


Département de sciences économiques 
Université de Montréal 
Faculté des arts et des sciences 
C.P. 6128, succursale Centre-Ville 
Montréal (Québec) H3C 3J7 
Canada 
http://www.sceco.umontreal.ca  
SCECO-information@UMontreal.CA 
Téléphone : (514) 343-6539 
Télécopieur : (514) 343-7221 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ce cahier a également été publié par le Centre interuniversitaire de recherche en 
économie quantitative (CIREQ) sous le numéro 09-2007. 
 
This working paper was also published by the Center for Interuniversity Research in 
Quantitative Economics (CIREQ), under number 09-2007. 
 
 
 
ISSN 0709-9231 



Oligarchies in Spatial Environments

Lars Ehlers∗ and Ton Storcken†

September 2007

Abstract

In spatial environments we consider social welfare functions satisfying Ar-

row’s requirements, i.e. weak Pareto and independence of irrelevant alterna-

tives. Individual preferences measure distances between alternatives according

to the Lp-norm (for a fixed p ≥ 1). When the policy space is multi-dimensional

and the set of alternatives has a non-empty interior and it is compact and con-

vex, any quasi-transitive welfare function must be oligarchic. As a corollary we

obtain that for transitive welfare functions weak Pareto, independence of irrele-

vant alternatives, and non-dictatorship are inconsistent if the set of alternatives

has a non-empty interior and it is compact and convex.

Journal of Economic Literature Classification Numbers: D70, D71.

1 Introduction

A social welfare function is a procedure for aggregating profiles of individual prefer-

ences into social orderings. Arrow’s theorem shows that it is impossible for a social

welfare function to satisfy weak Pareto (if all individuals strictly prefer one alternative
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to another, then so does society), independence of irrelevant alternatives (the social

ranking of two alternatives only depends on the individual rankings of these alterna-

tives), and non-dictatorship when the preference domain is unrestricted. When the

set of alternatives is structured, the assumption of unrestricted domain might be un-

reasonable. One important exception of this kind are spatial environments. In spatial

environments, alternatives are points in a multi-dimensional space of issue positions

and individual preferences are continuous, quasi-concave, and have bliss points.1

There is one well-known spatial environment in which Arrow’s requirements are

consistent. If the number of voters is odd and the policy space is one-dimensional,

then simple majority voting is transitive and satisfies weak Pareto, independence of

irrelevant alternatives, and anonymity (Black ,1948; Arrow, 1951, 1963). Simple ma-

jority voting is an example of an Arrovian welfare function belonging to the following

class: if the number of voters is n, fix n− 1 preferences of additional constant voters,

and apply to each profile of individual preferences majority voting over this profile

and the n− 1 fixed voters.2,3

If the policy space is multi-dimensional and unbounded, and preferences are Eu-

clidean, then Arrow’s requirements are inconsistent (Border, 1984). Other proofs

show that the domain of Euclidean preferences is “saturating” and apply a result

due to Kalai, Muller, and Satterthwaite (1979) to deduce Arrow’s impossibility (Le

Breton and Weymark, 1996, 2000, 2002; Campbell, 19934). However, the proofs of

these results rely importantly on the unboundedness of the policy space. As far as we

1An excellent review of the literature is Le Breton and Weymark (2000).
2Ehlers and Storcken (2002) provide a characterization of all welfare functions satisfying weak

Pareto and independence of irrelevant alternatives.
3For finite sets of alternatives Sethuraman, Teo, and Vohra (2003,2006) introduce an integer linear

programming formulation of anonymous and transitive Arrovian social welfare functions (ruling out

social indifferences). They show that any such welfare function is monotonic if and only if it is

simple majority voting with n + 1 fixed voters for any domain with no Condorcet triples and which

contains an ordering and its inversion.
4Campbell (1993) drops weak Pareto and imposes instead continuity of social preference.
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know, Arrow’s theorem has not been established in spatial environments when the

set of alternatives is compact and convex. It is natural to assume that a government

faces budget constraints and therefore the set of policy alternatives becomes bounded.

