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Résumé

Bien que la littérature sur le problème d’emplacement soit vaste, la plupart des pu-

blications considèrent des modèles simples, dans lesquels une autorité centrale assigne les

utilisateurs aux installations les plus proches. Des caractéristiques plus réalistes, telles que le

comportement des usagers, la compétition et la congestion, sont souvent négligées, peut-être

en raison de leur nature hautement non-linéaire «compliquée». Quelques articles ont incor-

poré ces traits, mais uniquement de facon séparée, et seulement des approches heuristiques

ont été proposées comme méthodes de résolution.

Le problème d’emplacement d’installations consiste à localiser un ensemble d’installa-

tions de manière optimale afin de répondre à une demande donnée. Dans un environnement

congestioné où les usagers ont le choix, les installations sont généralement modélisées sous

la forme de files d’attente. Les utilisateurs sélectionnent les installations à fréquenter en

fonction de leur utilité perçue, qui est généralement écrite comme une combinaison linéaire

de la distance de déplacement, du temps d’attente dans les installations, etc. En résulte

un modèle dit "à deux niveaux" appartenant à la classe des programmes mathématiques à

contraintes d’équilibre (MPEC en anglais), où l’équilibre peut être exprimé sous la forme

d’une inéquation variationnelle.

Notre travail est axé sur le problème d’emplacement d’installations où les usagers ont le

choix (CC–FLP en anglais) et nous fournissons un certain nombre de contributions impor-

tantes. Du point de vue de la modélisation, nous proposons différents modèles qui capturent

les principales caractéristiques du CC–FLP. Pour ces programmes non-linéaires, discrets, et

NP-difficiles, nous avons conçu des algorithmes exactes et d’approximation, ainsi que des

heuristiques sur-mesure. Notre travail couvre trois articles. Dans le premier article, nous

considérons différents modèles qui intègrent l’abandon aux centres de services, en raison des

places limitées dans la file d’attente, tandis que le comportement des utilisateurs peut être
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déterministe ou stochastique. Dans ce dernier cas, le comportement des usagers correspond

au principe d’équilibre de Wardrop, tandis que dans le premier cas, les clients se distri-

buent entre les établissements selon un modèle de choix d’utilité aléatoire Logit. Au-delà de

l’analyse des propriétés théoriques du modèle, nous concevons une heuristique menée par

les usagers et un algorithme d’approximation linéaire pour lequel nous prouvons une borne

d’erreur de l’approximation, dans le cas d’une file d’attente M/M/1.

Le second article est consacré à la conception d’un nouvel algorithme de ‘Branch and

Bound’ (B&B) pour résoudre une sous-classe plus générale des MPEC. L’algorithme est

implémenté et évalué sur un CC–FLP. L’idée est de traiter virtuellement chaque nœud de

l’arbre B& B comme un problème d’optimisation distinct, afin de tirer parti de la puissance

des solveurs MILP et de leur prétraitement fort au niveau de la racine. Notre approche

algorithmique est basée sur une combinaison de programmation linéaire à nombres entiers

et mixtes (MILP en anglais), de techniques de linéarisation et de la resolution itérative de

sous-problèmes convexes, et nécessite une gestion d’arbre sophistiquée.

Dans le troisième article, nous incorporons les prix dans le CC–FLP. Le prix est une

variable de décision continue, tout comme la localisation et le niveaux et de service, et les

utilisateurs l’intègrent dans leur utilité. Les concepts de tarification du réseaux et de CC–

FLP étant fusionnés en un seul modèle, le problème devient extrêmement difficile, également

en raison de la présence de variables de localisation et de niveau de service, ainsi que de délais

d’attente bidimensionnels. Pour ce programme à deux niveaux non-convexe, nous avons conçu

un algorithme basé sur des approximations linéaires emprunté à la fois à la littérature sur la

localisation et à la tarification du réseau.

Mots clés : probleme d’emplacement d’installations, programmation à deux ni-

veaux, programmation à nombres entiers et mixtes, équilibre, file d’attente, non

convexe, optimisation globale, tarification.
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Abstract

While the location literature is vast, most papers consider simpler models, in which a

central authority assigns users to the closest facilities. More realistic traits, such as user

behaviour, competition, and congestion are often overlooked, perhaps due to their ‘compli-

cating’ highly non-linear nature. A few papers did incorporate them, but separately, and

only heuristic approaches have been proposed as solution methods.

The facility location problem consists in optimally locating a set of facilities in order

to satisfy a given demand. In a congested user-choice environment, facilities are typically

modeled as queues, and users select the facilities to patronize based on their perceived

utility, which is, in general, written as linear combination of travel distance, waiting time at

facilities, etc. The resulting bilevel model belongs to the class of mathematical programs with

equilibrium constraints (MPECs), where the equilibrium can be expressed as a variational

inequality.

Our work is focused on the competitive congested user-choice facility location problem

(CC–FLP), and we provide a number of strong contributions. From the modeling point

of view, we propose various models that capture the key features of CC–FLP. For these

NP-hard discrete nonlinear programs we designed exact and approximated algorithms, as

well as tailored heuristics. Our work spans three papers. In the first article we consider

different models that incorporate balking at facilities, due to limited places in the queue,

while user behaviour can be either deterministic or stochastic. In the latter case, user

behaviour fits Wardrop’s equilibrium principle, while in the former case, customers distribute

among facilities according to a Logit random utility choice model. Beyond the analysis of the

model’s theoretical properties, we design a user-driven heuristic and a linear approximation

algorithm, for which we prove a bound on the approximation error, for the M/M/1 queue.
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The second paper is dedicated to the design of a novel exact branch-and-bound (B&B)

algorithm for solving a more general subclass of MPECs, which is implemented and evalu-

ated on a CC–FLP. The idea is to virtually treat each node of the B&B tree as a separate

optimization problem, in oder to leverage the strength of the MILP solvers and their strong

preprocessing at the root node. Our algorithmic approach is based on a combination of

Mixed-Integer Linear Programming (MILP), linearization techniques and the iterative solu-

tion of convex subproblems, and requires a sophisticated tree management.

In the third paper we incorporate mill pricing into the CC–FLP. Price is a continuous

decision variable, along with the location and service levels, and user incorporate it into their

utility. Since concepts from network pricing and CC–FLP are merged into a single model,

the problem becomes extremely challenging, also due to the presence of facility location and

service level decision variables, as well as bivariate queueing delays. For this non-convex

bilevel program we devise an algorithm based on linear approximations, that borrows from

both location and network pricing literature.

Keywords: location, bilevel programming, mixed integer programming, equilib-

rium, queueing, nonconvex, global optimization, pricing.
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Chapter 1

Introduction

People have faced the facility location problem since the early days of human civilization,

when they decided where to build their households, their villages, etc. A more formal for-

mulation of the location problem was perhaps first introduced by the mathematician Pierre

de Fermat (1601 – 1665). In his work entitled ‘Methodus ad disquirendam maximam et

minima’ he proposed the following puzzle: ‘Given three points in a plane, find a fourth

point such that the sum of its distances to the three given points is as small as possible.’

[Eiselt and Marianov, 2011]. The earliest known (geometrical) solution belongs to Fer-

mat’s pupil, Evangelista Torricelli (1598 – 1647). Although he found it around 1640, it

was published much later, in 1919 in ‘Opere di Evangelista Torricelli’. This puzzle would

later constitute the foundation of an entire class of problems, called the Facility Location

Problem (FLP).

In Operations Research the class of Facility Location Problems (FLP) can be stated as:

locate one or more facilities within a set of possible sites [Dantrakul et al., 2014], under

different assumptions, with the goal to serve a set of demand points. The candidate sites

can be represented either by a discrete set of points, or by continuous space. In the former

case we have a discrete location problem whilst in the latter we have a continuous location

problem [Dantrakul et al., 2014]. From a mathematical point of view, FLP is a combi-

natorial optimization problem that has numerous practical applications such as location of

service centers (health clinics, communication centers, banks, etc.), warehouses, production

facilities, plants and shops.

FLP has been extensively studied in the literature. The existent formulations cover a

plethora of models, from basic to more elaborate models. However, most papers are making



simplifying assumptions. In this thesis we focus on more realistic models, that incorporate

competition among several existing firms, congestion and user behaviour.

1.1. FLP: Basic ingredients

Although an FLP can be modelled in many ways, some components are common to all

models. The set of locations, the customers, and the facilities represent the basic ingredi-

ents for even the simplest formulation [Azarmand and Neishabouri, 2009]. While the

location subproblem corresponds to deciding the sites where the facilities are to be opened,

the allocation represents the assignment of the customers to their respective facilities. Of

course, they are part of a larger problem, in which other parameters are to be decided, for

instance the capacity of the facilities, the number of servers in each facility, etc.

Customers are assigned to facilities either by a central authority, or they have the choice

themselves. Typically, when the allocation is centralized, the objective function minimizes

the total weighted sum of distances, waiting time etc. When the model takes into account

users’ preferences, a discrete choice model is used, where a random term enters the users’

utility function. In the FLP case, the discrete options are associated to the set of open

facilities to patronize. Every client must choose one and only one location from the set.

The main elements of the mathematical model are:

— the agents (users, competitors, etc.);

— the interactions between the agents;

— the optimization objectives, goals, etc.

In the case of Facility Location Problem several issues are being raised. From what point

of view are we looking at the problem (users, competitors, etc.)? How many facilities are

there to be placed in the network? Do facilities have a limited capacity? Are we considering

a deterministic or a probabilistic model? Do users have a choice or is there a central coor-

dination? Are there other competitors already in the market? If yes, how do they interact

with the entering firm? Do they engage in a sequential or simultaneous game, or do they

remain unresponsive to the actions of the newly entered? The answers to all these questions

written in a mathematical form, dictate the main characteristics of the model.
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The aspects of the problem that can be incorporated are supposedly unlimited, due to

a great variety of real-life situations that can be modelled. Nevertheless, we can identify a

few features that tend to appear very often in the literature.

— Capacity. We define the capacity of a facility as the quantity of product or service

offered, etc. When this quantity is limited the problem is capacitated, as opposed

to the uncapacitated case where the capacity is ‘unlimited’. The capacity can be

represented by the number of servers, the service rate, the number of places available

in the waiting line, etc.

— Nature of objective function. Depending on the agent that is optimizing, and

on the real-life context the objective function can have a social interpretation (for

instance improve a public service), or it could represent a profit, a total cost, etc.

— Nature of choice. We can identify two types of problems depending on who is the

decision maker. If the facilities to be patronized are chosen by the users we talk about

a user choice environment. On the other hand, the choice can be made by a central

authority, in which case we have a centralized decision.

— Randomness. The model could contain stochastic elements, for instance, the popu-

lation from a demand node will choose a facility to patronize with a certain probability

that depends on numerous factors: distance, price, congestion, etc. In contrast, in

simpler models, user choice is deterministic, and the facilities to patronize are always

the closest, the ones offering the lowest price, etc.

— Congestion. When modelling a real-life situation it is natural to consider that some

sort of congestion will occur at the facilities, due to limited resources. Either the

quantity of the product is restricted, or users have to wait in a queue in order to get

served. Sometimes congestion takes place on the edges of the network due to heavy

traffic. This aspect is captured in models by explicitly incorporating users behaviour

in queueing equations, captured queueing delay costs, etc.

— Competition. Competitors play an important role, as the way they interact with

each other can change the nature of the problem. In some formulations they remain

unresponsive, whilst in others they can engage into a Stackelberg or Nash game.

The simplest location problem is the uncapacitated FLP, which involves locating

an undetermined number of facilities on a network, in order to satisfy the demand
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for a certain commodity, while minimizing the total cost (fixed setup costs + travel

time) [Averbakh et al., 2007, Boffey et al., 2007]. Setup and travel time costs are

represented as a function of the number of open facilities as well as their respective

locations. While the capacity is considered ‘unlimited’ or ‘infinite’, in practice it means that

is sufficiently large to satisfy any possible demand [Boffey et al., 2007]. For a given set of

parameters

di: demand originating from user node i ∈ I,
tij: travel time from user node i ∈ I to site j ∈ J ,

and decision variables

xij: fraction of individuals originating from node i ∈ I that choose facility j ∈ J ;

yj: takes the value of 1 if a facility is located at site j, 0 otherwise.

its formulation is:

UFLP: min
x,y

∑

i∈I

∑

j∈J

ditijxij +
∑

j∈J

fjyj (1.1.1)

s.t.
∑

j∈J

xij = 1, ∀i ∈ I (1.1.2)

∑

i∈I

xij ≤ yj, ∀j ∈ J (1.1.3)

∑

j∈J

yj = p, (1.1.4)

xij ≥ 0, ∀i ∈ I, ∀j ∈ J (1.1.5)

yj ∈ {0, 1}, ∀j ∈ J. (1.1.6)

The objective (1.1.1) is to minimize the total travel time plus the fixed costs associated

with locating all facilities. Constraint (1.1.2) guarantees that the demand of any user is met

by one or more facilities. Demands can be satisfied (partially or entirely) only by sites where

facilities are open (constraint (1.1.3)). Equations (1.1.4) and (1.1.6) are the non-negativity

and binary constraints, respectively.
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1.2. Congested Facility Location

The Congested Facility Location Problem (CFLP) is a modification of FLP, where con-

gestion is also taken into consideration. We are interested in the CFLP, since it is a more

accurate representation of real-life situations.

Congestion occurs naturally in a context of limited resources and capacitated facilities.

If too many customers arrive at the same time at a service center, they will have to wait in

line in order to be served. Also, if too many cars travel on the same street, traffic congestion

becomes inevitable, hence increasing the travel time/costs.

Congestion can either arise at facilities (thus at nodes, in the case of network represen-

tation) or on the links between nodes, or on both. Thus, in a network we can distinguish

three types of congestion:

— Node congestion (waiting in line to be served, etc.);

— Link congestion (traffic congestion on roads, etc.);

— Network congestion (both node and link congestion).

Depending on the context of the problem, in most cases congestion on links corresponds

to traffic in the network, which is generated only partially by the users taken into account

in the FLP. For instance, if we were to decide a location for a hospital in a city, the amount

of people travelling to the hospital is insignificant compared to the total traffic in the city.

Therefore, it is generally considered that congestion on the links is not influenced by users

constituting the demand, and it is modelled by predefined constant travel costs. Hence, the

underlying network becomes irrelevant, and the problems can be modelled as a bipartite

graph. The sets of nodes represent the demand nodes and the facility nodes, respectively. In

all our three article we consider node congestion, i.e., facilities are modelled as M/M/s/K

queues, or variants thereof. Then, the delay functions are derived from queueing theory (e.g.,

waiting time, probability of balking, etc.).

An important aspect when modelling congestion regards the allocation problem. The

question to be asked is who is the decision maker? Do users decide which facilities to patron-

ize or is there a central authority in charge of the decision? If the decision maker is a central

authority, does it protect the users’ interest? If yes, typically the the congestion and/or travel

costs are minimized [Desrochers et al., 1995, Marianov, 2003, Castillo et al., 2009,

Marianov and Serra, 2011, Vidyarthi and Jayaswal, 2014, Fischetti et al., 2016].
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If users decide, what are the parameters of their decision? What is their purpose and what

makes them prefer a specific facility to another one? A widely used assumption is that users

select facilities based solely on proximity [Marianov, 2003, Berman and Drezner, 2006,

Abouee-Mehrizi et al., 2011, Marić et al., 2012, Camacho-Vallejo et al., 2014].

More complex models, incorporate congestion at facilities, modelled as waiting queues.

Based on these aspects we can identify two environments:

— A user-choice environment, typically modelled by lower-level problem containing equi-

librium constraints or a Logit function of utility.

— A centralized authority environment can be modelled by both single and bilevel for-

mulations.

1.2.1. User-choice environment

When clients choose the facilities to patronize, we talk about a user-choice environment.

The assumption here is that clients are selfish and they minimize their individual disutility,

which is typically expressed as a linear combination of different parameters (e.g., distance,

congestion, price, etc.). We distinguish here two types of behaviour, namely deterministic

and stochastic.

The most common rule when describing the patronizing behaviour is the deterministic

one, which we have considered in all our three articles. The disutilities that we have used

are, respectively

ui,j =







ti,j + αwj + βpK,j (1st article)

ti,j + αwj (2nd article)

ti,j + αwj + βpj (3rd article),

(1.2.1)

where wj represents the waiting time at facilities, pK,j the probability of balking, and pj the

price. Each customer will choose the facility that she finds most attractive. In this case,

customers are assigned to facilities according to Wardrop’s equilibrium principle. According

to it, the disutility of unchosen paths (facilities) is higher than the disutility of the chosen

ones. Let γi denote the minimum disutility for users originating from node i. Then, the

optimal solution x∗ is characterized by the complementarity system

ui,j(x
∗) = γi, if x∗i,j > 0

ui,j(x
∗) ≥ γi, if x∗i,j = 0,

(1.2.2)
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and the users’ problem is written as

0 ≤ xi,j ⊥ uij − γi ≥ 0, i ∈ I; j ∈ J. (1.2.3)

Alternatively, we can use vector-matrix notation and write Eq. (1.2.3) as a variational

inequality problem. We group xi,j and ui,j into column vectors x, u ∈ R
|I|·|J |, and given

upper-level variables y and µ, the variational inequality V I (u(x), X) is to find x∗ ∈ X(y, µ),

such that

〈u(x∗), x∗ − x〉 ≤ 0 ∀x ∈ X, (1.2.4)

where X =
{

x : yj ≥ xi,j ≥ 0;
∑

j∈J = di

}

. Then, a solution of the variational inequality

will correspond to an equilibrium solution.

If u is a gradient, we define the function U : R −→ R
|I|·|J |, such that ∇U(x) = u(x). If U

is twice continuously differentiable and convex, V I (u(x), X) can be written as the following

convex optimization problem [Beckmann et al., 1956]

LL1: min
x

U(x) (1.2.5)

s.t.
∑

j∈J∗

xij = di ∀i ∈ I (1.2.6)

xij ≥ 0. ∀i ∈ I; ∀j ∈ J∗ (1.2.7)

Some papers consider the choice as probabilistic, and they use a random utility model.

In our first article we also consider probabilistic behaviours. In this framework, the utility

of facility j for a customer issued from demand node i is given by

ũij = −uij + εij

where εij are independent Gumbel variates with common scale parameter θ and variance

π2/(6θ2). In this multinomial logit framework (see [McFadden, 1974]), the demand gen-

erated at node i that patronize an open facility j is given by the expression

xij = di
e−θui,j
∑

l∈J∗

e−θui,l
, (1.2.8)
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where J∗ represents the set of open facilities. For small values of θ, users are spread more

or less evenly between facilities while, when θ is large, the assignment approaches that of

a Wardrop equilibrium. Similar to its deterministic counterpart, the solution of Eq. (1.2.8)

can be obtained by solving the program (see [Fisk, 1980]).

LL2: min
x, λ, ρ, w, p

∑

i∈I

∑

j∈J∗

[
1

θ
xij ln xij

]

+ U(x)

s.t.
∑

j∈J∗

xij = di, ∀i ∈ I

xij ≥ 0, ∀i ∈ I; ∀j ∈ J∗ .

Due to the presence of the equilibrium constraints, the problem belongs to a larger

class of problems, named MPEC (mathematical programs with equilibrium constraints).

The original problem can be reformulated as NP-hard bilevel program, where at the upper

level we have the firm’s optimization problem (e.g., maximizing the market share or profit,

minimizing the costs, etc.). and at the lower level we have users’ problem (LL1) or (LL2).

1.3. Competitive Facility Location

The Competitive Facility Location Problem (ComFLP) can be defined as an FLP that in-

volves several rival firms, already present in, or joining the market in the future. Competitors

strive to capture maximum market share, or to maximize their profit. On the other hand,

users choose the facility to patronize based on certain parameters: facility attractiveness,

price of the commodity, distance from the customer to the facility, etc.

ComFLP involve a number of interacting agents that interact with one another and is a

part of Game Theory, which is a branch of mathematics that studies the strategic human

behaviour in a competitive situation. The participants involved in the game (i.e. decision-

makers) are the players. Each player is faced with one or more alternatives or strategies.

The outcome of the game depends on the decisions of all players, but uncertainty elements

can also be present in the game.

Economists have developed a number of models based on different types of behaviour.

When only two players compete in the market over a homogeneous product, we have a
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duopoly. Three quintessential examples of duopoly models are Cournot-Nash, Bertrand and

Stackelberg.

(1) Cournot-Nash

If the quantity competition is simultaneous, we have a Cournot-Nash duopoly. The

selling price is represented by a decreasing function of the total demand, called the

inverse demand function, that we note p(x). Let c1(x1) and c2(x2) be the production

costs of the two firms, respectively. Then, the profit function of firm i is:

fi(x1, x2) = xip(x2 + x2)− ci(xi).

If the objective of every firm is to maximize their profit, then the quantities are given

by the Nash equilibrium.

(2) Bertrand

Bertrand’s model is similar to Cournot-Nash, but the players compete in price, rather

than in quantities, and it assumes that clients want to buy from the lowest priced

firm. If the firms charge the same price, the demand is split evenly between the two.

Then, at equilibrium, prices will equal the marginal cost.

(3) Stackelberg

Let us consider the same duopoly scenario, but the companies are moving sequentially

rather than simultaneously. Firm 1 chooses the quantity to produce. Next, firm 2

takes note of the quantity produced by firm 1, and produces its quantity accordingly.

We call firm 1 the leader and firm 2 the follower. The price is set once both quantities

are decided.

In order to have a Stackelberg equilibrium, some assumptions are being made. First,

the follower observes the leader’s action, and the leader must know it ‘ex ante’ .

Second, the follower must commit to a future Stackelberg action, and the leader must

be aware of it, as well. In practice firms engage into a Stackelberg game only if one

has the possibility to move first.

The main difference between a Cournot-Nash or Bertrand, and a Stackelberg model is

that in the case of the former two model, no player is at disadvantage due to the simultaneity

of the game. In a Stackelberg game, one player must move first, which could be an advantage

or disadvantage.
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Acording to [Plastria, 2001], when modelling a ComFLP, several aspects are taken into

account: competition type, features of the market and decision variables.

The simplest type of competition is the static one, in which competitors already present in

the market are unresponsive to the actions of the newly entered firm, thus their characteristics

remain fixed. When the competitors react to the actions of the firm emerging into the

market (competition with foresight [Plastria, 2001]), we have a sequential model. The

firms engage in a Stackelberg game, in which the newcomer plays the role of the leader and

the follower is played by the existing firms. A full overview on the sequential models is

provided by [Eiselt and Laporte, 1997].

Interactions between competitors can also be described by a dynamic model, where later

players have some knowledge about earlier actions. The challenge of such a model is to find

the equilibrium solution, if one exists.

The Competitive Facility Location Problem was first introduced by Hotelling

in 1929, when he studied the competition between two firms under inelastic de-

mand [Hotelling, 1929]. In his work he considered a very simple scenario: a demand

population is uniformly distributed along a line segment, and two firms locate their service

points at distances a and b from the two segment ends (A and B), respectively. Customers

choose one of the firms based on the sum of commodity price and transportation costs, in

an attempt to minimize their total costs. The objective of each firm is to maximize their

profit. The decision variables of ComFLP are common to the generic FLP: the number of

facilities to locate, as well as their locations, their properties (capacity, service rate, etc.),

the objective of the firms, etc. Later, Labbé and Hakimi [Labbé and Hakimi, 1991],

described a two-stage location–allocation game in which two firms are engaging in a

Nash game. The two firms are striving to maximize their profit. First, they decide on

location of their facilities, and at the second stage on the quantities to produce. A more

recent contribution is proposed by [Ljubić and Moreno, 2018] who address a market

share-maximization competitive FLP, where captured customer demand is represented

by a multinomial logit model. The authors solve this problem using two branch-and-cut

techniques, namely outer approximation cuts and submodular cuts.

More elaborate developments of ComFLP have been proposed in the literature. They

involve queueing at facilities, and interactions between agents. Most of them are based on
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Stackelberg games, and we can identify two main trends, when it comes to who are the

players. In one, the game is played between two firms, and they can react to each others’

actions, while clients are also taken into account, although their behaviour is modelled by

making simplifying assumptions (e.g. the gravity-based rule) [Küçükaydin et al., 2011,

Saidani et al., 2012, Beresnev, 2013].

Another possibility is that one player is represented by the newly entered firm, and the

second one by the users. One or more competitors are also present in the game, but they

remain unresponsive to the other firm action [Marianov et al., 2008].

To the best of our knowledge, [Marianov et al., 2008], are the first to study the CC–

FLP. They consider a problem where a new firm is making location decisions in a market

where competitors are already operating, but they remain unresponsive to the actions of

the newly arrived. The objective of the entering firm is to maximize market share. Users

patronize a facility with a probability given by a Logit function of distance and waiting

time. Congestion is captured as waiting time in facilities. As the new firm attracts clients,

its facilities become more and more congested and the waiting time at its facilities increases,

which can deter some customers. An equilibrium is reached when no client has incentive to

deviate from her path. Facilities are considered as M/M/s/K queues, which means arrivals

and service are Poisson processes with the mean rate λ and µ, respectively. There are s

servers available, and the queue length is limited to K customers.

1.4. Pricing

Pricing is a key component in market competition. On the one hand, lowering the prices

might attract more customers, but their presence creates congestion, which, finally, might

deter customers. On the other hand, a higher price might attract less customers, but the

firm could still increase its profit.

Three types of pricing strategies are typically considered in the literature

( [Hanjoul et al., 1990]):

— mill pricing: prices can vary between facilities;

— uniform pricing: all facilities charge the same price;

— discriminative pricing: customers patronizing the same facility can be charged differ-

ent prices.
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While the location pricing literature is extensive, most papers study hierarchi-

cal models in which the locations are decided first, then the price competition is

defined by the Bertrand model [Pérez et al., 2004, Panin et al., 2014]. Several au-

thors [Hwang and Mai, 1990, Cheung and Wang, 1995, Aboolian et al., 2008]

argue that this strategy is suboptimal. A joint decision is more suited for practical

applications and can provide valuable insight into whether or not is profitable for a firm to

enter a new market.

Some papers consider simultaneous decisions on location, price and capacity, but they

omit competition [Dobson and Stavrulaki, 2007, Abouee-Mehrizi et al., 2011,

Tong, 2011, Hajipour et al., 2016, Tavakkoli-Moghaddam et al., 2017].

[Pahlavani and Saidi-Mehrabad, 2011] include competition, but they consider lo-

cation as fixed.

Other papers consider congestion and competition and pricing, but locations are fixed

[Sattinger, 2002, Chen and Wan, 2003]. A full review of the literature concerning com-

petition in queueing systems is provided in [Hassin, 2016].

1.5. Contribution

The aim of this thesis is twofold. From a modelling standpoint we extend and improve

the existing models by incorporating location, service levels and pricing decisions into a

competitive, congested user-choice market. Users select facilities based not only on proximity,

but on more realistic traits, such as congestion, price, probability of service denial, etc. In

our three papers we analyze various CC–FLP models that fit the MPEC framework, which

have not been previously investigated.

Another significant novelty of our work is from an algorithmic point of view. The

bilevel literature is very rich, but the variants of CC–FLP that we consider are extremely

challenging, due to their combinatorial, highly non-linear, non-differentiable, and nonconvex

nature, even when location variables are fixed.

The lower level is non-linear, the upper-level is non-convex, and the KKT optimality

conditions of the lower-level can not be reformulated into an MILP. Since the performance of

the exact and quasi-exact bilevel algorithms typically rests on these conditions, they cannot

be successfully applied.
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Metaheuristics could be used in our case (Tabu search, genetic algorithms, etc.), but they

are not ideal, for several reasons. First, the solution space would increase tremendously when

modelling the upper-level non-binary variables, like service level and price. Additionally they

only yield local optimums, which is not desirable, as we are interested in global (or close to

global) optimal solutions. For these difficult problems, we propose exact and approximated

algorithms, as well as tailored heuristics.

What distinguishes our papers from one another is

i) The presence of different elements in the models. In the first paper we consider con-

tinuous service levels, finite queues, and both stochastic and deterministic patronizing

behaviour. In the second article service level is fixed and the number of servers is the

decision variable. The third article incorporates pricing, and the service levels are

continuous.

ii) The algorithms employed are significantly different. In the first article we propose

a piece-wise linear approximation (matheuristic) and a tailored heuristic. While the

second article is dedicated to a Branch-and-Bound exact method, the third paper

proposes an approximated method inspired from the toll pricing network methods.
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Chapter 2

Competitive facility location with selfish users and queues

In the first article we consider the problem faced by a service firm locating new facilities

in a competitive market. A customer traveling from node i to facility j incurs a fixed travel

time tij. Arriving at facility j, she observes the queue and joins it, provided there are no

more than K − 1 customers in the system. If there are no vacancies, she is denied access,

and leaves the system as a lost customer.

The objective of the emerging firm is to maximize the total throughput rate at its

facilities, rather than the arrival rate, which was previously considered in the litera-

ture [Marianov et al., 2008]. We demonstrate why, when balking is present, the through-

put rate is preferable to the arrival rate, and how the maximization of the latter can lead

to paradoxical and unrealistic situations. The firm decides on location (binary) and a con-

tinuous service rate, has a limited budget that can be spent on building facilities or service

rates.

For the sake of computational tractability, and for ‘cleaner analytical re-

sults’ [Berman and Krass, 2015], we use single-server queues in this paper. But

our model is flexible and can accommodate a number of situations, that include or not

balking. Other types of queues can be considered (e.g., M/M/s/K or M/M/s) provided

that the number of server s is fixed, and the decision variable is the service rate µ.

In a random utility model, clients patronize the facility that minimizes their individual

disutility, expressed as a linear combination of travel time, queueing, and probability of

service denial. Then, the utility of facility j for a customer originating from demand node i



is

ũij = −uij + εij = −(tij + αwj + βpKj) + εij,

where εij are independent Gumbel variates with common scale parameter θ and variance

π2/(6 · θ2).
In this multinomial Logit framework, flows between demand nodes i and open facilities

j are determined according to the formula (see [McFadden, 1974])

xij = di
e−θ (tij + αwj + βpKj)
∑

l∈J∗

e−θ (til + αwl + βpKl)
, (2.0.1)

where J∗ represents the set of open facilities. For large values of θ, the assignment approaches

that of a Wardrop equilibrium.

Eq. (2.0.1) can be reformulated as a convex optimization problem. Then, the original

program is a non-linear bilevel problem (and an MPEC), involving a leader and a follower

(users). Beyond the analysis of the theoretical properties of our model, we propose two

resolution techniques.

The first technique is based on the bilevel reformulation. We write a piecewise linear

approximation of the lower-level nonlinear terms and constraints, followed by the optimality

conditions of the obtained program. Then, the resulting bilinear terms, and the upper-level

objective function are linearized in order to reduce the model to an MILP, which we solve

using an off-the-shelf software, such as CPLEX. The algorithm is a matheuristic for which

no formal bound on the error is guaranteed, in the presence of balking. In its absence, this

approach is asymptotically exact.

The second approach is a heuristic method based on a surrogate single-level problem that

automatically yields user-optimized flows.

Author contributions

— The general research ideas were proposed by my supervisor, Patrice Marcotte.

— The research (including proofs, code, experiments, etc.) was carried out by me.

— The article was written by me, and it was revised and corrected by Patrice Marcotte.
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ABSTRACT

In a competitive environment, we consider the problem faced by a service firm that makes

decisions with respect to both the location and service levels of its facilities, taking into

account that users patronize the facility that maximizes their individual utility, expressed as

the sum of travel time, queueing delay, and a random term. This situation can be modelled

as a bilevel program that involves discrete and continuous variables, as well as linear and

nonlinear (convex and nonconvex) functions. We design for its solution an algorithm based

on piecewise linear approximation, as well as a matheuristic that exploits the very structure

of the problem.

