of the session, 

a plot of the response rate as a function of the pulse frequency is generated. 

 

0.1-log units, and at the end of the entire session, a R/F curve illustrating the rate of responding 

(number  of  lever  presses  or  nose poke  response)  versus the  stimulation  frequency is  obtained. 

During the discrete 55 s trials of ICSS, each operant response triggers the delivery of a single 400 

ms train of rectangular cathodal pulses of very short duration (0.1 ms) so as to induce only one 

action potential per stimulated fiber. Cathodal currents are used instead of anodal currents because 

they are more effective in triggering action potentials (Ranck, 1975). Moreover, the electrode is 

connected to ground between deliveries of each pulse so that there is no build up of charge at the 

tip; building up of charge can be detrimental particularly with anodal stimulation. The delivery of 

each train of cathodal pulses is followed by a 600 ms period during which the pulse generator 

could not be triggered. The introduction of a fixed-interval delay after the delivery of each 

rewarding stimulation prevents the summation between two consecutive trains (Fouriezos, 1995)  
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Figure 3: Schematic illustration of the theoretical functions that relate response rates to stimulation 

frequency under different current intensities (A) and effort requirements (B). The stimulation 

frequency that maintains half-maximal responding (M50) is indicated by the pink arrow. Changes 

in the current intensity of the stimulation cause a lateral displacement of the R/F curve (A) while 

changes in task difficulty cause a vertical displacement of the R/F curve (B).  

 

and enables a clear control over reward density, thus ensuring that the amount of reward received 

by the animal does not depend on its speed of responding, but rather on the rewarding effectiveness 

of the stimulation (Boye and Rompre, 1996).  

   The plot of the rate of responding of the animal for different pulse frequencies yields an R/F 

curve of quasi-sigmoidal shape characterized by a bottom portion, a rising portion, and an upper 

limit (also called plateau). Theoretical examples of R/F curves generated under different 

experimental conditions are illustrated in Figure 3A and 3B. When the current intensities and 

pulse duration of the stimulation are constant, the magnitude of the reinforcing effect of ICSS is 

function of the pulse frequency (Gallistel et al., 1981); animals will  respond at negligible rates at 

low frequencies, intermediate rates for moderate frequencies, and maximal or asymptotic rates at 

high frequencies (Figure 3A and 3B). The most intuitive measure of the reinforcing efficacy of 
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the stimulation is the brain reward threshold, or M50, which corresponds to the pulse frequency 

sustaining a half-maximal rate of responding. Manipulations that increase or decrease the 

rewarding efficacy of ICSS shift the M50 towards lower or higher values, respectively, thereby 

causing a lateral displacement of the R/F curve (Edmonds and Gallistel, 1974). A decrease in the 

current intensity of the stimulation increases the M50, while the opposite effect is observed when 

the current intensity of the stimulation is increased (Figure 3A).   

   An advantage of using the curve-shift paradigm is that reward threshold that is derived from this 

method is remarkably stable over several months, thus allowing for multiple testing of each 

experimental animal over a long period of time (Stoker and Markou, 2011). The curve-shift 

paradigm also enables experimenters to evaluate the capacity of the subject to self-stimulate. 

Manipulations that induce a change in the capacity of the animal to self-stimulate (such as 

increasing or decreasing the effort needed to perform the operant response) lead to upward or 

downward shifts in the maximum response rate (Miliaressis et al., 1986). Animals will typically 

have a higher rate of responding when the effort required to self-stimulate is low, and a lower rate 

of responding when the effort required to self-stimulate is high (Figure 3B). When the reduction 

in maximum response rate is proportional at each of the pulse frequency tested, the M50 remains 

the same (Figure 3B). However, the curve shift paradigm does not necessarily enable a clear 

dissociation between reward threshold and maximum reponse rate since increases in task difficulty 

can displace the R/F curve laterally (Frank and Williams, 1985; Miliaressis et al., 1986; Fouriezos 

et al., 1990). The curve-shift paradigm is also insufficient inasmuch as it does not dissociate 

between the change in the subjective intensity and the cost of reward; this could be better addressed 

by the "reinforcement mountain" model (Arvanitogiannis and Shizgal, 2008). 
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1.1.4 Methodological and technical considerations 

   Since its discovery and implementation, the ICSS paradigm has become a powerful tool to study 

the neural substrates underlying reward and goal-directed behaviors. A major strength of this 

paradigm is that the electrical stimulation directly activates the brain reward circuitry, bypassing 

sensory systems and natural physiological processes like satiation. The ICSS procedure also 

provides quantitative measurements of brain stimulation reward that are robust and stable over 

long periods of time, thus allowing the experimenter to perform multiple tests or longitudinal 

studies on the same subjects (Stoker and Markou, 2011). Another advantage of ICSS is that the 

stimulation can be delivered to desired regions of the brain with extremely high temporal accuracy 

(in the order of ms). This can be achieved by controlling external parameters such as the pulse 

frequency and duration of the stimulation. However, studies employing ICSS with the use of an 

electrical stimulation have been plagued with a lack of anatomical specificity. The main issue is 

that the electrical stimulation of the brain does not allow the distinction between reward-relevant 

neural elements and those that do not play a role in reward, thus making the identification of the 

neural substrate for brain stimulation reward extremely challenging (Murray and Shizgal, 1996b). 

However, despite its technical limitations, electrical stimulation is still widely used in rodents for 

the identification of the neuroanatomical substrates of reward, and has proven valuable in the study 

of the reinforcing effects of drugs of abuse. 

 

1.2 Anatomy, neurochemistry, and pharmacology of the brain reward system 

1.2.1 Brain regions and neural pathways 

   The discovery by Olds and Milner that rats would readily press a lever to obtain pulses of 

electrical stimulation in certain brain regions (Olds and Milner, 1954) ushered in a series of 
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investigations aiming at determining the neuroanatomical substrate underlying brain stimulation 

reward. Shortly after this discovery, studies showed that electrical stimulation of forebrain and 

hypothalamic structures (Olds, 1956b, a) could also generate high response rates in an ICSS 

paradigm, which unequivocally pointed to the medial forebrain bundle (MFB) as a key neural 

pathway in the brain reward system. The MFB is a large tract of ascending and descending axons 

that span the entire length of the brain, passing through the basal forebrain and the lateral 

hypothalamus (LH) in a rostral-caudal direction. MFB fibers also course through midbrain regions 

including the ventral tegmental area (VTA), to terminate into several nuclei of the brainstem 

including the dorsal raphe (DR) nucleus (Nieuwenhuys et al., 1982), thus relaying information 

from one pole of the brain to the other. In the following paragraphs, evidence implicating the MFB 

in brain stimulation reward are discussed, with an emphasis on mapping, anatomical, and lesion 

studies. The dorsal diencephalic conduction system (DCC), which is another neural pathway of 

the brain reward system, will be discussed in details in the next section. 

   Following the identification of the MFB as a major substrate for ICSS, numerous brain mapping 

studies, where the anatomical site of the stimulation electrode is manipulated, were conducted to 

characterize the brain regions that could support ICSS (Figure 4). The emerging picture resulting 

from these studies suggests that operant responding for ICSS could be obtained along brain regions 

known to send or receive MFB fibers, including the orbitofrontal cortex (OFC) (Mora et al., 1980), 

the medial prefrontal cortex (mPFC) (Bielajew and Trzcinska, 1998), the caudate-putamen 

(Bielajew and Trzcinska, 1998),   the  lateral   preoptic  area  (Bushnik et al., 2000),  the   ventral 
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Figure 4: Non-exhaustive illustration of regions involved in brain stimulation reward. This 

simplified diagram illustrates key brain regions in the MFB (in red) and the DDC (in purple) that 

support operant responding for ICSS (citation in blue) and/or that result in an attenuation of the 

rewarding effects of MFB self-stimulation following a lesion (citation in green). Abbreviations: 

amygdala (Amy); caudate-putamen (CPu); dorsal raphe (DR); habenula (Hb); lateral 

hypothalamus (LH); lateral preoptic area (LPO); medial prefrontal cortex (mPFC); nucleus 

accumbens (NAc); orbitofrontal cortex (OFC); posterior mesencephalon (PM); ventral pallidum 

(VP); ventral tegmental area (VTA). 

 

pallidum (Panagis et al., 1995), the amygdala (Kane et al., 1991), the pontine tegmentum (Rompre 

and Boye, 1989), the median raphe (MR) (Rompre and Miliaressis, 1985), and the DR (Corbett 

and Wise, 1979; Rompre and Boye, 1989). ICSS has also been reported in the habenula (Sutherland 

and Nakajima, 1981; Nakajima, 1984), the olfactory bulbs (Phillips, 1970), the hippocampus 

(Ursin et al., 1966; Phillips et al., 1977), the nucleus accumbens (NAc) (Mogenson et al., 1979), 

the VTA (Fibiger et al., 1987), and the cerebellum (Ball et al., 1974; Corbett et al., 1982). However, 

one of the most extensively studied substrates to date for brain stimulation reward is the LH owing 
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to its critical role in energy homeostasis and motivated behaviors (Berthoud and Munzberg, 2011; 

Stuber and Wise, 2016). 

   The LH is a heterogeneous area of the MFB located posterior to the preoptic area and anterior to 

the VTA. It resides dorsoventrally between the zona incerta and the base of the brain, and 

mediolaterally between the optic tract and the fornix. Studies employing electrical or optogenetic 

stimulation of the LH have implicated this structure in feeding (Delgado and Anand, 1953) and 

reward-seeking (Olds and Milner, 1954; Kempadoo et al., 2013) behaviors. Anatomically, the LH 

comprises several distinct nuclear subgroups that receive a wide array of internal and external 

information, making it well-suited to mediate functions across major output axes (Berthoud and 

Munzberg, 2011). Afferents to the LH have been classically studied using injections of a retrograde 

tracer (i.e., transport of the dye occurs in the reverse direction, from the axon terminal back to the 

cell body), the results of which have demonstrated the existence of projections originating from 

the bed nucleus of the stria terminalis (BNST), the diagonal tract of Broca, the caudate-putamen, 

the NAc, the lateral septal nuclei, the lateral preoptic area, the amygdala, and the zona incerta 

(Barone et al., 1981; Kita and Oomura, 1982). On the other hand, studies employing anterograde 

tracing techniques (i.e., transport of the dye occurs in the forward direction, from the cell body out 

to the axon terminal) showed that LH neurons project to distinct areas of the brain including the 

hypothalamic paraventricular nucleus, the lateral habenula (LHb), the VTA, the mesencephalic 

and pontine central gray, the lateral parabrachial nucleus, and the raphe nucleus (Kita and Oomura, 

1982; Larsen et al., 1994). 

   Numerous studies have also employed lesions along certain brain structures or pathways in order 

to evaluate their impact on the reinforcing properties of ICSS (Figure 4). The reasoning behind 

this technique is based on the assumption that destruction of axons or cellular elements involved 
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in brain stimulation reward should result in an attenuation of the reinforcing effects obtained from 

ICSS. Therefore, assessing the strength of the reinforcing effect of ICSS before and after a lesion 

could help characterize the underlying neural circuit of brain stimulation reward. A common 

finding is that electrolytic lesions or knife cuts along the MFB cause a rightward shift in R/F curves 

obtained from LH (Janas and Stellar, 1987; Gallistel et al., 1996) or VTA (Simmons et al., 1998) 

self-stimulation, indicating a sustained attenuation of the rewarding effectiveness of ICSS. Lesions 

encompassing the habenula (Morissette and Boye, 2008), the cortical and adjacent amygdaloid 

subnuclei (Bielajew et al., 2002), the lateral preoptic area (Waraczynski, 1988), and the posterior 

mesencephalon (PM) (Boye, 2005) also cause a rightward shift in R/F curves for MFB self-

stimulation. However, several other studies employing electrolytic lesions failed to observe 

decreases in the rewarding effectiveness of MFB stimulation. In particular, lesions at the amygdala 

(Waraczynski et al., 1990), the dorsomedial hypothalamus (Waraczynski et al., 1992), the 

parabrachial nucleus (Waraczynski and Shizgal, 1995), the rostral LH (Gallistel et al., 1996), and 

the lateral PM (Boye, 2005) have not resulted in consistent and noticeable changes in the rewarding 

effectiveness of MFB stimulation. A hypothesis to account for these negative findings is that the 

neural network subserving ICSS is anatomically diffuse, collateralized, and highly heterogeneous 

(Lorens, 1966; Simmons et al., 1998), and may be comprised of several pathways that are 

functionally interconnected. As such, the loss of reward-relevant neurons within one pathway 

would be compensated by the other, and vice versa, thereby enabling the integration and 

transmission of reward signals in the brain. 

 

1.2.2 Central role of dopamine in reward 
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   Dopamine (DA) is a neurotransmitter of the catecholamine family and plays a crucial role in a 

variety of processes within the central nervous system (CNS). In the brain, DA is synthesized from 

dopaminergic neurons of the VTA, substantia nigra pars compacta (SNc), retrorubral field (RRF), 

and hypothalamic arcuate and periventricular nuclei, and is transmitted via distinct dopaminergic 

pathways that play unique functions (Bjorklund and Dunnett, 2007; Luo and Huang, 2016). 

Dopaminergic neurons of the SNc project into the caudate-putamen via the nigrostriatal pathway, 

which play a key role in the regulation of voluntary movements (Luo and Huang, 2016). On the 

other hand, VTA DA neurons project to the NAc and other structures of the limbic system via the 

mesolimbic pathway, and to the prefrontal cortex via the mesocortical pathway (Luo and Huang, 

2016). The mesolimbic and mesocortical pathways are primarily involved in emotion-related 

behavior and are often collectively referred to as the mesocorticolimbic pathway because of their 

significant overlap and association (Arias-Carrion and Poppel, 2007). Given the wide range of 

functions mediated by dopaminergic pathways, it is not surprising that abnormalities in DA 

transmission have been associated with numerous neuropathological conditions, including 

schizophrenia, major depressive disorders, substance use disorder, and Parkinson’s disease 

(Birtwistle and Baldwin, 1998; Dunlop and Nemeroff, 2007; Volkow et al., 2009). 

   Midbrain DA neurons have been extensively studied in the context of reward-related processes 

owing to their ability to encode information about motivational salience (Bromberg-Martin et al., 

2010; Schultz, 2015). In monkeys, these neurons show increased firing rate following the delivery 

of unpredicted food or liquid rewards, and following the presentation of reward-predicting stimuli 

(Ljungberg et al., 1992; Schultz et al., 1997; Schultz, 2010). DA neurons not only serve as a global 

reward signal, but also function as a reward prediction error signal, that is, the degree of 

discrepancy between the actual reward and its prediction (Schultz, 2016). In the context of ICSS, 
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early evidence implicating DA in brain stimulation reward comes from studies showing that 

electrical stimulation of DA-containing cell bodies in the midbrain (Crow, 1972a, b; Wise, 1981) 

and diencephalic areas that are traversed by DA fiber bundles (Corbett and Wise, 1980) produces 

positive reinforcement. In the study by Corbett & Wise (1980), reward thresholds obtained from 

stimulating ascending midbrain dopaminergic pathway were negatively correlated with the density 

of DA neurons surrounding the tip of the stimulation electrode, suggesting that DA transmission 

is strongly involved in mediating the rewarding effectiveness of ICSS. Neurochemical studies 

employing fast-scan cyclic voltammetry and/or in-vivo microdialysis to measure the extracellular 

release of DA in the brain have also provided robust evidence for the involvement of DA in the 

rewarding effect of ICSS. These studies reported long-lasting increases in the extracellular 

concentration of DA in various brain regions, including the NAc (Nakahara et al., 1989; You et 

al., 2001) and mPFC (Bean and Roth, 1991; Nakahara et al., 1992) following electrical stimulation 

of the MFB. Increased release of DA metabolites, including 3,4-dihydroxyphenylacetic acid 

(DOPAC) and homovanillic acid (HVA), were also observed in the striatum, NAc, and olfactory 

tubercle of rats following VTA self-stimulation (Fibiger et al., 1987). Consistently, DA release in 

the NAc was significantly increased following VTA self-stimulation (Phillips et al., 1992; 

Hernandez and Shizgal, 2009), and was found to be inversely correlated with reward thresholds 

for MFB self-stimulation (Yavich and Tanila, 2007). Last but not least are electrophysiological 

findings showing that the majority of midbrain DA neurons ( >70%) are activated by rewarding 

electrical stimulation of the PM (Moisan and Rompre, 1998), thus concurring with the view that 

DA participates in the reinforcing effects of ICSS. 

   In addition to electrophysiological and neurochemical findings, data from pharmacological 

studies also provide robust evidence for the role of DA transmission in brain stimulation reward. 
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DA binds to and activates five different receptor subtypes that are divided into two major 

subclasses: D1-like receptors, which include the D1 and D5 subtypes, and D2-like receptors, which 

include D2, D3 and D4 subtypes (Jaber et al., 1996; Beaulieu and Gainetdinov, 2011). 

Administration of pimozide and chlorpromazine, two selective antagonists for DA D2 receptors, 

produce a rightward shift in ICSS reward thresholds, indicating that the rewarding efficacy of the 

stimulation is decreased (Gallistel and Karras, 1984; Miliaressis et al., 1986; Gallistel and Freyd, 

1987). Reduced brain stimulation reward was also obtained following blockade of DA D2 receptors 

(Schaefer and Michael, 1980; Benaliouad et al., 2007) and DA D1 receptors (Nakajima and 

McKenzie, 1986), suggesting that DA transmission is critical in the objective reinforcement 

associated with ICSS. Accordingly, pharmacological manipulations that enhance DA 

transmission, such as agonist-mediated activation of DA receptors (Gilliss et al., 2002), blockade 

of DA transporter (Rompre and Bauco, 1990; Maldonado-Irizarry et al., 1994), and administration 

of psychostimulants such as amphetamine and cocaine (Colle and Wise, 1988; Straub et al., 2010), 

produce a leftward shift in brain reward thresholds. However, other studies failed to observe 

changes in the rewarding efficacy of ICSS following administration of DA receptors agonists 

(Malanga et al., 2008) or antagonists (Fibiger et al., 1976), suggesting that the mechanisms 

underlying the reinforcing effect of ICSS might not entirely depend on DA transmission. 

Consistent with this view, rats that received 6-hydroxydopamine (6-OHDA)—a neurotoxin that 

selectively destroys DA neurons—by intracerebroventricular injection (Sidhu et al., 1993) or 

bilaterally into the substantia nigra (Ornstein and Huston, 1975) showed normal rates of 

responding for ICSS. Altogether, the aforementioned studies suggest that although DA 

transmission plays a crucial role in the reinforcing effects of ICSS, there are most likely other 

systems involved in brain stimulation reward. Among those, the glutamate and opioid systems 
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have garnered considerable attention as important mediators of reward-related processes owing to 

their critical role in controlling DA neuronal activity (Le Merrer et al., 2009; D'Souza, 2015). In 

the following sections, an overview of evidence implicating these modulatory systems in reward 

processing is presented. 

 

1.2.3 Glutamate transmission: overview and implication in reward processing 

   Glutamate is the most abundant excitatory neurotransmitter in the brain and accounts for the 

majority of synaptic transmission (Niciu et al., 2012). Present in high concentrations in the CNS, 

glutamate is a non-essential amino acid that can be synthesized from glucose and a variety of other 

sources (Dingledine and McBain, 1999). Glutamate also serves as a metabolic precursor to 

gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain, the latter 

being synthesized from the former by the enzyme glutamic acid decarboxylase (Fenalti et al., 

2007). As an amino acid and neurotransmitter, glutamate is involved in a wide range of 

physiological processes, and perturbations in glutamate transmission can result in deleterious 

effects. For instance, glutamate-mediated excitotoxicity, which occurs as a result of glutamate 

receptors overactivation and excessive entry of calcium inside the cells, can cause neuronal 

damage and/or death (Sattler and Tymianski, 2001), and has often been associated with numerous 

neurodegenerative conditions such as Alzheimer’s disease (Hynd et al., 2004), Parkinson’s disease 

(Beal, 1998), and amyotrophic lateral sclerosis (Shaw and Ince, 1997). Because disruptions in 

glutamate transmission have also been linked to imbalances in the DA system (Kretschmer, 1999) 

and changes in reward sensitivity (Bechtholt-Gompf et al., 2010), a growing number of studies are 

focusing on the glutamatergic system as a therapeutic target for psychiatric conditions such as 

schizophrenia, depression, and substance use disorder (Javitt, 2004; Kerner, 2009). 
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   In order to prevent neuronal damage that might occur as a result of glutamate-mediated 

excitotoxicity, the extracellular fluid concentration of glutamate is tightly regulated by excitatory 

amino acid transporters (EAATs) (Zhou and Danbolt, 2014). The EAATs are located on 

glutamatergic terminals and presynaptic glial cells, and are responsible for the removal of 

glutamate from the synaptic cleft (D'Souza, 2015). The vesicular glutamate transporters 

(VGLUTs), which constitute another class of glutamate transporters, are responsible for the uptake 

and sequestration of glutamate into presynaptic vesicles, and are dependent on a proton gradient 

that is generated upon the hydrolysis of adenosine triphosphate (ATP) (Liguz-Lecznar and 

Skangiel-Kramska, 2007). Once stored in vesicles, glutamate gets released into the synaptic cleft 

by exocytosis, and binds to either metabotropic or ionotropic glutamate receptors (Figure 5). 

Metabotropic glutamate receptors (mGluR) are slow-acting G-protein coupled receptors located 

in presynaptic and postsynaptic terminals, which are subclassified into three groups based on 

anatomical and functional homology: group I includes mGluRs 1 and 5, Group II includes mGluRs 

2 and 3, and Group III includes mGluRs 4, 6, 7 and 8 (Niswender and Conn, 2010). Conversely, 

ionotropic glutamate receptors are fast-acting ligand- gated ion channels which include amino-3-

hydroxy-5-methyl-4-isoxazolepropionate (AMPA), N-methyl-D-aspartate (NMDA), and kainate 

receptors. 

   AMPA receptors are tetramers composed of four subunits designated as GluR1, GluR2, GluR3 

and GluR4 (Ward et al., 2010). Each of the GluR1-4 subunits exists in two different forms (“flip” 

and “flop”) created by alternative splicing, thus conferring different signalling properties to AMPA 

receptors (Ozawa et al., 1998). Kainate receptors are also tetramers that form ligand-gated ion 

channels and that can be assembled from a combination of five different subtypes of subunit: 

GluK1-3 and GluK4-5 (Fisher and Fisher, 2014). Both AMPA and kainate receptors interact with  
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Figure 5: Ionotropic and metabotropic glutamate receptors. NMDA receptors interact with 

glutamate, glycine, Mg2+, Zn2+ and polyamines, and contain a channel that allows the passage of 

Ca2+, Na+ and K+ ions.  AMPA and kainate receptors interact only with glutamate and their specific 

agonists, and contain a channel that is permeable to Na+ and K+ ions. On the other hand, mGluRs 

are members of the G-protein-coupled receptor superfamily. They regulate ion channels and 

downstream signalling by activating a guanosine triphosphate (GTP)-binding protein (Gq for 

Group I, and Gi/G0 for Group II and Group III mGluRs), which in turn modulates the function of 

various effector molecules including the enzymes adenylyl cyclase and phospholipase C. 

Abbreviations: adenylyl cyclase (A cyclase); AMPA receptor (AMPAR); glutamate (Glu); glycine 

(Gly); kainate receptor (KAR); metabotropic glutamate (mGlut); NMDA receptor (NMDAR); 

phencyclidine (PCP); phospholipase C (PLC). Adapted from Kritis et al., 2015. 

 

glutamate and their specific agonists, and their associated channels are permeable to various 

cations including Na+ and K+ (Kritis et al., 2015). On the other hand, NMDA receptors are 

tetramers composed of two obligatory GluN1 subunits (for which there are several splice variants), 

and two of the following subunits: GluN2A, GluN2B, GluN2C, GluN2D, GluN3A and GluN3B 

(Paoletti et al., 2013). The two non-GluN1 subunits can be identical or different, thus giving rise 

to di-heteromeric or tri-heteromeric receptors (Paoletti et al., 2013). Unlike AMPA and kainate 

receptors, NMDA receptors need to be co-activated by two ligands: glutamate and either D-serine 
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or glycine (Kleckner and Dingledine, 1988). In addition, the NMDA receptor pore is blocked by 

Mg2+  ions  in  a  voltage-dependent  manner,  however,  this  block  can  be  dislodged  following 

sufficient membrane depolarization such as opening of AMPA receptor channels (Gass and Olive, 

2008). Other regulatory sites on NMDA receptors are recognized by the dissociative anesthetics 

phencyclidine (PCP), which selectively antagonizes the response to NMDA in a non-competitive 

manner, and by Zn2+ ions, which produce a voltage-independent block. 

   Converging evidence implicates glutamate transmission in the regulation of DA neuronal 

activity. Under resting conditions, a small proportion of DA neurons are non-responsive to 

excitatory inputs, while the majority of DA cells fire spontaneously in two distinctive patterns of 

activity: (i) a tonic or single spike mode, and (ii) a fast phasic burst firing (Grace and Bunney, 

1984a, b). Activation of glutamatergic afferents in the ventral midbrain mediates the switch from 

pacemaker tonic to phasic burst firing of DA neural activity (Johnson et al., 1992; Chergui et al., 

1993; Lodge and Grace, 2006), a mode that is associated with increased DA release (Gonon, 1988; 

Overton and Clark, 1997). Besides its role in switching the firing mode of DA cells, glutamate 

afferents also establish synaptic contacts with local GABAergic interneurons of the midbrain, 

thereby enhancing the inhibitory drive onto DA neurons (Dobi et al., 2010; Omelchenko and 

Sesack, 2010). In light of these observations, studies examining the capacity of glutamate receptor 

agonists to alter DA release have reported conflicting results. For instance, both increases and 

decreases in DA release were observed in the striatum and NAc following activation of 

metabotropic (Ohno and Watanabe, 1995; Feenstra et al., 1998; Verma and Moghaddam, 1998) 

and ionotropic (Karreman et al., 1996; Wu et al., 2000) glutamate receptors. Moreover, activation 

(Kretschmer, 1999) and blockade (Narayanan et al., 1996; Cornish et al., 2001) of ionotropic 

glutamate receptors in the midbrain enhances locomotor activity, a DA-dependent behavioral 
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measure. The discrepancies in the results observed concur with the view that glutamate exerts 

opposite regulatory functions on DA neuron activity, and raise the possibility that such opposite 

modulation may be mediated by different glutamate receptor subtypes. 

   Because of its differential role in the regulation of DA neuron activity, glutamate has been 

proposed to mediate opposite effects on reward by acting on different glutamatergic receptor 

subtypes. To further clarify the role of midbrain glutamatergic transmission in reward, a series of 

elegant studies has evaluated the effect of ionotropic glutamatergic receptors blockade on the 

reinforcing efficacy of ICSS. In rats, intra-VTA injection of the AMPA receptor antagonist, 2,3,-

Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide (NBQX), dose-dependently 

attenuates the rewarding efficacy of ICSS, most likely as a result of reduced glutamatergic 

excitatory inputs to midbrain DA neurons (Ducrot et al., 2013). The view that AMPA receptor 

blockade causes a marked reduction in brain stimulation reward is in line with studies showing 

that injection of AMPA antagonists into the VTA blocks the development of a conditioned place 

preference to cocaine (Harris and Aston-Jones, 2003) and morphine (Harris et al., 2004). However, 

it is in contrast with a previous report showing that mice can learn to self-administer the AMPA 

receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), into the VTA (David et al., 1998). 

Such discrepancies in the results could be attributable to differences in experimental approaches 

(i.e., drug and dose used) and injection sites (rostral versus caudal regions of the VTA). A study 

by Ducrot et al. (2013) also investigated the effect of (2R,4S)-4-(3-Phosphonopropyl)-2-

piperidinecarboxylic  acid  (PPPA)—an  NMDA  receptor  antagonist  with  a  preferred action on 

GluN2A subunits—on the rewarding efficacy of ICSS, showing that PPPA injection into the VTA 

produces a time-dependent increase in brain stimulation reward. The reward-enhancing properties 

of PPPA are very similar to those reported by other studies using the same dose and injection site  
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Figure 6: Glutamate transmission in the ventral midbrain exerts opposite roles. On the one hand, 

glutamate can switch the firing pattern of DA neurons from tonic to phasic burst firing. On the 

other hand, glutamate afferent terminals can make synaptic contact with local GABAergic 

interneurons, thereby increasing the inhibitory drive onto DA neurons. The inhibitory effect of 

glutamate on DA neuronal activity is most likely mediated by GluN2A-containing NMDA 

receptors located on afferent terminals. Abbreviations: ventral midbrain (VM). Adapted from 

Hernandez et al., 2015.  

 

(Bergeron and Rompre, 2013; Hernandez et al., 2016), and suggest that GluN2A-containing 

NMDA receptors are mainly expressed on GABAergic neurons of the VTA. Using the small 

interferon RNA (siRNA) technique, Hernandez et al. (2015) also showed that downregulation of 

NMDA receptors in the ventral midbrain attenuates brain stimulation reward, most likely as a 

result of decreased glutamate-mediated excitability of DA neurons. However, the siRNA-mediated 

downregulation of NMDA receptors failed to alter the reward-enhancing effect of PPPA, 
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indicating that GluN2A-containing NMDA receptors are most likely located on glutamate afferent 

terminals of the ventral midbrain (Figure 6) (Hernandez et al., 2015). 

   Taken together, the aforementioned findings suggest that glutamate signalling is highly 

implicated in reward and motivational processes as a result of its strong influence over DA neuron 

activity. This could have important implications for psychiatric conditions such as major 

depressive disorders, where abnormalities in reward processing are frequently observed (Admon 

and Pizzagalli, 2015; Whitton et al., 2015). Ketamine, a pharmacological agent that targets 

glutamate NMDA receptors, has already proven successful in producing rapid and long-lasting 

attenuations of depressive symptoms in patients (Berman et al., 2000; Messer and Haller, 2017), 

however, evidence supporting its use as an antidepressant is still very limited and requires further 

investigation. 

 

1.2.4 The opioid system: overview and implication in reward processing 

   Early evidence for the existence of an opioid system stems from the use of opium by the 

Sumerians in 3400 B.C., who called it "gil"—the word for joy (Brownstein, 1993). Opium is 

obtained from the seed capsules of the opium poppy, Papaver somniferum, and is the source of a 

family of drugs referred to as opiates or opioids. The opioids have been used for both recreational 

and medicinal purposes for thousands of years due to their principal effect in euphoria and pain 

reduction. In the beginning of the 19th century, Sertürner isolated the active ingredient of opium, 

and named it morphine after the Greek god of dreams, Morpheus (Brownstein, 1993). In addition 

to morphine, opium contains other closely related opioids including codeine and thebaine. 

However, despite being effective in pain relief, these opium-derived compounds were found to be 

highly addictive and not very safe to use. In an effort to develop a safer opiate for pain relief, 
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heroin was chemically synthesized by the Bayer Company in the late 1800s through the addition 

of two acetyl groups onto the morphine molecule (Pasternak and Pan, 2013). Although heroin was 

first marketed as a non-addictive painkiller and cough suppressant, its strong addictive properties 

were soon acknowledged, and resulted in its immediate prohibition from the market (Le Merrer et 

al., 2009). Today, heroin and morphine are widely used illicit drugs of abuse, and represent a 

significant public health problem. 

   The opioid system consists of three major families of G-protein coupled receptors, μ (mu), δ 

(delta), and κ (kappa), and three major families of endogenous peptides, β-endorphin, enkephalins, 

and dynorphins. These endogenous peptides derive from the proteolytic cleavage of large protein 

precursors, which include proopiomelanocortin (the precursor of β-endorphin), preproenkephalin 

(the precursor of enkephalins), and preprodynorphin (the precursor of dynorphins) (Benarroch, 

2012). More recently, two short peptides that display high affinity for mu-opioid receptors (MORs) 

have been identified and named endomorphin-1 (EM-1) and endomorphin-2 (EM-2), however, 

their exact function is far from being fully elucidated (Koneru et al., 2009). In the brain and spinal 

cord, opioid receptors show unique, albeit overlapping, distributions, suggesting that they mediate 

different physiological functions (Mansour et al., 1987; George et al., 1994; Mansour et al., 1994). 

MORs are particularly enriched in areas involved in morphine-induced analgesia, such as the 

thalamus and raphe nuclei, and in areas involved in reward related processes, such as the habenula 

and the NAc (Mansour et al., 1987; Mansour et al., 1994). Delta opioid receptors (DORs) have a 

distribution similar to that of MORs, but are more restricted to forebrain regions including the 

anterior cingulate cortex, neocortex, striatum, and amygdala, suggesting that they may play a role 

in cognitive functions, motor integration, and reinforcement (Mansour et al., 1987; Mansour et al., 

1994). On the other hand, kappa opioid receptors (KORs) exhibit a third pattern of distribution  
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Figure 7: Model of opposing tonic effects of opioid receptors on mesolimbic dopaminergic cells. 

In the VTA, β-endorphins (via MORs) increase VTA DA neuronal activity by inhibiting the release 

of GABA from local interneurons. This results in increased release of DA in the NAc. Similarly, 

activation of DORs by enkephalins increases VTA DA cell firing by inhibiting local GABAergic 

inhibitory cells (not shown). On the other hand, the release of DA from mesolimbic nerve terminals 

is tonically inhibited by dynorphins through the activation of KORs, which are located on the 

terminals of DA neurons. Abbreviation: β-endorphin (β-EP); dynorphin (DP); nucleus accumbens 

(NAc). Modified from (Heilig et al., 2011). 

 

distinct from that of MORs and DORs, primarily along the hippocampus, dentate gyrus, 

hypothalamus, amygdala and striatum (Mansour et al., 1987; Tempel and Zukin, 1987), and are 

mostly involved in the regulation of mood and pain perception (Black and Trevethick, 1998; 

Bruijnzeel, 2009). 

   Over the past few decades, there has been increasing evidence showing that the opioid system is 

involved in processes of reinforcement. It is well established that activation of MORs, and to a 

lesser extent DORs, produces positive reinforcement, whereas activation of KORs induces 

aversive effects (Gruber et al., 2007b; Le Merrer et al., 2009). Early studies on opioid self-

administration demonstrated  that  rats  (Weeks, 1962; van Ree et al., 1978)  and rhesus monkeys  
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(Thompson and Schuster, 1964; Deneau et al., 1969) would readily press a lever to receive 

intravenous infusions of morphine, a selective MOR agonist. Similarly, intracranial administration 

of enkephalins, which primarily bind to DORs, produces positive reinforcement in rodents 

(Goeders et al., 1984b; Goeders et al., 1984a; Dib, 1985). Consistent with the view that activation 

of MORs and DORs is reinforcing, agonists for these receptors have been shown to potentiate the 

rewarding effects of ICSS inasmuch as they produce a leftward shift in the R/F curve (Broekkamp 

and Phillips, 1979; Bauco et al., 1993; Duvauchelle et al., 1997; Robinson et al., 2012). In addition, 

several reports have shown that MOR and DOR agonists, including morphine (Wu et al., 2016), 

heroin (Schlussman et al., 2008), fentanyl (Miller and Nation, 1997), EM-1 (Zangen et al., 2002), 

and Met-enkephalin (Agmo and Gomez, 1991), produce conditioned place preference; effect that 

is attributed to their rewarding and addictive properties. However, unlike MOR and DOR agonists, 

agonists for KORs do not produce reinforcing effects. Instead, activation of KORs produces 

conditioned place aversion (Land et al., 2009; Robles et al., 2014) and depressive-like behaviors 

in rodents (Mague et al., 2003; Carlezon et al., 2006), suggesting that these receptors may 

contribute to negative emotional states. Activation of KORs also decreases the rewarding 

effectiveness of ICSS inasmuch as systemic administration of the KOR agonist, U-69593, dose-

dependently increases reward thresholds for MFB self-stimulation (Todtenkopf et al., 2004; 

Tomasiewicz et al., 2008).  

   MORs, DORs and KORs are proteins that possess seven membrane-spanning domains coupled 

to an inhibitory G protein (Gi). Activation of these receptors inhibit adenylyl cyclase, which 

normally synthesizes the second messenger cyclic adenosine monophosphate (cAMP). Opioid 

receptor-mediated cellular changes are inhibitory; their activation reduces membrane excitability 

and subsequent cell firing by opening K+ channels, which causes membrane hyperpolarization, 
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and by closing voltage gated Ca2+ channels, which decreases the amount of neurotransmitter 

released (Meyer and Quenzer, 2005). Opioids mediate their effects through a number of brain areas 

of the corticomesolimbic system, however, chief among these is the VTA, which houses DA cell 

bodies that project to the NAc (Wise, 1989). Activation of MORs and DORs in the VTA increases 

the release of DA in the ventral striatum (Leone et al., 1991; Devine et al., 1993), which suggests 

that these receptors are localized on GABAergic interneurons and that their activation produces 

DA cell activation via disinhibition (Figure 7). On the hand, KORs are located on the terminals 

of VTA DA neurons (Figure 7), and agonists for these receptors decrease striatal DA release when 

injected systematically (Di Chiara and Imperato, 1988; Maisonneuve et al., 1994) or directly into 

the NAc (Spanagel et al., 1992). Altogether, these findings concur with the view that opioid 

receptors mediate distinct and unique roles in reward processing, and highlight the opioid system 

as a key regulator of goal-directed behaviors. 

