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Abstract

With diminishing global water reserves the problem of water allocation be-

comes increasingly important. We consider the problem of efficiently sharing

a river among a group of satiable countries. Inducing countries to efficiently

cooperate requires monetary compensations via international agreements. We

show that cooperation of the other countries exerts a positive externality on

the benefit of a coalition. Our problem is to distribute the benefit of efficiently

sharing the river under these constraints. If the countries outside of a coalition

do not cooperate at all, then the downstream incremental distribution is the

unique compromise between the absolute territorial sovereignty (ATS) doctrine

and the unlimited territorial integrity (UTI) doctrine. If all countries outside

of a coalition cooperate, then there may not exist any distribution satisfying

the UTI doctrine.
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1 Introduction

In many economic and political environments the characteristics of a prisoner’s dilemma

are present: the non-cooperative equilibrium is inefficient and enforcing the efficient

outcome requires cooperation (Hardin, 1968; Ostrom, 1990). International agree-

ments determine how to achieve cooperation among a group of countries and specify

how to make monetary compensations to distribute the resulting benefits. Examples

are the European Union, the GATT, and the Kyoto Protocol on greenhouse emissions.

In all these environments the benefit of a group of countries depends on how the

other countries behave. For instance in the Kyoto Protocol, if the countries outside

of the Kyoto protocol continue to pollute as before, then the benefit of the countries,

which signed the protocol, is smaller than when the countries outside agreed to reduce

greenhouse emissions a protocol similar to the Kyoto one. Therefore, cooperation

of the other countries exerts an externality on the value (or benefit) of a coalition

(or group) of countries. In other words, in these environments the countries play a

cooperative game with externalities.

A natural requirement of any agreement is that a subgroup of countries should not

be better off by signing a separate agreement. Otherwise it is credible to threaten the

agreement and acquire a separate one which blocks the initial one. An agreement is

stable if it is not blocked by a subgroup of countries. In the presence of externalities

the stability of an agreement depends on how the countries outside of the blocking

coalition behave. A strong stability requirement would be that the agreement which

is not blocked by a subgroup of countries independently of the behavior of the coun-

tries outside of this subgroup. Weaker stability requirements are obtained via the

two extremes of behavior of the countries outside of a coalition: either they do not

cooperate at all or they all cooperate. The non-cooperative core is non-empty if there

exists an agreement which is not blocked by a subgroup assuming that the countries

outside do not cooperate. Similarly, the cooperative core is non-empty if there exists

an agreement which is not blocked by a subgroup assuming that the countries outside
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do all cooperate.

We consider international agreements for sharing water resources of a river. The

importance of this problem has been empirically shown by Godana (1985) and Barrett

(1994). The field of research on water allocation is increasingly important with dimin-

ishing water reserves (Young and Haveman, 1995; Carraro, Marchiori, and Sgobbi,

2005, Griffin, 2006). Our paper will be the first one to consider water allocation with

externalities. We follow Kilgour and Dinar (2001) and Ambec and Sprumont (2002)

and consider a set of countries which is located along the river. Each country extracts

water from the river for consumption and/or production. The river picks up volume

along its course. Agents value water differently in the sense that some have higher

needs and higher marginal utility /productivity than others. These heterogeneous

valuations are represented by concave and single-peaked benefit functions, where the

peak consumption corresponds to a country’s satiation point. Water is scarce and it

is not possible that everybody consumes his peak. Free access extraction of water

is inefficient. Typically, countries located upstream consume too much (e.g. up to

their satiation points), thereby leaving not enough to supply downstream users. An

efficient allocation of water maximizes the total welfare (i.e. the sum of the coun-

tries’ benefits). Such an allocation may require upstream countries to limit their own

consumption in order to increase the consumption of downstream countries whose

marginal benefits are higher. Clearly, inducing the upstream countries to do so re-

quires compensatory payments. These payments together with an efficient allocation

of water generate a distribution of the total welfare of the grand coalition. We exam-

ine which distributions are acceptable for the countries according to certain fairness

criteria.

Kilgour and Dinar (2001) and Ambec and Sprumont (2002) considered the special

case when each country’s benefit function is strictly increasing and satiation points

do not exist. This assumption appears unnatural because in reality overconsumption

may cause flooding or increase sanitation costs with higher water extraction costs.
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Production function and/or utility from water consumption is therefore decreasing

after satiation (e.g. Griffin, 2006, Chap 2). We show that under single-peaked benefit

functions the countries located along the river play a cooperative game with externali-

ties.1 The intuition is as follows. Because water is freely disposable, any country never

consumes more than his satiation point. Therefore, for a coalition it may be profitable

to pass some water from one of its connected components to another although some

water is consumed by countries located in between these two components. Since the

same is true for the countries outside of a coalition, this implies that the value of a

coalition depends on how the countries of its complement cooperate or behave. For

any coalition and any partition of the countries (such that the coalition is a member

of the partition), the structure of the river naturally defines a dynamic game with

perfect information: the players are the members of the partition and the nodes of

play are given by the connected components of all members of the partition. Then

the backwards induction algorithm calculates the equilibrium water consumption plan

and the value of a coalition under the given partition is simply the sum of the benefits

at the equilibrium plan of the countries belonging to the coalition.

Because property rights over water are not well defined, there are two conflicting

doctrines invoked by riparian countries in international river disputes: the theory of

absolute territorial sovereignty (ATS) and the theory of unlimited territorial integrity

(UTI) respectively (see Godona, 1985). Core lower bounds are inspired by ATS.

Under UTI the absence of the other, a country (or group of countries) could freely

dispose of the full stream of water originating upstream from its location, thereby

enjoying a benefit called “aspiration welfare”. Since water is scarce, not everybody

can enjoy its aspiration welfare. A welfare distribution that assigns to any country or

1Contrary to most of the literature on cooperative game theory, our environment does not rule

out that interactions between the other countries exert an externality on a coalition. For cooperative

games with externalities several recent papers offer extensions of the Shapley value of games without

externalities (see Maskin (2003), de Clippel and Serrano (2005), Navarro (2006) and Macho-Stadler,

Pérez-Castrillo, and Wettstein (2006)).
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group of country more that its aspiration welfare should be perceived as unfair. The

aspiration welfare defines upper bounds on welfare for any coalition of countries.

Under non-cooperative behavior there exist distributions satisfying the core lower

bounds. Our first main result shows that the downstream incremental distribution

is the unique distribution satisfying the non-cooperative core lower bounds and the

aspiration upper bounds. Our second main result shows that for more than three

countries, there may not exist any distribution satisfying the cooperative core lower

bounds. Therefore, the cooperative core lower bounds are above the non-cooperative

core lower bounds. In general cooperation exerts a positive externality on the value

of a coalition compared to its value under non-cooperative behavior.

Our first two main results are consistent with the literature on international agree-

ments for pollution reduction. This literature disagrees on the stability of a global

agreement (the “grand coalition”) because of opposite assumptions about the behav-

ior of the nonmembers of an agreement. On the one hand, Chander and Tulkens

(1997) show that the non-cooperative core is non-empty, thereby leading to a “grand

coalition” agreement. On the other hand, Carraro and Siniscalco (1993) assume that

coalitions still cooperate when an individual country deviates. They conclude that

any global agreement is not stable because at least one individual country blocks it

and the core is empty.

