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SOMMAIRE

Linkedin est le plus grand réseau social pour les professionnels où les utilisateurs du service
partagent toute leur histoire professionnelle. Dans ce travail, nous explorons les méthodes par
lesquelles nous pouvons modéliser la trajectoire de carrière d’un candidat donné et prédire
les changements de carrière futurs. La première partie de cette thèse est une tentative de
normaliser les données sur les titres d’emploi, car nous avons constaté que la façon dont les
utilisateurs de la plate-forme de réseautage social professionnel décident d’y saisir leurs titres
varie énormément. Ensuite, nous explorons divers modèles prédictifs inspirés des modèles de
langage de forme, ainsi que des modèles neuronaux séquentiels.
Mots-clés: extraction de données, marquage de séquences, classification de séquences, réseaux
de neurones, réseaux neuronaux récurrents, LSTM
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SUMMARY

LinkedIn is the largest social network for professionals where users of the service share all
of their professional history. In this work we explore methods by which we can model the
career trajectory of a given candidate and predict future career moves. The first part of this
thesis is an attempt to normalize the job titles data as we have found that there is a great
deal of variation in how the users of the professional social networking platform decide to
input their titles. Then we move on to exploring various predictive models inspired form
language models as well as sequential neuronal models.
Keywords: data mining, naive bayes, sequence labeling, sequence classification, neural net-
works, recurrent neural networks, LSTM
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INTRODUCTION

This work was made possible in part with the help of Little Big Jobs, a human resources
firm. They have provided the career data that allowed us to explore and attempt to learn
new insights about professionals and their career paths. We believe this research will allow
for more efficient and more personalized recruitment strategies and more desirable matching
between talent and employers.

The growing popularity of social networks has given us the possibility to learn from
data relating to various areas of a person’s life. LinkedIn is the largest social network for
professionals where users of the service share all of their professional history along with
other relevant information such as their educational background and their skills set in the
hopes of building an advantageous professional network. We have been provided a large
collection of user profiles and we aim to extract some insights from that data and propose a
solution for modeling a career trajectory. The main objective is to predict a set of plausible
recommended positions that a professional can take as his next career move given his
working history. Thus, the problem approached in this thesis, is a sequence modeling and
prediction problem in which we try to learn the probability distribution of the next position
or job title given a specific career history.

This thesis will be structured in a similar fashion as the way we approached the problem.
In the next chapter, we begin by presenting the data set, explore its structure and look at
the features we can use. Additionally, we review the statistical analysis that has been done
in order to understand how to best use the provided data set. In chapter 2, we describe the
models that were trained on the data along with the baselines that were compared to these
models.



Chapter 1

SOCIAL MEDIA DATASET

1.1. Introduction
Building a predictive model to accurately describe career paths can present some chal-

lenging problems, related to the nature of the raw data, that we will describe in this chapter
along with our proposed methods to solve them. The provided dataset was produced by
scraping the data from the professional social networking platform LinkedIn. It is composed
of a set of public and anonymous user profiles from the professional social networking site
where we can find information mainly about their educational background, skill set, job
history and their respective industry.

Tab. 1. I. Structure of a user profile
Field Sub-fields Description

_id Unique identifier for a user

experiences Array, where the first element is the most re-
cent position held.

job title Name of the current position held by the user
represented as a string.

missions Job description as entered by the user (not
always available)

place The location of the company (not always avail-
able)

companyName The name of the company

countryCode User’s country

skills name Array containing objects that describe the
skills name



1.1.1. Structure of the data

To provide an understanding of the dataset that was used throughout this work, we show
how the raw data is structured in table 1. I. The fields that we are most interested in are
the experiences array, where we find a list of the professional history of every user we have
in our dataset, and the skills array, which contains the corresponding user’s skill set which
they input on the social media site. For brevity’s sake, we only show the data fields that are
relevant to us. Thus, we do not show the fields reserved for metadata. A full example of an
actual user profile in JSON format is shown in appendix A, but to better understand how
the data is structured, we show an example of the candidate’s job history (table 1. II). The
data fields that are of interest to us are the job title and the skills. For our purposes, we
treat every user profile as a sequence of job experiences along with a paired list of skills.

Tab. 1. II. Example of a sequence of job experiences of a user. See the full
JSON structure in annex A

.
Experience
#

0 1 2 3

Job Title Senior Vice Pres-
ident Consumer
Marketing

VP Mobility Solu-
tions

Director, Continu-
ous Improvement

Associate

Company
Name

TELUS TELUS Barrick Gold Cor-
poration

McKinsey & Com-
pany

Mission Support TELUS’
continued growth
in Consumer mar-
kets nationally
across both wire-
less and wireline
products and
services

Support TELUS
Consumer seg-
ment wireless
overall business
and marketing
strategy, product
marketing and
pricing.

Led global Oper-
ations Continuous
Improvement
team aimed at
driving hundreds
of millions of dol-
lars of operational
improvement.
Pioneer in import-
ing Lean and Six
Sigma philoso-
phies and tools
into the Gold
Mining sector.

N/A

Place toronto, ontario N/A N/A N/A
Start Date 2014-05 2008-12 2000 1993
End Date N/A N/A 2003 2003
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1.1.2. Initial Preprocessing of the Data

As is often the case when working with real world data, some initial cleaning must be
done:

1. We remove all user profiles were the job title was not properly filled out (i.e. filled
with -, –, –-, ., _, and other sequences of non alpha numeric characters)

2. Setting all the textual data into lower case
3. Manually converting the most common abbreviations to their full length alternative.

A list of these substitutions is shown in table 1. III. Before performing these substitu-
tions, we start by removing periods (.) from the job title strings. This simplifies the
regular expression rules that need to be applied to the set of strings. For example,
we would substitute c.e.o. to ceo, r.n. (registered nurse) to rn, sr. to sr, and
so on.

Tab. 1. III. Some Examples of String substitutions for common abbrevia-
tions and alternate titles

Target String(s) Substitution
sr/jr senior/junior
ceo chief executive officer
cfo chief financial office
cto chief technology officer
cmo chief marketing officer
coo chief operations officer
vp/svp/evp vice president/senior vice president/executive

vice president
co-founder/cofounder co founder

A complete list of the substitutions that have been applied to the set of strings along
with the regular expressions are shown in appendix B.

1.2. Statistical Analysis of Data
After these initial steps, we inspected the dataset to understand how we may approach

the problem and to gain some insights on how to build our models. A quick summary of
some preliminary statistics about the data is shown in table 1. IV. In this section, we want
to develop our intuition about the dataset and to get an understanding of how the data is
distributed.

Looking at table 1. IV, the first problem we encounter is that we have a bit less than
twice the number of unique job titles than we have user profiles, in other words, we have
more job titles than we have user profiles. This suggests that we need a practical solution to
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allow our models to learn something from the sequences of job experiences. However, from
the table 1. IV, we notice that we have far less unique job titles used as the last position
held by the candidates in our dataset. Thus, a good baseline is a predictor using only the
last seen position in the sequence of jobs as the prediction target. Some other important
metrics we should be aware of are that across all user profiles that were gathered for this
dataset, we have at least 3 job experiences.

Tab. 1. IV. Some statistics describing the data

Total number of user profiles 2 789 111
Total number of unique job titles 3 859 835
Total number of unique job titles used as last job 927 209
Avg. length of job title strings (# of words) 4.55
Length of longest string (# of words) 42
Average length of job history 5.18 (positions held)
Shortest job history 3 (positions held)
Longest job history 140 (positions held)

1.2.1. Length of job history

Given that the main goal of this work is to model career paths, we are interested in
understanding how the number of positions (held by the candidates throughout their career)
is distributed. A bar plot is shown in figure 1.1 which illustrates the distribution of the
lengths of the job experience sequences in our dataset. We immediately notice that there are
several outliers, but for most of the user profiles, the average number of positions is 5.177 as
shown in table 1. IV.

Fig. 1.1. Number of jobs held by candidates throughout their career
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1.2.2. Distribution of Unique Job Title Strings and their Counts

As discussed at the beginning of section 1.2, our first major problem is that there are too
many unique job title strings compared to the number of job experience sequences (profiles).
Plotting the distribution of all the unique job title strings is difficult and not very readable
so, in the x axis of figure 1.2, we used numerical ids instead of the actual job titles. We also
show the distribution of the unique job title string occurrences in figure 1.3.

Fig. 1.2. Distribution of the job title strings in our dataset

Fig. 1.3. Distribution of the occurrences of job title strings in our dataset

Figure 1.3 does a good job at showing the amount of variation we encounter when dealing
with user provided job titles. We can see that most of the unique strings appear very rarely.
In fact, 98.17% of all the job title strings appear less than 10 times in our entire dataset.
The disparity between the average number of tokens and the maximum number of tokens
found in job titles suggests that this might be the cause of the high diversity in our set of
job titles. Looking at figure 1.4, we gain a bit of insight on what the root problem is. It
seems that in the case of rarely seen job titles, users provided more specificity to their title
thus increasing the number of words found in the string and making it less likely to coincide
with the job title of another user.
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Fig. 1.4. Random sampling of rarely seen job title strings. Colored text is
the reduced job title we would like to have.

co instructor and teaching assistant, executive programs & undergraduate programs
specialist in organization and standardization of labor
college professor in human biology
accountant, sales and marketing department
senior manager, project management methodology & governance
hardware quality assurance engineer, mswam test engineering
sales associate/visual merchandising assistant
journalist and travel writer
director, strategic innovations & programs, digital & channels marketing
senior marketing analyst, demand planning
vice president for marketing department of university art group
project manager, key accounts - human health therapeutics
information technology manager - operations & architecture
national airfreight manager route development south america/perishable products

For some, like specialist in organization and standardization of labor, we
can’t reduce it or map it to a similar or an equivalent job title because it is so specific.
However, if we look at co instructor and teaching assistant, executive programs
& undergraduate programs we might want to reduce it to teaching assistant which
appears 50 903 times. Likewise, we would reduce titles like accountant, sales and
marketing department to accountant which appears 25 081 times.

Figure 1.5 confirms our intuition. We clearly see on the scatter plot that as we increase
the length of the job title strings (in number of words/tokens) we find that the rarity of the
job titles increases.