 

1.3 The dorsal diencephalic conduction system in reward processing: spotlight on the 

anatomy and function of the habenular complex (Adapted from the review paper Fakhoury 

2018. Behavioral Brain Research, Accepted in Press) 

   The DDC is a neural pathway composed of the stria medullaris (SM), the habenula, and the 

fasciculus retroflexus (FR) that merges with the MFB at its rostral and caudal poles. The 

information received by the DDC travels from the anterior portion of the LH to the habenula 

through the SM, and gets transmitted to midbrain regions via the FR (Sutherland, 1982; Beretta et 

al., 2012). Sites within the DDC, including the SM and the habenula, have all been shown to 

support operant responding for ICSS, indicating that this pathway plays crucial roles in the 

modulation of reward and goal-directed behaviors (Sutherland and Nakajima, 1981; Blander and 
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Wise, 1989; Vachon and Miliaressis, 1992). However, until recently, the role of the DDC in reward 

processing has largely been overlooked in favor of the MFB. Following Matsumoto and Hikosaka's 

seminal work on the LHb as a source of negative reward signals in monkeys (Matsumoto and 

Hikosaka, 2007), the DDC has undergone a resurgence of scientific interest, paving the ways for 

many subsequent studies (Batalla et al., 2017; Fakhoury, 2017). Numerous functions have been 

ascribed to the DDC, including the regulation of sleep homeostasis (Aizawa et al., 2013; Zhang et 

al., 2016), stress response (Wirtshafter et al., 1994; Jacinto et al., 2017), anxiety (Mathuru and 

Jesuthasan, 2013), pain (Shelton et al., 2012b) and analgesia (Shelton et al., 2012a). However, the 

overarching goal of the following sections is to provide an overview of the neuroanatomical and 

behavioral findings aimed at deciphering the functions of the DDC in reward processing, with a 

special focus on the habenular complex. A description of the cellular and synaptic profile of 

habenular neurons and their interconnectivity with monoaminergic systems is first given, followed 

by an overview of findings delineating the reward-related functions of the DDC.  

 

1.3.1 The habenula: morphological, cellular and electrophysiological profile 

   Centrally located along the DDC, the habenula acts as an interface between forebrain and 

mesencephalic regions. It is an evolutionary conserved epithalamic structure that shows striking 

asymmetry in most groups of vertebrates (Concha and Wilson, 2001; Bianco and Wilson, 2009). 

In the lamprey, the right habenula is substantially larger than the left, while in most species of 

cartilaginous fishes, the habenular nucleus is enlarged on the left side (Concha and Wilson, 2001). 

Size differences between the right and left habenula have also been observed in rodents. In the 

albino rat, the left habenula is slightly larger compared to the right (Wree et al., 1981), whereas in 

the albino mouse, the right habenula is markedly enlarged and displays a more complex 



30 
 

arrangement of neurons compared to the left habenula (Zilles et al., 1976). Anatomically, the 

habenula is divided into two functionally distinct subclei; the medial (MHb) and the lateral (LHb) 

habenula. The MHb is comprised of a superior (MHbS), inferior (MHbI), central (MHbC), and 

lateral (MHbL) part, and is characterized by a remarkably high density of cells that show striking 

differences in somatodendritic and axonal morphology (Kim and Chang, 2005; Aizawa et al., 

2012). On the other hand, the LHb is comprised of a medial (LHbM) and lateral (LHbL) part, each 

one further subdivided into distinct sets of nuclei on morphologic and cytochemical grounds 

(Andres et al., 1999; Geisler et al., 2003; Aizawa et al., 2012). Morphological analysis also reveal 

the presence of four major types of cells within the LHb, namely the spherical, fusiform, 

polymorphic, and vertical cells (Weiss and Veh, 2011), and unlike the MHb, cells in this nucleus 

are more loosely dispersed (Kim and Chang, 2005). Although morphologically different from each 

other, LHb neurons share similar electrophysiological profile and intrinsic membrane properties; 

they have a high input resistance and produce long-lasting discharges in response to transient 

synaptic hyperpolarization (Chang and Kim, 2004; Weiss and Veh, 2011). Such similarity most 

likely suggests that the formation of functional entities within the LHb is achieved by specific 

synaptic inputs to particular neurons rather by individual differences in intrinsic membrane 

properties (Weiss and Veh, 2011). 

   LHb neurons are mainly glutamatergic, with enriched expression of the vesicular glutamate 

transporter VGLUT2 (Aizawa et al., 2012; Vigneault et al., 2015). These neurons exhibit different 

patterns of spontaneous action potential firing, including tonic regular, tonic irregular and burst 

firing (Kowski et al., 2009). Electrophysiological evidence suggests that the glutamatergic 

transmission in the LHb is primarily driven by calcium-permeable AMPA receptors, and to a lesser 

extent, calcium-impermeable AMPA receptors (Li et al., 2011; Shabel et al., 2012; Meye et al., 
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2013). The excitatory glutamatergic transmission in LHb neurons also relies on the activation of 

NMDA receptors (Li et al., 2011) and mGluR1 (Valentinova and Mameli, 2016), though synaptic 

currents mediated by these receptors are relatively small compared to those mediated by AMPA 

receptors. The LHb also receives strong gamma-GABAergic inputs, which are mainly driven by 

the activation of GABA type-A (GABAA) and type-B (GABAB) receptor subunits (Liang et al., 

2000; Meye et al., 2013). These GABAergic projections most likely originate from extrinsic 

sources since local interneurons are relatively scarce (Smith et al., 1987). Besides glutamate and 

GABAergic receptors, the LHb contains DA type-2 (D2) and type-4 (D4) receptors postsynaptically 

(Aizawa et al., 2012; Good et al., 2013), as well as serotonin receptor 2C (5-HT2C) (Han et al., 

2015), suggesting that it may be subject to dopaminergic and serotonergic modulation.  

   The cellular and electrophysiological profile of the MHb is very different compared to that of 

the LHb (Kim and Chang, 2005; Aizawa et al., 2012). A known feature of the MHb is that it has 

one of the highest concentrations of GABAB receptors in the brain, indicating the existence of 

strong inhibitory inputs (Durkin et al., 1999; Liang et al., 2000; Wang et al., 2006; Kim and Chung, 

2007). MHb neurons are mostly homogeneous in their electrophysiological profile, exhibiting 

tonic firing of action potentials (Kim and Chang, 2005). They receive glutamate- and ATP-

mediated synaptic inputs (Robertson and Edwards, 1998) and contain functional AMPA receptors 

of low calcium permeability (Robertson et al., 1999). Recent observations also indicate that the 

MHb contains glutamate-expressing neurons with enriched expression of VGLUT1 and VGLUT2 

(Barroso-Chinea et al., 2007; Qin and Luo, 2009) and with the ability to co-release acetylcholine 

at synaptic terminals (Ren et al., 2011). Unlike the LHb, which expresses several subunits of 

GABAA receptors at both the mRNA and protein level, the MHb only expresses the α2-subunit of 

GABAA receptors (Hortnagl et al., 2013). The MHb is also distinctive from the LHb in that it 
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expresses at very high level the α3, α4, α5, α6, β2, β3 and β4 subunits of the nicotinic acetylcholine 

receptors (nAChRs) (Grady et al., 2009; Shih et al., 2014), and shows strong immunoreactivity for 

MORs (Gardon et al., 2014), suggesting that it most likely play a crucial role in modulating the 

behavioral effects of nicotine and morphine.  

   Last but not least, evidence indicates some degree of functional specialization within MHb 

neurons. For instance, gene expression analysis of medial habenular subnuclei in the rat reveal that 

the superior MHb is glutamatergic, the dorsal-central part of the MHb is both substance P-ergic 

and glutamatergic, and that the ventral-center and lateral part of the MHb are both cholinergic and 

glutamatergic (Aizawa et al., 2012). More recently, Chou and colleagues (2016) identified two 

subregions in the evolutionarily homologous dorsal habenula (dHB) of the zebrafish, namely the 

lateral subregion of the dHb (dHbL) and the medial subregion of the dHb (dHbM), which 

antagonistically regulate the outcome of conflict. Silencing the dHbL or dHbM in zebrafish caused 

a stronger predisposition to lose or win a fight, respectively, indicating that these subregions 

differentially regulate the resolution of social conflict (Chou et al., 2016). 

 

1.3.2 Afferent and efferent pathways of the habenula 

   As shown in Figure 8, the habenula is an epithalamic structure divided into a lateral and medial 

component that lie in close proximity to the pineal gland. The connection between the two 

habenular subnuclei is asymmetrical inasmuch as only the MHb sends axonal projections to the 

LHb (Kim and Chang, 2005). Despite sharing some sources of afferent inputs and efferent targets, 

the LHb and MHb are characterized by different connectivity that underlie differences in their 

functions. In delineating the afferent and efferent circuitry of the habenula, the primary focus will 

be on the rat, which has been well studied. Some subtle differences in connectivity may exist across 
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species, however, a description of the comparative neuroanatomy of the habenula is outside the 

scope of this paper. 

   Much of the knowledge on the connectivity of the habenula has been acquired through studies 

employing retrograde and anterograde tracing. Findings from these studies suggest that the LHb 

receives strong GABAergic inputs from structures of the limbic system including the medial 

septum, diagonal band of Broca, lateral preoptic area and the substantia innominate (SI) 

(Herkenham and Nauta, 1977; Araki et al., 1984; Hreib et al., 1988), as well as bilateral and 

topographically organized inputs from the anterior insular, cingulate, prelimbic and infralimbic 

cortices (Sesack et al., 1989; Kim and Lee, 2012). By far, the strongest inputs to the LHb originate 

from the LH and the entopeduncular nucleus (EP), the latter being the internal segment of the 

globus pallidus in non-primate mammals (Herkenham and Nauta, 1977). Projections from these 

regions to the LHb are primarily excitatory and glutamatergic, though evidence of a GABAergic 

input originating from these regions has also been demonstrated (Shabel et al., 2012; Stamatakis 

et al., 2016). Projections from the BNST, dorsomedial hypothalamic nucleus, periaqueductal gray 

(PAG), SNc, and VTA (Li et al., 1993) as well as inputs from 5HT-containing neurons of the 

median (MR) and DR (Conrad et al., 1974; Vertes et al., 1999) also densely innervate the LHb. 

On the other hand, the LHb innervates a wide range of structures by projecting caudally through 

the FR or rostrally through the SM. One of the major targets of the LHb efferent pathway is the 

tail of the VTA (tVTA); a GABAergic region located posterior to the VTA, which is also referred 

to as rostromedial tegmental nucleus (RMTg) (Jhou et al., 2009a; Kaufling et al., 2009). The dense 

projections from the LHb to the tVTA are glutamatergic (Brinschwitz et al., 2010), mainly 

ipsilateral, and organized in a topographical manner, with medial and lateral portions of the LHb 

targeting medial and lateral portions of the tVTA, respectively (Jhou et al., 2009a; Kaufling et al., 
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2009). Direct excitatory projections from the LHb to DA and GABAergic neurons of the VTA 

have also been reported, though these constitute only a small proportion (~16%) of LHb projecting 

axons (Omelchenko et al., 2009; Goncalves et al., 2012). Other caudal targets of LHb efferents 

include the DR and MR (Herkenham and Nauta, 1979), the PAG (Quina et al., 2015), the nucleus 

incertus (Goto et al., 2001), the pontine reticular formation (Araki et al., 1988), the superior 

colliculus (SC) (Herkenham and Nauta, 1979), and the pedunculopontine and laterodorsal 

tegmental nuclei (Semba and Fibiger, 1992). Rostrally, the LHb projects to a wide range of 

structures, including the NAc, the amygdala, and zona incerta (Akagi and Powell, 1968; 

Herkenham and Nauta, 1979; Phillipson and Griffiths, 1985). Rostral projections of the LHb also 

target forebrain and thalamic structures, many of them acting as a source of input to the LHb. For 

instance, the supramammillary area of the hypothalamus (Hayakawa et al., 1993; Kiss et al., 2002), 

lateral preoptic area (Akagi and Powell, 1968), LH (Akagi and Powell, 1968; Yamadori, 1969), SI 

(Herkenham and Nauta, 1979), diagonal band of broca (Akagi and Powell, 1968), and septum 

(Akagi and Powell, 1968) all share reciprocal connections with the LHb. 

   The afferent and efferent pathways of the MHb are very distinct to that of the LHb, albeit with 

some similarities. While the LHb receives the majority of its inputs through the SM, FR and 

habenular commissure, afferent fibers reach the MHb primarily through the SM and to lesser extent 

the inferior thalamic peduncle (Sutherland, 1982). Similar to the LHb, the MHb receives inputs 

from the medial septum, diagonal band of Broca, lateral preoptic area, LH and MR (Herkenham 

and Nauta, 1977; Qin and Luo, 2009). The most prominent inputs to the MHb arise from two 

nuclei in the posterior septum; the triangular septal nucleus and the septofimbrial nucleus. While 

the former primarily innervates the MHb at its caudal part, the latter primarily innervate the MHb 

at  its  rostral  part  (Herkenham and Nauta, 1977).  Dopaminergic   projections   from  the   VTA   
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Figure 8: Habenula afferents and efferents connections. This schematic illustrates the major 

connections of the MHb and LHb as described in the rat and other mammals. Abbreviations: 5-

HT, serotonin; AI, anterior insula; Amy, amygdala; BNST, bed nucleus of the stria terminalis; Cg, 

cingulate cortex; Cpu, caudate putamen; DA, dopamine; DBB, diagonal band of broca; DM, 

dorsomedial hypothalamic nucleus; EP, entopeduncular nucleus; FR, fasciculus retroflexus; Gpi, 

internal segment of the globus pallidus; IL, infralimbic cortex; IPN, interpeduncular nucleus; LC, 

locus cœruleus; LH, lateral hypothalamus; LHb, lateral habenula; LPO, lateral preoptic area; 

LTDg, laterodorsal tegmental nucleus; MHb, medial habenula; NAc, nucleus accumbens; NI, 

nucleus incertus; P, pineal gland; PAG, periaqueductal gray; Pn, pontine reticular formation; 

PPTg, pedunculopontine tegmental nucleus; PrL, prelimbic cortex; PVN, paraventricular nucleus; 

RMTg, rostromedial tegmental nucleus; SC, superior colliculus; Sep, septum; SI, substantia 

innominate; SM, stria medullaris; SNc, substantia nigra pars compacta; SuM, supramammillary 

area of the hypothalamus; tVTA, tail of the ventral tegmental area; VTA, ventral tegmental area; 

ZI, zona incerta. 
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(Phillipson and Pycock, 1982) and noradrenergic projections from the locus coeruleus and superior 

cervical ganglion (Gottesfeld, 1983) also innervate the MHb by travelling anteriorly in the MFB 

before coursing through the SM. In turn, MHb neurons project to numerous rostrally and caudally 

located regions by coursing either through the SM or FR, respectively. By far, the majority of MHb 

axons terminate into the interpeduncular nucleus (IPN), a midbrain region located just anterior to 

the MR (Herkenham and Nauta, 1979; Shibata et al., 1986). Neurochemical studies of the MHb-

IPN tract showed that MHb projecting neurons utilize substance P, acetylcholine, and glutamate 

as their three major output neurotransmitters (Contestabile et al., 1987; Qin and Luo, 2009). In 

contrast to LHb projecting neurons, which mainly course through the external portion of the FR, 

the MHb projects to the IPN through the internal portion of the FR (Herkenham and Nauta, 1979). 

MHb neurons that project to the IPN terminate into the VTA and raphe nuclei, thus exerting an 

indirect influence over the DA and 5-HT system (Akagi and Powell, 1968; Cuello et al., 1978; 

Groenewegen et al., 1986). Last but not least, studies employing electrolytic lesions at the MHb 

have reported severe degeneration of terminals in the pineal gland of rats (Ronnekleiv and Moller, 

1979), and in the SC, LH, paraventricular nucleus, septum, diagonal band of broca, and BNST of 

cats (Akagi and Powell, 1968), demonstrating that nerve fibers from the MHb may also innervate 

these regions. 

 

1.3.3 The habenula: a major regulator of monoaminergic systems 

   In light of anatomical evidence demonstrating the existence of LHb and MHb axonal connections 

with various brain regions, the habenula is often considered as a relay station between forebrain 

and brainstem structures. Its connectivity with the limbic system and globus pallidum makes it 

well suited to participate in a wide range of motivational and emotional states and to modulate 
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various motor behaviors. In accordance with the diversity of axonal connections between the 

habenula and monoaminergic nuclei, it is not surprising that the habenula has been implicated in 

the regulation of neurotransmitter systems, including those for DA and 5-HT. Habenular neurons 

have also been shown to participate in noradrenaline and acetylcholine transmission (Sastry et al., 

1979; Kalen et al., 1989), however, the focus of the following sections will be on the DA and 5-

HT systems owing to the well-established evidence implicating these neurotransmitters in reward 

processing (Wise and Rompre, 1989; Faulkner and Deakin, 2014) and psychiatric conditions 

(Volkow et al., 2007; Fakhoury, 2016). 

 

1.3.3.1    The habenula and the DA system 

   The discovery that habenular neurons share reciprocal axonal connections with midbrain DA 

neurons either directly or indirectly through intermediate structures have ushered in a wide array 

of studies investigating the functional implication of this connectivity. Findings from these studies 

suggest that the habenula—in particular the LHb—exerts an inhibitory control over midbrain DA 

neurons. For instance, electrical stimulation of the LHb inhibits the activity of DA neurons in the 

VTA and SNc; effect that is abolished following destruction of the FR but not the SM (Christoph 

et al., 1986; Ji and Shepard, 2007). Conversely, lesions at the habenula and FR (Lisoprawski et al., 

1980; Nishikawa et al., 1986), or activation of habenular GABAergic interneurons through deep 

brain stimulation (DBS) (Meng et al., 2011), increase DA transmission, indicating that habenular 

efferents exert a tonic inhibitory control over DA neurons. The inhibitory effect of the habenula 

over midbrain DA neurons is likely mediated by its output target, the tVTA, which in turn sends 

GABAergic projections to DA neurons of the VTA and SNc (Jhou et al., 2009a), though direct 
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excitatory LHb projections activating midbrain GABAergic interneurons may also account for this 

effect (Omelchenko et al., 2009). 

   The view that the LHb receives direct inputs from midbrain dopaminergic nuclei (Li et al., 1993; 

Gruber et al., 2007a), together with evidence showing that it expresses DA D2 and D4 receptors 

(Aizawa et al., 2012; Good et al., 2013), suggest that its activity is most likely influenced by 

changes in DA transmission. Findings in support of this hypothesis come from metabolic studies 

showing that DA receptor agonists and DA-increasing drugs decrease LHb glucose consumption 

(Wechsler et al., 1979; McCulloch et al., 1980; Porrino et al., 1988), in contrast to DA receptor 

antagonists, which increase LHb glucose consumption (McCulloch et al., 1980; Ramm et al., 

1984). Although these studies suggest a negative correlation between the functional activity of the 

LHb and the DA system, the relationship between midbrain DA and LHb neurons appears to be 

far more complex. Indeed, local and systemic administration of DA receptor agonists increase the 

neuronal activity (Wirtshafter et al., 1994) and firing rate (Kowski et al., 2009) of LHb neurons, 

respectively. In addition, LHb neurons were shown to fire at a higher rate following tetanic 

stimulation of the VTA (Shen et al., 2012), which is inconsistent with prior reports indicating 

mutually inhibitory relations between the LHb and midbrain DA neurons. In another study, single-

pulse stimulation of either the VTA or SNc was shown to inhibit the firing of approximately 90% 

of LHb neurons (Shen et al., 2012). In light of these findings, sustained and transient activation of 

midbrain DA neurons may have opposite functional effects on LHb neurons. While the former 

exerts an excitatory effect on the activity of LHb neurons, the latter appears to play an inhibitory 

role on the activity of LHb neurons, likely through the activation of local GABAergic interneurons 

and fibers of passage (Shen et al., 2012). 
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   To date, most of the studies investigating the functional relationship between the habenula and 

the DA system have focused on the LHb, however, evidence also indicates a role for the MHb in 

the regulation of DA neuronal activity. For instance, infusion of a cholinergic antagonist into the 

IPN—the main target of the MHb—increases DA utilization in the mPFC and NAc of rats, 

suggesting that the habenula-IPN pathway may exert a tonic inhibitory influence on mesocortical 

and mesolimbic dopaminergic neurons (Nishikawa et al., 1986). The view that MHb neurons exert 

a control over the activity of DA mesolimbic neurons is also supported by recent studies showing 

that blockade of nAChRs in the MHb prevents the increase in accumbal DA level induced by 

systemic injection of nicotine (McCallum et al., 2012), and reduces the sensitization of DA 

response to repeated morphine treatment in the NAc (Taraschenko et al., 2007). The MHb may 

also influence the activity of nigrostriatal DA neurons by sending indirect projections to the VTA 

through the IPN (Groenewegen et al., 1986), or by providing additional inputs to the LHb (Kim 

and Chang, 2005). 

   Considering the modulatory role of the habenula over the DA system, together with evidence of 

a regulatory feedback control, this nucleus has been extensively investigated in the context of 

substance use disorder (Boulos et al., 2017; Fakhoury, 2017). Drugs of abuse exert their initial 

reinforcing effects by elevating mesolimbic DA transmission (Adinoff, 2004; Volkow and 

Morales, 2015). Thus, a bidirectional relationship between the activity of the habenula and the 

effect of drugs of abuse appears unsurprising. In rodents, self-administration of cocaine increases 

the excitability of LHb neurons (Neumann et al., 2014), and chronic administration of morphine 

decreases cholinergic signaling in the MHb (Neugebauer et al., 2013). Because of the reciprocal 

connections of the LHb with midbrain DA neurons, scientists have also looked at the possibility 

of using this subnucleus as a modulatory target site for DBS treatment of substance use disorder 
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(Yadid et al., 2013). DBS of the LHb was shown to reduce cocaine self-administration during drug 

maintenance, extinction, and reinstatement (Lax et al., 2013) and attenuate cocaine-induced 

increases in VTA glutamatergic transmission (Friedman et al., 2010). However, despite significant 

progress in research, the safety and long-term efficacy of this approach are poorly understood and 

remain to be tested in controlled clinical trials. 

 

1.3.3.2    The habenula and the 5-HT system 

   Besides it role in the regulation of the DA system, mounting evidence suggests that the habenula 

strongly modulates the 5-HT system. Electrophysiological studies have repeatedly shown that the 

habenula provides a powerful regulatory control over 5-HT transmission in different regions of the 

brain, including the striatum, hippocampus, and substantia nigra (Soubrie et al., 1981; Reisine et 

al., 1982; Sabatino et al., 1991). The control of the habenula over the 5-HT system is largely 

mediated through dense projections to raphe nuclei (Herkenham and Nauta, 1979; Pollak Dorocic 

et al., 2014), in particular the DR, which constitutes the primary source of 5-HT-containing 

neurons in the brain (Descarries et al., 1982; Vertes and Crane, 1997). The habenula-raphe 

projection is excitatory, with glutamate and substance P as the main neurotransmitters, and 

primarily originates from the lateral part of the habenula (Neckers et al., 1979; Kalen et al., 1985; 

Kalen et al., 1986). LHb neurons that project to the DR are thought to mainly innervate and activate 

local GABAergic neurons, leading to an indirect inhibition of 5-HT neurons. Evidence in support 

of this hypothesis comes from studies showing that electrical stimulation of the LHb decreases the 

firing activity of DR 5-HT neurons (Stern et al., 1979; Park, 1987; Varga et al., 2003), and that 

this effect is blocked by the administration of GABA receptor antagonists (Wang and Aghajanian, 

1977; Ferraro et al., 1996). Also, the inhibition of 5-HT neurons induced by LHb stimulation is 



41 
 

preceded by a rapid onset excitation of non-5HT neurons (12–21 ms latency), suggesting that the 

LHb primarily influences the activity of DR 5-HT neurons through monosynaptic projections 

targeting a local network of GABAergic neurons (Varga et al., 2001; Varga et al., 2003). However, 

the possibility of an indirect polysynaptic projection from the LHb to the DR should not be ruled 

out inasmuch as neurons of the tVTA, the main output target of the LHb, sends robust GABAergic 

projections to the DR (Lavezzi et al., 2012; Sego et al., 2014). Also noteworthy to mention is the 

existence of excitatory projections from the LHb that directly innervate DR 5-HT neurons (Ogawa 

et al., 2014). Electrical stimulation of the LHb can thus directly activate DR 5-HT neurons, thereby 

facilitating local serotonergic transmission (Ferraro et al., 1996; Varga et al., 2003). To 

functionally probe the direct projections of LHb neurons to the DR, Pollak Dorocic and colleagues 

(2014) have shown that optogenetic stimulation of LHb axon terminals into the DR results in a 

rapid and marked depolarization of 5-HT neurons. This effect was blocked by the application of 

an AMPA, but not GABA, receptor antagonist, thus confirming the presence of excitatory and 

glutamatergic LHb projections onto DR 5-HT neurons (Pollak Dorocic et al., 2014). 

   Because of its reciprocal anatomical connections with raphe nuclei (Herkenham and Nauta, 

1979; Vertes, 1991; Vertes et al., 1999) and its constitutive expression of 5-HT2C receptors 

postsynaptically (Pompeiano et al., 1994; Han et al., 2015), the LHb has also been subject to a 

wide array of investigations exploring the possibility of a forward-feedback loop with the 5-HT 

system. Numerous studies have demonstrated the existence of a 5-HT modulation of both synaptic 

transmission and intrinsic excitability of LHb neurons (Tchenio et al., 2016). In a set of 

experiments employing the expression of Channelrhodopsin-2 in the EP, a region of the basal 

ganglia that sends glutamatergic and GABAergic projections to the LHb, Shabel and colleagues 

showed that bath application of 5-HT reduces light-evoked EP-LHb inhibitory (IPSCs) and 
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excitatory (EPSCs) postsynaptic currents (Shabel et al., 2012; Shabel et al., 2014). Although these 

findings suggest that 5-HT modulates the synaptic transmission of LHb neurons, they failed to 

identify the subtype of 5-HT receptor involved. In another study, exposure of LHb-containing 

slices to 5-HT or a 5-HT1B receptor agonist induced a long-term depression of evoked IPSCs and 

EPSCs (Hwang and Chung, 2014). The latter was prominently blocked in the presence of a 5HT1B 

receptor antagonist, indicating that the 5-HT-induced suppression of excitatory inputs to the LHb 

occurs through the pre-synaptic activation of 5-HT1B receptors (Hwang and Chung, 2014). 

However, in contrast to the suppression of EPSCs described by Hwang and Ching (2014), a recent 

study showed that 5-HT facilitates glutamate transmission in many LHb neurons, and only in a 

subset of these neurons does it reduce synaptic excitability (Xie et al., 2016). Bath application of 

5-HT also accelerates spontaneous firing in the majority of LHb neurons via postsynaptic 

activation of 5-HT receptors (Zuo et al., 2016). Altogether, the aforementioned findings suggest 

that 5-HT may exert different effects on the presynaptic and postsynaptic membrane of LHb 

neurons. However, the subcellular localization and subtype of 5-HT receptors involved in this 

modulation are still lacking and need to be thoroughly investigated in future studies. 

   The view that the habenula is functionally related to the 5-HT system is of particular relevance 

from a psychiatric standpoint, as changes in 5-HT neurotransmission are involved in the 

pathogenesis of mood disorders (Fakhoury, 2016). One prevailing hypothesis that has been 

supported by a wide array of animal and human studies is that the habenula is hyperactive in major 

depressive disorders (Proulx et al., 2014; Fakhoury, 2017). In rodents, metabolic studies point to 

increased metabolism of the habenula in animal models of depression (Shumake et al., 2003; 

Mirrione et al., 2014), whereas in humans, functional magnetic resonance imaging (fMRI) findings 

show increased activity of the habenula in individuals with remitted MDD following tryptophan 
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depletion (Roiser et al., 2009). Molecular changes in the LHb, including upregulation of β-

CamKII, were also shown to increase synaptic efficacy and spike output of LHb neurons and to 

cause depressive-like behaviors in rodents (Li et al., 2013). The LHb is therefore considered as a 

potential neuromodulatory target for the treatment of depressive-like symptoms, and has already 

been the subject of numerous studies with animal models of depression or patients with MDD (for 

review see Fakhoury, 2017). 

 

1.3.4 The DDC in reward and aversion 

   Given the wide array of evidence highlighting the existence of reciprocal functional connections 

between the DDC and the DA and 5-HT systems, this pathway is likely to participate in the control 

of reward-related processes. To date, most of the studies concerned about the role of DDC in 

reward processing have eschewed the functions of the MHb in favor of the LHb, in part due to the 

existence of stronger functional projections between the latter structure and midbrain DA neurons. 

The following sections, which are summarized in Table 1, provide a detailed overview of findings 

from electrophysiological, neuroimaging, electrical stimulation and optogenetic stimulation 

studies investigating the role of the DDC in reward and aversion. 

 

1.3.4.1    Electrophysiological and neuroimaging studies 

   One of the most groundbreaking discoveries on the LHb comes from a study by Matsumoto and 

Hikosaka (2007) showing that this subnucleus is involved in negative reward processing. In this 

study, monkeys were trained to perform a visually guided saccade task with biased reward 

outcomes during which the activity of LHb and SNc DA neurons were monitored (Matsumoto and 

Hikosaka, 2007). LHb neurons were excited in response to a no reward-predicting target, and 

inhibited in response to a juice reward-predicting target (Matsumoto and Hikosaka, 2007). In 
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contrast, DA neurons in the SNc followed the exact opposite pattern of activity; they were excited 

by reward-predicting targets and inhibited by no-reward-predicting targets (Matsumoto and 

Hikosaka, 2007). The authors of the study also showed that the excitation of habenular neurons 

started earlier than the inhibition of DA neurons in unrewarded trials, and that the activity of DA 

neurons was inhibited by the electrical stimulation of the LHb, hence suggesting that LHb neurons 

are critical in conveying reward-related information to DA neurons (Matsumoto and Hikosaka, 

2007). Similar findings were found in mice; LHb neurons were inhibited by sucrose reward or 

sucrose-predicting cues (Wang et al., 2017). However, in some LHb neurons, sucrose produced a 

post-inhibitory rebound in spike firing that could be explained by the termination of reward stimuli 

(Wang et al., 2017). Notwithstanding the differential effect of reward on LHb neurons, these 

findings, together with the view that excitation of LHb neurons to a no reward-predicting target 

starts earlier than the inhibition of DA neurons (Matsumoto and Hikosaka, 2007), suggest that the 

LHb sends negative reward-related signals to midbrain DA neurons. As a major input station to 

the LHb, the globus pallidus internal segment (GPi) of the basal ganglia may influence these 

negative reward signals insofar as many LHb-projecting GPi neurons show reward-dependent 

changes in phasic activity earlier than LHb neurons (Hong and Hikosaka, 2008). The reward-

related signals that reach the LHb could also originate from the OFC and related cortical areas 

such as the anterior cingulate cortex, which have been proposed to encode reward value and 

influence the LHb through a basal ganglia and lateral hypothalamic route (Rolls, 2017). 

   The view that given brain regions follow a different pattern of activity in response to reward- or 

no reward-predicting cues provides interesting insights into the existence of opposite processes 

underlying response to salient appetitive and aversive behaviors. Consistently, studies in rats have 

shown that LHb neurons are excited (Gao et al., 1996; Wang et al., 2017) whereas VTA and SNc 
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DA neurons are inhibited (Gao et al., 1996; Ungless et al., 2004; Mileykovskiy and Morales, 2011) 

in response to various aversive stimuli. Likewise, single unit recordings in monkeys conditioned 

to a Pavlonian procedure showed that LHb neurons are strongly excited by a stimulus associated 

with the absence of reward or the presence of a punishment, indicating that the information 

processed by the LHb may participate in both reward-seeking and punishment-avoidance 

behaviors (Matsumoto and Hikosaka, 2009). More recently, the inhibitory response of VTA DA 

neurons was shown to be diminished in habenula-lesioned animals during reward omission but not 

in response to a punishment such as air puff, suggesting that the habenula plays a critical role in 

instructing midbrain DA neurons the absence of reward, but that additional structures may be 

involved in the integration of aversive signals (Tian and Uchida, 2015). A likely candidate 

structure is the tVTA, which receives strong excitatory inputs from the LHb and in turn sends 

GABAergic inhibitory projections to midbrain DA neurons (Jhou et al., 2009a; Kaufling et al., 

2009). Experiments in monkeys showed that tVTA neurons display a pattern of activity that is 

similar to that of LHb neurons and opposite to that of midbrain DA neurons in response to reward-

related cues (Hong et al., 2011). In addition, tVTA neurons are excited following electrical 

stimulation of the LHb, and electrical stimulation of the former structure inhibits putative midbrain 

DA neurons (Hong et al., 2011). Thus, the tVTA is likely to act as a relay structure for the 

transmission of reward-related information from the LHb to midbrain DA neurons. 

   LHb neurons have also been implicated in reward prediction error, that is, the difference between 

the expected reward value and the actual reward value. Evidence in support of this view comes 

from experiments in monkeys showing that LHb neurons show phasic decreases in their firing 

activity following the unexpected delivery of a reward (Matsumoto and Hikosaka, 2007), and 

increases in their firing activity following the omission of an expected reward (Matsumoto and 



46 
 

Hikosaka, 2007) or in response to an unpredicted aversive stimulus (Matsumoto and Hikosaka, 

2007, 2009). The finding that the LHb encodes negative reward prediction errors has also been 

extended in humans. Notably, studies using fMRI in healthy participants have shown that the 

habenula is activated by negative feedback (Ullsperger and von Cramon, 2003; Shepard et al., 

2006; Furman and Gotlib, 2016) and during negative prediction error events (Salas et al., 2010). 

Reinforcement learning coupled to fMRI investigations in humans also demonstrate positive 

habenula responses to cues signaling painful electric shocks, and negative habenula responses to 

monetary reward cues (Lawson et al., 2014). These findings not only point to the representation 

of negative motivational value and negative-reward prediction error by the habenula, but also 

suggest that this structure might participate in the avoidance of aversive events. These processes 

are essential for survival as they enable the acquisition of rewarding outcomes and the selection of 

appropriate defensive responses in the face of threatening situations. 

 

1.3.4.2    Electrical stimulation studies  

   Early evidence demonstrating the implication of the habenula in the reinforcing effect of ICSS 

comes from studies by Boyd and colleagues showing that lesions of the habenulo-interpeduncular 

tract decreases the response rate for LH (Boyd and Gardner, 1967) and septal (Boyd and Celso, 

1970) self-stimulation. Subsequent studies have shown that the rewarding electrical stimulation of 

the MFB increases Fos-like immunoreactivity in the LHb (Arvanitogiannis et al., 1996b; 

Arvanitogiannis et al., 1997; Hunt and McGregor, 1998; Arvanitogiannis et al., 2000; Hunt and 

McGregor, 2002) but paradoxically decreases LHb metabolic activity as measured by [14C]-2-

deoxyglucose autoradiography (Gomita and Gallistel, 1982; Gallistel et al., 1985), though 

discrepancies in the observed results could be attributed to differences in methodological approaches. 

In rats, sites within the DDC, including the SM, FR and the habenula, have all been shown to 
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support operant responding for ICSS, indicating that electrical stimulation of these regions is 

rewarding (Sutherland and Nakajima, 1981; Nakajima, 1984; Blander and Wise, 1989; Vachon 

and Miliaressis, 1992). These observations, however, contradict reports showing that electrical 

stimulation of the LHb produces an inhibitory effect on sucrose (Friedman et al., 2011) and cocaine 

(Friedman et al., 2010) self-administration, and that electrical stimulation of the FR decreases the 

attribution of incentive motivational salience to a reward predictive cue (Danna et al., 2013). One 

likely explanation for these discrepancies is the use of different stimulation parameters. While the 

majority of ICSS studies employ a 0.4-s train of rectangular cathodal pulses of fixed intensity 

(~0.2-1 mA) and duration (0.1 ms), the studies by Friedman and colleagues (2010, 2011) have 

employed a combined stimulation pattern alternating between high and low frequencies, whereas 

the study by Danna and colleagues (2013) has used stimulation parameters (0.25 mA; 3 Hz) that 

have previously been demonstrated to inhibit the activity of midbrain DA neurons (Christoph et 

al., 1986). 

   Another approach to assess the role of the DDC in brain stimulation reward is the use of 

electrolytic lesions along this pathway in combination with ICSS. In a study by Morisette and 

Boye (2008), rats were trained to self-administer pulses of electrical stimulation at the LH, VTA, 

DR, or MR before and after receiving an electrolytic lesion at the habenula (Morissette and Boye, 

2008). Lesions of the habenula failed to alter the rewarding effectiveness of MR self-stimulation, 

but produced long-lasting reductions of the reinforcing effects of LH, VTA and DR self-

stimulation, suggesting that the DDC constitutes an important component of the neural circuitry 

underlying brain stimulation reward (Morissette and Boye, 2008). In this study, however, the 

attenuation of brain stimulation reward following the lesion was only observed in approximately 

25% of rats (Morissette and Boye, 2008). The lack of lesion effect observed in the remaining 
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subjects is most likely attributable to the anatomical diffuse, collateralized, and heterogeneous 

nature of the reward substrate that makes it difficult to functionally disconnect the pathway 

between the lesion and stimulation sites (Arvanitogiannis et al., 1996a; Simmons et al., 1998). The 

involvement of the DDC in brain stimulation reward is also supported by findings showing that 

electrolytic lesions at the DDC lead to long-lasting attenuations of the reinforcing effect of LH and 

DR self-stimulation (Fakhoury et al., 2016a), and produce a marked reduction in Fos-like 

immunoreactivity in several brain regions implicated in reward processing (Fakhoury et al., 

2016b). 

   In contrast to the conspicuous decreases in brain stimulation reward observed following lesions 

at the DDC, Gifuni et al. (2012) showed that cell-body specific lesions of the LHb fails to alter the 

reward-enhancing properties of amphetamine in an ICSS paradigm, but markedly enhance the 

amphetamine-induced locomotor activity. Although findings from this study may suggest that LHb 

neurons do not directly contribute to the rewarding effectiveness of ICSS, the authors have not 

tested this hypothesis directly inasmuch as the lesions were performed at the time of surgery and 

their effects compared to that of sham-lesioned rats and not with baseline values obtained before 

amphetamine injection (Gifuni et al., 2012). Notwithstanding the lack of effect on the reward-

enhancing properties of amphetamine, these findings suggest the contribution of two different DA-

mediated behavioral measures (that is, ICSS and locomotor activity) that are functionally 

independent and that show different sensitivity to habenular control. Work from the same group 

also showed that D-amphetamine injection into the NAc enhances the rewarding effectiveness and 

operant rate of responding of electrical stimulation of the PM, while injection into the LHb fails to 

produce any observable effects, suggesting that the mesoaccumbens and mesohabenular DA 
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pathways are differentially implicated in the rewarding effects of ICSS (Duchesne and Boye, 

2013). 