Keywords: location, bilevel programming, equilibrium, queueing, nonconvex

2.1. Introduction

2.1.1. Contribution of this paper

While the literature concerning discrete facility location is vast, few studies have focused

on user choice, where the latter frequently involves congestion, either along the paths leading

to a facility, or at the facility itself. The aim of this paper is to analyze a model that captures
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the key features of congestion within a user choice environment, yielding a bilevel program

where the leader firm’s objective function integrates the stochastic equilibrium resulting from

the choice of locations and the associated service levels. Beyond the analysis of the model’s

theoretical properties, the paper is devoted to the design and analysis of efficient algorithms,

whose nature is either based on approximations or heuristic.

Our model is closely related to that of [Marianov et al., 2008], who propose a location

model where queueing (and balking) is explicitly taken into account, while users are assigned

to facilities according to a logit discrete choice model, yielding a mathematical program

involving user-equilibrium constraints. Their model is well suited to a variety of applications,

such as location of shops, restaurants, walk-in clinics, etc., where user flows are not in direct

control of the optimizer, but are dictated by utility maximization principles. One aim of

this paper is to extend and improve their model, both from the modelling and algorithmic

standpoints. Our main contributions are the following:

— The introduction of service rate as endogenous variables, as well as the correct mod-

elling of the balking process, by integrating within a user’s utility the probability of

service denial.

— The consideration of competing facilities.

— The explicit treatment of the deterministic (Wardrop) case, which corresponds to a

zero-variance logit model.

— The reformulation of the model as a standard bilevel model, thus allowing an approx-

imate reformulation as a mixed integer linear program MILP.

— The design of a heuristic algorithm and its validation against the MILP solution.

The remainder of this paper is organized as follows. Section 2.1.2 is devoted to the

literature review, and Section 2.2 to a description of the model, together with a study of

its theoretical properties. Section 2.3 is dedicated to algorithms: a linear approximation

algorithm in Subsection 2.3.1, and a user-driven heuristic in Subsection 2.3.2. Numerical

experiments, discussion of our results, as well as an illustrative case are detailed in Section 2.4.

Extensions of the current framework are mentioned in the concluding Section 2.5.
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2.1.2. Literature review

Location problems have been widely studied, due to their simple structure and numerous

real-life applications. Most literature is concerned with versions of the problem where users

are simply assigned to shortest paths, and thus sidesteps the nonlinearities associated with

the important issue of user behaviour, including congestion. In our model, customers select

their own path and whenever congestion occurs, customers leaving from the same origin may

travel along different paths or patronize different facilities. This user behavior principle fits

the framework of a Wardrop equilibrium in the deterministic case, and of stochastic user

equilibrium when a random utility model of delay is assumed. The overall bilevel model

belongs to the class of mathematical programs with equilibrium constraints (MPEC), where

the equilibrium can be expressed as a variational inequality. It can be reformulated as an

NP-hard discrete nonlinear bilevel program which, it goes without saying, poses formidable

challenges from the computational point of view.

Competitive location models were introduced by [Hotelling, 1929]. In his seminal pa-

per, the author addresses the simple situation where two firms engage in spatial competition,

with the purpose of maximizing individual profit through the location of a point along a seg-

ment located at respective distances a and b from the endpoints. It is assumed that demand

is uniformly distributed along the line segment, and customers patronize the closest facil-

ity. This work represents the cornerstone for a plethora of articles concerned with the topic

of competitive facility location. The environment considered therein was generalized to a

network by [Hakimi, 1983], who studied variants of the weighted p-median problem in-

volving competition. [Labbé and Hakimi, 1991] address a two-stage location-allocation

game, where location is decided at the first stage while, at the second stage, two firms

engage in a Cournot game with respect to quantities. An interesting development is con-

sidered by [Küçükaydin et al., 2011], where one firm decides the sites and attractiveness

for new facilities in order to maximize its profit. In this Stackelberg (leader-follower) set-

ting, the competitor responds to the leader’s action and adjusts its attractiveness level to

maximize its profit, while user behavior is characterized by Huff’s gravity law. In the work

of [Beresnev, 2013], two competing firms strive to maximize profit as well, but user prefer-

ences are provided by a linear order relation. The model is then solved by branch-and-bound

techniques. [Drezner et al., 2015] address a leader-follower competitive coverage model,
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where the attractiveness of a facility is related to an attraction radius, and customers are

spread evenly among facilities that fall within this radius. The leader can open new facili-

ties or adjust the attractiveness of existing ones, while the competitor responds accordingly.

Both firms compete for market share within budget limits.

Besides competition, congestion occurs naturally in an environment with limited re-

sources. It can arise either at facilities, or along the road. Although basic models are

content to incorporate congestion in the form of maximum capacity, more elaborate models

capture congestion through functional forms derived or not from queueing theory. Within

this framework we note the work of [Desrochers et al., 1995] who consider an extension of

a deterministic facility location problem, where individual delays (travel time) increase with

traffic. The model is centralized, namely, users are assigned as to minimize the sum of open-

ing cost, waiting delays, and travel times experienced by the users. Although the authors

mention a user-choice version of their model that fits the bilevel programming paradigm,

they do not suggest solution algorithms for its solution. A related formulation, where service

rates are endogenous, is considered by [Castillo et al., 2009]. Users are assigned to facili-

ties as to minimize the sum of the number of waiting customers and the total opening and

service costs. Within the framework of centralized systems, [Marianov, 2003] formulates a

model for locating facilities subject to congestion , and where demand is elastic with respect

to travel time and queue length. In this framework, customers are assigned to centers in

order to maximize total demand. Location of congested facilities when demand is elastic has

also been investigated by [Berman and Drezner, 2006]. Similar to [Marianov, 2003],

the objective of the model is to maximize total demand, subject to constraints on the waiting

time at facilities. Heuristic procedures are proposed for its solution.

Another work worth mentioning is that of [Zhang et al., 2010a] who propose a method-

ology for addressing a congested facility network design problem, with the aim of improving

healthcare accessibility, i.e., maximize the participation rate. The environment is user-

choice, with users patronizing the facility that minimizes the sum of waiting and travel

times, while demand is elastic with respect to total expected time experienced by clients.

The authors illustrate the performance of a metaheuristic procedure on data issued from a

network of mammography centers in Montreal, Canada. Congestion has also been considered

by [Abouee-Mehrizi et al., 2011] in the context of simultaneous decisions of locations,
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service rates and prices of facilities located at vertices of a network. They assumed that de-

mand is elastic with respect to price, and clients spread among facilities based on proximity

only, according to a multinomial logit random utility model. Congestion, which arises at

facilities, is characterized by queueing equations. For a more elaborate review of congestion

models in the context of facility location, the reader is referred to [Boffey et al., 2007].

Although congestion and competition have been previously combined, few papers have

tackled both within a user-choice environment. Actually, most papers that incorporate

congestion do not account for competition. On the other hand, when competition is present,

users select facilities based on congestion-free traits such as distance or attractiveness. To

the best of our knowledge, the only paper to address congestion in a competitive user-choice

environment is that of [Marianov et al., 2008]. A taxonomy of the models most relevant

to our research is provided in the e-companion to this article.

2.2. The model

2.2.1. Preliminaries

Let us consider the problem faced by a firm (a service center, for instance) that makes

location and service level decisions, with the aim of maximizing the number of customers

to attract with respect to its competitors, under a budget constraint. A salient feature of

the model is that user behavior is explicitly taken into account. Precisely, users patronize

the facility that maximizes their individual utility, i.e., minimizes their disutility. The latter

is estimated as the sum of travel time to the facility, queueing at the facility, plus the

actual probability of balking (facilities are modelled as finite-length queues). In this bilevel

setting we assume a weak form of competition where competitors do not react to the leader’s

decisions, i.e., their locations and service levels are fixed.

Since our model is closely related to that of [Marianov et al., 2008], we provide a

detailed description of the latter. In that work, the authors consider an oligopoly scenario

in which firm A locates p new facilities in a market where competitors already operate. The

‘game’ takes place over a bipartite graph V = I × J , where a vertex v may correspond to

either a location (v ∈ J) or a demand node (v ∈ I), the latter endowed with demand dv. We

denote by J1 ⊆ J the set of candidate locations for firm A, and by Jc the set of locations of its

competitors. A customer leaving vertex i ∈ I for facility j ∈ J incurs a fixed travel time tij.
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At facility j, this customer enters an M/M/s/K queue that involves s servers with identical

mean service time µ, and an associated waiting time wj. Whenever the queue reaches length

K − s (which corresponds to K customers in the system), any arriving customer is denied

access and leaves the system as a lost customer. The disutility uij of a customer is defined

as a convex combination of travel time tij and queueing delay wj, and ignores the actual

constant service time, i.e.,

uij = αtij + (1− α)wj, (2.2.1)

for some scalar α between 0 and 1.

The arrival and service processes are governed by Poisson (memoryless) processes. If

the arrival rate at facility j is λj, the probability that n customers are in the queue (or are

served) is

pnj =







(ρnj /n!)p0j if n ≤ s,

(ρnj /(s!s
n− s))p0j if s < n ≤ K,

0 if n > K,

(2.2.2)

where ρj = λj/µ is the intensity of the queueing process and

p0j =

[

1 +
s∑

n=1

ρnj
n!

+
ρsj
s!

K∑

n=s+1

(ρj
s

)n− s
]−1

. (2.2.3)

The demand side is cast within the framework of a random utility model, where flows

between vertices i and j are determined according to the logit formula

xij =
yje
−θuij

∑

k∈J1

yke
−θuik +

∑

k∈Jc

e−θuik
, (2.2.4)

where yj is a binary variable set to 1 if a facility is open at vertex j ∈ J1, and to 0 otherwise.

Competitors’ facilities are already open, hence the absence of the factor yk in the second

summation in the denominator of Eq. (2.2.4). Parameter θ is set to π/(σ
√
6), where σ is the

standard deviation of the Gumbel random variable yielding the probabilities (or proportions)

xij. If one denotes by λj the arrival rate at node j, and by λj the throughput rate, the model

of [Marianov et al., 2008] takes the form of the mathematical program

max
x,y,λ,w,L,λ̄,p,ρ

∑

j∈J1

λj
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s.t. λj =
∑

i∈I

dixij, ∀j ∈ J1 ∪ Jc

xij =
yje

−θuij

∑

k∈J1

yke
−θuik +

∑

k∈Jc

e−θuik

, ∀i ∈ I, ∀j ∈ J1 ∪ Jc (2.2.5)

uij = αtij + (1− α)wj, ∀i ∈ I, ∀j ∈ J

wj = Lj/λj, ∀j ∈ J

Lj =
K∑

n=s

(n− s)pnj, ∀j ∈ J

λj = λj(1− pKj), ∀j ∈ J

xij ≤ yj, ∀i ∈ I, ∀j ∈ J1
∑

j∈J

xij = 1, ∀i ∈ I

∑

j∈J1

yj = P,

0 ≤ xij ≤ 1, ∀i ∈ I, ∀j ∈ J

λj ≥ 0, ∀j ∈ J

ρj = λj/µj, ∀j ∈ J

yj ∈ {0, 1}, ∀j ∈ J1

constraints (2.2.2) and (2.2.3).

Once the binary location variables yj are set, the remaining quantities are determined through

the solution of a nonlinear fixed point problem, where the probabilities xij of choosing a

facility j depend on waiting times, which are themselves functions of the demand rate vector

λ, while demand rates depend on the probabilities xij. This yields a mathematical program

with an embedded fixed point problem described in Eq. (2.2.5). The authors show that this

equation admits a unique solution, and propose a variant of Newton-Raphson algorithm for

its determination. The model is then addressed by a two-phase meta-heuristic procedure that

combines GRASP (Greedy Randomized Adaptive Search Procedure) and Tabu Search. In

the initial phase, facility locations are selected and a nonlinear assignment problem is solved.

In the second phase, Tabu Search is used to improve upon the initial location decisions.
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A key feature of the model is the possible occurrence of balking, due to a fixed buffer

of size K − s. Besides its practical importance, balking allows the arrival rate at a facility

to actually exceed the service rate, without the queues growing unbounded. However, this

has two important consequences. First, note that the objective is to maximize the number

of clients
∑

j∈J1
λj showing up at the facilities and not the number of clients

∑

j∈J1
λ̄j that

actually access service. It follows that a solution with a low rate of served clients might be

preferred to one with a high rate, if both its arrival and rejection rates are very high. This

situation is illustrated in Figure 2.1. In this example, facilities can be set up at three sites

(A, B and D) coinciding with two demand vertices. The competitor’s facility is located at

C. Demand d1 is 200 at vertex 1 and d2 = 10 at vertex 2, while distances between vertices

are shown next to the edges of the network. On the supply side, the common service rate at

all facilities is equal to 100. Facilities are modelled as M/M/1/99 queues. For simplicity, we

assume θ = ∞, the limiting case of the random utility model. Accordingly, at equilibrium,

clients issued from a common origin will experience identical delays (travel time plus queueing

delay), thus achieveing a Wardrop equilibrium.

B 1 A 2

D

C

50

50

50

10

50

Figure 2.1. Paradox when maximizing λ instead of λ̄.

Assuming that the leader’s budget only allows two facilities to be opened, the options

are to open sites A and B, or sites A and D (B–D is equivalent to A–D). In the first case,

demand d1 is assigned to sites A and B, while d2 patronize the competitor’s facility. Basic

arithmetic shows that the total arrival rate at the leader’s facilities is λ = λ1+λ2 = 200, and

that the number being serviced is λ̄ = λ̄A + λ̄B = 198. If facilities are opened at sites A and

D, d1 is assigned to site A, and d2 to site D, with no client assigned to the competitor. The

total arrival rate at the leader’s facilities is λ = λA+λB = 210 and the amount of customers
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receiving service is λ̄ = λ̄A+λ̄B = 101. In either case, the maximum λ corresponds to a much

smaller value of λ̄. Moreover, the solution that attracts more customers is less profitable, as

roughly half of the clients will balk, due to no vacancies in the queue, and thus experience

low delays at the facility.

A second issue is related to the definition of customer utility, which embeds travel and

queueing delays, but ignores balking. Returning to the example of Figure 2.1, when sites A

and D are open, demand d1 originating in 1 patronizes site A, notwithstanding a probability

of balking close to 50%. This situation is not realistic, given that facilities located at sites C

and D are relatively close and have low waiting times and probability of rejection. Since the

queueing delay is directly related to the buffer capacity K − 1, facilities with small buffers

(or none at all!) will turn down most arriving customers, in contrast with facilities equipped

with large buffer zones. This leads to the paradoxical situation where customers will favour

facilities for which the probability of balking is high, since it will minimize the overall time

spent in the system! This effect is exacerbated by the maximization of the arrival rate (rather

than the throughput rate) and will only disappear if buffers have infinite capacities.

2.2.2. A new model

We now focus on a variant of the model of [Marianov et al., 2008] that differs in three

significant ways: the objective is the throughput rate (rather than the arrival rate), service

rates are decision variables, and users integrate within their utility function the probability

of balking. Due to its generality, the model is flexible and can accommodate a number of

situations that will be mentioned in Section 2.5. Its main elements are the following.

— The objective is to maximize the throughput rate. This is relevant to applications

that arise in health care management (see [Zhang et al., 2010b]). In the context

where revenue per customer served is constant, this is equivalent to maximizing the

overall profit.

— Denial of service, i.e., balking, may be the result of either physical constraints or user

behaviour.

— Customer utility is expressed as a linear combination of travel and wait-

ing time, which is a standard assumption in the choice behaviour literature

(see [Berman and Krass, 2015]).
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— For the sake of computational tractability, facilities are modelled as single-server queue

whose service rates are endogenous to the model. This is a standard approach in

the location science literature, and can be preferable to the multi-server approach.

In [Berman and Krass, 2015], the authors argue that this representation ‘leads

to cleaner analytical results’ and can be more realistic in some practical situations.

For instance, a medical clinic requires different types of personnel (doctors, nurses,

machines, etc.) and it might be easier for the planner to reason in terms of people

served per hour rather than to model each server separately.

— The leader has a limited budget that can be spent on building facilities or improving

service rates. All the techniques developed in the paper would also apply to a model

where setup costs enter the objective.

We now specify the notation specific to the model. The budget is set to B, the fixed

cost of locating a new facility f to cf , while the cost of improving the service rate of an

M/M/1/K queue (K − 1 available places in the queue, and 1 place at the server) by one

unit is cµ. A customer observes the queue upon arrival, and leaves if there are more than

K − 1 customers already waiting.

In this context, the probability pnj of having n customers in the queue (or being served)

at facility j is given by

pnj =







ρnj
1− ρj

1− ρK + 1
j

, n ≤ K, ρj 6= 1

1

K + 1
, n ≤ K, ρj = 1

0, n > K,

(2.2.6)

where ρj = λj/µj is the intensity of the process. Eq. (2.2.6) is another way of rewriting

Eq. (2.2.2) and for a fixed n, pnj is continuous in variable ρj. At facility j, the expected

number Lj of customers in the system is

Lj =
K∑

n=0

npnj. (2.2.7)

The effective arrival rate, i.e., the number of customers that access the service, is denoted

by λ, i.e.,

λj = λj(1− pKj), ∀j ∈ J. (2.2.8)
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The average waiting time wj in the system (including service time) is a function of the service

and arrival rates. According to Little’s formula, we have that

wj =
Lj

λj
, ∀j ∈ J. (2.2.9)

Basic algebra yields the expression of the waiting time at open facilities:

wj(λj, µj) =







1

µj



K +
K

ρKj − 1
− 1

ρj − 1



 , ρj 6= 1

K + 1
2µj

, ρj = 1.

(2.2.10)

Note that wj, according to this definition, is a continuous function with respect to ρ, λ and

µ, even as ρj = λj/µj = 1.

Stochastic assignment

In a random utility model, clients patronize the facility that minimizes their individual

disutility, expressed as a linear combination of travel time, queueing, and probability of

accessing service. In this framework, the utility of facility j for a customer issued from

demand node i is given by

ũij = −uij + εij

= −(tij + αwj + βpKj) + εij,

where εij are independent Gumbel variates with common scale parameter θ and variance

π2/(6 · θ2). It is fair to assume that as long as travel time is not too large, a customer

will patronize a facility in which she is more likely to access service, as opposed to a highly

congested one. In other words, in the customers’ eyes, a facility located at a distance less

than β and with a very low probability of balking is preferable to a near-by facility. In this

context, the parameter β can be interpreted as the price of service accessibility. In practice,

parameters α, β and θ could be estimated using customer surveys. The task of determining

real-values for these parameters is outside the scope of this paper.
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In this multinomial logit framework (see [McFadden, 1974]), the demand generated at

node i that patronize an open facility j is given by the expression

xij = di
e−θ (tij + αwj + βpKj)
∑

l∈J∗

e−θ (til + αwl + βpKl)
, (2.2.11)

where J∗ represents the set of open facilities. For small values of θ, users are spread more

or less evenly between facilities while, when θ is large, the assignment approaches that of

a Wardrop equilibrium (see [Fisk, 1980]). According to our assumptions, the problem can

be formulated as the equilibrium-constrained nonlinear mixed integer program involving a

leader and a follower (users):

(P) LEADER: max
y, µ, λ, λ̄,
x, w, p, ρ

∑

j∈J1

λj (2.2.12)

∑

j∈J1

cfyj +
∑

j∈J1

cµµj ≤ B, (2.2.13)

µj ≤Myj, ∀j ∈ J1 (2.2.14)

λj = λj(1− pKj), ∀j ∈ J (2.2.15)

yj ∈ {0, 1}, µj ≥ 0, ∀j ∈ J1 (2.2.16)

USERS: xij = di
yj · e−θ (tij + αwj + βpKj)

∑

l∈J∗ e
−θ (til + αwl + βpKl)

, ∀i ∈ I; ∀j ∈ J (2.2.17)

λj =
∑

i∈I

xij, ∀j ∈ J (2.2.18)

ρjµj = λj, ∀j ∈ J (2.2.19)

constraints (2.2.6) and (2.2.10). (2.2.20)

The decision variables are the vectors µ and y, while the user assignment x is the solution

of a fixed point problem. In Eq. (2.2.14), M is a sufficiently large constant that can be set

to M = (B − cf )/cµ.
Problem (P) has a stochastic basis and the limiting case θ = ∞ yields a deterministic

version of (P) where customers are assigned to facilities according to Wardrop’s equilibrium

principle. If ci(µ) denotes the minimum disutility (travel + waiting time and probability of

balking) for users originating from node i, the optimal solution x∗ is then characterized by
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the complementarity system

tij + αwj(x
∗, µ) + βpKj(x

∗, µ)







= ci(µ), if x∗ij > 0

≥ ci(µ), if x∗ij = 0,
(2.2.21)

and the deterministic version of (P) takes the form

(P*)

LEADER: max
y, µ, λλ̄,
x, w, p, ρ

∑

j∈J1

λj (2.2.22)

s.t. constraints (2.2.13) –(2.2.16) (2.2.23)

USERS: tij + αwj(x
∗, µ) + βpKj(x

∗, µ)− ci(µ) ≥ 0, ∀i ∈ I; ∀j ∈ J (2.2.24)

xij (tij + αwj(x
∗, µ) + βpKj(x

∗, µ)− ci(µ)) = 0, ∀i ∈ I; ∀j ∈ J (2.2.25)

xij ≥ 0, ∀i ∈ I; ∀j ∈ J (2.2.26)

constraints (2.2.18), (2.2.19) (2.2.6) and (2.2.10). (2.2.27)

In (P), the solution of the lower level equilibrium problem can be obtained by solving a

convex optimization problem akin to [Fisk, 1980]. In our framework, this program takes

the form

(P2)

min
x, λ, ρ, w, p

∑

i∈I

∑

j∈J∗

[
1

θ
xij ln xij + xijtij

]

+ α
∑

j∈J∗

∫ λj

0

wj(q, µj) dq + β
∑

j∈J∗

∫ λj

0

pKj(q, µj) dq

(2.2.28)

s.t.
∑

j∈J∗

xij = di, ∀i ∈ I (2.2.29)

xij ≥ 0, ∀i ∈ I; ∀j ∈ J∗ (2.2.30)

λj =
∑

i∈I

xij, ∀j ∈ J∗ (2.2.31)

ρjµj = λj, ∀j ∈ J (2.2.32)

constraints (2.2.6) and (2.2.10). (2.2.33)

Indeed, it is easy to check that, if θ is finite, xij cannot be zero at the solution, which implies

that inequality (2.2.30) can be left out. If we let ai, and cj be the Lagrange multipliers
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associated with Equations (2.2.29) and (2.2.31), respectively, the first-order necessary and

sufficient optimality conditions are given by

∂L

∂xij
= 0 ⇒ 1

θ
(ln xij + 1 ) + tij − ai + cj = 0 (2.2.34)

∂L

∂λj
= 0 ⇒ αwj(λj, µj) + βpKj(λj, µj)− cj = 0. (2.2.35)

It follows that cj = αwj(λj, µj) + βpKj(λj, µj), and Equation (2.2.34) yields

xij =
e−θuij

e−θai + 1
.

By substituting xij into (2.2.29) we obtain

xij = di
e−θuij
∑

l∈J∗

e−θuil
.

Now, replacing the fixed point problem by its optimization counterpart, the original

model can be formulated as a bilevel program. At the upper level, the firm maximizes total

market capture, subject to a budget constraint while, at the lower level, the follower solves

Problem (P2). The main advantage of this reformulation is that we can adapt for its solution

methods and algorithms from convex bilevel programming.

2.2.3. Properties of the model

This subsection is devoted to the properties and features of our model. First, let us con-

sider the integrals of the waiting time and probability of balking, Wj(λj, µj) and PKj(λj, µj)

respectively, that enter the lower level’s objective function. Note that wj and pKj are con-

tinuous functions (as previously defined). We have

Wj(λj, µj) =

∫ λj

0

wj(q, µj) dq =







∫ λj

0

1

µj









K +
K

(
q

µj

)K
− 1

− 1
q

µj

− 1









dq, if q 6= µj

∫ λj

0

K + 1

2µj

dq, if q = µj.
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PKj(λj, µj) =

∫ λj

0

pKj(q, µj) dq =







∫ λj

0

(
q

µj

)K
−
(
q

µj

)K + 1

1−
(
q

µj

)K + 1
dq, if q 6= µj

∫ λj

0

1

K + 1
dq, if q = µj.

Let lwj =
1

µj

∫ λj

0

−1
q

µj

− 1
dq, and lpj =

∫ λj

0

(
q

µj

)K

1−
(
q

µj

)K + 1
dq. Then

lwj =







− ln

(
q

µj

− 1

)

, if q > µj

− ln

(

1−
(
q

µj

))

, if q < µj

and lpj =







− ln

((
q

µj

)K + 1
− 1

)

µj

K + 1
, if q > µj

− ln

(

1−
(
q

µj

)K + 1
)

µj

K + 1
, if q < µj,

(2.2.36)

which yields the following expression for the integral of the waiting time:

Wj(λj, µj) =







K
λj
µj

+ lwj +
K

µj

∫ λj

0

1
(
q

µj

)K
− 1

dq, if q 6= µj

(K + 1)λj
2µj

, if λj = µj

(2.2.37)

and for the integral of the balking probability:

PKj(λj, µj) =







λj + lpj +

∫ λj

0

1
(
q

µj

)K + 1
− 1

dq, if q 6= µj

λj
(K + 1)

, if λj = µj.

(2.2.38)

Note that the general integral

∫
1

qK − 1
dq = −qF 2

1 (1, 1/K; 1+1/K; qK), where F 2
1 stands

for the hypergeometric function, and does not have a closed-form expression for general K,

although it can be evaluated for any fixed value of K. We have that

∫ λj

0

wj(q, µj) dq = Wj(λj, µj)−Wj(0, µj).
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Since Wj(0, µj) is constant at the lower level, it can be removed from the objective function.

Applying a similar operation to PKj, the lower level objective takes the form

∑

i∈I

∑

j∈J∗

[
1

θ
xij ln xij + xijtij

]

+ α
∑

j∈J∗

Wj(λj, µj) + β
∑

j∈J∗

PKj(λj, µj). (2.2.39)

Proposition 1. The waiting time wj is increasing in λj.

Proposition 2. The probability of balking pKj is increasing in λj.

From the convexity of the function xij ln xij, and Propositions 1 and 2 it follows that:

Proposition 3. The lower level objective function (2.2.39) is convex in x, hence Prob-

lem (P2) is convex.

Proposition 4. When K = ∞, i.e., balking does not occur (in this case, the model admits

a solution only if the total service rate exceeds the total demand rate), W is convex jointly

in λ and µ⇒ the lower level objective function is convex jointly in x, λ and µ.

Although the integral of the waiting time and probability of balking are convex in xij

and λj, they are not jointly convex in λj and µj (see Figure 2.2).

Proposition 5. Wj(λj, µj), the integral of the waiting time, is pseudoconvex.

The proofs of Propositions 1, 2, 4 and 5 are provided in the e-companion to this paper.
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2.3. Algorithms

This section is concerned with the design of two algorithms for addressing the bilevel

location problem. The first approach is based on a piecewise-linear approximation of non-

linear (and nonconvex) functions, in order to obtain a linear bilevel problem that can

be further reduced to a MILP. It is related to the MILP approximations proposed by

[Gilbert et al., 2015] for a bilevel toll problem involving logit user assignment. When-

ever the approximation is fine-grained, we expect its solution to be close to optimal. In the

absence of balking, this algorithm is asymptotically exact, as proven by Theorem 9. When

balking occurs, the algorithm is a matheuristic for which no formal bound on the error is

guaranteed.

In contrast, the second ‘matheuristic’ algorithm solves a surrogate single-level

problem that automatically yields user-optimized flows. It is akin to the approach

of [Marcotte, 1986] for addressing a bilevel network design problem.

2.3.1. A linear approximation method

By linearizing the upper level nonlinear terms λ̄j and the lower-level objective of the

bilevel program, it is possible to reformulate (P) as a mixed integer linear bilevel program,

which can be further reduced to a MILP. This is achieved through the following five opera-

tions:

(1) Approximate the lower-level objective function by a piecewise linear approximation.

(2) Write the KKT optimality conditions of the lower-level linear program to obtain a

single-level mathematical program involving complementarity constraints (MPEC).

(3) Formulate the MPEC as an MILP, through the introduction of binary variables and

‘big-M’ constants.

(4) Solve the resulting MILP for optimum values of µ and y.

(5) Solve the original nonlinear lower-level problem to recover the true values of the

assignment vector x associated with µ and y.
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We now provide a detailed description of the linear approximation used at the first step

of the algorithm. We let

d̃ = max
i ∈ I

{di}, µ̄ = (B − cf )/cµ, and µ̃ = max

{

µ̄, max
j ∈ Jc

{µj}
}

,

and sample the interval (0, d̃] using N points xn, n = 1, .., N such that xi < xj for all i < j,

and consider the linearization

fn(x) = x(ln xn + 1)− xn = anfx+ bnf . (2.3.1)

Similarly, let λ̃ =
∑

i∈I

di be the maximum arrival rate. We sample the interval (0, λ̃] using

R points λr, r = 1, . . . , R such that λi < λj for i < j. We also generate P samples of

µ over (0, µ̃] over the same interval. Let λr and µp be the samples hence obtained. We

linearize Wj(λj, µj) and PKj(λj, µj) using tangent planes at points (λr, µp) for r = 1, . . . , R,

p = 1, . . . , P such that λr 6= µp. Based on the gradients

∇Wj(λj, µj) = (wj(λj, µj),−wj(λj, µj)ρj) (2.3.2)

∇PKj(λj, µj) =

(

pkj(λj, µj),
1

µj

PKj(λj, µj)− pkj(λj, µj)ρj

)

, (2.3.3)

we write the first-order Taylor approximations of Wj(λj, µj) and PKj(λj, µj), respectively:

grp(λ, µ) = Wj(λ
r, µp) +∇Wj(λ

r, µp)




λ− λr

µ− µp



 = arpg λ+ brpg µ+ crpg ,

hrp(λ, µ) = PKj(λ
r, µp) +∇PKj(λ

r, µp)




λ− λr

µ− µp



 = arph λ+ brph µ+ crph .

Next, we convexify WjandPKj. More precisely, we construct convex piecewise linear approx-

imations of these functions by setting them to the maximum of their linear approximations

Wj(λj, µj) ≈ max
r ∈ R, p ∈ P

{grp(λj, µj)} (2.3.4)

PKj(λj, µj) ≈ max
r ∈ R, p ∈ P

{hrp(λj, µj)} (2.3.5)

We approximate x ln x along with Wj and PKj, using fn(xij) as defined in Eq. (2.3.1).

xij ln xij ≈ max
n ∈ N

{fn(xij)} (2.3.6)
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Upon the introduction of auxiliary variables v, u and z, the linear approximation of (P2)

takes the form

(P2-lin)

min
x, λ, v, u, z

∑

i∈I

∑

j∈J∗

[
1

θ
vij + tijxij

]

+ α
∑

j∈J∗

uj + β
∑

j∈J∗

zj (2.3.7)

s.t.
∑

j∈J∗

xij = di, ∀i ∈ I (2.3.8)

λj =
∑

i∈I

xij, ∀j ∈ J∗ (2.3.9)

vij − anfxij ≥ bnf , ∀i ∈ I; ∀j ∈ J∗; ∀n ∈ N (2.3.10)

uj − arpg λj − brpg µj ≥ crpg , ∀j ∈ J∗; ∀r ∈ R; ∀p ∈ P (2.3.11)

zj − arph λj − brph µj ≥ crph , ∀j ∈ J∗; ∀r ∈ R; ∀p ∈ P (2.3.12)

xij ≥ 0, ∀i ∈ I; ∀j ∈ J∗. (2.3.13)

Note that (P2-lin) is an entirely linear formulation, and thus the variables xij could

assume the value 0, although this cannot occur in the initial formulation (P2), due to the

presence of the logarithmic barrier term ln xij. Obviously, this causes no problem.