We derive Arrow’s theorem in such spatial environments. If individual preferences

are measure distances according to a given Lp-norm and the set of alternatives has a

non-empty interior and it is compact and convex, then weak Pareto, independence of

irrelevant alternatives, and non-dictatorship are inconsistent, i.e. again decisiveness

of a coalition spreads from one pair of alternatives to all pairs of alternatives and

dictatorship results.

Instead of showing Arrow’s theorem directly, we will establish a stronger result.

Gibbard (1969) and Mas-Colell and Sonnenschein (1972) require social orderings only

to be quasi-transitive and show that for a finite set of alternatives with an unrestricted

domain any quasi-transitive welfare functions satisfying weak Pareto and indepen-

dence of irrelevant alternatives must be oligarchic. This means that there exists a

non-empty coalition S (called the oligarchy) such that an alternative a is socially

strictly preferred to another alternative b if and only if all members of the oligarchy

agree that a is strictly preferred to b. Our main result shows the following: if individ-

ual preferences measure distances according to the Lp-norm and the set of alternatives

has a non-empty interior and it is compact and convex, then any quasi-transitive wel-

fare function satisfying weak Pareto and independence of irrelevant alternatives must

be oligarchic.

The paper is organized as follows. In Section 2 we introduce our notation and the

main definitions. In Section 3 we state that weak Pareto, independence of irrelevant

alternatives, and non-dictatorship are inconsistent if the policy space is compact,

convex, and at least two-dimensional. In Section 4 we introduce oligarchic welfare

functions and give our main result: any quasi-transitive welfare function satisfying

weak Pareto and independence of irrelevant alternatives must be oligarchic. Section

5 contains the proof of our main result. Section 6 concludes.
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2 Notation and Definitions

We use the same terminology and notation as Le Breton and Weymark (2000). Let

R denote the set of real numbers and Rm denote the m-dimensional Euclidean space.

Let N ≡ {1, 2, . . . , n} denote a finite set of agents with n ≥ 2, and let A ⊆ Rm

denote a set of alternatives. Each point in Rm identifies the changes in the level of m

different policies, for example public spending on police, health care, and so on.

Let W denote the set of all complete, reflexive, and transitive relations over A. An

element of W is called a weak ordering over A. Let Q denote the set of all complete,

reflexive, and quasi-transitive relations over A. An element of Q is called a quasi

ordering over A.

Given Ri ∈ Q, the corresponding strict relation, Pi, and the indifference relation,

Ii, are defined as follows: for all a, b ∈ A, (i) aPib ⇔ ¬bRia, and (ii) aIib ⇔ aRib and

bRia. Note that if ¬aRib, then by completeness of Ri, aRib. Hence, ¬bRia is enough

to describe the strict relation Pi. Recall that Ri is transitive if for all a, b, c ∈ A,

aRib and bRic ⇒ aRic; and Ri is quasi-transitive if for all a, b, c ∈ A, ¬bRia and

¬cRib ⇒ ¬cRia.

Let R ⊆ W denote an individual’s preference domain. A (preference) profile

is a list R ≡ (Ri)i∈N ∈ RN . A (social) welfare function assigns to each profile a

quasi ordering over A. Any welfare function f is a mapping f : RN → Q such that

for all R ∈ RN , f(R) ∈ Q. We call f(R) the social ordering (that f assigns to

R). Any welfare function f is quasi-transitive because its chosen social orderings are

quasi-transitive.

We call a welfare function f transitive if it is a mapping f : RN → W such that

for all R ∈ RN , f(R) ∈ W

Note that social orderings need not belong to the individual preference domain

R. Other authors impose the restriction that any social ordering belongs to each

individual’s preference domain (for example, Peters, van der Stel, and Storcken, 1992,

and Bossert and Weymark, 1993).
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Arrow’s requirements are as follows. The first axiom says that if all agents strictly

prefer a to b, then a should also be socially strictly preferred to b.