1.3. Approaches to Normalize the Dataset
In this section we present two different strategies to attempt to normalize the dataset

with respect to the job title strings. First, to quickly understand how to model the problem
and how these models would learn, a simple heuristic was used to filter out "bad" user profiles
using a more or less rigorous criterion. Then, we dive deeper in the dataset to try and find
a strategy that would allow us to keep a bigger subset of user profiles for training purposes.

1.3.1. Simple Heuristic

In an effort to minimize the ratio of number of unique job title strings to number of user
profiles, we looked at what happens when we discard the least common job titles based on
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Fig. 1.5. Categorical scatter plot of the relationship between the number of
words composing a title string and the number of occurrences of that string

some lower bound on the frequency of the string in the user profiles. For example, we may
look at how many user profiles solely use the 100 most common job titles in their job history,
we then look at how many users exclusively use the 101 most common job titles, and we
measure gain from considering the top 100 to the top 101 job titles. We plotted this relation
in figure 1.6. To understand what we mean by gain we define the list of job titles ordered by
their frequency in the dataset as j = [j1, . . . , jn] and we denote the set of user profiles that
only use the k most common job titles in their profile as N(j1:k). We can then define the
gain as:

δ(k, k + 1) = N(j1:k+1)−N(j1:k)
N(j1:k)

Looking at the plot, we see that after the 550 most common job titles, the gain becomes
negligible compared to the amount of job titles that are under considerations (N(j1:k)). So,
a preliminary dataset is produced by keeping a list of the top 550 most common job title
strings and discarding all the user profiles that have used at least one job title, in their job
history, that is not in this list. Table 1. V shows the number of user profiles and the job
titles we keep. We call the resulting dataset 550-titles.

Tab. 1. V. Summary of the 550-titles dataset

Total number of user profiles 120 371
Total number of unique job title strings 551
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Fig. 1.6. Plot describing how many user profiles can be used by only con-
sidering the users that exclusively use the N most common job title strings
(x-axis)

1.3.2. Removing Excess from Job Title Strings

Looking at figure 1.4 leads us to think that another heuristic we could use to reduce
the number of unique job titles is to remove the portion of the string that comes after the
first punctuation (like a comma) or any other non alphanumeric character we encounter. It
seems that the candidates tend to naturally place the most important information of their
job title at the beginning of the string and continue on adding more specificity. In order to
extract the most relevant information out of a longer job title we split the label for each
for each job title at the punctuations and conjunctions and we select the substring that
occurs more frequently in the set of job titles as a whole. For example, if we have the job
title co instructor and teaching assistant, executive programs & undergraduate
programs we would split it into the following substring:

[
co instructor, teaching assistant, executive programs, undergraduate programs

]
After doing a look-up in a frequency table, we choose teaching assistant as the new

label because it is the most common among this set of strings.
We can use the same heuristic to find the most relevant job titles strings that we might

be interested in that we show in section 1.3.1. Doing so gives us the graph shown in figure
1.7. We can choose to only consider the 7000 most common job title strings thus leaving us
with 837 910 user profiles that we can split into training set and a test set to evaluate our
models. We will call this dataset 7000-titles.
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Fig. 1.7. Plot describing how many user profiles are taken into account by
exclusively considering the ones that have the N most common job titles (on
the x axis)

1.3.3. Classification Conflicts Between Sub-sequences

Upon further inspection of the data, done in an effort to understand the poor performance
of our initial set of experiments, we notice that often, sequences in our dataset do not have
the same outcomes. In other words, we can find user profiles that share the same exact job
history but do not end up in the same position. This could lead to confusion during the
learning phase of the models when estimating the optimal parameters. As an example, for
the job title sequence accountant -> assistant controller we have 7 possible outcomes:

1. president
2. manager
3. general manager
4. accountant
5. partner
6. controller
7. staff accountant
For a given sequence of job titles, j1, j2, . . . , jl, we define the job history as j1:l−1. So we

say the job history is the given job title sequence with the last job title removed. The last
job title is the one we want our models to predict (the prediction target). Then, to better
understand the classification conflicts, we built a hash table where we use the job histories
as keys and accumulate a list of the prediction targets (the last job title in each sequence).
Doing this we learned that we have 47 149 unique job histories for the 550-titles dataset.
Recall that we have 96 486 training examples in this dataset. For the 7000-titles, we have
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Fig. 1.8. Distribution of samples with respect to the branching factor when
following a sequence of jobs in chronological order

497 025 unique job histories for a training set of 670 328 examples. Figure 1.8 shows the
distribution over the branching factors of each job history. By branching factor we mean the
number of different prediction targets for a given job history. So the figure shows the number
of job histories that have branching factor b for every b. For the 550-titles dataset, we
have 8 847 job histories that share at least 2 different prediction targets and 43 251 for the
7000-titles dataset.
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Chapter 2

THEORETICAL BACKGROUND REVIEW

2.1. Introduction
This chapter will serve as a survey of the model families and techniques that have been

used when implementing our experiments. We start by a brief introduction to the different
methods in which we can represent text data. Later, we dive into the models by presenting
the naive Bayes model to then move on to the sequential models that have been explored in
this work.

2.2. Representation of Textual Data
2.2.1. Vector Space Model

The vector space model, introduced by [Salton, Wong, and Yang, 1975], allows us to
represent text data as vectors. The idea was that word frequencies in a text could give
us some semantic information about the text. These vectors are constructed such that the
indices of the coordinates are associated to a unit such as a word or an N-gram. Thus, every
document is represented as a point in a vector space where each dimension will have a non
null value if the corresponding word or an N-gram is present in the document. These vector
can then be used as feature vectors by a classifier for example.

2.2.1.1. Bag-of-Words

One of the most commonly used method to generate such feature vectors is by using
the bag-of-words model where we represent each document as a multiset of words that is,
in turn, represented as a binary or a co-occurrence vector by associating each component of
the vector to a single word in our set of words. The basis for this approach in information
retrieval tasks is that the word frequencies within a document might give us some informa-
tion about what the document is about or the relevance of the document to a given query
[Salton et al., 1975].
For example, if we look at these randomly selected examples from our LinkedIn data set, we



would start by first building a vocabulary based on the words that are observed in these texts.

1. "analyst, information technology consultant, project manager, program
manager, director, director, director"

2. "educator, project coordinator, associate project manager, project
manager"

3. "sales associate, sales associate, financial services associate"

Thus, these 3 documents would yield the following set of words:
V = { analyst, information, technology, consultant, project, manager, program,
director, educator, coordinator, educator, associate, sales, financial, services }

We can then assign an index to each word:

0→ analyst

1→ information

2→ technology

3→ consultant

4→ project

5→ manager

6→ program

7→ director

8→ educator

9→ coordinator

10→ educator

11→ associate

12→ sales

13→ financial

14→ services

Consequently, our constructed vocabulary induces a 14 dimensional vector space. We can
then construct our vector representation of the corresponding document by either choosing
to do so by using binary vector, where each component of the vector can either take a 0− 1
value indicating the occurrence of the associated word, or we could opt for a co-occurrence
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vector, where the value of each dimension of the vector indicates the number of times the
associated word occurs in the given document.

So, if we would like to represent the document #1 from the examples shown above by a
vector v1, the non zero values would be:

v1[0] = 1, v1[1] = 1, v1[2] = 1, v1[3] = 1, v1[4] = 1, v1[5] = 2, v1[6] = 1, v1[7] = 3

In this case, v1 is a co-occurrence vector.

2.2.1.2. Term Frequency and Inverse Document Frequency

Now that we can represent our documents by vectors, we present a method that allows
us to put more weights on occurrences of certain words that are deemed to be a good
signal that the document is of a particular type as opposed to the bag-of-words method that
simply counts the occurrence of each word. The resulting bag-of-words vector representation
of the documents would yield less information that might allow us to discriminate between
documents. The intuition is that globally rare words that are common across a particular
subset of documents might be a stronger indicator of their similarity than a word that
appears frequently in all the documents. Therefore allowing us to more reliably cluster
similar documents together. Now, let us define some terms.

• Term Frequency
The term frequency component of TF-IDF is related to the frequency with which a
word or term tj appears in a given document di. There exist several ways to compute
this value, but one of the simplest ways is the following:

tf(tj, di) = Number of times tj appears in di
Total number of terms (words) in document di

(2.2.1)

We could also simply use the raw count of the term in the document as the value of
tf(tj,di) such that we can rewrite the above expression like

tf(tj,di) = # of times tjappears in di = N(tj,di) (2.2.2)

• Inverse Document Frequency
As discussed above, we need some way to evaluate how much a given word is relevant
to the particular document we are interested in. To do this we take the logarithm of
the ratio of number of document in our corpus to the number of documents containing
the term tj.

idf(tj, D) = Total number of documents in our corpus
Number of documents where the term tj appears

(2.2.3)
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Finally we compute the TF-IDF weight of a term by taking the product of both values.

tfidf(tj, di, D) = tf(tj, di)× idf(tj, D) (2.2.4)

2.2.2. Distributional Models

In this section, we present a different approach to representing text as vectors based
on the distributional hypothesis [Harris, 1954] which states that linguistic items with
similar distributions have similar meanings. In other words, terms that have the same
context or same surroundings tend to have similar meaning. With the advent of neural
networks, [Bengio, Ducharme, Vincent, and Jauvin, 2003] have proposed a neural network
based statistical language model which forms the basis of most of the recent advances in
learning representations of words. In this work, we are mainly interested in the fasttext
model [Bojanowski, Grave, Joulin, and Mikolov, 2016], [Joulin, Grave, Bojanowski, and
Mikolov, 2016] which is an extension of Word2Vec [Mikolov, Chen, Corrado, and Dean, 2013].
Distributional representations of text allow us to use dense continuous vectors instead of very
sparse vectors.

In figure 2.1, we show a diagram of the two architectures proposed by [Le and Mikolov,
2014]. Both architectures are fairly simple to understand. The main idea that is common
to both is that we learn a projection matrix by trying to either reconstruct a word given a
sliding window of its neighbouring words (in the case of the CBOW implementation) or, in
the case of the skip gram model, by trying to reconstruct the context (i.e. the surrounding
words) of a given word. The learned weights that form the projection matrix are then taken
to be the words embeddings of the corpus they have been trained on.