To achieve a MILP formulation, we first perform a linear approximation of the nonlinear

constraint (2.2.15) using the triangle technique described in [D’Ambrosio et al., 2010].

This yields the equalities

R−1∑

r=1

P−1∑

p=1

(
ljrp + ljrp

)
= 1, ∀j ∈ J1 (2.3.14)

sjrp ≤ ljrp + ljrp + ljrp−1 + ljr−1p−1 + ljr−1p−1 + ljr−1p, ∀j ∈ J1; ∀r ∈ R; ∀p ∈ P (2.3.15)

R∑

r=1

P∑

p=1

sjrp = 1, ∀j ∈ J1 (2.3.16)

λj =
R∑

r=1

P∑

p=1

sjrpλ
r, ∀j ∈ J1 (2.3.17)

µj =
R∑

r=1

P∑

p=1

sjrpµ
p, ∀j ∈ J1 (2.3.18)
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ej =
R∑

r=1

P∑

p=1

sjrp (λ
r(1− pKj(λ

r, µp))) , ∀j ∈ J1. (2.3.19)

Next, we write the optimality conditions of (P2-lin). Let γi, δj, ν
n
ij, π

rp
j and ηrpj denote

the dual variables associated with constraints (2.3.8), (2.3.9), (2.3.10), (2.3.11) and (2.3.12),

respectively. We replace constraints (2.2.17), (2.2.18), (2.2.6) and (2.2.10) in (P) with the

optimality conditions of (P2-lin), which yields a nonlinear program involving complementar-

ity constraints. The standard method of dealing with this nonlinearity is to linearize these

constraints through the introduction of binary variables and ‘big-M’ constants. Alterna-

tively, one can substitute to the complementarity constraints the equality of the lower level

primal and dual objectives. The latter involves bilinear terms that can be further linearized.

Technical details, together with the corresponding MILP formulation, can be found in the e-

companion. The MILP can be solved by an off-the-shelf software such as CPLEX. For given

location variables y and service rates µ, a feasible assignment matrix x is then recovered by

solving a convex assignment program that involves a simple structure. The corresponding

running time (less than one second) is negligible for networks having up to 25 nodes. Note

that, due to approximation errors in the MILP, the recovered solution may differ significantly

from the MILP solution.

Bound on the linearization error for the M/M/1/∞ case

If facilities are modelled as M/M/1/∞ (infinite capacity) queues, the waiting time at a

facility j is wj(λj, µj) = 1/(µj − λj), and its indefinite integral Wj(λj, µj) = − log(µj − λj),
which is convex. We make the following assumptions:

i. The total service rate in the network can satisfy the entire demand.

ii. At all open facilities, µj ≥ ψ + λj for some positive number ψ.

The latter condition ensures that waiting time at facilities is finite. In practice, ψ can

be as as small as desired, and we have that wj ≤ 1/ψ = wMAX . Let tMIN and tMAX

represent the minimum and maximum travel time in the network, respectively. Furthermore,

wMIN = 1/µMAX, diam(t)= tMAX − tMIN and diam(w)= wMAX − wMIN. Let µMAX be the

maximum service rate possible in the network, either allowed by the budget at leader’s
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facilities, or at competitor’s facilities. Under our assumptions, we have that

xij =
e−θ (tij + αwj)

∑

k∈J∗

e−θ (ti,k + αwk)
≥ e−θ (tMAX + αwMAX)
∑

k∈J∗

e−θ (tMIN + αwMIN)
=
e−θ (diam(t) + α diam(w))

|J∗|
def
= rmin,

(2.3.20)

Now, let g(µ, x) be the lower-level objective function, i.e.,

g(µ, x) =
∑

i∈I

∑

j∈J∗

[
1

θ
xij log xij + tijxij

]

︸ ︷︷ ︸

g1(µ, x)

+α
∑

j∈J∗

Wj(µj, x)

︸ ︷︷ ︸

g2(µ, x)

. (2.3.21)

The lower-level problem can be written as:

(P∞) min
x

g(µ, x) = g1(µ, x) + αg2(µ, x) (2.3.22)

s.t.
∑

j∈J∗

xij = di ∀i ∈ I (2.3.23)

xij ≥ 0 ∀i ∈ I, ∀j ∈ J∗, (2.3.24)

whose compact constraint set is denoted D. Next, we let

G(µ, x) = ∇xg(µ, x) = ∇xg1(µ, x) + α∇xg2(µ, x) = G1(µ, x) + αG2(µx).

The proofs of the following results are provided in the e-companion to this paper.

Proposition 6. G1 is strongly monotone of modulus θ · dMAX with respect to x.

Proposition 7. G2 is monotone in x.

It follows directly that

Proposition 8. G is strongly monotone in x, with modulus θ · dMAX.

Théorème 9. The approximation error of the upper-level objective function is O(1/N1 +

1/N2), where N1 and N2 are the number of samples for the linearization of g1 and g2, re-

spectively.

We now illustrate Theorem 9 for the instance based on the network illustrated in Fig-

ure 2.3. It involves two demand nodes, which are potential locations as well. Demand rates

in nodes 1 and 2 are set to 5.5 and 15.0, respectively. The fixed cost of opening a facility

is set to 5 and the unit service cost to 1, for a total budget of 25. The competition owns a
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facility with service rate 25.1. On the demand side, parameters α and θ are set to 10 and

0.2, respectively.

1 2C

10

7 1

Figure 2.3. A three-node network.

For each set of open locations, the problem can be approximately solved by sampling a

very large number of values of the parameter µ. This yields a quasi-optimal solution with

objective 10.197, where both facilities are open, with respective service rates 5.325 and 9.675.

The linear approximation algorithm was then run for different sample sizes.

The optimum of the approximation MILP, as well as the true objective values corre-

sponding to the MILP solutions, are displayed in Figure 2.4, where we observe that

— The approximated objective mostly overestimates the true objective.

— The true objective obtained by solving for the actual equilibrium with respect to

the service levels quickly reaches a near-optimal solution, and actually does so for a

sample size as small as 4.

— The true (recovered) objective does not increase in a monotone fashion, but stabilizes

fairly quickly close to the optimum.

2.3.2. A surrogate-based heuristic

In this section we present a parameterized heuristic based on replacing the original

model by a single-level model involving a surrogate objective, whose optimal solution au-

tomatically satisfies the fixed point constraint. This strategy is akin to that proposed

by [Marcotte, 1986] for addressing a bilevel network design problem involving user-

optimized flow patterns.

The rationale behind this strategy is that both the leader and the users have a shared

interest in minimizing delays. We therefore expect that, if the lower level is given full control,

the resulting design should favor access to the leader’s facilities, and therefore yield a high
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Figure 2.4. Evolution of the linear approximation MILP objective value with respect

to sample size. We use the same number of samples on x, and λ. The ‘approximated’

line corresponds to the optimal objective of the approximate MILP. The ‘true’ line is the

true(recovered) objective value corresponding to the MILP solution.

throughput. Incorporating the budget constraint to ensure feasibility, we obtain the single-

level mixed nonlinear program

(PH) min
x, y, µ, λ,
w, p, ρ

∑

i∈I

∑

j∈J∗

[
1

θ
xij ln xij + xijtij

]

+ α
∑

j∈J∗

∫ λj

0

wj(q, µj) dq + β
∑

j∈J∗

∫ λj

0

pKj(q, µj) dq

(2.3.25)

s.t.
∑

j∈J

xij = di, ∀i ∈ I (2.3.26)

∑

j∈J1

yjcf +
∑

j∈J1

cµµj ≤ B, (2.3.27)

λj =
∑

i∈I

xij, ∀j ∈ J (2.3.28)

yj ∈ {0, 1}, ∀j ∈ J (2.3.29)

xij ≥ 0, ∀i ∈ I; ∀j ∈ J (2.3.30)

ρj = λj/µj, ∀j ∈ J (2.3.31)

constraints (2.2.10) and (2.2.6), (2.3.32)
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whose x-solution is a logit flow assignment with respect to the design variables y and µ.

For θ = ∞, the limiting case (PH*) is a mathematical program involving user-equilibrium

(Wardropian with respect to queueing delays) flows, and is expressed as

(PH*) min
x, y, µ, λ,
w, p, ρ

∑

i∈I

∑

j∈J∗

xijtij + α
∑

j∈J∗

∫ λj

0

wj(q, µj) dq + β
∑

j∈J∗

∫ λj

0

pKj(q, µj) dq

s.t. constraints (2.3.26) –(2.3.32).

Properties of the surrogate model

The surrogate model always yields feasible solutions for the original model. Although its

objective is nonconvex, some of its properties make it computationally tractable, as will be

confirmed in Section 2.4. The proofs of the following results are provided in the e-companion.

Proposition 10. If K =∞ and there are no fixed costs, the surrogate model is convex.

Proposition 11. At the optimum of (PH*), if K = ∞, queue waiting times are equal for

all leader’s facilities.

We close this section with an example that shows that, in the worst case, the difference

between the heuristic optimum and the true optimum can be arbitrarily large. Let us consider

the network shown in Figure 2.5, with site C belonging to the competitor, and sites A and

B being potential opening nodes for the leader, with null fixed cost. We consider an infinite

queue and α = 1. Let n > 1, and D1 > 1 and nD1 be the demand at nodes 1 and 2,

respectively. The total service rate available to the leader is µ̄ = (2n + 4)D1. The service

rate at the competitor’s facility is set to µC = 2nD1.

The heuristic solves the convex program (PHY*) (see the electronic companion, proof

of Proposition 11), and at optimality, waiting times at facilities A and B must be equal.

The KKT optimality conditions are sufficient, and any solution of the following system of

equations is optimal.

(t1,A + wA − γ1) · x1,A = 0 (t1,A + wA − γ1) ≥ 0 wA = 1/(µA − x1,A − x1,A)

(t1,B + wB − γ1) · x1,B = 0 (t1,B + wB − γ1) ≥ 0 wB = 1/(µB − x1,B − x1,B)

(t1,C + wC − γ1) · x1,C = 0 (t1,C + wC − γ1) ≥ 0 wC = 1/(µC − x1,C − x1,C)

(t2,A + wA − γ2) · x2,A = 0 (t2,A + wA − γ2) ≥ 0 (wA − wB)(µ̄− µA − µB) = 0
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Figure 2.5. An instance where the gap between the heuristic and optimal value of the

objective function can be arbitrarily large.

(t2,B + wB − γ2) · x2,B = 0 (t2,B + wB − γ2) ≥ 0

(t2,C + wC − γ2) · x2,C = 0 (t2,C + wC − γ2) ≥ 0

One solution of the above system is µA = µB = (n + 2)D1; x1,A = D1; x1,B = x1,C = 0;

x2,A = 0; x2,B = D1; x2,C = (n − 1)D1; wA = wB = wC = 1
(n+1)D1

. In other words, users

originating from 1 patronize solely facility A, while users issued from 2 choose facilities B

and C. Then the objective value associated to this optimal solution is 2D1.

On the other hand, in the original program wA need not be equal to wB. Then one

feasible solution is µA = 2D1 and µB = (2n + 2)D1, and x, γ solve the following set of

equations, issued from the KKT optimality conditions of the second level.

(t1,A + 1/(2D1 − x1,A − x1,A)− γ1) · x1,A = 0; (t1,A + 1/(2D1 − x1,A − x1,A)− γ1) ≥ 0;

(t1,B + 1/((2n+ 2)D1 − x1,B − x1,B)− γ1) · x1,B = 0; (t1,B + 1/((2n+ 2)D1 − x1,B − x1,B)− γ1) ≥ 0;

(t1,C + 1/(2nD1 − x1,C − x1,C)− γ1) · x1,C = 0; (t1,C + 1/(2nD1 − x1,C − x1,C)− γ1) ≥ 0;

(t2,A + 1/(2D1 − x1,A − x1,A)− γ2) · x2,A = 0; (t2,A + 1/(2D1 − x1,A − x1,A)− γ2) · x2,A = 0;

(t2,B + 1/((2n+ 2)D1 − x1,B − x1,B)− γ2) · x2,B = 0; (t2,B + 1/((2n+ 2)D1 − x1,B − x1,B)− γ2) ≥ 0;

(t2,C + 1/(2nD1 − x1,C − x1,C)− γ2) · x2,C = 0; (t2,C + 1/(2nD1 − x1,C − x1,C)− γ2) ≥ 0.

We can easily check that the following solution solves the above system of equations:

µA = 2D1; µB = (2n + 2)D1; x1,A = D1; x1,B = x1,C = 0; x2,A = 0; x2,B = D1; x2,C =

(n−1)D1; wA = wB = wC = 1
(n+1)D1

. The objective value associated to this feasible solution
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is D1(n + 4)/2. The ratio between the better option and the one found by the heuristic is

(n+ 4)/4, which can be arbitrarily large.

A parameterized surrogate heuristic

One drawback of the heuristic solution presented in the previous section is that, for

K = ∞ and θ = ∞, queueing delays are equal, a property that might not hold at the

true optimum. Actually, in order to maximize efficiency, one expects the leader to adapt

its service rates to arrival rates. This can be achieved by incorporating a service-dependent

linear term into the objective. This term depends on a set of positive parameters ξj, to be

tuned, one for each facility. The resulting mathematical program is

(PH(ξ)) min
x, y, µ, λ,
w, p, ρ

∑

i∈I

∑

j∈J∗

[
1

θ
xij ln xij + xijtij

]

+α
∑

j∈J∗

Wj(x, µj) +β
∑

j∈J∗

PKj(x, µj)+
∑

j∈J1

ξjµj

s.t. constraints (2.3.26), (2.3.27), (2.3.29)–(2.3.32).

This program is transformed and solved as a MILP where the linearization is based on the

techniques presented in Section 2.3.1. As before, a feasible flow assignment x compatible

with the location vector y and the service rate vector µ is retrieved by solving a convex

program. We now focus on the case K =∞ and θ =∞, when there are no fixed costs:

(PHY*(ξ)) min
y, µ, λ,
w, p, ρ

∑

i∈I

∑

j∈J∗

xijtij −α
∑

j∈J∗

ln(µj−(
∑

i∈I

xij))+
∑

j∈J1

ξjµj

s.t. constraints (2.3.26), (2.3.29)–(2.3.30), (2.C.3),

for which we provide a theoretical result, whose proof is provided in the e-companion.

Proposition 12. There exists a value of ξ∗ for which (PHY*(ξ∗)) yields an optimal solution

for (P*).

While the complexity of determining an optimal ξ vector is equivalent to that of solving

the initial problem, educated guesses may yield good values, as will be observed later.

2.4. Experimental setup and results

The MILP formulation was solved by IBM ILOG CPLEX Optimizer version 12.5. All

tests, either using the linear approximation method or heuristics, were performed on a 16

core Xeon(R) Intel(R) processor running at 2.4GHz frequency. For the linear approximation
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method, we opted for the MILP formulation based on the equality between the primal and

dual lower level objectives. Surprisingly, while approximate, this formulation outperformed

that based on complementarity constraints.

An initial set of experiments was intended to compare the linear approximation-based

method and the parameterized heuristic described in Sections 2.3.1 and 2.3.2, respectively,

that involve the parameterized model (PH(ξ)). The latter is solved for different values of

the parameter ξ. For each facility j, ξj is set to the negative of a scalar that increases with

demand and decreases with distance:

ξj = −c
∑

i∈I

di
tij + 1

, (2.4.1)

for some nonnegative parameter c. This is motivated by the fact that it makes sense, from

the leader’s perspective, to assign high service rates to facilities located close to high demand

nodes: the lower ξj, the larger µj in the optimal solution. The term 1 in the denominator

was added to tij to avoid dividing by a small number. The linear approximations involve 7,

5 and 5 uniformly distributed samples for x, λ and µ, respectively. The parameter α was

set to 10, while the algorithms were run for different combinations of parameters θ and β.

Travel times were varied between 0 and 100 for nodes belonging to a common cluster. Two

sensible choices for the parameter β are 50 or 100, as previously explained in Section 2.2.2.

In CPLEX branching rules, priority was given to the strategic location variables over the

binary variables required in the linearization process. The algorithm was stopped as soon

as the optimality gap dropped below 1%, CPLEX ran out of memory (4GB), or that CPU

exceeded 2,000 seconds.

Tables 2.1 and 2.2 report mean CPU times (in seconds), the optimality gap when the

stopping criteria is met, and the average ratio between the objective value found by the

heuristics and by the linear approximation method (as described in Section 2.3.1), for two

values of the available budget. Heuristics are run for different values of parameter c, as in

Eq. (2.4.1). We also report the best solutions found across these runs in the best column.

Additionally, we let CPLEX run to optimality (gap<0.1%), regardless of the execution time,

comparing the objective value obtained within 2,000 seconds and the one obtained with no

time limit; we report the percentage increase (the PI column).
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heuristic over linear approximation linear approximation

lin. approx. ratio relative gap(%) CPU(seconds) gap ≤0.1%

θ β c = 0 c = 1 best min average max lin. approx. c = 0 c = 1 PI(%) CPU(s)

0.2 50 0.99 0.93 1.01 0.99 11.3 25.4 1,778 110 11 −0.66 31,239

0.5 50 1.00 0.95 1.01 0.98 12.1 25.6 1,834 17 8 0.08 14,375

2.0 50 0.99 0.93 1.00 0.88 11.5 25.6 1,833 9 7 1.20 44,832

0.2 100 0.99 0.98 1.00 0.98 11.8 26.0 1,930 101 10 1.14 13,852

0.5 100 0.98 0.97 0.99 0.98 11.1 26.1 1,836 18 9 0.00 13,888

2.0 100 1.03 1.01 1.04 0.99 11.9 26.0 1,929 9 8 3.46 13,874

Table 2.1. Comparison between the linear approximation method and two heuristics. Bud-

get set to 500. Averages taken over 10 instances.

heuristic over linear approximation lin. approx.

linear approximation ratio relative gap(%) CPU(seconds) gap ≤0.1%

θ β c = 0 c = 1 c = 10 best min average max lin. approx. c = 0 c = 1 c = 10 PI(%) CPU(s)

0.2 50 0.86 0.86 0.62 0.94 0.93 12.0 24.2 1,862 20 12 5 0.14 56,616

0.5 50 0.83 0.86 0.62 0.93 2.22 13.7 21.6 2,011 10 9 5 1.40 22,871

2.0 50 0.83 0.86 0.63 0.94 2.25 12.8 21.3 2,010 9 8 5 0.10 39,029

0.2 100 0.84 0.86 0.58 0.88 0.99 11.3 20.7 1,826 15 10 6 −0.60 23,990

0.5 100 0.83 0.84 0.62 0.90 1.92 12.4 21.7 2,009 9 9 6 0.30 22,850

2.0 100 0.82 0.84 0.59 0.87 0.99 10.9 19.3 1,903 8 8 6 0.25 11,089

Table 2.2. Comparison between the linear approximation method and three heuristics.

Budget set to 250. Averages taken over 10 instances.

In most cases, CPLEX could not reach a gap less than 1% in the allotted CPU. As shown

in Tables 2.1 and 2.2, the average optimality gap lies in the [11,14] interval, when time is

limited. More precisely, when the budget is set to 500, roughly 40% of the tests finish with

a gap between 15% and 25%, while 40% of the tests end with a gap between 1%− 10%, and

20% of tests reach the optimality gap <0.1%. This was observed on all tests, regardless of

the combination of parameters. On the other, when the budget is set to 250, the optimality

gaps are slightly higher, after the allotted execution time. Namely, roughly 43% of gaps fall

in the [15%, 25%] interval, 25% in the [10%, 15%] interval, 15% in the [5%, 10%] interval,

15% in the [1%, 5%] interval, and only 3% of tests reach the 1% optimality gap.
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However, as illustrated in Figure 2.6, the optimal solutions are frequently found in the

early stages of the Branch-and-Bound process, while the remaining iterations are merely used

to prove optimality. The above observation is supported by the numbers in the PI column.
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Figure 2.6. Lower and upper bounds throughout the branch-and-bound process for an

instance of P-lin.

The percentage increase in objective value when running to optimality is not significant (less

than 1.5%, in most cases, and 3.5% when the budget is 500, θ = 2.0 and β = 100), despite

a large increase in CPU. In some cases we observe a small decrease in the objective value,

which is explained as follows: when running to optimality, there can be a small increase in

the approximate objective value (the one found by solving the MILP), however the optimal

solution corresponds to a slightly small true objective. We remind that the MILP is only an

approximated version of a highly nonlinear program.

Table 2.1 shows that, for a high budget, heuristics perform well, managing to attract and

serve, on average, the same number of customers as the linear approximation method, and

in some cases, outperforms it. This counterintuitive result is due to approximation errors in

the various linearizations performed at both the lower level and in the objective function of

the linear approximation method.
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Table 2.2 tells a similar story. In this case (budget = 250), taken individually, heuristics

for c = 0, c = 1 and c = 10 do not perform very well, capturing as little as 58% of the linear

approximated market in one case. However, when retaining the best out of the three, the

objective value lies around 87 − 94% of the linear approximated objective, and is achieved

at a much lower computational cost. For instance, for a budget of 250, the CPU required by

the linear approximation method exceeds by a factor of 50 (θ = 0.2, β = 50) and up to 91

(θ = 2.0, β = 50) the combined CPU of the three heuristics. This illustrates the limitations

of the linear approximation method, which, although superior in terms of solution quality,

does not scale well. We also observe that, in the heuristic case, and for identical values of the

parameter β, CPU is a decreasing function of θ, a parameter that is inversely proportional

to the standard deviation of the Gumbel random variable embedded into the logit process.

When θ is small, users are spread over the facilities more or less regardless of their disutility,

making for highly nonlinear instances that are difficult to linearize. In contrast, when θ is

large, variance is small, and users focus on a limited number of destination facilities.

Within the same experimental setup, it is interesting to compare the facilities opened

by the various algorithms. In Table 2.3 and Table 2.4, we display the ratio between two

numbers: the number of facilities opened by both methods, and the total number of facilities

openeds by the linear approximation algorithm.

The linear approximation method opens between 4 and 6 facilities, and on average 5.6−5.8
for a budget of 500. When the budget is set to 250, the number of facilities opened by the

linear approximation method decreases by at least one, on average. For both values of the

budget, the leader opens less facilities for β = 100 than for β = 50. Indeed, as β increases,

users require a higher service rate to make for the higher probability of balking. The budget

is then more focused on increasing service rates.

For the high budget and low values of c (0 or 1) the heuristics open on average 6.8− 8.4

facilities. Only half of the facilities opened by the linear approximation method are among

them. Nevertheless, the heuristic facilities yield large values of the objective function. For

low budget, a similar situation occurs although all methods open, on average, less facilities.

As a trend, the average number of open facilities decreases with c. The larger values of c

yield smaller values of ξ, therefore, larger values of µ, and the heuristics put more emphasis

on providing high service rates, versus opening several facilities. These results highlight the

48



number of open facilities ratio of common facilities

θ β lin. approx. c = 0 c = 1 c = 0 c = 1

0.2 50 5.9 8.3 6.8 0.52 0.54

0.5 50 6.0 8.4 6.8 0.56 0.45

2.0 50 5.9 8.4 6.8 0.66 0.55

0.2 100 5.7 8.2 7.4 0.62 0.55

0.5 100 5.7 8.2 7.6 0.54 0.48

2.0 100 5.6 8.2 7.3 0.48 0.51

Table 2.3. Number of open facilities. Budget set to 500. Averages over 10 runs.

number of open facilities ratio of common facilities

θ β lin. approx. c = 0 c = 1 c = 10 c = 0 c = 1 c = 10

0.2 50 3.8 5.7 5.7 2.7 0.54 0.54 0.28

0.5 50 4.1 5.9 5.7 2.8 0.45 0.40 0.21

2.0 50 3.8 5.9 5.6 2.7 0.51 0.50 0.26

0.2 100 3.5 5.7 5.5 3.0 0.50 0.50 0.40

0.5 100 3.7 5.7 5.6 2.8 0.54 0.55 0.35

2.0 100 3.7 5.7 5.5 3.0 0.54 0.54 0.33

Table 2.4. Number of open facilities. Budget set to 250. Averages over 10 runs.

fact that determining the optimal facility locations is hard, and that solutions of similar

values can vastly differ in their topologies.

Although Table 2.2 suggests that heuristics do not perform very well when the budget is

small, a closer inspection reveals that for some values of c, they yield results close to those

of the linear approximation method, as shown in Table 2.5, where the best results among

those run for values of c ranging from 0 to 10 are displayed. The best results were usually

related to low values of c. In this setting, heuristics manage to capture between 90% and

95% of the number of customers obtained by the linear approximation method, at a much

lower computational cost.

In Table 2.6, we report the impact of c on the number of facilities opened, as well as on

the number of served customers, for 3 randomly chosen tests in our dataset. We vary the c

from 0 to 10, and report the best solution found for each test. We then compute the average

ratio between the latter and the optimum found by the linear approximation method. As c
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heuristic over total

θ β lin. approx. ratio CPU (sec.)

0.2 50 0.95 133

0.5 50 0.96 86

2.0 50 0.95 69

0.2 100 0.90 132

0.5 100 0.92 95

2.0 100 0.88 75

Table 2.5. Parameter c runs from 0 to 10. Budget set to 250.

increases, more importance is given to µ, and less budget is available for opening facilities. A

second trend is the concave-like behaviour (increasing, levelling, decreasing) of the number

of served customers with respect to c.

# of open facilities served customers

c test 1 test 2 test 3 test 1 test 2 test 3

0 6 6 6 113.92 124.70 122.57

1 6 6 6 113.92 124.88 122.64

2 6 6 6 114.82 124.95 123.29

3 6 6 6 115.94 122.55 123.33

4 4 5 7 99.39 119.54 123.75

5 3 4 6 84.42 98.82 124.07

6 3 1 6 84.42 45.70 123.99

7 2 1 5 74.21 45.70 116.87

8 1 1 4 53.64 45.70 106.71

9 1 1 3 53.64 45.70 90.48

10 1 1 1 53.64 45.70 62.30

Table 2.6. Sensitivity of analysis with respect to c in formula (2.4.1).

Finally, we assess the performance of the heuristics, given an optimal set of open facilities

provided by the linear approximation method. Restricted to the determination of service

levels, the problem remains a hard nonlinear bilevel program. All tests have been performed

on the same aforementioned dataset, using 10 samples for x and 9 for λ and µ. The results are

displayed in Table 2.7, where we observe a sharp improvement with respect to the case where
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facility locations are decision variables (Table 2.2). More precisely, due to approximation

errors, the linear approximation method was outperformed by the theoretically suboptimal

heuristics on some instances.

heuristic over lin. approx. ratio

θ β c = 0 c = 1 c = 10 best

0.2 50 1.02 (5) 1.02 (4) 0.84 (1) 1.02

0.5 50 1.02 (6) 1.01 (2) 0.86 (2) 1.02

2.0 50 1.02 (6) 1.00 (4) 0.83 (1) 1.02

0.2 100 1.01 (7) 1.00 (3) 0.88 (1) 1.02

0.5 100 1.02 (5) 1.00 (5) 0.89 (0) 1.02

2.0 100 1.02 (8) 1.00 (3) 0.89 (3) 1.02

Table 2.7. Heuristics run from facility locations provided by the linear approximation

method. Budget set to 250. Within parentheses: number of instances for which the corre-

sponding value of c yielded the best result. The sum of values exceed in some cases the total

number of tests, as sometimes, different heuristics yield the same optimum.

Accuracy of linearization

In order to measure the impact of the number of sample points involved in the approx-

imation of the nonlinear functions W̃ and P̃K , we varied λ and µ for values ranging from

1 to 10, for a step of 0.1. We then computed the difference between W and PK , and their

linearized counterparts across this fine-grained domain. Note that, due to nonconvexity in

the vicinity of the origin (see Figure 2.2), the tangents in this area can be very steep and

thus wildly overestimate the true value of the function. For this reason, linearization sample

points were not selected close to 0. As observed in Table 2.8, increasing the number of sample

points can actually worsen the approximation, due to non-convexity of the original functions.

The way around this issue would be to make nonconvex piecewise linear approximations,

the drawback being the addition of a significant number of binary variables that would yield

a sharp increase in the running time of the algorithm. When selecting a number of samples,

one has indeed to achieve a trade-off between the error on W , on PK , the running time and

the quality of the solution.
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# of samples Error (average) # of samples Error (average)

R (on λ) P (on µ) W PK R (on λ) P (on µ) W PK

3 3 1.34 0.29 7 3 2.10 0.20

3 5 1.33 0.36 7 5 2.00 0.42

3 7 1.77 0.38 7 7 2.17 0.42

3 10 2.94 0.41 7 10 5.51 0.42

5 3 1.13 0.38 10 3 2.05 0.26

5 5 1.24 0.41 10 5 2.00 0.43

5 7 2.67 0.41 10 7 3.36 0.43

5 10 4.37 0.42 10 10 3.18 0.43

Table 2.8. Linearization error for the waiting time and probability of balking. K = 10.

# of samples CPLEX recovered no of estimated no of

N (on x) R (on λ) P (on µ) CPU limit(s) CPU(s) gap(%) served customers served customers

2 2 2 1,000 562 9.71 88.15 80.35

5 3 3 2,000 829 0.92 97.89 100.65

7 3 3 5,000 1,057 0.97 98.33 100.65

7 5 5 7,000 5,752 0.94 102.24 103.42

10 5 5 10,000 8,856 7.78 100.66 103.81

10 7 7 15,000 12,478 1.14 104.91 106.80

12 7 7 20,000 16,921 16.56 94.13 93.69

Table 2.9. Number of attracted and served customers. K = 10, θ = 0.2, β = 50.

At last, we investigate the impact of sample size on the quality of the optimal solu-

tion of the generated MILP. Surprisingly (see Table 2.9), this impact is almost negligible,

and the objective can actually decrease when the sample size increases. This counterin-

tuive phenomenon was also observed in the paper of [Marcotte et al., 2013], and also

in [Marcotte, 1986] for a bilevel pricing model where a probability density function was

approximated by a coarse-grained histogram. Although the non-convexity of Wj and PKj

certainly plays a role, we could not theoretically devise a rule for selecting ‘optimal’ sam-

ples. This behaviour can also be explained by factors such as travel time. For instance,

if a facility is located far from a demand point, a small error in the waiting time will not

significantly impact the number of arriving customers. Another reason is the non-convexity
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of the approximated functions Wj and PKj. In this context, a larger number of ill-positioned

samples might not necessarily imply a tighter, more precise approximation. As observed

in Table 2.9, the value of the objective function estimated by the approximate model does

not correlate well with the actual optimal value obtained by performing an assignment of

users with respect to the service rate vector µ. Note that when the (N,R, P ) triplets were

set to (10, 7, 7) and (12, 7, 7) CPLEX was unable to find a feasible solution in the alloted

time, in 3 out of 10 tests. Since the true number of attracted and served customers is quite

insensitive to the number of samples, it is clearly advantageous to set those number to values

as small as possible, but yet not too small.

An illustrative case

In the province of Québec (Canada), walk-in clinics provide professional assessment

and treatment for minor illnesses or injuries, for the quarter of the population that lacks

a family doctor, as reported in Statistics [hea, 2017]. These clinics often function on a

first-come first-served basis and it is frequent that clients balk to avoid long waiting times.

In this section, we focus on the issue of optimizing the location and service rates of clinics

in the Mont-Tremblant area, with the aim of maximizing the number of patients served by

the clinics.

Number of open facilities

budget=15 budget=20 budget=25

θ β = 10 β = 50 β = 100 β = 10 β = 50 β = 100 β = 10 β = 50 β = 100

0.01 2 2 2 2 3 3 3 3 3

0.1 2 2 2 2 2 2 3 3 2

0.2 2 2 2 2 2 2 2 2 2

0.5 2 2 2 2 2 2 2 2 2

Table 2.10. Parametric analysis on θ, β and the budget.