 

1.3.4.3     Optogenetic stimulation studies 

   Although electrical stimulation has been effectively used for the identification of the 

neuroanatomical substrates of reward, studies employing this approach have been plagued by a 

lack of anatomical specificity. This stimulation typically activates a population of neurons of 

unknown functions in addition to the group of neurons that give rise to the rewarding effect. The 

recently developed technique of optogenetics can circumvent this problem by using light to 

achieve gain- or loss-of-function within specific neurons or pathways, thus enabling a more precise 

delineation of the neural substrate of behavior (Bernstein and Boyden, 2011; Yizhar et al., 2011). 

Since its implementation, optogenetics has also been used for a more precise dissection of the role 

of specific efferent and afferent pathways of the DDC, particularly the LHb, in different behavioral 

contexts. Notably, a study investigating the behavioral functions of LHb neurons projecting to the 

tVTA showed that optogenetic activation of the LHb-to-tVTA pathway promotes conditioned 

behavioral avoidance and disrupts sucrose-induced positive reinforcement, suggesting that tVTA-

projecting LHb neurons convey negative reward-related information (Stamatakis and Stuber, 

2012). Consistently, optogenetic activation of glutamatergic excitatory inputs to the LHb 

originating from the basal ganglia (Shabel et al., 2012) or the anterior LH (Stamatakis et al., 2016) 

produces aversive effects in place preference tests. More recently, a functional GABAergic 

projection from the basal forebrain to the LHb was shown to participate in the modulation of 

aggression-related reward behavior, thus providing a novel mechanism into the underlying 

mechanisms of maladaptive behaviors (Golden et al., 2016).  
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   Besides innervating the tVTA, LHb neurons send direct glutamatergic excitatory projections to 

the VTA (Brinschwitz et al., 2010; Goncalves et al., 2012). However, these projections mainly 

terminate on local GABAergic neurons and do not innervate DA neurons (Brinschwitz et al., 

2010). Accordingly, optogenetic activation of LHb efferents to the VTA resulted in sparse 

induction (<12%) of c-fos protein in VTA DA neurons, and high induction (>80%) in the 

presumably GABAergic neurons of the tVTA, suggesting that the LHb exerts a net inhibitory 

effect over VTA DA neurons by primarily activating extrinsic GABAergic neurons (Lammel et 

al., 2012). In addition, optogenetic activation of LHb terminals into the VTA was shown to produce 

conditioned place aversion (Lammel et al., 2012), thus concurring with previous 

electrophysiological evidence showing that LHb neurons encode negative motivational value 

(Matsumoto and Hikosaka, 2007). While the LHb conveys potent inhibitory inputs to VTA DA 

neurons, the VTA in turn sends feedback dopaminergic projections to the LHb (Phillipson and 

Pycock, 1982; Gruber et al., 2007a). The behavioral function of the VTA-to-LHb pathway has 

recently been examined by Stamatakis and colleagues (2013) which showed that optogenetic 

activation of VTA DA neurons projecting to the LHb produces a strong conditioned place 

preference and facilitates operant responding for ICSS (Stamatakis et al., 2013). Activation of the 

VTA-to-LHb pathway was also associated with a marked attenuation of LHb neuronal firing 

activity; effect that was blocked following intra-LHb microinjections of a GABAA receptor 

antagonist (Stamatakis et al., 2013). Thus, the VTA most likely exerts a feedback inhibitory control 

over the LHb through a hybrid population of neurons expressing both dopaminergic and 

GABAergic markers (Stamatakis et al., 2013).  

   Overall, findings obtained from optogenetic studies are in line with electrophysiological 

evidence showing that the LHb plays a central role in conveying negative reward-related 
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information (Matsumoto and Hikosaka, 2007, 2009). However, they appear at odds with electrical 

stimulation studies showing that electrolytic lesions at the habenula diminish the effectiveness of 

brain stimulation reward (Morissette and Boye, 2008). The inconsistencies in the results observed 

between these studies are mainly due to the fact that the use of electrolytic lesions may influence 

different populations of neurons, such as those within the MHb and LHb, which are known to be 

functionally distinct (Aizawa et al., 2012). Indeed, optogenetic activation of dorsal MHb neurons 

produces positive reinforcement (Hsu et al., 2014), whereas optogenetic activation of LHb outputs 

(Stamatakis and Stuber, 2012) or inputs (Stamatakis et al., 2013) produces aversive effects. 

Therefore, care must be taken while interpreting findings from conventional ICSS studies using 

electrical stimulation electrodes. 

 

Subject Main findings Study 
Electrophysiological 
studies 
Female adult 
Sprague-Dawley rats 

Two adult rhesus 
monkeys 
 
 

Two adult rhesus 
monkeys 

Two adult rhesus 
monkeys 
 
 

Two adult rhesus 
monkeys 

Adult mice 
 

Slc17a6-ires-Cre 
mice 

 
 
Excitation of LHb neurons following peripheral nociceptive 
stimulation 

Inhibition of LHb neurons by reward-predicting cues or 
after unexpected delivery of a reward; Excitation of LHb 
neurons by no-reward-predicting cues and after omission of 
an expected reward 

Inhibition and excitation of LHb-projecting GPi neurons by 
reward- and no-reward-predicting cues, respectively 

Excitation of LHb neurons in response to punishments or 
sensory stimuli predicting punishments; Stronger LHb 
excitation to partially predicted compared to fully predicted 
punishments 

Inhibition and excitation of LHb and tVTA neurons by 
reward- and no-reward-predictive cues, respectively 

Impaired inhibitory response in VTA DA neurons of 
habenula-lesioned mice during reward omission 

Excitation of LHb neurons by aversive stimuli and 
aversion-predicting cue, and inhibition by sucrose reward 
and sucrose-predicting cues 

 
 
Gao et al., 1996 
 

Matsumoto and 
Hikosaka. 2007 
 
 

Hong and 
Hikosaka. 2008 

Matsumoto and 
Hikosaka 2009 
 
 

Hong et al., 
2011  

Tan and Uchida 
2015 

Wang et al., 
2017 
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Human fMRI 
studies 
50 right-handed 
healthy participants 

16 healthy right-
handed healthy 
participants 

5 medicated 
schizophrenics and  
5 healthy participants 

27 healthy 
participants 

15 current MDD and 
13 healthy 
participants 

 
 
Activation of the habenula during negative prediction error 
events 

Activation of the habenula by negative feedback 
 
 

Activation of the habenula by negative feedback in healthy, 
but not schizophrenic, participants  
 

Activation and inhibition of the habenula to cues signaling 
painful electric shocks and monetary reward, respectively 

Activation of the habenula during the prediction or 
experience of negative outcomes in healthy, but not MDD, 
participants 

 
 
Salas et al., 
2010 

Ullsperger and 
von Cramon, 
2003 

Shepard et al. 
2006 
 

Lawson et al., 
2014 

Furman and 
Gotlib, 2016 

Electrical 
stimulation studies 
Male Wistar rats 
 

Male Wistar rats 
 

Male Long-Evans 
rats 

Rats 
 

 

 
Adult rats 
 
 

Male Long-Evans 
rats 

Male and female 
Sprague-Dawley rats 
 

Rats 
 
 
 
 
 

Male Long Evans 
rats 

 
 
Decreased rate of LH self-stimulation following lesion at 
the habenulo-interpeduncular tract 

Decreased rate of septal self-stimulation following lesion at 
the habenulo-interpeduncular tract 

Steady operant response following electrical stimulation of 
the MHb, LHb or FR 

Decreased metabolic activity in the LHb following 
rewarding stimulation of the MFB  
 

 

Steady operant response following electrical stimulation of 
the LHb; effect that is supressed by the 5-HT receptor 
blocking agent, metergoline  

Steady operant response following electrical stimulation of 
the SM 

Steady operant response following electrical stimulation of 
the SM, FR or habenula 
 

Increased Fos-like immunoreactivity in the LHb following 
rewarding electrical stimulation of the MFB 
 
 
 
 

Attenuation of brain stimulation reward in ~25% following 
electrolytic lesions at the habenula 

 
 
Boyd and 
Gardner, 1967 

Boyd and Celso, 
1970 

Sutherland and 
Nakajima, 1981 

Gomita and 
Gallistel, 1982; 
Gallistel et al., 
1985 
 
Nakajima, 1984 
 
 

Blander and 
Wise 1989 

Vachon and 
Miliaressis, 
1992 

Arvanitogiannis 
et al., 1996b, 
1997, 2000; 
Hunt and 
McGregor, 
1998, 2002 

Morissette and 
Boye 2008 
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Male Sprague-
Dawley rats 
 

Male Sprague-
Dawley rats 
 

Male Sprague-
Dawley rats 
 

Male Sprague-
Dawley rats 
 

Male Sprague-
Dawley rats 
 

Reduced and increased cocaine self-administration 
following DBS and electrolytic lesion of the LHb, 
respectively 

Reduced and increased positive reward-sucrose self-
administration following DBS and lesion of the LHb, 
respectively 

Enhancement of the locomotor-stimulant effect of 
amphetamine following neurotoxic lesions of the LHb; No 
effect on the reward-enhancing properties of amphetamine 

Decreased and increased incentive salience to reward 
predictive cues following stimulation and electrolytic lesion 
of the FR, respectively 

Enhanced rewarding effectiveness and operant rate of 
responding for ICSS following injection of D-amphetamine 
(4-80 µg/µl)  into the NAc, but not the LHb 

Friedman et al., 
2010 
 

Friedman et al., 
2011 
 

Gifuni et al., 
2012 
 

Danna et al., 
2013 
 

Duchesne and 
Boye, 2013 
 

Optogenetic 
stimulation studies 
Male C57BL/6J mice 
 
 

Male Sprague-
Dawley rats 

Male adult C57Bl6 
mice 

Male TH-IRES-Cre 
mice 
 

Adult mice 
 
 

VGLUT2-ires-cre 
mice 
 

Male CD-1 and 
C57BL/6J mice 

 
 
Facilitation of active, passive, and conditioned behavioral 
avoidance following optogenetic activation of LHb 
projections to the tVTA 

Development of place aversion following optogenetic 
activation of LHb inputs from the EP 

Development of conditioned place aversion following 
optogenetic activation of LHb terminals into the VTA 

Development of conditioned place preference and positive 
reinforcement following optogenetic activation of LHb 
inputs from the VTA 

Positive reinforcement and place aversion following 
optogenetic activation of dorsal MHb neurons or inhibition 
of their output, respectively 

Development of place aversion and preference following 
optogenetic activation and inhibition of LHb inputs from 
the anterior LH, respectively 

Decreased LHb neuronal firing and development of 
conditioned place preference following optogenetic 
activation of GABAergic BF–LHb terminals of non-
aggressors; The opposite effect is observed following 
optogenetic silencing of GABAergic BF–LHb terminals of 
aggressors 

 
 
Stamatakis and 
Stuber 2012 
 

Shabel et al., 
2012 

Lammel et al., 
2012 

Stamatakis et al. 
2013 
 

Hsu et al., 2014 
 
 

Stamatakis et 
al., 2016 
 

Golden et al., 
2016 

 

Table 1: The DDC in reward processing. This table illustrates the major findings from 

electrophysiological, neuroimaging, electrical stimulation and optogenetic stimulation studies 

investigating the role of the DDC in reward-related processes. Abbreviations: BF, basal forebrain; 
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BLA, basolateral amygdala; BNST, bed nucleus of the stria terminalis; DR, dorsal raphe; EP, 

entopeduncular nucleus; GPi, globus pallidus internal segment; IPN, interpeduncular nucleus; 

NAc, nucleus accumbens; PN, pontine nuclei. 

 

1.4 The tail of the ventral tegmental area in behavioral processes and in the effect of 

psychostimulants and drugs of abuse (Adapted from the review paper Fakhoury, 2018. Progress 

in Neuropsychopharmacology & Biological Psychiatry, 84:30-38) 

1.4.1 Context and overview 

   The tail of the ventral tegmental area (tVTA) has been recently described as a cluster of gamma-

aminobutyric acid (GABA)ergic neurons that exerts a major inhibitory drive onto midbrain DA 

neurons (Jhou et al., 2009a; Kaufling et al., 2009). Anatomically, the tVTA lies within the posterior 

end of the VTA, where it is restricted dorsolateral to the caudal part of the IPN (Jhou et al., 2009a; 

Barrot and Thome, 2011). As it extends caudally, the tVTA shifts dorsally and slightly laterally to 

become embedded within the decussation of the superior cerebellar peduncle, near the rostral edge 

of the pedunculopontine tegmental nucleus (PPTg) and lateral to the MR nucleus (Kaufling et al., 

2009; Bourdy and Barrot, 2012). 

   First identified in the rat (Perrotti et al., 2005; Kaufling et al., 2009), the tVTA has been described 

in many species, including mice and monkeys, as a region that receives strong excitatory 

glutamatergic inputs from the LHb (Jhou et al., 2009a; Kaufling et al., 2009), that encodes negative 

reward signals (Jhou et al., 2009b; Hong et al., 2011; Stamatakis and Stuber, 2012), and that sends 

inhibitory GABAergic projections to DA neurons of the VTA and SNc (Jhou et al., 2009a; 

Kaufling et al., 2010a). Given the wide array of cells projecting from the LHb to the tVTA and 

from the tVTA to the VTA/SNc complex (Jhou et al., 2009a; Kaufling et al., 2010a), the tVTA has 

been proposed to act as a relay through which glutamatergic inputs from the LHb inhibit midbrain 
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DA neuron activity (Balcita-Pedicino et al., 2011). The functional significance of this disynaptic 

inhibitory circuit is revealed by electrophysiological experiments in monkeys showing that the 

firing pattern of tVTA neurons is similar to that of LHb neurons, but inversely correlated to that 

of midbrain DA neurons (Matsumoto and Hikosaka, 2007; Hong et al., 2011). 

   The pervasive inhibitory influence of tVTA neurons over midbrain DA neurons is also supported 

by electrophysiological studies in rats showing that opioid-mediated inhibition (Jalabert et al., 

2011) and neurotoxic lesions (Brown et al., 2017) of the tVTA increase the firing rate of VTA DA 

neurons and attenuate the LHb-induced inhibition of midbrain DA cells, respectively, whereas 

electrical stimulation of the tVTA supresses the activity of midbrain DA neurons (Lecca et al., 

2011; Lecca et al., 2012; Bourdy et al., 2014). Consistent with these findings, ex vivo optogenetic 

stimulation of the tVTA evokes GABAA-mediated IPSCs in DA neurons of the VTA; effect that 

is inhibited following application of a MOR agonist (Matsui and Williams, 2011). These findings 

suggest that the tVTA receives excitatory inputs from the LHb, and in turn exerts a tonic inhibitory 

influence on midbrain DA cells. 

   LHb and midbrain DA neurons have a crucial role in processing aversive and rewarding 

outcomes, respectively (Matsumoto and Hikosaka, 2007), and have largely been studied in the 

context of goal-directed behaviors. Neurotoxic lesions of the LHb increase positive reward-sucrose 

or cocaine self-administration, whereas the opposite effect is observed following electrical 

stimulation of the LHb (Friedman et al., 2010; Friedman et al., 2011). On the other hand, 

pharmacological blockade of DA receptors attenuates the rewarding effectiveness of ICSS 

(Benaliouad et al., 2007) and inhibits cocaine-seeking behavior (Peng et al., 2009) in rats. As an 

intermediate structure connecting the LHb to midbrain DA neurons, the tVTA is thus likely to act 

as a regulatory interface between rewarding and aversive processes, and may be part of the 
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complex neural circuitry underlying goal-directed behaviors. These processes have important 

implications for psychiatric diseases, such as substance use disorder, which is characterized by 

escalating dysregulations of brain reward and aversion mechanisms (Koob and Le Moal, 2008; 

Volkow and Morales, 2015). In an attempt to shed some light on the current state of knowledge of 

the tVTA, the following sections highlight the anatomical and functional importance of this 

structure as a major regulator of reward-related processes and a primary target of psychostimulants 

and certain drugs of abuse. 

 

1.4.2 Cellular, synaptic and electrophysiological profile of the tVTA 

   Morphological analysis of the tVTA reveals that this structure is a heterogeneous population of 

cells comprised of small and medium-sized neurons (Jhou et al., 2009a). The vast majority of these 

neurons (~70-92%) are GABAergic (Jhou et al., 2009a; Kaufling et al., 2009) and elicit Fos 

expression in response to aversive stimuli (Jhou et al., 2009b) and psychostimulants (Perrotti et 

al., 2005; Kaufling et al., 2009; Kaufling et al., 2010b). This dense cluster of Fos-immunoreactive 

nuclei in the tVTA also shows strong immunoreactivity for MORs that appear to be more 

prominent in the medial part of the tVTA (Jhou et al., 2009a). Dense immunoreactivity for 

somatostatin (Jhou et al., 2009a) and in situ hybridization for prepronociceptin (Jhou et al., 

2012)—a gene that encodes the opioid-like peptide nociception—have also been reported in the 

tVTA. 

   Electron micrographic analysis indicates that almost all of tVTA axons contacting the VTA are 

unmyelinated, and that these are mostly comprised of small-diameter intervaricose segments or 

vesicle-containing boutons that do not contact surrounding dendrites (Balcita-Pedicino et al., 

2011). The remaining tVTA unmyelinated axons are varicosities in direct contact with surrounding 
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dendrites forming either synaptic connections or membrane appositions (Balcita-Pedicino et al., 

2011). Further analysis of the tVTA also revealed insightful details regarding its intrinsic 

electrophysiological property. In vivo, the mean firing rate of tVTA neurons is between 11 and 18 

Hz, the interspike interval is around 73 ms, and the mean duration of their action potential 

measured from peak to trough is roughly 1 ms (Jhou et al., 2009b; Jalabert et al., 2011; Lecca et 

al., 2011). In addition, neurons in the “core” region of the tVTA have different electrophysiological 

properties compared to neurons in the “periphery” region of the tVTA; while the former fires at 

an average rate of 20 Hz, the mean firing rate of the latter is significantly lower (11 Hz), thus 

pointing to functional differences among tVTA neurons (Jhou et al., 2009b). In-vitro, tVTA 

neurons fire at a relatively lower rate (~5 Hz) than that recorded in vivo, and the EPSC evoked in 

this region are mediated by AMPA receptors (Lecca et al., 2011). 

   Taken together, the aforementioned studies have proved extremely fruitful in determining the 

anatomical and neurophysiological signature of the tVTA. However, despite developing at a rapid 

pace, research on the tVTA is still in its infancy and many questions remain unanswered. For 

instance, no information regarding the function of non-GABAergic neurons in the tVTA is 

currently available in the literature. Detailed anatomical and electrophysiological analysis of tVTA 

neurons along the rostrocaudal axis is also warranted as this could give new insights on the 

functional properties of the tVTA. 

 

1.4.3 Afferents and efferents of the tVTA 

   The discovery that the tVTA consists of a GABAergic population of neurons that conspicuously 

express Fos in response to various stimuli and psychostimulants led to a wide array of studies 

aimed at characterizing the input and output circuitry of this region. Although the tVTA has been 
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studied in several species including the mouse and monkey (Hong et al., 2011; Wasserman et al., 

2013), a proper anatomical description of its boundaries and connectivity has been done in rats 

only (Jhou et al., 2009a; Kaufling et al., 2009). Studies employing retrograde and anterograde 

tracing show that tVTA afferents are widely dispersed (Figure 9A), with one of the strongest 

inputs originating from the LHb (Jhou et al., 2009a; Kaufling et al., 2009). LHb projections to the 

tVTA are mainly ipsilateral, with moderate labeling in the contralateral hemisphere, and are 

organized in a topographic manner, with inputs from the medial and lateral tVTA primarily 

originating from the medial and lateral LHb, respectively (Jhou et al., 2009a). Electron 

microscopic examination of rat brain sections also reveal that 35% of LHb axons projecting to the 

tVTA are myelinated, while the remaining 65% are unmyelinated axons that appear either as small-

diameter fibers or larger diameter varicosities that make no direct contacts onto dendrites (Balcita-

Pedicino et al., 2011). These descending pathways originating from the LHb likely exert an 

excitatory glutamatergic influence on tVTA neurons inasmuch as most LHb neurons contain the 

VGLUT2 and other markers reminiscent of glutamate signaling (Herzog et al., 2004; Geisler et 

al., 2007; Brinschwitz et al., 2010; Root et al., 2014). Afferents of the tVTA have also been shown 

to originate from the VTA/SNc complex, suggesting the existence of feedback projections that 

reciprocate the strong tVTA projections to these regions (Jhou et al., 2009a). Retrograde and 

anterograde tracing of tVTA afferents reveal strong labeling in other brain areas, including the 

prelimbic and infralimbic cortex, lateral preoptic area, LH, SC, zona incerta, PAG, IPN, 

laterodorsal tegmental nucleus, and DR, and low to moderate labeling in the cingulate cortex, 

dorsal peduncular cortex, NAc, ventral pallidum, BNST, paraventricular hypothalamic nucleus, 

red nucleus, MR, PPTg, locus coeruleus, dorsomedial tegmental area, and pontine reticular nucleus 

(Figure 9A) (Jhou et al., 2009a; Kaufling et al., 2009; Yetnikoff et al., 2015). Direct projections  
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Figure 9: Main afferents and efferents of the tVTA. This schematic illustrates some of the major 

tVTA inputs and outputs. (A) tVTA afferents are widely dispersed and originate from a broad 

range of structures within the forebrain, diencephalon, midbrain and brainstem. (B) tVTA efferents 

preferentially target dopaminergic neurons of the VTA/SNc complex and neurons of the LH. 

Abbreviations:  bed nucleus of the stria terminalis (BNST); cingulate cortex (Cg); caudate putamen 

(CPu); dorsomedial tegmental area (DMTg); dorsal peduncular cortex (DPC); dorsal raphe (DR); 

infralimbic cortex (IL); interpeduncular nucleus (IPN); locus coeruleus (LC); lateral hypothalamus 

(LH); lateral habenula (LHb); lateral preoptic area (LPO); laterodorsal tegmental nucleus (LDTg); 

median raphe (MR); nucleus accumbens (NAc); parafascicular thalamic nucleus (Pa); 

periaqueductal gray (PAG); paramedian raphe nucleus (PMnR); pontine reticular nucleus (Pn); 

pedunculopontine tegmental nucleus (PPTg); Prelimbic cortex (PrL); red nucleus (RN); retrorubral 

field (RRF); superior colliculus (SC); substantia innominate (SI); substantia nigra pars compacta 

(SNc); ventral pallidum (VP); ventral tegmental area (VTA); zona incerta (ZI). 

 

from the hippocampus to the tVTA were not detected by retrograde and anterograde tracings, 

however, the former may possess indirect connectivity with the latter inasmuch as several 

structures  that  are  recipient of  hippocampus  outputs also project to the tVTA; these include the 

lateral septum, the NAc, the paraventricular thalamic nucleus, the BNST, and the perifornical 

hypothalamus (Jhou et al., 2009a; Kaufling et al., 2009). 

   While tVTA afferents are widely dispersed, tVTA efferents are more restricted and primarily 

target DA neurons of the midbrain (Figure 9B). The majority of these tVTA outputs innervate DA  
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cell bodies of the VTA/SNc complex, and to a lesser extent the RRF (Jhou et al., 2009a; Kaufling 

et al., 2010a; Bourdy and Barrot, 2012). Electron microscopic examination of rat brain following 

injection of an anterograde tracer in the tVTA revealed that more than 80% of tVTA axon terminals 

form symmetric synapses with tyrosine hydroxylase immunoreactive dendrites in the VTA/SNc 

complex (Balcita-Pedicino et al., 2011). A topographical organization of tVTA outputs to VTA 

DA neurons has also been proposed, with lateral parts of the tVTA targeting laterally located 

neurons of the VTA, and medial parts of the tVTA targeting centrally located neurons of the VTA 

(Jhou et al., 2009b; Jhou et al., 2009a). In addition, evidence shows that tVTA neurons along the 

rostrocaudal axis show a different pattern of projections to VTA DA neurons; while the rostral 

tVTA exhibits a densely packed cluster of GABAergic neurons projecting to VTA DA neurons, 

this density progressively declines at more caudal levels of the tVTA (Jhou et al., 2009a). Besides 

midbrain DA-containing cell bodies, other output targets of the tVTA have been reported, 

including the ventral pallidum, caudate putamen, NAc, BNST, SI, lateral preoptic area, LH, LHb, 

zona incerta, PAG, paramedian raphe nucleus, MR, laterodorsal tegmental nucleus and pontine 

reticular nucleus (Figure 9B) (Kaufling et al., 2010a). The DR and PPTg, which contain 

serotonergic and cholinergic neurons respectively, have also been reported as output targets of the 

tVTA (Lavezzi et al., 2012). Many tVTA neurons that project to the DR or PPTg express Fos upon 

psychostimulant administration (Lavezzi et al., 2012), and projections to the former are focally 

directed to a distinctive subdivision poor in serotonin and enriched in glutamatergic neurons (Sego 

et al., 2014). Double-injection tracer experiments with the VTA, DR and PPTg also indicate that 

a significant proportion of tVTA neurons may project to more than one of these structures, 

suggesting that the tVTA likely act as an integrative modulator of multiple neurotransmitter 

systems (Lavezzi et al., 2012).  Last but not least, anterograde tracing studies reveal that tVTA 



61 
 

neurons heavily project to the LH (Kaufling et al., 2010a), leading to speculation that they may be 

involved in the coordination of physiological processes already associated with this structure, 

including feeding, reward and energy homeostasis (Seoane-Collazo et al., 2015; Stuber and Wise, 

2016). 

   Altogether, findings from retrograde and anterograde tracing studies suggest that the tVTA may 

act as a converging hub, processing external information from a wide range of structures, and 

channeling the output toward midbrain DA neurons. Because of its reciprocal connections with 

the VTA/SNc complex, the characterization of the tVTA, including its boundaries, connectivity 

and anatomical properties, has fostered a tremendous growth of scholarly research for better 

understanding the neural mechanisms underlying reward and aversion. 

 

1.4.4 The tVTA: a source of negative reward signals 

   In light of previous anatomical evidence showing the existence of dense excitatory glutamatergic 

projections from the LHb to the tVTA (Brinschwitz et al., 2010), it is not surprising that the tVTA 

has been implicated in many behavioral functions already reported for the LHb, including negative 

reward processing and reward-prediction error (i.e., the difference between the expected reward 

value and the actual reward value) (Matsumoto and Hikosaka, 2007). Convergent evidence 

indicates that the tVTA exhibits patterns of activity to rewarding and aversive stimuli that are 

similar to those reported for the LHb and inverse to those of putative midbrain DA neurons 

(Matsumoto and Hikosaka, 2007; Jhou et al., 2009b; Hong et al., 2011). In rats, most tVTA neurons 

show phasic activation and/or Fos induction in response to aversive or aversion-predicting stimuli 

such as food deprivation, shock-predictive cues and footshocks, and inhibition following rewards 

or reward-predictive stimuli such as sucrose delivery and sucrose-predictive cues (Jhou et al., 

2009b; Brown and Shepard, 2013; Sanchez-Catalan et al., 2017). The mechanisms underlying the 
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activation of tVTA neurons by aversive stimuli largely depend on axons of the FR, the principal 

output pathway of the habenula, inasmuch as a lesion at this pathway impairs the ability of mild 

foot shocks to induce Fos expression in the tVTA (Brown and Shepard, 2013). Exposure to an 

aversive foot-shock also increases the LHb excitatory glutamatergic transmission to the tVTA in 

mice (Stamatakis and Stuber, 2012), and activation of the AMPA-mediated glutamatergic 

transmission into the tVTA produces robust conditioned place aversion in rats (Jhou et al., 2013). 

However, it is important to note that some aversive stimuli, such as lithium chloride, naloxone at 

high dose, lipopolysaccharide, inflammatory or neuropathic pain, and restraint stress, fail to induce 

Fos in the tVTA, indicating some degree of complexity in the mechanisms underlying the 

expression of immediate early genes following exposure to aversive events (Sanchez-Catalan et 

al., 2017). 

   Consistent with findings obtained in rodents, experiments in monkeys show that the tVTA 

mainly consists of what is called “reward-negative” neurons that behave in a similar and opposite 

way to LHb and midbrain DA neurons respectively; they are inhibited by reward predictive cues 

and excited by cues predicting the absence of reward (Hong et al., 2011). Although these findings 

support the view that tVTA neurons primarily encode negative reward signals, it is important to 

mention that some of these neurons do not show the same pattern of activity in response to 

rewarding and aversive stimuli. Notably, heterogeneity in neuronal response has been observed 

when comparing neurons in the core versus periphery region of the tVTA. For instance, Jhou et al. 

(2009b) showed that acute footshock induces a 5-fold increase in the proportion of Fos-positive 

neurons in the tVTA core, whereas only a 2-fold increase is observed in the tVTA periphery. 

Similarly, experiments in monkeys showed that only 67% of tVTA neurons are inhibited and 

excited following cues that predict reward and reward omission, respectively, and that this 
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proportion increases to 94% in the core region of the tVTA (Hong et al., 2011). However, whether 

similar heterogeneity could be observed along the rostrocaudal axis of the tVTA still needs to be 

addressed. 

   Similar to LHb neurons, tVTA neurons encode reward prediction error information. Jhou et al. 

(2009b) showed that some neurons of the tVTA are excited after the omission of an expected 

reward, and that the majority of these neurons are located in the core region of the tVTA. 

Consistent with this view, experiments in monkeys suggest that the tVTA is comprised of two 

populations of neurons that exhibit different reward-related properties; the reward-negative 

neurons (roughly 2/3) and the reward-positive neurons (roughly 1/3) (Hong et al., 2011). These 

neurons encode reward-prediction errors, exhibiting either increased (reward-negative neurons) or 

decreased (reward-positive neurons) activity in the absence of reward when reward was expected 

(Hong et al., 2011). For the negative-neurons of the tVTA, this pattern of response is similar to 

that of LHb neurons and opposite to that of midbrain DA neurons (Matsumoto and Hikosaka, 

2007; Bromberg-Martin and Hikosaka, 2011), indicating that the tVTA primarily translates the 

negative reward-prediction error from the LHb into a DA positive reward-prediction error. It is 

also noteworthy to mention that in the study by Hong et al. (2011), some tVTA neurons responded 

to reward cues earlier than LHb neurons, suggesting that the tVTA may receive reward-related 

information that could derive from areas other than the LHb. The ventral pallidum is a potential 

candidate for mediating this rapid appearance of reward-related signals in the tVTA insofar as 

prior studies showed that neurons in the ventral pallidum highly project to the tVTA (Jhou et al., 

2009a; Kaufling et al., 2009) and respond to reward cues earlier than many LHb neurons 

(Tachibana and Hikosaka, 2012). 
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1.4.5 The tVTA: from aversion expectation value to avoidance behavior 

   Learning to appropriately predict a rewarding or aversive outcome is an important process for 

survival and adaptive behaviors (Schultz et al., 1997; McNally and Westbrook, 2006). The 

aversive expectation value encoded by the tVTA is thus likely to contribute to the development of 

adaptive defensive behaviors related to fear and anxiety. Such behaviors could include active 

coping strategies when escape from the threat is possible, and passive coping strategies, such as 

freezing, which are usually characterized by behavioral inhibition (Steimer, 2002). In rats, cell-

body specific lesions of the tVTA reduce passive behaviors related to fear including auditory 

conditioned freezing and unconditioned freezing to a predator odor, while increasing active 

defensive behaviors such as treading and burying, suggesting a role for tVTA neurons in encoding 

and recalling aversive consequences (Jhou et al., 2009b). Consistent with this view, lesions of the 

tVTA were shown to impair the ability of rats to properly shift decision making away from aversive 

outcomes during a cost-benefit decision task (Vento et al., 2017). In addition, excitotoxic lesions 

or optogenetic inactivation of the tVTA at a period when cocaine exhibits aversive effects (~15 

min post-injection) abolish cocaine-induced avoidance behaviors in a runway operant paradigm 

(Jhou et al., 2013), whereas optogenetic activation of LHb inputs to the tVTA promotes behavioral 

avoidance and disrupts positive reinforcement in mice (Stamatakis and Stuber, 2012). These 

findings, together with evidence that tVTA neurons exhibit increased Fos immunoreactivity 

following conditioned and unconditioned aversive stimuli (Jhou et al., 2009b; Sanchez-Catalan et 

al., 2017), lead to speculation that the tVTA is involved in representing negative reward signals 

and promoting behavioral inhibitory responses. 

   The loss of behavioral inhibition observed following lesions of the tVTA is consistent with prior 

findings showing that lesions of the LHb or its efferent pathway increase locomotor activity 
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(Murphy et al., 1996; Gifuni et al., 2012). However, lesions of the LHb (Heneka et al., 2013) or 

its efferent pathway (Murphy et al., 1996) fail to replicate the marked decreases in freezing 

behavior produced by lesions of the tVTA (Jhou et al., 2009b); the effect of the latter is rather 

more closely related to that produced by lesions of the periaqueductal gray (Kim et al., 1993; 

Amorapanth et al., 1999), a major afferent to the tVTA. Aside from the LHb and PAG, other tVTA-

projecting structures were shown to influence fear-related behaviors, including the BNST (Schulz 

and Canbeyli, 2000), the mPFC (Giustino and Maren, 2015), the DR (Maier et al., 1993; Berg et 

al., 2014) and the MR (Wang et al., 2015; Balazsfi et al., 2017). However, whether these afferent 

projections are integrated simultaneously by the tVTA to influence fear-avoidance behaviors 

remains to be determined. 

   Last but not least, a series of studies have shown that lesions of the tVTA produce hyperactivity 

in a novel environment (Vento et al., 2017) and increase motor performance on a rotarod (Bourdy 

et al., 2014) or open field (Brown et al., 2017) test. Moreover, lesions of the tVTA were shown to 

increase time spent in open arms on an elevated plus maze, suggesting a potential involvement of 

the tVTA in anxiety-like behavior (Jhou et al., 2009b). In addition, owing to its reciprocal 

anatomical connections with raphe nuclei (Kaufling et al., 2009, 2010a; Lavezzi et al., 2012), 

where brain 5-HT cell bodies are mainly localized (Charnay and Leger, 2010), the tVTA is likely 

to play a crucial role in the pathogenesis of depression and other disorders where dysfunctions in 

the 5-HT system are observed. Thus far, no studies have been conducted to investigate the role of 

the tVTA in depression, however, manipulation of structures that heavily project to the tVTA, such 

as the LHb or the PAG, yields antidepressant-like effects in rodents (Berton et al., 2007; Winter et 

al., 2011; Yang et al., 2018), and DBS of the LHb induces beneficial responses in treatment-

resistant depressed patients (Sartorius et al., 2010; Kiening and Sartorius, 2013). Therefore, in light 
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of these findings, as well as those mentioned above, the tVTA appears as a hub between motor and 

emotional systems, and as a major regulator of behaviors underlying aversion and fear-like 

responses. These processes are essential for survival as they enable the acquisition of rewarding 

outcomes and the selection of appropriate defense responses. They may also help delineate the 

mechanisms underlying certain psychiatric conditions such as substance use disorder and other 

addictive behaviors, which are characterized by a failure of aversive outcomes to inhibit behavior 

despite ongoing detrimental effects. 

 

1.4.6 The tVTA in responses to psychostimulants and drugs of abuse  

   Drug abuse can be envisaged as a cycle of escalating dysregulation of brain reward and aversion 

mechanisms resulting in the compulsive use of drugs and a loss of control over drug-taking 

behaviors (Koob and Le Moal, 2008; Volkow and Morales, 2015). In view of its relationship with 

brain areas encoding reward and aversion, it seems reasonable to speculate that the tVTA has a 

role in the complex circuitry mediating the effects of drugs of abuse. Findings from molecular, 

electrophysiological and behavioral studies highlighting the role of the tVTA in the effect of drugs 

of abuse and other drugs are illustrated in Table 2. 

   tVTA neurons were first described in the context of their ability to induce Fos expression in 

response to psychostimulants. Acute (Kaufling et al., 2009; Kaufling et al., 2010b) or chronic 

(Perrotti et al., 2005; Kaufling et al., 2010a; Zahm et al., 2010) administration of cocaine in a 

noncontingent manner as well as single (Zahm et al., 2010) or repeated (Geisler et al., 2008; Jhou 

et al., 2009a; Zahm et al., 2010) administration of cocaine during a self-administration setting 

induce FosB/ΔFosB or c-Fos expression in the tVTA. Expression of Fos-related genes in the tVTA 

is also observed following exposure to other psychostimulants, including amphetamine (Perrotti 
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et al., 2005; Colussi-Mas et al., 2007; Kaufling et al., 2010b; Rotllant et al., 2010; Matsui and 

Williams, 2011), methamphetamine (Jhou et al., 2009a; Lecca et al., 2011; Cornish et al., 2012; 

Lavezzi et al., 2012), 3,4-methylenedioxymethamphetamine hydrochloride (MDMA) (Kaufling et 

al., 2010b) and caffeine (Kaufling et al., 2010b). It is worth mentioning that the expression of Fos 

and other immediate-early genes in the tVTA following exposure to psychostimulants does not 

necessarily indicate an activation of the corresponding structure, but is rather indicative of changes 

in intracellular signaling or neuronal activity (Zahm et al., 2010). The psychostimulant-induced 

expression of Fos and other related immediate-early genes in the tVTA is likely mediated by the 

DA system since acute (Kaufling et al., 2010b) or chronic (Perrotti et al., 2005) administration of 

the DA reuptake inhibitor, GBR-12909, increases Fos-like immunoreactivity in the tVTA, while 

no such effect is observed with drugs acting on norepinephrine or 5-HT neurotransmission (Perrotti 

et al., 2005; Kaufling et al., 2010b). However, it is worthwhile to mention that the induction of 

Fos-related proteins in the tVTA is not limited to psychostimulants with addictive properties. For 

instance, acute systemic injection of modafinil, a psychostimulant with low addictive properties 

used for the treatment of narcolepsy, induces Fos-like immunoreactivity in the tVTA (Scammell 

et al., 2000). On the other hand, acute administration of morphine, ethanol, diazepam, γ-

hydroxybutyric acid sodium salt (GHB), ketamine, PCP or Δ9-tetrahydrocannabinol solution 

(THC) fails to induce Fos-like immunoreactivity in the tVTA, despite their abuse potential 

(Perrotti et al., 2005; Kaufling et al., 2010b). It thus appears that the capacity of tVTA neurons to 

express Fos and other related genes in response to psychostimulants is related to their stimulant 

and arousing properties. Experiments with c-fos immunohistochemistry also show that cocaine 

induces the activation of the LHb with a delay of approximately 15 min, and that this activation 

predominantly targets LHb neurons that project to and activate neurons in the tVTA (Jhou et al., 
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2013). In addition, acute morphine withdrawal strongly induces Fos in the tVTA (Sanchez-Catalan 

et al., 2017), while acute (Kaufling et al., 2010b) or chronic (Perrotti et al., 2005) administration 

of morphine does not, suggesting that Fos-like immunoreactivity in the tVTA following exposure 

to psychostimulants might not be induced by the drug directly, but rather by its offset. 