The fasttext model extends the Word2Vec model by learning embedding vectors for
the character N-grams that compose each word. The word vector is then the sum of its
character N-gram vectors. Thus, yielding better embeddings for rare words since they often
share character N-grams with other more common words, and vectors for out of vocabulary
words can be constructed from their character N-grams.

2.3. Naive Bayes
The naive Bayes model is a very simple yet very effective linear classifier. This method

of learning has been extensively used in text classification and information retrieval tasks. It
leverages the Bayes’ rule shown in 2.3.1 along with the naive assumption that the features of
the observed data are independently distributed, which is a phenomena that seldom happens
in real life.
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Fig. 2.1. Word2Vec model diagram taken from [Le and Mikolov, 2014]

In this section, we limit ourselves with a presentation of the theoretical framework of the
models. The implementations and experimental details will be discussed in section 3.3.

p(cj|x1, . . . , xn) = p(x1, . . . , xn|cj)p(cj)
p(x1, . . . , xn) (2.3.1)

Now, by the independence assumption on the features xi’s equation 2.3.1 can be rewritten
as shown in 2.3.2 by repeatedly applying the chain rule.

p(cj|x1, . . . , xn) = p(cj)
∏n
i=1 p(xi|cj)

p(x1, . . . , xn) (2.3.2)

Additionally, since the feature vector x> = [x1, . . . , xn] is known, they are assumed to
be observed, then the denominator term p(x1, . . . , xn) is a constant. Thus, the relation we
are truly interested in is:

p(cj|x1, . . . , xn) ∝ p(cj)
n∏
i=1

p(xi|cj) (2.3.3)

Where we often use the frequency of the classes observed in our training data set as the
class priors p(cj) or we could assume that all the classes are equally probable, in which case,
p(cj) = 1

‖C‖ , ∀j ∈ {1, , . . . , ‖C‖}
Next, we must assume a distribution over the feature in order to learn the parameters of

the distribution.
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2.3.1. Bernoulli Model

In the Bernoulli model the given features are represented by binary valued variables
(i.e xi ∈ {0, 1}). Thus, we would represent our documents as binary vectors where every
dimension indicates whether the word occurs or not in the text as explained in section 2.2.

p(x1, . . . , xn|cj) =
n∏
i=1

P (Xi = xi|C = cj)xi

(
1− P (Xi = xi|C = cj)

)1−xi (2.3.4)

2.3.2. Multinomial Model

In the multinomial model, the feature vectors are counts of the words that occur in a
given document instead of being simply binary valued vectors indicating the occurrence of
a word.

p(x1, . . . , xn|cj) =

(∑
i xi
)
!∏

i xi!
∏
i

pxi
ji (2.3.5)

2.3.3. Maximum a Posteriori Estimate

Finally, once the model has been completely defined, our aim is to find the class that
is the most likely to have produced the observed features (the words of a document). We
decide on the class of our document by finding the maximum a posteriori estimate for the
class variable, which is equivalent to choosing the mode of the distribution. We do this by
computing a vector of the same dimension as the number of classes where every component
is the conditional probability of the class given the observed features.

ŷ = arg max
j

p(cj)
n∏
i=1

p(xi|cj) (2.3.6)

2.4. N-gram Models
Inspired by language models, we also explored the N-gram prediction model to learn to

predict the last position held by a candidate. Since we are trying to learn the distribution
of the transitions to the next position in a career path given the job history, N-gram models
lend themselves particularly well to the task at hand. thus, we provide a brief overview of
N-gram language models.

In general, language models are probabilistic models that compute a probability for a
sequence of words (in our case that would be a sequence of job title labels). Say we have
a sentence of words (or a sequence of labels) wt1 = w1, . . . , wt, a language model would be
able to give us an estimation of the probability of observing that sequence P (wt1). We can
compute the probability by using the chain rule shown in equation 2.4.1.
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P (w1, . . . , wt) = P (w1)P (w2|w1)P (w3|w1,w2) . . . P (wt|wt−1
1 ) (2.4.1)

However, what is of interest to us for the task at hand is the conditional probability of a
word or a label given the history. We would like to estimate the probability of the last label
given the history preceding that word. So we are trying to estimate P (wt|wt−1

1 ) which would
allow us to select the label that maximizes this probability as our prediction. To do this we
compute the maximum likelihood estimate (MLE). Nevertheless, using the entire sequence
as the history or context isn’t necessarily a good idea; different people have differing career
trajectories before landing in the same position. This is where we utilize N-grams that we
use as an approximation of the historical context of an individual’s career. An N-gram is
simply a sequence of N labels. Thus, we approximate the history by using a window of the
N-1 previous labels and we compute the probability of observing the N th label given that
window. We explain the details of how this idea is implemented in section 3.4.

2.4.1. Kneser-Ney Smoothing

Several smoothing techniques exist to deal with the case where we need to compute a
probability for an N-gram that hasn’t been seen in our training set. In this work we used
the Kneser-Ney smoothing [Kneser and Ney, 1995]. The maximum likelihood estimate for
P (wi|wi−1

i−N+1), the probability of observing the word wi after the sequence of words wi−1
i−N+1,

is given in the equation below.

P (wi|wi−1
i−N+1) = C(wii−N+1)∑

wi
C(wii−N+1)

(2.4.2)

Where C(wii−N+1) is the count of the N-gram word sequence wii−N+1 as it appears in our
training set and we normalize over the number of N-grams that share the same N − 1 first
words. We pad the sequences of words with tags (<SOS> and <EOS>) to mark the start and
the end of the sentence, we treat the <SOS> tags as the words w2−N to w0. However, if an
N-gram has not been seen in the training set, the model assigns zero probability to these
events. For this reason we also add smoothing. We adjust the MLE by using kneser-ney
smoothing as presented by Kneser and Ney [1995], which is what is used in this work.

2.5. Recurrent Neural Networks
Recurrent neural networks are a family of sequential models capable of passing some

information from a time step to another. In a similar fashion as HMMs, the state at a
given time step depends only on the previous state and the current input being fed to the
network. Unlike traditional multi-layered neural networks, RNNs can scale to arbitrarily
long sequences by making use of the idea of parameter sharing.
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Fig. 2.2. Fully connected feed forward neural network with single 3 nodes
hidden layer

2.5.1. Artificial Neuron

The main building blocks of artificial neural networks are mathematical functions com-
monly referred to as artificial neurons along with the directed edges that connect these
neurons, which are normally represented by nodes when drawing the computational graph of
the network. These artificial neurons can be thought of as a generalization of the perceptron
which is limited to output a single binary value as opposed to a real valued output between
0 and 1. Let us define some objects.

Suppose we have an n-dimensional feature vector x = [x1, . . . , xn] ∈ Rn. We denote by
hi the output value of the ith neuron in a hidden layer of a standard feed forward neural
network and the associated weights w> = [wb, w1, . . . , wn] ∈ Rn+1, note that there is an offset
value w0 = wb that we call the bias. We define the augmented vector x̃> = [1, x] ∈ Rn+1

where we append a new value x̃0 = 1 that we call the constant feature to allow for easy
computation using matrix operations. Thus a neuron would have n + 1 inputs. Equation
2.5.2 shows how we compute the ith coordinate of the pre-activations vector which is the
input to the activation function fh.

ai = w · x =
∑
j

wjxj (2.5.1)

hi = fh(ai) (2.5.2)
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2.5.1.1. Activation Functions

Activation functions are the functions we apply on what we called the pre-activation
vectors. We list here some of the activation functions that are used in this work, we omit the
presentation of the sigmoid and the softmax function as we present them with more depth
when discussing the output layer of the neural networks in section 2.6.4.

A popular activation function is the rectified linear unit (ReLU), we show below how it
is computed.

relu(xi) = max(xi, 0) (2.5.3)

We also use the hyperbolic tangent, shown in 2.5.4, mainly inside the recurrent network’s
LSTM cells.

tanh(xi) = exi − e−xi

exi + e−xi
(2.5.4)

2.5.2. Introduction to Recurrent Neural Networks

The implicit assumption made in our previous presentation on feed forward neural net-
works is that they are acyclical. By relaxing this constraint to allow feedback loops, which
are essentially connections between the hidden layer that spans through every time step of
the network, we obtain a recurrent network. We show a standard RNN that maps every
input to an output in figure 2.3. Every individual time step can be seen as a fully connected
feed forward network as shown in 2.2 where h(t) is the hidden layer, x(t) the input layer and
o(t) the output layer. The parameters are shared throughout time steps allowing the network
to generalize over different sequence lengths.

However, in practice, we encounter some challenges when trying to learn dependencies
over long sequences. This is what is known as the vanishing gradient problem [Bengio,
Simard, and Frasconi, 1994], [Hochreiter, Bengio, Frasconi, Schmidhuber, et al., 2001]. We
sometimes might also have an exploding gradient, which is less likely, but can still hurt the
optimization of the model’s parameters.

2.5.3. Long Short-Term Memory

Long Short Term Memory introduced by [Hochreiter and Schmidhuber, 1997], commonly
referred to as LSTM cells, is a sub network that we insert in place of the hidden layer of the
standard RNN. We show a diagram of what is happening within the cell in figure 2.4.

As explained in the previous section, a recurrent neural network can simply be viewed
as a series of identical (having the exact same parameters) feed forward network where each
network passes its state to the neighbouring network. The LSTM cell is made up of gates
that modify the state in some way before passing it along with the the value of its hidden
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Fig. 2.3. Unfolded diagram of a basic RNN

h(t)h(t−1) h(t+1). . . . . .h(0) h(n)

o(t)o(t−1) o(t+1)o(0) o(n)

emb(x(t))emb(x(t−1)) emb(x(t+1))emb(x(0)) emb(x(n))

x(t)x(t−1) x(t+1)x(0) x(n)

UUU U U

VV VV V

WW WW W

Fig. 2.4. LSTM cell diagram adapted from [Olah, 2015]

layer to the next network. The principal component we are interested in is the state vector
s represented in figure 2.4 by the uppermost arrow going through the sequences of cells. We
perform various operations on that state vector as well as the hidden layer vector ht.