Mont-Tremblant has 17 population zones, to which we assign demand nodes assumed to

be spatially located in the center of each zone. The population count per demand node is

generated as follows. The initial population data is taken from Statistics [Census, 2016],

out of which only 25.2% would be interested to visit a walk-in clinic. Considering 250 days
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a year, 8 hours a day, and an average of 4 doctor visits per year, per person, the hourly

demand count represents 0.05% of the initial population.

There are already 4 medical clinics (the competition) in Mont-Tremblant that we consider

serving on average between 1 and 3 clients per hour. Assuming the balking threshold at 10

(people balk if there are 10 or more people waiting in line), and a fixed cost/variable cost

ratio of 5:1, we perform a parametric analysis on β, θ and the budget see Table 2.10.

Figure 2.7. Population Map of Mont-Tremblant, Qc, Canada

Note that for small values of θ, the number of open facilities increases with the budget,

which is expected. For higher values of θ, only two facilities are open, regardless of the

increase in the budget. When θ is close to 0, clients choose facilities with almost no regard

to their disutility. When θ is higher, the clinic must ensure low waiting time and probability

of balking. For instance, when θ = 0.1, it opens 3 facilities for β = 10 and only 2 when

β = 100, for a budget of 25. When clients are not much impacted by the probability of

balking (e.g. β = 10), more money can be spent in opening new clinics. On the other hand,

when θ = 100, only two facilities are opened, while the bulk of the budget is spent on service.

Figure 2.7 displays the spatial distribution of the facilities. The main observation is

that facilities are opened adjacent to the highly populated areas, but not within them.
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This illustrates the difficulty of determining the righ locations. We also note that emerging

facilities lie close to the competitor’s facilities.

2.5. Conclusion and extensions

In this paper, we addressed a bilevel location model involving both combinatorial and non-

linear elements, and proposed for its solution approximation schemes, as well as a heuristic

that exploits the problem’s structure. Our model is flexible and can accommodate numerous

situations, while the proposed algorithms remain applicable. For instance, balking is an

additional feature that can be removed if it is not suited for a given application. The budget

constraint can be incorporated in the objective, as a total setup cost. For the sake of simplic-

ity, only one server is available in our model, however, any M/M/s/K, and M/M/s queues

can be considered, provided that the number of server s is fixed, and the decision variable is

the service rate µ. In this case the waiting time and probability of balking formulas would

change, but they do not hinder the algorithm.

While the results are more than encouraging, our findings raise a number of issues, from

either the modelling, theoretical or algorithmic viewpoints. For instance, the surprising

result that the standard linearization of the lower level complementarity constraints proved

less efficient, numerically, than an approach based on a triangular approximation involving

a larger number of binary variables, is certainly worth investigating.

On the modelling side, future work will integrate features such as variable demand and

the possibility of either increasing or decreasing the service rates of existing facilities. This

will involve a piecewise affine investment function whose two slopes reflect the fact that

economies resulting from lowering service are less than those of increasing it. More realistic

models where the price of service depends on location should also be considered.

On the algorithmic side, three avenues can be pursued: (i) the design of improved approx-

imations for the nonlinear terms involved in the linear approximation method, and (ii) the de-

sign of fast heuristics for determining good sets of facility locations, from which efficient meth-

ods for determining optimal service rates can be initiated and, finally (iii) the investigation

of approximations based on the exact mixed integer formulation of the logit-based location

models proposed by [Haase, 2009], [Benati and Hansen, 2002], [Zhang et al., 2012],

and numerically analyzed by [Haase and Müller, 2014].

55



Acknowledgement: This research was supported by NSERC grant 5789-2011 RGPIN.

56



Appendix

2.A. Notation and proofs

In this e-companion we present the notation used throughout this paper, and we complete

the proofs of some propositions.

2.B. Notation

Sets

I: set of demand nodes;

J : set of candidate facility locations (leader and competition);

Jc: set of competition’s facilities;

J1: set of leader’s candidate sites;

J∗
1 ⊆ J1: set of leader’s open facilities

J∗ ⊆ J : set of open facilities (leader and competitor).

Parameters

di: demand originating from node i ∈ I;
tij: travel time between nodes i ∈ I and j ∈ J ;

α: coefficient of the waiting time in the disutility formula;

β: coefficient of the balking probability in the disutility formula;

B: available budget (for opening new facilities and associated service rates);

cf : fixed cost associated with opening a new facility;

cµ : cost per unit of service;

µ̄ : maximum service rate allowed by the budget;

p: number of facilities to open.



Basic decision variables

yj: binary variable set to 1 if a facility is open at site j, and to 0 otherwise;

µj: service rate at open facilities.

Additional variables

xij: arrival rate at at facility j ∈ J originating from demand node i ∈ I;
λj: arrival rate at node j ∈ J ;

ρj: utilization rate of facility j ∈ J ;

λ̄j: throughput rate (customers accessing service) at node j ∈ J ;

wj: mean queueing time at facility j.

2.C. Proofs of Propositions 1, 2, 4, 5, 6, 7, 10, 11, 12 and Theorem 9

Proposition 1. The waiting time wj is increasing in λj.

Proof. Proof. The derivative of wj with respect to λj (see Equation (2.2.10)) is

∂wj

∂λj
=
∂wj

∂ρj

∂ρj
∂λj

=
∂wj

∂ρj

1

µj

.

To show that ∂wj/∂ρj is nonnegative for all ρj 6= 1, let us consider

∂wj

∂ρj
=

1

µj






−
K2ρK − 1

j

(

ρKj − 1
)2

+
1

(ρj − 1)2






.

Basic algebraic manipulation yields

1

(ρj − 1)2
≥

K2ρK − 1
j

(

ρKj − 1
)2
⇐⇒

K−1∑

i=0

ρij ≥ Kρ
(K − 1)/2
j . (2.C.1)

To prove that the right-hand inequality holds true, we consider two cases.

If K is odd:

K−1∑

i=0

ρij =

(K−1)/2−1
∑

i=0

(

ρij + ρK − 1− i
j

)

+ ρ
(K − 1)/2
j

≥ 2

(K−1)/2−1
∑

i=0

ρ
(K − 1)/2
j + ρ

(K − 1)/2
j = Kρ

(K − 1)/2
j .
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If K is even:

K−1∑

i=0

ρij =

(K−2)/2
∑

i=0

(

ρij + ρK − 1− i
j

)

≥ 2

(K−2)/2
∑

i=0

ρ
(K − 1)/2
j = Kρ

(K − 1)/2
j .

It follows that wj is an increasing function of λj. �

Proposition 2. The probability of balking pKj is increasing in λj.

Proof. Proof. The derivative of pKj with respect to λj is

p′Kj =
λK − 1
j µj

(

λK + 1
j − µK + 1

j

)2

[

λK + 1
j − (K + 1)λjµ

K
j +KµK + 1

j

]

= σ[xK + 1 − (K + 1) x+K],

where σ is a positive number and x = λj/µj. By differentiating with respect to x, we

find that the right-hand-side achieves its minimum value 0 at x = 1, which concludes the

proof. �

Proposition 4. When K =∞, i.e., balking does not occur (in this case, the model admits a

solution only if the total service rate exceeds the total demand rate), the lower level objective

function is convex jointly in λ and µ.

Proof. Proof. If K = ∞, the probability of balking can be removed from the objective,

since it is equal to 0. Moreover, wj = 1/(µj − λj), and the lower level objective takes the

form
∑

i∈I

∑

j∈J∗

[
1

θ
xij ln xij + xijtij

]

− α
∑

j∈J∗

ln(µj − λj).

Basic algebra shows that its Hessian is positive semidefinite, hence the function is convex. �

Proposition 5. The integral of the waiting time, Wj(λj, µj) is pseudoconvex.

Proof. Proof. Let x = (λx, µx) and y = (λy, µy). Assume that ∇W (x)(y − x) ≥ 0. Then

we have:
(

wj(x),−
λx
µx

wj(x)

)

(λy − λx, µy − µx) ≥ 0

⇒ (ρy − ρx)wj(x) ≥ 0

⇒ ρy ≥ ρx, (2.C.2)

59



since wj is nonnegative. On the other hand, ∂Wj/∂ρ = µjwj is nonnegative, we have that

Wj is increasing in ρ, so ρy ≥ ρx ⇒ Wj(y) ≥ Wj(x). From Eq (2.C.2) it follows that if

∇W (x)(y − x) ≥ 0 then Wj(y) ≥ Wj(x), hence Wj is pseudoconvex. �

Proposition 6. G1 is strongly monotone in x of modulus θ · dMAX.

Proof. Proof. [Gilbert et al., 2015] have already argued that G1 is strongly monotone.

Indeed, the associated Jacobian is a positive definite diagonal matrix over D, with the

smallest possible eigenvalue 1/(θ · dMAX). It follows that G1 is strongly monotone with

modulus θ · dMAX. �

Proposition 7. G2 is monotone in x.

Proof. Proof.

〈G2(µ, x)−G2(µ, y), x− y〉 =
∑

i∈I

∑

j∈J∗







1

µj −
∑

l∈I

xl,j
− 1

µj −
∑

l∈I

yl,j






· (xij − yij)

=
∑

j∈J∗










µj −
∑

l∈I

yl,j − µj +
∑

l∈I

xl,j

(

µj −
∑

l∈I

xl,j

)

·
(

µj −
∑

l∈I

yl,j

) ·
∑

i∈I

(xij − yij)










=
∑

j∈J∗










∑

l∈I

(xl,j − yl,j)
∑

l∈I

(xl,j − yl,j)
(

µj −
∑

l∈I

xl,j

)

·
(

µj −
∑

l∈I

yl,j

)










≥ 0

�

Proposition 10. If K =∞ and there are no fixed costs, the surrogate model is convex.

Proof. Proof. According to Proposition 4, the objective is jointly convex in µ and λ.

Moreover one can, without loss of generality, open all facilities and hence dispense with the

binary vector y. Notwithstanding, a facility can be closed by setting its service level to

zero. �
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Proposition 11. At the optimum of (PH*), if K = ∞, queueing delays are equal for all

leader’s

Proof. Proof. For fixed y variables, Equation (2.3.27) can be rewritten as

∑

j∈J∗

µj ≤ µ̄, (2.C.3)

where µ̄ is the maximum possible total service rate allowed by the budget. But K =∞, so

wj(λj, µj) = 1/ (µj − λj) and pKj(λj, µj) = 0, which yields the mathematical program

(PHY*) min
µ, x

∑

i ∈ I

∑

j ∈ J∗

xijtij − α
∑

j ∈ J∗

ln(µj − (
∑

i ∈ I
xij))

s.t. constraints (2.3.26), (2.3.29), (2.3.30), (2.C.3)

Let δi, πij and γ be the Lagrange multipliers associated with Equations (2.3.26), (2.3.30) and

(2.C.3), respectively. Variables δi are free, while γ and πij are restricted to be nonnegative.

The stationarity conditions of the above program are:

∂L

∂xij
= 0 ⇒ tij + αwj(λj, µj)− δi − πij = 0, ∀i ∈ I, ∀j ∈ J∗ (2.C.4)

∂L

∂µj

= 0 ⇒ −αwj(λj, µj) + γ = 0, ∀j ∈ J∗ ∩ J1, (2.C.5)

and the conclusion follows from Equation (2.C.5). �

We observe, after plugging αwj(λj, µj) from Equation (2.C.5) into Equation (2.C.4) for

a given demand node i, that only one flow xij is nonzero, provided that transportation times

to the leader’s facilities are distinct.

Proposition 12. There exists a value of ξ∗ for which (PHY*(ξ∗)) yields an optimal solution

for (P*).

Proof. Proof. Let y∗ and µ∗ be optimal for (P*). Without loss of generality (there are

no fixed costs) we assume that all facilities are open. At equilibrium, let c∗i be the cost

associated with demand node i and optimal service rate µ∗. Let x∗, wj(x
∗, µ∗

j) and c∗i satisfy

Equation (2.2.24) and (2.2.25). If xij is positive, we have:

tij + αwj(x
∗, µ∗) = c∗i , ∀j ∈ J, ∀i ∈ I. (2.C.6)
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Let C = maxi∈I {c∗i } in the initial formulation. For j ∈ J , we let ξj = c∗i − tij −C and select

and index i corresponding to a positive flow x∗ij. If no such i exists, then µ∗
j = 0, otherwise

the leader would waste monetary resources. We then set ξj = −C.

Now, let δi, πij and γ be the Lagrange multipliers associated with Equations (2.3.26),

(2.3.30) and (2.C.3), respectively. Variables δi and γ are free, while πij are restricted to be

nonnegative. The stationarity conditions of the program above take the form

∂ L
∂xij

= 0 ⇒ tij + αwj(x, µj)− δi = 0, if xij > 0, ∀i ∈ I, ∀j ∈ J (2.C.7)

∂ L
∂µj

= 0 ⇒ −αwj(x, µj) + γ + ξj = 0, ∀j ∈ J1. (2.C.8)

Note that the derivative of the Lagrangian with respect to xij is left unchanged, i.e., Equa-

tion (2.C.7) is equivalent to Equation (2.C.4). If γ = C, we derive from Equation (2.C.8)

that αwj(x, µj) = c∗i − tij, which is equivalent to Equation (2.C.7). This completes the proof,

since for the given values of ξ, variables x and µ match the optimal solution of (P*). �

Theorem 9. The error of the upper-level objective function is O(1/N1 + 1/N2), where N1

and N2 are the number of samples for the linearization of g1 and g2, respectively.

Proof. Proof. Let Ḡ be an approximation of G. We denote by x̄ the solution of

IV(Ḡ(µ, ·), D), and by x the solution of IV(G(µ, ·), D). Then the following inequalities

hold:

〈G(µ, x), x̄− x〉 ≥ 0

〈
Ḡ(µ, x̄), x− x̄

〉
≥ 0

⇒
〈
Ḡ(µ, x̄)−G(µ, x), x− x̄

〉
≥ 0 (2.C.9)

From the strong monotonicity of G and Eq. (2.C.9) it follows that

〈
Ḡ(µ, x̄)−G(µ, x̄), x− x̄

〉
≥ 1

θ · dMAX

||x− x̄||2. (2.C.10)

Applying the Cauchy-Schwarz inequality, we obtain

θ · dMAX · ||Ḡ(µ, x̄)−G(µ, x̄)|| ≥ ||x− x̄||. (2.C.11)

It follows that
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|f(x)− f(x̄)| = |
∑

i ∈ I

∑

j ∈ J∗
1

(xij − x̄ij) | ≤
√

|I| · |J |||x− x̄|| (Cauchy-Schwarz inequality)

≤
√

|I| · |J | θ · dMAX · ||Ḡ(µ, x̄)−G(µ, x̄)||. (2.C.12)

We perform two separate linear approximations on g1 and g2, respectively. Then the

mappings Ḡ1(x) and Ḡ2(x) are piecewise constant approximations, that we detail separately.

A. Ḡ1 : Each component (i, j) of this vector is a piecewise constant approximation of

log(xij), satisfying:

i) there are N1 total samples on xij, starting from rmin to dMAX;

ii) the sampling points are chosen so that the segments are vertically equidistant;

iii) the vertical positions of the segments are the slopes of the tangents to x log(x),

evaluated at the sampling points.

Let ∆1 be the difference between two consecutive slope values:

∆1 =
log(dMAX)− log(rmin)

N1 − 1
.

Then |Ḡ1(i,j) −G1(i,j)| ≤ ∆1, which yields:

||Ḡ1(x)−G1(x)|| =
√
∑

i∈I

∑

j∈J∗

|Ḡ1(i,j) −G1(i,j)|2 ≤
(log(dMAX)− log(rmin))

√

|I| · |J |
N1 − 1

(2.C.13)

B. Ḡ2 : is a mapping whose (i, j)-component is a constant piecewise approximation of

1/qj, where qj = µj−
∑

i ∈ I
xij. Similar to Ḡ1, this linearization satisfies the following:

i) there are N2 total samples, starting from ψ to µMAX;

ii) the sampling points are chosen so that the segments are vertically equidistant;

iii) the vertical positions of the segments are the slopes of the tangents − log(q) eval-

uated at the sampling points.

We note by ∆2 the difference between two consecutive slope values:

∆2 =

1

ψ
− 1

µMAX

N2 − 1

63



Then |Ḡ2(i,j) −G2(i,j)| ≤ ∆2, which yields

||Ḡ2(x)−G2(x)|| =
√
∑

i∈I

∑

j∈J∗

|Ḡ2(xij)−G2(xij)|2 ≤

(
1

ψ
− 1

µMAX

)
√

|I| · |J |

N2 − 1
(2.C.14)

From Eq. (2.C.12) it follows that, given y and µ:

|f(x)− f(x̄)| ≤ θ · dMAX|I| · |J |







(log(dMAX)− log(rmin))

N1 − 1
+ α

1

ψ
− 1

µMAX

N2 − 1






∈ O( 1

N1

+
1

N2

).

(2.C.15)

�

Theorem 9 has several implications.

— For a given set of open facilities, the absolute difference between the optimal and the

approximated objective value is bounded by the right-hand-side of inequality (2.C.15).

For large values of N1 and N2, the two values are very close.

— If the optimal solution is unique in terms of the location vector y, and the absolute

difference between the objective and other solutions objectives are lower than the right

hand side of inequality (2.C.15), the approximation algorithm will find the optimum

locations.

2.D. Linearization of optimality conditions

2.D.1. Complementarity constraints for Program (P2-lin)

Let γi, δj, ν
n
ij, π

rp
j , ηrpj , and φij be the dual variables associated with constraints (2.3.8),

(2.3.9), (2.3.10), (2.3.11), (2.3.12) and (2.3.13), respectively. Then the complementarity

constraints for program (P2-lin) can be written as:

γi

(
∑

j∈J∗

xij − di
)

= 0 ∀i ∈ I (2.D.1)

δj

(

λj −
∑

i∈I

xij

)

= 0 ∀j ∈ J∗ (2.D.2)

νnij
(
vij − anfxij − bnf

)
= 0 ∀i ∈ I; ∀j ∈ J∗; ∀n ∈ N (2.D.3)

πrp
j

(
uj − arpg λj − brpg µj − crpg

)
= 0 ∀j ∈ J∗; ∀r ∈ R; ∀p ∈ P (2.D.4)
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ηrpj (zj − arph λj − brph µj − crph ) = 0 ∀j ∈ J∗; ∀r ∈ R; ∀p ∈ P (2.D.5)

φijxij = 0 ∀i ∈ I; ∀j ∈ J∗, (2.D.6)

and can be linearized in the standard fashion, through the introduction of binary variables

and big-M constants. For instance, the last constraint is replaced by the inequalities

φij ≤ Muij

xij ≤ M(1− uij),

where uij ∈ {0, 1}. Although is possible to find a valid upper bound for the variable φij, a

large value of M is required, which leads to a poor relaxation and consequently an ill-behaved

branch-and-bound algorithm.

2.D.2. Equality between primal and dual objectives

Alternatively, constraints (2.D.1) – (2.D.6) can be replaced with constraint (2.D.7), which

represents the equality between between the primal and dual objective of (P2-lin). Then the

optimality constraints of (P2-lin) are

∑

i∈I

γidi +
∑

n∈N

∑

i∈I

∑

j∈J

νnijb
n
f +

∑

r∈R

∑

p∈P

∑

j∈J

(
brpg µjπ

rp
j + brph µjη

rp
j + crpg π

rp
j + crph η

rp
j

)

=
∑

i∈I

∑

j∈J

[
1

θ
vij + xijtij

]

+ α
∑

j∈J

uj + β
∑

j∈J

zj, (2.D.7)

∑

j∈J

xij = di, ∀i ∈ I

λj =
∑

i∈I

xij, ∀j ∈ J

vij − anfxij ≥ bnf , ∀i ∈ I; ∀j ∈ J ; ∀n ∈ N

uj − arpg λj − brpg µj ≥ crpg , ∀j ∈ J ; ∀r ∈ R; ∀p ∈ P

zj − arph λj − brph µj ≥ crph , ∀j ∈ J ; ∀r ∈ R; ∀p ∈ P

γi + δj −
∑

n∈N

anfν
n
ij ≤ tij, ∀i ∈ I; ∀j ∈ J

− δj −
∑

r∈R

∑

p∈P

(
arpg π

rp
j + arph η

rp
j

)
= 0, ∀j ∈ J
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∑

n∈N

νnij =
1

θ
, ∀i ∈ I; ∀j ∈ J

∑

r∈R

∑

p ∈ P
πrp
j = α, ∀j ∈ J

∑

r∈R

∑

p∈P

ηrpj = β, ∀j ∈ J

πrp
j , η

rp
j ≥ 0, ∀j ∈ J ; ∀r ∈ R; ∀p ∈ P

xij ≥ 0, νnij ≥ 0, ∀i ∈ I; ∀j ∈ J ; ∀n ∈ N.

To obtain a MILP formulation, we linearize the nonlinear terms µjπ
rp
j and µjη

rp
j via

the triangle method described in [D’Ambrosio et al., 2010]. For each term µjπ
kq
j we

introduce 2(R − 1)(P − 1) binary variables l
π

jrpkq and lπjrpkq associated with the upper and

lower triangles, respectively, of the rectangle defined by the intervals [πr, πr+1) and [µp, µp+1).

Note that the values of π and η are upper bounded by α and β, respectively. Additionally,

µ is bounded by the maximum value allowed by the leader’s budget, µ̄. Next, we introduce

J1RP continuous variables sjrpkq ∈ [0, 1] which will be used to express the couple (πkq
j , µj) as

a convex combination of triangle vertices. We introduce a similar linearization for the term

µjη
kh
j . The approximation of µjπ

kq
j and µjη

kq
j is then

R−1∑

r=1

P−1∑

p=1

(

l
π

jrpkq + lπjrpkq

)

= 1, ∀j ∈ J1; ∀k ∈ R; ∀q ∈ P (2.D.8)

sπjrpkq ≤ l
π

jrpkq + lπjrpkq + l
π

jrp−1kq + lπjr−1p−1kq + l
π

jr−1p−1kq + lπjr−1pkq,

∀j ∈ J1; ∀r ∈ R; ∀p ∈ P ; ∀k ∈ R; ∀q ∈ P
(2.D.9)

R∑

r=1

P∑

p=1

sπjrpkq = 1, ∀j ∈ J1; ∀k ∈ R; ∀q ∈ P (2.D.10)

πkq
j =

R∑

r=1

P∑

p=1

sπjrpkqπ
r, ∀j ∈ J1; ∀k ∈ R; ∀q ∈ P (2.D.11)

µj =
R∑

r=1

P∑

p=1

sπjrpkqµ
p, ∀j ∈ J1; ∀k ∈ R; ∀q ∈ P (2.D.12)

eπjkq =
R∑

r=1

P∑

p=1

sπjrpkqπ
rµp, ∀j ∈ J1; ∀k ∈ R; ∀q ∈ P (2.D.13)
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R−1∑

r=1

P−1∑

p=1

(

l
η

jrpkq + lηjrpkq

)

= 1, ∀j ∈ J1; ∀k ∈ R; ∀q ∈ P (2.D.14)

sηjrpkq ≤ l
η

jrpkq + lηjrpkq + l
η

jrp−1kq + lηjr−1p−1kq + l
η

jr−1p−1kq + lηjr−1pkq,

∀j ∈ J1; ∀r ∈ R; ∀p ∈ P ; ∀k ∈ R; ∀q ∈ P
(2.D.15)

R∑

r=1

P∑

p=1

sηjrpkq = 1, ∀j ∈ J1; ∀k ∈ R; ∀q ∈ P (2.D.16)

ηkqj =
R∑

r=1

P∑

p=1

sηjrpkqη
r, ∀j ∈ J1; ∀k ∈ R; ∀q ∈ P (2.D.17)

µj =
R∑

r=1

P∑

p=1

sηjrpkqµ
p, ∀j ∈ J1; ∀k ∈ R; ∀q ∈ P (2.D.18)

eηjkq =
R∑

r=1

P∑

p=1

sηjrpkqη
rµp, ∀j ∈ J1; ∀k ∈ R; ∀q ∈ P (2.D.19)

The complete MILP formulation is presented below. It involves variables associated with

the original fixed point (or bilevel) formulation (y, µ, x), together with variables issued from

the linearizations and primal-dual optimality conditions.

(P-lin)

max
x, y, µ, λ, u, v, z,
e, π, η, ν, γ, δ, l

π
, lπ,

sπ, eπ, sη, l
η
, lη

s, l, l

∑

j∈J1

ej

∑

j∈J1

yjcf +
∑

j∈J1

cµµj ≤ B,

µj ≤ µ̄yj, ∀j ∈ J1
∑

r∈R

∑

p∈P

∑

j∈Jc

(
brpg π

rp
j µj + brph η

rp
j µj + crpg π

rp
j + crph η

rp
j

)
+
∑

n∈N

∑

i∈I

∑

j∈J

νnijb
n
f

+
∑

r∈R

∑

p∈P

∑

j∈J1

(
brpg e

π
jrp + brph e

η
jrp + cmp

g πrp
j + crph η

rp
j

)
+
∑

i ∈ I
γidi

=
∑

i∈I

∑

j∈J

[
1

θ
vij + xijtij

]

+ α
∑

j∈J

uj + β
∑

j∈J

zj,
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∑

j∈J

xij = di, ∀i ∈ I

λj =
∑

i∈I

xij, ∀j ∈ J

vij − anfxij ≥ bnf , ∀i ∈ I; ∀j ∈ J ; ∀n ∈ N

uj − arpg λj − brpg µj ≥ crpg , ∀j ∈ J ; ∀r ∈ R; ∀p ∈ P

zj − arph λj − brph µj ≥ crph , ∀j ∈ J ; ∀r ∈ R; ∀p ∈ P

γi + δj −
∑

n∈N

anfν
n
ij ≤ tij, ∀i ∈ I; ∀j ∈ J

− δj −
∑

r∈R

∑

p∈P

(
arpg π

rp
j + arph η

rp
j

)
= 0, ∀j ∈ J

∑

n∈N

νnij =
1

θ
, ∀i ∈ I; ∀j ∈ J

∑

r∈R

∑

p∈P

πrp
j = α, ∀j ∈ J

∑

r∈R

∑

p∈P

ηrpj = β, ∀j ∈ J

constraints (2.D.8)–(2.D.19) and (2.3.14)–(2.3.19),

yj ∈ {0, 1}, µj, π
rp
j , η

rp
j ≥ 0, ∀j ∈ J ; ∀r ∈ R; ∀p ∈ P

xij ≥ 0, νnij ≥ 0, ∀i ∈ I; ∀j ∈ J ; ∀n ∈ N.

2.D.3. Example of lower level linearization when K =∞

Recall that, according to Proposition 4, the function is convex if the buffer zone is infinite

(no balking). In that situation, the maximum of the linear approximations is consistent with

the original function, give or take the approximation error. Proceeding as before, we obtain

grp(λ, µ) = arpg λ+ brpg µ+ crpg =
α

µp − λrλ−
α

µp − λrµ− α(ln(µ
p − λr)− 1). (2.D.20)

This yields the linearized lower level program

(P2∞) min
x, v, u, λ

∑

i∈I

∑

j∈J∗

[
1

θ
vij + xijtij

]

+ α
∑

j∈J∗

uj (2.D.21)

s.t.
∑

j∈J∗

xij = di, ∀i ∈ I (2.D.22)
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λj =
∑

i∈I

xij, ∀j ∈ J∗ (2.D.23)

vij − anfxij ≥ bnf , ∀i ∈ I; ∀j ∈ J∗; ∀n ∈ N (2.D.24)

uj − arpg λj − brpg µj ≥ crpg , ∀j ∈ J∗; ∀r ∈ R; ∀p ∈ P (2.D.25)

xij ≥ 0, ∀i ∈ I; ∀j ∈ J∗. (2.D.26)

2.D.4. Taxonomy

This section provides a taxonomy of the models most relevant to our research, with

respect to four features: (i) user choice environment (yes or no), (ii) stochastic (or not),

(iii) inclusion of congestion (or not) at facilities, (iv) inclusion (or not) of competition. The

relevant information is displayed in Table 2.D.1.
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Authors user choice stochastic congestion competition

[Abouee-Mehrizi et al., 2011] × × ×
[Averbakh et al., 2007] ×
[Berman and Drezner, 2006] × ×
[Camacho-Vallejo et al., 2014] ×
[Castillo et al., 2009] × ×
[Desrochers et al., 1995] ×
[Kim, 2013] ×
[Küçükaydin et al., 2011] × × ×
[Labbé and Hakimi, 1991] ×
[Marianov and Serra, 2001] ×
[Marianov, 2003] × ×
[Marianov et al., 2008] × × × ×
[Marić et al., 2012] ×
[Rahmati et al., 2014] × ×
[Vidyarthi and Jayaswal, 2014] × ×
[Zhang et al., 2010a] × ×

Table 2.D.1. Taxonomy of congested facility location models
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Chapter 3

An exact algorithm for a class of mixed-integer programs

with equilibrium constraints

The second article is dedicated to an exact algorithm for solving a subclass of mathemat-

ical programs with equilibrium constraints (MPEC) involving both integer and continuous

variables. We demonstrate that our algorithm can be successfully applied to a location prob-

lem, which embeds a variant of a queueing model where the number of servers at facilities are

integer decision variables. Although the model considered in the second article is somewhat

similar to the one in the first article, it calls for an entirely different approach due to its

highly combinatorial aspects.

Let us consider the following global MPEC model

min
x∈Rn,y∈Rm

f(x, y)

s.t. gk(x, y) ≤ 0 k = 1, . . . , r

xi integer i = 1, . . . , n ,

(3.0.1)

where the vector y ∈ Y (x) satisfies the lower level variational inequality

〈F (x, y), y − y′〉 ≤ 0 ∀y′ ∈ Y (x) , (3.0.2)

with Y (x) = {y ≥ 0 : hj(x, y) = 0, j = 1, . . . , p}.
We assume all functions continuously differentiable, f and gk : Rn → R convex, hj :

R
n+m → R affine, and the mapping F : Rn+m → R

m monotone in its second argument y. If

F is a gradient mapping, the global model can be written as a mathematical program with



complementarity constraints (MPCC)

P: min
σ,x,y

f(x, y)

s.t. gk(x, y) ≥ 0 k = 1, ..., r

xi integer i = 1, . . . , n

hj(x, y) = 0 j = 1, ..., p (3.0.3)

0 ≤ y ⊥ F (x, y) +

p
∑

j=1

σj∇yhj(x, y) ≥ 0 , (3.0.4)

where the vector of multipliers σ ∈ R
p is associated with the set of linear constraints.

One of the main challenges associated with MPCCs arises from the violation of the

linear independence constraint qualification (LICQ) and of the Mangasarian-Fromovitz con-

straint qualification (MFCQ), at all feasible points. Failure of these regularity conditions

results in unboundedness and nonuniqueness of the multipliers, which yields a poor perfor-

mance of most nonlinear programming (NLP) algorithms [Andreani and Martínez, 2001,

Baumrucker et al., 2008].

Designing exact algorithms for this class of problems is extremely difficult due to their

nonconvexity. Our novel algorithmic framework is based on a sophisticated combination

of several algorithmic ingredients like linearization, relaxation, reformulation, Mixed-Integer

Linear Programming (MILP), and the iterative solution of convex (lower-level) subproblems.

The main idea is to perform a standard Branch and Bound (B&B) on a MILP relaxation

of the original problem, while virtually treating each node of the B&B tree as a separate

optimization problem. This flexible tree management allows for full flexibility and one can

potentially adapt the formulation, or the solution technique at some strategic nodes.