   Studies have also investigated the effect of drugs of abuse on the electrophysiological activity of 

the tVTA GABAergic neurons, which is more indicative of their functional activation or inhibition. 

In anesthetized  rats, acute administration of cocaine (Lecca et al., 2011) and morphine (Jalabert 

et al., 2011; Lecca et al., 2011) decreases the firing rate of tVTA neurons, whereas in vitro, bath 

application of morphine (Lecca et al., 2011) or MOR agonists (Matsui and Williams, 2011) reduces 

the EPSC and spontaneous activity of tVTA neurons, respectively. The electrophysiological 

activity of the tVTA is also influenced by the endocannabinoid system inasmuch as administration 

of the type 1-cannabinoid receptor agonist, WIN55212-2, decreases the discharge frequency of 

tVTA neurons in anesthetized rats and the EPSC in vitro (Lecca et al., 2011). Conversely, nicotine 

nearly doubles the firing rate of tVTA neurons in vivo and results in marked increases in EPSC 

amplitude in vitro (Lecca et al., 2011). The nicotine-induced potentiation of tVTA neurons is likely 

the result of enhanced glutamate release induced by α7-containing nAChRs, since bath application 

of methyllycaconitine, a α7-containing nAChR antagonist, blocks the in vitro effect of nicotine 

(Lecca et al., 2011). The view that GABAergic neurons of the tVTA project to midbrain DA 

neurons and show changes in their electrophysiological activity after exposure to drugs of abuse 

strongly implicates the tVTA in drug-induced alterations in DA neurotransmission. In vivo 

experiments done in anesthetized  rats show that tVTA inactivation by muscimol suppresses the 

excitatory effect of morphine on VTA DA neurons (Jalabert et al., 2011), and that acute 

administration of morphine or WIN55212-2, but not cocaine or nicotine, blocks the tVTA-evoked 
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suppression of VTA DA neuron firing (Lecca et al., 2012). In vitro, bath application of the MOR 

agonist, DAMGO, inhibits GABAA IPSCs in midbrain DA neurons evoked by electrical or 

optogenetic stimulation of the tVTA; effect that is not observed with kappa receptor and DOR 

agonists (Matsui and Williams, 2011). In agreement with these findings, behavioral studies show 

that intra-tVTA administration of morphine (Wasserman et al., 2013; Wasserman et al., 2016; 

Steidl et al., 2017) or the MOR agonist, DAMGO (Kotecki et al., 2015), enhances locomotor 

activity in rodents; an effect that typically correlates with increases in mesolimbic DA 

neurotransmission (Pijnenburg et al., 1976; Ikemoto, 2002). Moreover, intra-tVTA infusion of 

EM-1, a selective MOR agonist, produces positive reinforcement in an intracranial self-

administration setting, and elicits conditioned place preference (Jhou et al., 2012), whereas intra-

tVTA infusion of morphine extends the satiating effects of heroin intake (Steidl et al., 2015). 

   Through a disinhibition process, the tVTA may thus be an important target for certain drugs of 

abuse, including opioids and cannabinoids, to influence the activity of midbrain DA neurons. The 

original disinhibition model of opioid action on midbrain DA neurons posits that opioids, such as 

morphine and heroin, exert their reinforcing effects by acting on MORs located on GABA-

containing interneurons of the VTA, thereby reducing the spontaneous GABA-mediated synaptic 

input to DA cells (Johnson and North, 1992). In light of the aforementioned findings and given the 

enriched expression of MORs in tVTA neurons (Jhou et al., 2009a), Bourdy and Barrot (2012) 

proposed a new model in which opioids act on tVTA cell bodies or terminals to suppress the 

inhibitory tone exerted by the tVTA on VTA DA neuron activity. The capacity of the tVTA to 

disinhibit DA cells is impaired after opioid withdrawal inasmuch as tVTA inactivation by local 

microinjection of a GABAA agonist increases VTA DA neuron activity in opiate-naive, but not in 

withdrawn, rats (Kaufling and Aston-Jones, 2015). 
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Subject Treatment design Main findings Study 
Cocaine 
Male Sprague–
Dawley rats 
 
 
 
 

Male Sprague–
Dawley rats 
 
 

Male Sprague-
Dawley rats 

Male Sprague 
Dawley rats 
 

Male Sprague–
Dawley rats 
 
 
 

Male Sprague–
Dawley rats 
 

Male Sprague–
Dawley albino rats 

Male Sprague– 
Dawley albino rats 

 
Injection of cocaine 
hydrochloride (15 mg/kg; i.p.) 
twice-daily for 14 days; 
Cocaine self-administration 
(0.5 mg/kg/0.1ml infusion) 
daily for 14 days 

Cocaine self-administration 
(500 μg/kg per 30 μl infusion; 
i.v.) for six consecutive days 
 

Acute injection of cocaine  
hydrochloride (20 mg/kg; i.p.) 

Acute injection of cocaine 
hydrochloride (2.5-40 mg/kg; 
i.p.) 

Single or repeated (6 days) 
cocaine self-administration 
(500 μg/kg per 30 μl infusion; 
i.v.); Passive infusions of 
cocaine for 6 days 

Injection of cocaine 
hydrochloride (20 mg/kg; i.p.) 
twice daily for 7 days 

Acute injection of cocaine (1 
mg/kg; iv) 

Acute injection of cocaine (1 
mg/kg; iv) 

 
Increased FosB 
immunoreactivity in the tVTA 
 
 
 
 

Increased Fos immunoreactivity 
in VTA-projecting tVTA 
neurons 
 

Increased FosB 
immunoreactivity in the tVTA 

Dose-dependent increases in 
FosB/ΔFosB immunoreactivity 
in the tVTA 

Increased Fos immunoreactivity 
in the tVTA 
 
 
 

Increased ΔFosB 
immunoreactivity 
 

Decreased firing rate of tVTA 
neurons in vivo 

No effect on tVTA-evoked 
suppression of VTA DA neuron 
firing 

 
Perrotti et 
al., 2005 
 
 
 
 

Geisler et 
al., 2008; 
Jhou et al., 
2009a 

Kaufling et 
al., 2009 

Kaufling et 
al., 2010b 
 

Zahm et al., 
2010 
 
 
 

Kaufling et 
al., 2010a 
 

Lecca et 
al., 2011 

Lecca et al, 
2012 

Amphetamine 
Male Sprague–
Dawley rats 
 

Male Sprague–
Dawley rats 
 

Male Sprague–
Dawley rats 
 

Male Sprague–
Dawley rats 

Male and female 
Sprague–Dawley 
rats 

 
Injection of d-amphetamine (4 
mg/kg; i.p.) once daily for 4 
days 

Acute injection of d-
amphetamine (5 mg/kg; s.c.) 
 

Acute injection of d-
amphetamine (1.5 or 5 mg/kg; 
s.c.) 

Acute injection of d-
amphetamine (1 mg/kg; i.p.) 

Acute injection of d-
amphetamine (4 mg/kg, s.c.) 

 
Increased FosB 
immunoreactivity in the tVTA 
 

Increased Fos immunoreactivity 
in the tVTA 
 

Increased Fos-immunoreactivity 
in the tVTA 
 

Increased FosB/ΔFosB 
immunoreactivity in the tVTA 

Increased Fos immunoreactivity 
in the tVTA 

 
Perrotti et 
al., 2005 
 

Colussi-
Mas et al., 
2007 

Rottlant et 
al., 2010 
 

Kaufling et 
al., 2010b 

Matsui and 
Williams, 
2011 
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Methamphetamine 
Male Sprague–
Dawley rats 
 

Male Sprague–
Dawley albino rat 
 

Male Sprague–
Dawley rats 
 
 

Male Australian 
albino Wistar rats 

 
Acute injection of 
methamphetamine (10 mg/kg; 
i.p.) 

Acute injection of 
methamphetamine (10 mg/kg; 
i.p.) 

Acute injection of 
methamphetamine (10 mg/kg; 
i.p.) 
 

Self-administration or passive 
injection (yoked delivery) of 
methamphetamine (0.1 
mg/kg/0.05ml infusion) daily 
for 3 weeks 

 
Increased Fos-immunoreactivity 
in VTA-projecting tVTA 
neurons 

Increased Fos-immunoreactivity 
in the tVTA 
 

Increased Fos expression in 
tVTA neurons projecting to the 
DR or the PPTg pars dissipata, 
but not to the RtGi 

Increased Fos-immunoreactivity 
in the tVTA 

 
Jhou et al., 
2009a 
 

Lecca et 
al., 2011 
 

Lavezzi et 
al., 2012 
 
 

Cornish et 
al., 2012 

Morphine and 
morphine-like 
drugs 
Male Sprague–
Dawley rats 
 
 
 
 

Male Sprague–
Dawley rats 

Male and female 
Sprague–Dawley 
rats  
 
 

Male Sprague–
Dawley rats 
 
 
 
 
 
 

Male Sprague–
Dawley albino rats 
 
 

Male Sprague–
Dawley albino rats 
 

 
 
 
Continual (75 mg pellet; s.c. 
once daily for 5 days) or 
intermittent (twice daily; s.c.; 
escalating doses of up to 120 
mg/kg for 10 days) injection of 
morphine 

Acute injection of morphine 
sulphate (10 or 50 mg/kg, s.c.) 

Bath application of the MOR 
agonist, DAMGO (1 μM) in 
tVTA slices 
 
 

Acute injection of morphine (1 
mg/kg; i.v.); Intra-tVTA 
injection of  morphine (1 
mg/ml) or muscimol (0.05 
mg/ml) 
 
 
 

Acute morphine injection (4 
mg/kg, i.v.) in vivo; Bath 
application of morphine (1 
µM) in tVTA slices 

Acute morphine injection (4 
mg/kg, i.v.) in vivo; Bath 

 
 
 
No effect on FosB 
immunoreactivity in the tVTA 
 
 
 
 

No effect on FosB/ΔFosB 
immunoreactivity in the tVTA 

Decreased rhythmic 
spontaneous firing rate of the 
tVTA; Reduced tVTA-evoked 
GABA-A IPSCs in VTA/SN 
DA neurons 

Decreased firing rate of tVTA 
neurons following systemic or 
local injection of morphine; 
Blockade of morphine-induced 
excitatory effect on VTA-DA 
neurons following muscimol-
mediated inactivation of the 
tVTA 

Decreased firing rate of tVTA 
neurons in vivo and decreased 
EPSCs in vitro 
 

Decreased tVTA-evoked 
suppression of VTA DA neuron 
firing in vivo and decreased 

 
 
 
Perrotti et 
al., 2005 
 
 
 
 

Kaufling et 
al., 2010b 

Matsui and 
Williams, 
2011 
 
 

Jalabert et 
al., 2011 
 
 
 
 
 
 

Lecca et 
al., 2011 
 
 

Lecca et 
al., 2012 
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Male albino Wistar 
rats 
 

Male CD1×129 
mice 
 

C57BL/6J mice 
 
 
 
 

Male Long-Evans 
rats 
 

Male GAD2::Cre 
mice 
 
 

C57BL/6 mice 
 
 
 

Male Sprague–
Dawley rats 
 

application of morphine (1 
µM) in tVTA slices 

Bilateral intra-tVTA infusion 
of EM1 (50 or 250 pmol) 
 

Bilateral intra-tVTA infusion 
of morphine (10 and 30 
mg/kg) 

Bilateral intra-tVTA infusion 
of the selective MOR agonist, 
DAMGO (0.01, 0.1, 1 or 10 
nmol) 
 

Bilateral intra-tVTA infusion 
of morphine (10 mM) 
 

Bilateral intra-tVTA injection 
of morphine (10 mg/kg) 
 
 

Bilateral intra-tVTA injection 
of morphine (5 nM) 
 
 

Naloxone injection (1 mg/kg; 
s.c.) following chronic 
morphine treatment at 
escalating doses (10-80 mg/kg; 
i.p.; twice daily for 7 days) 

IPSCs evoked by tVTA 
stimulation in vitro 

Positive reinforcement in a self-
administration paradigm; 
Conditioned place preference 

Increased locomotor activity; 
effect inhibited by the bilateral 
transfection of the M5 gene  

Increased locomotor activity in a 
dose-dependent manner; effect 
potentiated by Girk1 ablation at 
the two highest doses of 
DAMGO 

Reduced heroin (0.025 
mg/kg/infusion) self-
administration 

Increased locomotor activity; 
effect blocked by the activation 
of M3 and increased by the 
activation of M4 

Increased locomotor activity; 
effect potentiated by the co-
infusion of morphine with M3, 
but not M4, selective antagonist 

Increased Fos immunoreactivity 
in the tVTA following 
naloxone-precipitated opiate 
withdrawal 

 
 

Jhou et al., 
2012 
 

Wasserman 
et al., 2013 
 

Kotecki et 
al., 2015 
 
 
 

Steidl et al., 
2015 
 

Wasserman 
et al., 2016 
 
 

Steidl et al., 
2017 
 
 

Sanchez-
Catalan et 
al., 2017 

Cannabinoids 
Male Sprague–
Dawley rats 

Male Sprague–
Dawley albino rat 
 
 

Male Sprague–
Dawley albino rats 
 

 
Acute injection of THC (30%; 
i.p.) 

Acute injection of WIN (0.5 
mg/kg, i.v.) in vivo; Bath 
application of WIN (1 mM) in 
tVTA slices 

Acute injection of WIN (0.5 
mg/kg, i.v.) in vivo; Bath 
application of WIN (1 mM) in 
tVTA slices 

 
No effect on FosB/ΔFosB 
immunoreactivity in the tVTA 

Decreased discharge frequency 
of tVTA neurons in vivo and 
decreased EPSC amplitude  in 
vitro 

Decreased tVTA-evoked 
suppression of VTA DA neuron 
firing in vivo and decreased 
IPSCs evoked by tVTA 
stimulation in vitro 

 
Kaufling et 
al., 2010b 

Lecca et 
al., 2011 
 
 

Lecca et 
al., 2012 
 



73 
 

Nicotine 
Male Sprague–
Dawley albino rat 
 

Male Sprague–
Dawley albino rat 

 
Acute injection of nicotine (0.2 
mg/kg, i.v.); Bath application 
of nicotine (1 µM) 

Acute injection of nicotine (0.2 
mg/kg, i.v.) 

 
Increased firing rate of tVTA 
neurons in vivo and increased 
EPSC amplitude in vitro 

No effect on tVTA-evoked 
suppression of VTA DA neuron 
firing  

 
Lecca et 
al., 2011 
 

Lecca et al, 
2012 

DA reuptake 
inhibitor 
Male Sprague–
Dawley rats 
 

Male Sprague–
Dawley rats 

 
 
Injection of GBR-12909 (20 
mg/kg; i.p.), twice daily for 7 
days 

Acute injection of GBR12909 
(15 mg/kg, i.p.) 

 
 
Increased FosB-like 
immunoreactivity in the tVTA 
 

Increased FosB/ΔFosB 
immunoreactivity in the tVTA 

 
 
Perrotti et 
al., 2005 
 

Kaufling et 
al., 2010b 

Norepinephrine 
and/or 5-HT 
reuptake inhibitors  
Male Sprague–
Dawley rats 
 
 

Male Sprague–
Dawley rats 
 
 

Male Sprague–
Dawley rats 
 
 

 
 
 
Injection of the norepinephrine 
reuptake inhibitor, 
nortriptyline (15 mg/kg; i.p.), 
twice daily for 7 days 

Injection of the 5-HT reuptake 
inhibitor, fluoxetine (10 
mg/kg; i.p.), twice daily for 7 
days 

Acute injection of either 
reboxetine mesylate (0.8 
mg/kg; i.p.), nortriptyline 
hydrochloride (15 mg/kg; i.p.), 
fluoxetine hydrochloride (10 
mg/kg; i.p.), venlafaxine 
hydrochloride (5 mg/kg; i.p.) 

 
 
 
No effect on FosB 
immunoreactivity in the tVTA 
 
 

No effect on FosB 
immunoreactivity in the tVTA 
 
 

No effect on FosB/ΔFosB 
immunoreactivity in the tVTA 

 
 
 
Perrotti et 
al., 2005 
 
 

Perrotti et 
al., 2005 
 
 

Kaufling et 
al., 2010b 

5-HT releasing 
drugs 
Male Sprague–
Dawley rats 
 

 
 
Acute injection of S-(+)-
fenfluramine hydrochloride 
(dexfenfluramine; 4 mg/kg; 
i.p.) 

 
 
No effect on FosB/ΔFosB 
immunoreactivity in the tVTA 

 
 
Kaufling et 
al., 2010b 
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Table 2: The tVTA and the effect of drugs. Abbreviations:  serotonin (5-HT); dopamine (DA); 

dorsal raphe (DR); excitatory postsynaptic current (EPSC); gamma-hydroxybutyric acid sodium 

salt (GHB); G protein-coupled inwardly-rectifying potassium channel 1 (Girk1); intraperitoneal 

(i.p.); inhibitory postsynaptic current (IPSC); intravenous (i.v.) ; muscarinic acetylcholine receptor 

3 (M3); muscarinic acetylcholine receptor 4 (M4); muscarinic acetylcholine receptor 5 (M5); 

(+/−)-3,4-methylenedioxymethamphetamine hydrochloride (MDMA); phencyclidine 

hydrochloride (PCP); pedunculopontine nucleus (PPTg); pontomedullary paramedian 

gigantocellular reticular formation (RtGi); subcutaneous (s.c.); substantia nigra (SN); Δ9-

tetrahydrocannabinol solution (THC); tail of the ventral tegmental area (tVTA); ventral tegmental 

area (VTA). 

 

1.4.7 Summary and perspectives 

   Studies in the past few decades have yielded a wealth of information on brain systems encoding 

reward and aversive stimuli, however, the mechanisms underlying the interaction between these 

two processes are poorly understood. Recently, the tVTA has been described as a major 

GABAergic structure that starts within the posterior VTA and extends into the pons, acting as a 

possible connecting hub between aversion- and reward-responding brain regions. This cluster of 

Other drugs 
Male Sprague–
Dawley rats 
 

Male Sprague–
Dawley rats 
 
 
 

Male Sprague–
Dawley rats 

 
Acute injection modafinil (75 
or 150 mg/kg; i.p.) 
 

Acute injection of either 
MDMA (5 mg/kg; i.p.), 
methylphenidate hydrochloride 
(10 mg/kg; i.p.) or caffeine 
(2.5-100 mg/kg; i.p.) 

Acute injection of either 15% 
ethanol (1.5-5 g/kg; i.p.), 
diazepam (1.5 mg/kg, i.p.), 
GHB (1 g/kg; i.p.), ketamine 
hydrochloride (50 mg/kg; i.p.), 
PCP (3 or 10 mg/kg; i.p.), 
sodium valproic acid (20 
mg/kg; i.p.) or gabapentin (50 
mg/kg; i.p.)   

 
Increased Fos-immunoreactivity 
following treatment with the 
high dose 

Increased FosB/ΔFosB 
immunoreactivity in the tVTA 
 
 
 

No effect on FosB/ΔFosB 
immunoreactivity in the tVTA 

 
Scammell 
et al., 2000 
 

Kaufling et 
al., 2010b 
 
 
 

Kaufling et 
al., 2010b 
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GABAergic cells receives inputs from the LHb and projects to DA neurons of the VTA/SNc 

complex, with additional projections to brainstem regions including the DR and PPTg (Jhou et al., 

2009a; Kaufling et al., 2009; Lavezzi et al., 2012). Electrophysiological studies concerned about 

the role of the tVTA in reward and aversive processes suggest that tVTA neurons exhibit similar 

functional properties to those of LHb neurons, but opposite to those of midbrain DA neurons; they 

are excited following aversive or aversion-predicting stimuli, and inhibited following rewards or 

reward-predictive stimuli (Matsumoto and Hikosaka, 2007; Jhou et al., 2009b; Hong et al., 2011). 

Evidence also implicates the tVTA in the representation of negative reward prediction error (Hong 

et al., 2011) and avoidance behaviors related to fear (Jhou et al., 2009b). The identification of the 

tVTA as a major regulatory region capable of directly influencing midbrain DA neuron activity 

(Jalabert et al., 2011; Matsui and Williams, 2011; Brown et al., 2017) has also created avenues for 

a better understanding of the mechanisms underlying the reinforcing effects of psychostimulants 

and drugs of abuse. GABAergic cells of the tVTA show increased Fos-like immunoreactivity in 

response to psychostimulants (Perrotti et al., 2005; Geisler et al., 2008; Jhou et al., 2009a; Kaufling 

et al., 2009), and marked changes in their electrophysiological activity following exposure to a 

number of drugs of abuse, including cocaine, cannabinoids, nicotine and opioids (Jalabert et al., 

2011; Lecca et al., 2011; Matsui and Williams, 2011). The latter findings have led to an updated 

disinhibition model of opioid action on VTA DA cells, which posits that opioids act on tVTA cell 

bodies or terminals to suppress the GABAergic inhibitory tone in midbrain DA neurons (Bourdy 

and Barrot, 2012). In view of its connectivity with the LHb and the previously reported beneficial 

effect of DBS of the LHb in depressed patients (Sartorius et al., 2010; Kiening and Sartorius, 

2013), the tVTA may also be an interesting modulatory target for treating symptoms of depression. 

However, because the tVTA is a newly identified structure, relatively little information regarding 
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its role in reward-related processes and psychiatric disorders are presently available, and additional 

studies are required to go from fundamental theories to clinical applications. A major gap in the 

literature that still needs to be addressed is how the manipulation of certain receptors that are pre- 

or post-synaptically expressed in the tVTA, including those involved in glutamate and opioid 

transmission, could influence the ability of tVTA neurons to encode aversive stimuli and inhibit 

midbrain DA neuron activity. 

 

1.5 Thesis proposal: overview, hypotheses and objectives 

1.5.1 Article 1: Serial lesions at the DDC and MFB 

   In an attempt to characterize the neural substrate for brain stimulation reward, initial interest was 

given to the habenula. Electrical stimulation of the habenula (Sutherland and Nakajima, 1981; 

Nakajima, 1984; Vachon and Miliaressis, 1992) or its afferent (Blander and Wise, 1989; Vachon 

and Miliaressis, 1992) and efferent (Sutherland and Nakajima, 1981; Vachon and Miliaressis, 

1992) pathway supports operant responding for ICSS. In addition, experiments employing lesions 

in combination with ICSS have shown that electrolytic lesions at the habenula attenuate the 

rewarding effectiveness of LH, VTA and DR self-stimulation (Morissette and Boye, 2008). 

However, the latter findings could not determine whether the habenula is directly involved in the 

rewarding effectiveness of ICSS because the lesions employed in the study not only destroyed 

habenular cell bodies, but also fibers of passage. In another set of studies from the same group, 

bilateral intra-habenula injection of d-amphetamine and cell body-specific lesions of the habenula 

failed to alter the rewarding effect of ICSS (Duchesne and Boye, 2013) and the reward-enhancing 

effect of amphetamine (Gifuni et al., 2012), respectively, suggesting that the habenula is perhaps 

not the key structure responsible for mediating the rewarding effect of ICSS. In light of these 
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findings and those reported by Morisette and Boye (2008), brain stimulation reward is likely 

mediated by fibers of passage within the DDC and not intrinsic habenular cell bodies. It is worth 

mentioning that the attenuation of brain stimulation reward reported by Morisette and Boye (2008) 

following electrolytic lesions at the habenula was only observed in approximately 25% of all the 

rats that were tested for ICSS. Although the lack of effect may be explained by the anatomical 

diffuse, collateralized, and heterogeneous nature of the neural substrate for ICSS (Arvanitogiannis 

et al., 1996a; Simmons et al., 1998), another plausible explanation may be that the two pathways 

of the brain reward circuitry, namely the DDC and the MFB, are functionally interconnected and 

merge on a common reward integrator. Therefore, the loss of reward-relevant neurons within the 

DDC should be compensated by the MFB, and vice versa. Objective: The aim of the present study 

is to evaluate the effect of single or serial electrolytic lesions along the DDC and MFB on the 

reward thresholds and maximum response rates obtained from rewarding electrical stimulation of 

the LH and DR. Hypothesis: If the DDC and MFB merge on a common reward integrator, then 

sequential lesions of these pathways should produce larger and longer-lasting attenuations of 

brain stimulation reward than a lesion of either one of these pathways alone. 

 

1.5.2 Article 2: Anatomical disconnection following a single lesion at the DDC  

   Once a functional relationship between the MFB and DDC has been established, I will use the 

latter site and combine electrolytic lesions with immunolabeling for Fos proteins to characterize 

the reward-relevant neurons that are anatomically connected to the DDC. Synthesis of Fos proteins 

is regulated by the expression of the immediate early gene, c-fos, and is triggered by a variety of 

stimuli including rewarding electrical stimulation (Flores et al., 1997; Arvanitogiannis et al., 2000) 

and single (Kaufling et al., 2009; Lavezzi et al., 2012) or repeated (Perrotti et al., 2005; Zahm et 
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al., 2010) exposure to drugs of abuse. c-fos is a proto-oncogene that is part of the Fos gene family, 

which also consists of FosB, Fra-1 and Fra-2 (Milde-Langosch, 2005). The distribution of Fos-like 

immunoreactivity (FLIR) is a powerful tool to visualize neuronal activity in response to rewarding 

electrical stimulation owing to its ability to directly stain the cell nucleus (Flores et al., 1997; 

Arvanitogiannis et al., 2000). In addition to labeling neurons that are antidromically activated by 

ICSS, FLIR allows the detection of neurons that are transsynaptically activated by the rewarding 

stimulation, thereby providing a map of functional reward pathways (Sagar et al., 1988; Flores et 

al., 1997; Arvanitogiannis et al., 2000). Previous studies have shown that FLIR is enhanced in 

brain regions of rats that were trained to self-administer pulses of electrical stimulation at the LH 

(Arvanitogiannis et al., 1996b), MFB (Hunt and McGregor, 1998), VTA (Flores et al., 1997), DR 

(Marcangione and Rompre, 2008) and mPFC (Arvanitogiannis et al., 2000), in particular in the 

hemisphere that is ipsilateral to the stimulation electrode. However, to our knowledge, no prior 

studies have combined electrolytic lesions at the DDC with stimulation-induced FLIR. Such work 

could inform us whether the same nuclei that are active in lesion-naïve animals continue to be 

active following a lesion at the DDC. Objective: The aim of the present study is to evaluate the 

effect of a single electrolytic lesion at the DDC on the distribution of FLIR triggered by the 

rewarding electrical stimulation of the LH. The LH stimulation site will be used for ICSS because 

this region was associated with the larger lesion-induced attenuation of reward in the previous 

study. For the distribution of FLIR, special attention will be given to regions that are involved in 

the rewarding effect of ICSS and those that are anatomically connected to the DDC (Herkenham 

and Nauta, 1977; Araki et al., 1988). Hypothesis: Electrolytic lesions at the DDC should produce 

significant reward deficits and reduce the stimulation-induced FLIR in brain regions that are 

subserved by its activity. 
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1.5.3 Article 3: Manipulation of glutamate and opioid transmission in the tVTA 

   The last part of my PhD project is aimed at characterizing the role of the tVTA in brain 

stimulation reward and locomotor activity with respect to specific receptor systems. The tVTA is 

a recently identified structure that starts in the midbrain. It is located posterior to the VTA and 

dorsolateral to the caudal part of the IPN, and it extends into the pons (Barrot and Thome, 2011). 

It was first identified in the rat as a discrete population of GABAergic neurons that elicits Fos 

expression in response to psychostimulants (Perrotti et al., 2005). Rationale for investigating the 

tVTA is threefold. First, the tVTA receives strong glutamatergic inputs from the DDC, in particular 

from the LHb (Jhou et al., 2009a; Kaufling et al., 2009). Second, GABAergic neurons of the tVTA 

heavily project to the VTA and SNc (Jhou et al., 2009a) and exert an electrophysiological 

inhibitory control over midbrain DA neurons (Matsui and Williams, 2011; Brown et al., 2017). 

Third, tVTA neurons are responsive to reward and aversive cues; they are excited by aversive 

stimuli or aversive-predicting stimuli, and inhibited by rewards or reward-predicting stimuli (Jhou 

et al., 2009b; Hong et al., 2011).  

   The ability of tVTA neurons to encode reward-related signals and inhibit midbrain DA neurons 

is largely influenced by local glutamate and opioid transmission. Injection of AMPA into the tVTA 

produces robust conditioned place aversion in rats (Jhou et al., 2013), while lesions of the LHb 

(Gifuni et al., 2012) or the FR (Murphy et al., 1996), through which most of the glutamatergic 

inputs to the tVTA are conveyed, increase spontaneous and psychostimulant-induced locomotor 

activity. In addition, opioid-mediated inhibition of the tVTA with MOR agonists produces positive 

reinforcement in a self-administration setting (Zangen et al., 2002; Jhou et al., 2012) and increases 

the firing activity of VTA DA neurons (Jalabert et al., 2011). Hypothesis 1: In light of these 

findings, I hypothesize that blockade of NMDA and AMPA receptors as well as activation of MORs 
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in the tVTA enhance brain stimulation reward and locomotor activity. Objective 1: To test this 

hypothesis, ICSS and locomotor activity will be assessed before and after bilateral intra-tVTA 

injection of either NBQX, an AMPA receptor antagonist, PPPA, an NMDA receptor antagonist, 

or the vehicle in a counterbalanced order, followed by an injection of EM-1, a selective MOR 

agonist. Treatment with EM-1 is administered at the end to confirm (in addition to histology) that 

that injection was within the tVTA; that is because the tVTA, unlike adjacent structures, shows 

very strong immunoreactivity for MORs (Jhou et al., 2009a; Jalabert et al., 2011). Objective 2: 

ICSS and locomotor activity will be assessed following siRNA-mediated downregulation of 

NMDA receptors in the tVTA. The reward-enhancing effect of PPPA will also be assessed 

following the siRNA treatment. This experiment will tell us whether a reduction in NMDA 

receptor alters the rewarding efficacy of ICSS and the reward-enhancing effect of PPPA. 

Hypothesis 2: If GluN2A-containing NMDA receptors are located on presynaptic terminals of the 

tVTA, then siRNA-mediated downregulation of NMDA receptors in cells that have their cell bodies 

in the tVTA should not alter the reward-enhancing effect of PPPA. 
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ABSTRACT 

   Previous work with psychophysically based studies suggests that electrolytic lesions of the 

habenula, which lies in the dorsal diencephalic conduction system (DDC), degrade the rewarding 

effect induced by intracranial self-stimulation (ICSS). This experiment was aimed at studying the 

importance of the DDC in brain stimulation reward, and its connections with other areas that 

support operant responding for brain stimulation. For this purpose, rats were implanted with 

stimulating electrodes at the dorsal raphe (DR) and lateral hypothalamus (LH), and lesioning 

electrodes in the medial forebrain bundle (MFB) and the DDC. Rats were trained to self-administer 

the stimulation at three different current intensities and were tested daily for changes in reward 

thresholds, defined as the pulse frequency required for half-maximal responding. The lesions were 

done at the DDC and the MFB, and were separated by two weeks interval during which the rats 

were tested for self-stimulation. At the end of the experiment, rats were transcardially perfused 

and their brains collected to determine the extent of the lesions and the locations of the stimulation 

sites. Results show that lesions at both the DDC and MFB produced larger and longer-lasting 

increases in reward thresholds (up to 0.40 log10 units) than lesions at either pathway alone (up to 

0.25 log10 units), and were more effective in attenuating the reward induced by LH self-

stimulation. These results suggest that there exist two parallel pathways, the MFB and the DDC, 

which could constitute a viable route for the reward signal triggered by ICSS. 

 

Keywords: Dorsal raphe; Habenula; Lateral hypothalamus; Reward; Self-stimulation 
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INTRODUCTION 

   It is well established that electrical stimulation of certain brain areas such as the lateral 

hypothalamus (LH) and the dorsal raphe (DR) induces a rewarding effect that is strong enough to 

support operant responding in laboratory animals; rats will quickly learn to press a lever, for 

instance, to receive a short train of electrical pulses delivered to these regions (Annau, 1978; 

Morissette and Boye, 2008). Since its discovery more than 60 years ago, electrical self-stimulation 

has been extensively used in an attempt to characterize the neural substrates of appetitive 

behaviors. This animal model has the advantage of bypassing external sensory processes to directly 

excite the reward circuit of the brain, hence being less affected by variables inherent to these 

processes. Despite a large amount of research, our knowledge of the reward circuitry and its 

trajectory within the brain is still largely limited. The main issue in establishing a detailed map of 

the reward-relevant substrates has been the proper differentiation between the reward-relevant 

neural elements from other elements that do not play a role in the rewarding effect but are still 

activated by the electrical stimulation (Murray and Shizgal, 1996a). Studies that made use of 

psychophysical measures combined with behavioral collision techniques revealed unique 

anatomical and physiological properties of the reward-relevant neurons (Bielajew and Shizgal, 

1986; Murray and Shizgal, 1996a). From these studies, we know that the reward signal initiated 

by electrical stimulation of the medial forebrain bundle (MFB) travels at moderate velocities (1–8 

m/s) along axons that possess short refractory periods (0.4–1.2 ms) and that link anterior regions 

of the LH to the ventral tegmental area (VTA) (Bielajew and Shizgal, 1986; Murray and Shizgal, 

1996a, b). The hypothesis that the reward signal is carried by first-stage neurons traveling between 

regions anterior to the LH and the VTA led to the prediction that damage to the MFB should 

decrease the rewarding efficacy of LH and VTA electrical stimulation (Waraczynski, 1988; 
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Gallistel et al., 1996). Consistently, sustained attenuations of LH (Janas and Stellar, 1987; Murray 

and Shizgal, 1991; Waraczynski et al., 1998) and VTA (Simmons et al., 1998) self-stimulation 

threshold were observed following electrolytic lesions, or a knife cut, placed along the MFB. A 

common finding of these studies, however, is that in the great majority of cases, damage to the 

anterior MFB failed to attenuate the reward or induced a small transitory attenuation. These 

negative results were attributed to a highly diffuse neural network that contributes to reduce the 

probability of functionally disconnecting the pathway between the lesion and the stimulation sites 

(see (Simmons et al., 1998)). A hypothesis to account for the large number of ineffective lesions 

is that the reward signal is carried by more than one pathway. Such a hypothesis has been proposed 

by Murray and Shizgal (Murray and Shizgal, 1994) who used the behavioral version of the 

collision technique to reassess the physiological properties of the first-stage neurons that link the 

LH and the VTA. Using a high resolution frequency sampling, they observed collision intervals 

that were significantly longer than those reported in previous studies. Such long collision intervals 

imply that the first-stage neurons that they were stimulating had very slow conduction velocities 

(<1 m/s), a conclusion that was inconsistent with previous findings and with the duration of the 

refractory period. The discrepancy could be resolved assuming that the relevant neurons do not 

travel only within the MFB, the shortest course between the LH and the VTA, but also follow the 

course of the dorsal diencephalic conduction system (DDC), hence increasing the axonal length 

between the two stimulation sites. 