2.5.3.1. Forget Gate

An LSTM cell has the ability to choose what information, from the previous states, can
go through to the next network by leveraging what we define as the forget gate which
is simply an element-wise multiplication of the output of the first sigmoid function, shown
in figure 2.4, applied to a linear transformation on the concatenation of the previous cell’s
hidden layer value and the current input. The function is shown in equation 2.5.5. The
output of the sigmoid function is a vector where each element has a value between 0 and 1.
Thus, we can get an intuitive understanding of the first element-wise multiplication by the
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forget gate as choosing what proportion of each component of the signal we want to keep
and the proportion of the signal we want to remove.

ft = σ(Wf · [ht−1,xt] + bf ) (2.5.5)

2.5.3.2. Input Gate

The input gate, the second sigmoid layer from the left, is the gate that decides what
information we will add from the new state candidate ŝt, which is the output of the tanh
function. The equations are shown in 2.5.6 and 2.5.7.

it = σ(Wi · [ht−1,xt] + bi) (2.5.6)

ŝt = tanh(Ws · [ht−1,xt] + bs) (2.5.7)

After having computed the values of the input gate and the forget gate vectors, we get
the new state vector to be passed to the next network (or fed back in the recurrent feedback
loop) as shown in equation 2.5.8.

st = ft × st−1 + it × ŝt (2.5.8)

2.5.3.3. Output Gate

Finally, we compute the output of the current time step, ht, which is the output that we
pass to either a sigmoid or a softmax layer to compute the network’s prediction for this time
step. The choice of the final non linearity depends on whether we are training the model for
a multiclass problem or a multilabel problem (discussed later in section 2.6.3). This output
is computed using the current cell state st, which is itself computed form the previous cell
states (the previously seen history). Thus, we apply the last gate, the output gate, which
decides which information form the cell state we will output, shown in equation 2.5.9. Again
because of the sigmoid function, the components of the vector o are values between 0 and
1. So we can interpret equation 2.5.10 as weighting the components of the state, to which
we apply a tanh non linearity, according to their importance for the output at the time.

ot = σ(Wo · [ht−1,xt] + bo) (2.5.9)

ht = ot × tanh(st) (2.5.10)
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2.6. Convolutional Neural Networks
2.6.1. Convolution

For this work, a convolutional neural network was used as an encoder to learn abstract
representation of each user’s skill set. Modern CNNs were introduced by LeCun, Haffner,
Bottou, and Bengio [1999], and they were mainly used for image recognition. However,
CNNs have also been used for sentence classification [Kim, 2014], we base our encoder on
these techniques. The easiest way to understand convolutions is by thinking of a sliding
window which applies a function to a matrix. We call this sliding window the kernel. We
show an example in figure 2.5.

Fig. 2.5. Example of a 3 × 3 kernel applied to a 5 × 5 image. Taken from
http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

In the example shown in figure 2.5, we apply a kernel K shown below in equation 2.6.1.
We slide this kernel starting form the top left corner of the image left to right and form top
to bottom. The wi,j are the models parameters which are learned during training.

K =


w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

w3,1 w3,2 w3,3

 =


1 0 1
0 1 0
1 0 1

 (2.6.1)

If we denote the input matrix by I ∈ Rp×q and the kernel matrix by K we compute the
output as shown in equation 2.6.2

O(i,j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.6.2)

As we have discussed earlier, in a traditional feed forward neural network, every input
neuron is connected to an output neuron on the layer above it. However, in the case of
convolutional neural networks, the convolution kernel in used to compute the value of the
output neuron. Thus, the neurons of the next layers are connected to the output of a region
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(delimited by the kernel) of the input layer. We can have several convolutional layers, and
the values of the kernels are learned through backpropagation.

For this work, we used convolution over word embeddings. In that case, the input matrix
will be the matrix constructed by stacking the fasttext embedding vectors for each word of
a document. For example, if we had 5 words, with 300 dimensional fasttext embeddings,
we would stack them to get a 5× 300 matrix, this matrix would be our input, over which we
slide a convolution kernel. In computer vision applications, the kernel typically slides over
patches of the image, but in our case, the kernel slides over the entire rows so we only slide
it down along the height of the matrix. Figure 2.6 shows an example of that. As we see on
the leftmost side of the figure, we stacked the word embeddings for skills that appear in our
dataset (C++, java, python, etc). We perform a convolution with three different kernels of
different sizes, these are the colored squares (red, green, and yellow). Notice that, as we said
earlier, the kernels are always the same width as the input matrix, in this case the dimension
of the embedding vectors. thus, we only need to slide these kernels from top to bottom and
compute the value of the neuron every time we slide it downwards.

...

...

...

...

...

...

...

...

...

...

...
...

...
... ...

C++

Java

NLP

Python

...

Convolution Max Pooling Dense Layer

Fig. 2.6. CNN encoder that learns an abstract representation of the skill set
of a user.

23



2.6.2. Max Pooling

After convolving the kernels with the input matrix, we get what are called feature maps,
shown in figure 2.6 as the second set of vectors from the left. They are colored with the
color of the corresponding kernel that produces the output. Max pooling typically follows a
convolution layer. Max pooling simply subsamples its input by getting the max value of the
input. So in the case of the example given in figure 2.6, we apply the max pooling operation
over the each feature map (the outputs of the convolutions with the kernels) and take the
maximum value of each vector as the output to the next layer.

We apply this operation primarily to have a fixed sized output, no matter what the kernel
dimensions are, max pooling always allows us to map the input to a fixed dimension for the
output. It also reduces the size of the output all the while extracting the most important
features of the N-grams. That is the intuition at the very least.

2.6.3. Multi-class v.s. Multi-label

For a multi-class classification problem we have one and only one class label associated
with each example in the dataset, meaning that the class labels are mutually exclusive. On
the other hand, modeling a problem as a multi-label classification problem allows for data
samples to have multiple class labels; so a given data point could have multiple valid labels.
More specifically, in our case, a given professional (job history and skill set) context could
lead to multiple different possible future career moves. For the particular problem addressed
in this work, we experiment with both modeling techniques. We ran a set of experiments by
considering every job title as a class label, senior software engineer for example would
be a class label. For a more fined-grained classification, we also approached the problem
as a multi-label classification problem, thus making predictions at the word level as well as
giving more flexibility to the predictions. Thus, for a given sample we could have different
class labels: senior, software, engineer, consultant.

2.6.4. Output Layer

The decision of the activation function that we should use for the output layer for the
neural network is directly related to the discussion above. We can choose between a softmax
function (for a multi-class model) or a sigmoid function (for a multi-label classification model)
we dive in the differences of these functions in the next sections.

2.6.4.1. Softmax Function

The softmax function squashes the values of a multi-dimensional vector such that every
component of the vector falls in the range [0,1] and these values sum to 1. This enables us
to interpret the resulting vector as a probability density over a discrete random variable.
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0.1 0.7 0.05 0.049 0.1 0.001

Fig. 2.7. Example of an output vector

In our case, we interpret the resulting output vector as a density over all the possible class
labels (job titles) and we pick the most probable (the index of the coordinate corresponding
to the greatest value) as our prediction. We show the function in equation 2.6.3 applied on
an N-dimensional vector. We show an example in figure 2.7.

σ(xi) = exi∑N
n=1 e

xn
(2.6.3)

To compute the value of the output vector in our network shown in figure 2.3 we apply
the softmax function on a linear transformation of the hidden layer vector ht which is the
output of the LSTM cell as shown in equation 2.6.4.

o(t) = σ(V · h(t) + bo) (2.6.4)

2.6.4.2. Sigmoid Function

If we choose for our model to allow for multiple labels for a given example from the
dataset, we apply a sigmoid function on the output layer of the network. A sigmoid function
outputs a real valued vector where each component is between 0 and 1, but in contrast with
the softmax function, the components of the vector need not sum to one. We can therefore
interpret the values as the probability of the label corresponding to the index of the vectors
element. We show the function in equation 2.6.5. Notice that we don’t normalize over all the
input vector components as opposed to the softmax function in 2.6.3. In this case, we decide
on a threshold value (normally 0.5) and pick all the indices corresponding to the coordinate
for which the value is greater or equal to the threshold.

sigmoid(x) = ex

ex + 1 (2.6.5)

2.6.5. Cross Entropy

We use the cross entropy loss to train the neural models that have been presented.
We show below the cross entropy between two probability distributions. Recall that the
output layer of the network provides us with a vector which we can interpret as an estimated
distribution over class labels (in the case of a multi-class model) or as sequence of independent
binary classifications. So for our case, the two "distributions" on which we compute the cross
entropy are the ground truth vector y (which is a one-hot encoding of the class label for a
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multi-class classification or a binary vector indicating all the labels in the case of a multi-label
classification) and the output vector (the density estimation made by the model) ŷ = o

H(p,q) = −
∑
∀x
p(x) log(q(x)) (2.6.6)

In the case of amulti-class model (class labels are mutually exclusive) we use categorical
cross entropy shown in equation 2.6.7

L = −
∑
i

yi log(ŷi) = −y · log(ŷ) (2.6.7)

For the multi-label approach, we use the binary cross-entropy shown in equation 2.6.8
where ŷ is the output of a sigmoid activation. Notice that in this case, the result is a vector of
the same dimensions as y and ŷ where each component is the loss value between the ground
truth and the predicted label scores/probabilities. In practice, we reduce the resulting vector
to the mean loss of all the components.

L = y×− log(ŷ) + (1− y)×− log(1− ŷ) (2.6.8)

We use × to denote element-wise multiplication.
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Chapter 3

EXPERIMENTS

3.1. Introduction
For all the presented experiments, the various data sets were split into a training set

(comprising of 80% of the dataset) and a testing set (20%) of profile IDs. The first round of
experiments were performed using the 550-titles data produced by the method introduced
in section 1.3.1. A second set of experiments were also executed on the 7000-titles data
set that was produced using the method presented in section 1.3.2.

3.2. Baselines
Two baselines are used as a benchmark to the probabilistic models that are compared in

this work. First, a model that simply predicts the most common job title label called MoPro
for Most probable. Second, a model that predicts the last job title label in the job history
given as input. We call this model PreLa for Predict the last seen job title.