An important work related to ours is Demange (2004). She considers hierarchies

and shows that the “hierarchical outcome” satisfies the core lower bounds for all

connected coalitions2 for all super-additive cooperative games. If we insist that the

core lower bounds are satisfied for some non-connected coalitions, then there exists a

large class of super-additive games where the “hierarchical outcome” violates the core

lower bounds. If the hierarchy is a river, then the hierarchical outcome corresponds

to the upstream incremental distribution. Both her and our work have in common

that the cooperative game is super-additive and that an incremental distribution

2A coalition S is connected if for any two countries belonging to S, any country in between those

countries also belongs to S.
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corresponding to the structure of the river (or the hierarchy) is proposed as a solution

to the game under consideration. The important differences between Demange (2004)

and our work are that here externalities do exist whereas in hers they do not and

that the downstream incremental distribution satisfies the non-cooperative core lower

bounds for all coalitions (connected or non-connected).

Since the core is empty, similarly to Demange (2004) we may allow only connected

coalitions to block. Even if blocking is restricted to these coalitions, the core may

still be empty. Our third main result shows that the downstream incremental distri-

bution is not blocked by any connected coalition if and only if cooperation exerts no

externality on the value of any country. Since all core lower bounds are above the

non-cooperative core lower bounds, it follows that there exists a distribution satis-

fying the aspiration upper bounds and the UTI doctrine for all connected coalitions

independently of the other countries’ behavior if and only if the individual rationality

constraints are identical under all behaviors of the other countries. Of course, by our

first main result, the downstream incremental distribution is the only candidate for

such a distribution.

The paper is organized as follows. In Section 2 we introduce the problem of

sharing a river among satiable agents (or countries) and we determine necessary and

sufficient conditions for an efficient water consumption plan. In Section 3 we calculate

the value of a coalition for each partition of the agents via the backwards induction

algorithm applied to a dynamic game induced by the structure of the river and the

partition of the agents. In Section 4 we focus on non-cooperative behavior and show

that the downstream incremental distribution is the unique distribution satisfying the

non-cooperative core lower bounds and the aspiration upper bounds. In Section 5 we

turn to cooperative behavior and show that for more than three agents there may not

exist any distribution satisfying the cooperative core lower bounds. Furthermore, the

downstream incremental distribution satisfies all core lower bounds for all connected

coalitions if and only if the cooperation exerts no externality on the value of any
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agent.

2 The Problem

Let N = {1, . . . , n} denote the set of agents (or countries). We identify agents

with their locations along the river and number them from upstream to downstream:

i < j means that i is upstream from j. A coalition is a non-empty subset of N .

Given two coalitions S and T , we write S < T if i < j for all i ∈ S and all j ∈ T .

Given a coalition S, we denote by min S and max S, respectively, the smallest and

largest members of S. Let Pi = {1, . . . , i} denote the set of predecessors of agent

i and P 0i = Pi\{i} denote the set of strict predecessors of agent i. Similarly, let

Fi = {i, i + 1, . . . , n} denote the set of followers of agent i and let F 0i = Fi\{i}
denote the set of strict followers of i. A coalition S is connected if for all i, j ∈ S

and all k ∈ N , i < k < j implies k ∈ S. Given a coalition S, let C(S) denote the set

of connected components of S, i.e. C(S) is the coarsest partition of S such that any

T ∈ C(S) is connected. We often omit set brackets for sets and write i instead of {i}
or v(i, j) instead of v({i, j}).

The river picks up volume along its course. We denote by ei ≥ 0 the volume which

the river picks up at agent i’s location (or in country i). Each agent is endowed with

a benefit function. Let bi : R+ → R denote agent i’s benefit function. We assume

that bi is differentiable for all xi > 0 and strictly concave. Furthermore, b′i(xi) goes to

infinity as xi tends to 0 and there exists a satiation point x̂i > 0 such that b′i(x̂i) = 0.

In other words, x̂i is agent i’s optimal (water) consumption and if he consumes more

than x̂i, then he will infer a loss (compared to consuming x̂i) from overconsumption.

A problem is a triple (N, e, b) where e = (ei)i∈N and b = (bi)i∈N . Given a problem,

a consumption plan for N is a vector x(N) ∈ R
N
+ such that for all j ∈ N

∑

i∈Pj

xi(N) ≤
∑

i∈Pj

ei.

The above constraint says that the water ei, which is picked up by the river at agent
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i’s location, can only be consumed by i and the agents which are located downstream

from i. This makes our problem different from both the allocation of a private good

with the possibility of sidepayments and queuing problems where the order of the

agents is flexible and agents are compensated for the welfare maximizing queue (see

among others Maniquet (2003) and Chun (2004)).

Given a consumption plan x(N) and an agent i, let

Ei(x(N)) =
∑

j∈P 0i

(ej − xj(N))

denote the amount of water which is passed to agent i from his strict predecessors

P 0i in the consumption plan x(N) (with the convention E1(x(N)) = 0)3.

We call x∗(N) an optimal (or efficient) consumption plan if and only if it maximizes

the sum of all agents’ benefits. Note that here it may be suboptimal to use all the

water
∑

i∈N ei. In particular, it is suboptimal for any agent to consume more than

x̂i. Now analogously as in Ambec and Sprumont (2002) we can show that there

exists a unique optimal consumption plan x∗(N) (uniqueness follows from the strict

concavity of the bi) and that for x∗(N) there exists a partition {Nk}k=1,...,K of N and

a list (βk)
K
k=1 of non-negative numbers such that4

Nk < Nk′ and βk > βk′ whenever k < k′ (1)

b′i(x
∗
i (N)) = βk for every i ∈ Nk and every k = 1, . . . , K (2)

x∗
i (N) ≤ x̂i for all i ∈ N (3)

∑

i∈Nk

(x∗
i (N) − ei) = 0 for every k = 1, . . . , K − 1. (4)

Thus, if x∗
i (N) = x̂i, then i ∈ NK , i.e. the saturated agents belong to the last member

NK of the partition.

3Agent 1 does not receive any water from the other agents because agent 1 occupies the first

location of the river.
4For a detailed description of the efficient allocation of water along a river, see Kilgour and Dinar

(2001).
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Furthermore, we make the following observation. Suppose that for some agent

we have ei > x̂i. Then by (3), agent i will never consume more than x̂i, i.e. he will

always dispose ei − x̂i. Define e′i = min{x̂i, ei} and e′i+1 = ei+1 +(ei − e′i) and set e′ =

(e−i,i+1, e
′
i, e

′
i+1).

5 Then from (1)-(4) we obtain that x∗(N) is an optimal consumption

plan for the problem (N, e, b) if and only if x∗(N) is an optimal consumption plan for

the problem (N, e′, b). Thus, from now on we may suppose without loss of generality

that in the problem (N, e, b) we have ei ≤ x̂i for all i ∈ N .