We illustrate our algorithm on an extension of the classical discrete FLP, that is different

from the one in the first article, in the following aspects. The facilities are modelled as

infinite capacity M/M/s queues equipped with a fixed service rate µ. The decision variable

is the integer vector s, i.e., the number of servers at each open facility. This adds to the

combinatorial complexity of the problem, but it makes the upper-level entirely integer. In

our algorithm we exploit this property, along with the other specific attributes of the model.
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An exact algorithm for a class of mixed-integer
programs with equilibrium constraints

Teodora Dan, Andrea Lodi, Patrice Marcotte

ABSTRACT

In this study, we consider a rich class of mathematical programs with equilibrium con-

straints (MPECs) involving both integer and continuous variables. Such a class, which

subsumes mathematical programs with complementarity constraints, as well as bilevel pro-

grams involving lower level convex programs is, in general, extremely hard to solve due

to complementarity constraints and integrality requirements. For its solution, we design

an (exact) branch-and-bound (B&B) algorithm that treats each node of the B&B tree as

a separate optimization problem and potentially changes its formulation and solution ap-

proach by designing, for example, a separate B&B tree. The algorithm is implemented and

computationally evaluated on a specific instance of MPEC, namely a competitive facility

location problem that takes into account the queueing process that determines the equilib-

rium assignment of users to open facilities, and for which, to date, no exact method has been

proposed.

Keywords: bilevel location, mixed integer programming, global optimization

3.1. Introduction

Mathematical programs with equilibrium constraints (MPECs) are NP-hard optimization

problems that arise in engineering design, transportation, economics and multilevel games,
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to name a few areas of application. They embed constraints that are typically expressed

as variational inequalities, which makes them highly nonconvex, even in the simplest cases.

The aim of this work if twofold. First, we design an exact algorithm for an important class

of mixed-integer MPECs, i.e., MPECs that involve both continuous and discrete variables.

Next, we computationally evaluate the algorithm on a complex location-queueing model.

Formally, the model that we consider takes the mathematical form

min
x∈Rn,y∈Rm

f(x, y)

s.t. gk(x, y) ≤ 0 k = 1, . . . , r

xi integer i = 1, . . . , n ,

(3.1.1)

where the vector y ∈ Y (x) satisfies the lower level variational inequality

〈F (x, y), y − y′〉 ≤ 0 ∀y′ ∈ Y (x) , (3.1.2)

with Y (x) = {y ≥ 0 : hj(x, y) = 0, j = 1, . . . , p}.
Throughout the paper, we make the assumptions that all functions involved are continu-

ously differentiable. Furthermore, f and gk : Rn → R are convex, hj : R
n+m → R are affine,

and the mapping F : Rn+m → R
m is monotone in its second argument y. Whenever the

Jacobian of F with respect to y is symmetric, F is a gradient mapping, i.e., F = ∇φ for

some convex function φ. In that case, a vector y satisfies the variational inequality (3.1.2) if

and only if it is a solution of the lower level convex program

LL: min
y

φ(y)

s.t. hj(x, y) = 0 j = 1, . . . , p

y ≥ 0 .

(3.1.3)

Under our monotonicity and differentiability assumptions, the variational inequality (3.1.2)

can be replaced by a Karush-Kuhn-Tucker (KKT) system. This allows to reformulate the

global model as the mathematical program with complementarity constraints (MPCC)

P: min
σ,x,y

f(x, y)

s.t. gk(x, y) ≥ 0 k = 1, ..., r

xi integer i = 1, . . . , n
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hj(x, y) = 0 j = 1, ..., p (3.1.4)

0 ≤ y ⊥ F (x, y) +

p
∑

j=1

σj∇yhj(x, y) ≥ 0 , (3.1.5)

where the vector of multipliers σ ∈ R
p is associated with the set of linear constraints.

The main difficulty associated with MPCCs is that the complementarity constraints

involve both upper level (x), and lower level (y, σ) variables. Even in its simplest form

0 ≤ a ⊥ b ≥ 0 over scalars a and b, the feasible set is the union of two convex polyhedra,

namely {(a, 0) : a ≥ 0} ∪ {(b, 0) : b ≥ 0}. The linear independence constraint qualification

(LICQ), requiring the gradients of the active constraints to be independent, is violated

at all feasible points, which results in nonuniqueness of the constraint multipliers. The

weaker Mangasarian-Fromovitz constraint qualification (MFCQ) is not satisfied either. We

recall that MFCQ requires linear independence of the gradients of the equality constraints,

and the existence of a direction d pointing into the interior of the region defined by the

gradients of the active inequality constraints, such that 〈∇hj, d〉 = 0. Failure of LICQ

and MFCQ results in unboundedness and nonuniqueness of the multipliers, therefore, many

nonlinear programming (NLP) algorithms (and codes) could perform poorly because their

performance strongly rests on these regularity conditions [Andreani and Martínez, 2001,

Baumrucker et al., 2008].

Designing exact algorithms for this class of problems is a challenging task. Our novel

algorithmic approach is based on a sophisticated combination of Mixed-Integer Linear Pro-

gramming (MILP), linearization techniques and the iterative solution of convex subproblems.

Roughly speaking, we start by embedding the solution space of P into an MILP relaxation

– which is already nontrivial due to its nonconvexity – and, while performing a standard

Branch and Bound (B&B), we iteratively solve either problem LL, to recover the true value

of the objective function of a leaf (corresponding to a mixed-integer node), or some subprob-

lems with strengthened relaxation (associated with a fractional node) to perform additional

pruning in the tree and speed up convergence. In other words, we virtually treat each node

of the B&B tree as a separate optimization problem to which we can adapt the formulation

and, consequently, the solution technique, by building, for example, a separate B&B tree.

The algorithm is implemented and computationally tested on a specific instance of P,

namely the competitive congested user-choice discrete facility location problem CC–FLP.
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CC–FLP is an extension of the classical (discrete) facility location problem, a fundamental

structure in discrete optimization that is well suited to a variety of real-life applications.

While it has been extensively considered in the literature, few studies have incorporated the

specific features of a user-choice environment, which frequently involves congestion, either

along the paths leading to a facility, or at the facility itself. The congested user-choice model

belongs to the MPEC class and can be reformulated as an NP-hard bilevel program, thus

falling into the category of mathematical programs with complementarity constraints.

Paper Contribution. The paper provides two strong contributions.

— On the one side, it proposes a novel exact algorithm for solving a fairly general class of

mathematical programs with equilibrium constraints. To some extent, such an algo-

rithm virtually treats every node as a separate, i.e., different, optimization problem,

adapting either the relaxation or the solution method (or both) depending on some

triggering conditions. This is done to achieve full flexibility and to exploit in the most

effective way both the strength of the MILP solvers, e.g., their strong preprocessing at

the root node, and the pieces of information acquired while exploring the enumeration

tree, which could lead to alternative algorithmic decisions and/or problem formula-

tions. Although this is not the only way to exploit this idea (see next section), we

believe that it is a fundamental step in the direction of designing complex adaptive

algorithms that have the capability, within the same B&B tree, to change solution

strategies and formulations, whenever required.

— On the other side, and to the best of our knowledge, our algorithm is the first exact

method for CC–FLP, which is a practically relevant and remarkably difficult general-

ization of the classical facility location problem. So far, in the literature, CC–FLP or

variants thereof were only addressed by means of heuristic methods.

Paper Organization. The paper is structured as follows. In Section 3.2, we detail the novel

solution method for P and discuss its connection with existing literature, together with its

underlying assumptions and limitations. In Section 3.3, we describe CC–FLP, including a

literature review, and we provide all necessary details for adapting the proposed algorithm

to this application. In Section 3.5, we report on the extensive computational experiments for

exactly solving CC–FLP. Finally, in Section 3.6, we draw some conclusions and open avenues

for further research on this topic.
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3.2. Algorithmic framework

Based on B&B, our solution approach consists of two main phases.

Phase I. In the first phase, we perform a linearization of nonlinear terms and constraints,

in order to reduce the original program to an MILP. In our generic model P, there are two

distinct sources of nonlinearity, namely F and the complementarity constraints. For linear

F , the only linearization needed would involve the complementarity constraints, for which

we could write an exact linear reformulation via binary variables 1. For the sake of generality,

we henceforth consider F to be nonlinear. Then, there are several options for linearization.

— Single level linearization:

— Perform a piecewise linear approximation of F .

— Introduce big-M constraints to linearize the complementarities.

— Bilevel linearization:

— Replace the equilibrium constraints by a lower-level program, linearize it, then

write the KKT optimality conditions.

— Linearize the resulting program by replacing the bilinear terms with McCormick

envelopes.

The main difficulty in both cases is to perform linear approximations that guarantee that

the objective function of the obtained MILP is a bounding function for the objective of the

original program. Let F̄ be a piecewise linear approximation of F and let (σ̃, x̃, ỹ) be a

feasible solution of P. Similarly, given x̃, let (σ̄, ȳ) satisfy (3.1.4)–(3.1.5) when F is replaced

by F̄ . Due to the approximation of F , ȳ may not correspond to the true solution of the lower

level, therefore ȳ may differ from ỹ. It follows that f(x̄, ȳ) may also differ from f(x̃, ȳ). This

implies that, after linearization and relaxation of integrality constraints at integer nodes, the

approximated objective value may not correspond to the true objective value. Our approach

is to perform a linear approximation such that the objective function of the obtained MILP

be a valid upper bound on the objective of the original program. This will ensure that

optimum of relaxed MILP ≤ optimum of MILP ≤ optimum of original problem. (3.2.1)

1. The reader is referred to [Hijazi and Liberti, 2014, Jeroslow and Lowe, 1984] for a discussion

on the theoretical representability of unbounded disjunctions.
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Inequality (3.2.1) must hold in order for B&B not to prune nodes that might contain the

optimal solution. In other words, the constructed MILP must be a valid relaxation of P .

Phase II. In the second phase, we implement a B&B algorithm to find the optimal solution of

the original problem. At the leaves of a standard B&B tree, the bound equals the value of the

corresponding solution. In our case, this is not necessarily true, due to the approximations

performed in Phase I. We tackle this issue by interacting with the B&B throughout its

execution, i.e., by computing the correct value of the objective function at any associated

leaf. To achieve this, we fix the upper level (integer) variables to their corresponding values

at the current node, we compute the optimal solution of the (convex) lower-level problem,

and we recover the associated objective value of the original problem. In order to reduce the

size of the B&B tree and to make the algorithm more efficient, in some of the fractional nodes

we compute an on-the-fly lower-bound for the subtree rooted at the corresponding node, by

taking into account the bounds of some of the variables. This algorithmic framework is

summarized in Algorithm 1 (see pseudocode below).

Algorithm 1

1: perform linear approximations of nonlinear terms and constraints so as to satisfy (3.2.1)

2: solve the resulting MILP using B&B:

3: for all nodes in the tree do

4: if integer node then

5: compute the true corresponding objective function value

6: else

7: if some condition holds then

8: compute a tighter lower bound (by improving the relaxation)

9: return best found solution

Algorithm 1 performs Phase I at Step 1. This can be achieved either under the single level

or bilevel linearization. The quality of those linearizations will be discussed later on in the

paper and especially evaluated in the computational investigation for the special case of the

CC–FLP. The rest of Algorithm 1 concerns Phase II and implements the idea, outlined in the

introduction, that every node of the B&B tree can potentially be treated differently. What

is described in the algorithm above is the distinction between fractional and integer nodes,
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where we either (potentially) improve the relaxation or compute the real objective function

value by solving an auxiliary continuous optimization problem, respectively. However, a

third special case for the CC–FLP involves B&B nodes in which a certain set of variables,

namely the facility location ones, is settled, i.e., all decisions on where locating the facilities

are taken but some other integer decisions are not. Each of those nodes is reformulated and

solved by the MILP solver IBM CPLEX as a separate MILP within the same B&B algorithm

by taking advantage of callback functions, which allows the solver to exploit the full power

of its preprocessing phase by heavily simplifying the formulation. Of course, the overall

branching scheme is tailored so as the location variables are settled first, thus encountering

those nodes as early as possible in the search tree.

We close this discussion by outlining the relationship between our solution approach and

the relevant literature with respect to the management of the B&B tree.

— First, our algorithm clearly borrows from the vast literature on Global Optimization

(GO) the idea (and the need) of iteratively improving the relaxation within the enu-

meration scheme. In GO, this is achieved by Spatial Branching (i.e., by iteratively

improving the convex relaxation) and by applying expensive bound tightening in virtu-

ally any node. Of course, the relaxation can be (and is actually) improved in MILP as

well by cutting plane generation. However, our approach is a hybrid because, within an

MILP scheme, what we do in the majority of cases in (selected) fractional nodes is to

tighten the formulation not by exploiting integrality (like for cut generation in MILP)

but by improving the linearization of the nonlinear component(s) of the original prob-

lem. This is in the spirit, for example, of the work of [Belotti et al., 2016], where

big-M constraints are iteratively strengthened within the MILP B&B as a GO solver

would do. With respect to [Belotti et al., 2016], Step 8 of Algorithm 1 goes slightly

further by providing a different formulation of the node (by improving the piecewise

linear approximation) instead of simply tightening some of its constraints individu-

ally. This is related to the work of [Furini and Traversi, 2013] where, at some

nodes of the B&B tree of a mixed-integer nonlinear programming (MINLP) approach

to binary quadratic programming, an alternative semidefinite programming (SDP)

relaxation is defined and solved with the aim of improving the bound, thus possibly

fathoming the node. The difference is that in Algorithm 1 the improved reformulation
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of a node is kept in the entire subtree rooted at the node itself, while the SDP node

in [Furini and Traversi, 2013] is discarded if its improved bound does not allow

the subtree to be fathomed. Ideally, of course, one can think of solving the associated

mixed-integer SDP instead, which is not done in [Furini and Traversi, 2013].

— Second, the idea of reformulating some of the nodes of a B&B scheme so as to ex-

ploit some special structure has been used with different flavors, for example, in

[Raghunathan, 2013]. More precisely, [Raghunathan, 2013] solves by B&B a

convex MINLP relaxation of a water network design problem. However, at the nodes

in which all binary variables are decided (namely, the diameters of the pipes in the

designed network), instead of solving the associated continuous convex relaxation, it

is observed that the original nonconvex counterpart has a unique solution and such a

problem is efficiently solved directly. In other words, the convex MINLP relaxation

is used to embed the solution approach within a rather efficient (although nonlinear)

B&B framework, while the special structure of the continuous optimization problems

obtained after fixing the diameters is exploited to more accurately solve those nodes.

This is precisely what we achieve at Step 5 of Algorithm 1.

Overall, Algorithm 1 yields an effective framework that uses in a flexible way several

algorithmic ingredients like preprocessing, reformulation, linearization, etc. through an ex-

tremely sophisticated tree management. We believe that managing the enumeration tree

flexibly is key to solving extremely difficult nonconvex MINLPs like the one discussed in the

next section.

3.3. CC–FLP

To illustrate our algorithmic framework, we consider the problem faced by a company

making location and service level decisions in a market where competitors already operate.

The aim of the company is to maximize the number of attracted customers, subject to a

budget constraint. In the model, queueing at facilities, together with user’s selfish behavior,

are explicitly taken into account. Under these assumptions clients select and patronize the

facility minimizing their disutility, expressed as the weighted sum of travel and waiting time.

Assuming constant travel times, the underlying network reduces to a bipartite graph. Let

V = I × J be a complete bipartite graph, where I denotes the set of demand nodes, and J
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the set of locations. Every node i ∈ I represents a population zone of a city, and is endowed

with an inelastic demand di. Let J1 denote the set of candidate locations of the emerging

company, while Jc is the set of competitors’ locations. A client originating from node i ∈ I
and patronizing facility j ∈ J incurs a travel time tij. Arriving at facility j, she enters an

M/M/cj/∞ queue, equipped with cj servers having identical mean service rate µ, and mean

(queueing plus service) delay wj . The disutility uij is defined as a linear combination of

travel time queueing, and service time at the facility, namely

uij = tij + αwj, (3.3.1)

where α is a positive weight coefficient.

3.3.1. Literature review

Although location problems have been widely studied, few models incorporate user be-

havior, congestion and competition. In our model, customers select the facilities to patronize,

based on the travel time and waiting time at facilities, the latter being a congestion trait.

User behavior can be modeled as a Stackelberg game, in which the company locating facilities

is the leader, and users represent the follower, fitting the bilevel paradigm. When describing

the patronizing behavior, we identify two possibilities: deterministic and probabilistic.

In the deterministic case, users select the facility that minimizes their disutility. In

simpler models, all users originating from a demand point patronize the same facility, and

disutility does not account for congestion. Under these assumptions [Marić et al., 2012]

implement three metaheuristics to solve a bilevel formulation of the uncapacitated FLP

with user preferences. Similarly, in [Camacho-Vallejo et al., 2014], the bilevel FLP

with user preferences is solved by using a Stackelberg Evolutionary Algorithm. In

[Vidyarthi and Jayaswal, 2014], a model where congestion is minimized in the objective

function, and users patronize the closest facility is considered. The authors solve their

model by constraint generation.

When demand can be split between several facilities, a tie resolution rule must be imple-

mented as well. Within this framework we note the work of [Desrochers et al., 1995] who

consider a centralized model of a deterministic facility location problem, where individual

delays increase with distance. The authors provide a user-choice version of their model that

fits the bilevel programming paradigm, although they do not propose a solution algorithm.
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In [Berman and Drezner, 2006], the location of congested facilities when demand is elas-

tic with respect to distance is investigated. The objective is to maximize total demand,

subject to constraints on the waiting time at facilities. Heuristic procedures are proposed.

The presence of non-linearities in the user utility makes the problem even more difficult

to solve, thus, only few papers tackle this aspect. We cite here [Sun et al., 2008], who

consider a generic bilevel facility location model, where the upper level is making locational

decisions that minimize the sum of total cost and a congestion function, and the lower

level (users) minimizes a non-linear function. The authors propose a heuristic algorithm as

solution method. Another work worth mentioning is that of [Zhang et al., 2010a], who

propose a methodology for addressing a congested facility network design, with the aim of

maximizing the participation rate, in a preventive healthcare setting. Demand is elastic with

respect to total expected time (travel + waiting time at facilities) experienced by clients.

Users patronize the facility minimizing the sum of waiting and travel time. The proposed

solution method is a Tabu Search procedure.

In the probabilistic case, users behave according to a discrete choice model based on the

random utility paradigm. In the case of Gumbel distributed random terms, this yields Logit

closed form expressions for the origin-destination flows. Similar to the deterministic case,

most papers consider the utility to be solely based on proximity.

A more elaborate model is proposed by [Abouee-Mehrizi et al., 2011], who consider

simultaneous decision-making over the location, service rate and price, for facilities located

at vertices of a network. Demand is elastic with respect to price, and congestion arising at

facilities is characterized by queueing equations. Clients spread among facilities based on

proximity only, according to a Multinomial Logit random utility model that takes balking

into account. As solution method, the authors propose a hybrid between Tabu Search and

a tailored heuristic algorithm.

When it comes to utility, most papers make simplifying assumptions. For one, they

assume that users patronize facilities based solely on proximity. To the best of our knowl-

edge, the first paper to address congestion in a competitive user-choice environment is that

of [Marianov et al., 2008]. The authors consider a scenario in which a company locates

p facilities on the vertices of a network where competitors are already operating. The de-

mand is inelastic and users patronize the facility minimizing their disutility, given by the
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sum of travel and waiting time. The model is solved by using a two-phase metaheuristic

procedure combining GRASP and Tabu Search. In the initial phase, facility locations are

selected and a nonlinear assignment problem is solved using the Newton-Raphson algorithm.

In [Dan and Marcotte, 2017], it is considered a bilevel network design problem, where

a firm makes decisions on both location and service levels, and users patronize the facility

minimizing the travel and waiting time at facilities, yielding a non-linear bilevel program.

The authors propose an approximation algorithm that is asymptotically optimal, as well as

a heuristic that exploits the structure of the problem.

3.3.2. Modeling CC–FLP

Throughout this paper we will be using the following notation.

Sets

I: set of demand nodes;

J : set of candidate facility locations (leader and competitor);

Jc: set of competition’s facilities;

J1: set of leader’s candidate sites;

J∗
1 ⊆ J1: set of leader’s open facilities;

J∗ ⊆ J : set of open facilities (leader and competitor).

Parameters

di: demand originating from node i ∈ I;
µ: service rate at open facility j ∈ J ;

tij: travel time between nodes i ∈ I and j ∈ J ;

α: coefficient of the waiting time in the disutility formula;

B: available budget (for opening new facilities and associated service rates);

fc: fixed cost associated with opening a new facility;

vc : cost per server.

Basic decision variables

yj: binary variable set to 1 if a facility is open at site j, and to 0 otherwise;

cj: number of servers at open facility j ∈ J .
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Additional variables

xij: arrival rate at facility j ∈ J originating from demand node i ∈ I;
λj: arrival rate at node j ∈ J ;

ρj: traffic intensity at facility j ∈ J ;

wj: mean queueing time at facility j;

γi: disutility of users originating from node i.

Let xij be the number of clients from demand node i patronizing facility j. We define

the arrival rate λj =
∑

i∈I xij at facility j, as well as the number cj of servers operating at

j. Then, the mean waiting time (queueing plus service) at facilities w is a bivariate function

depending on both the arrival rate and number of servers [Kleinrock, 1975]

w(λj, cj) =
1

(µcj − λj)
(

1 +
(1− ρj) cj!
(cjρj)cj

cj−1
∑

k=0

(cjρj)
k

k!

) +
1

µ
, (3.3.2)

where ρj = λj/(µcj) < 1 is the traffic intensity.

In a user-choice environment, users patronize facilities minimizing their disutility. Given

the facility locations and the assigned number of servers, the lower level problem is a user

equilibrium problem (Wardrop). The equilibrium is defined by the complementarity system

0 ≤ xij ⊥ tij + αwj − γi ≥ 0, i ∈ I; j ∈ J. (3.3.3)

The complete model is as follows.

CC–FLP:

LEADER (COMPANY)

max
y,c,x,γ

z =
∑

i∈I

∑

j∈J1

xij (3.3.4)

s.t.
∑

j∈J1

(fc · yj + vc · cj) ≤ B (3.3.5)

cj ≤M · yj j ∈ J1 (3.3.6)

cj ≥ yj j ∈ J1 (3.3.7)

yj ∈ {0, 1} j ∈ J1 (3.3.8)

cj ≥ 0, cj integer j ∈ J1 (3.3.9)
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FOLLOWER (USERS)

0 ≤ xij ⊥ tij + αwj − γi ≥ 0 i ∈ I; j ∈ J (3.3.10)

wj =
1

(µcj − λj)
(

1 +
(1− ρj) cj!
(cjρj)cj

cj−1
∑

k=0

(cjρj)
k

k!

) +
1

µ
j ∈ J (3.3.11)

λj =
∑

i∈I

xij j ∈ J (3.3.12)

ρj =
λj
µcj

j ∈ J (3.3.13)

∑

j∈J

xij = di i ∈ I (3.3.14)

λj ≤ µjcj j ∈ J (3.3.15)

xij ≥ 0 i ∈ I; j ∈ J, (3.3.16)

where M is a suitably large constant, that we set to (B − fc)/vc, as a direct consequence of

(3.3.6).

The decision variables are the vectors y (locations) and c (number of servers), while

the user assignment x is the solution of an equilibrium problem that can be equivalently

obtained by solving a convex optimization problem. The objective in Eq. (3.3.4) is to maxi-

mize the total number of users that patronize the leader’s facilities, while constraint (3.3.5)

ensures that the total cost does not exceed the budget B. Constraints (3.3.6) set the up-

per bound for the number of servers per facility. In order to avoid irrelevant solutions,

constraints (3.3.7) specify that at least one server must be assigned to any open facility.

Logical constraints (3.3.10)–(3.3.13) enforce the user equilibrium conditions. Finally, con-

straints (3.3.14) ensure that demand is satisfied, and constraints (3.3.15) guarantee that the

arrival rate does not exceed the total service rate.

It is clear that CC–FLP fits the generic model P. We now discuss some simple but

important properties of our model.

Proposition 3.3.1. The waiting time function w is strictly increasing in λ and strictly

decreasing in c.
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Proof. We note that A =
c!

(cρ)c

c−1∑

k=0

(cρ)k

k!
. Then, w(λ, c) =

C

µc− λ , where C =

1

1 + (1− ρ)A . We have that

∂C

∂ρ
= −C2

[

−A+ (1− ρ)∂A
∂ρ

]

= C2

[

c!

cc

c−1∑

k=0

ckρk−c−1

k!
((c− k) (1− ρ) + ρ)

]

> 0.

C is thus, strictly increasing in ρ. But
1

µc− λ is strictly increasing in λ and strictly decreasing

in c, so the conclusion follows. �

Proposition 3.3.2. [Lee and Cohen, 1983] The waiting time function w is convex in λ.

Now, for given couples (λ, c), we consider under and over estimators of w, respectively w̃

and ŵ, such that

w̃(λ, c) ≤ w(λ, c) , and ŵ(λ, c) ≥ w(λ, c) . (3.3.17)

We will now show that, if we replace wj with w̃j at the leader’s facilities, and with ŵj

at competitors facilities, the optimal solution of the resulting program yields a valid upper

bound on the optimum of the initial problem.

The objective function defined by Eq. (3.3.4) can be expressed as z =
∑

j∈J1
λj, where

λj is the total number of users patronizing facility j. Let CC–FLP’ be a modified version

of CC–FLP, where wj in constraints (3.3.10)–(3.3.11) has been replaced by w̃j at leader’s

facilities, and with ŵj at competitors’ facilities. Let x′, λ′ and γ′ be an optimal solution of

CC–FLP’, with objective z′ =
∑

j∈J1

λ′j .

Proposition 3.3.3. For any feasible pair (y, c), the optimal objective function of CC–FLP’

is greater or equal than the optimal objective of CC–FLP.

Proof (by contradiction). Assume that the proposition is false. Then,
∑

j∈J1
λj >

∑

j∈J1
λ′j implies the existence of a facility j ∈ J1 such that λ′j < λj, and there exists k ∈ Jc

such that λ′k > λk. From Proposition 3.3.1, it follows that

w(λk, c) < w(λ′k, c) ≤ ŵ(λ′k, c) (3.3.18)

w(λj, c) > w(λ′j, c) ≥ w̃(λ′j, c) . (3.3.19)
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In other words, a fraction of the population patronizing the leader’s facilities in CC–FLP

switches to competitors’ facilities in CC–FLP’. Therefore, there exists a demand node i,

together with a population ǫ that originates from i, patronizes both facility j ∈ J1 in CC–

FLP and facility k ∈ Jc in CC–FLP’. Then,

0 < x′ij + ǫ = xij , and xik + ǫ = x′ik .

From Eq.(3.3.10), we have that tij+αw(λj, c) = γi (since xij > 0). If follows from Eq.(3.3.19)

that tij+αw(λj, c) > tij+αw̃(λ
′
j, c) ≥ γ′i, and we have γi > γ′i . Similarly, from Eq.(3.3.10), we

have that tik+αw(λk, c) ≥ γi, and from Eq.(3.3.18) we have tik+αw(λk, c) < tik+αŵ(λ
′
k, c) =

γ′i, which yields γi < γ′i, a contradiction. �

3.3.3. Linearization

The first phase of our algorithmic framework is the linearization of the non-linear terms

and constraints, in order to reformulate CC–FLP as an MILP. The key task is the lineariza-

tion of the highly nonlinear two-variable waiting time function. As previously mentioned for

CC–FLP, we will consider two approximation schemes, respectively single-level and bilevel.

3.3.3.1. Single-level linearization

The underlying idea of this method is to directly linearize the complementarity condi-

tion (3.1.5), i.e., Wardrop conditions (3.3.3) and, independently, the waiting time functions,

with the aim to obtain an MILP. This is outlined below.

Linearization of equilibrium constraints

For a given set of open facilities y and their assigned number of servers c, the lower level

flows xij are solution of the non-linear complementarity problem

0 ≤ xij ⊥ tij + αwj − γi ≥ 0 i ∈ I; j ∈ J (3.3.20)

which is linearized through the introduction of binary variables and big-M constants:

tij + αwj − γi ≤Mγsij i ∈ I; j ∈ J (3.3.21)

xij ≤ di(1− sij) i ∈ I; j ∈ J (3.3.22)

sij ∈ {0, 1} i ∈ I; j ∈ J . (3.3.23)
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Tight values for the constant Mγ can be derived from information concerning the maximal

queueing time wmax and maximal travel time tmax = maxi∈I,j∈J{tij}. Since the total demand

must be strictly less than the total service rate, there must exist a minimum number of

servers C so that
∑

i∈I di < Cµ. Let ℓ = ⌊B/fc⌋ be the maximum number of facilities

allowed by the budget, and let ε = (C −∑i∈I di)/(ℓ + |Jc|). Then, an upper bound C on

the number of servers at leader’s or competitor’s facilities is

C = max

{

max
j∈Jc
{cj}, (B − fc)/vc

}

.

At optimality, there exists at least one facility j1, belonging either to the leader or to the

competition, such that cj1µ ≥ λj1 + ε. A priori, facility j1 is unknown, but its number of

servers can vary from 1 to C. There follows the upper bound

wmax ≤ max
c∈{1,...,C̄},cµ>ε

{w(cµ− ε, c)} . (3.3.24)

Let γmax and γmin be the maximum and minimum values that γ can assume at optimality,

respectively. Since γmin ≥ 0 and γmax ≤ tmax +αwmax, one can set Mγ = tmax +αwmax. Note

that for a given number No of leader’s open facilities the value of Mγ can be further reduced,

yielding

C = max

{

max
j∈Jc
{cj}, (B −Nofc)/vc

}

and ε = (Cµ−∑i∈I di)/(No − |Jc|). In some cases, this yields a smaller value of Mγ.

Linearization of waiting time

In order to derive an upper bound on the leader’s profit, we perform an under approx-

imation of queueing delays at its facilities, and an over approximation of the delays at the

competitor’s facilities, respectively, as illustrated in Figure 3.1.