3.3. Naive Bayes
Two variants of the naive Bayes classifier were trained where we approach the problem as a

classification task where the model is given the job history as a set of feature representations.
The goal is to predict the most probable or a set of most likely next career move(s) from
our universe of job titles that have been observed in our dataset. Two different approaches
to represent the job history, explained in the next section, were explored:

1. We treat every job title as an atomic unit. More precisely, we give a numerical ID to
each unique job title, and represent the candidate’s job history by a vector of job title
co-occurrences (example shown in section 3.3.1.1) where for every dimension there
is a value representing the number of occurrences of the associated job title in the
candidate’s job history.

2. We treat the entire job history as a document that we tokenize (into words) and then
construct our co-occurrence vectors.



For both approaches, we exclude the last job experience and use it as our target class.
The class labels are represented numerically as integers. We also experimented with and
without stemming the words. The results are discussed in chapter 4.
We trained two variants of the naive Bayes model. One defines the likelihood p(ti|tτ ) as a
multinomial distribution (equation 3.3.4), which is useful if we encode the job history as a
word (or a job title) count vector instead of a binary vector. And the other defines it as a
Bernoulli distribution (equation 3.3.1), which is used if we encode the job history as a binary
vector (i.e. we are only interested in the occurrence or not of a word (or a job title) without
considering how many times it occurred).

3.3.1. Representation of the Data

We will illustrate how we represented the data set by using our example from chapter 1
presented in table 1. II along with several other candidates. The candidate’s job history in
chronological order is shown in table 3. I

Candidate A associate -> director, continuous improvement -> vice
president mobility solutions -> senior vice president
consumer marketing

Candidate B server -> server -> human resources intern -> human resources
assistant

Candidate C management consultant-> research analyst -> partner

Candidate D bookkeeper -> accountant -> financial analyst -> finance
manager

Candidate E guest service agent -> travel consultant -> travel consultant

Tab. 3. I. Example of job sequences represented in chronological order for
several user profiles from out dataset. The blue text is the prediction target
and the green text is what we condition on.

3.3.1.1. Method #1: Job History as Vectors of Job Title Occurrences

In this case we treat every job title string as a unit and treat our set of job titles as our
vocabulary. Keeping with our example, the ID to job title mapping is shown in table 3. II.

Thus, for this example, our feature vectors would have 16 components, and for each
candidate, their job history would be represented by a vector. For example, the binary
feature vector representing candidate A’s job history would be:

hist> = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
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Notice that in this case whether we represent A’s job history as a binary vector of
occurrences or a vector of word counts yields the same result. If we look at candidate B, we
would get a binary vector that looks like:

hist> = [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

And if we want the vector representing the count of the job title occurrences:

hist> = [0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Titles ID
associate 0
director, continuous improvement 1
vice president mobility solutions 2
senior vice president consumer marketing 3
server 4
human resources intern 5
human resources assistant 6
management consultant 7
research analyst 8
partner 9
bookkeeper 10
accountant 11
financial analyst 12
finance manager 13
guest service agent 14
travel consultant 15

Tab. 3. II. Vocabulary of our dataset when we consider whole job titles (as
they appear in our dataset) as tokens

3.3.1.2. Method #2: Job History as Bag-of-Words

This is very similar to the first method, the only difference is we tokenize the job titles
into words to build our vocabulary V as shown in table 3. III

So in this case, the feature vectors will have |V| = 30 components since job titles composed
of multiple words are broken up and the vector represents the occurrences of every word in
that new vocabulary. And again, the feature vector for candidate A would be:

hist> = [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
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Tokens associate director continuous improvement vice president
IDs 0 1 2 3 4 5
Tokens mobility solutions senior consumer marketing server
IDs 6 7 8 9 10 11
Token human resources intern assistant management consultant
IDs 12 13 14 15 16 17
Tokens research analyst partner bookkeeper accountant financial
IDs 18 19 20 21 22 23
Token finance manager guest service agent travel
IDs 24 25 26 27 28 29

Tab. 3. III. Vocabulary of our dataset after breaking up individual job titles
into the words that compose them.

We might immediately notice how this method might be superior because these are bag-
of-words vectors. For example, two candidates in the engineering field would both have
the words engineer, junior, and senior appear in their past experiences if both end up vice
presidents of engineering (a typical career path), the second method could learn a relation
between these words and that outcome. However, that signal is lost in the first method if we
take a software engineer and an electrical engineer, the similarities won’t be captured in the
feature vectors. We still choose to compare them because, even though naive Bayes doesn’t
take into account the order of the sequences, the recurrent neural network does. This allows
us to compare the behaviour of the models with the same feature vectors.

3.3.2. Learning

Once we have built our vocabulary and we have constructed our feature vectors, we are
ready to learn the parameters for the models and do some inference. We start by setting
some notation to explain the algorithm.

Set of job histories (document) with its associated label H = {(hist1, ck1), . . . , (histm, ckm)}

Set of labels (classes) C = {c1, . . . , cl} ⊂ N

Vocabulary/Set of job titles V = {w1, . . . , w|V|}

Where |V| = n, and hist>i = [xi,1, . . . , xi,t . . . , xi,n] where the indices t ∈ {1, . . . , n} are
the word/job title IDs. We have m documents.
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3.3.2.1. Bernoulli Model

p(histi|cj) =
∏
t

p(xi,t|cj) (By the assumption of independence)

=
∏
t

p(wt|cj)xi,t

(
1− p(wt|cj)

)1−xi,t
(3.3.1)

For the Bernoulli model, the parameters that we need to learn are the class conditional
probability for every word/job title, θt,j = p(wt|cj), and the class prior, θj = p(cj). The
expressions to compute both are given below. In this setup, xi,t ∈ {0, 1} indicates whether
or not the tth word/job title occurs in the ith job history (document) vector.

Let us define the following indicator function

1(i,j) =

1 if ith history vector has label cj
0 otherwise

Then, we define the document frequency that a word t appears in a document (history
vector) of class cj as:

dft,j =
m∑
i=1

1(i,j)xi,t

Finally, we can compute the class conditional probability. We also apply Laplace smooth-
ing which is simply adding a constant value (k=1 in this case) to the numerator.

p(wt|cj) = 1 + dft,j
2 +∑m

i=1 1(i,j) (3.3.2)

For the class prior, we simply count the frequency of the observed classes in our training
data set.

p(cj) =
∑
i 1(i,j)
|H|

(3.3.3)

3.3.2.2. Multinomial Model

In this model, we assume that an experience sequence is a series of independent trials
where we draw words (or full job titles) from the same vocabulary V , and every component
of histi, xi,t ∈ N, is a count of the number of times the word wt occurs in the ith candidate’s
job history. Thus, the vectors histi are drawn from a multinomial distribution such that
histi ∼Multi(∑|V|j=1 xi,j, θ1, . . . , θ|C|). Where,

θj = (θj,1, . . . , θj,|V|) s.t. θj,t = p(wt|cj)
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p(histi|cj) =
∏
t

p(xi,t|cj)

=
∑|V|
t=1 xi,t∏
t(xi,t!)

∏
t

θ
xi,t

j,t

(3.3.4)

Thus, we have |C| × |V| parameters to estimate (θj,t , ∀j,t). We simply use a smoothed
version of the maximum likelihood estimates of these parameters. First, we define another
indicator function.

1(t, j) =

1 if wt appears in a job history sequence with label cj
0 otherwise

θj,t =
∑m
i=1 1(t,j)xi,t + 1∑

i

∑
t 1(t,j)xi,t + |V| (3.3.5)

Where, ∑m
i=1 1(t,j)xi,t is the number of times word wt appears in all job histories of label

cj, and
∑
i

∑
t 1(t,j)xi,t is the total number of word occurrences for a class label cj.

3.3.3. Inference

Once we have learned our parameter estimates from our training data set, we can compute
the class label that maximizes p(cj|histi). To do this, for every job history sequence in our
test data, we compute a m × |C| matrix of probabilities where each row is a vector of
probabilities over the class labels. Note that |C| = 550 in the case of the 550-titles data
set and |C| = 7000 in the case of the 7000-titles data set. After that is done, we find the
row index that has the maximal value as shown in 2.3.6.

3.4. N-gram Models
Inspired by figure 4.1 and as discussed in section 2.4, we also experimented with the

N-gram model that predicts the most probable (based on the sequences appearing in the
training set) next job title to be held by a candidate, given a portion of their previous
history. The model is trained by memorizing the frequencies of the observed N-grams for
N ∈ 2, 3, 4, 5 where N is a hyper-parameter that we can choose beforehand. In other words,
we count the frequencies of every N-gram that appears in our training dataset.

To do this, for a chosen value of N , we counted the number of N-grams in each sequence
individually (i.e. we won’t count the bigram composed of the last element of a sequence and
the first element of the next sequence in the case of N = 2 for example).

After the counting process is done, we test the model by iterating over the sequences
of job titles in our test dataset, hiding the last job title of course. Then, for a given test
sequence, we iterate over all the job title labels and compute the probability of seeing the
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last N − 1 job titles of the current sequence along with the job title of the current iteration
as the N th job title. Finally we pick the title that maximized the probability of the event as
our prediction.

3.5. Neural Models
We experimented with two fundamentally different neural models, the first one is a tra-

ditional recurrent neural network that takes the sequence of job title as input and outputs
the predicted next job. The second model is an encoder-decoder model. The encoder is a
convolutional neural network (discussed in section 3.5.5) that learns an abstract representa-
tion of the skill set for a given profile. This abstract representation (a vector) is then given
to the decoder, which is the same traditional RNN, as the initial state of that RNN instead
of an zero vector initial state as is usually the case.

Initial State h(1)
1 h(2)

1 h(3)
1

Embedding Layer

server server human resources intern

o(1) o(2) o(3)

L(o(1), y(1)) L(o(2), y(2)) L(o(3), y(3))

server human resources intern human resources assistant

Fig. 3.1. RNN diagram showing example
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3.5.1. RNN

The initial network architecture that was trained is similar to the one previously shown
in figure 2.3 that we presented earlier in chapter 2. Figure 3.1 show an example of how we
trained the model. This same network was also used as the decoder network for the second
round of experimentation with neural models where we give the encoded representation of
the skill set, provided by the CNN, as the initial state to the RNN for it to ’decode’ it and
use that information to make better predictions.