Weak Pareto: For all R ∈ RN and all a, b ∈ A, if for all i ∈ N , aPib, then ¬bf(R)a.

Given R ∈ RN , X ⊆ A, and j ∈ N , let Rj|X denote the restriction of Rj to

X, and R|X ≡ (Ri|X)i∈N . The second axiom says that the social ordering of two

alternatives only depends on the profile of individual preferences restricted to these

two alternatives.

Independence of Irrelevant Alternatives: For all R, R̄ ∈ RN and all a, b ∈ A,

if R|{a, b} = R̄|{a, b}, then f(R)|{a, b} = f(R̄)|{a, b}.

A welfare function is Arrovian if it satisfies weak Pareto and independence of ir-

relevant alternatives. A welfare function is dictatorial if there exists some agent such

that for each profile the social strict preference relation respects the strict preference

relation of this agent.

Non-Dictatorship: There exists no i ∈ N such that for all R ∈ RN and all

a, b ∈ A, if aPib, then ¬bf(R)a.

Arrow’s Theorem shows that for transitive welfare functions, weak Pareto, inde-

pendence of irrelevant alternatives, and non-dictatorship are incompatible if the set

of alternatives is finite and the individual preference domain R contains all strict

orderings over the set of alternatives.
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3 Arrow’s Theorem for Multi-Dimensional Policy

Spaces

Throughout we consider environments where the set of alternatives is multi-dimensional

and connected with respect to the standard topology on Rm. Let A ⊆ Rm be a set

of alternatives such that the relative interior of A in Rm is non-empty. A preference

relation Ri ∈ W is Lp-single-peaked if there exists a bliss point p(Ri) ∈ A such that

for all a, b ∈ A, aRib ⇔ ‖a− p(Ri)‖p ≤ ‖b− p(Ri)‖p (here ‖ · ‖p denotes the Lp norm

in Rm for a given p > 1)5. In case p = 2 the L2-single-peaked preferences are also

called Euclidean. Let Rp denote the set of all Lp-single-peaked preferences over A.

Note that p remains fixed throughout.

For the special case of A = Rm and the Euclidean norm, Border (1984) and Le

Breton and Weymark (1996) establish Arrow’s theorem for transitive welfare func-

tions. For A = Rm
+ , Le Breton and Weymark (2000, 2002) show Arrow’s theorem

for transitive welfare functions. However, all these results rely importantly on the

unboundedness of the set of alternatives. In real life, policy makers face budget

constraints and these results do not apply.

A corollary of our main result will be the following theorem: Arrow’s requirements

are inconsistent if the set of alternatives has a non-empty and connected interior and

it is contained in the closure of its interior (i.e. its boundary has no “tails”).

Let int(A) denote the interior of A in Rm and cl(A) the closure of A in Rm.

Theorem 1 Let A ⊆ Rm be such that int(A) 6= ∅, int(A) is connected, and A ⊆

cl(int(A)). If m ≥ 2, then for transitive welfare functions weak Pareto, independence

of irrelevant alternatives, and non-dictatorship are inconsistent on the domain RN
p .

In particular, Theorem 1 yields Arrow’s theorem for compact and convex sets of

policy alternatives with non-empty interior.

5For any x ∈ Rm we have ‖x‖p = (xp
1 + xp

2 + · · ·+ xp
m)1/p
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If the interior of the set of alternatives is non-empty and not connected, then an

Arrovian social welfare function may not be dictatorial.

Example 1 Let m ≡ 2, p ≡ 2, A1 ≡ [0, 1] × [0, 1], A2 ≡ [0, 1] × [9, 10], and A ≡

A1∪A2. For all R ∈ RN
2 , let f(R)|A1 = R1|A1, f(R)|A2 = R2|A2, and for all a ∈ A1

and all b ∈ A2, f(R)|{a, b} = R1|{a, b}. Then f is a transitive Arrovian welfare

function satisfying non-dictatorship.