Money is available in unbounded quantities to perform side-payments. Agent i’s

utility from consuming xi units of water and the monetary transfer ti is ui(xi, ti) =

bi(xi) + ti. An allocation is a tuple (x(N), t(N)) where x(N) is a consumption plan

for N and t(N) ∈ R
N is a vector of monetary transfers such that

∑
i∈N ti(N) ≤ 0. A

(welfare) distribution is any vector z = (z1 . . . , zn) ∈ R
N which is the utility image of

some allocation (x(N), t(N)) in the sense that zi = bi(xi(N)) + ti(N) for all i ∈ N .

We distribute the maximal welfare
∑

i∈N bi(x
∗
i (N)) among the agents.6

3 Externalities and Core Lower Bounds

Since each agent’s benefit function is single-peaked, any agent never consumes more

than his satiation point. If marginal benefits are higher for agents located more

downstream, then it may be profitable for a coalition to pass some water from one

component to another component even though some of the passed water is consumed

by agents in between the two components. Therefore, the value of a coalition may be

greater than the sum of the values of its connected components. However, it may be

also profitable for the agents outside of S to pass some water from one component

to the next one leaving some water for consumption for the agents in S. Hence,

the value of a coalition S will depend on both the components of S and the behavior

5If i = n, then we set e′ = (e−n, e′n), i.e. the amount en − x̂n is not consumed by any agent.
6Note that any vector z ∈ R

N such that
∑

i∈N zi =
∑

i∈N bi(x∗
i (N)) is a distribution because it

is the utility image of (x∗(N), t∗(N)) where t∗i (N) = zi − bi(x∗
i (N)) for all i ∈ N .
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of the agents outside of S. In other words, the behavior of the agents outside of S

exerts an externality on the value of coalition S. In what follows we will assume

that the agents outside of S form a partition and each member of the partition is

maximizing its surplus for any amount of water which is not used by the predecessors.

Furthermore, by the structure of the river, any amount of unused water can only be

transferred downstream and each member of the partition is maximizing its surplus

at any of its connected components for any amount of water, which is not used by

the predecessors of this connected component. Therefore, the outcome is a “subgame

perfect Nash equilibrium of the dynamic game with perfect information given by the

river”.

Let v(S,P) denote the value of S when the partition P of N forms where S ∈ P .

The calculation of v(S,P) follows the simple backwards induction algorithm along

the river. Here each coalition belonging to P is a player in the extensive form game

with perfect information (given by the river). The nodes of play are given by the

connected components of all coalitions in P . Information is perfect because at any

node of play the amount of unused water from the strict predecessors is observed (or

equivalently the consumptions of the strict predecessors are observed). A subgame

consists of an initial node of play and an amount of unused water which is passed

to the initial node of play by its strict predecessors. In the subgame each node of

play, which (weakly) follows the initial one, receives an amount of unused water from

its strict predecessors (or equivalently observes the consumption plans chosen by the

previous nodes) and chooses a feasible consumption plan given this amount of unused

water. The backwards induction algorithm calculates for each subgame the feasible

consumption plan of the initial node which maximizes the sum of their benefits plus

the sum of the benefits of all components which belong to the same coalition and

are further down the river. Here the reactions of the components further down the

river are already given by the amount of water which the initial component passes

to the following component. The outcome of the backwards induction algorithm is
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the consumption plan of the (sub)game starting with the first component of the river

(agent 1 belongs to this component) and no amount of unused water is received by

this first component. Then v(S,P) is equal to the sum of the benefits all agents

belonging to S receive in the outcome of the backwards algorithm.

Formally, let ∪T∈PC(T ) = {T1, . . . , Tk} be such that T1 < · · · < Tk. The backwards

induction algorithm calculates for each component and each amount of unused water

received by this component a feasible consumption plan which is optimal for this

component and the components further down the river which belong to the same

coalition:7

(k) For all E ′ ≥ 0, let x∗(Tk, E
′) be the optimal consumption plan for (Tk, (emin Tk

+

E ′, eTk\{min Tk}), bTk
);

(k-1) For all E ′ ≥ 0, let x∗(Tk−1, E
′) be the optimal consumption plan for (Tk−1, (emin Tk−1

+

E ′, eTk−1\{min Tk−1}), bTk−1
); note that Tk−1 and Tk necessarily belong to different

members of P ; after the choice of x∗(Tk−1, E
′), the amount Ek(x

∗(Tk−1, E
′)) =

E ′ +
∑

i∈Tk−1
(ei − x∗

i (Tk−1, E
′)) of unused water is passed from Tk−1 to Tk and

Tk chooses the consumption plan x∗(Tk, Ek(x
∗(Tk−1, E

′))).

...

(l) Given E ′ and the volume the river picks up along the locations in Tl, x(Tl, E
′)

is a feasible consumption plan for Tl if E ′ +
∑

i∈Tl∩Pj(ei − xi(Tl, E
′)) ≥ 0 for all

j ∈ Tl. By backwards induction, suppose that for all components Tl′ following Tl

(l′ ∈ {l+1, . . . , k}) and all amounts of water E ′ ≥ 0 we have defined x∗(Tl′ , E
′).

Given these choices, a fixed E ′ ≥ 0 and a feasible consumption plan x(Tl, E
′), let

El+1(x(Tl, E
′)) = E ′+

∑
i∈Tl

(ei−xi(Tl, E
′)) be the amount of water passed from

Tl to Tl+1, let El+2(x(Tl, E
′)) = El+2(x

∗(Tl+1, El+1(x(Tl, E
′)))) be the amount

of water passed from Tl and Tl+1 to Tl+2, and in general, for t ∈ {1, . . . , k − l},
7For any S ⊆ N , let bS = (bi)i∈S and eS = (ei)i∈S .
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let El+t(x(Tl, E
′)) = El+t(x

∗(Tl+t−1, El+t−1(x(Tl, E
′)))) be the amount of water

passed from Tl, . . . , Tl+t−1 to Tl+t.

Let T ∈ P be such that Tl ⊆ T . Then for all E ′ ≥ 0, let x∗(Tl, E
′) be the

consumption plan for Tl which solves

max
x(Tl,E′)

∑

i∈Tl

bi(xi(Tl, E
′)) +

∑

l′∈{l+1,...,k}:Tl′⊆T

∑

i∈Tl′

bi(xi(Tl′ , El′(x(Tl, E
′))))

where x(Tl, E
′) is a feasible consumption plan for Tl given E ′. In other words,

x(Tl, E
′) maximizes the surplus of T in the subgame starting at Tl given E ′ and

how the other components react on any amount of water which arrives at each

component following Tl.

...

From the concavity of the bi we obtain that each component’s optimal consumption

plan is unique. We denote the outcome of the backwards induction algorithm ap-

plied to P by xP(N) where xP
T1

(N) = x∗(T1, 0) and for all l ∈ {2, . . . , k}, xP
Tl

(N) =

x∗(Tl, El(x
∗(T1, 0))). Then for S ∈ P we define

v(S,P) =
∑

i∈S

bi(x
P
i (N)).