   The idea that diencephalic structures are involved in brain stimulation reward comes from early 

lesions studies showing that rats are still able to self-stimulate at the LH after surgical removal of 

telencephalic structures (Huston and Borbely, 1973, 1974), and following 6-OHDA injection into 

the substantia nigra (Ornstein and Huston, 1975). Not only do these studies suggest that the 
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reinforcing mechanisms of ICSS are independent of dopamine transmission, they also propose the 

existence of a diencephalic locus of integration of reward (Huston, 1982). The DDC has recently 

received a lot of attention because electrical stimulation along its trajectory is effectively 

rewarding, suggesting that it likely contains reward-relevant axons (Sutherland, 1982; Vachon and 

Miliaressis, 1992). This pathway links structures that serve as a key relay between forebrain and 

several midbrain and hindbrain sites, and that play an important role in the regulation of reward-

seeking behaviors (Wang and Aghajanian, 1977; Bianco and Wilson, 2009; Beretta et al., 2012; 

Proulx et al., 2014). It has been shown that in response to rewarding stimulation, sites along the 

DDC show increased expression of the neuronal marker Fos (Arvanitogiannis et al., 1996b; Zhang 

et al., 2005). Moreover, the DDC receives information through the stria medullaris (sm) from the 

anterior portion of the MFB, and has efferent projections terminating in the caudal mesencephalon 

(Beretta et al., 2012). Many of the fibers within this pathway synapse in important regions that 

support self-stimulation, such as the lateral habenula (LHb) (Morissette and Boye, 2008; Bianco 

and Wilson, 2009). The LHb, which is located centrally along the DDC, receives dopaminergic 

innervations that primarily arise from the medial VTA (Omelchenko et al., 2009; Shen et al., 2012; 

Root et al., 2015), a region that also innervates key structures involved in reward such as the ventral 

striatum (Ikemoto, 2007). The hypothesis that the DDC plays an important role in brain stimulation 

reward is further supported by a previous study by Morissette and Boye (Morissette and Boye, 

2008), who reported sustained attenuations of the rewarding effectiveness of the median raphe, 

DR, LH and VTA self-stimulation in more than 25% of tested rats following electrolytic lesions 

of the habenula. This reinforces the hypothesis that reward-relevant neurons that link 

mesencephalic and rostral diencephalic regions likely travel through the DDC. The present study 

was aimed at testing this hypothesis. We trained rats to self-administer electrical stimulation at the 
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level of the DR and the LH; then we made a small lesion at the DDC followed two weeks later by 

a second lesion at the MFB (and vice versa). Using the curve-shift paradigm, reward thresholds 

were measured daily for 2 weeks after each lesion at three different current intensities and for each 

stimulation site. Results show that the DDC and MFB lesions tend to shift the reward threshold 

towards higher values, suggesting that these pathways play an important role in brain stimulation 

reward. 

 

MATERIAL AND METHODS 

Subjects 

   Adult male Long Evans rats, purchased from Charles River Canada, served as experimental 

subjects. The animals were kept in a temperature (22ºC) and humidity (50%) controlled animal 

colony lit from 6:30 am to 6:30 pm. They were individually housed in a standard cage with 

unrestricted access to food and water, and were allowed to habituate to the animal colony for at 

least 5 days prior to surgery. All procedures followed the Canadian Council on Animal Care 

guidelines and were approved by the Institutional Animal Care Committee. 

 

Surgery 

   Rats (300–400 g) were anesthetized with a mixture of isoflurane (2.5–3.5% O2, 0.6 L/min) and 

oxygen, and fixed in a stereotaxic apparatus. An analgesic, Ketoprofen (5 mg/kg), was 

administered by subcutaneous injection at the day of the surgery and 24 h later. After an incision 

was made on the scalp, an uninsulated stainless steel wire coupled to a male Amphenol connector 

was wrapped around screws in the skull that served as the anodal current path. Stainless steel 

electrodes were implanted in the DR (anterior: −7.8, lateral: +0, ventral: −7.0), the LH (anterior: 
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−2.5, lateral: +1.7, ventral: −8.6), the MFB (anterior: −3.8, lateral: +1.7 ventral: −8.6) and the DDC 

(anterior: −3.3, lateral: +0.65, ventral: −4.5). All coordinates are expressed in mm in reference to 

bregma and were taken from the Paxinos and Watson atlas of the rat brain (Paxinos G. and Watson 

C., 1997). The stimulation and the lesion electrodes were all unilateral and ipsilateral to each other 

and were made from 0.25 mm diameter rod coated with Epoxylite except for the dome-shaped tip. 

Dental acrylic cement was used to secure the electrodes assembly to the skull. At the end of the 

surgery, the rats were housed individually in cages with food and water available ad libitum, and 

body weight was monitored daily for 6 days after surgery. 

 

Apparatus 

   All self-stimulation sessions took place in chambers made from Plywood (back and side walls) 

and Plexiglas (front wall). Operant conditioning chambers (28 cm wide × 29.4 cm deep × 68.6 cm 

high) were equipped with a non-retractable lever (ENV-116 M, Med Associated Ins, St Albans 

VT, USA) located on the left wall, 3.4 cm above the metal rod floor. Chambers were encased in 

sound-attenuating wooden boxes (48.6 cm wide × 50.7 cm deep × 95.4 cm high) insulated with 

Styrofoam, with a Plexiglas window that allows constant viewing of the rat. The stimulation 

electrode was connected to a constant current stimulator (PHM-152/2, Med Associates Inc, St 

Albans, VT, USA), and the current intensity was monitored on an oscilloscope. Depression of the 

lever delivered a single 400-ms train of rectangular cathodal pulses of 0.1 ms in duration. 

 

Training 

   ICSS training was performed 1 week after the surgery. Rats were trained to self-administer a 

train of pulses using a FR1 schedule. Once the response was learned, rats were allowed to self-
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stimulate continuously for 1 h at stimulation parameters that support consistent responding. After 

at least 2 days of training, rats were allowed to self-administer the same stimulation parameters, 

but during discrete 45 s trials separated by 30 s intervals; each trial began with the delivery of 5 

trains of non-contingent stimulation delivered at 1 Hz. The plot of the rate of responding as a 

function of pulse frequency comprised of a single response-frequency (R/F) curve. The reward 

threshold, defined as the pulse frequency required for half-maximal responding, was interpolated 

from a regression line fit to the rising portion of each R/F curve. At the end of each trial, the pulse 

number, which ranged from 0 to 2.6 Hz in log10 units, was reduced by approximately 0.1 log10 

units. Three current intensities, designated as the “low”, “medium” and “high” current, were 

chosen during the trials so as to yield reward thresholds of approximately 25, 50 and 100 Hz 

respectively. 

 

Behavioral tests 

   The behavioral tests consisted in administering an electrical stimulation in the DR and the LH 

of each rat. A stimulation site was considered viable if it could be used to derive R/F curves at 

three different currents. Three R/F curves were generated from each current and were collected for 

the DR stimulation site in the morning session, and the LH stimulation site in the afternoon session. 

Each session was separated by at least 2 h in order to allow enough time for the rats to return to its 

home cage and get some rest. The first trial consisted of a warm-up phase that was discarded from 

data analysis. Following the warm-up phase, 3 R/F curves were obtained at each current. Once the 

three current intensities were determined for each rat, they were tested at each intensity each day 

for 4 consecutive days. The rats were then lesioned by passing an anodal current (100 µA, 20–30 

s) through the lesioning electrode. The lesion was first made in the DDC at the level of the LHb in 
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half of the rats (group 1), while the other half received the first lesion at the level of the MFB 

(group 2). After two weeks of daily training, rats that received the first lesion in the DDC received 

another lesion in the MFB and vice versa. 

 

Histology and tissue processing 

   At the end of the behavioral tests, rats were anesthetized with an intraperitoneal injection of 

urethane (1.5 g/kg of bodyweight). The stimulation sites were marked by passing a direct anodal 

current of 100 µA for approximately 30 s through the DR and LH electrodes. Rats were then 

transcardially perfused with 60 ml of 0.9% saline followed by 60 ml of a formaldehyde solution 

containing 3% potassium hexacyanoferrate II, 3% potassium hexacyanoferrate III and 0.5% 

trichloroacetic acid in order to produce a visible blue staining at the level of the lesions. The brains 

were then taken out, fixed in 10% formalin, and kept in 30% sucrose solution for at least 1 week. 

The following day, the brains were removed from the sucrose solution, sliced into 40 µm coronal 

sections, and mounted onto gelatine-coated slides. Thionin was then used to stain the brain slices 

for Nissl substance, and the sections were analyzed under light microscopic conditions to verify 

the placement of the electrodes (Figure 1). 

 

Statistical analysis 

   The mean of the threshold values and maximum response rates are expressed in log10 units and 

percentages (%) of baseline respectively, and were obtained before and after each lesion. Statistical 

comparisons with baseline values were made by constructing 95% confidence intervals around the 

mean of the measures obtained during the 4 days preceding the first lesion. Confidence intervals 

were obtained by multiplying the standard deviation of the four baseline means by the t-value 
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associated with the p = 0.05 level of significance for 3 degrees of freedom (t = 3.182) 

(Arvanitogiannis et al., 1996a). The mean of the reward threshold and maximum response rate 

obtained following the first lesion was considered significantly different than baseline values if 

they lied outside the 95% confidence intervals. In order to determine whether the second lesion 

alters the results obtained after the first lesion, confidence intervals were constructed around the 

mean of the measures obtained during the 4 days preceding the second lesion, and statistical 

comparisons were carried out as described previously. 

 

RESULTS 

Changes in reward thresholds during DR stimulation  

   Of the 34 rats initially prepared for the study, 9 were successfully trained for self-stimulation on 

both DR and LH electrodes, and had lesions located within the trajectory of the DDC and the MFB.  

The remaining rats were excluded from data analysis either because they failed to learn the ICSS 

behavior, because their electrodes were not in the intended regions, or because they failed to 

complete the experiments (post-surgical death or removal of the electrode assembly). Among the 

9 rats that were successfully trained for ICSS, rat 2, 14, 29 and 30 received the first lesion at the 

DDC (group 1), and rat 5, 9, 25, 26 and 32 received the first lesion at the MFB (group 2). An 

important observation is that the reward thresholds measured at each current intensity at the DR 

stimulation site during the four days that preceded the first lesion were highly stable for each rat 

(Figure 2). A lesion at the DDC in group 1 resulted in increases in reward thresholds at all current 

intensities; an effect that remained significant in most days following the lesion. Reward threshold 

shifts varied from 0.02–0.21 log10 units at the high current, 0.06–0.12 log10 units at the medium 

current, and 0.05–0.23 at the low current. In rats 14, 29 and 30, the increase in reward threshold 
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was observed 24 h after the lesion and did not change during the next 13 days, except for rat 30 at 

the highest current where a slight decrease was observed. In rat 2, reward thresholds increased 

slightly over time and tended to return towards baseline at the end of the second week, more 

particularly when the high current was used. The second lesion performed at the level of the MFB 

in the same group of rats had little impact on the rewarding efficacy of the stimulation. For rat 29, 

there were no significant differences between threshold values obtained before and after the lesion 

at all current intensities. Although a slight increase in reward threshold was observed in rats 2, 14 

and 30, the changes occurred only at selected current intensities and failed to persist during the 

two weeks of testing. 

   In group 2, the MFB lesion led to an increase in reward threshold that ranged from 0.02–0.17 

log10 units at the high current, 0.01–0.15 log10 units at the medium current and 0.03–0.14 log10 

units at the low current (Figure 2). The changes in reward thresholds were more pronounced in 

rats 25 and 26, and remained significantly higher than baseline values at all current intensities. 

However, the lesion failed to produce significant increases in reward thresholds in rat 5 at the 

medium current intensity, and in rat 9 at the high current. The second lesion, aimed at the DDC, 

was able to further increase the threshold shift obtained after the first lesion, except for rats 5 and 

25 at the high and medium currents respectively. For rat 9, the threshold shifts occurred 

immediately after the DDC lesion when the medium and high currents were used, and gradually 

after the lesion when the low current was used. Unlike rats 26 and 30, the changes in reward 

thresholds observed in rat 9 were long-lasting and remained significant until the final day of 

testing. 

 

Changes in maximal response rates during DR stimulation 
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   The maximum response rate was measured during stimulation of the DR at 1, 11, 15 and 25 days 

following the first lesion. In group1, the first lesion, which was aimed at the DDC, failed to produce 

immediate changes in the maximum response rate except for rats 29 and 30 with the low current 

intensity, where a decrease of up to 9.6 ± 3.19% was observed (Figure 3). At day 11, the maximum 

response rate remained significantly low in rats 29 and 30 at the low current, but increased in rat 

14 when the medium current was used. The second lesion, which was done at the MFB, failed to 

enhance the shift in the maximum response rates beyond what was observed after the first lesion, 

except at day 25 for rat 14 at the low and medium currents, and rat 29 at the medium current. 

   In group 2, the first lesion was able to produce significant changes in the maximum response rate 

in rat 9 but did not have any immediate effect in rats 5, 25, 26 and 32. In rat 9, the medium and 

low currents were associated with an increase in the maximum response rate after the first lesion, 

whereas the high current was characterized by a decrease in the maximum response rate. After the 

second lesion, the maximal response rate decreased in rat 5 at the medium current, in rat 25 at the 

high and low currents, and in rat 32 at the low current, but remained unchanged for the other rats 

and current intensities at day 15. On the last day of testing, the maximal response rates were 

unaltered compared to values obtained after the first lesion, except for rats 25 and 32 at the low 

and medium current respectively. 

 

Changes in reward thresholds during LH stimulation 

   Slightly different results were obtained when the reward was induced by LH electrical 

stimulation. At this stimulation site, the DDC lesion resulted in significant increases in reward 

threshold that ranged from 0.04–0.23 log10 units at the high current, 0.05–0.13 log10 units at the 

medium current, and 0.06–0.18 log10 units at the low current in rats from group 1 (Figure 4). For 
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rats 14, 29 and 30, the increase in reward threshold occurred 24 h after the lesion and changed little 

over time; these results are very similar to those seen with DR electrical stimulation. For rat 2, we 

observed a progressive increase in reward threshold that depended on the current intensity. From 

day 1 to day 4 post-lesion, the reward threshold increased progressively at the low current and 

remained elevated over the subsequent testing days, whereas at the medium and high current, the 

increase in reward threshold was immediate and did not change over time. Contrary to what was 

seen at the DR stimulation site, the second lesion performed at the level of the MFB had a 

significant impact; it produced additional increases in reward threshold in most rats, ranging from 

0.05 to 0.13 log10 units. It is noteworthy to mention that the changes in reward threshold occurred 

soon after the lesion and remained elevated and stable over the entire test period for all rats and at 

each current intensity (except for rat 2 at the low current). 

   In group 2, increases in reward threshold after a MFB lesion ranged from 0.08 to 0.24, 0.06 to 

0.25 and 0.02 to 0.16 log10 units at the high, medium and low currents respectively, and was 

statistically significant compared to baseline values in most rats (Figure 4). In the case of rats 25, 

26, 30 and 32, the maximum increase was observed after 24 h and remained stable over the 

subsequent days. Rat 9 showed the largest threshold shift but it was progressive over day 2 and 

day 3 post-lesion. Significant increases in reward threshold were also observed in rat 5, more 

particularly when the medium and high currents were used. The second lesion performed at the 

level of the DDC enhanced the threshold shifts produced by the MFB lesion in all rats, with the 

exception of rats 5, 26 and 32 at the high current. For the remaining rats and current intensities, 

the increase in reward thresholds was evident 24 h after the lesion and remained stable over the 

entire test period. Rat 9 displayed the highest increase in reward threshold following both lesions, 



94 
 

more particularly at the medium current where an increase of 0.40 log10 units (124%) relative to 

baseline values was observed. 

 

Changes in maximal response rates during LH stimulation 

   The maximum response rates expressed in % baseline were monitored during LH stimulation at 

several days following the lesions (Figure 5). In group 1, following the first lesion at the DDC, 

the maximum response rates decreased in rat 14 and 29 at the low current at day 1, and remained 

significantly lower than baseline values at day 11. One day following the second lesion, the 

maximum response rate decreased in rat 14 only at the medium current intensity, and remained 

significantly low at day 25. However, the MFB lesion failed to alter the maximum response rate 

in the remaining rats and current intensities of group 1.  

   In group 2, the first lesion at the MFB was the most effective in reducing the maximum response 

when the low current intensity was used. At this current, the changes in reward thresholds occurred 

immediately after the lesion in rats 25 and 32, and 11 days after in rats 5, 9 and 26. Decreases in 

reward thresholds were also observed at the medium current intensity, but only in rats 5, 9 and 26. 

Conversely, the reward thresholds measured following the first lesion failed to significantly change 

at the high current intensity, except at day 11 in rat 32 where a slight increase was observed. At 

day 15, one day following the DDC lesion, the maximal response rate decreased in rat 25 at the 

low and medium currents, and rat 32 at the low current, but was unaltered in the remaining rats 

and current intensities. Finally, at day 25, the maximum response rates were significantly lower 

than values obtained prior to the second lesion at the low and high currents in rat 26, and at the 

low and medium currents in rats 5, 9, 25 and 32. 
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Electrodes and lesions location  

   No major sign of discomfort or pain was observed when doing the lesions, and the rats regained 

their normal bodyweight after the lesions. Tissue sections of the brain were examined under light 

microscopy for electrode localization, and drawings of the stimulation site and lesion damage were 

made. Figure 6 and Figure 7 illustrate the histological reconstructions for group 1 and 2 

respectively, using the Paxinos and Watson atlas of the rat brain (Paxinos G. and Watson C., 1997). 

The stimulation site is indicated by the black circle, while the lesion damage is represented in grey. 

Coronal sections of an individual rat showing the DDC and MFB lesions are illustrated in Figure 

8. In all rats, the DR stimulation sites were located approximately 7.64–8.30 mm anterior to 

bregma and 0–0.17 mm lateral to bregma. The anterior coordinates of LH stimulation sites were 

2.30–2.80 mm with reference to bregma and 1.20–1.96 mm lateral to the bregma. 

   Damage to the LHb within the trajectory of the DDC was evident in all subjects. The size of the 

lesions ranged from 0.19 to 0.62 mm2 at their maximal cross-sectional area. Some of the fibers of 

the sm, which sends inputs to the habenular nuclei, were also damaged following DDC lesions. In 

group 1, the majority of the lesions were centered on the sm and minimally involved the LHb, 

whereas in group 2, the lesions appeared to substantially damage the LHb in most of the cases. 

The lesions also appeared to damage part of the medial habenula in some rats (2, 9 and 14) while 

leaving it intact in others. For the MFB, the lesions were relatively smaller and ranged from 0.11 

to 0.30 mm2. MFB lesions were located within the defined boundaries of the MFB: mediolaterally 

between the internal cerebral peduncle and the fornix, and dorsoventrally between the zona incerta 

and the base of the brain. In some cases, structures outside of these boundaries, including the 

fornix, the perifornical nucleus, and the parasubthalamic nucleus, were also damaged by the lesion. 
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DISCUSSION 

Reward threshold and maximum response rate 

   In the present study, we investigated the contribution of the DDC and MFB in the transmission 

of reward signals triggered by stimulation of the DR and LH. The use of two stimulation sites 

enabled us to study the functional relationship between the DDC and brain structures in different 

anatomical regions that could support self-stimulation. In order to determine whether a lesion at 

the DDC and MFB could significantly alter the reward induced by ICSS, we looked at the changes 

in reward thresholds obtained from R/F curves. The long-lasting increases in reward thresholds 

observed in most rats after a first lesion at the DDC strongly support the notion that this pathway 

is functionally linked to reward-relevant sites within the LH and the DR (Varga et al., 2003; Bianco 

and Wilson, 2009; Poller et al., 2013). In contrast, data obtained from the DR simulation site 

indicate that a first lesion at the MFB failed to produce significant changes in reward threshold for 

all rats and current intensities, suggesting that the MFB and the DR share only a modest 

complement of axons. However, the MFB lesion had a significantly higher influence on the 

rewarding effectiveness of the LH stimulation. This effect is consistent with the notion that neurons 

in the MFB have axons that extend from anterior regions of the LH (Gratton and Wise, 1983; 

Bielajew and Shizgal, 1986; Murray and Shizgal, 1996b). Although there is evidence suggesting 

that DR axons also descend along the midline within the brainstem and enter the MFB, they do 

not share a significant amount of axonal connections with the MFB because of their relatively 

different anatomical localization (Gagnon and Parent, 2014).  

   Data obtained at the DR stimulation site also indicate that the lesions failed to produce long-

lasting changes in the maximum response rate at each current intensity. Although the maximum 

response rates decreased in some rats following a lesion, no additive effects were observed 
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between the first and second lesion, except for few rats. On the other hand, data obtained at the 

LH stimulation site indicate that the lesions were generally more effective in producing higher 

shifts in the maximal response rates. Although no major changes were observed when the high 

current intensity was used, the lesions were able to reduce the maximum response rate in most rats 

at the low and medium currents. Taken together, the results obtained at the LH stimulation site 

might raise the possibility that the decrease in the maximum response rate is due to a general 

decrease in reward. However, if this was the case, then we would also expect to see a significant 

decrease at the high current intensity as well. Changes in maximum response rates are therefore 

more likely to be the result of other parameters independent of the reward threshold, such as 

deficits in the performance or general disturbance in behavior. This finding is compatible with 

earlier pharmacological and electrophysiological studies demonstrating a clear dissociation 

between the maximum response rate and the reward threshold during ICSS (Boye and Rompre, 

2000; Morissette and Boye, 2008; Bergeron and Rompre, 2013). 

 

Electrolytic lesions  

   Electrolytic lesions of the DDC and MFB resulted in significant attenuations of brain stimulation 

reward. Although most of the lesions produced immediate long-lasting increases in reward 

thresholds, the magnitude of the effect observed after the lesions was different among each rat. 

This difference in effect may be explained by the fact that the location and size of the lesions vary 

among subjects, and that each rat has a unique and specific trajectory of reward fibers in the brain 

(Waraczynski et al., 1998). In most rats of group 1, the DDC lesions were located along the sm, 

and yet were generally more effective in altering brain stimulation reward compared to lesions 

from group 2, where damage of the LHb was more evident. This observation is highly relevant 
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with respect to the neural substrate of reward, and could suggest that attenuations in reward 

thresholds are more likely due to the destruction of DDC fibers and not the LHb. In this study, we 

also found that the size of a given lesion did not always predict its behavioral effect. For instance, 

rat 9 had relatively smaller lesions compared to rat 5, but showed a larger and longer lasting 

increase in reward threshold for the LH stimulation (up to 0.40 log10 units). Such discrepancy is 

commonly observed in psychophysical studies and could reflect the presence of a highly 

collateralized and diffuse network of reward-relevant axons. It is also in line with other reports 

suggesting an inconsistency between the size or location of a lesion and the magnitude of the 

change in reward thresholds (Murray and Shizgal, 1991, 1996b; Morissette and Boye, 2008).The 

changes in reward thresholds measured after the lesions also indicate that additive effects were 

obtained between MFB and DDC lesions during stimulation of the LH, but not the DR. At the DR 

stimulation site, the first lesion (irrespective of its location) produced significant increases in 

reward thresholds in most rats and current intensities, whereas the second lesion failed to further 

increase the reward thresholds in the majority of the rats. In contrast, at the LH stimulation site, 

the second lesion enhanced the threshold shifts produced by the first lesion in all rats and most 

current intensities, suggesting that lesions at the MFB and DDC have a greater impact on the 

rewarding effect obtained at the LH stimulation site. Another interesting observation is that the 

order of the lesions had a different impact on the reward thresholds depending on which 

stimulation site was used. Results obtained from the DR stimulation site indicate that the 

attenuations in reward thresholds were of greater magnitude when the first lesion was done at the 

DDC, suggesting that the order of the lesions contributed to some of the differences observed 

between group 1 and group 2. In contrast, results obtained at the LH stimulation site did not reveal 

major differences in reward attenuation between rats from group1 and group 2. 



99 
 

Current intensities used 

   In this study, we evaluated the effect of using different current intensities on the behavioral 

changes observed during the DR and LH stimulation. Our data suggest that there are no clear 

relationship between the current intensity and the maximum response rate. Some of the current 

intensities were as low as 120 µA and still did not elicit a significant decrease in the maximum 

response rate compared to higher current intensities. This finding appears at odds with other studies 

indicating that the asymptotic level of reward declines at low current intensities (Gallistel et al., 

1991; Simmons and Gallistel, 1994). It is very difficult to formulate a clear explanation, but it may 

be that the animals had to respond more with the low currents in order to generate higher rewarding 

effects. In other words, the lower the current intensity, the lower the number of relevant axons 

recruited, and therefore, the higher number of times this reduced population of axons must be 

activated to produce a significant rewarding effect. On the other hand, a clear correlation was 

observed between the reward threshold and the current intensities used. With few exceptions, the 

highest increase in reward threshold was observed at the low and medium currents, suggesting that 

lower current intensities constitute a more sensitive parameter that could be used for better 

evaluating the effects of lesions on the reward threshold. This is consistent with other reports 

suggesting that the highest increase in reward threshold is observed when using low current 

intensities (Gallistel et al., 1991; Arvanitogiannis et al., 1996a; Gallistel et al., 1996; Morissette 

and Boye, 2008). If the fibers travel very close to the tip of the stimulation electrode, then their 

lesion should be more effective in reducing the rewarding effectiveness within the small 

stimulation field created by low current intensities. 

 

The DDC in the brain reward circuitry: suggested anatomy 
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    In the present study, we demonstrated that lesions at the DDC and MFB produce long-lasting 

attenuation in brain stimulation reward that was more evident at the LH stimulation site. The 

attenuations in reward following a lesion at the DDC were not only caused by damage of the LHb, 

but were also due to destruction of DDC fibers including the sm. These results are highly 

informative with respect to the trajectory of the circuitry for ICSS, and suggest that the key 

structure in reward is not the LHb, but rather the DDC. This finding is consistent with studies 

showing that destruction of the LHb with electrolytic lesions degrades ICSS, while cell-body 

specific neurotoxic lesions do not (Morissette and Boye, 2008; Gifuni et al., 2012). The summation 

of lesion effect observed after DDC and MFB lesions also confirms the hypothesis that there exist 

two complementary routes that the reward signal could take, the DDC and the MFB, and that 

following lesions of these channels, the rewarding effect is greatly reduced. More particularly, it 

suggests that the MFB and the DDC are parallel pathways that are separated dorso-ventrally by 

the thalamus and that provide a functional link between limbic structures such as the habenula, 

and mesencephalic structures such as the raphe nuclei. The network of reward-relevant axons 

forming the DDC and MFB act both in serial and parallel fashion to perform various functions 

important for goal-directed behavior. Descending hypothalamic fibers running along the MFB 

travel towards the VTA, where they project to the periaqueductal gray and to the vicinity of the 

decussation of the superior cerebellar peduncle (Huston, 1982). In addition, collateral sprouting of 

axonal projections traveling along the MFB project caudally along the sm and provide functional 

inputs to the LHb (Morissette and Boye, 2008). Therefore, sites like the diagonal band of Broca, 

septal complex, and preoptic areas not only project caudally via the MFB, they also project via the 

DDC, en route to midbrain sites (Hikosaka, 2010). 
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CONCLUSION 

   In summary, this study suggests that brain stimulation reward arises from several structures 

localized over multiple brain regions that collectively mediate various functions important for 

goal-directed behavior. We showed that lesions of the DDC and MFB were more effective in 

attenuating the reward induced by LH self-stimulation, which is consistent with the hypothesis that 

some first-stage neurons arise in some rostral MFB nuclei, and that they send their projections 

through the LH (Murray and Shizgal, 1996a). It is also in line with a recent study indicating the 

existence of glutamatergic projections from the LH to neurons in several structures of the DDC 

such as the LHb (Poller et al., 2013). Moreover, the additive effects observed between DDC and 

MFB lesions indicate that these two pathways can compensate for the loss of reward-relevant 

axons within one or the other, and that they both constitute key components of the neural substrate 

for ICSS. By providing a functional link between the DDC and reward-relevant axons in the brain, 

this study helps extend the boundaries of the known reward circuitry in the brain. The identification 

of the neurobiological bases of reward is a first step towards a better understanding of normal 

behaviors, such as eating and drinking, and abnormal behaviors such as substance abuse and 

gambling. To date, few studies have characterized the functional relationship of the DDC to other 

reward-relevant sites in the brain, and clearly more effort needs to be devoted to the identification 

of all the players involved in the integration and transmission of reward signals. 
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FIGURE LEGENDS 

Figure 1: Sagittal view of the rat’s brain indicating the stimulation and lesion sites. Each rat was 

implanted with stimulation electrodes at the LH and DR, and lesion electrodes at the MFB and 

LHb, which is situated within the DDC. 

Figure 2: Changes in reward thresholds during DR stimulation. Data were obtained before and 

after the lesions and are illustrated by symbols representing the mean ± standard deviation (stdve) 

of three threshold values in log10 units. The arrows indicate the day and location of the lesions, and 

the current intensities used are illustrated on top of each graph. Grey symbols represent post-lesion 

1 values that are significantly different from baseline values, whereas black symbols represent 

post-lesion 2 values that are significantly different from post-lesion 1 values. 

Figure 3: Changes in maximal response rates during DR stimulation. The maximal response rates 

were obtained at 1, 11, 15 and 25 days following the first lesion and are expressed in% of baseline 

values. The arrows indicate the day and location of the lesions, and the current intensities used are 

illustrated on top of each graph. Each symbol represents the mean ± stdve of three independent 

values. Grey symbols represent post-lesion 1 values that are significantly different from baseline 

values, whereas black symbols represent post-lesion 2 values that are significantly different from 

post-lesion 1 values. 

Figure 4: Changes in reward thresholds during LH stimulation. Data were obtained before and 

after the lesions and are illustrated by symbols representing the mean ± standard deviation (stdve) 

of three threshold values in log10 units. The arrows indicate the day and location of the lesions, and 

the current intensities used are illustrated on top of each graph. Grey symbols represent post-lesion 

1 values that are significantly different from baseline values, whereas black symbols represent 

post-lesion 2 values that are significantly different from post-lesion 1 values. 
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Figure 5: Changes in maximal response rates during LH stimulation. The maximal response rates 

were obtained at 1, 11, 15 and 25 days following the first lesion and are expressed in% of baseline 

values. The arrows indicate the day and location of the lesions, and the current intensities used are 

illustrated on top of each graph. Each symbol represents the mean ± stdve of three independent 

values. Grey symbols represent post-lesion 1 values that are significantly different from baseline 

values, whereas black symbols represent post-lesion 2 values that are significantly different from 

post-lesion 1 values. 

Figure 6: Histological reconstructions of the electrolytic lesions and the locations of the tips of 

the stimulation electrodes of group 1. The number above each graph indicates the distance in mm 

posterior to bregma (from left to right: MFB, DDC, LH, DR). The lesion damage is illustrated in 

grey, and the black dots represent the stimulation site. Drawings were taking and adapted from the 

Paxinos and Watson atlas of the rat brain (Paxinos G. and Watson C., 1997). 

Figure 7: Histological reconstructions of the electrolytic lesions and the locations of the tips of 

the stimulation electrodes of group 2. The number above each graph indicates the distance in mm 

posterior to bregma (from left to right: MFB, DDC, LH, DR). The lesion damage is illustrated in 

grey, and the black dots represent the stimulation site. Drawings were taking and adapted from the 

Paxinos and Watson atlas of the rat brain (Paxinos G. and Watson C., 1997). 

Figure 8: Thionin staining of coronal brain sections of an individual rat showing a lesion in the 

DDC (left) and the MFB (right). Abbreviations: medial habenula (MHb); region of hippocampus 

proper (CA); zona incerta (ZI). 
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ABSTRACT 

   The dorsal diencephalic conduction system (DDC) is an important pathway of the brain reward 

circuitry, linking together forebrain and midbrain structures. The present work was aimed at 

describing the effect of a DDC lesion on the distribution of Fos-like immunoreactivity (FLIR) 

following intracranial self-stimulation (ICSS) of the lateral hypothalamus (LH). Rats were 

implanted with monopolar electrodes and divided into three groups; the first two groups were 

trained to self-stimulate at the LH, whereas the third group received no stimulation and served as 

a control. Among the two groups that were trained for ICSS, one of them received a lesion at the 

DDC and was tested for ICSS on the subsequent 5 days. On the last day of testing, control rats 

were placed in operant chambers without receiving any stimulation, and the remaining rats were 

allowed to receive the stimulation for 1h. All rats were then processed for FLIR. As previously 

shown, a lesion at the DDC resulted in significant attenuations of the rewarding effectiveness of 

LH stimulation. Results also show a higher FLIR in several reward-related areas following LH 

stimulation, especially in the hemisphere ipsilateral to the stimulation electrode. Compared to non-

lesioned rats, lesioned animals had lower FLIR in certain brain regions, suggesting that those 

regions that were activated by the rewarding stimulation may be functionally interconnected with 

the DDC. 

 

Keywords: c-fos; Dorsal diencephalic conduction system; Lateral habenula; Lateral 

hypothalamus 
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INTRODUCTION 

   Intracranial self-stimulation (ICSS) holds great promise in understanding the neural elements 

involved in reward and goal-directed behaviors, and offers a valuable tool for their anatomical 

mapping and functional characterization. Electrical stimulation of certain regions in the brain 

triggers a reward signal that produces an operant response in rodents; animals will continuously 

self-administer the rewarding stimulation for long periods of time, neglecting other essential 

stimuli such as food and water. The vast majority of psychophysical studies aimed at deciphering 

the sites that support ICSS have focused on the medial forebrain bundle (MFB), the primary 

pathway connecting limbic forebrain to midbrain structures. The results of these studies show that 

the substrate that is directly activated by rewarding MFB stimulation includes fine, myelinated 

fibers with relatively fast conduction velocities, short refractory periods, and trajectories that run 

between the lateral hypothalamus (LH) and the ventral tegmental area (VTA) (Shizgal et al., 1980; 

Bielajew and Shizgal, 1986; Murray and Shizgal, 1996b, a). From single-unit recordings, we also 

know that axons within the LH and VTA have properties that are compatible with behaviorally 

derived estimates for the “first-stage” reward neurons of the MFB (Rompre and Shizgal, 1986; 

Shizgal et al., 1989). 

   Another pathway that serves as a relay between forebrain and midbrain structures is the dorsal 

diencephalic conduction system (DDC). The DDC is composed of three essential components: the 

habenula, which has a lateral and medial subdivision; the stria medullaris (SM), which receives 

inputs from the basal ganglia and other limbic structures involved in reward; and the fasciculus 

retroflexus (fr), which arises from the habenula and projects to the midbrain (Sutherland, 1982; 

Bianco and Wilson, 2009). The lateral habenula (LHb), which is located centrally along the DDC, 

has recently received widespread attention because of its ability to regulate the activity of 
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mesolimbic and nigrostriatal dopamine neurons (Ji and Shepard, 2007; Hong et al., 2011; Barrot 

et al., 2012). Several studies have shown that the DDC is anatomically connected with the LH, as 

evidenced by the existence of glutamatergic projections from the LH to the LHb (Poller et al., 

2013; Stamatakis et al., 2016). If, indeed, first-stage neurons stimulated at the level of the LH send 

their projections through the DDC, then it might be expected that a lesion within the DDC will 

impair the reinforcing effect induced by stimulation of reward-relevant neurons in the LH. 

Recently, this hypothesis had led to a series of behavioral studies employing lesions along this 

pathway. Previous work by our group and others showed that electrolytic lesions at the LHb and/or 

the SM produce large and long-lasting attenuations in the rewarding effectiveness of LH 

stimulation (Morissette and Boye, 2008; Fakhoury et al., 2016). Although the results of these 

studies suggest that the DDC is involved in the brain reward circuitry, they don’t provide any 

information on the populations of neurons that are activated by the rewarding stimulation and 

functionally disconnected by the lesion. The present study was aimed at filling this gap by 

combining electrolytic lesions at the DDC with immunolabeling for Fos protein, which serves as 

an index of neuronal activity (Hoffman et al., 1993). 

   Expression of Fos, an immediate early gene product, is rapidly induced by a variety of stimuli, 

and has been extensively used to visualize neurons that are activated by ICSS. Studies using this 

neuronal marker have shown that the LH stimulation increases Fos-like immunoreactivity (FLIR) 

in several forebrain and midbrain nuclei including the medial prefrontal cortex (mPFC), the 

nucleus accumbens (NAc), the bed nucleus of the stria terminalis (BNST), the caudate-putamen 

(CPu) and the ventral tegmental area (VTA) (Flores et al., 1997; Hunt and McGregor, 1998, 2002; 

Aldavert-Vera et al., 2013). In the present work, we sought to determine whether the brain regions 

that are activated by LH stimulation continue to be active following a lesion at the DDC. A 
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particular attention was given to regions within the forebrain, midbrain and brainstem that are 

involved in brain stimulation reward or that are anatomically connected with the DDC (Herkenham 

and Nauta, 1977; Araki et al., 1988). If the DDC participates in the transmission of the reward 

signal, then a lesion within this pathway should significantly reduce the level of Fos in brain 

regions that are subserved by its activity. 

 

MATERIAL AND METHODS 

Subjects 

   A total of 28 male rats of the Long-Evans strain (Charles river, QC, Canada), weighing 300-400 

g at the time of surgery, served as experimental subjects. Animals were housed individually in a 

temperature and humidity controlled room with a 12-h light–dark cycle and ad libitum access to 

food and water. All experiments were carried out in compliance with the ethical guidelines of the 

Canadian Council on Animal Care, and were approved by the institutional animal care committee. 

Effort was made to minimize the number of animals used and their discomfort. 

 

Surgical procedure 

   The animals were allowed at least 5 days of acclimatization to the housing conditions before the 

beginning of surgery. At the day of surgery, rats were put under general anesthesia with a mixture 

of isoflurane (5%) and oxygen (0.6 L/min), and mounted in a stereotaxic apparatus. An analgesic, 

Rimadyl (5 mg/kg), was then administered by subcutaneous injection, and the level of anesthesia 

was gradually reduced to 2.5-3.5%. After making a small incision on the scalp, a stainless steel 

wire attached to a male Amphenol connector was wrapped around four to five miniature screws 

that were threaded into the cranium. This served as the anodal current path for the stimulation. 
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Stainless steel electrodes coated with Epoxylite, except for the dome-shaped tip, were then 

implanted ipsilaterally at the LH (anterior: -2.5 mm, lateral: +1.7 mm, ventral: -8.6 mm) and DDC 

(anterior: -3.3 mm, lateral: +0.65 mm, ventral: -4.5 mm) using coordinates from the Paxinos and 

Watson atlas of the rat brain (Paxinos and Watson, 1997). The electrode assembly was then secured 

to the skull with acrylic dental cement. At the end of surgery, rats received another dose of 

analgesic and were allowed 7 days of recovery prior to behavioral training. 