The conclusion of Example 1 does not remain true if the sets A1 and A2 are

connected through a line segment, for example if A = A1 ∪ A2 ∪ [(0, 0), (0, 10)]. For

this set of alternatives an Arrovian welfare function must be dictatorial.6

If the boundary of A contains tails, then again an Arrovian welfare function may

not be dictatorial.

Example 2 Let m ≡ 2, p ≡ 2, N ≡ {1, 2}, B ≡ [0, 1]× [0, 1], and L ≡ ](0, 1), (0, 2)].

Let A ≡ B ∪ L. For all R ∈ RN
2 and all a, b ∈ A, (i) if a, b ∈ L, a2 < b2, and for

some i ∈ N , aPib, then ¬bf(R)a, and (ii) otherwise, f(R)|{a, b} = R1|{a, b}. We

show that f is a transitive welfare function.

Claim: For all R ∈ RN
2 , f(R) is transitive.

Proof of Claim. If p(R1) ∈ B, then f(R) = R1. Let p(R1) ∈ L and a, b, c ∈ A.

If a, b, c ∈ B or a, b, c ∈ L, then it is easy to check that f(R)|{a, b, c} is transitive.

If a ∈ L and b, c ∈ B, then f(R)|{a, b, c} = R1|{a, b, c} and f(R)|{a, b, c} is tran-

sitive. Let a, b ∈ L and c ∈ B. Then f(R)|{a, c} = R1|{a, c} and f(R)|{b, c} =

R1|{b, c}. Obviously, if f(R)|{a, b} = R1|{a, b}, then f(R)|{a, b, c} is transitive. Let

f(R)|{a, b} 6= R1|{a, b}. Without loss of generality, suppose that a2 < b2. Thus, by

(i), ¬bf(R)a, and a2 ≤ p2(R1). Then aP1c and ¬cf(R)a. Hence, f(R)|{a, b, c} is

transitive. �
6By Theorem 2, f |A1 and f |A2 are dictatorial. Because A1 and A2 are connected through the

line segment [(0, 0), (0, 10)] it follows from Theorem 1 that the dictator of f |A1 and f |A2 is the same

and f is dictatorial.
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Now it is easy to check that f is a transitive welfare function satisfying weak

Pareto, independence of irrelevant alternatives, and non-dictatorship.

4 Oligarchies

Above any welfare function satisfied transitivity. Below social orderings are only

required to be quasi-transitive. In order to formulate our main result, we need to

introduce the notion of decisiveness and oligarchies.

Given ∅ 6= S ⊆ N and a, b ∈ A, we say that S is decisive over “a preferred to b” if

for all R ∈ RN
p we have ¬bf(R)a whenever aPib for all i ∈ S. Let D(a, b) denote the

set of all coalitions that are decisive over “a preferred to b”. We say that S blocks

“a preferred to b” if for all R ∈ RN
p we have bf(R)a whenever bPia for all i ∈ S. Let

B(a, b) denote the set of all coalitions that block “a preferred to b”.

Let f be a welfare function and S be a non-empty coalition. Then f is called

oligarchic with oligarchy S if for all a, b ∈ A such that a 6= b we have S ∈ D(a, b)

and {i} ∈ B(a, b) for all i ∈ S. In other words, for oligarchic welfare functions a is

socially strictly preferred to b if and only if all members of the oligarchy strictly prefer

a to b. Note that f is dictatorial if there exists i ∈ N such that f is oligarchic with

oligarchy {i}. It is easy to check that oligarchic welfare functions satisfy weak Pareto

and independence of irrelevant alternatives and that the chosen social orderings are

quasi-transitive.

Our main result establishes that oligarchic welfare functions are the only quasi-

transitive welfare functions satisfying weak Pareto and independence of irrelevant

alternatives if the set of alternatives has a non-empty and connected interior and it

is contained in the closure of its interior.