Remark 1 The outcome of the backwards induction algorithm may not be unique

because some coalitions may be indifferent between passing water and not passing any

water. For example, if there are three agents, then coalition {1, 3} may be indifferent

between passing some water from 1 to 3 (and losing some water to agent 2) and

not passing any water (and agents 1 and 3, respectively, consume e1 and e3). In

the rare case of indifference at the outcome xP(N), we assume that any coalition is

passing water instead of not passing any water. Given P , this assumption ensures that

the value of any coalition S ∈ P is maximal among all outcomes of the backwards

induction algorithm. Because we do not know which subgame perfect equilibrium

will arise from P , it is sensible to require that the core lower bounds are met for all
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outcomes of the backward induction algorithm. By the above fact, this is equivalent

to the core lower bounds for the outcome of the backwards induction algorithm where

in the case of indifference under xP(N) water is passed.

Of course, it is a Nash equilibrium where any connected component consumes

any amount of passed water. At the outcome of this equilibrium no water is passed

between any two connected components belonging to the same coalition. However,

this equilibrium is not credible because by the structure of the river water is passed

only downstream and the connected components, which are located more downstream,

will not consume more than their satiation points. Therefore, we need to focus on

subgame perfect Nash equilibrium.

The two extremes of behavior of the agents outside of S are the following: either

they do not cooperate at all or they all cooperate.

Non-Cooperative Core Lower Bounds: For all coalitions S, let v(S) = v(S, {S}∪
{{i}|i ∈ N\S}).

Cooperative Core Lower Bounds: For all coalitions S, let v(S) = v(S, {S, N\S}).

We say that cooperation exerts no externality on a coalition S if for any partition

P of N such that S ∈ P ,

v(S) = v(S,P).

Then the value of a coalition is independent of the interactions of the other agents. We

say that cooperation exerts a positive externality on a coalition S if for any partition

P of N such that S ∈ P ,

v(S) ≤ v(S,P).

Then cooperation does not decrease the value of a coalition compared to the value

under non-cooperative behavior.
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The following proposition contains some basic relations among the core lower

bounds of a coalition for different behaviors of its complement. First, cooperation

exerts a positive externality on a coalition. Therefore, the non-cooperative core lower

bound of a coalition is the smallest core lower bound of all possible behaviors of

its complement and non-cooperative behavior of the other agents is the pessimistic

expectation for a coalition. This also implies that the non-cooperative core lower

bounds are below the cooperative core lower bounds and the cooperative core lower

bounds are more demanding than the non-cooperative lower bounds. Finally, the

following super-additivity property is true: for any partition of N , if two coalitions

belonging to the partition merge, then their joint payoff does not fall compared to

the payoff when they are separate.

Proposition 1 Let P be partition of N and S ∈ P.

(i) v(S) ≤ v(S,P).

(ii) v(S) ≤ v(S).

(iii) For any two disjoint coalitions S, T ∈ P, v(S,P)+v(T,P) ≤ v(S∪T,P ′) where

P ′ = (P\{S, T}) ∪ {S ∪ T}.

Proof. Note that (ii) follows from (i). We show (i): let P = {S} ∪ {{i}|i ∈ N\S}
and C(S) = {S1, . . . , Sk} where S1 < · · · < Sk. Because ei ≤ x̂i for all i ∈ N

and under P behavior is non-cooperative, we have Emin S1(x
P(N)) = 0 and for all

l ∈ {1, . . . , k − 1}, Emax Sl+1(x
P(N)) ≥ Emin Sl+1

(xP(N)), i.e. the agents between

any two connected components Sl and Sl+1 consume their peak or the amount of

water which is entering the river at their location. Consider a subgame starting at Sl

(l ∈ {1, . . . , k− 1}) and let Sl pass the amount E ′ > 0 of unused water to max Sl +1.

If this is profitable for S in the subgame starting at Sl under P , then all agents

between Sl and Sl+1 consume their peak. Under P , in the subgame starting at Sl,

each agent between Sl and Sl+1 either consumes his peak or less. Therefore, for any
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E ′ > 0 which is profitable for S under P , under P at least the same amount of unused

water is passed to min Sl+1 as under P . Hence, given such an E ′, the set of possible

water consumptions which Sl+1 can choose under P is a superset set of the possible

water consumptions which Sl+1 can choose under P . Since the this argument holds

for S1 and xP(N) is a Nash equilibrium, we must have v(S,P) ≥ v(S,P).

We show (iii): xP ′
(N) is the outcome of the backwards induction algorithm under

P ′ and therefore, xP ′
(N) is a Nash equilibrium of the dynamic game under prefect

information given by the river. If coalition S ∪ T plays alternatively xP
S∪T (N), then

the outcome of the backwards induction algorithm is xP(N). Therefore,

v(S ∪ T,P ′) =
∑

i∈S∪T

bi(x
P ′
i (N)) ≥

∑

i∈S∪T

bi(x
P
i (N)) = v(S,P) + v(T,P),

the desired conclusion. �

Remark 2 By (iii) of Proposition 1, starting from any partition P of N , the only

fully efficient allocation is that the grand coalition N forms and chooses the efficient

consumption plan. If we suppose that the agents choose an efficient allocation, then

the grand coalition must form. We distribute the N -maximal welfare
∑

i∈N bi(x
∗
i (N))

among the agents under the constraints v(S,P) where S ∈ P .

It is obvious from our definition that the value of a coalition consisting of an agent

and his predecessors is independent of how the other agents behave, i.e. for all i ∈ N

and all Pi ∈ P we have

v(Pi) = v(Pi,P) = v(Pi).

Thus, cooperation exerts no externality on the coalition Pi. Even though the value of

a coalition may depend on how the other agents behave, the structure of the river in-

duces a unique natural incremental distribution, namely the downstream incremental

distribution z∗: for all i ∈ N , let

z∗i = v(Pi) − v(P 0i).
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4 Non-Cooperative Core Lower Bounds and Aspi-

ration Upper Bounds

The aspiration upper bounds are implied by the UTI doctrine. Contrary to the core

lower bounds, these upper bounds do not depend on how the agents outside of a

coalition behave. The aspiration welfare of a coalition S is the highest welfare it

could achieve in the absence of N\S. It is obtained by choosing a consumption plan

y(S) ∈ R
S
+ maximizing

∑
i∈S bi(yi(S)) subject to the constraints

∑

i∈Pj∩S

yi(S) ≤
∑

i∈Pj

ei for all j ∈ S.

Since all benefit functions are strictly concave, the maximization problem has a unique

solution, which we denote by y∗(S). Then the aspiration welfare of S is

w(S) =
∑

i∈S

bi(y
∗
i (S)).

A distribution z satisfies the aspiration upper bounds if
∑

i∈S zi ≤ w(S) for all coali-

tions S. In the Lockean tradition, coalition S has a legitimate right to the welfare level

w(S) but not to more. Unfortunately the aspirations of two complementary coalitions

S and N\S are incompatible: w(S) + w(N\S) > v(N). It is even the case that for

any partition P of N such that S ∈ P we have
∑

T∈P w(T ) > v(N), i.e. the aspi-

ration of S is never compatible with the aspiration(s) of N\S independently of how

N\S cooperates. Therefore, if
∑

i∈S zi > w(S), then
∑

i∈N\S zi <
∑

T∈P:T �=S w(T ).