The waiting time at the leader’s facilities is a nonlinear bivariate function of variables λj

and cj. Given wmax, and for each number of servers k, we select a number λkmax < µk such that

w(λkmax, k) ≥ wmax. Considering the maximum number of servers cmax allowed by the budget

B, one samples each interval [0, λkmax] using Nl points λkn, k = 0, . . . , cmax, n = 1, . . . , Nl such

that λki < λkj for all 1 ≤ k ≤ cmax and 1 ≤ i < j ≤ Nl. Next, we compute the tangent

lines at λkn, as well as the intersections between each two consecutive lines, yielding Nl + 1

points, including the endpoints 0 and λkmax. We denote these points as (λ̃kn, wkn), where λ̃kn

corresponds to the sample on λ, and wkn is an under approximation of w at (λ̃kn, k). Since
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1

2

k

(a) Leader: under approximation w̃

cj

(b) Follower: over approximation ŵ

Figure 3.1. Piecewise linear approximation of queueing delay w.

wj is convex in λj, the piecewise linear approximation provides a valid lower bound. Next,

we base our linear approximation of the w constraint on the triangle technique described

in [D’Ambrosio et al., 2010]. This yields

cmax∑

k=0

Nl+1∑

n=1

(
ljkn + ljkn

)
= 1, j ∈ J1 (3.3.25)

s̃jkn ≤ ljkn + ljkn + ljkn−1+ ljk−1n−1 + ljk−1n−1 + ljk−1n

j ∈ J1; k = 0, . . . , cmax;n = 1, . . . , Nl + 1 (3.3.26)

cmax∑

k=0

Nl+1∑

n=1

s̃jkn = 1, j ∈ J1 (3.3.27)

λj =
cmax∑

k=0

Nl+1∑

n=1

s̃jknλ̃
kn, j ∈ J1 (3.3.28)

cj =
cmax∑

k=0

Nl+1∑

n=1

s̃jknk, j ∈ J1 (3.3.29)

w̃j ≥
cmax∑

k=0

Nl+1∑

n=1

s̃jknw
kn, j ∈ J1 (3.3.30)

ljkn, ljkn ∈ {0, 1} j ∈ J1; k = 0, . . . , cmax;n = 1, . . . , Nl + 1 (3.3.31)

0 ≤ s̃jkn ≤ 1 j ∈ J1; k = 0, . . . , cmax;n = 1, . . . , Nl + 1 (3.3.32)

lj,−1,n = 0, lj,−1,n = 0 j ∈ J1;n = 1, . . . , Nl + 1 (3.3.33)

lj,cmax,n = 0, lj,cmax,n = 0 j ∈ J1;n = 1, . . . , Nl + 1 (3.3.34)

lj,k,0 = 0, lj,k,0 = 0 j ∈ J1; k = 0, . . . , cmax (3.3.35)
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lj,k,Nl+1 = 0, lj,k,Nl+1 = 0 j ∈ J1; k = 0, . . . , cmax. (3.3.36)

We perform a similar linearization for the waiting time at competing facilities, where the

number of servers cj is constant. Next, we construct a piecewise linear function ŵj so that

ŵj ≤ wj, ∀j ∈ Jc. Given wmax, we compute λ̂jmax < µcj such that wj(λ̂
j
max, cj) ≥ wmax and

sample the interval [0, λ̂jmax] using Nc points λ̂jn, n = 1, . . . , Nc such that λ̂jn < λ̂jm for all

1 ≤ n < m ≤ Nc. This yields the linearization

Nc∑

n=1

ŝjn = 1 j ∈ Jc (3.3.37)

λj =
Nc∑

n=1

ŝjnλ̂
jn j ∈ Jc (3.3.38)

ŵj ≤
Nc∑

n=1

ŝjnw(λ̂
jn, cj) j ∈ Jc (3.3.39)

Nc∑

n=1

l̂jn = 1 j ∈ Jc (3.3.40)

ŝjn ≤ l̂jn + l̂jn−1 j ∈ Jc; n = 1, . . . , Nc (3.3.41)

l̂jn ∈ {0, 1} j ∈ Jc; n = 1, . . . , Nc (3.3.42)

0 ≤ ŝjn ≤ 1 j ∈ Jc; n = 1, . . . , Nc (3.3.43)

l̂j,0 = l̂j,Nc
= 0 j ∈ Jc. (3.3.44)

The inequality form of constraints (3.3.30) and (3.3.39) ensure that the original w is feasible

for the approximated problem. The MILP relaxation of CC–FLP then becomes

CC–FLP1: max
y,c,x,γ

z =
∑

i∈I

∑

j∈J1

xij

s.t. constraints (3.3.5)–(3.3.9), (3.3.12)–(3.3.16), (3.3.20)–(3.3.23), (3.3.25)–(3.3.44).

3.3.3.2. Bilevel linearization

An alternative to the linearization of the user equilibrium conditions (3.3.10)–(3.3.14) is

to replace the latter by the convex optimization problem [Beckmann et al., 1956]

PL: min
x,λ

∑

i∈I

∑

j∈J∗

xijtij + α
∑

j∈J∗

∫ λj

0

wj(τ, cj)dτ (3.3.45)
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s.t.
∑

j∈J∗

xij = di i ∈ I

xij ≥ 0 i ∈ I; j ∈ J∗

λj =
∑

i∈I

xij j ∈ J∗,

whose KKT conditions match the Wardrop conditions (3.3.20). Based on this formulation,

an MILP approximation can be obtained by (i) performing a piecewise linearization of the

sole nonlinear term
∫ λj

0
wj(q, cj), (ii) writing an equivalent linear program, (iii) linearizing

the complementarity term of the optimality conditions.

We now provide the technical details. Let us construct piecewise linear functions W̃ (λ, c)

(leader) and Ŵ (λ, c) (competition), whose respective derivatives w̃(λ, c) and ŵ(λ, c) sat-

isfy (3.3.17). This is achieved as follows. Given wmax as defined by Eq. (3.3.24), and for each

number of servers c, let λ̃cmax < µc. We sample Nl points λ̃cn (c = 1, . . . , cmax, n = 1, . . . , Nl),

sorted in increasing order, in each interval [0, λcmax]. Then, for each value of c, the integral

of the waiting time at leader’s facilities is approximated by the piecewise linear function

W̃j(λ, c) = (λ− λ̃cl)w(λ̃cl, c) +
l∑

k=2

(λ̃ck − λ̃c,k−1)w(λ̃c,k−1, c) if λ ∈ [λ̃cl, λ̃c,l+1]

= λw(λ̃cl, c)
︸ ︷︷ ︸

f̃ cl
j

+
l∑

k=2

(λ̃ck − λ̃c,k−1)w(λ̃c,k−1, c)− λ̃clw(λ̃cl, c)
︸ ︷︷ ︸

g̃clj

. (3.3.46)

Similarly, we linearize the integral of the waiting time at competitors’ facilities. Given wmax,

we set λ̂jmax < µcj such that wj(λ̂
j
max, cj) ≥ wmax. We sample the interval [0, λ̂jmax] using

Nc points λ̂jn, n = 1, . . . , Nc, sorted in increasing order and consider the piecewise linear

approximation

Ŵ (λ, cj) = (λ− λ̂jn)w(λ̂j,n+1, cj) +
n∑

k=2

(λ̂jk − λ̂j,k−1)w(λ̂jk, cj) if λ ∈ [λ̂jn, λ̂j,n+1]

= λw(λ̂j,n+1, cj)
︸ ︷︷ ︸

f̂ jn

+
n∑

k=2

(λ̂jk − λ̂j,k−1)w(λ̂jk, cj)− λ̂jnw(λ̂j,n+1, cj)

︸ ︷︷ ︸

ĝjn

. (3.3.47)

Let w̃ and ŵ denote the derivatives of W̃ and Ŵ , respectively. It is easy to check that

w̃(λ, c) = w(λ̃c,l−1, c) if λ ∈ [λ̃c,l−1, λ̃c,l) and l ∈ {2, 3, . . . , Nl}
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ŵ(λ, cj) = w(λ̂jn, cj) if λ ∈ [λ̂j,n−1λ̂jn) and n ∈ {1, 2, . . . , Nc − 1} .

Then, w̃ and ŵ are piecewise constant approximations of w in λ, satisfying (3.3.17), as

illustrated in Figure 3.2.

(a) w̃ (b) ŵ

Figure 3.2. Piecewise constant approximations of w.

Since w is increasing in λ according to Proposition 3.3.1, for each couple(λj, cj) we have

that w̃j(λj, cj) ≤ wj(λj, cj) and ŵj(λj, cj) ≥ wj(λj, cj).

We now replace
∫ λj

0
w(τ, cj)dτ in (3.3.45) with W̃j for the leader and Ŵj for the competi-

tor, as defined by (3.3.46) and (3.3.47). This yields the approximated lower level

PL2: min
x

∑

i∈I

∑

j∈J∗

xijtij + α




∑

j∈J∗

1

W̃ (λ, cj) +
∑

j∈Jc

Ŵ (λ, cj)





s.t. constraints (3.3.12), (3.3.14), (3.3.16), (3.3.46)–(3.3.47).

Next, we substitute variables ṽ and v̂ with W̃ and Ŵ , respectively. This allows to rewrite

PL2 as a linear program, whenever the upper level vector c is fixed:

PLL: min
x

∑

i∈I

∑

j∈J∗

xijtij + α
∑

j∈J∗

1

ṽj + α
∑

j∈Jc

v̂j

s.t. ṽj − f̃ cj ,l
j · λj − g̃cj ,lj ≥ 0 j ∈ J∗

1 ; l = 1, . . . , Nl (3.3.48)

v̂j − f̂ jn · λj − ĝjn ≥ 0 j ∈ Jc;n = 1, . . . , Nc (3.3.49)

∑

j∈J∗

xij = di i ∈ I (3.3.50)

∑

i∈I

xij − λj = 0 j ∈ J∗ (3.3.51)

xij ≥ 0 ∀i ∈ I; j ∈ J∗. (3.3.52)
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Upon introduction of the dual variables π̃l
j ≥ 0, π̂n

j ≥ 0, ηi, δj and φij ≥ 0 associated with

constraints (3.3.48)–(3.3.52), we derive the primal-dual optimality conditions

tij + δj + ηi − φij = 0 i ∈ I; j ∈ J∗

Nl−1∑

l=1

f̃ cl
j π̃

l
j − δj = 0 j ∈ J∗

1

Nc−1∑

n=1

f̂ jnπ̂n
j − δj = 0 j ∈ Jc

Nl−1∑

l=1

π̃l
j = α j ∈ J∗

1

Nc−1∑

n=1

π̂n
j = α j ∈ Jc

(

ṽj − f̃ cj ,l
j · λj − g̃cj ,lj

)

π̃l
j = 0 j ∈ J∗

1 ; l = 1, . . . , Nl − 1 (3.3.53)
(

v̂j − f̂ jn · λj − ĝjn
)

π̂n
j = 0 j ∈ Jc;n = 1, . . . , Nc − 1 (3.3.54)

xijφij = 0 i ∈ I; j ∈ J∗ (3.3.55)

constraints (3.3.48) – (3.3.52) .

We now replace constraints (3.3.10)–(3.3.16) in the original formulation CC–FLP with the

above optimality conditions. The optimum of the latter program yields an upper bound on

the objective function of CC–FLP .

Linear relaxation of bilinear terms

To complete the linearization process, we approximate the bilinear terms f̃
cj ,l
j π̃l

j and

f̃
cj ,l
j λj by their McCormick envelopes, and linearize the complementarity constraints in

Eqs. (3.3.53), (3.3.54) and (3.3.55) using big-M constants. This yields the final MILP for-

mulation

CC–FLP2: (3.3.56)

max
y,c

∑

i∈I

∑

j∈J1

xij

s.t.
∑

j∈J1

(fc · yj + vc · cj) ≤ B
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λj ≤ µ · cj j ∈ J1

λj ≤ λmax j ∈ Jc

cj ≤M · yj j ∈ J1

cj ≥ yj j ∈ J1

cj =
cmax∑

k=0

k · lwj,k, j ∈ J1

cmax∑

k=0

lwj,k = 1 j ∈ J1

yj ∈ {0, 1}, lwj,k ∈ {0, 1} j ∈ J1; k = 0, . . . cmax

cj ≥ 0, cj ≤ cmax, cj integer j ∈ J1
∑

j∈J

xij = di i ∈ I

∑

i∈I

xij = λj j ∈ J

ṽj − zwλ
j,l − G̃l

j ≥ 0 j ∈ J1; l = 1, . . . , Nl

v̂j − f̂ jn · λj − ĝjn ≥ 0 j ∈ Jc;n = 1, . . . , Nc

0 ≤ c̃jk ≤ 1 j ∈ J1; k = 0, . . . , cmax (3.3.57)

cmax∑

k=0

c̃jk = 1 j ∈ J1 (3.3.58)

cj =
cmax∑

k=0

k · c̃jk j ∈ J1 (3.3.59)

f̃ l
j =

cmax∑

k=0

c̃jk · w(λ̃kl, k) j ∈ J ; l = 1, . . . , Nl

G̃l
j =

cmax∑

k=0

c̃jk · g̃kl j ∈ J ; l = 1, . . . , Nl

zwλ
j,l ≥ wmax · λj + λ̃l

UB
· f̃ l

j − wmax · λ̃lUB
j ∈ J1; l = 1, . . . , Nl

zwλ
j,l ≤ λ̃l

UB
· f̃ l

j j ∈ J1; l = 1, . . . , Nl

zwλ
j,l ≤ wmax · λj j ∈ J1; l = 1, . . . , Nl

zwλ
j,l ≥ 0 j ∈ J1; l = 1, . . . , Nl
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xi,j ≥ 0 i ∈ I; j ∈ J

tij + δj + γi ≥ 0 i ∈ I; j ∈ J
Nl−1∑

l=1

π̃l
j = α j ∈ J1 (3.3.60)

Nc−1∑

n=1

π̂n
j = α j ∈ Jc (3.3.61)

Nl−1∑

l=1

zπ,fj,l − δj = 0 j ∈ J1

Nc−1∑

n=1

π̂n
j f̂

jn − δj = 0 j ∈ Jc

zπ,fj,l ≥ α · f̃ l
j + wmaxπj,l − wmax · α j ∈ J1; l = 1, . . . , Nl

zπ,fj,l ≤ wmaxπj,l j ∈ J1; l = 1, . . . , Nl

zπ,fj,l ≤ α · f̃ l
j j ∈ J1; l = 1, . . . , Nl

zπ,fj,l ≥ 0 j ∈ J1; l = 1, . . . , Nl

π̃l
j ≤ α · s̃πj,l j ∈ J1; l = 1, . . . , Nl

ṽj − zwλ
j,l − g̃lj ≤

(
1− s̃πj,l

)
·Mπ j ∈ J1; l = 1, . . . , Nl

π̂n
j ≤ α · ŝπj,n j ∈ Jc;n = 1, . . . , Nc

v̂j − f̂ jnλj − ĝjn ≤
(
1− ŝπj,k

)
·Mπ j ∈ Jc;n = 1, . . . , Nc

tij + δj + γi ≤ sφi,j ·Mφ i ∈ I; j ∈ J

xij ≤
(

1− sφi,j
)

D i ∈ I; j ∈ J

sφi,j ∈ {0, 1}, sπi,j ∈ {0, 1} i ∈ I; j ∈ J

where g̃cl, f̂ jn, and ĝjn are computed according to (3.3.46) and (3.3.47), λlUB = max
c=0,...,cmax

(λ̃cl),

and D =
∑

i∈I di. Valid expressions for the big-M constants Mφ and Mπ are obtained as

follows. Eqs. (3.3.60) and (3.3.61) imply that πl
j ≤ α and πn

j ≤ α. We set

δLmax =

Nl∑

l=1

max
c=1,...,cmax

(

αw(λ̃cl, c)
)

, δCmax =
Nc∑

n=1

max
j∈Jc

(

αw(λ̂j,l, cj)
)

,
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and δmax = max(δLmax, δ
C
max). It follows that γi ∈ [−tmax − δmax, 0], and Mφ = tmax + δmax.

Similarly, we set Mπ = max(vLmax, v
C
max), where

vLmax = max
c=1,...,cmax

{

max
l=1,...,Nl

(

D · w(λ̃cl, c) + g̃cl
)}

vCmax = max
j∈Jc

{

max
n=1,...,Nc

(

D · w(λ̂jl, cj) + ĝjn
)}

.

3.4. Branch-and-Bound Algorithm

This section is devoted to an exact algorithm for CC–FLP that exploits the upper bound

on the objective provided by the approximate programs CC–FLP1 and CC–FLP2 while, for

a given leader solution (y, c), a lower bound is obtained solving the corresponding lower level

program for an equilibrium assignment of users to facilities. Our main issue is that, in sharp

contrast with ‘standard’ B&B, there is a gap between the objective of the true formulation

CC–FLP and that of the approximation CC–FLP1. Our aim is to overcome this difficulty

through the efficient interaction with the Branch-and-Bound software, through callbacks.

While our implementation is based on the IBM CPLEX suite, any software that allows for

callbacks could have been used.

Our algorithm is based on a nested B&B tree structure. Nodes of the main tree relate

to the location variables yj and are labeled by the y vector. Whenever, at a given node of

the main tree, the y-solution of the relaxed problem is integer-valued (such a node is called

a ‘leaf’), we grow an inner subtree (Figure 3.1) that focuses on the cj variables (number

of servers) and other intermediate variables by defining and solving a new and separate

MILP. Due to the gap between the true objective and that of the relaxed problem, ‘manual’

interaction with the software is required in order not to wrongly fathom nodes of the main

tree. In particular, the true value of a leaf’s objective must be retrieved before it can be

used for fathoming or pruning purposes, both in the main tree and the inner subtrees.

We now detail the implementation and functionality of the nested structure. As discussed

in Section 3.1, the reason for treating each of those nodes as a separate MILP is to leverage

at the same time the CPLEX preprocessing capability and the pieces of information collected

until that point in the tree to tighten the formulation of the subproblem originated at this

node.
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(a) Main B&B tree
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preprocessing (row and

column reduction, etc.)

\

improve UB

pruned

(b) Inner B&B subtree

Figure 3.1. The nested B&B trees.

3.4.1. Main B&B tree

Let CC–FLP1(y∗) and CC–FLP2(y∗) denote the restriction of CC–FLP1 and CC–FLP2

obtained by fixing the location vector y at y∗. The main B&B solves a relaxation of the

MILP approximation (CC–FLP1 or CC–FLP2), where the integrality requirement is relaxed

on all variables, with the exception of the location vector y. The initial lower and upper

bounds for the MILP are computed by the solver. At every integer node, we use the current

solution y∗, call the subroutine solving for the optimal number of servers, and append the

no-good global cut ([D’Ambrosio et al., 2010])

∑

j∈J1,y∗j=0

yj +
∑

j∈J1,y∗j=1

(1− yj) ≥ 1 (3.4.1)

to the model. The latter ensures that the current solution does not appear elsewhere in

the tree. The rejection of all feasible solutions is required to guarantee the validity of the

branching and pruning rules. Indeed, if a solution were not rejected, CPLEX would accept

it along with its approximate objective, and its update of bounds might be inconsistent with

the values of the true model. Whenever an improved solution is obtained while solving a

restricted problem, the corresponding cut is global and allows to update the lower bound,

while the incumbent is updated externally.
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We have implemented the sequence of operations described above in a Lazy Constraint

Callback, called at every feasible (integer) node. A feature of this operation is that it is

called only and in all feasible integer nodes, and that it allows for appending user cuts that

might cut off integer parts of the domain. Its pseudocode is given in Algorithm 2.

Algorithm 2 Lazy Constraint Callback in the main B&B

1: y∗ ← currentSolution

2: restrictedBestObj ← Solve CC–FLP1(y∗) or CC–FLP2(y∗)

3: if restrictedBestObj > bestFound then

4: objectiveCut← (z > restrictedBestObj)

5: addGlobalCut(objectiveCut)

6: bestFound← restrictedBestObj

7: yCut← Eq. (3.4.1)

8: addGlobalCut(yCut)

3.4.2. Inner subtrees

When the approximation CC–FLP1 is used, a subtree is associated with y∗ of the main

tree. One then solves subproblem CC–FLP1(y∗), to which one appends a set of constraints

whose role is to discard feasible nodes, as achieved in the main B&B tree by means of

constraints (3.4.1). Precisely, for all j ∈ J1, k = 0, . . . , cmax, we introduce binary variables

c̃jk and consider the following unary representation of cj.

cj =
cmax∑

k=0

k · c̃jk j ∈ J1 (3.4.2)

cmax∑

k=0

c̃jk = 1 j ∈ J1 (3.4.3)

c̃jk ∈ {0, 1} j ∈ J1; k = 0, . . . , cmax. (3.4.4)

On the other hand, if CC–FLP2 is solved, no additional constraints are required since

Eq. (3.3.57)–(3.3.59) are already part of the formulation.

At each integer node, the true objective is computed by solving the lower level assignment

problem, for instance using the Frank-Wolfe algorithm. If an improved solution is uncovered,
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the incumbent is saved externally, and the lower bound on the objective is updated through

the addition of a global cut. Next, we reject the current integer solution by adding the global

cut
cmax∑

k=0

∑

j∈J1,

c̃∗
jk

=0

c̃jk +
cmax∑

k=0

∑

j∈J1,

c̃∗
jk

=1

(1− c̃jk) ≥ 1, (3.4.5)

thus guaranteeing the consistency of the branching and pruning rules. Eqs. (3.4.2)–(3.4.4),

together with Eq. (3.4.5), ensure that the current vector c will not reappear later in the

tree. These operations have been implemented in the Lazy Constraint Callback described by

Algorithm 3.

Algorithm 3 Lazy Constraint Callback in the inner B&B

1: c̃∗ ← current c̃; c∗ ← current c

2: currentObj ← Frank-Wolfe(c∗)

3: if currentObj > bestFound then

4: objectiveCut← (z > currentObj)

5: bestFound← currentObj

6: addGlobalCut(objectiveCut)

7: cCut← Eq. (3.4.5)

8: addGlobalCut(cCut)

In other words, the unary representation of c is necessary to impose the no-good con-

straints (3.4.5), which would be otherwise hard to write for general integer variables.

3.4.3. Improving the upper bound

At the fractional nodes of an inner B&B subtree, the location variables are fixed, while

some cj variables are fractional. Depending on the node, the lower and upper bounds on the

integer variables might have been improved by the branching decisions taken so far. Let cUB
j

denote the upper bound on variable cj, at a given fractional node in the subtree. Then we

have the following result.

Proposition 3.4.1. At a fractional node, let us set cj ← cUB
j , for all j ∈ J1. Then, the

objective value associated with this solution is a valid upper bound on the true objective, in

the subtree rooted at that node.
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Proof. Since cUB
j exceeds any value that cj may achieve in the subtree rooted at the current

node, it follows from Proposition 3.3.1 that

w(λ, cUB
j ) ≤ w(λ, cj) ∀j ∈ J1. (3.4.6)

Since the competitors’ service rate remains unchanged, the conclusion is a direct consequence

of Proposition 3.3.3. �

In most cases, fixing the number of server variables may be infeasible, due to the budget

constraint. Let cTOTAL = B − |J∗
1 | · fc be the leader’s available budget at the current node,

to be distributed among facilities. At a a fractional node, it is very likely that
∑

j∈J1
cUB
j >

cTOTAL, due to a number of factors. One empirically expects that, deep into the enumeration

tree, bounds are tight and yield feasible solutions.

Improved upper bounds have been implemented in a User Cut Callback that is invoked at

every fractional node. Within the callback, we retrieve the upper bounds on variables cj and

set the current solution to those bounds. If condition (3.4.7) below holds, we compute the

objective value associated with this solution, by evaluating the associated equilibrium flows,

i.e., by solving PL. If this operation improves the bound provided by CPLEX, we append it

to the model in the form of a local user cut as described in Algorithm 4.

When computed close to the root of the tree, bounds tend to be loose, and the probability

of improving over the CPLEX bound is small. On the other hand, when computed deep

into the tree, the tightness of the bounds improve, but only a small portion of the tree is

pruned. In our implementation, the improvement procedure has been activated whenever

the inequality

∑

j∈J∗

1

cUB
j ≤ cTOTAL + q · |J∗

1 | (3.4.7)

held. In (3.4.7), q plays the role of a flexibility or frequency parameter, to be tuned offline.

When q =∞ the upper bound is computed at all fractional nodes, while if q = 0, it is only

computed at the leaves of the tree.

3.4.4. Computing a lower bound

The performance of the exact method can be improved by computing a good lower bound

at the root of the B&B tree. The underlying idea is to linearize the queueing terms at the
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Algorithm 4 User Cut Constraint Callback in the restricted B&B

1: cUB ← vector of upper bounds with respect to c

2: if Eq. (3.4.7) then

3: currentObj ← Frank-Wolfe(cUB)

4: CPLEXUB ← upper bound provided by CPLEX

5: if CPLEXUB> currentObj then

6: ubCut← (z ≤ currentObj)

7: addLocalCut(ubCut)

leader’s facilities, without the introduction of binary variables. More specifically, in the

sampling scheme described in Section 3.3.3, let us introduce triangles based on consecutive

samples, as detailed in [D’Ambrosio et al., 2010]. The upper triangles are defined by the

points (λ̃k,n, k), (λ̃k+1,n, k + 1) and (λ̃k+1,n+1, k + 1), while the lower triangles are defined by

(λ̃k,n, k), (λ̃k,n+1, k) and (λ̃k+1,n+1, k+1), n = 1, . . . , Nl, k = 1, . . . , cmax−1. The coefficient of

the plane equations associated with the lower and upper triangles are, for every 1 ≤ n ≤ Nl

and 1 ≤ k ≤ cmax − 1

ukn1 = λ̃k+1,n − λ̃k,n ukn1 = λ̃k+1,n − λ̃k+1,n+1

ukn2 = 1 ukn2 = 0

ukn3 = wk+1,n − wk,n ukn3 = wk+1,n − wk+1,n+1

vkn1 = λ̃k,n+1 − λ̃k,n vkn1 = λ̃k,n+1 − λ̃k+1,n+1

vkn2 = 0 vkn2 = −1

vkn3 = wk,n+1 − wk,n vkn3 = wk,n+1 − wk+1,n+1

akn = ukn2 · vkn3 − u3kn · vkn2 akn = ukn2 · vkn3 − u3kn · vkn2

bkn = ukn3 · vkn1 − u1kn · vkn3 b
kn

= ukn3 · vkn1 − u1kn · vkn3

ckn = ukn1 · vkn2 − u2kn · vkn1 ckn = ukn1 · vkn2 − u2kn · vkn1

dkn =−
(

aknλ̃k,n+bknk+cknwkn
)

d
kn

=−
(

aknλ̃k+1,n+1+b
kn
(k+1)+cknwk+1,n+1

)

.

(3.4.8)

The plane equations defined by the lower and upper triangles are

aknλj + bkncj + cknwj + dkn = 0 , and aknλj + b
kn
cj + cb

kn
wj + d

kn
= 0 .
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Next, we convexify wj’s by setting them to the maximum of their respective linear approxi-

mations, namely

wj ≈ max
k=1,...,cmax−1

n=1,...N−l

{

max

(

−a
kn

ckn
λj −

bkn

ckn
cj −

dkn

ckn
, −a

kn

ckn
λj −

b
kn

ckn
cj −

d
kn

ckn

)}

. (3.4.9)

From the leader’s point of view, the lower the waiting time, the more customers will be

attracted to her facilities. This allows to replace Eq. (3.4.9) by the inequalities

wj ≥ −
akn

ckn
λj −

bkn

ckn
cj −

dkn

ckn
k = 1, . . . , cmax − 1, n = 1, . . . , N − l

wj ≥ −
akn

ckn
λj −

b
kn

ckn
cj −

d
kn

ckn
k = 1, . . . , cmax − 1, n = 1, . . . , N − l .

(3.4.10)

We can now write CC–FLP as the following MILP

CC–FLPH: max
y,c,x,γ

z =
∑

i∈I

∑

j∈J1

xij

s.t. constraints (3.3.5)–(3.3.9), (3.3.12), (3.3.15), (3.3.16), (3.3.20)–(3.3.23),

(3.3.37)–(3.3.44), (3.4.2)–(3.4.4), (3.4.8), (3.4.10).

Note that, for the competitor it would be ill-advised to write a linearization similar to

(3.4.9) – (3.4.10), since increasing w at competitor’s facilities would actually increase the

objective value (of the leader). At optimality, the waiting time at competitor facilities would

be set to very high values, in an attempt to maximize the objective, and no competitor

inequality would be active, yielding a very poor approximation. Additionally, we maintain

the presence of binary variables for the competitor, which are limited in number and hence

do not increase significantly the difficulty of the model. Of course, the heuristic scheme

can be used both for computing a standalone approximate solution for CC–FLP and as

warm start for its exact solution. The approximate model is then solved by the nested B&B

strategy.

We close this section by mentioning that the improved ‘on-the-fly’ upper bounds are not

implemented in the heuristic, as they significantly slow down the exploration process.
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3.5. Experimental setup and results

The MILP formulations were solved by IBM CPLEX Optimizer version 12.6. All tests

were performed on a computer equipped with 96 GB of RAM, and two 6-core Intel(R)

Xeon(R) X5675 processors running at 3.07GHz. To assess the performance of our algorithm,

we could not compare with alternative methods from literature, which are nonexistent, as

discussed in Section 3.3.1. The model of [Marianov et al., 2008] involves facility location

within a user-choice environment, but the decision variables are limited to the locations, while

a heuristic is designed for its solution. This lack of alternatives prompted us to compute

an optimal solution through exhaustive search, iterating through all possible combinations

of number of servers that satisfy the budget constraint. A feasible flow is then computed

to yield a feasible solution to the bilevel program. Some solutions are discarded without

computing the flow, for the following reason. At any open facility, the arrival rate needs to

be lower that the service level. Thus, if the total number of servers times the service rate

is lower than the incumbent, the current solution cannot yield a better objective value, and

we have no incentive to compute the lower-level optimum.

Our experiments involve networks of varying sizes, and travel times ranging from 0 to

5000. In order to generate challenging instances, the combination of budget, fixed and

variable costs was selected such as to ensure the existence of feasible solutions involving a

number of open facilities roughly equal to half the total number, and where the number of

servers could reach 20 on small tests, and 40 or more on larger tests. Note that, at optimality

less than half facilities are typically open, and service levels do not reach their upper limits.

In all our tests we used 5 λ-samples for both the leader and the competitor.

An initial set of experiments was intended to probe the efficiency of linearizations CC–

FLP1 and CC–FLP2, respectively, for various values of parameter q. We show only the most

successful results, namely q = 15 for the single level linearization, and q = 25 for the bilevel

linearization. At the end of this section we provide a deeper analysis of the impact of this

parameter on the overall performance of our algorithm.

Tables 3.1 and 3.2 display the results for 15 and 20-node networks, respectively, which

are compared for reference with the full enumeration scheme. The exact methods were tested

with and without a warm start (columns ‘w/o warm start’ and ‘warm start’, respectively).

The warm start is provided by the best solution found by heuristic model CC–FLPH within
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a time limit. In the case of 15-node networks, the warm start improves significantly the

running time. It is not needed, however for the 20-node networks tested, as the methods

perform well without it.

single level linearization (q = 15) bilevel linearization (q = 25)

w/o warm start warm start w/o warm start warm start

test # total opt. total opt. total opt. total opt. enumeration

1 3199 577 6002 3615 87791 58457 81183 50708 170825

2 51242 44696 17237 11485 209778 168134 86522 23866 190268

3 110719 100898 38231 31913 619715 494483 1295419 1208952 1873586

4 47678 40360 11536 2423 132524 866 132761 32420 194206

5 26830 21353 14422 5552 670075 482895 227470 64780 624795

6 42051 39583 5500 2975 148006 112378 161920 126093 1419919

7 11985 11778 1268 600 2106842 2106820 73981 71867 11460

8 6840 5674 3738 3300 21935 15422 18854 15872 7098

9 10694 8798 6324 3118 147756 98541 78980 21630 300081

10 12424 10320 8474 6215 217631 202242 49474 28254 767436

Average 29951 28404 11273 7120 436205 374024 220656 164444 555967

Table 3.1. CPU times (seconds) on 15-node networks; ‘opt.’ refers to the CPU required to

find an optimal solution.

Those initial results confirm the stability and performance of the algorithm when adopting

the single level linearization scheme. This might be due to the use of McCormick envelopes.

Under both schemes, the algorithm outperforms by two orders of magnitude the enumeration-

based method. The single level linearization outperforms clearly the bilevel (McCormick)

linearization on most 15 and 20-node instances.

We ran the same set of experiments on 25-node networks, and report the results in

Table 3.3. All tests were warm started with the heuristic since, without it, the instances

were intractable, with CPLEX running out of memory quickly. The enumeration scheme

failed on all tests after running more than 15 weeks. The single level linearization performs

faster than the bilevel counterpart on the fraction of tests that can be solved. Actually, the

algorithm has to stop for lack of memory on more than half of the instances, which shows

the limitation of our exact method. In that respect, the bilevel scheme looks slightly more

robust, being able to solve 8 instances, versus 6 in the single level case. We note, however,
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single level linearization bilevel linearization

q = 15 q = 25

test # total opt. total opt. enumeration

1 1358 1327 1705 1687 27660

2 36 8 234 209 5892

3 550 90 1504 821 8233

4 667 211 2880 2816 149672

5 307 66 3833 3553 26183

6 338 34 1644 1495 27212

7 1301 416 2265 1673 165337

8 495 406 2438 2401 42301

9 383 265 9823 9766 9571

10 2149 1614 2555 2102 280145

11 1024 958 4789 4718 19249

12 3404 2513 4573 2913 191448

13 305 184 1654 1579 10321

14 332 105 1372 1256 20674

15 383 222 1343 1189 242524

16 1450 313 5401 4090 168118

17 2203 307 4042 3429 309729

18 2149 1132 4018 3609 727332

19 427 137 1633 1002 9731

20 1462 392 2592 1947 191918

Average 1036 535 3015 2608 131663

Table 3.2. CPU times (seconds) on 20-node networks; ‘opt.’ refers to the CPU required

to find an optimal solution. The methods were not warm started.

that the budget allows for up to 12 facilities to be open, and that the number of servers can

vary between 1 and 55, which makes for a very challenging class of problems.