Theorem 2 Let A ⊆ Rm be such that int(A) 6= ∅, int(A) is connected, and A ⊆

cl(int(A)). If m ≥ 2, then oligarchic welfare functions are the only quasi-transitive

welfare functions satisfying weak Pareto and independence of irrelevant alternatives
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on the domain RN
p .

We show Theorem 2 in the next section. Theorem 1 will be an immediate conse-

quence of Theorem 2.

5 Proof of Theorem 2

Let f be a welfare function satisfying weak Pareto and independence of irrelevant

alternatives on the domain RN
p . Given X ⊆ A, let fX denote the restriction of f

to the set of alternatives X. Formally, for all R ∈ RN
p such that for all i ∈ N ,

p(Ri) ∈ X, let fX(R|X) ≡ f(R)|X. It is straightforward that fX inherits weak

Pareto and independence of irrelevant alternatives from f .

We introduce additional notation. Let a, b, c ∈ Rm be three distinct alternatives.

Let [a, b] denote the line segment between a and b, i.e. [a, b] ≡ {λa + (1 − λ)b |λ ∈

[0, 1]}. Let H(a, b) denote the surface of points with equal distance to a and b. This

surface bisects [a, b]. In the non-degenerate case, when a, b, and c are non-collinear,

the surfaces H(a, b), H(a, c), and H(b, c) determine six disjoint open subspaces, say

space(abc), space(acb), space(bac), space(bca), space(cab), and space(cba) (see Figure

1 for Euclidean preferences in R2). We named these spaces such that for all Ri ∈ Rp,

p(Ri) ∈ space(acb) ⇔ aPicPib and likewise for the other spaces. Note that the collec-

tive boundary of space(abc) and space(acb) is a subset of H(b, c). Let space(a(bc)) =

space(abc)∩ space(acb) that is the set of all points x ∈ H(b, c) such that for Ri ∈ Rp,

if p(Ri) = x, then aPibIic. Note that H(a, b) ∩H(a, c) ∩H(b, c) 6= ∅ and {a, b, c} is

a free triple in the domain Rp if H(a, b) ∩H(a, c) ∩H(b, c) ∩ int(A) 6= ∅. Then the

domain Rp contains all conceivable rankings of a, b, and c. Let d and u be two points

in Rm such that for all coordinates j ∈ {1, 2, ...,m} dj ≤ uj. Let box(d, u) = {x ∈

Rm| for all coordinates j ∈ {1, 2, ...,m}, dj ≤ xj ≤ uj} denote the hyper box between

d and u. Let cpbox(d, u) = {x ∈ Rm| for all coordinates j ∈ {1, 2, ...,m}, dj = xj or

xj = uj} denote the set of corner points of box(d, u). Now for every triple of these

9



corner points, say a, b and c, m ∈ H(a, b)∩H(a, c)∩H(b, c), where m = 1
2
d + 1

2
u the

middle of [d, u]. If box(d, u) ⊆ int(A), then any triple of its corner points is a free

triple.

Given a ∈ Rm and ε > 0, let
⊙

(a, ε) denote the open ball with center a and radius

ε, i.e.
⊙

(a, ε) ≡ {x ∈ Rm | ‖a− x‖p < ε}. Given a, b, c ∈ Rm, let plane(a, b, c) denote

the plane spanned by a, b, and c, i.e. plane(a, b, c) ≡ {a+λ(b−a)+µ(c−a) |λ, µ ∈ R}.

Let v and w be two points belonging to the boundary of
⊙

(a, ε), i.e. ‖a − v‖p = ε

and ‖a − w‖p = ε. The circular arc between v and w on
⊙

(a, ε) in plane(a, v, w) is

denoted by arc(a; v, w).

Lemma 1 Let a ∈ int(A) and b ∈ A such that a 6= b. Let ε > 0 be such that⊙
(a, ε) ⊆ int(A). Then there exist c ∈

⊙
(a, ε) and d ∈ int(A) such that for all c′ ∈

arc(d; a, c), {a, b, c′} is a free triple in Rp.