 

Group designation 

   Of the 28 rats that were initially used in this study, 7 rats were excluded from data analysis either 

because of brain tissue damage (n=3), removal of the electrode assembly after surgery (n=2), or 

severe post-surgical pain (n=2). The remaining 21 rats that completed the experiment were equally 

divided into three groups designated as follow: “no lesion”, “lesion” and “sham (n=7/group). Rats 

from the “no lesion” group, which will be referred to as “non-lesioned rats”, consist of lesion-

naïve animals that were trained and tested for LH self-stimulation. This group was used to 

characterize the distribution of FLIR following the stimulation. Rats from the “lesion” group were 

trained for LH self-stimulation similar to non-lesioned rats, but received a lesion at the DDC and 

were tested for the stimulation on the subsequent days. This group was used to determine whether 

the same set of neurons that are active in non-lesioned rats continue to be active following a lesion. 

Finally, animals in the “sham” group consist of surgically-operated rats that did not received any 

stimulation nor lesion. This group served as a control for ICSS and was used to account for 

extrinsic factors such as daily manipulation of animals. 

 

Behavioral training 
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   One week after surgery, rats were placed individually in self-stimulation cages made from 

polymer walls and one front Plexiglas wall to allow constant viewing. Each chamber was encased 

in ventilated melamine boxes to minimize disturbance from external noise, and was equipped with 

a nose poke opening (3 cm wide and 3 cm deep) located 2 cm above the metal rod floor (Figure 

1A). Each nose poke triggered the delivery of a single 400-ms train of rectangular cathodal pulses 

of 0.1 ms in duration, followed by a period of 600 ms during which no pulses could be generated. 

Lesioned and non-lesioned rats were trained to self-administer a train of pulses using a FR1 

schedule, whereas sham rats were left in the self-stimulating boxes without receiving any 

stimulation. At the beginning of the training, the current intensity was set at 250 μA, and a fixed 

frequency of 41 pulses per train was used for LH stimulation. The current intensity was 

subsequently increased in increments of 100 µA (up to 900 µA) in rats that were not responding 

to the initial parameters of stimulation. Once the operant response was acquired, rats were allowed 

to self-stimulate freely for at least 2 days at constant stimulation parameters so as to support 

consistent rates of responding with minimal motoric side effects. Rats were then allowed to self-

administer the electrical stimulation during discrete 55 s trials separated by 15 s intervals during 

which no stimulation could be delivered (Figure 1A). Five trains of non-contingent priming 

stimulation (1 Hz), followed by a 5 s adaptation period, were used to signal the beginning or the 

onset of each discrete trial (Figure 1A). The pulse number within each train was systematically 

reduced by approximately 0.1 log10 unit after each trial, and at the end of the last trial, a plot of the 

response rate as a function of the pulse number was generated. A single session consisted of 12 

different trials with stimulation frequencies ranging from 12-41 pulses per train. The reward 

threshold (M50), defined as the pulse number supporting a response rate equal to 50% of the 
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maximal response, was measured from each response-frequency (R/F) curve to assess the 

rewarding effectiveness of the stimulation. 

 

Behavioral testing and electrolytic lesions 

   Lesioned and non-lesioned rats were tested for LH self-stimulation through nose-poke 

responding. The current intensity of the stimulation was adjusted so as to obtain a M50 of 

approximately 20 pulses per train in every rat. Each testing session began with a warm-up phase 

that was excluded from data analysis, followed by 3 consecutive sets of trials from which R/F 

curves were obtained. A single R/F curve consisted of a plot of the total number of nose pokes per 

trial at different stimulation frequencies. Rats from all the groups were manipulated at the same 

time in order to avoid differences due to extraneous factors such as the effect of order. After at 

least 4 days of stable operant response (M50 ~ 20 pulses per train), rats in the lesion group received 

a lesion at the DDC by means of an electrolytic anodal direct current (100 μA for 30 s). They were 

then tested 24 h later for 5 consecutive days for LH self-stimulation, as were rats from the “no 

lesion” group. On the final test day, lesioned and non-lesioned rats were placed in self-stimulation 

cages and were allowed to administer the rewarding LH stimulation for 1h at the same current 

intensity used in previous tests, but with a frequency of stimulation corresponding to the M50 plus 

0.1 log10 units. Rats in the sham group were put in the stimulation cages during the same time 

period as the other two groups, but were not allowed to self-stimulate. A timeline of the 

experimental protocol is illustrated in Figure 1B. 

 

Fos immunohistochemistry 
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   Fifteen minutes after the end of the last test session, rats were anesthetized with a single 

intraperitoneal injection of urethane (1.4–2.0 g/kg), and the stimulation sites were marked by 

means of a direct anodal current (0.1 mA during 60 s). Rats were then immediately perfused with 

0.9% saline followed by a formaldehyde solution that contains 3% potassium hexacyanoferrate II, 

3% potassium hexacyanoferrate III and 0.5% trichloroacetic acid. When the perfusion was 

complete, the brains were taken out, post-fixed in 10% formalin, and stored in 30% sucrose 

solution for two days. They were then quickly frozen in 2-methylpentane on dry ice and kept in -

80°C. During brain slicing, a small puncture was made with a knife along the rostral–caudal axis 

of the hemisphere contralateral to the stimulation to enable its differentiation from the other 

hemisphere. The brains were subsequently cut at -20°C into 30 μm coronal sections and processed 

for FLIR as previously described (Marcangione and Rompre, 2008). Briefly, sections were first 

rinsed with phosphate-buffered saline (PBS) and incubated in 0.3% hydrogen peroxide for 30 min. 

After three additional washes in PBS, sections were incubated with 10% goat serum in antibody 

diluent (0.1 M PBS containing 0.05% Tween 20 and 1% bovine serum albumin) for 30 min and 

then immunostained with an affinity-purified rabbit anti-c-Fos polyclonal antibody overnight at 

4°C. On the following day, sections were washed three times with PBS and incubated in a 

biotinylated goat anti-rabbit antibody for 90 min at room temperature. After three subsequent 

washes with PBS, sections were incubated in an avidin-biotin-horseradish-peroxidase complex 

(Vectastain Standard ABC kit, Vector Laboratories) for 90 min at room temperature. The tissues 

were then rinsed in PBS and Tris buffer, and developed with 0.05% 3,3’-diamino-benzidine with 

0.015% hydrogen peroxide (DAB substrate kit for peroxidase, Vector Laboratories). Finally, 

sections were washed three times with PBS, mounted onto gelatin-coated glass slides (Ultident 

Scientific), and allowed to air-dry overnight. They were then dehydrated, cleared in xylene and 
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coverslipped with Permount media (Fisher Scientfific). A negative control with no primary 

antibody was included in the study. 

 

Histology 

   Sections were mounted onto gel-coated slides and air-dried for at least 1 day prior to being rinsed 

in distilled water, dehydrated in ethanol, and stained for Nissl substance using Thionin. Slices were 

then cleared in xylene, coverslipped with Permount, and analyzed under light microscopy. The 

location of each electrode tip was determined through the positioning of structural landmarks, and 

drawings of the stimulation site and lesion size were made using the Paxinos and Watson atlas of 

the rat brain (Paxinos and Watson, 1997). 

 

Data analysis 

   Mean values of M50 and maximal response rates were calculated daily for each rat using the last 

three R/F curves obtained during the behavioral test. Post-lesion values for the M50 and maximal 

response rate in rats were expressed as a percentage of the baseline, which was calculated by 

averaging the corresponding values obtained during the 4 days preceding the lesion.  Differences 

in M50 and maximal response rate values were assessed by using a repeated measures analysis of 

variance (ANOVA) with a level of significance set at p < 0.05. Tukey’s honestly significant 

difference (HSD) was used as a post-hoc test for multiple comparison. 

   Regional differences in FLIR between treatment groups were assessed by comparing mean cell 

count using two to three consecutive sections from the following brain regions of each rat: the 

pedunculopontine tegmental nucleus (PPTg: -7.8 to -8.0), the dorsal raphe (DR: -7.6 to -7.8), the 

pontine nuclei (PN: -7.0 to -7.3), the interpeduncular nucleus (IPN: -6.3 to -6.6), the rostromedial 
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tegmental nucleus (RMTg: -6.3 to -6.6), the posterior VTA (VTAp: -5.6 to -5.8), the anterior VTA 

(VTAa: -5.2 to -5.3), the substantia nigra pars reticulata (SNr: -5.2 to -5.4), the substantia nigra 

pars compacta (SNc: -5.2 to -5.4), the basolateral amygdala (BLA: -2.8 to -3.1), the BNST (-0.2 

to -0.3), the CPu (+0.7 to +1.0), the NAc (+1.0 to +1.2), the mPFC(+2.5 to +2.7) and the 

orbitofrontal cortex (OFC: +2.7 to +3.2), with coordinates expressed in mm relative to Bregma. 

These brain regions were selected on the basis of their anatomical connectivity with the DDC 

and/or their implication in the rewarding effect of LH stimulation. 

   FLIR was viewed under a microscope (10X ocular lens and 10X objective lens) coupled to a 

digital camera (Moticam 2500), and was analyzed with a computerized image analysis system 

(imageJ 1.48v software, Wayne Rasband, NIH). For each structure, brain regions were delineated 

in accordance with the structure boundaries defined in the Paxinos and Watson atlas of the rat 

brain (Paxinos and Watson, 1997). For image analysis, an intensity-based threshold was 

determined so that the maximum number of Fos-positive cells was counted without inclusion of 

the background staining. The number of FLIR positive cells were then separately analyzed for 

each brain region of interest using a two-way ANOVA with treatment groups as the between 

subjects variable (no lesion, lesion, and sham) and hemisphere (ipsilateral and contralateral) as the 

within subject variable. Tukey’s HSD was used as a post-hoc test for multiple comparison and the 

level of significance was set at p < 0.05. To account for the lack of normal distribution and variance 

homogeneity, original data were transformed using the Box–Cox transformation. Normal 

distribution of the data and homogeneity of variance were tested by means of the Kolmogorov-

Smirnov (KS) and the Levene’s Test for Equality of Variances respectively, with a level of 

significance set at p < 0.05. All data fitted normal distribution and variance homogeneity after 

transformation (p > 0.05). We also examined effect sizes to compare the mean values between 
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treatment groups with respect to the magnitude of the difference. The results are reported as partial 

eta squared (ηp²) values. A ηp² value of 0.01, 0.06, and 0.14 are considered as small, medium, and 

large effect sizes respectively (Lakens, 2013). 

 

RESULTS 

Histological analysis and behavioral testing 

   Location tips of the LH stimulation electrodes for lesioned and non-lesioned rats are shown in 

Figure 2A, on tracings of coronal plates taken from the Paxinos and Watson atlas of the rat brain 

(Paxinos and Watson, 1997). Stimulation sites were located approximately 2.12–2.80 mm 

posterior to Bregma, near or within the defined boundaries of the LH. Figure 2B shows cross-

sections of the brain of lesioned rats (n=7) where the largest area of the lesion was observed. The 

lesions had two-dimensional sizes ranging from approximately 0.06 to 0.28 mm2, and appeared to 

substantially target regions within the SM and LHb, while leaving the medial habenula (MHb) 

intact or minimally damaged.  

   To determine the overall group effect of a DDC lesion on the rewarding effectiveness of LH 

stimulation, mean values of M50 and maximal response rates were obtained from R/F curves 

before the lesion and up to 5 days thereafter. As shown in a previous report from our group 

(Fakhoury et al., 2016), electrolytic lesions at the DDC resulted in substantial increases in M50 

during LH stimulation (Figure 3A). Notably, damage within the DDC produced a gradual increase 

in M50 (up to 22.4%), with significant effects observed starting the third test day following the 

lesion (p < 0.05) (Figure 3A). The lesion had no effect on the maximal response rate (p > 0.05) 

(Figure 3B). The M50 and maximal response rates were also obtained from non-lesioned rats. 

While no changes in M50 were observed during the 5 days of testing in this group of rats (Figure 
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2A), a significant increase in the maximal response rate was observed at day 4 post-lesion (Figure 

3B). 

 

Fos induction following ICSS 

   In this study, Fos-immunohistochemistry was used to identify the brain regions that were 

activated by the electrical stimulation of the LH. Figure 4 depicts representative micrographs of 

FLIR in the contralateral and ipsilateral hemispheres of the BNST and VTAa from one subject in 

each treatment group. 

   We first examined the effect of LH stimulation on FLIR in the ipsilateral and contralateral 

hemispheres of several brain regions. Following LH stimulation, numerous brain regions were 

found to exhibit FLIR, with the highest level in the BLA, SNc and PN (> 50 cells/mm2), and the 

lowest level in the CPu (< 5 cell counts/mm2) (Table 1). We also examined FLIR in non-lesioned 

rats compared to sham rats in several structures of the forebrain, midbrain and brainstem (Figures 

5-7).  FLIR was significantly higher in non-lesioned rats compared to sham rats in all of the 

structures analyzed, in both the ipsilateral and contralateral hemispheres (p < 0.05).  

   We next sought to determine the effect of a DDC lesion on FLIR following LH stimulation 

(Figures 5-7). Significant decreases in FLIR were observed in the BNST [F(2, 36)=22.67; ηp²=0.55; 

p=0.047], NAc core [F(2, 36)=30.61; ηp²=0.62; p=0.0089], NAc shell [F(2, 36)=26.25; ηp²=0.59; 

p=0.034],  BLA [F(2, 36)=37.18; ηp²=0.67; p=0.0067], IPN [F(2, 36)=10.14; ηp²=0.36; p=0.0024], PN 

[F(2, 36)=44.53; ηp²=0.71; p=0.0024], and DR [F(2, 26)=29.37; ηp²=0.62; p=0.012]  of lesioned rats 

compared to non-lesioned rats irrespective of the hemisphere. In the IPN and DR, the lesion was 

able to reduce FLIR to a level similar to that observed in sham-operated rats in both hemispheres, 
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whereas in the remaining structures, the level of Fos in lesioned rats was significantly higher to 

that observed in sham-operated rats (p < 0.05).  

   Interhemispheric analysis of brain regions revealed that FLIR was generally higher on the 

ipsilateral side of the stimulation, though statistical significance was only obtained in the BNST 

[F(1, 36)=6.32; ηp²=0.14; p=0.016], NAc core [F(1, 36)=5.15; ηp²=0.12; p=0.029], NAc shell [F(1, 

36)=7.73; ηp²=0.17; p=0.0086], BLA [F(1, 36)=5.92; ηp²=0.14; p=0.020] and SNc [F(1, 36)=9.42; 

ηp²=0.20; p=0.0042]  independent of any level of treatment (Figures 5-6). In the sham group, 

analysis of sections revealed very sparse FLIR (fewer than 5 Fos-positive cells) in most of the 

brain regions assessed (Figures 5-7). No FLIR was evident in control experiments after omission 

of the primary antibody (not shown). 

 

DISCUSSION 

   The overarching goal of this study was to use Fos immunohistochemistry to characterize the 

functional connectivity between the DDC and brain regions that are activated by rewarding 

electrical stimulation of the LH. To our knowledge, this is the first report combining Fos 

immunolabeling with electrolytic lesions at the DDC to determine the neural elements that are still 

active following LH self-stimulation. A particular attention was given to forebrain sites that are 

directly activated by LH or MFB self-stimulation (Flores et al., 1997; Nakahara et al., 1999), and 

to midbrain sites that are functionally interconnected with the DDC (Bianco and Wilson, 2009). 

The present behavioral data demonstrate that a lesion at the DDC produces long-lasting 

attenuations of the rewarding effectiveness of LH self-simulation with no effect on the maximal 

response rate. In addition, our immunohistochemical results show that the lesion reduced the level 
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of Fos in multiple brain structures related to reward, suggesting that these regions that are activated 

by the rewarding stimulation may be functionally interconnected with the DDC. 

 

Effect of a DDC lesion on LH stimulation 

   We first investigated the functional link between the DDC and the LH by examining the effect 

of a DDC lesion on the rewarding effectiveness of LH self-stimulation. No significant changes in 

the mean values of the maximum response rates were observed following the lesion, suggesting 

that the motor capacity of the animals to self-administer the stimulation remained intact. However, 

damage to the DDC resulted in long-lasting increases in M50 that developed progressively after 

the lesion. The pattern of effects observed in the present study are in line with earlier investigations 

showing that electrolytic lesions of the DDC result in changes in M50 with no or minimal changes 

in the maximal response rate (Morissette and Boye, 2008; Fakhoury et al., 2016). Our finding also 

supports the notion that the DDC is functionally linked to reward-relevant sites along the MFB, 

and is in accordance with studies showing the existence of functional connections between the 

LHb and the LH (Poller et al., 2013; Stamatakis et al., 2016). 

   The lesions made in our study mostly encompassed two regions of the DDC: the LHb and the 

SM. Although all rats from the lesion group shared common regions of damage, the magnitude of 

the increase in M50 observed was different among each subject, and there were no correlation 

between the lesion size and the resultant effect on M50 (results not shown). The inconsistency 

observed in lesion effect across rats with apparently similar damage patterns has already been 

reported in previous studies (Bielajew et al., 2002; Boye, 2005; Morissette and Boye, 2008) and 

could reflect the anatomically diffuse, collateralized and heterogeneous nature of the reward 

substrate (Arvanitogiannis et al., 1996a; Simmons et al., 1998). 
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FLIR: Methodological considerations 

   In the present study, we used Fos immunohistochemistry to visualize brain regions that were 

activated by rewarding LH stimulation. The use of this technique offers significant advantages 

compared to other imaging methods used in previous studies to detect neural activity. The more 

traditional ones include measures of 2-deoxyglucose, cytochrome oxidase, or glycogen 

phosphorylase activities. These metabolic measures are related to glucose and oxygen 

consumption as an index of cellular activity. Although they have been successfully used to reveal 

brain regions metabolically activated by rewarding brain stimulation (Gallistel et al., 1985; 

Bielajew, 1991; Konkle et al., 1999), FLIR seems to better reflect antidromic activation of somata 

obtained following ICSS (Flores et al., 1997; Arvanitogiannis et al., 2000). In addition, Fos 

immunohistochemistry allows the detection of transsynaptically stimulated neurons downstream 

of reward-related systems, thus enabling the mapping of functional reward pathways (Sagar et al., 

1988). Despite its benefits, however, there are several constraints in interpreting the results of Fos 

immunohistochemistry. For instance, FLIR does not enable the distinction between reward-

relevant neurons and other stimulated cells (Sagar et al., 1988). As a result, the population of 

stained cells is very likely to include neurons subserving functions not involved in reward 

(Arvanitogiannis et al., 1996b; Flores et al., 1997). Finally, there is a possibility that the capacity 

for c-fos expression might not be universal among all neurons, which could lead to false 

interpretations since some regions activated by the rewarding stimulation will not exhibit FLIR 

(Bullitt, 1990; Flores et al., 1997; Kovacs, 1998). 

 

Effect of LH stimulation on FLIR 
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   Analysis of brain regions revealed increased FLIR following rewarding LH stimulation, with the 

highest expression in the hemisphere ipsilateral to the stimulation. Significant increases in Fos-

immunolabeled cells were observed in structures from the forebrain (mPFC, OFC, BNST, NAc 

core, NAc shell, BLA), midbrain (SNr, SNc, VTAa, VTAp, RMTg, IPN) and brainstem (PN, DR, 

PPTg). Thus, based on these findings, it is suitable to conclude that these regions that are activated 

by the stimulation are tightly related to the neural substrate subserving the rewarding effect of LH 

stimulation. These findings are in agreement with the view that some of the directly activated MFB 

fibers arise from forebrain nuclei (Rompre and Shizgal, 1986), run between the LH and VTA 

(Bielajew and Shizgal, 1982, 1986; Murray and Shizgal, 1996a), and extend further beyond the 

midbrain (Fletcher et al., 1995; Boye, 2005). In addition, the increased FLIR observed in the PPTg 

is in line with studies showing that cholinergic neurons within this region play a critical role in LH 

self-stimulation reward by activating midbrain dopamine cells (Yeomans et al., 1993; Chen et al., 

2006). However, as discussed above, not all structures that showed increased FLIR after LH 

stimulation are equally implicated in the rewarding effectiveness of ICSS. The results of the 

present study showed increased level of FLIR in the BLA and NAc in non-lesioned rats. 

Nonetheless, previous reports have shown that the rewarding efficacy of LH stimulation was not 

diminished by electrolytic lesions of the amygdala complex (Waraczynski et al., 1990) or 

excitotoxic lesions of the NAc (Johnson and Stellar, 1994), suggesting that FLIR in these regions 

might be due to activation of neurons that are not involved in the rewarding efficacy of ICSS. 

Similarly, the increased FLIR observed in the PN in response to LH stimulation is not likely 

attributable to brain stimulation reward, but rather to the motor activity inherent to ICSS (Gasbarri 

et al., 2003). 
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   Previous studies employing LH stimulation have shown that FLIR was significantly higher in 

the hemisphere ipsilateral to the stimulating electrode (Arvanitogiannis et al., 1996b; 

Arvanitogiannis et al., 1997; Flores et al., 1997). In our study, however, interhemispheric analysis 

of brain structures revealed increased FLIR in the ipsilateral part of only the BNST, NAc core and 

shell, BLA and SNc. In the remaining structures, no interhemispheric differences were observed, 

suggesting that LH stimulation activated an approximately equal proportion of fibers within each 

hemisphere. This finding initially appeared surprising given the predominance of ipsilateral 

projections in the MFB (Nieuwenhuys et al., 1982; Veening et al., 1982). However, bilateral FLIR 

could still arise inasmuch as some of the ascending and descending projections of the MFB 

decussate in the midline to reach the contralateral side (Malette and Miliaressis, 1995). The 

symmetrical pattern of FLIR observed in midbrain structures such as the SNr, VTAa, VTAp and 

RMTg is also in agreement with anatomical findings suggesting the existence of interhemispheric 

nigrostriatal projections originating from these regions (Fass and Butcher, 1981; Pritzel et al., 

1983). 

 

Effect of a DDC lesion on FLIR 

   Notwithstanding the problems of interpretation in FLIR, the findings reported here provide new 

and interesting insights regarding the anatomical and functional connectivity of the DDC. 

Following an electrolytic lesion at the DDC, a significant reduction in FLIR was observed in the 

BNST, NAc core and shell, BLA, IPN, PN and DR. The level of FLIR in the BNST, NAc core and 

shell, BLA and PN of lesioned rats remained significantly higher from that in the sham group, 

suggesting that some subsets of cells within these regions were still activated by the stimulation, 

even after damaging the DDC. In the IPN and DR, FLIR was reduced to a level comparable to that 
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in the sham group, indicating that a significant proportion of neurons within these regions are 

functionally connected with the DDC. These findings are in agreement with previous anatomical 

studies aimed at deciphering the relationship of the DDC with other brain areas involved in reward. 

For instance, studies employing immunohistochemical or axonal tracing in rats revealed the 

presence of anatomical contacts between the habenula and multiple brain structures including the 

amygdala (Akagi and Powell, 1968), BNST (McLean et al., 1983; Li et al., 1993), NAc (Powell 

and Leman, 1976), substantia nigra (Omelchenko et al., 2009), IPN (Kim, 2009) and raphe 

(Herkenham and Nauta, 1977). To our knowledge, no anatomical connections between the DDC 

and the PN have been documented so far, however, given the existence of functional projections 

from the habenula and the IPN (Kim, 2009; Antolin-Fontes et al., 2015), and excitatory feedback 

projections from the IPN to the PN (Campolattaro et al., 2011), the reduced FLIR observed in the 

latter structure may be due to transsynaptic rather than direct reduction of neuronal activity. Also 

noteworthy to mention are behavioral studies showing that lesions at the DDC significantly reduce 

the rewarding effectiveness of self-stimulation within multiple brain regions, including the LH, 

VTA and DR (Morissette and Boye, 2008; Fakhoury et al., 2016).  

   Our data revealed no differences in FLIR in the mPFC, OFC, and PPTg of lesioned and non-

lesioned rats, suggesting that these regions might share minimal axonal connections with the DDC. 

The lack of effect observed in these structures may be due to either their distal anatomical locations 

with respect to the lesion site, or their rostral anatomical locations with respect to the stimulation 

site. Results also showed that a lesion at the DDC had no effect on FLIR in midbrain regions such 

as the SNc, SNr, VTAa, VTAp and RMTg. These findings were surprising at first given the wide 

array of studies showing the existence of excitatory glutamatergic connections from the LHb to 

the RMTg (Brinschwitz et al., 2010; Stamatakis and Stuber, 2012), and inhibitory GABAergic 
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inputs from the RMTg to midbrain dopamine neurons (Matsui and Williams, 2011; Lecca et al., 

2012). However, in addition to exerting an indirect inhibitory effect on dopaminergic neurons of 

the VTA, the LHb also sends direct excitatory glutamatergic projections to this structure 

(Omelchenko et al., 2009; Goncalves et al., 2012). Therefore, the lack of differences in FLIR 

observed between the VTA of lesioned and non-lesioned rats could be the result of a compensatory 

effect between inhibitory and excitatory inputs originating from the LHb. Our data obtained in the 

VTA also seem to contradict a recent report showing that optical activation of LHb inputs to the 

midbrain is accompanied by sparse (<12%) FLIR in dopaminergic neurons of the VTA, and high 

(approximately 80%) FLIR in non-dopaminergic neurons of the RMTg (Lammel et al., 2012). A 

possible cause for the observed discrepancies, however, is that the lesions employed in our study 

were centered on the SM and LHb, and did not encroach the fr. As such, afferent connections 

originating from the LHb and projecting to the midbrain remained intact. Also noteworthy to 

mention is that the use of single Fos immunolabeling in our study did not enable us to determine 

what type of neurons (dopaminergic, glutamatergic or GABAergic) remained active following the 

lesion. 

 

CONCLUSION  

   In summary, the present data showed that LH self-stimulation results in increased FLIR in 

multiple brain regions, particularly in the hemisphere ipsilateral to the stimulation electrode. A 

lesion at the DDC was accompanied by significant attenuations of the rewarding effectiveness of 

the stimulation, and resulted in substantial decreases of FLIR in multiple brain regions. These 

findings bolster the notion that the DDC is involved in mediating the transmission of reward-
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related signals, and provide an interesting view on the functional projections that exist between 

this pathway and brain regions activated by ICSS. 

 

ACKNOWLEDGMENTS 

   This study was supported by a Discovery Grant from the Natural Sciences and Engineering 

Research Council (NSERC) of Canada to PPR (#GRPIN-2015-05018). The authors would also 

like to acknowledge the help of Dr. Giovanni Hernandez for data analysis and presentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



139 
 

FIGURE AND TABLE LEGENDS 

Table 1: Relative distribution of FLIR following LH stimulation. This table illustrates the average 

cell count per mm2 in the ipsilateral hemisphere of non-lesioned rats (n = 7), as well as their 

interhemispheric ratio (ipsilateral/contralateral). The cell density is illustrated by ‘‘-” (sparse: 0–5 

cells/mm2), ‘‘+” (low density: 5–20 cells/mm2), ‘‘++” (medium density: 20–50 cells/mm2) and 

‘‘+++” (high density: 50–100 cells/mm2). 

Figure 1: Schematic illustration of the experimental protocol. (A) Lesioned and non-lesioned rats 

were allowed to self-administer the stimulation during discrete 55 s trials preceded by non-

contingent delivery of five trains of priming stimulation and a 5-s adaptation period. (B) Lesioned 

and non-lesioned rats were trained and tested for LH stimulation, whereas rats in the sham group 

were placed in the stimulation cages for the same amount of time required for training and testing, 

but received no stimulation. 

Figure 2: (A) Location of the tips of the stimulation electrodes of lesioned and non-lesioned rats 

(n=7 rats/group). (B) Electrolytic lesions in rats from the lesion group (n=7 rats). Coordinates are 

expressed in mm relative to bregma. In all figures, illustrations of brain structures represent 

modified drawings taken from the Paxinos and Watson atlas of the rat brain (Paxinos and Watson, 

1997). Abbreviations: supraoptic decussation (sox); optical tract (opt); fornix (f). 

Figure 3: Effect of a DDC lesion on the mean values of the M50 (A) and maximum response rate 

(B). Mean values are expressed in percentage (%) of baseline values that preceded the lesion. Error 

bars correspond to the standard error of the mean (S.E.M). n=7 rats/group. For comparison with 

the baseline, * indicates p<0.05. 

Figure 4: Representative figures showing FLIR in selected areas of the BNST (A) and the VTAa 

(B) of an individual rat from each treatment group, in both ipsilateral and contralateral 
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hemispheres. Pictures were taken under a total magnification of 400x (left panels; scale bar 50 µm) 

and 100x (right panels; scale bar 200 µm). 

Figure 5: Ipsilateral and contralateral FLIR in selected regions of the forebrain in each treatment 

group (n=7 rats/group). Schematic diagrams of only the ipsilateral hemisphere are shown for the 

purpose of simplicity. Values represent the mean of the total cell count in the entire surface of each 

structure, and error bars correspond to the S.E.M. For comparison between treatment group, * 

indicates p<0.05, and ** indicates p<0.01. For interhemispheric comparison within treatment 

groups, ╪ indicates p<0.05 and ╪╪ indicates p<0.01. 

Figure 6: Ipsilateral and contralateral FLIR in selected regions of the midbrain in each treatment 

group (n=7 rats/group). Schematic diagrams of only the ipsilateral hemisphere are shown for the 

purpose of simplicity. Values represent the mean of the total cell count in the entire surface of each 

structure, and error bars correspond to the S.E.M. For comparison between treatment group, * 

indicates p<0.05, and ** indicates p<0.01. For interhemispheric comparison within treatment 

groups, ╪╪ indicates p<0.01. 

Figure 7: Ipsilateral and contralateral FLIR in the selected regions of the brainstem in each 

treatment group (n=7 rats/group). Schematic diagrams of only the ipsilateral hemisphere are shown 

for the purpose of simplicity. Values represent the mean of the total cell count in the entire surface 

of each structure, and error bars correspond to the S.E.M. For comparison between treatment 

group, * indicates p<0.05, and ** indicates p<0.01. No differences were observed between the 

ipsilateral and contralateral hemispheres. 
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Brain region Ipsilateral  
cell density 

Ratio  
(ipsilateral/contralateral) 

OFC 
mPFC 
CPu 
Nac core 
Nac shell 
BNST 
BLA 
SNr 
SNc 
VTAa 
VTAp 
RMTg 
IPN 
PN 
DR 
PPTg 

++ 
+ 
- 
+ 

++ 
++ 

+++ 
+ 

+++ 
++ 
++ 
++ 
+ 

+++ 
++ 
+ 

3.0 
1.55 

- 
2.49 
2.45 
2.71 
2.96 
1.47 
2.84 
1.68 
1.38 
1.44 
1.45 
1.73 
1.31 
1.70 
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ABSTRACT 

   The rostromedial tegmental nucleus also referred to as the tail of the ventral tegmental area 

(tVTA) contains a cluster of gamma-aminobutyric acid (GABA)ergic neurons that receive dense 

glutamatergic afferents from the lateral habenula (LHb), and project to dopamine (DA) neurons of 

the VTA and substantia nigra pars compacta (SNc). In light of previous evidence implicating 

glutamate transmission in the regulation of midbrain DA neuronal activity, we first assessed the 

impact of intra-tVTA microinjection of NBQX (0.8 nmol/side) and PPPA (0.825 nmol/side), 

respectively AMPA and NMDA receptor antagonists on reward induced by intracranial self-

stimulation (ICSS) and on locomotor activity. Since the tVTA contains a large concentration of 

mu opioid receptors, additional measures were obtained following microinjection of endomorphin-

1 (EM-1, 1 nmol/side). Then, using the small interfering RNAs (siRNAs) that target the GluN1 

subunit of the NMDA receptor, we tested the effect of tVTA downregulation of these receptors on 

reward and locomotor activity. Results show that NBQX, PPPA and EM-1 all enhance reward and 

locomotor activity, effects that were of different magnitude in rostral and intermediate parts of the 

tVTA. On the other hand, a reduction in GluN1 receptors caused a marked decrease in operant 

responding for ICSS, but failed to alter ICSS reward and the reward-enhancing effect of PPPA. 

Our results support a role for the tVTA as a main inhibitory component of DA-dependent 

behavioral measures, and suggest that tVTA NMDA receptors that modulate reward are most 

likely expressed on tVTA afferent terminals. 

 

Keywords: AMPA receptors; endomorphin-1; locomotor activity; NMDA receptors, reward; 

tVTA 
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INTRODUCTION 

   The rostromedial tegmental nucleus, also known as the tail of the VTA (tVTA), is a newly 

identified structure that receives strong excitatory glutamatergic inputs from the lateral habenula 

(LHb) (Jhou et al., 2009b; Brinschwitz et al., 2010; Goncalves et al., 2012) and that sends gamma-

aminobutyric acid (GABA)ergic inhibitory projections to dopamine (DA) neurons of the VTA and 

substantia nigra pars compacta (SNc) (Jhou et al., 2009b; Balcita-Pedicino et al., 2011). The tVTA 

has been proposed to convey critical motivational signals to midbrain DA neurons by translating 

the LHb signal into a DA negative-reward signal (Barrot et al., 2012). Evidence in support of this 

hypothesis comes from electrophysiological findings showing that tVTA neurons, similar to LHb 

neurons, are activated following the delivery of aversive stimuli or the omission of expected 

reward delivery, and inhibited following the delivery of rewards or reward predicting cues 

(Matsumoto and Hikosaka, 2007; Jhou et al., 2009a; Hong et al., 2011). These patterns of activity 

are inverse to those found in putative DA neurons of the VTA and SNc (Ungless et al., 2004; Pan 

et al., 2005; Matsumoto and Hikosaka, 2007), suggesting that the tVTA may act as a hub between 

brain regions that process reward signals of opposite motivational states. In light of the dense 

glutamatergic inputs from the LHb to the tVTA (Brinschwitz et al., 2010), the characterization of 

the modulatory role of glutamate transmission in the tVTA is of great interest for better 

understanding the neural mechanisms underlying adaptive and maladaptive behaviors. 

   Glutamate signalling plays a key role in shaping the activity of midbrain DA neurons. Through 

its direct action on DA cells, glutamate mediates the switch from pacemaker tonic to phasic burst 

firing of DA neuronal activity (Grace and Bunney, 1984; Overton and Clark, 1997; Lodge and 

Grace, 2006), a mode that is associated with enhanced DA release (Gonon, 1988) and incentive 

motivation (Horvitz, 2002). Consistently, pharmacological activation of NMDA and AMPA 
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glutamate receptors in the VTA increases mesolimbic DA release (Suaud-Chagny et al., 1992; 

Karreman et al., 1996) and exploratory motor behavior (Kretschmer, 1999) in rodents. However, 

other studies have reported increased DA release and burst firing of DA neurons (French et al., 

1993; Mathe et al., 1998), as well as enhanced locomotor activity (Narayanan et al., 1996; Cornish 

et al., 2001) following blockade of VTA NMDA or AMPA receptors, suggesting an opposite 

modulatory role of glutamate on DA neuronal activity. Prior reports from our group have also 

shown that blockade of VTA NMDA receptors enhances brain stimulation reward (Bergeron and 

Rompre, 2013; Ducrot et al., 2013; Hernandez et al., 2016), whereas the opposite effect is observed 

following blockade of VTA AMPA receptors (Ducrot et al., 2013).  

   Besides directly innervating DA neurons, glutamatergic afferents to the VTA also establish 

synaptic connections with local GABAergic interneurons that exert a negative modulation on DA 

neuronal activity (Omelchenko et al., 2009; Dobi et al., 2010). Thus, blockade of ionotropic 

glutamate receptors in GABAergic neurons of the VTA could conceivably remove the inhibitory 

tone on DA neurons, resulting in increased locomotor activity and brain stimulation reward; two 

DA-dependent behavioral measures. Given the strong inhibitory influence of the tVTA on 

midbrain DA neuron activity (Bourdy et al., 2014; Brown et al., 2017), the present study was aimed 

at investigating whether changes in locomotor activity and brain stimulation reward could be 

observed following blockade of AMPA or NMDA receptors in the tVTA using NBQX or PPPA, 

respectively. Brain stimulation reward and locomotor activity were also assessed following 

activation of mu opioid receptors (MORs) with endomorphine-1 (EM-1) owing to previous 

evidence showing that tVTA neurons show a strong density of MORs (Jhou et al., 2009b), and that 

activation of these receptors in the tVTA inhibits the activity of midbrain DA neurons (Jalabert et 

al., 2011; Matsui and Williams, 2011). Finally, the present study was aimed at exploring the 
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rewarding and locomotor stimulant effect of tVTA downregulation of NMDA receptors using a 

small interferon RNA (siRNA) against GluN1, an obligatory NMDA receptor subunit, and 

determining whether such manipulation alters the reward-enhancing effect of PPPA. 

 

MATERIAL AND METHODS   

Subjects and surgery 

   Male Long-Evans rats (Charles river, QC, Canada) weighing between 300-400g at the time of 

surgery served as experimental subjects. Upon arrival, all animals were housed two per cage in a 

temperature (22 ºC) and humidity (40%) controlled room with a 12-h light–dark cycle (lights on 

at 6 am) and ad libitum access to food and water, and allowed 1 week of acclimatization. The 

surgical procedure is described in the Suppl. Methods. The electrodes of stimulation were 

bilaterally directed at the LH (AP: -2.5 mm, ML: ±1.7 mm, DV: -8.6 mm), and the guide cannulas 

(26-gauge) bilaterally directed at the tVTA (AP: -6.6 to -7.0 mm, ML: ±2.1 mm at a 10º angle, 

DV: -6.3 mm). Coordinates are expressed in reference to bregma in accordance to the Paxinos and 

Watson atlas of the rat brain (Paxinos and Watson, 1997). After surgery, all animals were housed 

individually and were allowed 1 week of recovery. All experiments were approved by the 

institutional animal care committee and were carried out in compliance with the ethical guidelines 

of the Canadian Council on Animal Care (CCAC).  