This means that S benefits from the existence of N\S while N\S suffers from the

existence of S. If none of the agents bears any responsibility for the existence of the

others, no coalition is ought to enjoy more than its aspiration upper bound.

Remark 3 Both the ATS and the UTI doctrines are also inspired by Moulin’s (1990)

group externalities depending on how we define property rights over water. In the

absence of the other agents and the water entering the river at their locations, any

agent i enjoys v(i). Since
∑

i∈N v(i) ≤ v(N), then our problem has positive group
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externalities and any agent i should receive at least v(i). This inspires the ATS

doctrine for individuals and groups. In the absence of the other agents and the

presence of the water entering the river at their locations, any agent enjoys i enjoys

w(i). Since
∑

i∈N w(i) ≥ v(N), then our problem has negative group externalities

and any agent i should receive at most w(i). This inspires the UTI doctrine for

individuals and groups.

Remark 4 There is an obvious relation between the non-cooperative core lower

bounds and the aspiration upper bounds: v(Pi) = w(Pi) for all i ∈ N . Now the

following is easy to show: if a distribution satisfies the non-cooperative lower bounds

and the aspiration upper bounds, then it must be the downstream incremental dis-

tribution.8

The main challenge of our paper is to find distributions which satisfy core lower

bounds. These bounds depend on the behavior of the agents outside of a coalition.

In the case of non-cooperative behavior, there are distributions satisfying the core

lower bounds. It turns out that in the presence of optimal water consumptions and

non-cooperative behavior, the downstream incremental distribution is the only com-

promise between the ATS and the UTI doctrines.

Theorem 1 The downstream incremental distribution is the unique distribution sat-

isfying the non-cooperative core lower bounds and the aspiration upper bounds.

Proof. By Remark 4, if a distribution z satisfies the non-cooperative core lower

bounds and the aspiration upper bounds, then we must have z = z∗.

Next we show that z∗ satisfies the non-cooperative lower bounds. Let S be con-

nected and P = {S} ∪ {{i}|i ∈ N\S}. Because behavior is non-cooperative, we have

8The proof is identical to Ambec and Sprumont (2002): Let z be a distribution satisfying the

non-cooperative lower bounds and the aspiration upper bounds. Since v(1) = w(1), we have z1 =

v(1) = z∗1 . Let zi = z∗i for all i < j ≤ n. Since v(Pj) = w(Pj), we have
∑

i∈Pj zi = v(Pj). Thus,

by
∑

i∈P 0j zi =
∑

i∈P 0j z∗i = v(P 0j), we obtain zj = v(Pj)−∑
i∈P 0j zi = v(Pj)− v(P 0j) = z∗j , the

desired conclusion.
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for all i ∈ P 0 min S, xP
i (N) = ei. Thus, Emin S(xP(N)) = 0. Since S is connected,

{S, P 0 min S} is a partition of P max S. Hence, by Emin S(xP(N)) = 0,

v(P max S) ≥ v(S) + v(P 0 min S).

Thus, for any connected S,

∑

i∈S

z∗i = v(P max S) − v(P 0 min S) ≥ v(S). (5)

Before we proceed, we note the following: for all i ∈ N we have v(P 0i)+bi(x̂i) ≥ v(Pi).

Thus, for all i ∈ N ,

bi(x̂i) ≥ v(Pi) − v(P 0i) = z∗i . (6)

Let S be an arbitrary coalition and let P = {S} ∪ {{i}|i ∈ N\S}. Since ei ≤ x̂i

for all i ∈ N , we have
∑

i∈P 0 min S(xP
i (N) − ei) = 0. Hence, Emin S(xP(N)) = 0. Let

C(S) = {S1, . . . , SL} where S1 < S2 < · · · < SL. Choose the minimal l ∈ {1, . . . , L}
such that Emax Sl+1(x

P(N)) = 0 and set T1 = ∪l
t=1St. Then, by ei ≤ x̂i for all

i ∈ N , again we have Emin Sl+1
(xP(N)) = 0. Now choose the l′ > l minimal such that

Emax Sl′+1(x
P(N)) = 0 and set T2 = ∪l′

t=l+1St. Continuing this way we find a partition

T = {T1, T2, . . . , TM} of S. By construction, T1 < T2 < · · · < TM and

v(S) =
∑

T∈T
v(T ). (7)

For each T ∈ T , let T̄ = P max T\P 0 min T . Then by definition of T , we have for all

i ∈ T̄\T , Ei(x
P(N)) > 0 and therefore, xP

i (N) = x̂i for all i ∈ T̄\T . Now we have

∑

T∈T

∑

i∈T̄

z∗i ≥
∑

T∈T
v(T̄ )

≥
∑

T∈T
(v(T ) +

∑

i∈T̄\T
bi(x̂i))

= v(S) +
∑

T∈T

∑

i∈T̄\T
bi(x̂i),

where the first equality follows from (5) and the fact that each T̄ is connected, the

second inequality follows from the fact that xP
i (N) = x̂i for all i ∈ T̄\T and the
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consumption plan (xP
i (N))i∈T̄ is feasible for T̄ , and the equality follows from (7).

Therefore, we have

∑

i∈S

z∗i =
∑

T∈T

∑

i∈T

z∗i ≥ v(S) +
∑

T∈T

∑

i∈T̄\T
(bi(x̂i) − z∗i ).

From (6) we know that bi(x̂i) − z∗i ≥ 0 for all i ∈ N . Hence,
∑

i∈S z∗i ≥ v(S) and z∗

satisfies the non-cooperative core lower bounds.

The proof that z∗ satisfies the aspiration upper bounds uses the following lemma

which we prove in the Appendix.

Lemma 1 If S ⊆ T ⊆ N and T < i, then w(S ∪ i) − w(S) ≥ w(T ∪ i) − w(T ).

Then for any coalition S we obtain

∑

i∈S

z∗i =
∑

i∈S

(w(Pi) − w(P 0i)) ≤
∑

i∈S

(w(Pi ∩ S) − w(P 0i ∩ S)) = w(S),

where the inequality follows from Lemma 1 and the last equality follows from the fact

that all terms cancel out except w(P max S ∩ S) = w(S) and −w(P 0 min S ∩ S) =

w(∅) = 0. �

Remark 5 It can be easily checked that Theorem 1 and its proof remain true if

agents are allowed to have benefit functions which either have a satiation point or

are strictly increasing (as in Ambec and Sprumont (2002)). Therefore, Theorem 1

generalizes the theorem of Ambec and Sprumont (2002). In the presence of satiation

points the main difference and (non-trivial) difficulty is to show that the downstream

incremental distribution satisfies the non-cooperative core lower bounds. In Ambec

and Sprumont (2002) this was straightforward because with strictly increasing benefit

functions it is never optimal for a coalition to pass water from one component to

another and cooperation exerts no externality on any coalition. Therefore, their game

is consecutive (Greenberg and Weber, 1986) meaning that the value of a coalition

equals the sum of the values of its connected components. Then for showing that a

distribution satisfies the core lower bounds, it is sufficient to show that the distribution

satisfies the core lower bounds for connected coalitions.
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5 (Cooperative) Core Lower Bounds

When the agents’ behavior is non-cooperative, the downstream incremental distribu-

tion satisfies the core lower bounds. We investigate whether there are distributions

satisfying the core lower bounds when agents cooperate, i.e. once a coalition S forms

the complement N\S can also from coalitions. First, we focus on the other extreme

of non-cooperative behavior, namely on cooperative behavior.