Proof. Because int(A) is connected and A ⊆ cl(int A), we may choose d ∈ H(a, b) ∩ int(A)

such that d belongs to a path from a to b in A. Further, as d ∈ int(A) we may

choose d such that it does not belong to [a, b]. Then a, b and d are not collinear.

Because d ∈ int(A), we have for some ε′ > 0,
⊙

(d, ε′) ⊆ int(A). Now choose

c ∈
⊙

(a, ε)∩ plane(a, b, d) such that c belongs to the boundary of
⊙

(d, ‖a − d‖).

For c′ ∈ arc(d; c, a) we have that H(a, b) ∩ H(a, c′)∩ plane(a, b, d) = {d}. Thus,

H(a, b) ∩H(a, c′) ∩H(b, c′) ∩ plane(a, b, d) = {d}. Since d ∈ intA, the two previous

facts imply that for all c′ ∈ arc(d; c, a), {a, b, c′} is a free triple in Rp. �

The following is a direct consequence of Blair and Pollack (1979).

Lemma 2 Let a, b, c ∈ A be such that {a, b, c} is a free triple in the domain Rp.

Then f {a,b,c} is oligarchic.

Now if {a, b, c} is a free triple in the domain Rp, then let ∅ 6= S{a,b,c} ⊆ N be such

that f {a,b,c} is oligarchic with oligarchy S{a,b,c}. Note that any oligarchy is uniquely

determined, i.e. if f {a,b,c} is oligarchic with oligarchies S1 and S2, then S1 = S2.
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The next lemma establishes that f is oligarchic on any open ball, which is con-

tained in the interior of A.

Lemma 3 Let a ∈ int(A) and ε > 0 be such that
⊙

(a, ε) ⊆ int(A). Then there exists

S ⊆ N such that , f
⊙

(a,ε) is oligarchic with oligarchy S.

Proof. Let d, u ∈ (a, ε) be such that dj ≤ uj for all j ∈ {1, . . . ,m} and box(d, u) ⊆⊙
(a, ε). Every triple a′, b, c ∈ cpbox(d, u) is a free triple in Rp. Thus, by Lemma 2,

f {a′,b,c} is oligarchic, say with oligarchy S{a′,b,c}. The same holds for any other triple of

corner points {a′′, b, c} of box(d, u). But then S{a′,b,c} = S{a′′,b,c}. Now it is immediate

that f cpbox(d,u) is oligarchic with oligarchy S{a′,b,c}. Since this is true for any hyper

box in
⊙

(a, ε) and the triples of corner points of those are connected, i.e. there are

sequences of triples of corner points of boxes starting with one triple and ending with

another triple, whose subsequent members have at least two points in common, it

follows that f
⊙

(a,ε) is oligarchic with oligarchy S{a,b,c}. �

Lemma 4 There exists a non-empty S ⊆ N such that for all a ∈ int(A) and all

b ∈ A, with a 6= b, f {a,b} is oligarchic with oligarchy S.

Proof. First we proof the following: for all a ∈ int(A), there exists a non-empty

Sa ⊆ N such that for all b ∈ A\{a},

f {a,b} is oligarchic with oligarchy Sa. (1)

In order to proof this claim, let a ∈ int(A) and b, b′ ∈ A be such that a, b and b′ are

distinct. It is sufficient to prove that f {a,b} and f {a,b′} are both oligarchic with the

same oligarchy.