 

ICSS: Drug/peptide and siRNA injection  

   Rats were placed in operant chambers and were trained to receive pulses of electrical stimulation 

at one of the two LH stimulation sites through nose-poke responding (Suppl. Methods). The 

stimulation was delivered at a constant intensity and different pulse frequencies so as to obtain 
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Response/Frequency curves (Suppl. Figure 2 and 3) correlating the number of nose-pokes per 

trial to the stimulation frequency. The reward threshold (M50), defined as the pulse frequency 

sustaining a half-maximal rate of responding, was measured to assess the reinforcing properties of 

ICSS. After at least 4 days of stable reward threshold (~ 20 pulses per train), a 0.5 µl solution of 

0.9% saline was bilaterally microinjected into the tVTA of all rats to habituate them to the injection 

procedure (Suppl. Methods). Behavioral testing began 5 days later. For the drug and peptide 

injection study, rats were bilaterally injected with either PPPA (0.825 nmol), NBQX (0.8 nmol) or 

the vehicle (0.9% saline) in a counterbalanced design, followed by an injection of EM-1 (1 nmol), 

with 4-5 days interval between two injections (Suppl. Figure 1B). After each injection, rats were 

immediately put in operant chambers and allowed to self-stimulate for 75 min. The reward 

thresholds and maximum response rates were obtained immediately before and after each 

injection. For the siRNA injection study, rats were retested for ICSS to obtain at least 4 days of 

stable reward threshold, after which one group was injected with siRNA against GluN1 (10 

mg/ml), and another one with siRNA against a non-active RNA sequence (10 mg/ml) bilaterally 

into the tVTA for three consecutive days. Twenty-four hours after the last siRNA injection, all rats 

received a bilateral injection of PPPA (0.825 nmol) into the tVTA. Reward thresholds and 

maximum response rates were measured 24 h after each siRNA injection and immediately 

following PPPA injection. 

 

Locomotor activity: Drug/peptide and siRNA injection  

   The experimental paradigm consisted of a habituation phase of 3 days (Suppl. Methods), 

followed by a test phase. For the drug and peptide injection experiment, rats were tested for 

locomotor activity in test cages 24 h following the last habituation day, for 30 min, and were then 
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injected with either PPPA (0.825 nmol), NBQX (0.8 nmol) or vehicle (0.9% saline) in a 

counterbalanced design, followed by an injection of EM-1 (1 nmol) (Suppl. Figure 1B). Rats 

received only one injection per test day, and there was a minimum of 5 days interval between two 

consecutive injections. After each injection, the subjects were immediately placed into the test 

cages and locomotor activity was assessed for another 75 min. For the siRNA injection experiment, 

rats were tested for locomotor activity 3 days after the last habituation day for two consecutive 

days. Immediately after, one group of rats was injected with siRNA against GluN1 (0.825 nmol), 

and another group with siRNA against a non-active RNA sequence bilaterally into the tVTA for 

three consecutive days (Figure 5F). Locomotor activity was assessed for 75 min 24 h after each 

siRNA injection and compared with baseline values obtained during the test day that preceded the 

first siRNA injection. 

 

Western Blot 

   Immediately after the last behavioral test, rats that received a siRNA treatment were decapitated, 

and their brains removed and placed onto an ice-cooled plate. Brain tissues were carefully 

dissected from a 0.75-1 mm thick slice using a 15-gauge tissue punch, and kept in -80°C until 

further processing. To assess the total protein concentration, brain tissues were mechanically 

homogenized in a lysis buffer (1M Tris-HCL pH 6.8, 10% SDS and protease inhibitor cocktail) 

and protein levels were measured using a BCA assay kit (Pierce, USA). For separation by gel 

electrophoresis, equal amounts of protein (10μg) were dissolved into 25 μl lysis buffer (5X loading 

buffer and β –mercapto-ethanol) and loaded into the wells of an SDS-PAGE gel (8% 

polyacrylamide), along with molecular weight markers. Proteins were then transferred to a PVDF 

membrane (Bio-Rad Laboratories) and blocked for 1 h in TBST with 5% dry milk. For the 
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detection of GluN1, proteins were incubated with rabbit anti-GluN1 antibody (1 : 500, Novus 

Biological) overnight at 4 °C, followed by 4 times rinsing with TBST for 5 min, and a second 

incubation with HRP-conjugated goat anti-mouse IgG (1 : 20000, Millipore). For the detection of 

MORs, proteins were incubated with anti-MORs (1: 500, Abcam) overnight at 4 °C, followed by 

4 times rinsing with TBST for 5 min, and a second incubation with HRP-conjugated goat anti-

rabbit IgG (1 : 10000, Millipore)  for 1 h. Mouse anti-β-actin (1 : 20000, Millipore) and HRP-

conjugated goat anti-rabbit IgG (1 : 40000, Millipore) were used to detect the loading control 

protein (β-actin). Protein bands were revealed with ECL western blotting system (PerkinElmer) 

and visualized on an X-ray film. The band densities were measured with an image analysis system 

(ImageJ 1.48v software, Wayne Rasband, NIH) and normalized to β-actin.  

 

Histology 

   At the end of the behavioral tests, rats that receive the drug and peptide injections were deeply 

anesthetized with a single intraperitoneal injection of urethane (1.4–2.0 g/kg of bodyweight), and 

the stimulation and injection sites were marked by passing an anodal current (0.1 mA, 60 s) through 

the electrodes and injection cannulae. Rats were then transcardially perfused with 0.9% saline 

followed by a 10% formalin solution containing 3% potassium ferrocyanide, 3% potassium 

ferricyanide and 0.5% trichloroacetic acid. Brains were harvested and kept in the latter solution 

for 24 h, and were then rinsed and stored in a 10% formalin solution for several days. They were 

subsequently frozen and sliced in 40 μm sections with a cryostat, mounted onto gelatine-coated 

slides, and stained for Nissl substance with thionin. The location of the stimulation electrodes of 

rats tested for ICSS are illustrated in Suppl. Figure 4. Because cannula placements varied among 

rats tested for ICSS and locomotor activity, subjects were divided into two groups; those that 
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received the injections at rostral sites of the tVTA (between -5.8mm and -6.2 mm with respect to 

bregma), and those that received the injections at intermediate sites of the tVTA (between -6.3 mm 

to -6.8 mm with respect to bregma). 

 

Drug, peptide and siRNA 

   Pharmacological blockade of AMPA and NMDA receptors was achieved with 0.825 nmol of 

NBQX (2,3,-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide) and 0.825 

nmol of PPPA [(2R,4S)-4-(3-Phosphopropyl)-2-piperidinecarboxylic acid], respectively (Tocris 

Bioscience, Ellisville, MI,USA), whereas activation of MORs was achieved with 1 nmol  of the 

endogenous peptide, EM-1 (Tocris). Drug and peptide solutions were dissolved in sterile 0.9% 

saline to obtain the desired final concentrations, which were chosen based on previous studies 

(Zangen et al., 2002; Ducrot et al., 2013). Downregulation of GluN1 subunits was achieved using 

a mixture of pre-validated siRNA sequences against GluN1 (Cat. #4390816 ID s127804- 

s127806). A non-active siRNA with a nonsense/scrambled sequence served as control. The siRNA 

sequences were purchased from Thermo Fisher Scientific and were mixed with a cationic lipid 

transfection carrier N-[1-(2,3-Dioleoyloxy)-propylX-N,N,N-trimethyl-ammonium methylsulfate 

(DOTAP) (Roche Applied Sciences, Indianapolis, IN). The final solution contained 10 µg of the 

active or inactive siRNA and 1 µg of DOTAP per µl. This procedure has previously been shown 

to effectively reduce protein level in the midbrain (Hernandez et al., 2015). 

 

Data analysis 

   Changes in mean reward threshold and maximum response rate were analysed with a two-way 

analysis of variance (ANOVA) for repeated measures (Treatment x Time, with ‘Treatment’ as a 
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between-subjects variable and ‘Time’ as a within-subjects variable), followed by Duncan's 

multiple range tests for post hoc comparison. Changes in total locomotor activity were analysed 

with a one-way ANOVA followed by Tukey HSD post-hoc test. An unpaired t-test was used to 

compare the EM-1 and vehicle treated groups, to analyze the changes in locomotor activity at a 

specific time after the injection, and to assess differences in protein levels. The level of significance 

was set at p < 0.05. When assessing differences in protein level, the Grubbs’ test for a single outlier 

was used for identifying the outliers within groups. 

 

RESULTS 

PPPA and EM-1, but not NBQX, injection into the rostral tVTA enhance brain stimulation 

reward 

   The rewarding effects of NBQX, PPPA and EM-1 injections into the rostral tVTA were assessed 

by measuring changes in reward thresholds and maximum response rates (Figure 1; Suppl. Figure 

2A). The ANOVA performed on mean changes in reward threshold yielded a significant effect of 

treatment [F(2,24) = 5.23, p < 0.05] but no treatment by time interaction [F(8,96) = 1.26, p > 0.05] 

(Figure 1A). Post-hoc test showed that PPPA, but not NBQX, reduced the mean reward threshold 

compared to vehicle. On the other hand, the ANOVA performed on mean changes in maximum 

response rate yielded no significant effect of treatment [F(2,24) = 5.80, p > 0.05] and no treatment 

by time interaction [F(8,96) = 1.73, p > 0.05] (Figure 1C). T-tests performed at time 15 min post-

injection show a strong trend toward significance for both NBQX [t(16) = 2.10, p > 0.05]  and PPPA 

[t(16) = 2.09, p > 0.05] treatment. Because EM-1 is rapidly degraded by enzymes in brain tissue 

(Perlikowska et al., 2009), we analyzed its effects during the first 15 min of ICSS testing only. 
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Treatment with EM-1 reduced the reward threshold [t(16) = 4.72, p < 0.01] (Figure 1A) but had no 

effect on the maximum response rate [t(16) = 0.024, p > 0.05] (Figure 1C). 

 

NBQX, PPPA and EM-1 injection into the rostral tVTA enhance locomotor activity 

   The locomotor stimulant effect of NBQX, PPPA and EM-1 injections into the rostral tVTA were 

assessed by measuring changes in horizontal, vertical and stereotypic-like movements (Figure 2).  

The ANOVA performed on total horizontal [F(2,27) = 3.47, p < 0.05] (Figure 2A) and stereotypic-

like [F(2,27) = 4.09, p < 0.05] (Figure 2C) movements yielded a significant effect of treatment. 

Post-hoc test showed that NBQX, but not PPPA, increased the total horizontal movements post-

injection. On the other hand, the ANOVA performed on total vertical movements yielded no 

significant effect of treatment [F(2,27) = 2.70, p > 0.05] (Figure 2B). Finally, treatment with EM-1 

increased total horizontal movements [t(18) = 2.18, p < 0.05] (Figure 2A), but had no effect on total 

vertical [t(18) = 1.31, p > 0.05] (Figure 2B) or stereotypic-like [t(18) = 1.24, p > 0.05] movements 

(Figure 2C). 

 

NBQX, PPPA and EM-1 injection into the intermediate tVTA enhance brain stimulation 

reward 

   The rewarding effects of NBQX, PPPA and EM-1 injections into the intermediate tVTA were 

assessed by measuring changes in reward thresholds and maximum response rates (Figure 3; 

Suppl. Figure 2B). The ANOVA performed on mean changes in reward threshold yielded a 

significant effect of treatment [NBQX: F(2,18) = 5.04, p < 0.05; PPPA: F(2,18) = 5.04, p < 0.001] and 

a significant treatment by time interaction [F(8,72) = 6.06, p < 0.01] (Figure 3A). Post-hoc test 

showed that both PPPA and NBQX reduced the mean reward threshold compared to vehicle. On 
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the other hand, the ANOVA performed on mean changes in maximum response rate yielded no 

significant effect of treatment [F(2,17) = 0.090, p > 0.05] and no treatment by time interaction [F(8,68) 

= 1.53, p > 0.05] (Figure 3C). Finally, treatment with EM-1 reduced the reward threshold [t(12) = 

2.98, p < 0.05] (Figure 3A) but had no effect on the maximum response rate [t(12) = 0.1.99, p > 

0.05] (Figure 3C). 

 

NBQX, but not PPPA or EM-1, injection into the intermediate tVTA enhance locomotor 

activity 

   The locomotor stimulant effects of NBQX, PPPA and EM-1 injections into the intermediate 

tVTA were assessed by measuring changes in horizontal, vertical and stereotypic-like movements 

(Figure 4). The ANOVA performed on total horizontal [F(2,21) = 4.82, p < 0.05] (Figure 4A), 

vertical [F(2,21) = 4.37, p < 0.05] (Figure 4B), and stereotypic-like [F(2,21) = 4.66, p < 0.05] (Figure 

4C) movements yielded a significant effect of treatment. Post-hoc test showed that NBQX, but not 

PPPA, increased the total horizontal, vertical and stereotypic-like movements post-injection. On 

the other hand, treatment with EM-1 had no effect on total horizontal [t(14) = 2.08, p > 0.05] (Figure 

4A), vertical [t(14) = 1.21, p > 0.05]  (Figure 4B), and stereotypic-like [t(14) = 0.98, p > 0.05] (Figure 

4C) movement. 

 

siRNA-mediated downregulation of tVTA GluN1 subunits attenuates the maximum rate  of 

ICSS responding without reducing locomotor activity 

   To validate the effect of the siRNA treatment on tVTA NMDA receptor level, the density of the 

obligatory GluN1 subunit was assessed from tVTA tissue homogenates. Injection of siRNA 

against GluN1 yielded a significant decrease in the expression of the GluN1 subunit of NMDA 
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receptors in rats tested for ICSS [t(9) = 2.70, p < 0.05] and locomotor activity [t(10) = 2.34, p < 0.05] 

(Figure 5B). This effect was specific to NMDA receptors since the density of MORs remained 

unchanged in the tVTA (Suppl. Figure 5F). To evaluate the rewarding effect of the siRNA 

treatment, ICSS was assessed following each of the three consecutive siRNA injections. The 

ANOVA performed on mean changes in reward threshold following the siRNA treatment yielded 

no significant effect of treatment [F(1,60) = 1.21, p > 0.05] and no treatment by time interaction 

[F(2,65) = 0.59, p > 0.05] (Figure 5A). On the other hand, the ANOVA performed on mean changes 

in maximum response rate yielded a significant effect of treatment [F(1,60) = 20.12, p < 0.01] and 

no treatment by time interaction [F(2,65) = 0.11, p > 0.05] (Figure 5A). Post-hoc test showed that 

the siRNA treatment reduced the mean maximum response rate compared to vehicle. In another 

group of rats, locomotor activity was assessed following the same siRNA treatment. The ANOVA 

performed on total horizontal, vertical and stereotypic-like movements yielded no significant 

effect of treatment [F(1,30) = 3.81, p > 0.05; F(1,30) = 1.41, p > 0.05; F(1,30) = 3.22, p > 0.05, 

respectively] an no treatment by time interaction [F(2,35) = 0.24, p > 0.05; F(2,35) = 1.02, p > 0.05; 

F(2,35) = 0.55, p > 0.05, respectively] (Figure 5E). T-test performed 24h after the first siRNA 

injection show a significant effect on horizontal movements compared to control [t(10) = 6.24, p < 

0.01] (Figure 5E). 

 

siRNA-mediated downregulation of GluN1 subunits in the tVTA fails to alter the rewarding 

effects of PPPA 

   To test whether the reduction in the expression of tVTA NMDA receptors would impact the 

rewarding effect of PPPA, reward thresholds and maximum response rates were measured before 

and after bilateral intra-tVTA injection of PPPA in siRNA-treated rats (Figure 5C). Compared to 
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baseline, PPPA increased the maximum reduction in reward threshold in rats treated with the 

GluN1 [t(10) = 3.37, p < 0.01] or control [t(10) = 4.67, p < 0.01] siRNA, indicating enhanced brain 

stimulation reward (Figure 5C). However, the ANOVA performed on mean changes in reward 

threshold yielded no significant effect by treatment [F(1,100) = 2.79, p > 0.05] and no treatment by 

time interaction [F(4,100) = 1.34, p > 0.05] (Figure 5C). Likewise, the ANOVA performed on mean 

changes in maximum response rates yielded no significant effect by treatment [F(1,100) = 2.14, p > 

0.05] and no effect by time interaction [F(4,100) = 0.47, p > 0.05] (Figure 5C). 

 

DISCUSSION 

   In the present study, we examined the effect of intra-tVTA injection of the AMPA antagonist, 

NBQX, and the NMDA antagonist, PPPA, on the reward signal induced by ICSS. A large body of 

evidence suggests that the reinforcing effect of ICSS is largely dependent on mesolimbic DA 

transmission. Rewarding electrical stimulation leads to increased mesolimbic DA release (You et 

al., 2001; Yavich and Tanila, 2007; Hernandez et al., 2012) and midbrain DA cell firing (Moisan 

and Rompre, 1998), and pharmacological manipulations that activate (Gilliss et al., 2002) or block 

(Nakajima and McKenzie, 1986; Benaliouad et al., 2007) DA receptors enhance or attenuate the 

rewarding effect of ICSS, respectively. Our results show that NBQX injection into the 

intermediate, but not the rostral, tVTA produces a significant enhancement in the rewarding effect 

triggered by ICSS; effect that was also observed following PPPA injection into both the rostral 

and intermediate tVTA. Treatment with NBQX or PPPA had no effect on the maximum response 

rate, indicating that the capacity of rats to self-stimulate remained intact. Given the strong 

GABAergic inhibitory projections from the tVTA to DA neurons of the VTA/SNc complex (Jhou 

et al., 2009b), the most likely hypothesis to account for the rewarding effect of tVTA AMPA and 



171 
 

NMDA receptors blockade is the removal of the GABAergic inhibition on midbrain DA neuronal 

firing. In support of this hypothesis, neurotoxic lesions and electrical stimulation of the tVTA were 

shown to attenuate the LHb-induced inhibition of midbrain DA cells (Brown et al., 2017) and 

supress the activity of midbrain DA neurons (Lecca et al., 2011; Lecca et al., 2012; Bourdy et al., 

2014), respectively. Also consistent with our results are findings showing that pharmacological 

activation of the tVTA by local AMPA injections produce robust conditioned place aversion in 

rats, thus indicating that glutamate transmission in the tVTA signals aversive events (Jhou et al., 

2013).  

   The present study also sought to examine the effect of intra-tVTA injection of NBQX and PPPA 

on locomotor activity. Much evidence supports the inference that this behavioral measure is largely 

mediated by mesocorticolimbic DA transmission. Administration of DA or DA receptor agonists 

into the nucleus accumbens enhances locomotor activity (Pijnenburg et al., 1976; Ikemoto, 2002), 

whereas blockade of DA receptors (Ahlenius et al., 1987; Johnson et al., 1996) or 6-

hydroxydopamine lesion of DA neurons (Koob et al., 1978; Koob et al., 1981) of the 

mesocorticolimbic pathway supresses spontaneous and psychostimulant-induced locomotion. Our 

results show that injection of NBQX into the rostral and/or intermediate tVTA enhances 

horizontal, vertical and stereotypic-like behavior, while injection of PPPA into the rostral, but not 

the intermediate, tVTA enhances stereotypic-like behavior. We speculate that blockade of 

glutamatergic afferents into the tVTA enhance some measures of locomotion by increasing the 

activity of midbrain DA neurons through a disinhibition process. These findings are consistent 

with our results obtained from ICSS and with previous evidence showing that neurotoxic lesions 

of the tVTA enhance motor performance on a rotarod (Bourdy et al., 2014) or open field (Brown 

et al., 2017) test. They also agree with prior reports showing increased spontaneous or drug-
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induced locomotor activity following lesions of the LHb (Gifuni et al., 2012) or its efferent 

projections to the tVTA (Murphy et al., 1996), and following optogenetic (Jhou et al., 2013) or 

GABA-mediated (Huff and LaLumiere, 2015; Lavezzi et al., 2015) inhibition of the tVTA.  

   NBQX and PPPA produced different rewarding and locomotor effects when injected at different 

sites of the tVTA, pointing to anatomical and/or functional heterogeneity among tVTA neurons. 

These data parallel previous findings showing that drugs have different propensities to produce a 

rewarding effect when administered into rostral or caudal regions of the VTA (Ikemoto et al., 

1997, 1998). Another important finding of the present study is that brain stimulation reward and 

locomotor activity were differentially regulated by AMPA and NMDA receptor activity. While 

blockade of tVTA NMDA receptors produced the highest enhancement in brain stimulation 

reward, the highest enhancement in locomotor activity was achieved following blockade of tVTA 

AMPA receptors. This finding parallels a previous report showing that animals that are trained to 

respond for rewarding ICSS show decreased expression of the GluR1 subunit of AMPA receptor 

in the VTA, with no effect on the expression of NMDA receptors (Carlezon et al., 2001). Elevated 

GluR1 in the midbrain is, on the other hand, a primary trigger to synaptic changes underlying 

increased sensitization to drug-induced locomotor activity (Carlezon et al., 1997; Carlezon and 

Nestler, 2002). These findings, along with ours, suggest that the effect of ICSS and locomotor 

activity are subserved by different mechanisms; the former is more sensitive to changes in NMDA 

receptor activity, and the latter is more sensitive to changes in AMPA receptor activity.  

   We next sought to examine the effect of intra-tVTA injection of EM-1 on brain stimulation 

reward and locomotor activity. EM-1 was used in this study because of its strong selectivity for 

MORs (Zadina et al., 1997) and its short half-life in brain tissue (Perlikowska et al., 2009), thus 

limiting the likelihood of diffusion to adjacent sites of the tVTA. EM-1 injection into the rostral 
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and intermediate tVTA reduced ICSS reward thresholds without altering the maximum response 

rate; an effect that is interpreted as rewarding. In light of prior electrophysiological findings 

indicating that opiates activate VTA DA neurons by inhibiting GABAergic terminals in the VTA 

(Jalabert et al., 2011; Matsui and Williams, 2011; Lecca et al., 2012; Hjelmstad et al., 2013), we 

postulate that the rewarding effect of intra-tVTA injection of EM-1 results from increased 

midbrain DA neuronal activity via disinhibition. Our results also show that activation of MORs in 

the rostral tVTA increases horizontal locomotor activity, which is in agreement with prior reports 

showing that intra-tVTA infusion of morphine (Wasserman et al., 2013; Wasserman et al., 2016; 

Steidl et al., 2017) or the MOR agonist, DAMGO (Kotecki et al., 2015), increases open-field 

locomotion. However, injection of EM-1 into the intermediate tVTA failed to alter locomotor 

activity in the present study, which further points to anatomical and/or functional heterogeneity 

within the tVTA. Such heterogeneity has also been reported along the rostrocaudal axis of the 

VTA, where robust increases in locomotor activity were observed following MOR activation into 

the posterior, but not the anterior, VTA (Zangen et al., 2002). 

   The present study finally examines the behavioral effects of tVTA NMDA receptor 

downregulation using a siRNA treatment against GluN1. The silencing machinery required for 

gene silencing by RNA interference is primarily located in the nucleus (Carthew and Sontheimer, 

2009). Therefore, intra-tVTA infusion of siRNA against GluN1 will only downregulate the level 

of NMDA receptors on cells that have their cell bodies located in the tVTA, without altering the 

level of receptors located on afferent terminals. Our results show that the siRNA-mediated 

downregulation of tVTA NMDA receptors fails to alter ICSS reward thresholds, but causes a 

marked decrease in the maximal rate of responding. A downward shift in the maximal rate of ICSS 

responding is typically interpreted as a reduced performance capacity of rats to self-stimulate 
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(Miliaressis et al., 1986). However, it may also indicate a deficit in incentive salience (i.e., the 

strength of an animal's motivation or “wanting” to obtain the rewarding stimulation) (Edmonds et 

al., 1974). Because no reduction in locomotor activity was observed following the siRNA 

treatment, the reduced maximal rate of ICSS responding in siRNA-treated rats is more likely to 

result from deficits in incentive salience, thus implicating NMDA receptors that are located on 

tVTA cell bodies in motivation and approach behaviors. 

   The results obtained with the siRNA experiment also indicate a lack of differences in reward 

thresholds and maximum response rates following PPPA injection between rats treated with 

control or GluN1 siRNA. PPPA injection into the tVTA following the siRNA treatment enhanced 

brain stimulation reward in both groups, albeit transiently. Thus, despite the downregulation of 

NMDA receptors in tVTA cell bodies, the reward-enhancing effect of PPPA remained unaltered. 

A plausible explanation for this effect is that PPPA acts presynaptically on glutamate-releasing 

afferent terminals, and not on tVTA cell bodies, to enhance the reward signal induced by ICSS. 

Because PPPA shows a stronger affinity towards the GluN2A subunit of NMDA receptors, our 

data suggest that GluN2A-containing NMDA receptors are located on presynaptic glutamatergic 

terminals of the tVTA. These data parallel a previous finding in the VTA showing that GluN2A-

containing NMDA receptors located on local afferent terminals are a likely source of inhibition on 

the reward signal initiated by electrical brain stimulation (Hernandez et al., 2015). 

   In conclusion, our results show that glutamate and opioid transmission in the tVTA are major 

inhibitors of DA-dependent behavioral measures, and suggest that NMDA receptors that are 

located in tVTA cell bodies are implicated in incentive salience, while those that are located on 

afferent terminals are more likely involved in brain stimulation reward. These findings could shed 

new light on the mechanisms underlying reward and goal directed behaviors, and may have 
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important implications for psychiatric conditions associated with associated with dysregulated 

reward circuitry function including depression and substance use disorder. 
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SUPPLEMENTARY METHODS 

Surgery 

   One week after the acclimatization period, rats were anesthetized with isoflurane (5%, O2 0.6 

L/min) and mounted on a stereotaxic apparatus. An analgesic (Rimadyl; 5 mg/kg) was then 

administered by subcutaneous injection, and the level of anesthesia was gradually reduced to 2.5–

3.5%. After making a small incision on the scalp, a stainless steel wire attached to a male 

Amphenol connector was wrapped around four stainless steel screws drilled into the skull. This 

served as the anodal current path for the stimulation. Rats were then implanted with two monopolar 

stainless-steel stimulation electrodes bilaterally directed at the LH (AP: -2.5 mm, ML: ±1.7 mm, 

DV: -8.6 mm) and two guide cannulas (26-gauge) bilaterally directed at the tVTA (AP: -6.6 to -

7.0 mm, ML: ±2.1 mm at a 10º angle, DV: -6.3 mm). Coordinates are expressed in reference to 

bregma in accordance to the Paxinos and Watson atlas of the rat brain (Paxinos and Watson, 1997). 

The stimulation electrode was made from 0.25 mm diameter rod coated with Epoxylite except for 

the dome-shaped tip. Acrylic dental cement was used to anchor the final cannula/electrode 

assembly to the skull. At the end of the surgery, rats received an antibiotic (Duplocillin LA, i.m.) 

and another dose of analgesic, and were allowed 7 days of post-operative recovery during which 

their body weights were daily monitored. 

 

ICSS: behavioral training  

   One week following the surgery, rats were placed in operant chambers and were trained to 

receive pulses of electrical stimulation at one of the two LH stimulation sites through nose-poke 

responding. The stimulation electrode that sustained the highest rate of operant responding was 

used for subsequent tests. The operant chambers were made from polymer walls and one front 
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Plexiglas wall to allow constant viewing. Each chamber was encased in ventilated melamine boxes 

to minimize disturbance from external noise, and was equipped with a nose poke opening (3 cm 

wide and 3 cm deep) located 2 cm above the metal rod floor. Each nose poke triggered a constant-

current pulse generator that delivered a single 400-ms train of rectangular cathodal pulses of 0.1 

ms in duration, followed by a period of 600 ms during which the pulse generator could not be 

triggered. A current intensity of 250 µA and a fixed stimulation frequency of 41 pulses per train 

were initially used for the establishment of the ICSS behavior. If the rat did not respond to the 

initial parameters of stimulation, the current intensity was increased in increments of 100 µA and 

up to 1000 µA until a consistent operant response was obtained. Following this period of shaping, 

rats were trained to self-stimulate during 12 discrete 55 sec trials, each signaled by 5 trains of non-

contingent priming stimulation (1 Hz), and separated by a 15 sec inter-trial interval during which 

the stimulation was not available (Suppl. Figure S1A). At the end of each trial, the number of 

pulses per train was systematically reduced in approximately 0.05-0.1 log10 unit steps so as to 

obtain a Response/Frequency curve correlating the number of nose pokes per trial to the 

stimulation frequency. After operant responding had been measured at each of the 12 different 

trials (a “pass”), the procedure was repeated such that each rat was given four passes per day. The 

first pass served as a warm up and was excluded from data analysis.   

 

Intracranial injection procedure 

   Bilateral injections were made by inserting injection cannulae (Model C315I HRS Scientific, 

Montreal, Canada) directly into the guide cannulae. Each injection cannula extended 2 mm beyond 

the guide cannula tip, and was connected to a 5 ml Hamilton micro-syringe via polyethylene 

tubing. A volume of 0.5 µl containing the desired solution was simultaneously injected into each 
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hemisphere over a 60 sec period with a micro-infusion pump (Harvard Instruments, Holliston, 

MA). The injection cannulae were left in place for an additional 60 sec to allow for proper diffusion 

into the brain, after which rats were immediately tested for ICSS or locomotor activity. 

 

Locomotor activity: apparatus and habituation tests 

   Locomotor activity was assessed in test cages that consist of a wire-mesh floor surrounded by 

four Plexiglas walls (43 cm wide, 43 cm long and 33 cm high). Each cage was equipped with two 

arrays of 15 infrared photocells located 1.5 cm above the floor to detect horizontal movements, 

and a third array of 15 photocells located 14.5 cm above the floor to detect vertical movements. 

Horizontal (total distance traveled), vertical (total independent interruptions of an elevated array 

of beams), and stereotypic-like (total duration of restricted and repetitive movements) movements 

were monitored in 5-min intervals using an Opto-Varimex Auto Track System (Columbus 

Instruments, Columbus, OH, USA). The experimental paradigm consisted of a habituation phase 

of 3 days, followed by a test phase. On the first habituation day (H1), animals were individually 

placed in the test cages for 45 min without receiving any injection. At H2, rats received a bilateral 

injection of 0.9% saline into the tVTA (0.5 µl injected over 60 sec), and were tested for locomotor 

activity for a period of 75 min. At H3, rats were put in the test cages for 105 min without any 

injection. The test phase for the drug/peptide or siRNA injection experiment began 1-3 days later. 
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FIGURE LEGENDS 

Figure 1: Rewarding effect of NBQX, PPPA and EM-1 infusions into the rostral tVTA. Changes 

in reward thresholds (A) and maximum response rates (C) during individual ICSS trials (left 

panels) and the overall test session (middle and right panels). (B) Location of injections sites. (D) 

Thionin staining of a representative coronal brain section from an individual rat (Scale bar 200 

µm). Data are represented as mean ± sem (n=9). For statistical comparison with control, * indicates 

p < 0.05 and ** indicates p < 0.01. In all figures, illustrations of brain structures represent modified 

drawings taken from the Paxinos and Watson atlas of the rat brain (Paxinos and Watson, 1997), 

with coordinates expressed in mm from bregma. 

Figure 2: Locomotor stimulant effect of NBQX, PPPA and EM-1 infusions into the rostral tVTA. 

Changes in horizontal (A), vertical (B) and stereotypic-like (C) movements measured over 5-min 

intervals (left panels) or during the entire test session post-injection (middle and right panels). (D) 

Location of injections sites. (E) Thionin staining of a representative coronal brain section from an 

individual rat (Scale bar 200 µm). Data are represented as mean ± sem (n=10). For statistical 

comparison with control, * indicates p < 0.05 and ** indicates p < 0.01. For left panels, grey and 

black asterisks are for NBQX and PPPA treatment, respectively. 

Figure 3: Rewarding effect of NBQX, PPPA and EM-1 infusions into the intermediate tVTA. 

Changes in reward thresholds (A) and maximum response rates (C) during individual ICSS trials 

(left panels) and the overall test session (middle and right panels). Data are represented as mean ± 

sem (n=7). For statistical comparison with control, * indicates p < 0.05 and ** indicates p < 0.01. 

(B) Location of injections sites. (D) Thionin staining of a representative coronal brain section from 

an individual rat (Scale bar 200 µm). 
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Figure 4: Locomotor stimulant effect of NBQX, PPPA and EM-1 infusions into the intermediate 

tVTA. Changes in horizontal (A), vertical (B) and stereotypic-like (C) movements measured over 

5-min intervals (left panels) or during the entire test session post-injection (middle and right 

panels). (D) Location of injections sites. (E) Thionin staining of a representative coronal brain 

section from an individual rat (Scale bar 200 µm). Data are represented as mean ± sem (n=8). For 

statistical comparison with control, * indicates p < 0.05 and ** indicates p < 0.01. For left panels, 

grey and black asterisks are for NBQX and PPPA treatment, respectively. 

Figure 5: Effect of the siRNA treatment on ICSS, locomotor activity, and intra-tVTA injection of 

PPPA. (A) Changes in reward threshold (left panel) and maximum response rate (right panel) 

following the siRNA injections (n=11/group). (B) Validation of the siRNA treatment effect on the 

GluN1 NMDA receptor subunit level in rats tested for ICSS (left panel; Control siRNA n=6; 

GluN1 siRNA n=5) and locomotor activity (right panel; Control siRNA n=6; GluN1 siRNA n=6). 

The bar histograms show the normalized level of protein against control. The remaining subjects 

from the ICSS experiment were used for determining the location of the cannulae. (C) Changes in 

reward threshold and maximum response rate during individual ICSS trials (left and middle panels) 

and the overall test session (right panel) following intra-tVTA injection of PPPA in rats that 

previously received a control of GluN1 siRNA treatment (n=11/group). (D) Treatment design for 

the ICSS experiment. (E) Changes in total horizontal (left panel), vertical (middle panel) and 

stereotypic-like (right panel) movements following the siRNA injections (Control siRNA n=6; 

GluN1 siRNA n=6). (F) Treatment design for the locomotor activity experiment. Data are 

represented as mean ± sem. For statistical comparison with control, * indicates p < 0.05 and ** 

indicates p < 0.01. For statistical comparison with baseline, ǂǂ indicates p < 0.01. 
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Supplementary Figure 1: (A) ICSS protocol. Rats are trained to self-stimulate at one the two LH 

stimulation electrode at a fixed current intensity and varying stimulation frequencies. The trial 

begins by the delivery of 5 trains of non-contingent priming stimulation (1 Hz) followed by a 5 

sec adaptation period during which the stimulation is not available. Rats are then allowed to self-

stimulate during discrete 55 sec trials, after which the stimulation frequency is reduced. A 15 sec 

time-out period separates each trial. (B) Treatment design for the drug/peptide injection 

experiment. Each rat received 2 stimulation electrodes bilaterally aimed at the LH, and 2 cannulae 

bilaterally aimed at the tVTA. Rats that failed to self-stimulate at the LH were used for the 

locomotor activity study. The treatment consisted of injecting bilaterally into the tVTA either 

saline, PPPA or NBQX in a counterbalanced order, followed by EM-1. 

Supplementary Figure 2: Representative Response/Frequency curves for selected subjects 

showing the effect of saline, PPPA, NBQX and EM-1 injection into the rostral (A) and 

intermediate (B) tVTA. Rats were tested for 75 min post-injection so as to generate 5 different 

Response/Frequency curves. Compared to baseline, treatment with PPPA, NBQX or EM-1 

produced a leftward displacement of the Response/Frequency curve. Because EM-1 is rapidly 

degraded in brain tissue, only the curve obtained at 15 min post-injection was used for data 

analysis. In each Response/Frequency curve, the response rate represents the number of nose poke 

during each of the 55 sec trials of self-stimulation, and the pulse frequency represents the number 

of pulses per train of stimulation. 

Supplementary Figure 3: (A) Representative Response/Frequency curves for selected subjects 

showing the effect of the control or GluN1 siRNA treatment. Individual Response/Frequency 

curves represent the average of 3 different curves that were obtained immediately before the first 

siRNA injection (black curve) or 24 h later each siRNA injection (colored curves). Compared to 
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baseline, the siRNA treatment produced a downward displacement of the Response/Frequency 

curve. (B) Representative Response/Frequency curves for selected subjects showing the effect of 

intra-tVTA injection of PPPA in siRNA-treated rats. (C) Location of injections sites in a subset of 

rats (n=11) that received the siRNA treatment. The remaining subjects from the experiment were 

used for protein analysis. 

Supplementary Figure 4: Location of the stimulation electrodes in rats tested for ICSS. (A) Rats 

that received the saline, NBQX, PPPA and EM-1 injections into the rostral tVTA (n=9). (B) Rats 

that received the saline, NBQX, PPPA and EM-1 injections into the intermediate tVTA (n=7). (C) 

Subgroup of rats that received the control siRNA injection (n=5). (D) Subgroup of rats that 

received the GluN1 siRNA injection (n=6). The remaining subjects from the siRNA experiment 

were used for protein analysis. 

Supplementary Figure 5: Representative Western blot immuno-reactive signals obtained with 

antibodies directed against GluN1 and MORs in siRNA-treated rats tested for ICSS (A-B) and 

locomotor activity (C-D). (E) Scatterplot illustrating the changes in maximum response rate (left 

panel, n=5) or horizontal movements (right panel, n=6) with the reduction in GluN1 in rats that 

received the siRNA treatment. There is no positive correlation (p > 0.05) between the amount of 

change in maximum response rate or horizontal movement and the reduction in GluN1. (F) Bar 

histogram showing the normalized level of MOR against control in siRNA-treated rats tested for 

ICSS (left panel) and locomotor activity (right panel). The siRNA treatment failed to alter the 

density of MORs in the tVTA of rats tested for ICSS [left panel: t(8) = 0.58, p > 0.05] or locomotor 

activity [right panel: t(10) = 2.23, p > 0.05]. 
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CHAPTER 3: GENERAL DISCUSSION AND CONCLUSION  

3.1   The DDC constitutes a route for the transmission of the reward signal triggered by ICSS 

   Composed of axons that travel within the habenula, SM and FR, the DDC is a pathway that 

provides a route for the conduction of information from limbic forebrain to limbic midbrain areas 

(Sutherland, 1982). Early evidence implicating this pathway in brain stimulation reward comes 

from lesion studies showing that damage of the habenula-IPN tract decreases the response rate for 

septal (Boyd and Celso, 1970) and posterior LH (Boyd and Gardner, 1967) electrical stimulation. 