Contrary to non-cooperative behavior, the downstream incremental distribution

may violate the cooperative core lower bounds when there are at least three agents.

Note that for two agents we have v = v and the non-cooperative core lower bounds

and the cooperative core lower bounds are identical.

Example 1 (the downstream incremental distribution may violate the cooperative

core lower bounds) Let N = {1, 2, 3}, e1 = e2 = 5
6
, e3 = 0, and b1 = b2 and b3 = 100b1

be such that x̂1 = x̂2 = x̂3 = 1. Then x
{{1,2},{3}}
1 (N) = x

{{1,2},{3}}
2 (N) = 5

6
and

z∗2 = v({1, 2}) − v(1) = b2(
5
6
). Consider {2} and {{2}, {1, 3}}. Since b3 = 100b1, it is

obvious that b1(
5
6
) + b3(0) < b1(0) + b3(

4
6
). Therefore, coalition {1, 3} chooses to pass

water from 1 to 3 and we have both E2(x
{{2},{1,3}}(N)) > 0 and 5

6
< x

{{2},{1,3}}
2 (N) ≤ 1.

Hence, v(2) = b2(x
{{2},{1,3}}
2 (N)) > b2(

5
6
) = z∗2 and the downstream incremental

distribution z∗ violates the cooperative core lower bounds.

It is easy to extend Example 1 for n > 3. Now one may wonder whether other

distributions satisfy the cooperative core lower bounds. For three agents, the answer

is positive and the cooperative core is non-empty.

Proposition 2 For N = {1, 2, 3} there exists always a distribution satisfying the

cooperative core lower bounds.

Proof. Let n = 3. If v̄(2) ≤ v(1, 2) − v(2) then, since v(Pi) = v̄(Pi) and

v(Fi) = v̄(Fi) for every i ∈ N and v(1, 3) = v̄(1, 3), then the downstream incre-

mental distribution z∗ satisfies the cooperative core lower bounds.
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Suppose now that v̄(2) ≥ v(1, 2)− v(1). We show that the distribution z1 = v̄(1),

z2 = v̄(2), z3 = v̄(1, 2, 3) − v̄(1) − v̄(2) satisfies the cooperative core lower bounds.

First, note that z3 = v̄(3)+v̄(1, 2, 3)−v̄(1)−v̄(2)−v̄(3) and v̄(1)+v̄(3) = v(1)+v(3) ≤
v(1, 3) = v̄(1, 3). These two relationships imply z3 ≥ v̄(3) + v̄(1, 2, 3) − v̄(1, 3) − v̄(2)

which leads to z3 ≥ v̄(3) because v̄(1, 2, 3) ≥ v̄(1, 3) + v̄(2). Second, substituting

our initial assumption v̄(2) ≥ v(1, 2) − v(1) into z1 + z2 = v̄(1) + v̄(2) shows that

z1 + z2 ≥ v(1, 2) = v̄(1, 2). Third, z1 + z3 = v̄(1, 2, 3) − v̄(2) ≥ v̄(1, 3) because

v̄(1, 2, 3) ≥ v̄(1, 3) + v̄(2). Similarly z2 + z3 = v̄(1, 2, 3) − v̄(1) ≥ v̄(2, 3) because

v̄(1, 2, 3) ≥ v̄(2, 3) + v̄(1). The other cooperative core lower bounds are obviously

satisfied. �

Unfortunately Proposition 2 is true only for three agents. When the downstream

incremental distribution violates the cooperative core lower bounds, for more than

three agents there may not exist another (alternative) distribution satisfying the

cooperative core lower bounds. Therefore, similarly as in Carraro and Siniscalco

(1993) the cooperative core may be empty for more than three agents.

Theorem 2 When there are more than three agents all distributions may violate the

cooperative core lower bounds.

The following example establishes Theorem 2.

Example 2 (The cooperative core may be empty) Let N = {1, 2, 3, 4} and the benefit

functions b be such that b1(x) = 50x − x2

2
for all x ∈ [20, 100], b2(x) = b3(x) =

100x − 10x2 for all x ∈ [3, 10] and b4(x) = 2b1(x). The river inflows are e1 = 33,

e2 = e3 = 4, e4 = 37.

We show that v̄(2) = b2(x̂2), v̄(3) = b3(x̂3), and v̄(1, 2, 3, 4) < v(1) + v̄(2) +

v̄(3) + v(4). The last condition implies that no distribution satisfies each agent i’s

cooperative core lower bound v̄(i) (note that v(1) = v̄(1) and v(4) = v̄(4)).

First, the optimal consumption plan x∗(N) solves the maximization program de-

fined by v̄(1, 2, 3, 4). Because b4 = 2b1, x∗(N) equalizes agents’ marginal benefits, i.e.,
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50−x∗
1(N) = 100−20x∗

2(N) = 100−20x∗
3(N) = 100−2x∗

4(N), and satisfies the global

resource constraint x∗
1(N) + x∗

2(N) + x∗
3(N) + x∗

4(N) = e1 + e2 + e3 + e4 = 78. The

solution is (30, 4, 4, 40). Therefore v̄(1, 2, 3, 4) = b1(30)+b2(4)+b3(4)+b4(40) = 3930.

Second, we show that coalition {1, 3, 4} chooses to pass three units of water from

1 to {3, 4}. Therefore, 2 consumes x̂2 = 5 units of water and v̄(2) = b2(x̂2). Doing so,

coalition {1, 3, 4} loses x̂2 − e2 = 1 unit of water (which is consumed by 2) and 1, 3,

and 4, respectively, can consume 30, 4, and 39 units of water. The welfare achieved is

b1(30)+b3(4)+b4(39) = 3690. If no water is passed from 1 to {3, 4}, then 1 consumes

e1 = 33 and 3 and 4 share optimally 41 units of water by consuming respectively 41
11

and 410
11

. The welfare is then b1(33) + b3(
41
11

) + b4(
410
11

) ≈ 3677.32 < 3690.

Third, we show that the coalition {1, 2, 4} chooses to pass three units of water

from {1, 2} to 4. Therefore, 3 consumes x̂3 = 5 units of water and v̄(3) = b3(x̂3).