Lemma 1 implies that there exist c, c′ ∈
⊙

(a, ε) ⊆ int(A) such that ‖a − c‖ =

‖a − c′‖ and both {a, b, c} and {a, b′, c′} are free triples. Thus, by Lemma 2, both

f {a,b,c} and f {a,b′,c′}, respectively, are oligarchic with oligarchy S{a,b,c} and S{a,b′,c′},

respectively. By Lemma 3 and a, c, c′ ∈
⊙

(a, ε), S{a,b,c} = S{a,b′,c′}, which implies (1).
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In order to finish the proof of Lemma 4, let a, a′ ∈ int(A). By (1), it is sufficient

to show Sa = Sa′ . If a = a′, then this is trivial. If a 6= a′,then by (1) we have f {a,a′}

is oligarchic with oligarchies Sa and Sa′ . Therefore, Sa = Sa′ , the desired conclusion.�

Theorem 2 will follow from our final lemma.

Lemma 5 There exists a non-empty S ⊆ N such that f is oligarchic with oligarchy

S.

Proof. By Lemma 4, f intA is oligarchic, say with oligarchy S. Let a, b ∈ A\ int(A).

First, we show S ∈ D(a, b). Let R ∈ RN
p be such that aPib for all i ∈ S. Let

R′ ∈ RN
p be such that for all i ∈ S, p(R′

i) = a, and for all i ∈ N\S, R′
i = Ri. Because

A ⊆ cl(int(A)), there exists c ∈ int(A) such that for all i ∈ S, aP ′
i cP

′
i b. By Lemma

4, we have both S ∈ D(a, c) and S ∈ D(c, b). Thus, both ¬cf(R′)a and ¬bf(R′)c,

and by quasi-transitivity of f , ¬bf(R′)a. By R′|{a, b} = R|{a, b} and independence

of irrelevant alternatives, ¬bf(R)a. Because R was arbitrary, we obtain S ∈ D(a, b).

Second, we show {j} ∈ B(b, a) for all j ∈ S. Suppose to the contrary that for some

R ∈ RN
p we have both aPjb and ¬af(R)b. Partition N as follows: V = {i ∈ N |bPia},

U = {i ∈ N |aIib}, and T = {i ∈ N |aPib}. Obviously, j ∈ T .

Because A ⊆ cl(int A), we may choose a′ ∈ int(A) arbitrarily close to a and b′ ∈

int(A) arbitrarily close to b. Because int(A) is connected, there is a path π: [0, 1] −→

int(A) from a′ to b′ such that π(0) = a′ and π(1) = b′. Because a′ is arbitrarily close

to a and b′ is arbitrarily close to b, we may assume that H(a, b) separates a′ and b′.

Thus, for some t ∈ [0, 1] π(t) ∈ H(a, b). Since π is continuous, t1 ≡ min{t ∈ [0, 1] :

π(t) ∈ H(a, b)} is well-defined. Let d ≡ π(t1).

Next we show space(adb) ∩ A 6= ∅. The surface H(a, b) divides Rm in two open

(half-)spaces Ha ≡ {x ∈ Rm : ‖a− x‖p < ‖b− x‖p} and Hb ≡ {x ∈ Rm : ‖b− x‖p <

‖a− x‖p}. Note that π(t) ∈ Ha for all 0 ≤ t < t1. Because a′ is arbitrarily close to a,

we may assume that H(a, d) separates a′ and d. Now π also connects a′ and d. Thus,

for some 0 ≤ t0 < t1 we have π(t0) ∈ H(a, d) ∩ Ha. Since π(t0) ∈ int(A), it follows
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that
⊙

(π(t0), ε) ⊆ int(A) for some ε > 0. Because π(t0) ∈ H(a, d) ∩ Ha it follows

that H(b, d) separates b and π(t0). Hence,
⊙

(π(t0), ε)∩ space(adb) 6= ∅.