Subsequently, it was shown that rats could learn to self-administer pulses of electrical stimulation 

at various sites along the DDC, including the SM, FR and the habenula (Sutherland and Nakajima, 

1981; Nakajima, 1984; Blander and Wise, 1989; Vachon and Miliaressis, 1992), implying that 

stimulation of this pathway is rewarding. In support for a role of the DDC in brain stimulation 

reward, rewarding electrical stimulation of several sites within the MFB was shown to induce Fos 

expression (Arvanitogiannis et al., 1997; Hunt and McGregor, 1998, 2002) and increase oxidative 

metabolism  (Bielajew, 1991) in the LHb. However, despite evidence implicating the DDC in the 

positive reinforcing effects of ICSS, the focus of the preponderance of behavioral studies 

conducted over the past few decades has been on the MFB, another pathway that links forebrain 

limbic to midbrain limbic areas and that is part of the reward circuitry.  

   In an attempt to better characterize the role of the DDC in brain stimulation reward, the first set 

of studies presented in the first article investigated the effect of electrolytic lesions along the DDC 

on the rewarding effectiveness of ICSS. Two stimulation sites were used; one in the LH, and 

another one in the DR, and data were analyzed on a case-by-case basis to assess the behavioral 

effect of different lesion size and/or location. Electrolytic lesions at the DDC produced large and 

long-lasting decrements in the rewarding effectiveness of both DR and LH self-stimulation, though 
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the magnitude of the lesion effect was higher at the LH stimulation site. The attenuation of the 

rewarding effectiveness of LH and DR stimulation following a DDC lesion is in accordance with 

findings from Morisette and Boye (2008) showing that electrolytic lesions of the habenula produce 

long-lasting increases in reward thresholds obtained at these two sites of stimulation. A larger 

effect at the LH stimulation site is consistent with prior findings showing that electrolytic lesions 

in caudal sites of the MFB markedly reduce the rewarding efficacy of electrical stimulation of the 

rostral MFB, whereas lesions in the caudal MFB fail to reduce the rewarding efficacy of electrical 

stimulation of the rostral MFB, even when the distance between the stimulation and lesion site is 

the same (Gallistel et al., 1996). Results showing that lesions at the DDC were more effective at 

attenuating the rewarding effectiveness of LH self-stimulation as compared to DR self-stimulation 

may also suggest that the DDC shares a significantly higher density of axonal connections with 

the LH. Accordingly, anatomical evidence shows that the habenula receives highly dense inputs 

from the LH, but only moderate inputs from the DR (Herkenham and Nauta, 1977). 

   The effect of a DDC lesion on brain stimulation reward was assessed using three different current 

intensities. The use of different current intensities provides insight into the location of the reward-

relevant fibers near the stimulation electrode in reference with the lesioned area. Current intensities 

were chosen so as to yield reward thresholds of 25, 50 or 100 Hz, and were designated as “low”, 

“medium” or “high” current intensity, respectively. Results show that the magnitude of the 

increase in reward threshold following a DDC lesion was very high at low and medium current 

intensities, whereas only a moderate increase, or no increase at all, in reward threshold was 

observed at the high current intensity. A plausible interpretation of these results is that the lesioned 

neurons, or their efferent targets, are close to the tip of the stimulation electrode. Therefore, a high 

current intensity will recruit proportionally fewer lesioned fibers, whereas a low current intensity 
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will recruit proportionally more lesioned fibers. In the latter case, a DDC lesion will be more 

effective in reducing the rewarding effectiveness of the stimulation since a proportionally higher 

number of reward-relevant fibers would be affected. Our results are consistent with prior 

psychophysical studies (Murray and Shizgal, 1991, 1996a; Boye, 2005; Morissette and Boye, 

2008), and suggest that a low current intensity for ICSS could constitute a more sensitive parameter 

for scouting lesion effects on the reward threshold. 

   The electrolytic lesions employed in the first study differed in size and location. First, we found 

no correlation between the size of the lesion and its resulting effect on reward threshold. This 

observation concurs with prior psychophysical findings (Waraczynski, 1988; Murray and Shizgal, 

1991; Morissette and Boye, 2008) and could suggest the presence of a diffuse network of reward-

relevant axons that are highly collateralized. Second, we found that DDC lesions that targeted the 

SM were generally more effective in attenuating brain stimulation reward compared to lesions 

encroaching the LHb. These findings are very informative with respect to the neural substrate of 

ICSS, and suggest that fibers of passage within the DDC, but not intrinsic habenula cell bodies, 

participate in the transmission of the reward signal induced by ICSS. This view is also supported 

by a set of studies from Boye and colleagues showing that destruction of DDC fibers with the use 

of electrolytic lesions attenuate brain stimulation reward (Morissette and Boye, 2008), whereas 

cell body specific lesions of the habenula fail to alter the reward-enhancing effect of amphetamine 

(Gifuni et al., 2012).  

   In light of the aforementioned findings, the DDC is well poised to act as route for the reward 

signal triggered by ICSS. Reward signals initiated by electrical stimulation of the LH could travel 

through the DDC by coursing dorsocaudally via the SM, whereas those initiated by electrical 
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stimulation of the DR could travel through the DDC by coursing towards the ventral midbrain and 

then dorsorostrally via the FR.  

 

3.2   The DDC and MFB are functionally interconnected and merge on common reward-

relevant neural elements 

   Previous studies combining electrolytic lesions with behavioral measures of brain stimulation 

reward have often yielded ambiguous results. First, in the majority of cases, prolonged attenuation 

of brain stimulation reward failed to be observed following electrolytic lesions (Murray and 

Shizgal, 1991; Waraczynski et al., 1998; Boye, 2005) or a knife cut (Janas and Stellar, 1987) of 

the MFB, or following electrolytic lesions of the DDC (Morissette and Boye, 2008). Second, and 

as mentioned earlier, there is often a discrepancy between the size of the lesion and the resultant 

reward degradation (Waraczynski, 1988; Murray and Shizgal, 1991; Morissette and Boye, 2008). 

Although the inconsistent lesion effects may be attributed to the highly collateralized and diffuse 

network of reward-relevant axons, they may also result from stimulation of two different brain 

reward pathways, the MFB and DDC, which are functionally interconnected and merge on 

common reward-relevant neural elements. If so, the loss of reward-relevant neurons within one 

pathway could be compensated by the other. 

   To test this hypothesis, the first article of this thesis investigated whether sequential lesions of 

the DDC and MFB produce additive attenuations of the rewarding effectiveness of LH and DR 

self-stimulation. Rats received one electrolytic lesion at the DDC and another one at the MFB in a 

counterbalanced order, with a 2-week interval between each lesion during which they were tested 

for ICSS. Our results show that sequential lesions at the DDC and MFB produce larger and longer-

lasting increases in ICSS reward thresholds than lesions at either pathway alone; this effect was 
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most commonly observed at the low and medium current intensities and at the LH stimulation site. 

At the DR stimulation site, no additive effect was observed when the second lesion was done at 

the MFB, suggesting that the MFB and the DR may only share a modest complement of axons; 

this effect is consistent with post-lesion rate-frequency data showing that lesions at the DR have 

little effect on the rewarding effectiveness of MFB stimulation (Waraczynski et al., 1998). The 

additive lesion effect observed in the remaining cases suggests that the DDC and MFB are two 

functionally interconnected pathways that act in parallel fashion to participate in the transmission 

of the reward signal triggered by ICSS. At their rostral intersection, descending hypothalamic 

fibers travel caudally along the MFB to reach the VTA (Nieh et al., 2016), and dorsally along the 

DDC to reach the LHb (Stamatakis et al., 2016). At their caudal intersection, efferent fibers from 

the DDC reach the midbrain via the FR (Herkenham and Nauta, 1979).  

   The view that the MFB and DDC are functionally connected and merge on common reward-

relevant neural elements is also supported by prior findings showing that habenular self-

stimulation is facilitated by lesions at the MFB, and vice versa (Sutherland and Nakajima, 1981). 

Also noteworthy to mention are findings from Simmons and colleagues (1998) showing that rostral 

MFB lesions fail to disconnect all ipsilateral forebrain nuclei from the VTA either anatomically, 

as assessed by True Blue labeling, or functionally, as assessed by the stimulation-induced regional 

[14C]deoxyglucose patterns. Although these findings indicate a diffuse net-like connection 

between forebrain nuclei and the VTA, they also suggest the stimulation of a multi-synaptic 

pathway, such as the DDC, which could entirely bypass the lesion done at the MFB (Simmons et 

al., 1998). 

   Altogether, our results agree with evidence showing that the MFB and DDC share similar 

behavioral functions, and that there is a considerable degree of overlap between their sources of 
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afferent inputs and efferent targets. In particular, the MFB and DDC have been shown to play 

crucial roles in a diverse set of behavioral systems, including but not limited to reward, motivation, 

emotion, endocrine system, sleep and eating habits (Sutherland, 1982; Salaberry and Mendoza, 

2015; Stuber and Wise, 2016). Moreover, fibers from both the MFB and DDC innervate various 

structures of the limbic forebrain system and basal ganglia, and numerous brainstem regions, 

including the raphe nucleus and the laterodorsal tegmental nucleus (Herkenham and Nauta, 1979; 

Takagi et al., 1980). Therefore, both the ventral and dorsal pathway of the reward system constitute 

a functional route between structures located at opposite poles of the brain, and play a prominent 

role in the control of behavioral processes like goal-directed behaviors. 

 

3.3   The DDC is functionally connected to brain regions activated by ICSS 

   The results discussed thus far provide relevant information about the neural circuitry of ICSS, 

and suggest that the DDC acts in parallel with the MFB to transmit the reward signal initiated by 

electrical stimulation of the LH and DR. The view that the DDC and MFB act in parallel fashion 

is also supported by a Golgi analysis showing that axons that travel along the MFB also send 

collaterals into the SM (Millhouse, 1969). However, the aforementioned findings failed to provide 

reliable information on the populations of neurons that are activated by ICSS and functionally 

disconnected by the lesion. To address this issue, the study presented in the second article of this 

thesis was aimed at assessing the effect of electrolytic lesions at the DDC on the distribution of 

FLIR, a marker of neuronal activity, induced by LH self-stimulation. The LH was used as a 

stimulation site instead of the DR because of our previous results showing that lesions at the DDC 

are more effective at attenuating the rewarding effectiveness of LH self-stimulation compared to 

DR self-stimulation. To our knowledge, this is the first study that combines FLIR with lesions and 
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behavioral measures of brain stimulation reward to investigate the population of neurons that 

remain active following damage to the DDC. 

   Similar to findings obtained in the first article of the present thesis and in previous experiments 

(Morissette and Boye, 2008), electrolytic lesions at the DDC resulted in significant increases in 

ICSS reward thresholds with no or minimal changes in the maximal response rate. Our data failed 

to show a clear correlation between the lesion size and the resultant effect on the reward threshold, 

indicating that the neural substrate for brain stimulation reward is anatomically diffuse, 

collateralized and heterogeneous. In subjects that did not receive a lesion at the DDC, the 

rewarding electrical stimulation of the LH induced FLIR in forebrain, midbrain and brainstem 

regions. Notably, high to moderate increases in FLIR were observed in the mPFC, OFC, BNST, 

NAc, basolateral amygdala (BLA), SNc and reticula, VTA, tVTA, IPN, pontine nuclei (PN), DR 

and pedunculopontine nucleus, suggesting that the activity of these regions is strongly related to 

the rewarding effectiveness of LH self-stimulation. It is worth mentioning that the methodological 

approach used in our study did not allow us to dissociate the contribution of motor activity, non-

specific electrical stimulation, and rewarding electrical stimulation to the induction of FLIR. The 

use of a yoked control and stimulation parameters that are non-rewarding could address this issue 

(Marcangione and Rompre, 2008). In the majority of forebrain regions analyzed, FLIR was more 

prominent in the hemisphere ipsilateral to the stimulation electrode, whereas in the majority of 

midbrain and brainstem regions analyzed, FLIR was equally distributed between the ipsilateral 

and contralateral hemispheres. These data suggest that the LH reward-relevant fibers that project 

to the forebrain are predominantly ipsilateral, while those that project to the midbrain and 

brainstem are bilateral. Accordingly, a previous study employing an anterograde tracer showed 

that some descending hypothalamic fibers course along the MFB and decussate at several levels, 
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including the supramamillary decussation and pontine tegmentum, to innervate the contralateral 

hemisphere (Toth et al., 1999). Thus, descending LH fibers could innervate ipsilateral midbrain 

and brainstem regions by coursing along the MFB, and could target contralateral midbrain and 

brainstem regions by decussating in the midline. 

   Subjects that received a lesion at the DDC showed a significant reduction in stimulation-induced 

FLIR in certain brain regions as compared to subjects that did not receive a lesion and were trained 

for ICSS. Brain regions that showed reduced stimulation-induced FLIR following a DDC lesion 

included the BNST, NAc core and shell, BLA, IPN, PN and DR. Except for the DR and IPN, the 

level of FLIR in these brain regions remained significantly higher from that in the sham group, 

indicating that some neurons were still activated by the stimulation. However, a significantly lower 

proportion of neurons within the DR and IPN remained active following the lesion inasmuch as 

the level of FLIR in these structures was similar between lesioned and control animals. The view 

that certain brain regions showed reduced stimulation-induced FLIR following lesions at the DDC 

suggest that their activity is likely influenced by this pathway. In agreement with our findings, 

previous anatomical studies showed that the LHb sends dense projections to the NAc, DR and 

amygdala (Herkenham and Nauta, 1979; Sego et al., 2014). Anterograde tracing studies also 

confirmed the existence of dense MHb projections to the IPN organized in a topographical manner 

(Contestabile and Flumerfelt, 1981; Kawaja et al., 1988). Finally, electrolytic lesions at the MHb 

of cats were shown to induce degenerating fibers in the SM, which were traced to the amygdala 

and the BNST, demonstrating that fibers from the DDC may actually terminate into these regions 

by coursing through the SM (Akagi and Powell, 1968).  

   A reduction in stimulation-induced FLIR in certain structures following a DDC lesion implies 

that the corresponding brain regions are functionally disconnected from the site of stimulation. 



210 
 

However, our results show that a lesion at the DDC caused a marked reduction in stimulation-

induced FLIR in the PN, despite the lack of anatomical connections between the PN and the DDC. 

A tantalizing explanation for this effect is that the reduced FLIR in the PN resulted from a 

transsynaptic reduction of neuronal activity following a DDC lesion via an IPN intermediate 

connection (Kim, 2009; Campolattaro et al., 2011). Increased FLIR in the PN following electrical 

stimulation of the LH was previously reported (Arvanitogiannis et al., 1997), however, this effect 

may be attributed to the motor activity inherent to the ICSS behavior (Gasbarri et al., 2003). Our 

results also indicate a lack of lesion effect on stimulation-induced FLIR in midbrain regions 

including the substantia nigra pars compacta and reticula, the VTA and the tVTA. These results 

were surprising given that the LHb, which was damaged by the lesion, exerts an inhibitory control 

over DA neurons of the VTA and substantia nigra (Christoph et al., 1986), and an excitatory 

control over GABAergic neurons of the tVTA (Brinschwitz et al., 2010). Reasons for the lack of 

lesion effect in these midbrain regions are diverse and include (i) the existence of direct excitatory 

habenular projections (whose removal will tend to reduce FLIR) onto VTA DA neurons 

(Omelchenko et al., 2009) in addition to the indirect inhibitory projections (whose removal will 

tend to increase FLIR) onto midbrain DA neurons (Balcita-Pedicino et al., 2011), and (ii) the 

location of the DDC electrolytic lesions, which were mainly centered on the SM and LHb and did 

not encroach the FR. 

 

3.4   AMPA and NMDA receptors of the tVTA are major inhibitors of brain stimulation 

reward and locomotor activity 

   The results obtained from the first two articles of the present thesis demonstrate that the reward 

signal initiated by electrical stimulation of the LH is in part transmitted by the DDC, a pathway 
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that courses through the habenula and projects into mesencephalic regions, including the tVTA. 

The tVTA is a recently identified structure that was described in many species, including mice, 

rats and monkeys, as a cluster of GABAergic cells that convey negative reward-related information 

(Jhou et al., 2009b; Hong et al., 2011; Stamatakis and Stuber, 2012). Previous work has shown 

that AMPA and NMDA receptors located in the midbrain play a key role in the control of brain 

stimulation reward and locomotor activity (Kretschmer, 1999; Bergeron and Rompre, 2013; 

Ducrot et al., 2013). However, no investigation thus far has been performed to elucidate the role 

of tVTA AMPA and NMDA receptors in brain stimulation reward. Such investigation could have 

important implications for understanding motivational processes since tVTA neurons receive a 

strong glutamatergic input from the LHb (Jhou et al., 2009a; Kaufling et al., 2009; Goncalves et 

al., 2012) while forming inhibitory GABAergic connections with DA neurons of the VTA and 

SNc (Jhou et al., 2009a; Balcita-Pedicino et al., 2011; Bourdy et al., 2014). In the third article of 

the present thesis, ICSS and locomotor activity were assessed before and after AMPA and NMDA 

receptor blockade in the tVTA using the glutamate receptor antagonists NBQX and PPPA, 

respectively. Results show that within certain regions of the tVTA, blockade of AMPA or NMDA 

receptors reduces the reward threshold of LH self-stimulation without altering the maximum 

response rate; an effect that is interpreted as specific reward changes (Miliaressis et al., 1986). 

Bilateral infusion of NBQX or PPPA into certain sites of the tVTA also resulted in increased 

locomotor activity; an effect that has been generally associated with increased mesolimbic DA 

signaling (Schindler and Carmona, 2002; Alcaro et al., 2007; Palmiter, 2008). In light of previous 

electrophysiological findings showing that AMPA and NMDA receptor antagonists reduce the 

spontaneous firing activity of VTA GABAergic cells (Wang and French, 1995; Steffensen et al., 

1998; Bonci and Malenka, 1999), we postulate that the rewarding and locomotor stimulant effect 
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of intra-tVTA injection of NBQX or PPPA are the result of a decreased GABAergic inhibitory 

tone onto midbrain DA cells. Our results are consistent with the view that activation of the tVTA 

by local AMPA injections produces conditioned place aversion in rats (Jhou et al., 2013), and are 

in line with previous reports demonstrating increased locomotor activity following neurotoxic 

lesions (Bourdy et al., 2014; Brown et al., 2017), optogenetic inhibition (Jhou et al., 2013), and 

GABA-mediated inhibition (Huff and LaLumiere, 2015; Lavezzi et al., 2015) of the tVTA. 

   An important finding of the studies presented in the third article of the present thesis is that 

NBQX and PPPA produced different rewarding and psychomotor stimulant effects when injected 

into rostral or intermediate sites of the tVTA. For instance, NBQX failed to alter ICSS reward 

thresholds when injected into the rostral tVTA, but produced significant decreases in reward 

thresholds when injected into the intermediate tVTA. Our results also show that the reward-

enhancing effect of PPPA was stronger when the injection occurred in intermediates sites of the 

tVTA. These findings strongly point to anatomical and/or functional heterogeneity within the 

tVTA. Consistently, Jhou et al (2009b) found that neurons representing the rostral and caudal part 

of the tVTA exhibit a different pattern of functional projections to VTA DA neurons. While the 

rostral tVTA shows a densely packed cluster of GABAergic neurons projecting to VTA DA 

neurons, this density progressively declines at more caudal levels of the tVTA (Jhou et al., 2009a). 

Based on findings from Jhou and colleagues (2009b), one would expect to observe a higher 

enhancement of brain stimulation reward or locomotor activity upon blockade of glutamatergic 

receptors in the rostral tVTA, which seems to have a larger influence on VTA DA neuronal 

activity. However, this speculation appears at odds with our results showing that blockade of 

glutamate inputs into the intermediate tVTA produces a higher enhancement in brain stimulation 

reward as compared to blockade of glutamate inputs into the rostral tVTA. An attempted 
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explanation for the observed results is that a high proportion of neurons in the intermediate tVTA 

may convey negative reward signal, whereas only a few neurons in the rostral tVTA may be 

involved in this process. In support for this hypothesis, Perrotti and colleagues (2005) showed that 

ΔFosB expression is approximately 4 to 5 times higher in intermediate regions of the tVTA (6.30 

and 6.72 mm from bregma) as compared to rostral regions of the tVTA (6.04 mm from bregma) 

following chronic administration of cocaine. Like most drugs of abuse, cocaine produces aversive 

effects after its initial rewarding effects have dissipated (Ettenberg, 2004; Jhou et al., 2013). The 

higher induction of ΔFosB observed in the intermediate tVTA (Perrotti et al., 2005) may therefore 

suggest that neurons in this region are more responsive to aversive stimuli and are likely to receive 

significantly more inputs from structures implicated in aversive responses, including the LHb 

(Matsumoto and Hikosaka, 2007, 2009) and the PAG (Berton et al., 2007). Finally, our results 

show that blockade of NMDA receptors in the tVTA produced the highest enhancement in brain 

stimulation reward, while blockade of AMPA receptors in the tVTA produced the highest 

enhancement in locomotor activity. These findings indicate that ICSS and locomotor activity are 

subserved by different mechanisms. While the former may be more sensitive to changes in NMDA 

receptor activity, the latter may be more strongly influenced by changes in AMPA receptor 

activity. This dissociation between reward seeking behavior and locomotor activity has also been 

reported with studies employing visual stimulus-induced reinforcement showing that certain drug 

manipulations have a stronger propensity to influence one behavior over the other (Vollrath-Smith 

et al., 2012; Keller et al., 2014; Talishinsky et al., 2017). 

   Altogether, the results obtained from the third article of the present thesis indicate that injection 

of NBQX and PPPA within certain sites of the tVTA enhance brain stimulation reward and 

locomotor activity, two behavioral measures that are largely dependent on DA neurotransmission. 
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These findings are consistent with anatomical studies showing that the tVTA sends GABAergic 

projections to DA neurons of the VTA and SNc (Jhou et al., 2009a; Balcita-Pedicino et al., 2011; 

Bourdy et al., 2014), and are in line with electrophysiological findings showing that electrical 

stimulation of the tVTA supresses the activity of midbrain DA neurons (Lecca et al., 2011; Lecca 

et al., 2012; Bourdy et al., 2014). They also agree with findings obtained from optogenetic studies 

showing that glutamatergic excitation of VTA DA neurons reinforces instrumental behavior and 

establishes conditioned place preference (McDevitt et al., 2014; Qi et al., 2014). Finally, the view 

that treatment with NBQX or PPPA yielded different rewarding and locomotor stimulant effects 

in the rostral and intermediate tVTA indicates some degree of heterogeneity in the tVTA. 

However, given that research on the tVTA is still in its infancy, the aforementioned explanations 

for the observed results are only speculative. Future work is needed to investigate the heterogeneity 

of the tVTA along its rostro-caudal axis with respect to differences in cellular composition and 

connectivity. 

 

3.5   MORs of the tVTA are major enhancers of brain stimulation reward and locomotor 

activity 

   Because the tVTA shows very dense immunoreactivity for MORs (Jhou et al., 2009a; Jalabert 

et al., 2011), ICSS and locomotor activity were also assessed following intra-tVTA injection of 

EM-1, a selective agonist for these receptors. EM-1 was chosen in this study because of its short 

half-life (~6 min in rat brain homogenate) (Perlikowska et al., 2009), hence limiting the effect of 

diffusion to sites adjacent to the tVTA. The results obtained in the third article of the present thesis 

show that injection of EM-1 into both the rostral and intermediate tVTA is rewarding, as indicated 

by the leftward displacement of the curve that relates response rate to stimulation frequency. Our 
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results also show that EM-1 increases horizontal movements only when injected into the rostral 

tVTA. Treatment with EM-1 had no effect on vertical and stereotypic-like movements. Increased 

brain stimulation reward has typically been correlated with increased mesolimbic DA release and 

DA cell firing (Moisan and Rompre, 1998; You et al., 2001; Hernandez et al., 2012). On the other 

hand, horizontal and vertical locomotor activities are linked to changes in DA mesocorticolimbic 

transmission (Kalivas et al., 1988; Johnson et al., 1996; Ikemoto, 2002), while stereotypic 

movements can been interpreted as an exaggerated dopaminergic transmission (Fibiger et al., 

1973; Wallace et al., 1999; Yates et al., 2007). Given that MOR-mediated activity changes are 

inhibitory (Meyer and Quenzer, 2005; Matsui and Williams, 2011), a likely explanation for the 

rewarding and horizontal locomotor stimulant effect of EM-1 injection into the tVTA is that this 

treatment increased the activity of midbrain DA neurons by inhibiting the activity of tVTA 

GABAergic neurons.  

   The view that intra-tVTA injection of EM-1 increased brain stimulation reward and horizontal 

locomotor activity is in line with prior reports showing that EM-1 injection into the posterior 

VTA—defined by a region representing the rostral tVTA in our study—or the tVTA induces 

conditioned place preference (Zangen et al., 2002; Jhou et al., 2012), forward locomotion (Zangen 

et al., 2002), and positive reinforcement in a self-administration setting (Jhou et al., 2012). The 

lack of treatment effect on vertical and stereotypic-like movements in our study may be due to 

several factors, though the most likely explanation is the dose of EM-1 (1 nmol/0.05 µL) that was 

chosen and/or the experimental approach employed. Increased vertical movement following EM-

1 injection into the posterior VTA with a dose similar to the one used in our study was previously 

reported by Zangen et al. (2002), however, in this study, rats received the injection and were then 

tested for locomotor activity, whereas in our study, rats were placed in the test cages for 30 min 
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before receiving the injections and being tested for locomotor activity. Our results are also 

consistent with studies showing that injection of morphine or MOR agonists into the tVTA 

increases open-field locomotion (Wasserman et al., 2013; Kotecki et al., 2015; Wasserman et al., 

2016; Steidl et al., 2017) and with electrophysiological findings showing that activation of tVTA 

MORs decreases the tVTA-evoked suppression of midbrain DA neuron firing in vitro (Matsui and 

Williams, 2011) or in vivo (Lecca et al., 2012). In parallel with our findings in the tVTA, several 

studies have also implicated VTA MORs in reward, showing that activation of these receptors with 

morphine or MOR agonists supports self-administration (Bozarth and Wise, 1981; Devine and 

Wise, 1994; Zangen et al., 2002; Jhou et al., 2012) and produces conditioned place preference 

(Bals-Kubik et al., 1993; Nader and van der Kooy, 1997). 

   In summary, our findings indicate that activation of MORs in certain regions of the tVTA 

enhances brain stimulation reward and locomotor activity. These results are consistent with the 

observation that morphine and opioids target the tVTA to increase the activity of VTA DA neurons 

(Jalabert et al., 2011; Matsui and Williams, 2011), and are in line with the revisited disinhibition 

model of opioid action on midbrain DA neurons proposed by Bourdy and Barrot (2012). This 

model postulates that opioids enhance VTA DA neuron activity by inhibiting tVTA GABA 

neurons or terminals, as opposed to the original disinhibition model in which opioids act on 

GABAergic interneurons of the VTA (Bourdy and Barrot, 2012). The tVTA is therefore well 

poised to act as a neuromodulatory target for a number of psychiatric and neurological disorders 

where DA transmission is dysregulated, including substance use disorder, schizophrenia and 

Parkinson’s disease. 
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3.6  NMDA receptors of the tVTA are involved in incentive salience and brain stimulation 

reward 

   The third article of the present thesis finally examines the rewarding effect of intra-tVTA 

injection of PPPA, a preferred GluN2A-containing NMDA receptor antagonist, following siRNA-

mediated downregulation of the obligatory GluN1 subunit of NMDA receptors in the tVTA. A 

siRNA mediated against NMDA receptors, and not AMPA receptors, was used because of results 

showing that blockade of NMDA receptors with PPPA produces marked increases in brain 

stimulation reward in both the rostral and intermediate tVTA, unlike NBQX, which only enhanced 

brain stimulation reward when injected into the intermediate tVTA. The rationale behind using a 

siRNA-mediated gene silencing approach is that the required silencing machinery is primarily 

located in the nucleus (Carthew and Sontheimer, 2009), as such, downregulation of the targeted 

protein will only occur on cells that have their cell bodies located in the tVTA, and will not alter 

the level of receptors located on afferent terminals. Previous work from our lab have shown that 

the rewarding effect of intra-VTA injection of PPPA is likely mediated by NMDA receptors 

located on afferent terminals (Hernandez et al., 2015). In light of these findings, we speculated 

that the rewarding effect of intra-tVTA injection of PPPA is also mediated by NMDA receptors 

that are located on afferent terminals. If this is true, then the siRNA-mediated downregulation of 

NMDA receptors in the tVTA should not change the rewarding effect of intra-tVTA injection of 

PPPA since only receptors that are located on cell bodies of the tVTA will be downregulated. 

   To test this hypothesis, ICSS was assessed following injection of a control siRNA or a siRNA 

that target GluN1 for 3 consecutive days. Our results show that the siRNA-mediated 

downregulation of NMDA receptors in the tVTA reduces the maximum rate of ICSS responding 

without altering the reward threshold. The same siRNA treatment failed to produce deficits in 
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motor performance as assessed by locomotor activity. A reduction in maximum response rate for 

ICSS has typically been interpreted as a deficit in motor performance (Miliaressis et al., 1986). 

However, it may also result from a deficit in incentive salience, that is, the motivation of the animal 

to obtain the rewarding stimulation. Indeed, work by Edmonds et al. (1974) showed that the speed 

at which the animal runs in a runway to receive a rewarding stimulation increases with increasing 

current intensity for the priming stimulation. Thus, in light of our findings showing that the siRNA 

treatment reduces the maximum response rate for ICSS without producing deficits in locomotor 

activity, we suggest that the NMDA receptors that are located on tVTA cell bodies are implicated 

in motivation and approach behaviors. Such claim could be further supported by future 

experiments testing the same siRNA treatment in a runway instead of an operant box. Our results 

also show that the siRNA-mediated downregulation of NMDA receptors in the tVTA failed to 

alter the reward-enhancing effect of intra-tVTA injection of PPPA. Therefore, despite the marked 

reduction of NMDA receptors on tVTA cell bodies, PPPA injection into the tVTA was still 

effective in enhancing—albeit transiently—the reward signal initiated by ICSS. We thus suggest 

that PPPA acts on NMDA receptors that are located on afferent terminals, but not on cell bodies, 

of the tVTA. These findings parallel previous work from our group showing that the rewarding 

effect of intra-VTA injection of PPPA is likely mediated by NMDA receptors that are located on 

afferent terminals (Hernandez et al., 2015). However, a question that remains to be answered is: 

which NMDA receptor subunit is involved in the rewarding effect of intra-tVTA injection of 

PPPA? Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis of 

tVTA tissue homogenates indicates that the GluN2A, GluN2B, GluN2C and GluN2D subunits of 

NMDA receptors are expressed in the tVTA, with a higher expression of the GluN2C subunit 

(results not shown). Thus, although PPPA shows a preferred action on the GluN2A subunit (Feng 
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et al., 2005), any of the GluN2A-D subunits of NMDA receptors could be involved in the 

rewarding effect of intra-tVTA injection of PPPA. Further research is warranted before a firm 

conclusion can be drawn. 

 

3.7   Conclusion: implications for psychiatric diseases  

   In summary, results of the first article of this thesis show that the DDC is involved in the 

transmission of the reward signal initiated by electrical stimulation of the LH and the DR, and that 

this pathway merges with the MFB on a common reward integrator (Figure 1A). In the second 

article of this thesis, Fos-immunohistochemistry was used to determine whether the same nuclei 

that are activated by ICSS continue to be active following a lesion at the DDC. Results show that 

electrolytic lesions at the DDC reduce stimulation-induced FLIR in the NAc, BNST, BLA, IPN, 

PN and DR of rats, suggesting the existence of functional connections between the DDC and these 

brain regions (Figure 1B). Finally, the findings presented in the third article of the present thesis 

show  that  glutamate  and  opioid  transmissions  in  the  tVTA  are important  regulators of brain 

stimulation reward and locomotor activity (Figure 1C). Results obtained with the siRNA treatment 

also suggest that the reward-relevant NMDA receptors are likely located on presynaptic terminals 

of the tVTA, and that NMDA receptors located on tVTA cell bodies are involved in incentive 

salience (Figure 1C).  

   In light of our findings and previous studies showing that the DDC is involved in reward and 

goal-directed behaviors (Nakajima, 1984; Blander and Wise, 1989; Vachon and Miliaressis, 1992; 

Morissette and Boye, 2008), experimental manipulations that alter its activity could have potential 

implications in the treatment of disorders characterized by aberrant reward circuitry function, 

including  substance  use  disorder  and  depression. One  approach  that  has been explored for the  
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Figure 1: Schematic overview of article 1, 2, and 3 of the present thesis. (A) The rewarding effect 

of LH and DR self-stimulation were assessed following sequential electrolytic lesions at the DDC 

and MFB. (B) The distribution of FLIR, a marker of neuronal activity, was assessed following 

electrolytic lesions at the DDC and rewarding electrical stimulation of the LH. (C) LH self-

stimulation and locomotor activity were assessed following pharmacological blockade of AMPA 

and NMDA receptors, pharmacological activation of MORs, and siRNA-mediated downregulation 

of NMDA receptors in the tVTA. The reward-enhancing effects of PPPA were also investigated 

following siRNA-mediated downregulation of NMDA receptors in the tVTA. 



221 
 

 

treatment of psychiatric diseases is the use of DBS. For instance, DBS of the LHb was shown to 

reduce cocaine self-administration in rats (Friedman et al., 2010; Lax et al., 2013), and resulted in 

marked attenuations of cocaine-induced increases in midbrain NMDA and AMPA receptors 

(Friedman et al., 2010). In animal models of depression, DBS of the LHb improved depressive-

like symptoms in open-field (Meng et al., 2011) and forced-swim tests (Li et al., 2011; Kim et al., 

2016), and caused marked increases in peripheral and local brain concentrations of monoamines, 

including DA, serotonin and norepinephrine (Meng et al., 2011). These findings have also been 

extended to humans inasmuch as DBS of the SM, the main afferent bundle of the LHb, yielded 

significant improvements in depressive symptoms in one patient with treatment-resistant MDD 

(Sartorius et al., 2010) and in 2 patients with severe therapy-refractory depression (Kiening and 

Sartorius, 2013). However, due to the invasive nature of DBS, this approach has only been tested 

in a small number of patients, and more work is needed to better understand its long term efficacy 

and safety. 

   Our results showing that the tVTA regulates brain stimulation reward and locomotor activity, 

together with the view that various drugs of abuse, including morphine, nicotine and cannabinoids, 

alter its electrophysiological activity (Jalabert et al., 2011; Lecca et al., 2011; Matsui and Williams, 

2011), place the tVTA as a major modulator of the reward system and a potential therapeutic target 

for psychiatric disorders. In rats, lesions or optogenetic inactivation of the tVTA attenuates 

cocaine-induced avoidance behavior at a period when cocaine exhibits aversive effects, suggesting 

that the tVTA could act as a therapeutic target for substance use disorder (Jhou et al., 2013). In 

light of evidence indicating the existence of anatomical connections between the LHb and the 

tVTA (Jhou et al., 2009a; Kaufling et al., 2009), together with previous reports showing that DBS 
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of the LHb yields antidepressant effects in treatment-resistant patients (Sartorius et al., 2010; 

Kiening and Sartorius, 2013), also suggest that the tVTA may be considered as a potential 

therapeutic  target  in  depression. However, given that the tVTA is a relatively newly identified 

brain region, research on this structure is still in its infancy, and more work is needed to go from 

fundamental theories to clinical applications. 

   Last but not least, the view that siRNA-mediated downregulation of NMDA receptors in the 

tVTA reduced the maximal response rate for ICSS without yielding deficits in locomotor activity 

indicates that NMDA receptors located on tVTA cell bodies are involved in incentive salience, 

(i.e., the motivation or “wanting” to receive the rewarding stimulation). Results with the siRNA 

experiment also indicate that NMDA receptors that are located on tVTA afferent terminals are the 

likely source of inhibition on the reward signal induced by ICSS. Together, these findings suggest 

that NMDA receptors of the tVTA might represent an interesting target for the treatment of 

depressive symptoms, and are in line with previous reports of clinical trials showing that single 

(Berman et al., 2000; Zarate et al., 2006; Murrough et al., 2013) or repeated (aan het Rot et al., 

2010; Murrough et al., 2013; Rasmussen et al., 2013; Diamond et al., 2014) subanesthetic dose 

infusion of the NMDA receptor antagonist, ketamine, produces rapid and potent antidepressant 

effects in patients with major depression. 

   Overall, the articles presented in this thesis help extend the boundary of the known neuronal 

circuitry involved in brain stimulation reward, and could have insightful impacts on future drug 

development and therapeutic strategies in psychiatry. Our results showing that the DDC is 

involved in brain stimulation reward could prompt future studies on exploring the possibility of 

using this pathway as a therapeutic target for disorders associated with dysregulated reward 

circuitry function, notably mood disorders, schizophrenia, and substance use disorder. Similarly, 
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our finding that NMDA receptors located on tVTA afferent terminals are the likely source of 

inhibition of brain stimulation reward may influence future research to develop antidepressant 

agents that specifically target these receptors. As research on the DDC and tVTA is developing at 

a rapid pace, the next few years will see a tremendous growth in this field and will sharpen our 

understanding of the neural substrate underlying appetitive and aversive behaviors. 
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