Doing so, coalition {1, 2, 4} loses x̂3 − e3 = 1 unit of water (which is consumed by 3)

and 1 and 2, respectively, can consume 30 and 4 units whereas 4 consumes e4+2 = 39

units. The welfare achieved is b1(30) + b2(4) + b4(39) = 3690. If no water is passed

from {1, 2} to 4, then 1 and 2 share optimally e1+e2 = 37 units of water by consuming

respectively (approximatively) 32.9 and 4.1 and 4 consumes e4 = 37. The welfare is

then b1(32.9) + b3(4.1) + b4(37) ≈ 3676.7 < 3690.

Finally, v(1) + v̄(2) + v̄(3) + v(4) = b1(e1) + b2(x̂2) + b3(x̂3) + b4(e4) = b1(33) +

b2(5) + b3(5) + b4(37) = 3936.5 > 3930 = v̄(1, 2, 3, 4). Hence, all distributions violate

the cooperative core lower bounds.

Given Theorem 2, next we investigate when there exist distributions satisfying

the core lower bounds. When the expectations of any coalition are pessimistic, the

downstream incremental distribution satisfies the core lower bounds. When the ex-

pectations of any coalition are optimistic, there may not be any distribution satis-

fying the core lower bounds. This is even true if blocking is restricted to connected

coalitions (see Example 2). Similarly to Demange (2004) allowing blocking only for

connected coalitions is natural for a river because cooperation is easier for connected
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coalitions. By Proposition 1, all core lower bounds are greater than or equal to the

non-cooperative core lower bounds. Hence, by Theorem 1, if a distribution is a com-

promise between the UTI doctrine and the ATS doctrine for all connected coalitions

under optimistic expectations, then it must coincide with the downstream incremental

distribution.

Theorem 3 The following are equivalent:

(i) The downstream incremental distribution satisfies for any connected coalition

all core lower bounds, i.e.
∑

i∈S z∗i ≥ v(S,P) for all connected coalitions S and

all partitions P of N such that S ∈ P.

(ii) Cooperation exerts no externality on the value of any agent, i.e. v(i) = v(i,P)

for all i ∈ N and all partitions P of N such that {i} ∈ P.

Proof. (i)⇒(ii): Let z∗ satisfy all core lower bounds for all connected coalitions. Let

i ∈ N and P be a partition of N such that {i} ∈ P. Since {i} is connected, we have

v(Pi) − v(P 0i) = z∗i ≥ v(i,P). Hence, by v(i,P) = bi(x
P
i (N)),

v(Pi) ≥ v(P 0i) + bi(x
P
i (N)). (8)

On the other hand, by
∑

j∈P 0i x
{P 0i,N\P 0i}
j (N) =

∑
j∈P 0i ej ≥ ∑

j∈P 0i x
{Pi,N\Pi}
j (N),

x
{Pi,N\Pi}
P 0i (N) is a consumption plan for P 0i. Therefore, v(P 0i) ≥ ∑

j∈P 0i bj(x
{Pi,N\Pi}
j (N))

and

v(P 0i) + bi(x
{Pi,N\Pi}
i (N)) ≥ v(Pi). (9)

Hence, from (8) and (9) we obtain bi(x
{Pi,N\Pi}
i (N)) ≥ bi(x

P
i (N)). Since agent i’s

consumption is always smaller than or equal to x̂i and bi is strictly increasing between

0 and x̂i, the previous inequality is equivalent to

x
{Pi,N\Pi}
i (N) ≥ xP

i (N) (10)

By {i} ∈ P , we have xP
i (N) ∈ {ei, x̂i}. If xP

i (N) = ei, then v(i,P) = bi(ei) = v(i), the

desired conclusion. If xP
i (N) = ei, then xP

i (N) = x̂i. Hence, by (10), x
{Pi,N\Pi}
i (N) =
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x̂i, and by x̂i ≥ ei, x̂i > ei. But then, by x
{Pi,N\Pi}
i (N) = x̂i > ei, we have

∑

j∈P 0i

x
{Pi,N\Pi}
j (N) <

∑

j∈P 0i

ej.

Therefore,
∑

j∈P 0i

bj(x
{Pi,N\Pi}
j (N)) < v(P 0i). (11)

Hence,

v(Pi) =
∑

j∈P 0i

bj(x
{Pi,N\Pi}
j (N)) + bi(x

{Pi,N\Pi}
i (N)) < v(P 0i) + bi(x̂i),

where the inequality follows from (11) and x
{Pi,N\Pi}
i (N) = x̂i. Now, by xP

i (N) = x̂i,

this inequality contradicts (8). Thus, we have to have xP
i (N) = ei and v(i,P) = v(i)

for all i ∈ N and all P such that {i} ∈ P.

(ii)⇒(i): Let S be a connected coalition and P be a partition such that S ∈ P .

We show v(S) = v(S,P). Since S is connected, we have either v(S) = v(S,P) or

v(S) < v(S,P) =
∑

i∈S bi(x̂i). Suppose that

v(S) < v(S,P) =
∑

i∈S

bi(x̂i). (12)

Then there exists i ∈ S such that ei < x̂i. Let P ′ = (P\S) ∪ {{j}|j ∈ S}. By (12),

xP
j (N) = x̂j for all j ∈ S. Then xP(N) is also the outcome of the backwards induction

algorithm when agents cooperate according to P ′. Hence, xP ′
j (N) = x̂j for all j ∈ S

and v(i,P ′) = bi(x̂i). Since ei < x̂i and v(i) = bi(ei), we obtain v(i) < v(i,P ′), which

contradicts (ii). Hence, (12) was wrong and we have v(S) = v(S,P).

By Theorem 1, z∗ satisfies the non-cooperative core lower bounds. Hence, by

v(S) = v(S,P) for all connected coalitions S and all partitions P such that S ∈ P,

z∗ satisfies for any connected coalition all core lower bounds, the desired conclusion.�

By Theorem 3, the downstream incremental distribution satisfies all core lower

bounds for all connected coalitions if and only if the the individual rationality con-

straints are identical under all behaviors of the other agents. Condition (ii) of The-

orem 3 is trivially satisfied in Ambec and Sprumont (2002) because in their paper
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no coalition is passing water from one of its connected components to another one

independently of the behavior of the other agents.

Remark 6 The equivalence in Theorem 3 does not remain true under cooperative

behavior. Below we provide an example showing that v(i) = v(i) for all i ∈ N but

the downstream incremental distribution violates a cooperative core lower bound for

a connected coalition.

By Proposition 1, cooperation exerts a positive externality on a coalition (com-

pared to non-cooperative behavior). Then one may wonder whether starting from any

partition “more” cooperation of the other agents always exerts a positive externality

on the value of a coalition. Here “more” cooperation means that from a partition we

obtain a coarser partition by merging some coalitions. If this were true, then the co-

operative core lower bound of a coalition is maximal among all core lower bounds for

all behaviors of the other agents. The following example shows that merging of some

coalitions may exhibit a negative externality on the value of a coalition (compared to

the value of the coalition before the merger).9

Example 3 (For a coalition the cooperative core lower bound may not be maximal

among all core lower bounds) Let N = {1, 2, 3, 4} and the benefit functions b be such

that b1(x) = 50x − x2

2
for all x ∈ [20, 100], b2(x) = b3(x) = 100x − 10x2 for all

x ∈ [3, 10] and b4(x) = 2b1(x). The river inflows are e1 = 33, e2 = 4, e3 = x̂3 = 5,

e4 = 35.