Let R′ ∈ RN
p be such that for all i ∈ V , p(R′

i) ∈ intA is close to d and

‖a − p(R′
i)‖p > ‖b − p(Ri)

′‖p; for all i ∈ U , p(R′
i) = d; and for all i ∈ T , p(R′

i) ∈

space(adb) ∩ A. Then for all i ∈ V , dP ′
i bP

′
ia; for all i ∈ U , dP ′

i bI
′
ia; and for all

i ∈ T , aP ′
idP ′

i b. By weak Pareto, ¬bf(R′)d. By R′|{a, b} = R|{a, b}, independence

of irrelevant alternatives, and ¬af(R)b, ¬af(R′)b. Hence, by quasi-transitivity of

f , ¬af(R′)d. By d ∈ int(A) and Lemma 4, f {a,d} is oligarchic with oligarchy S, a

contradiction to {j} ∈ B(d, a) and aP ′
jd. �

Finally, we show Theorem 1.

Proof of Theorem 1. Obviously, if f satisfies the requirements of Theorem 1, then

f satisfies the requirements of Theorem 2. Hence, by Theorem 2, f is oligarchic with

some non-empty oligarchy S. If |S| = 1, then f is dictatorial and Theorem 1 is true.

If |S| ≥ 2, then let j ∈ S and a, b, c ∈ int(A) be such that {a, b, c} is a free triple in

the domain Rp. Obviously, the existence of such a triple is guaranteed by int(A) 6= ∅

and Lemma 1.

Then let R ∈ RN
p be such that aPjbPjc and bPicPia for all i ∈ N\{j}. By

weak Pareto, ¬cf(R)b. Because f is oligarchic with oligarchy S and j ∈ S, we have

j ∈ B(a, b). Thus, by aPjb, af(R)b. Then from transitivity of f(R) and ¬cf(R)b we

obtain ¬cf(R)a. Since for all i ∈ N\{j}, we have cPia, this implies {i} /∈ B(a, c) for

all i ∈ N\{j}. This contradicts |S| ≥ 2 and f is oligarchic with oligarchy S. �

6 Conclusion

As the careful reader may have observed, for the proof of Theorem 2 it is crucial that

for any hyperbox box(d, u), any triple of its corner points is free in the domain Rp.
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This property is also true for other domains such as Lp-single-dipped preferences: a

preference relation Ri ∈ W is Lp-single-dipped if there exists a worst point d(Ri) ∈ A

such that for all a, b ∈ A, aRib ⇔ ‖a − d(Ri)‖p ≥ ‖b − d(Ri)‖p. Let Dp denote the

set of all Lp-single-dipped preferences. Single-dipped preferences play an important

role for the location of public bads such as waste deposits or nuclear power plants.

Similarly to the domain Rp, a, b, and c is a free triple in the domain Dp if and only

if H(a, b)∩H(a, c)∩H(b, c) ∩ int(A) 6= ∅. Now the proof of Theorem 2 can be easily

modified to show Theorem 2 for quasi-transitive welfare functions defined over the

domain DN
p .

Other domains for which Theorem 2 holds include the domain of Lp-separable

preferences: a preference relation Ri ∈ W is Lp-separable if there exists a bliss point

p(Ri) ∈ A and αi > 0 for i ∈ {1, . . . ,m}, such that for all a, b ∈ A, aRib ⇔∑m
i=1 αi|ai−p(Ri)i|p ≤

∑
i=1 αi|bi−p(Ri)i|p. LetRsp denote the set of all Lp-separable

preferences. For Lp-separable preferences, Theorem 2 can be either shown directly by

modifying its proof or via showing that Lp-separable preferences are isomorphic to Lp-

single-peaked preferences. This means there is a continuous bijective transformation

ϕ on Rm such that

(
m∑

i=1

αi|ai − bi|p)1/p = ‖ϕ(a)− ϕ(b)‖p

for all a, b ∈ Rm. The function ϕ can be simply defined by ϕi(a) = α
1/p
i ai for all

i ∈ {1, . . . ,m}. Then Theorems 1 and 2 can be rephrased for this class of isomorphic

distance functions because weak Pareto and independence of irrelevant alternatives

are preserved by bijective transformations.
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Figure 1: Illustration of the sets ∠(abc), ∠(acb), ∠(bac), ∠(bca), ∠(cab), and ∠(cba)

for non-colinear a, b, and c in R2.
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