The aim of the second set of experiments is to assess the accuracy of the linearization of

CC–FLP1, as shown in Table 3.5. In this process, the MILP is solved using B&B, without

using callbacks. Once CPLEX has reached and proved optimality, Frank-Wolfe’s algorithm

is used to retrieve its corresponding true objective value (column ‘objective’) and compare

it with the approximated objective value (‘approximated’) and with the actual optimum
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single level linearization bilevel linearization

q = 15 q = 25

test # total opt. total opt.

1 37.4 6.0 53.8 35.7

2 – – – –

3 – – – –

4 – – – –

5 – – – –

6 – – – –

7 – – 613.8 17.9

8 – – – –

9 – – – –

10 51.3 6.5 550.5 12.5

11 – – – –

12 47.2 14.1 – –

13 – – 563.8 31.1

14 60.1 6.4 – –

15 – – 78.0 29.1

16 – – 176.0 102.0

17 21.7 0.6 125.7 35.2

18 16.2 3.3 535.7 453.2

19 – – – –

20 – – – –

Average 39.9 6.15 337.2 89.6

Table 3.3. CPU times (hours) on 25-node networks; ‘opt.’ refers to the CPU required to

find an optimal solution.

(column ‘optimal’) computed by our exact algorithm. We observe that, on average, the

objective value of the solution found falls within 3.6% of the optimum. Additionally solving

only the MILP yields 89.17% of the optimal locations, which suggests that the approximation

can be used as a good heuristic on its own, as well. The behaviour of the approximation on

the 15-node networks (see Table 3.4) is similar, capturing on average 94.4% of the optimum,

but finding only 68.3% of the optimal facilities.
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MILP

test # MILP obj. true obj. CPU (s) optimum deviation (%)

1 213.57 192.29 1707 204.88 6.2

2 200.24 187.19 66915 193.02 3.1

3 151.82 138.89 158976 147.87 6.1

4 223.58 201.84 2668 212.97 5.2

5 191.29 174.53 91936 182.48 4.4

6 184.76 174.48 11288 180.61 3.4

7 230.41 210.43 27107 218.27 3.6

8 240.06 210.79 5481 220.54 4.4

9 191.69 158.74 4855 185.01 14.2

10 194.07 176.40 5911 186.02 5.2

Average 202.15 182.56 37684 193.17 5.5

Table 3.4. Comparison of the best solution found when solving only the approximation,

versus the optimal solution, for 15-node networks.

In the third set of experiments, we demonstrate why it is advantageous to use the nested

B&B tree structure described in Section 3.4. First we used a single B&B solving for all

variables, with only the no-good cuts within the associated callback, and without computing

the on-the-fly upper bound. In this case the problem became quickly intractable, even for

small instances. For example, on the 9-node networks that we have tested, a single tree

takes more than 3 hours and still does not prove optimality. In comparison, the nested tree

structure takes less than 7 minutes. One reason for this is the preprocessing at the root

nodes of the subtrees. In order to investigate this further, we have measured the objective

value of every leaf of the main tree ( ‘Original node’ in Figure 3.1), which is an upper bound

for the subtree rooted at this node, since the main tree is solving a relaxed problem. We

then generated the respective inner subtree and we retrieved the bounds both after presolve

and after solving the root node. If the subtree was found infeasible at the root node, the

bound is shown as 0. Our measurements were taken on ten 9-node instances, for a total of

2129 explored subtrees, out of which 328 were cut off or found infeasible at the root node.

As shown in Figure 3.1, we observe a significant improvement in the upper bound, after

presolve and solving the root node.
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MILP

test # MILP obj. true obj. CPU (s) optimum deviation (%)

1 287.80 270.30 150 273.55 1.2

2 330.46 312.57 38 323.56 3.4

3 287.86 256.04 102 269.00 4.9

4 296.43 264.94 333 291.95 9.2

5 293.42 277.26 89 287.57 3.6

6 274.25 252.97 146 264.37 4.3

7 268.33 257.52 58 259.14 0.6

8 273.35 258.01 48 270.19 4.6

9 293.83 262.12 68 290.98 9.9

10 248.21 237.36 106 248.21 4.3

11 269.47 249.53 40 261.39 4.6

12 252.33 242.09 71 244.63 1.1

13 291.50 280.73 47 284.58 1.3

14 282.79 264.19 77 271.94 2.9

15 262.29 259.89 237 261.64 0.7

16 242.04 225.69 130 242.04 6.7

17 253.63 252.74 103 253.63 0.3

18 221.47 205.36 583 216.55 5.1

19 289.47 273.95 376 283.10 3.2

20 245.59 245.59 125 245.59 0.0

Average 273.23 257.44 146 267.18 3.6

Table 3.5. Comparison of the best solution found when solving only the approximation,

versus the optimal solution, for 20-node networks.

The following measures were also computed:

— average improvement in UB after presolve: 7.26%

— average improvement in UB after root node: 10.28%

— average LP columns reduction: 52.56

— average LP rows reduction: 47.88

— average MIP columns reduction: 156.32

— average MIP rows reduction: 16.99.
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Figure 3.1. Distribution of the upper bounds throughout the execution of the algorithm.

‘Original node’ is as computed at integer nodes in the main tree. ‘After presolve’ and ‘After

Root Node’ show the upper bound computed after the presolve and after solving the root

node of the inner subtrees, respectively.

Our measurements demonstrate that by creating nested trees, rather than using a single tree,

we make full use of the heuristics, cuts, rows and columns reductions, and other computations

that CPLEX performs during presolve and at the root nodes. The problem becomes thus

more tractable, even without the computation of the on-the-fly upper bounds.

It is important to note that the order in which the nodes are explored differ between

the nested tree and single tree approach, which could impact the efficiency of the algorithm.

When using nested trees, no new nodes in the main tree will be processed until the current

subtree is solved. This particular behaviour cannot be easily achieved in a single tree, even

if we prioritize branching on the location variables.

The fourth experiment was designed to assess the impact of the on-the-fly upper bounds

on the overall performance of the algorithm. Since, without the strengthening of the UB,

even small instances are intractable, we have limited our analysis to 9-node instances, using

the single-level linearization. Figure 3.2 illustrates the typical evolution of the upper bounds

and the best objective function, throughout the execution of our methods. Notice that the

upper bound in the main tree does not improve fast, while the bounds on the subtrees vary

significantly from one subtree to the other.

We have measured the average execution time (’CPU’), the number of integer solution

explored (’# of sols’), and the number of integer nodes pruned (’# of cuts’), for ten 9-node

instances, as shown in Table 3.6. We notice that, as q increases, the average CPU has a
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Figure 3.2. Typical evolution of the upper bounds and best objective during the execution

of our algorithm.

w/o q q=3 q=12 q=20 q=30 q=50

CPU (s) 306.7 87.4 55.4 69.7 72.2 90.3

# of sols 11049 773 512 512 512 512

# of cuts 89741 100017 100278 100278 100278 100278

Table 3.6. Performance of the single-level linearization for different values of q, for 9-node

networks.

convex-like behaviour (decreasing, levelling, increasing), which is to be expected. As q in-

creases, the on-the-fly upper bound is computed at more nodes, and higher in the subtrees.

Therefore, at first, the number of integer solutions visited decreases, as more cuts are com-

puted and more nodes are pruned. However, for large values of q, the bound is computed

often (it is a costly operation), and does not improve on the bound provided by CPLEX.

Thus, the CPU increases, while the number of nodes pruned stalls. It is therefore ill-advised

to set q to a large value. In our tests, values between 10 and 15 were most successful for the

single level linearization, and around 25 for the bilevel linearization.

3.6. Conclusion

The MPEC framework allows the modelling of situations that are highly relevant in

practice. However, the resulting mathematical program highly challenging combinatorial

and nonlinear features, which explains the frequent recourse to heuristic (meta-heuristics,

math-heuristics) for its solution, and the paucity of exact methods. Nevertheless, we expect
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that generic algorithms that exploit MILP approximations of single-level reformulations, as

well as a clever management of the B&B tree, deserve some consideration. We hope that the

present work, which may be viewed as a step in that direction, will trigger further research

in global approaches to bilevel programs involving a lower level variational inequality.
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Chapter 4

Joint location and pricing within a user-optimized

environment

In the third article we analyze a model that captures the key features of facility location

and pricing, in a congestion-sensitive user choice environment. More precisely, we consider

a problem faced by a service firm that is making revenue-maximizing location and pricing

decisions in a competitive market.

In real-life situations, customers are sensitive not only to locations, but to service level

as well as to prices. While low prices may attract more customers, they may also induce

large waiting times at facilities, which may, ultimately deter customers. Alternatively, a

smaller number of clients buying higher priced items might yield a high profit. In such an

environment, the firm must take into account the user-optimized behaviour.

Three types of pricing strategies are usually considered literature [Hanjoul et al., 1990]:

— mill pricing: prices can vary between facilities;

— uniform pricing: all facilities charge the same price;

— discriminative pricing: customers can be charged different prices at the same facility.

From a modelling standpoint, we extend the models considered in the first two articles,

by incorporating mill pricing, which is one of the most challenging form. Akin to the first

article, facilities are modelled as infinite M/M/1 queues, and the decision variable is µ the

service rate, however, balking is disregarded.

At the upper level, the firm maximizes its revenue, whilst at the lower level, we have users

equilibrium problem. Clients minimize their personal utility, which incorporates pricing and



queueing

ũij = ti,j + αwj + βpj

where ti,j stands for the travel time, wj represents the waiting time at facilities, and pj is

the price charged per service. This situation fits the context of a Stackelberg game, and is

best described using the bilevel programming framework or, more generally, a mathematical

program with equilibrium constraints (MPEC).

Concepts from network pricing and CC–FLP are merged into a single model, which

makes the problem much more challenging by the presence of facility location and service

level decision variables, bivariate queueing delays, as well as highly nonlinear nonconvex

equilibrium constraints. Our algorithm borrows ideas from both the bilevel pricing and

location literature. We adapt a reformulation technique introduced in [Julsain, 1999] for

coping with pricing of the arcs of a packet-switched communication network. The non-linear

objective function of the resulting program is linearized via a technique applied in our first

paper [Dan and Marcotte, 2017], which yields a tractable mixed integer linear program

(MILP).

Author contributions

— The general research ideas were developed jointly with my supervisors, Patrice Mar-

cotte and Andrea Lodi.

— The research (including proofs, code, experiments, etc.) was carried out by me.

— The article was written by me, and it was revised and corrected by Patrice Marcotte

and Andrea Lodi.
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ABSTRACT

In a facility service setting, whenever the disutility of customers accessing a facility is im-

pacted by queueing or congestion effects, the resulting equilibrium cannot be ignored by a

firm that strives to maximize revenue within a competitive environment. We model this sit-

uation as a nonlinear bilevel program that involves both discrete and continuous variables,

and for which we propose an efficient algorithm based on an approximation that can be

solved for its global optimum.

Keywords: pricing, location pricing, bilevel programming, mixed integer pro-

gramming, equilibrium, queueing, nonconvex

4.1. Introduction

In a competitive market, service levels and pricing, along with facility locations, are

critical decisions that a service provider faces, in order to capture demand and maximize

profit. In this context, an important trait of a user-choice market is congestion, which

has been often overlooked in the pricing literature, where one routinely assumes that users

patronize the closest facility, disregarding the congestion that may arise at facilities in the

form of queues. However, in real-life situations, customers are sensitive to service level
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as well as to prices. Actually, low prices that attract customers to a facility may in turn

induce large waiting times that will deter customers and shift them to the competition.

Alternatively, the smaller number of clients buying high-priced items might be offset by the

better experience associated with lower waiting times. In such an environment, the firm

that makes location and pricing decisions must take into account not only the price and

location attributes of its competitors, but also the user-optimized behaviour of its potential

customers, who patronize the facility that maximizes their individual utility. This situation

fits the framework of a Stackelberg game, and is best formulated as a bilevel program or,

more generally, a mathematical program with equilibrium constraints (MPEC). At the upper

level, the firm makes revenue-maximizing location and pricing decisions, taking into account

the user equilibrium resulting from those decisions.

The resulting MPEC, which involves highly nonlinear queueing terms, as well as contin-

uous (user flows) and discrete (location decision) variables, looks formidable. The aim of

this paper is to show that it is yet amenable to a strategy that involves approximation by a

tractable mixed integer linear program. The paper’s contributions are four-fold:

— The integration of location, service rates and prices as decision variables within a

user-choice process based on service level, queueing and pricing considerations.

— The integration of congestion and competition in the context of mill pricing, i.e.,

prices that can vary between facilities.

— The explicit modelling of the queueing process that takes place at the facilities.

— The design of an efficient heuristic algorithm based on mixed discrete-continuous linear

approximations and reformulations.

The remainder of this paper is organized as follows. In Section 4.1.1, we provide an

overview of the existing facility location and pricing literature. Section 4.2 is devoted to the

model, while, in Section 4.3, we describe the algorithmic framework. Numerical experiments

and a discussion of our results are reported in Section 4.4. Finally, in Section 4.5, we draw

conclusions and mention possible extensions of the current work.

4.1.1. Literature Review

In this section, we outline works that are relevant to ours, either from the modelling

(facility location, pricing, user equilibrium) or computational (bilevel programming, MPECs)
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points of view. For a more complete overview on facility location and pricing, one may refer

to [Eiselt et al., 1993].

Although the facility location problem (FLP) has a rich history, most works disregard

user behaviour related to congestion and competition, i.e., similar users are assigned to a

single path leading to the facility they patronize. While some models incorporate congestion

in the form of capacity limits, more elaborate ones capture congestion through nonlinear

functions that can be derived from queueing theory.

With respect to congestion, an early model can be found in [Desrochers et al., 1995],

who studies a centralized facility location problem where travel time increases with traffic,

and users are assigned in a way that minimizes the total delay and costs. Towards the end,

the authors mention a bilevel user-choice version of their model, but do not provide a solution

algorithm. Within the same centralized framework, [Fischetti et al., 2016] propose a Ben-

ders decomposition method for a capacitated FLP. Similarly, [Marianov, 2003] formulates a

model for locating facilities in a centralized system subject to congestion, and where demand

is elastic with respect to travel time and queue length. Users are assigned to centers that

maximize total demand. In [Castillo et al., 2009], users are assigned to facilities so as to

minimize the sum of the number of waiting customers and the total opening and service costs.

Similar to [Marianov, 2003], [Berman and Drezner, 2006], [Aboolian et al., 2008],

and [Aboolian et al., 2012] consider models characterized by elastic demand, subject to

constraints on the waiting time at facilities. Moreover, in [Zhang et al., 2010a] a model

maximizing the participation rate is considered, in a preventive healthcare setting, when

demand is elastic and users choose the facilities to patronize based on the waiting and travel

time. Note that neither of the above papers consider competition or pricing.

With respect to competitive congested facility location problems (CC–FLP), we mention

the work of [Marianov et al., 2008], who were the first to address congestion within a com-

petitive user-choice environment. Similarly, [Sun et al., 2008] consider a generic bilevel

facility location model, in which the upper level selects locations with the aim of minimizing

the sum of total cost and a congestion function, while the lower level (users) minimizes a

nonlinear cost. Both papers employ heuristics for solving their model. A more recent devel-

opment is that of [Dan and Marcotte, 2017], who solve the competitive congested FLP

using matheuristics and approximation algorithms. The present work can be considered a
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pricing extension of [Dan and Marcotte, 2017]. Moreover, [Ljubić and Moreno, 2018]

address a market share-maximization competitive FLP, where captured customer demand

is represented by a multinomial logit model. The authors solve this problem using two

branch-and-cut techniques, namely outer approximation cuts and submodular cuts.

The pricing literature is vast. Actually, many authors have addressed joint loca-

tion and pricing problems, the common practice being to operate in a hierarchical man-

ner: locations are specified first, and then price competition is defined according to the

Bertrand model [Pérez et al., 2004, Panin et al., 2014]. This approach can be justi-

fied by the fact that location decisions are frequently made for the long term, while prices

may fluctuate in the short term. However, determining the pricing strategy after the lo-

cations have been set limits the price choices and can yield sub-optimal locations, as ar-

gued in [Hwang and Mai, 1990, Cheung and Wang, 1995, Aboolian et al., 2008].

A joint decision is more suited in some practical applications, and can provide valuable

insights into whether or not entry into a market is profitable.

To the best of our knowledge, the first paper to consider simultaneous decisions on

location, price and capacity is [Dobson and Stavrulaki, 2007], who investigate a mo-

nopolistic market where a firm sells a product to customers located on the Hotelling

line [Hotelling, 1929]. In his PhD thesis, [Tong, 2011] considers two profit maximiz-

ing models in a network, single-facility and multi-facility, respectively. Competition is not

present, and demand is elastic with respect to travel distance, waiting time and price.

The author analyzes both a centralized and a user-choice system. Within the same frame-

work, [Abouee-Mehrizi et al., 2011] consider a model in which demand is elastic with

respect to price only, and clients spread among facilities based on proximity, according to

a multinomial Logit random utility model. Congestion, which arises at facilities, is char-

acterized by queueing equations, and customers might balk upon arrival. Furthermore,

[Pahlavani and Saidi-Mehrabad, 2011] address a pricing problem within a user-choice

competitive network. Locations are fixed, and users select the facility to patronize based on

price and proximity. Also, they might balk and veer, upon observation of the queue length.

The authors propose two metaheuristics for solving their model. More recent contributions

are given by [Hajipour et al., 2016] and [Tavakkoli-Moghaddam et al., 2017], who in-

vestigate multi-objective models for the centralized facility location problem with congestion
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and pricing policies. Demand is elastic with respect to price and distance, while profit and

congestion (waiting time, and idle probability) are decision variables. An extensive review

of the literature concerning competition in queueing systems is provided in [Hassin, 2016].

From the algorithmic point of view, our approach borrows ideas from the bilevel pricing

literature, which was initiated by [Labbé et al., 1998] and extended along several direc-

tions to include population heterogeneity, congestion or design, as exemplified in the papers

by [Meng et al., 2012] or [Brotcorne et al., 2008], to name only two representative pub-

lications. We will in particular adapt a linearization technique introduced in [Julsain, 1999]

for coping with pricing of the arcs of a packet-switched communication network.

4.2. Model formulation

The problem under consideration involves a firm that enters a market that is already

served by competitors that can accommodate the total demand. At the upper level of

the hierarchical model, a firm must make decisions pertaining to location, prices and qual-

ity of service, anticipating that users will reach an equilibrium where individual utilities

are maximized. Note that, when it comes to pricing, three strategies are typically consid-

ered [Hanjoul et al., 1990]:

— mill pricing: prices can vary between facilities;

— uniform pricing: all facilities charge the same price;

— discriminative pricing: customers patronizing the same facility can be charged differ-

ent prices.

In the present work, we consider mill pricing, which is actually the most challenging from

the computational point of view.

At the lower level, customers purchase an item (this could be a service as well) at the fa-

cility where their disutility, expressed as the weighted sum of (constant) travel time, queueing

delay, and price, is minimized. For the sake of simplicity, facilities are modelled as M/M/1

queues, endowed with only one server. Nevertheless, any M/M/s queues can be considered,

provided that the number of server s is fixed, and the decision variable is the service rate µ.

The assignment of users to facilities thus follows Wardrop’s user equilibrium principle, i.e.,

disutility is minimized with respect to current flows.

We now introduce the parameters and variables of the model.
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sets

I: set of demand nodes;

J : set of candidate facility locations (leader and competitor);

J1: set of leader’s candidate sites;

J∗
1 ⊆ J1: set of leader’s open facilities;

Jc: set of competition’s facilities;

J∗ ⊆ J : set of open facilities (leader and competitor).

parameters

di: demand originating from node i ∈ I;
tij: travel time between nodes i ∈ I and j ∈ J ;

α: coefficient of the waiting time in the disutility formula;

β: coefficient of the price in the disutility formula;

fc: fixed cost associated with opening a new facility;

vc : cost per unit of service.

decision variables

yj: binary variable set to 1 if a facility is open at site j, and to 0 otherwise;

µj: service rate at a facility j ∈ J ; typically 0 if the facility is closed;

pj: price at an open facility j ∈ J .

additional variables

xij: arrival rate at facility j ∈ J originating from demand node i ∈ I;
λj =

∑

i∈I xij: arrival rate at node j ∈ J ;

wj: mean queueing time at facility j.

At an open facility j, the mean waiting time in the system, wj, is a bivariate function

depending on both the arrival rate and the service rate, namely

wj(λj, µj) =
1

µj − λj
. (4.2.1)

In the above, the waiting time wj is only defined for open facilities, i.e., those for which µj

is positive. However, one can generalize Eq. (4.2.1) to all facilities, open or not, through

multiplication by µj − λj:
wjµj − wjλj = yj . (4.2.2)
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Indeed, when facility j is closed, yj = µj = λj = 0, and wj can assume any value. On the

other hand, Eqs. (4.2.1) and (4.2.2) are equivalent when yj = 1. Nevertheless, for simplicity

and without loss of generality, we keep the original form (4.2.1) in the model, and will specify

in Section 4.3.3 how we deal with null service rates.

At the lower level, let γi denote the minimum disutility for users originating from node

i. The Wardrop conditions are expressed as the set of logical constraints

tij + αw(λj, µj) + βpj







= γi, if xij > 0

≥ γi, if xij = 0
i ∈ I; j ∈ J .

In other words, the utility of the paths having positive flow must be lower or equal than the

utility of paths carrying no flow. These conditions can alternatively be formulated as the

complementarity system

tij + αw(λj, µj) + βpj − γi ≥ 0 i ∈ I; j ∈ J

xij · (tij + αw(λj, µj) + βpj − γi) = 0 i ∈ I; j ∈ J

xij ≥ 0 i ∈ I; j ∈ J .

Our model is as follows:

P: (Leader:)

max
y,µ,x,p,γ

z =
∑

i∈I

∑

j∈J1

xijpj −
∑

j∈J1

(fc · yj + vc · µj) (4.2.3)

s.t. µj ≤M1 · yj j ∈ J1 (4.2.4)

yj ∈ {0, 1} j ∈ J1 (4.2.5)

µj ≥ 0 j ∈ J1 (4.2.6)

(Users:)

tij + αw(λj, µj) + βpj − γi ≥ 0 i ∈ I; j ∈ J (4.2.7)

xij · (tij + αw(λj, µj) + βpj − γi) = 0 i ∈ I; j ∈ J (4.2.8)

wj =
1

µj − λj
j ∈ J (4.2.9)
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λj =
∑

i∈I

xij j ∈ J (4.2.10)

∑

j∈J

xij = di i ∈ I (4.2.11)

λj ≤ µj j ∈ J (4.2.12)

xij ≥ 0 i ∈ I; j ∈ J . (4.2.13)

The decision variables are the vectors y (locations) and µ (number of servers), while

the user assignment x is the solution of an equilibrium problem that can be reduced to

a convex optimization problem. The leader’s objective in Eq. (4.2.3) is to maximize the

difference between the total profit and the opening and service costs. Constraints (4.2.4)

ensure that the service rate is strictly positive only at open facilities. When y = 1, it also

helps strengthening the formulation by computing a tight value for M1 such that µ values

yielding solely negative profit are eliminated.

Constraints (4.2.7), (4.2.8) and (4.2.13) characterize the user equilibrium problem, where

γi is the optimal disutility that users originating from node i are willing to incur. Typ-

ically, the equilibrium equations should only be enforced for open facilities. However, in

our case, they are automatically satisfied for closed facilities, for the following reason: if a

facility j closed, the service rate µj, and implicitly λj and xij, will be null, which implies

that Eq. (4.2.8) is satisfied. Additionally, in our model, pj can take any value for a closed

facility (although this is sub-optimal from an economic standpoint), as its contribution to

the objective value is canceled by the null terms xij. It follows that Eq. (4.2.7) is also satis-

fied. Finally, constraints (4.2.11) ensures that the total number of users originating from a

demand point amounts to the demand associated to this node, and Eq. (4.2.12) guarantees

that the arrival rate does not exceed the service rate at facility j.

For the sake of illustration, let us consider the example corresponding to the graph and

data of Figure 4.1, where nodes 1 and 2 are endowed with a demand of 35 and 30, respectively.

The competitor’s facility situated at node C operates at a service rate of 70.5, and charges

a price of 12. The fixed and variable costs are set at 50 and 1, respectively, and parameters

α = 20, β = 10. In this example, the leader opens facilities at both available sites. The

profit is shown as a function of the prices charged at the two facilities, so the service rates

have been fixed at 37.3 for A and 32.5 for B.

122



2 1C

A

B

101

13 8

5.5
15

Figure 4.1. Example of a 2-demand node network, 2 location candidate sites.

The associated profit curve is illustrated in Figure 4.2. While it lacks the discontinuities

associated with the basic network pricing problem (see [Labbé et al., 1998]), due to the

smoothing effect of the nonlinear queueing terms, it is still highly nonlinear and nonconvex.
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Figure 4.2. Profit associated with open facilities A and B, for the network displayed in

Figure 4.1

Observation 1. It is trivial to show that the waiting time wj is jointly convex in µj and λj,

for all µj > 0, λj < µj.
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4.3. A mixed-integer linear approximation

The general idea that underlies the algorithmic approach is to replace the original problem

by a more manageable mixed-integer linear program (MILP), that we can further solve using

an off-the-shelf software. This idea is not entirely novel, as it has been exploited before with

different variants. For instance, in [Dan and Marcotte, 2017], the lower-level problem is

linearized using tangent planes, before the optimality conditions are written. This yields

a model containing bilinear and other nonlinear terms, which are further linearized, for

instance, by using the triangle method of [D’Ambrosio et al., 2010]. Our approach is

related to that of [Julsain, 1999], where univariate congestion functions are linearized in

the context of a network pricing problem. In our case, concepts from network pricing and

CC–FLP are merged into a single model, which makes the problem much more challenging

by the presence of facility location and service level decision variables, as well as bivariate

queueing delays.

The main steps of our resolution method are:

— Replace the bilinear terms in the objective with functions derived from the equilibrium

constraints.

— Perform linear approximations of the complementarity constraints and the remaining

nonlinear terms through the introduction of binary variables and ‘big-M’ constants.

— Use off-the-shelf MILP technology to solve the resulting MILP, or a carefully-designed

sequence of MILPs.

4.3.1. Reformulation of the objective function

The key issue is to eliminate the bilinear terms xijpj, j ∈ J1, in the objective, through

substitution and other algebraic manipulations of the model’s constraints. From Eq. (4.2.8)

we have

xijpj = −
1

β
(tijxij + αxijwj − xijγi) , j ∈ J1, (4.3.1)

whose summation over i ∈ I and j ∈ J1 leads to

∑

i∈I

∑

j∈J1

xijpj = −
1

β

(
∑

i∈I

∑

j∈J1

tijxij + α
∑

i∈I

∑

j∈J1

xijwj −
∑

i∈I

∑

j∈J1

xijγi

)

, j ∈ J1. (4.3.2)
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The RHS of Eq. (4.3.2) now contains linear and nonlinear terms. We can simplify some

of the most ‘complicating’ ones, namely the bilinear xijγi, as follows.

∑

i∈I

∑

j∈J1

xijγi =
∑

i∈I

(
∑

j∈J

xijγi −
∑

j∈Jc

xijγi

)

, (4.3.3)

and since J = J1 ∪ Jc and J1 ∩ Jc = ∅,
∑

i∈I

∑

j∈J1

xijγi =
∑

i∈I

diγi −
∑

i∈I

∑

j∈Jc

xijγi. (4.3.4)

For the bilinear terms xijγi in the RHS of Eq. (4.3.4), we write the following equations,

derived from Eq. (4.2.8).

xijγi = tijxij + αxijwj + βxijpj, i ∈ I, j ∈ Jc (4.3.5)

or, equivalently,
∑

i∈I

∑

j∈Jc

xijγi =
∑

i∈I

∑

j∈Jc

(tijxij + αxijwj + βxijpj) . (4.3.6)

Recall that the price is fixed at competitors’ facilities (i.e., j ∈ Jc), so xijpj is not a

bilinear term when j ∈ Jc. Then, the only nonlinear terms in the RHS of Eq. (4.3.6) are

xijwj. Putting together Eqs. (4.3.2), (4.3.4) and (4.3.6) yields:

∑

i∈I

∑

j∈J1

xijpj = −
1

β

(
∑

i∈I

∑

j∈J

tijxij + α
∑

j∈J

∑

i∈I xij

µj −
∑

i∈I xij
−
∑

i∈I

diγi + β
∑

i∈I

∑

j∈Jc

pjxij

)

and, since λj =
∑

i∈I xij, the objective function can be written as

z = − 1

β

∑

i∈I

∑

j∈J

tijxij −
α

β

∑

j∈J

λj
µj − λj

+
∑

i∈I

di
β
γi −

∑

i∈I

∑

j∈Jc

pjxij −
∑

j∈J1

(fc · yj + vc · µj) .

(4.3.7)

All terms in Eq. (4.3.7) are linear, with the exception of λj/(µj − λj). Additionally, these

terms are undefined for µj = 0. We overcome these issues during the linearization process,

as mentioned in Section 4.3.3. We now discuss some of their properties.

Proposition 4.3.1. Each term
α

β

λj
µj − λj

is

— convex in λj, and convex in µj

— neither convex, nor concave jointly in λj and µj (see Figure 4.1).

— pseudolinear jointly in λj and µj.

125



Proof. The first statement is obvious. The proof of the second rests on the fact that the

Hessian of the function f(x, y) = x/(y − x) is indefinite. As for the pseudolinearity claim,

let us consider pseudoconcavity first. The gradient of f is

∇f(x, y) =
(

y

(y − x)2 ,
−x

(y − x)2
)

Let a = (xa, ya) and b = (xb, yb), such that ∇f(a) · (b− a) ≥ 0. We have that

∇f(a) · (b− a) =
(

ya
(ya − xa)2

,
−xa

(ya − xa)2
)

· (xb − xa, yb − ya) =
yaxb − xayb
(ya − xa)2

(4.3.8)

and
yaxb − xayb
(ya − xa)2

≥ 0⇒ yaxb − xayb ≥ 0 . (4.3.9)

We now proceed by contradiction. Let us assume that f(b) < f(a). Then, xb/(yb − xb) <
xa/(ya − xa). This means that xbya − xayb < 0 and xbya − xayb ≥ 0 by Eq. (4.3.9), a

contradiction. This implies that

∇f(a) · (b− a) ≥ 0⇒ f(a) ≤ f(b), (4.3.10)

as required.

Using the same arguments, we can prove the pseudoconvexity of −f , and the pseudolin-

earity of (α/β)(λj)/(µj − λj) follows.

�

Figure 4.1. Function x/(y − x). Although neither convex nor concave, it is pseudolinear

(pseudoconvex, and pseudoconcave). The non-convexity is more accentuated in the vicinity

of the origin.

126



4.3.2. Bounds on w, p and µ

Special attention is paid to tight bounds on the variables, since these will improve the

numerical efficiency of the resolution algorithm. Based on the parameters of the network,

we can derive upper and lower bounds for the waiting time at facilities, the prices set by the

emerging firm, and the service rate profitable for the leader. It is obvious that, in order to

make nonnegative profit, the minimum price that the leader can set must exceed the variable

cost vc associated with the service rate

pmin = vc.

Let (x′, λ′, w′) be the solution of the lower level problem under a competing monopoly. Then,

the maximum utility that users are willing to incur in order to access an item or a service is

umax = max
i∈I,j∈Jc

{
ti,j + αw′

j + βpj
}
.