We show the following: v(i) = v(i) for all i ∈ N and v(2) < v(2, {{1, 4}, {2}, {3}}) =

b2(x̂2). Therefore, if coalitions {1, 4} and {3} merge, then {2} obtains strictly less

than v(2, {{1, 4}, {2}, {3}}). The welfare achieved by a coalition might decrease with

a coarser partition of its complement.

First, we show that {1, 4} passes some water from 1 to 4 and 2 consumes his

peak x̂2 under the partition {{1, 4}, {2}, {3}}, i.e. v(2, {{1, 4}, {2}, {3}}) = b2(x̂2).

9This is in contrast to industrial environments where collusive agreements or cartes reduce market

competition or R&D agreements with spillovers.
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Without passing water, the welfare achieved by {1, 4} is b1(e1) + b4(e4) = b1(33) +

b4(35) = 6761
2

= 3380.5. By passing some water, the coalition looses 1 unit of water

(consumed by 2 because x̂2 − e2 = 1), and agents 1 and 4 share optimally 33+35-

1=67. They equalize marginal benefits 50 − x1 = 100 − 2x4 and satisfy the resource

constraint x1 + x4 = 67. Thus, 1 and 4, respectively, consume 28 and 39. Their

welfare is b1(28) + b4(39) = 3387 > 3380.5.

Second, we show that if 3 joins the coalition {1, 4}, then coalition {1, 3, 4} chooses

not to pass any water from 1 to {3, 4}. Doing so 3 and 4 share optimally e3 + e4

and they consume respectively 40
11

and 400
11

. Then the welfare achieved by {1, 3, 4} is

b1(33) + b3(
40
11

) + b4(
400
11

) = 80321
22

> 3650. If some water is passed from 1 to {3, 4},
then e1 + e3 + e4 − 1 = 72 units of water are shared optimally between the members

of {1, 3, 4}. Agents 1, 3 and 4, respectively, consume 890
31

, 122
31

and 1220
31

. The welfare is

then b1(
890
31

) + b3(
122
31

) + b4(
1220
31

) = 113110
31

< 3649. Therefore, {1, 3, 4} chooses not to

pass any water from 1 to {3, 4} and v(2) = b2(e2) = v(2).

Since e3 = x̂3, we have v(i) = v(i) for all i ∈ N . Furthermore, by e2 < x̂2,

v(2) < v(2, {{1, 4}, {2}, {3}}).
Finally, we show that the downstream incremental distribution violates the coop-

erative core lower bounds although we have v(i) = v(i) for all i ∈ N . Since e2 < x̂2

and e3 = x̂3, we obtain

v(2, 3) = v(2, {{1, 4}, {2}, {3}}) + v(3, {{1, 4}, {2}, {3}}) = b2(x̂2) + b3(x̂3) > v(2, 3).

Hence, by Theorem 3, z∗ violates the cooperative core lower bounds.

Remark 7 The analogue of the downstream incremental distribution is the upstream

incremental distribution u∗ defined by u∗
i = v(Fi) − v(F 0i) (here again it does not

matter how the agents in P 0i behave). One may wonder why it is the downstream

incremental distribution which is the most important distribution for our problems

(and why not others, for example u∗ which is the distribution corresponding to the

“hierarchical outcome” considered by Demange (2004)). One possible explanation
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is the characterization (1)-(4) of optimal consumption plans. Here, the marginal

benefits at this plan are weakly decreasing downstream meaning that agents more

downstream are closer to their optimal consumption. Of course, the same is true for

all coalitions. Therefore, distributions which satisfy core lower bounds must put more

“importance” on agents who are more downstream.
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APPENDIX.

Lemma 1 If S ⊆ T ⊆ N and T < i, then w(S ∪ i) − w(S) ≥ w(T ∪ i) − w(T ).

Proof. The proof follows Ambec and Sprumont (2002). As a first step in the proof

of this lemma, let us show that if ∅ = S ⊂ T ⊂ N, then y∗(S) ≥ y∗
S(T ). Clearly, it

suffices to establish that y∗(S) ≥ y∗
S(S ∪ t) whenever ∅ = S = N and t ∈ N\S. Write

y∗(S) = x and y∗
S(S ∪ t) = y. All agents under consideration in the argument belong

to S. By definition of x and y,
∑

i∈S(yi − xi) ≤ 0. Let i1 ≤ ... ≤ iL be those i such

that xi = yi (if none exists, there is nothing to prove). We claim that yiL − xiL < 0.

Suppose, by contradiction, that the opposite (necessarily strict) inequality is true.

Let j be the largest predecessor of iL such that yj −xj < 0 (which necessarily exists).

Moreover, yj < x̂j since xj ≤ x̂j. Define yε
iL

= yiL −ε, yε
j = yj +ε, yε

i = yi for i = iL, j.

Since b′j(yj) > b′j(xj) ≥ b′iL(xiL) > b′iL(yiL), choosing ε > 0 small enough (in particular

such that yj + ε < x̂j ) ensures that
∑

i∈S(bi(y
ε
i )− bi(yi)) > 0 while yε meets the same

constraints as y, a contradiction. Because yiL − xiL < 0, it now follows that yil − xil

< 0 successively for l = L − 1, ..., 1.

Moving to the second step, let S ⊂ T ⊂ N and T < i. Define x′
i = y∗

i (T ∪ i) and

x′
j = y∗

j (T ∪ i) + y∗
j (S)− y∗

j (T ) for j ∈ S. By our first step, y∗
j (T ∪ i) ≤ y∗

j (T ) ≤ y∗
j (S)

for all j ∈ S. Therefore 0 ≤ y∗
j (T ∪ i) ≤ x′

j ≤ y∗
j (S) for all j ∈ S and the consumption

plan x′ for S ∪ i satisfies the same constraints as y∗(S ∪ i), namely,
∑

k∈Pj∩(S∪i) x′
k ≤

∑
k∈Pj ek for all j ∈ S ∪ i. Hence, w(S ∪ i) ≥ ∑

j∈S∪i bj(x
′
j) and

w(S ∪ i) − w(S) ≥ bi(x
′
i) +

∑

j∈S

[bj(x
′
j) − bj(y

∗
j (S))]. (13)

On the other hand, since y∗
j (T ∪ i) ≤ y∗

j (T ) for all j ∈ T\S,

w(T ∪ i) − w(T ) ≤ bi(x
′
i) +

∑

j∈S

[bj(y
∗
j (T ∪ i)) − bj(y

∗
j (T ))]. (14)

Since x′
j − y∗

j (S) = y∗
j (T ∪ i) − y∗

j (T ) and y∗
j (T ∪ i) ≤ x′

j for all j ∈ S, it follows

from (13), (14), and the concavity of the benefit functions on its increasing part that

w(T ∪ i) − w(T ) ≤ w(S ∪ i) − w(S). This completes the proof of the lemma. �
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