As we see in figure 3.1, we feed the RNN a sequence of job titles (server, server, human
resources intern). The first step is to look up the embedding vector for the given job title
at every time step. This is done by the embedding layer. The word embeddings for the job
titles are tuned during training as well in order to minimize the loss L. So the model takes
the embedding vector for each job title and feeds it to the hidden layer LSTM cells (h(t)

i ). We
finally take the output and compute the loss L by comparing the true value to the predicted
value. The gradient is then computed and we apply the backpropagation algorithm to update
the parameters in order to minimize the loss. Note that we only use the embedding layer
when we run the experiments where we want to represent the input job titles as embedding
vectors. In the experiments where we used one-hot encoding or bag-of-words representation,
the embedding layer is instead replaced by a lookup table where we have a one-hot or a
bag-of-words vector associated to each job title.

3.5.2. Input Matrix for LSTM-RNN

Fig. 3.2. Input data matrix. Each row is a vector representation of the se-
quence of job titles for a given user profile. Since the sequences aren’t all of
equal length, we add some padding, represented by the white cells.

For all of our recurrent models, we organize our input data as shown in figure 3.2 where
the gray filled in boxes illustrate a representation of one element of the sequence (job title in
our case) and each row is a candidates job history. They are obviously not of the same length,
but we remedy that by padding the rest of the shorter sequences to match the length of the
longest one and we keep a list of the actual lengths of each sequence. This gives our network
the ability to output zero vectors as outputs and next states after having run through the
entire sequence. Thus, the weights do not affect these outputs and aren’t trained or affected
by them.
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Several representations of the sequence elements were attempted with this first model.
1. One-hot encoding of job titles
2. Each job title represented as a vector of word counts based on the words appearing

in that job title.
3. A normalized average of word embeddings (equation 3.5.1) of the words appearing in

a job title. The word embeddings are based on a pre-trained fasttext model

jobemb = 1
N

N∑
i=1

vi
‖vi‖

(3.5.1)

Where we want to compute a vector for a job title of N words and vi are the word embedding.

3.5.3. Multi-class

In the multiclass approach, we sequentially feed in the job titles (using various represen-
tations discussed later see section 3.5.2) and we compare the output at every time step with
the ground truth y (which is simply the next job title) by computing the cross entropy loss
function that we are trying to minimize. For all of our experiments, we used a projection
layer to learn a richer representation of the input data. Embeddings from a pre-trained
fasttext model were used for the projection layer and were adjusted during training. The
model is shown in 3.1. For this model, the outputs o(t) are |J | dimensional vectors where
J is the set of job titles. Thus, |J | is either 7000 or 550 depending on the data set we are
using. The vectors o(t) can be interpreted as probabilities of each class label given the input
sub-sequence (the inputs of time steps 1, . . . , t− 1) at every time step.

3.5.4. Multi-label

In the multilabel approach, the only difference is that the output layer is a vector of
dimension V , which is the size of the vocabulary after having tokenized into words all the
job title labels and removing stopwords. So, each word that can be part of a job title is now
a label in and of itself. For this method, we apply a sigmoid non linearity as discussed in
section 2.6.4.2

3.5.5. CNN Skill Set Encoder

As previously mentioned, after with the job history alone, we later incorporated the skill
set of a candidate. However, not all user profiles have the same number of skills, so we have
chosen to learn an abstract, high level, representation of the skill set of a user profile by using
convolution over, pre-trained, fasttext embeddings of the words composing the skills.

Figure 3.3 illustrates how this was done, we stack the skill embedding vectors into a
matrix as shown completely on the right. Then, several convolution layers are applied each
with different kernel sizes. In the figure, we are applying 3 convolutions with kernel sizes 2
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Fig. 3.3. CNN encoder that learns an abstract representation of the skill set
of a user.

(red), 4 (yellow), and 6 (green). We slide these windows vertically over the skill embedding
matrix for a given user profile. Each kernel convolution results in a vector on which we apply
a max pooling over the entire resulting vector as for each component of the max pooling
output vector (in essence constructing a new vector by taking the maximum value of each
convolution output). The next step is to apply a dense layer with a relu activation function.
The end result is what we interpret as the high level representation of the skill set which is
fed to the recurrent neural network as the initial state at the very start of the sequence.

3.5.6. Evaluation

To help present the evaluation metrics, let us re-introduce some notation. For clarity and
simplicity, we use a different notation than the one that was previously presented. Let J
be the set of job title labels, j ∈ J a job title label, V the vocabulary or set of words after
tokenizing the job title labels in J into word tokens, and w ∈ V a word from the vocabulary.
We denote by N the number of data samples in the test set.

We define a job title label as the set of the words that compose it, ji = {wi1, . . . , win}
and we say that ĵi = {ŵi1, . . . , ŵin} is the predicted label and ji = {wi1, . . . , win} is the
target (true) label for the ith example from the test set.

To enable us to compare both the multi-class and multi-label approach, we opt for evalua-
tion metrics computed at the word level. First we look at the exact label prediction accuracy,
which means that we look at whether or not the model predicted exactly the same set of
words as the ground truth. We will call this metric the exact metric, computed as shown in
equation 3.5.2

1
N

N∑
i=1

1{ĵi=ji} (3.5.2)
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This metric is essentially equivalent to computing the accuracy on the multi-class ap-
proach. It is equivalent to counting the proportion of test examples that have been correctly
labeled.
Example 3.1. Example of the exact metric

Suppose that we have 3 user profiles for which we’d like to predict the next career move.
Assume that we want the predict the following job titles for each profile:

Candidate 1: software engineer
Candidate 2: chief finance officer
Candidate 3: line cook

However, our model predicted the following job titles:

Candidate 1: software developer
Candidate 2: vice president finance
Candidate 3: cashier

So, using the notation defined above, we have:

The ground truth:

j1 = {software, engineer}
j2 = {chief, finance, officer}
j3 = {line, cook}

And the predicted labels:

ĵ1 = {software, developer}
ĵ2 = {vice, president, finance}
ĵ3 = {cashier}

1
N

N∑
i=1

1{ĵi=ji} = 1
3

3∑
i=1

1{ĵi=ji}

= 1
3

(
1{ĵ1=j1} + 1{ĵ2=j2} + 1{ĵ3=j3}

)

= 1
3 ∗ 0 = 0
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Second, we relax these constraints and we use a more fine grained approach by looking
at the proportion of words that are commonly shared by the prediction and the ground
truth. We call this the strict metric and the precision and recall are computed as shown in
equations 3.5.4 and 3.5.3.

recall = 1
N

N∑
i=1

∣∣∣ ĵi ∩ ji ∣∣∣∣∣∣ ji ∣∣∣ (3.5.3)

precision = 1
N

N∑
i=1

∣∣∣ ĵi ∩ ji ∣∣∣∣∣∣ ĵi ∣∣∣ (3.5.4)

For continuity, we stay with the same example. For brevity, let us only compute the
recall.
Example 3.2. Example of the strict metric

Again, we have the ground truth:

j1 = {software, engineer}
j2 = {chief, finance, officer}
j3 = {line, cook}

And the predicted labels:

ĵ1 = {software, developer}
ĵ2 = {vice, president, finance}
ĵ3 = {cashier}

1
N

N∑
i=1

∣∣∣ ĵi ∩ ji ∣∣∣∣∣∣ ji ∣∣∣ = 1
3

3∑
i=1

∣∣∣ ĵi ∩ ji ∣∣∣∣∣∣ ji ∣∣∣
= 1

3

( ∣∣∣ {software} ∣∣∣∣∣∣ {software, engineer} ∣∣∣ +

∣∣∣ {finance} ∣∣∣∣∣∣ {chief, finance, officer} ∣∣∣ +

∣∣∣ ∅ ∣∣∣∣∣∣ {line, cook} ∣∣∣
)

= 1
3 ∗ (1

2 + 1
3 + 0) = 5

18 = 0.27

A third metric counts how many times at least one of the words in the predicted label
is a word that appears in the target label for each test example. Let us define the following
indicator function:
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1(ĵi, ji) =

1 if ĵi ∩ ji 6= ∅
0 otherwise

We can then write the equation for this metric as shown in equation 3.5.5. Later on, we
will call this metric the loose metric.

1
N

N∑
i=1

1{ĵi,ji} (3.5.5)

Example 3.3. Example of the loose metric
The ground truth:

j1 = {software, engineer}
j2 = {chief, finance, officer}
j3 = {line, cook}

And the predicted labels:

ĵ1 = {software, developer}
ĵ2 = {vice, president, finance}
ĵ3 = {cashier}

First, we see that the indicator function defined above gives us the following results:
1(ĵ1, j1) = 1
1(ĵ2, j2) = 1
1(ĵ3, j3) = 0

thus, the metric is computed as follows:

1
N

N∑
i=1

1{ĵi,ji} = 1
3

3∑
i=1

1{ĵi,ji}

= 1
3 ∗ (1 + 1 + 0) = 2

3 = 0.66

We add another metric for the multi-label model. Since the model outputs a score for
every word in the vocabulary, we can take the first five word labels with the highest score
and compare them with the target label set. If we define the best 5 word labels predicted
by the multi-label model as ĵ5

i we can define the following indicator function:
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1{ĵ5,j} =

1 if ĵ5
i ∩ ji 6= ∅

0 otherwise
The metric is computed as shown in equations 3.5.6 and 3.5.7 and we’ll refer to this

metric as the best 5 metric.

recall = 1
N

N∑
i=1

1(j5
i , ji) (3.5.6)

precision = 1
N

N∑
i=1

1(ĵ5
i , ji) (3.5.7)

This metric is exactly the same as the loose metric except for that ĵ5
i is the set of the 5

highest scoring labels instead of strictly the labels that have a score above a threshold (0.5
in our case).

In the case of the multi-class approach, we compute the accuracy of the models.
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Chapter 4

RESULTS & DISCUSSION

4.1. Introduction
In this section, we present the results obtained form our models and provide an analysis

of the results and explore various ways we can interpret them. We start by presenting
an overview of the results that we obtained on each dataset. We start by looking at the
prediction accuracy for the models we have trained to later select the best performing ones
within each family of models to be compared in more depth. We will attempt to understand
the results of the models and gain some insight about the task.