The equilibrium constraints guarantee that the above equation is satisfied even when the new

firm enters the market. Then, for all couples (i, j) that have positive flows, the associated

utility cannot exceed umax

ti,j + αwj + βpj ≤ umax,

and the bounds on p and w follow directly

wj ≤ (umax − βpmin)/α , pj ≤ umax/β

wmax = (umax − βpmin)/α , and pmax = umax/β.
(4.3.11)

The service rate at any given facility is limited by the service cost, the maximum price,

fixed cost, and total demand. The maximum possible profit of the firm is obtained when all

the demand is attracted, the maximum price is charged, and only one facility is open (fixed

cost is minimal). Since the profit (objective function) must be nonnegative, we must have

that

pmax

∑

i∈I

di − fc − µmaxvc ≥ 0,

and the upper bound on µ follows directly:

µmax =
pmax

vc

∑

i∈I

di −
fc
vc
.
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4.3.3. Linear approximation

This section is devoted to a detailed description of the techniques that allow to transform

the original problem into a mixed integer linear program.

Sampling. We performed piecewise linear interpolations of the nonlinear functions involved

in our model, namely λj/(µj − λj) and 1/(µj − λj). These functions are bivariate for the

leader (µ is a decision variable), and univariate for the competitor.

For the leader, we consider Nµ + 1 equidistant sampling points on the x axis, within the

interval [0, µmax]: {µ̃n}, n ∈ {1, . . . , Nµ} such that µ̃i < µ̃j for all 1 ≤ i < j ≤ Nµ. Next, for

each sample µ̃n we define λnmax = µ̃n − 1/wmax, and we sample each interval [0, λnmax] using

Nλ points {λ̃nk}, k ∈ {1, . . . , Nλ}, such that λ̃ni < λ̃nj for all 1 ≤ i < j ≤ Nλ. A similar

sampling is performed for every facility of the competitor, where the sampling interval for λ

is [0, µj], ∀j ∈ Jc.
Special attention is paid to the type of sampling we use for λ. The sampling can be

equidistant either ‘horizontally’ or ‘vertically’. In the ‘horizontal’ case, for a given µ̃n the

difference between two consecutive values, λ̃ni − λ̃ni+1, remains constant. In contrast, in

the vertical case, the samples are computed such that, for a given µ̃n, and for any two

consecutive λ samples, λ̃ni and λ̃ni+1, the difference between their respective waiting time,

1/(µ̃n − λ̃ni)− 1/(µ̃n − λ̃ni+1), is constant. Both cases are illustrated in Figure 4.2 below.

(a) sampling equidistant on x axis (b) sampling equidistant on y axis

Figure 4.2. Illustration of the impact of sampling type on the approximation.

When using samples that are equidistant on the x axis, the approximation of waiting

times is best on the region where the slope is small. It is important that this function be
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well approximated in this area, as a small change in the waiting time value would cause a

significant change in the x-variable, thus approximate badly the resulting objective function.

On the other hand, a rougher approximation of the congested part would not yield a large

error in the x-values, which justifies performing the sampling equidistant on y axis.

Piecewise linearization. We now detail the linear approximation of the terms
λj

µj − λj
in

the reformulated objective function, and
1

µj − λj
in constraints (4.2.9). To this end,

we use the sampling described above in a triangle piecewise linearization technique from

[D’Ambrosio et al., 2010]. At a given point (λ̃, µ̃) the function of interest is approximated

by a convex combination of the function values at the vertices of the triangle containing the

point (λ̃, µ̃).

First, we approximate
λj

µj − λj
and

1

µj − λj
for the leader, using the following sets of

variables:

— lj,n,k and lj,n,k are binary variables denoting the lower and upper triangles, respectively,

used for evaluating the convex combinations for n ∈ {1, . . . , Nµ}, k ∈ {1, . . . , Nλ}, j ∈
J . In a feasible solution these variables equal 1 if the point of interest falls inside their

associated triangle, and 0 otherwise.

— sj,n,k represents the weight of the convex combination associated with the vertices of

the triangle containing the point of interest.

— u and w hold the approximated values of
λj

µj − λj
and

1

µj − λj
, respectively.

The following constraints allow to linearize
λj

µj − λj
and

1

µj − λj
in the original model. Since

they are not defined for µj = 0, by convention, we set them to 0, whenever µj = 0. The

motivation is that users cannot patronize a facility offering no service, yielding a null waiting

time at facilities. To accommodate this, the summation starts at n = 2 in constraints (4.3.17)

and (4.3.18), below.

Nµ∑

n=1

Nλ∑

k=1

(
lj,n,k + lj,n,k

)
= 1 j ∈ J1 (4.3.12)

sj,n,k ≤ lj,n−1,k + lj,n−1,k−1 + lj,n,k+ lj,n,k + lj,n−1,k−1 + lj,n,k−1

j ∈ J1;n ∈ {1, . . . , Nµ}; k ∈ {1, . . . , Nλ} (4.3.13)
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Nµ∑

n=1

Nλ∑

k=1

sj,n,k = 1 j ∈ J1 (4.3.14)

λj =

Nµ∑

n=1

Nλ∑

k=1

sj,n,kλ̃
nk j ∈ J1 (4.3.15)

µj =

Nµ∑

n=1

Nλ∑

k=1

sj,n,kµ̃
n j ∈ J1 (4.3.16)

wj =

Nµ∑

n=2

Nλ∑

k=1

1

µ̃n − λ̃nk
· sj,n,k j ∈ J1 (4.3.17)

uj =

Nµ∑

n=2

Nλ∑

k=1

λ̃nk

µ̃n − λ̃nk
· sj,n,k j ∈ J1 (4.3.18)

lj,n,k, lj,n,k ∈ {0, 1} j ∈ J1;n ∈ {1, . . . , Nµ}; k ∈ {1, . . . , Nλ} (4.3.19)

0 ≤ sj,n,k ≤ 1 j ∈ J1;n ∈ {1, . . . , Nµ}; k ∈ {1, . . . , Nλ} (4.3.20)

lj,n,0 = 0, lj,n,0 = 0 j ∈ J1;n ∈ {0, . . . , Nµ} (4.3.21)

lj,n,Nλ
= 0, lj,n,Nλ

= 0 j ∈ J1;n ∈ {0, . . . , Nµ} (4.3.22)

lj,0,k = 0, lj,0k = 0 j ∈ J1; k ∈ {0, . . . , Nλ} (4.3.23)

lj,Nµ,k = 0, lj,Nµ,k = 0 j ∈ J1; k ∈ {0, . . . , Nλ}. (4.3.24)

We perform a similar linearization for the competitor. Recall that, in this case, the service

rate, µj, is constant. We introduce variables, l̂, ŝ ŵ and û, having similar meaning to their

leader counterparts. Given wmax, we compute λ̂jmax = µj−1/wmax, and we sample the interval

[0, λ̂jmax] using Nc points λ̂jn, n ∈ {1, . . . , Nc} such that λ̂jn < λ̂jm for all 1 ≤ n < m ≤ Nc,

and obtain the linearization

Nc∑

n=1

ŝj,n = 1 j ∈ Jc (4.3.25)

λj =
Nc∑

n=1

ŝj,nλ̂
jn j ∈ Jc (4.3.26)

ŵj =
Nc∑

n=1

1

µj − λ̂jn
· ŝj,n j ∈ Jc (4.3.27)
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ûj =
Nc∑

n=1

λ̂j,n

µj − λ̂jn
· ŝj,n j ∈ Jc (4.3.28)

Nc∑

n=1

l̂j,n = 1 j ∈ Jc (4.3.29)

ŝj,n ≤ l̂j,n + l̂j,n−1 j ∈ Jc; n ∈ {1, . . . , Nc} (4.3.30)

l̂j,n ∈ {0, 1} j ∈ Jc; n ∈ {1, . . . , Nc} (4.3.31)

0 ≤ ŝj,n ≤ 1 j ∈ Jc; n ∈ {1, . . . , Nc} (4.3.32)

l̂j,0 = 0, l̂j,Nc
= 0 j ∈ Jc . (4.3.33)

At last, the complementarity constraints Eq. (4.2.8) are linearized through the introduc-

tion of binary variables and big-M constants, as follows:

tij + αwj + βpj − γi ≤M2sij i ∈ I; j ∈ J1 (4.3.34)

tij + αŵj + βpj − γi ≤M2sij i ∈ I; j ∈ Jc (4.3.35)

xij ≤M3(1− sij) i ∈ I; j ∈ J (4.3.36)

sij ∈ {0, 1} i ∈ I; j ∈ J . (4.3.37)

The values of M2 and M3 must be sufficiently large not to forbid feasible solutions, but

not too large that they slow down the enumeration algorithm, due to a weak continuous

relaxation. Based on the network’s parameters, the following ‘tight’ values for M2 and M3

hold:

M2 = max
i∈I,j∈J

{tij}+ αwmax + βpmax

M3 = max
i∈I
{di} .
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Putting together all linear terms yields the following MILP approximation of P:

PL:

max
y,c,x,γ

z = − 1

β

∑

i∈I

∑

j∈J

tijxij −
α

β

∑

j∈J1

uj −
α

β

∑

j∈Jc

ûj +
∑

i∈I

di
β
γi −

∑

i∈I

∑

j∈Jc

pjxij −
∑

j∈J1

(fc · yj + vc · µj)

s.t. tij + αw + βpj − γi ≥ 0 i ∈ I; j ∈ J1

tij + αŵ + βpj − γi ≥ 0 i ∈ I; j ∈ Jc

xij · (tij + αw(λj, µj) + βpj − γi) = 0 i ∈ I; j ∈ J

constraints (4.2.4)–(4.2.6), (4.2.10)–(4.2.13), (4.3.12)–(4.3.37) .

(4.3.38)

An interesting feature of this reformulation-linearization is that, since we use the same

set of variables and constraints to approximate two different functions simultaneously, the

number of variables is greatly reduced. This would not be the case if we were to linearize

separately the waiting time and the bilinear terms xijpj present in the original formulation.

Another interesting feature of this reformulation is the pseudo-linearity of the functions

replacing the bilinear terms in the objective. Although we do not exploit this property

directly, we expect the linearization to be well-behaved.

Finally, an alternative algorithmic approach based on the power-based transformation

originally proposed in [Teles et al., 2011] was initially implemented but did not perform

satisfactorily. The main idea is to transform nonlinear polynomial problems into an MILP, by

applying a term-wise disaggregation scheme, notwithstanding, with additional discrete and

continuous variables. Kolodziej et. al incorporate this technique into a global optimization

algorithm for bilinear programs [Kolodziej et al., 2013]. The authors argue that this

technique scales better than the piecewise McCormick envelopes, and is comparable with

global optimization solvers.

For the sake of completeness, and to warn other people tempted by that path, we thought

it is useful to mention it. The interested reader can find it in the appendix of this Ph.D.

thesis [?].
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4.4. Experimental Setup and Results

The algorithm has been tested on randomly generated data. We focused on challenging

instances, in which, at optimality, the number of open facilities represent more than one fifth

of the nodes. Our experiments were conducted for different problem sizes, namely for 10, 15,

20, and 25 nodes, which were generated as follows. The travel time between nodes varied

uniformly between 0 and 600. In order to ensure that problems were difficult enough, the

combinations of fixed and variable costs were chosen such that there exist feasible solutions

yielding nonnegative profit, where more than half of the facilities were open.

All procedures were implemented in Java, and the MILP formulations were solved by IBM

CPLEX Optimizer version 12.6. The tests were performed on a computer equipped with 96

GB of RAM, and two 6-core Intel(R) Xeon(R) X5675 processors running at 3.07GHz. The

default values of the parameters α and β were set to 20 and 10, respectively, unless specified

otherwise. In all tests, the maximum tree size was set to 30GB. Throughout this section,

the estimated objective refers to the MILP objective value as returned by CPLEX, whereas

the recovered objective is computed as follows. The decision variables are set to the optimal

values found by CPLEX, then the associated objective value is recovered by solving the

(convex) lower level problem for its exact solution, by Frank-Wolfe algorithm.

4.4.1. Solving the MILP with different number of samples

An initial set of experiments was intended to assess the performance of the linear approx-

imation method. The algorithm was stopped as soon as the optimality gap dropped below

CPLEX’s default value (10−4), the 86,400 seconds (24 hours) limit was reached, or the tree

size exceeded 30GB. Tables 4.1, 4.2, and 4.3 report the CPU needed, for various number of

approximating samples. The relative MILP gap is shown in percentage, next to the CPU.

The gap is omitted if the algorithm terminated at optimality (i.e., gap < 10−4).

For 5 and 10 samples, the algorithm needs less than 100 seconds, and on average less than

35 seconds, to reach optimality. The CPU increases abruptly with the number of samples,

which is to be expected. For 15-node networks, all tests finished at optimality when the

number of samples is lower than 60. However, 6 over 10 instances exceeded the alloted time

or memory when using 60 samples. For larger, 20-node networks, the algorithm terminated

at optimality on very few instances, when using more than 30 samples, and ran out of time
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# of samples

test # 5 10 20 30 40 60 (gap%)

1 4 9 25 9,473 1,363 14,205

2 14 20 110 398 3,883 86,409 (10.95)

3 9 26 30 361 19,837 86,404 (9.97)

4 4 32 172 13,814 21,694 34,066

5 6 18 149 11,025 52,951 73,124

6 2 5 54 5,982 18,408 86,402 (1.03)

7 5 15 92 18,006 8,831 86,402 (3.94)

8 3 11 51 3,535 9,160 86,402 (1.86)

9 2 10 88 30,486 24,153 86,402 (8.22)

10 1 9 52 8,010 9,830 1,406

Average 5 14 82 10,109 17,011 64,122 (3.60)

Table 4.1. CPU time (seconds) on 15-node networks, for different number of samples.

on all 25-node network instances. As suggested by Figure 4.1, the good solutions are found

in the early stages of the algorithm, while the remaining steps are used to close the gap and

prove optimality.

0 2 4 6 8

·104

2,000

3,000

4,000

5,000

CPU (s)

20 nodes

Recovered obj: 30 samples
Estimated obj: 30 samples
Recovered obj: 40 samples
Estimated obj: 40 samples

0 2 4 6 8

·104

2,000

3,000

CPU (s)

25 nodes

Recovered obj: 30 samples
Estimated obj: 30 samples
Recovered obj: 40 samples
Estimated obj: 40 samples

Figure 4.1. Variation of estimated (MILP) and recovered objective value with respect to

time.

The increase in the running time is compensated by an improvement in the approximation

quality, as illustrated in Figure 4.2. The difference between the estimated (MILP) optimal
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# of samples

test # 5 10 20 (gap%) 30 (gap%) 40 (gap%)

1 22 94 1,459 64,348 (0.30) 86,402 (5.17)

2 6 15 1,297 59,626 77,542

3 12 52 86,401 (3.60) 86,403 (0.95) 86,402 (2.04)

4 7 24 1,035 1,853 86,401 (0.24)

5 13 20 86,402 (0.27) 86,402 (6.12) 86,401 (4.76)

6 7 13 782 86,402 (0.13) 52,097 (0.75)

7 6 27 228 30,892 86,401 (1.73)

8 7 20 305 2,462 28,330

9 20 78 86,401 (0.07) 86,401 (0.04) 86,402 (6.71)

10 3 9 146 86,401 (0.56) 18,096

Average 10 35 26,446 (0.39) 59,119 (0.81) 69,447 (2.14)

Table 4.2. CPU time (seconds) on 20-node networks, for different number of samples.

objective value, and the recovered one is decreasing with the increase of the number of

samples, suggesting a solid improvement in the quality of the approximation.

0 20 40 60

2,000

2,200

2,400

Number of samples

15 nodes

Recovered obj
Estimated obj

20 40

4,000

4,500

5,000

Number of samples

20 nodes

Recovered obj
Estimated obj

20 40

3,000

3,500

Number of samples

25 nodes

Recovered obj
Estimated obj

Figure 4.2. Evolution of the MILP objective value (’Estimated’) and the true objective

value (’Recovered’), as the number of samples increases.

135



# of samples

test # 5 10 20 (gap%) 30 (gap%) 40 (gap%)

1 3 5 143 86,402 (0.59) 22,702 (0.48)

2 9 23 259 5,891 (2.25) 86,403 (3.97)

3 2 11 233 78,143 (0.50) 37,895 (1.15)

4 8 32 86,401 (0.73) 25,010 (0.84) 16,177 (2.51)

5 8 24 86,413 (0.76) 86,401 (4.18) 86,403 (5.14)

6 4 12 58,331 68,406 (2.43) 86,403 (2.27)

7 3 24 86,402 (2.40) 15,545 (3.08) 7,864 (3.88)

8 5 30 9,650 86,405 (3.12) 71,371 (2.50)

9 2 16 170 6,633 (0.69) 68,635 (0.54)

10 3 17 9,127 (0.36) 86,402 (1.57) 8,789 (4.10)

Average 4 19 33,713 (0.43) 54,524 (1.93) 49,264 (2.65)

Table 4.3. CPU time (seconds) on 25-node networks, for different number of samples.

4.4.2. A math-heuristic approach

After careful inspection of the solutions, we have noticed that the number of facilities

opened at optimality does not vary significantly with the number of samples, nor with the

alloted execution time (on average around 5 – 7 are opened for the 20 and 25-node instances).

This suggests that quasi-optimal locations are found on the early stages of the algorithm, or

for coarse approximations.

Next, we assessed the quality of these opened facilities, restricting the problem to the

determination of price and service levels, which remains a difficult nonlinear bilevel problem.

We now solve the linearized problem PL using the following algorithm whose main steps are:

I. Solve PL for a small number of samples, and a limited time.

II. Retrieve the locations associated with the incumbent.

III. Solve PL, where locations are fixed from step II, using a more fine-grained sampling,

for a limited time.
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IV. Retrieve the associated solution (µ and p) and compute the lower-level equilibrium

required to obtain the true objective. This last operation can be achieved by solv-

ing a convex program. To this purpose, we implemented the classical Franc-Wolfe

algorithm.

This matheuristc version of our algorithmic has been tested on instances involving 5, 10

and 30 samples, and a time limit of 30 minutes, at step I, and 40 samples and a time limit

of 1 hour in total, for all three steps. Tables 4.4 and 4.5 show the comparison between the

values obtained in this way, and the objective values yielded by the original algorithm for

40 and 50-samples approximations, with running time limited to 1 hours, and a 50-sample

approximation running for 24 hours, for 20 and 25-node networks, respectively.

40 samples, 1 hour in total

from 5 from 10 from 30 samples, 40 samples, 50 samples, 50 samples,

test # samples samples 30 min 1 hour 1 hour 24 hours

1 3,454.01 3,454.01 3,454.01 345.14 – 3,455.85

2 4,931.14 4,931.14 4,931.14 4,931.14 4,933.98 4,933.98

3 10,083.30 10,083.30 10,091.46 10,091.46 – 10,145.76

4 4,892.30 4,892.30 4,892.30 4,892.30 4,887.66 4,887.66

5 5,106.06 5,862.84 5,788.60 5,757.25 6,219.17 6,201.88

6 4,200.60 4,200.60 4,200.60 4,200.60 4,227.83 4,227.83

7 4,398.22 4,398.22 4,201.22 4,345.16 4,401.96 4,401.96

8 3,141.79 3,141.79 3,141.79 3,141.79 3,154.11 3,154.11

9 3,318.63 3,318.63 3,318.63 3,291.84 3,325.85 3,354.89

10 – – – – – –

Table 4.4. Objective value comparison on 20-node networks, when 40 samples are used for

linearization, locations are fixed, and the CPU is limited to 1 hour in total (including the

warm start).

For the 20-node networks the best performance corresponds the 10-sample starting point.

On 1 instance it outperformed the 50-sample approximation, and on 8 instances it falls, on

average, within 2.4% of the optimum found by the latter, at a much smaller computational
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cost (1 hour for the 10-sample starting point as opposed to 24 hours for the 50 samples). On

most tests, the deviation is less than 1%, but the average is increased by an outlier (instance

# 5) that has an error of 11%. The 5 and 30-sample starting point yield similar results.

In almost all cases in which the 40 and 50-sample algorithm finds an initial solution in 1

hour, such a solution is as good, or even better than the 40-sample boosted by the 10-sample

locations. However, the boosted version looks more robust.

40 samples, 1 hour in total

from 5 from 10 from 40 samples, 40 samples, 50 samples, 50 samples,

test # samples samples 30 min 1 hour 1 hour 24 hours

1 2,783.93 2,783.93 2,820.28 2,820.28 2,840.15 2,840.15

2 3,653.74 3,751.08 3,775.86 3,775.86 – 3,775.44

3 3,531.34 3,531.34 3,549.39 3,549.39 3,550.34 3,550.34

4 3,477.32 3,477.32 3,482.76 3,482.76 – 3,482.60

5 3,793.96 3,841.20 3,849.36 3,849.36 3,793.38 3,849.02

6 3,211.12 3,211.12 3,223.18 3,223.18 – –

7 3,401.53 3,441.98 3,450.50 3,450.50 3,427.26 3,452.59

8 2,881.09 2,881.09 2,881.09 2,881.07 – 2,883.04

9 4,590.49 4,590.49 4,590.49 4,590.49 4,590.80 4,592.41

10 4,277.79 4,277.79 4,304.77 4,353.92 4,347.62 4,347.62

Table 4.5. Objective value comparison on 25-node networks, when 40 samples are used for

linearization, locations are fixed, and the CPU is limited to 1 hour.

Table 4.5 tells a similar story about the 25-node networks. On almost half of the instances,

the 30-sample starting point outperforms the 50-sample approximation, and on the other

half of instances it falls, on average, within 0.3% of the optimum, and at a much smaller

computational cost (1 hour for the 40-sample starting point as opposed to 24 hours for the

50 samples). When the 40 and 50-samples algorithm finds an initial solution in 1 hour, such

a solution is equally good, or even better than the 40 samples boosted by the 30 samples

locations.
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These results demonstrate that, ‘good’ locations can are found in the initial stages of the

algorithm. From an execution time point of view, it is advantageous to stop the algorithm

early on, retrieve the locations, then solve for optimal service levels and prices, using a

limited number of samples, for a small running time.

4.4.3. Comparison with general-purpose solvers

Finally, we compare our linear approximation algorithm with a general purpose solvers

for mixed-integer nonlinear optimization problems, such as BARON. We have measured

the objective values yielded by BARON, and we compare them with the results of our

reformulation technique run for 1000s.

Next, we attempted to improve the solutions found by our algorithm, using IPOPT, an

open-source software for large-scale nonlinear optimization based on a primal-dual interior

point algorithm [?]. For this experiment, we fixed the locations given by a 30-sample approx-

imation within 1 hour, yielding a fully-continuous restricted problem. We have warm-started

IPOPT with the respective 30-sample price, service levels, and user flows. The results are

shown in Table 4.6.

All BARON and IPOPT tests were run for 1,000 seconds on the NEOS server, on com-

puters equipped with 64 GB of RAM, and processors running at a frequency between 2.2

and 2.8 GHz 1.

Our reformulation technique clearly outperforms BARON on all instances. IPOPT is

capable of improving the initial solution only in three instances while, on the others, the

solution worsens significantly. On one instance, marked with * in the table, the objective

value is negative, despite being warm started with a good (positive) solution, likely indication

of numerical difficulties.

4.5. Conclusions

In this paper, we addressed a highly nonlinear bilevel pricing location model involving

both combinatorial and continuous elements, and proposed for its solution an algorithm

based on reformulation and piecewise linear approximations.

1. A detailed description of the NEOS server computers’ specifications can be found here https://neos-

guide.org/content/FAQ
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y from 30 samples, 1h,

30 samples (1000s) BARON (1000s) IPOPT (1000s)

1 3,454.28 3,330.10 3,139.12

2 4,932.44 4,444.79 3,625.29

3 9,926.58 9,385.23 6,147.16

4 4,891.93 4,323.95 3,053.51

5 5,336.68 4,446.12 5,195.17

6 4,105.17 3,901.16 3,965.02

7 4,426.14 3,789.63 * -6,419.41

8 3,093.31 2,550.13 2,852.44

9 3,215.63 2,666.95 2,374.10

10 4,053.45 2,689.02 667.08

Table 4.6. Objective value comparison with BARON and IPOPT, on 20-node networks.

Our results are encouraging, but our algorithms have some limitations. For instance,

one of the remaining challenges is to design algorithms that scale well, and can be applied

successfully on large networks.

Future work could integrate other realistic features, such as variable demand. On the

algorithmic side, an interesting development could be a method that exploits the pseudolin-

earity property of the nonlinear terms present in the reformulated objective function.
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Chapter 5

Conclusions

In this thesis, we addressed a number of bilevel location models involving both combinato-

rial and nonlinear, nonconvex elements. The resulting mathematical programs are extremely

challenging. Our models are characterized by non-linear lower level, non-convex upper level,

and the KKT optimality conditions of the lower-level can not be reformulated into an MILP.

This explains the frequent recourse to heuristic (meta-heuristics, math-heuristics) in the lit-

erature, since the exact and quasi-exact bilevel algorithms typically rest on these conditions.

Metaheuristics could be applied in our case (Tabu search, genetic algorithms, etc.), but

they are not desirable, as the solution space would increase tremendously when modelling

the non-binary variables and they only guarantee local optimality.

We believe that algorithms that exploit MILP approximations deserve some considera-

tion, and we have explored this idea in our papers. Our models are flexible and can accom-

modate numerous real-life applications, while the proposed algorithms remain applicable.

While our results are encouraging, our methods have their limitations. The main issue

is that our algorithms are intractable for large networks, due to the highly combinatorial

nature of the problems, so further research is needed in this sense.

On the modelling side, future work could integrate a number of features such as elastic

demand or the possibility of either increasing or decreasing the service rates of existing

facilities. When balking is present, users might decide veer (patronize a second facility)

instead of leaving the system. More realistic models where the competition reacts could also

be considered. Of course, the presence of these features would add more difficulty to an

already challenging problem.
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Chapter A

A power-based linearization technique

In this section we detail a linearization technique for program (P) in Chapter 4, based

on the power-based transformation originally proposed in [Teles et al., 2011]. The main

idea is to transform nonlinear polynomial problems into an MILP , by applying a term-wise

disaggregation scheme, notwithstanding, with additional discrete and continuous variables.

Kolodziej et. al incorporate this technique into a global optimization algorithm for bilinear

programs ([Kolodziej et al., 2013]). The authors argue that this technique scales better

than the piecewise McCormick envelopes, and is comparable with global optimization solvers.

On our problem, this mixed-integer linearization technique became quickly intractable

even for smaller, 10-node networks, perhaps as a consequence of the large number of addi-

tional binary variables. However, we describe it in detail for scientific purposes.

Linearization of wj for the leader.

We sample the interval (0, µmax] using P points µp, p ∈ {1, . . . , P}. Then, for each

sample µp we generate m samples of λ over (0, µp). Let λp,m and µp be the samples hence

obtained. We linearize wj(λ, µ) using tangent plane at points (λp,m, µp) for p ∈ {1, . . . , P},
m ∈ {1, . . . ,M} such that λp,m ≤ µp. Based on the gradient

∇wj(λ, µ) =
(
1/(µ− λ)2,−1/(µ− λ)2

)
, (A.0.1)

we write the first-order Taylor approximations of wj(λ, µ):

f p,m(λ, µ) = w(λp,m, µp) +∇wj(λ
p,m, µp)




λ− λp,m

µ− µp







=
1

(µp − λp,m)2
︸ ︷︷ ︸

ap,m

·λ+
−1

(µp − λp,m)2
︸ ︷︷ ︸

bp,m

·µ+
2

(µp − λp,m)2
︸ ︷︷ ︸

cp,m

.

Next, we write a piecewise linear approximation of wj by setting it to the maximum of its

linear approximations:

wj(λj, µj) ≈ max
p∈{1,...,P}
m∈{1,...,M}

{f p,m(λj, µj)} (A.0.2)

Eq. (A.0.2) can be replaced with

wj(λj, µj) ≥ max
p=1,...,P,
m=1,...,M

{f p,m(λj, µj)} (A.0.3)

Intuitively, since the leader is in control of variables λj (provided they satisfy the equilibrium

constraints), for a given value of µj and λj, it is in her best interest to set wj as small as

possible. From another angle, for a given value of wj, the leader will fix λ as high as possible,

in order to maximize her profit. This is not the case when the leader can attract the entire

demand, even for values of wj higher than the under approximation.

Linearization of wj for the competitor. For the competitor we perform a piecewise linear

approximation via binary variables. For each j ∈ Jc we sample the interval (0, µj) using R

points. Let λj,r be the aforementioned samples. We linearize wj(λ, µj) using line equations

between consecutive pair of samples, and we have:

R∑

r=1

ŝjr = 1 j ∈ Jc (A.0.4)

λj =
R∑

r=1

ŝjrλ̂
jr j ∈ Jc (A.0.5)

ŵj ≤
R∑

r=1

ŝjrw(λ̂
jr, µj) j ∈ Jc (A.0.6)

R∑

r=1

l̂jr = 1 j ∈ Jc (A.0.7)

ŝjr ≤ l̂jr + l̂jr−1 j ∈ Jc; r ∈ {1, . . . , R} (A.0.8)

l̂jr ∈ {0, 1} j ∈ R; r ∈ {1, . . . , R} (A.0.9)

0 ≤ ŝjr ≤ 1 j ∈ Jc; r ∈ {1, . . . , R} (A.0.10)
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l̂j,0 = 0, l̂j,R = 0 j ∈ Jc . (A.0.11)

Linearization of bilinear terms λj · pj. We linearize λjpj using the parametric disaggregated

method where we represent pj to a certain level of precision π (e.g. π = −3 then pj is precise

to three decimal places). Let pMAX be the maximum value the price can have (it can be

easily computed), and let λMAX =
∑

i∈I di, i.e. the total demand rate in the network. We

define Π = log10(pMAX) and the set of equations characterizing terms uj = λjpj is:

uj =
Π∑

l=π

9∑

k=0

10l · k · λ̂j,k,l j ∈ J1 (A.0.12)

pj =
Π∑

l=π

9∑

k=0

10l · k · zj,k,l j ∈ J1 (A.0.13)

λ̂j,k,l ≤ λMAX · zj,k,l j ∈ J1; k ∈ {0, . . . , 9}; l ∈ {π, . . .Π} (A.0.14)

λ̂j,k,l ≥ 0 j ∈ J1; k ∈ {0, . . . , 9}; l ∈ {π, . . .Π} (A.0.15)

λj =
9∑

k=0

λ̂j,k,l j ∈ J1; l ∈ {π, . . .Π} (A.0.16)

9∑

k=0

zj,k,l = 1 j ∈ J1; l ∈ {π, . . .Π} (A.0.17)

zj,k,l ∈ {0, 1} j ∈ J1; k ∈ {0, . . . , 9}; l ∈ {π, . . .Π} . (A.0.18)

Linearization of complementarity constraints. We linearize Eq. (??) through the introduction

of binary variables and big-M constants, as follows:

tij + αwj + βpj − γi ≤Msij i ∈ I; j ∈ J (A.0.19)

xij ≤M(1− sij) i ∈ I; j ∈ J (A.0.20)

sij ∈ {0, 1} i ∈ I; j ∈ J . (A.0.21)

The value of M must be sufficiently large, but not too large that it slows down the algorithm.

We can compute a tight value for the M constant, based on the maximum waiting and travel

time in the network.

Finally, we write (P) as the following MILP:
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PL: (Leader:)

max
y,µ,x,p,γ

z =
∑

j∈J1

uj −
∑

j∈J1

(fc · yj + vc · µj)

s.t. µj ≤M1 · yj j ∈ J1

yj ∈ {0, 1} j ∈ J1

µj ≥ 0 j ∈ J1

tij + αwj + βpj − γi ≥ 0 i ∈ I; j ∈ J

λj =
∑

i∈I

xij j ∈ J

∑

j∈J

xij = di i ∈ I

λj ≤ µj j ∈ J

xij ≥ 0 i ∈ I; j ∈ J

constraints (A.0.3) – (A.0.21) .
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