4.2. Result Presentation

Fig. 4.1. Distribution of the job title strings we use as the prediction targets
for our models. Normalized frequency of the job title strings both our datasets.

A quick overview of the performance of the models that have been trained on the
550-titles and the 7000-titles data sets can be provided by focusing on their accuracy
to help us chose the best performing models on which we will do a more thorough analysis in
order to understand the source of the prediction errors and to gain a better understanding
of how the models learned.



We have discussed the distribution of job titles over the entire dataset in section 1.2.2.
However, we would like to focus on the distribution of the last job titles (i.e. the ones
we are interested in predicting). Figure 4.1 show the distribution of the target labels on
both training data sets after the normalization attempts discussed in sections 1.3 we notice
that the distribution has a very long tail, to this point, most of the job title labels occur
infrequently.

4.2.1. N-gram Models

We start off by presenting the N-gram model results for the 550-titles and the
7000-titles data sets shown in figure 4.2. The figure shows a plot of the frequency of
finding the correct target if we consider the K best predictions for different values of K (1
to 10 best predictions). Looking at the graph for the 550-titles dataset, all the models
seem to be performing more or less the same with the bigram and trigram models beating
the rest albeit by a small margin. The bigram performs best when only considering the first
prediction (top scoring one) but the trigram has a very slight edge when we allow for more
than a single prediction. At first glance it might seem that conditioning on a larger window
of the past history of job titles does not give us more predictive power, but looking at the re-
sults for the 7000-titles, having a larger windows seems to be beneficial as the 5-gram and
4-gram models and trigram outperform the bigram model. This behavior can be explained
by the fact that we see longer job history sequences in the 7000-titles dataset than in the
550-titles dataset. In fact, there are 120 122 job history sequences in the 7000-titles
training set that have a length greater than 5 jobs as opposed to the 550-titles where we
only find 5 646 such sequences because we have less examples as a whole. Since the N-gram
models basically memorize the training dataset patterns, we find that this is a reasonable
explanation.

4.2.2. Naive Bayes Models

Figure 4.3 shows the accuracy of the various naive Bayes models that we trained. Recall
from section 3.3 that we have trained two variants of the naive Bayes model and we experi-
mented by varying the representation of the job history that we give as input to the model
the names we added to the legend in figure 4.3 reflect how the input data is represented. For
instance multi_nb_bow_no_stem would be the multinomial naive bayes on the bag-of-words
representation of the career history and no stemming was applied to the words.

Looking at the figure, the multinomial naive Bayes model trained on job title IDs (i.e.
without tokenizing the job title sequences into words and representing the sequence as a
standard bag-of-words) outperforms all other models on both datasets. As was discussed in
section 3.3 we show the results with and without stemming the words composing the job
titles as well.
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Fig. 4.2. Prediction accuracy of N-gram models by considering top k predic-
tions. The longer N-gram seems to be more beneficial for the 7000-titles
than for the 550-titles which is understandable seeing as we find a larger
number of longer sequences in the 7000-titles dataset

Fig. 4.3. Prediction accuracy of naive bayes models by considering top k predictions

4.2.3. Neuronal Models

Next, we show the results obtained for the LSTM recurrent neural networks using the
multi-class approach (i.e. using a softmax function on the output layer) along with the model
augmented with a CNN skill set encoder (cnn-lstm) in figure 4.4. As previously discussed
in section 3.5.2, a standard recurrent LSTM network has been trained with three different
methods to represent the input data, figure 4.4 shows the results obtained for each method of
representation. As a naming convention, we use the data representation method discussed in
section 3.5.2 for the LSTM-RNN and we call cnn_lsmt the CNN encoder and RNN decoder
model discussed in section 3.5.5.

We learned that the data representation doesn’t give us any significant advantage for this
particular task. However, by representing the job titles as fasttext word embeddings, as
explained in section 3.5.2, we get a slight edge in the performance on both datasets.
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Fig. 4.4. Prediction accuracy for the LSTM RNN model

On both datasets, augmenting the network with a convolution neural network to learn a
representation of the skill sets results in an increase in performance. Although, for the larger
dataset (7000-titles), the performance is the same as without the encoder network, but
with using fasttext word embeddings to represent the words composing the job titles.

4.2.4. Comparing the Models

Finally, we select the best performing models within each model family where we approach
the task as a multi-class problem and we compare their top-K accuracy in figure 4.5. We
also added the two baselines discussed in section 3.2; PreLa which predicts the last job title
label in the input job history and MoPro which outputs the most frequent job title label in
the training set.

The bigram models starts out with an equivalent performance as the encoder-decoder
CNN-LSTM network using fasttext embeddings on the 550-titles, but the CNN-LSTM
network outperforms the other models as we begin to consider the accuracy at K. In the case
of the larger 7000-titles dataset, the CNN-LSTM network is a little behind the 5-gram
model. However, as we increase K to compute the precision at K the neural model becomes
more competitive. N-gram models perform strongly against the multinomial naive Bayes
model on both datasets and the neuronal model. The PeLa baselines performs surprisingly
well, but this is an artifact of the distribution of the datasets. We find that 34.15% of the
job sequences have the same job label for the last two jobs in the 550-titles and 18.87%
of them for the 7000-titles. Figure 4.6 shows how candidates change job positions less
frequently the more advanced in their career they are.

4.2.4.1. Accuracy by Length of Job History

In figure 4.7, we look at the accuracy by length of the input sequence (length of the
given job history we are conditioning on to make a prediction). The figure is overlaid with
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Fig. 4.5. Prediction accuracy for the LSTM RNN model

Fig. 4.6. The frequency that a candidate will change job position when at
the ith position in his career to the next job ((i+ 1)th position) as observed on
the training dataset.

a histogram showing the number of data samples (from the test set) by length of the job
history. There is an upward trend indicating at first glance that for longer sequences, the
models perform better. There are multiple factors that could cause this effect.

First, by looking at the distribution of the sequence lengths in the test dataset overlaid
in figure 4.7, we could argue that because there aren’t enough long sequences in the test
dataset to give us a statistically accurate estimate of real world performance of these models
over long sequences. However, if we look at figure 4.6, we show the frequency of change,
when a candidate moves from a job at a time t to his next job at time t+ 1 in the training
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Fig. 4.7. Prediction accuracy by sequence length of the candidates job history

dataset (i.e. we look at how many candidates change job positions with respect to the length
of their careers). The plot tells us that a candidate tends to stabilize or stay at the same
level or position the further they are in their career.This observation is further strengthened
by the fact that the PreLa baseline shows a clear performance boost as well, indicating
that the chances of staying at the same position increases as candidates progress further in
their career. Consequently, this indicates that what causes a better performance on longer
sequences is that during training, the space of observed job transitions becomes smaller for
longer sequences. Therefore, the models would have a smaller subset of job title labels to
predict from when given longer sequences.

Another factor, is that for longer sequences, the prediction targets are contained within
the set of most frequently occurring job titles in the training data. We see this in figure 4.8.
We take the job title distribution shown in figure 4.1 and overlay it by highlighting the job
titles we want to predict with a red vertical band to better visualize their frequencies. We
did this for job history sequences of different lengths, shown in the figure as the subplots
(see plot titles), for both datasets. We notice that for longer sequences, the target job title
labels (the one we would like to predict) tend to be one of the most frequent job titles in
the training set and for smaller sequences, the possible prediction targets are more evenly
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distributed throughout the observed job titles. So it seems that in addition to having less
movement to different jobs as a person progresses in their career they also tend to converge
to common job titles.

Fig. 4.8. The blue curve is the distribution of the target job title labels on
our training set. The overlaid red highlighting are the target labels in the
test set. This illustrates that for longer sequences (or job histories) the target
label in the testing phase tends to become one of the most common ones.
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4.2.5. Multi-label/Multi-class comparisons

Now, we compare both approaches by first looking at tables 4. I and 4. II for a quick
glance at how the models perform. We are looking at the same metrics that were presented
in section 3.5.6

Tab. 4. I. Comparing metrics for all models on the 550-titles dataset

Metrics Exact Strict Best 5 Loose
Accuracy Precision Recall Precision Recall Accuracy

PreLa
(baseline)

34.05% 44.30% 44.02% N/A N/A 51.26%

bigram 34.97% 45.14% 44.32% N/A N/A 51.54%
Multi NB 32.10% 42.25% 41.00% N/A N/A 48.28%
fasttext CNN-LSTM 35.36% 45.66% 44.68% N/A N/A 51.93%
Multilabel CNN-LSTM 24.53% 38.19% 35.81% 21.28% 58.88% 48.46%

In the case of the 550-titles dataset, the CNN-LSTM using the mutli-class approach
seems to be performing the best on all metrics, in the next section we take a closer look at
the type of errors between the models.

Tab. 4. II. Comparing metrics for all models on the 7000-titles dataset

Metrics Exact Strict Best 5 Loose
Accuracy Precision Recall Precision Recall Accuracy

PreLa
(baseline)

19.31% 30.13% 29.85% N/A N/A 37.87%

5-gram 16.55% 30.00% 28.97% N/A N/A 36.43%
Multi NB 16.55% 28.01% 25.65% N/A N/A 33.49%
fasttext CNN-LSTM 17.70% 29.75% 27.44% N/A N/A 35.65%
Multilabel CNN-LSTM 9.80% 23.27% 19.33% 16.85% 44.91% 35.31%

For the 7000-titles dataset however, the PreLa baseline is the best performing model
followed closely by the N-gram model. It is important to keep in mind that this dataset
contains 14 times more class labels adding to the complexity of the learning task.

4.2.6. Error Analysis

In an effort to understand how the different models behave when trying to make a predic-
tion we start by looking at how much the models are biased towards very common occurrences
of job titles or transitions between a job title to another. Table 4. III shows us the pro-
portion of mistakenly predicted final transition are part of the most frequently occurring
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transitions. To do that, we looked at all the transitions (or bigrams) that are observed in
the training dataset, ordered them by frequency and built a mapping dictionary that maps
every job title (all 550/7000 of them only once) to the most likely next step. Then, we
compare the predicted final job for each example in our test dataset with the most common
next step observed in the training data given the before last job title in the sequence. The
table shows from the errors that a model made, what proportion of these mistakes are the
model predicting the most likely next step as seen in the training set.

Models on
550-titles

Proportion of
Errors

Models on
7000-titles

Proportion of
Errors

PreLa baseline 89.65% PreLa baseline 97.58%
bigram model 95.26% 5gram model 55.31%
CNN-LSTM 64.89% CNN-LSTM 39.20%
Multinomial
NB

49.68% Multinomial
NB

29.39%

Tab. 4. III. How many of the mistakenly predicted job titles were part of
the most frequent job titles strings in outr training dataset.

Table 4. III, shows, unsurprisingly, that when the bigram model is mistaken it is because
the model predicted the most likely next step (95.26% of the time), which is not surprising
given that this is how the model is actually trained. The naive Bayes model and the CNN-
LSTM models aren’t as affected by the distribution of transitions in the training dataset,
however, a larger proportion of errors for the CNN-LSTM are the most common next steps.
This is due to the fact that a recurrent neural network is a sequential model, thus, learns
the distribution of the transitions along with other information that could help the model
discriminate the test examples when predicting the labels. Given these observations, the
more interesting comparisons would be between the naive Bayes model and the neuronal
model.

Next, we look at the accuracy of both models when trying to predict a job title that
occurs more frequently or a job title that occurs rarely. To do that we look at what is
the performance of the models when trying the predict the last jobs that are part of the
top 10%most commonly observed in the training dataset and compute their accuracy at
predicting those, then we do the same for the rest (the tail end of the distribution). Table
4. IV show us these results on the 550-titles and table 4. V for the 7000-titles dataset.
We observe that to predict common job titles the neural models outperforms the rest when
considering the accuracy on the most common labels. However, the neural networks perform
poorly compared to the other models when we look at the least common labels, which is
somewhat surprising.
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Models Accuracy for
Most Common
Labels

Accuracy for
Least Common
Labels

PreLa 35.34% 32.61%
bigram 37.96% 31.72%
CNN-LSTM 40.97% 29.36%
Multinomial NB 40.41% 23.30%

Tab. 4. IV. How many of the mistakenly predicted job titles were part of
the most frequent job titles strings in our training dataset. These results are
on the 550-titles dataset

Models Accuracy for
Most Common
Labels

Accuracy for
Least Common
Labels

PreLa 20.32% 14.44%
5-gram 21.96% 11.72%
CNN-LSTM 22.55% 4.11%
Multinomial NB 21.41% 3.00%

Tab. 4. V. How many of the mistakenly predicted job titles were part of the
most frequent job titles strings in our training dataset. These results are on
the 7000-titles dataset

4.2.7. Predictions Sampled from LSTM RNN Trained on the 550-titles Dataset

In the tables 4. VI, 4. VII, 4. VIII, 4. IX we show randomly selected examples of
predictions made by our models along with the desired target and the input sequence. For
the multi-label model, we show the best scoring labels.

Tab. 4. VI. Prediction samples from the 550-titles dataset

Input student =>coach =>server =>researcher
Target research assistant
PreLa researcher
Bigram researcher
Multi NB student
CNN-LSTM research assistant
Multilabel CNN-LSTM graduate, research, director, teaching, assistant
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Tab. 4. VII. Prediction samples from the 550-titles dataset

Input manager =>manager =>bartender/server
Target bartender
PreLa bartender/server
Bigram bartender
Multi NB manager
CNN-LSTM customer service representative
Multilabel CNN-LSTM administrator, bartender, marketing, manager, server

Tab. 4. VIII. Prediction samples from the 550-titles dataset

Input intern architect =>intern architect
Target architect
PreLa intern architect
Bigram intern architect
Multi NB architect
CNN-LSTM intern architect
Multilabel CNN-LSTM intern, owner, project, associate, architect

Tab. 4. IX. Prediction samples from the 550-titles dataset

Input financial analyst =>senior associate
Target senior associate
PreLa senior associate
Bigram manager
Multi NB senior financial analyst
CNN-LSTM manager
Multilabel CNN-LSTM president, manager, analyst, associate, senior

4.2.8. Learned Job History Context

Finally, we show a projection of the final state vector of the CNN-LSTM network (before
applying the fully connected layer) in figure 4.9. This can be interpreted as the professional
history context that has been learned for a specific user since it’s the last vector that is
fed into the dense layer which does the classification. The projection was produced by the
t-SNE algorithm. User that ends up at the same jobs seem to have similar professional
context vectors. Here we isolated some interesting examples. Chief financial officers seem
to be farther away from other types of executives. We observe the same phenomenon with
software engineers and other engineers.
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Fig. 4.9. Projection of the learned job history context
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Chapter 5

CONCLUSION

In this work, we have explored various methods, inspired mainly by language models, to
model a given candidate’s career progression by leveraging a subset of the professional social
networking site LinkedIn. We have discussed the difficulties in building a reliable predictive
model which are mainly due to the distribution over the different job titles present in our
dataset. We compared neural models with classical language models applied to our problem
and naive bayes methods to surprisingly find that the N-gram models are competitive with
the neural models.

The main obstacle was the normalization of the different job title strings, we’ve applied
some heuristic methods in an attempt to generate a more homogeneous dataset. This prob-
lem still remains to be explored more thoroughly in future work. Potential solutions could
be a rule based approach or a clustering method that could create clusters of job titles that
describe very similar responsibilities. This would us to have more coarsely grained target
labels we could then predict on these clusters instead of the individual job titles. Pushing
this idea a bit further we could also group together the job titles by type like manager or
engineer for instance thus yielding a smaller pool of possible prediction targets. Other in-
formation could be used as additional features such as the schooling of the candidate, which
would have required additional cleaning.

Another, albeit smaller problem we encountered, were the classification conflicts. We
attempted to solve this by adding information about the skill set of each user as a feature
for a decoder-encoder model, but we did not significantly increase performance. Different
methods to augment the input feature vectors to allow the models to be more discriminative
between similar career paths in order to make a more reliable prediction for the next step
such as the education of a given user or the industry they are a part of have yet to be
explored and could be interesting path to follow.

We had 7000 job title for the 7000-titles and 550 job titles for the 550-titles that we
used as labels to train classifiers on, the dataset was very diverse. Considering that we had



a large amount of different job titles to predict from, the models that were trained perform
surprisingly well; we were able to get an accuracy of about 35% on the 550-titles dataset
on the CNN-LSTM model for exact job title matches when the pool from which to choose a
job title has 550 different possibilities. Additionally, when looking at the wrong predictions
of our models, we have that 64.89% and 49.68% of the wrongly predicted labels by the CNN-
LSTM model multinomial Naive Bayes model respectively are part of the 100 most common
job titles. Which is an indication that a significant portion of errors made by these models
was not due to the fact that the frequency of job titles follows a zipf distribution. Which
motivates the need to explore methods to normalize the job titles as discussed above.

Another approach would have been to train a different model for each industry sector.
This would maybe give us better results since it would be several very specialized model.
However, this did not fit within the scope of this project as it would have required some way
to categorize the sector of activities so that we can partition the dataset. We have access
to which industry a given user profile belongs too, but this does not translate well into a
specific sector of activity (software, manufacturing, marketing, accounting etc.) in a reliable
way.
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Appendix A

COMPLETE JOB PROFILE IN JSON FORMAT

{
'_id': ObjectId('52b31a870b045119318b456e'),
'addedValue': 46.0,
'administrativeAreaLevel1': 'CA-ON',
'bbox': {'east': -79.02891052158193,
'north': 43.9788806322227,
'south': 43.42134694377731,
'west': -79.80369786641808},

'city': 'TORONTO',
'collectDate': '2015-08-29',
'collector': ['scrapinghub'],
'countryCode': 'CA',
'createdDatetime': None,
'duplicateMaster': None,
'educations': [{'endDate': '1997',

'name': 'MScE',
'schoolName': 'Stanford University',
'schoolSupplierUrl': 'http://www.linkedin.com/edu/school?id=17926',
'sector': 'Industrial Engineering',
'startDate': '1996'},
{'endDate': '1993',
'name': 'BScE',
'schoolName': 'Princeton University',
'schoolSupplierUrl': 'http://www.linkedin.com/edu/school?id=18867',
'sector': 'Civil Engineering and Operations Research',
'startDate': '1988'}],

'experienceLevelMonthNumber': 217,



'experiences': [{'companyName': 'TELUS',
'company_id': '55df1c8b0b0451dc5c8bac6b',
'function': 'Senior Vice President Consumer Marketing',
'missions': "Support TELUS' continued growth in Consumer markets nationally across both wireless and wireline products and services",
'place': 'toronto, ontario',
'startDate': '2014-05'},
{'companyName': 'TELUS',
'company_id': '55df1c8b0b0451dc5c8bac6b',
'function': 'VP Mobility Solutions',
'missions': 'Support TELUS Consumer segment wireless overall business and marketing strategy, product marketing and pricing.',
'startDate': '2008-12'},
{'companyName': 'Barrick Gold Corporation',
'company_id': '55df1c4d0b0451dc5c8ba610',
'endDate': '2003',
'function': 'Director, Continuous Improvement',
'missions': """Led global Operations Continuous Improvement team aimed

at driving hundreds of millions of dollars of operational
improvement. Pioneer in importing Lean and Six Sigma philosophies
and tools into the Gold Mining sector.""",

'startDate': '2000'},
{'companyName': 'McKinsey & Company',
'company_id': '55df1c5f0b0451dc5c8ba7f9',
'endDate': '2003',
'function': 'Associate',
'startDate': '1993'}],

'id_scrapinghub': '45070289',
'indexCandidate': True,
'industriesId': [42],
'industry': 'Telecommunications',
'industryId': 42,
'language': 'en',
'lastEditedDate': '2015-08-29',
'lat': 43.70011,
'lng': -79.4163,
'personalBranding_claim': 'SVP Consumer Marketing at TELUS',
'personalBranding_pitch': """Seasoned operations and marketing executive known for

creating winning strategies and driving change
in complex organizations.""",
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'privacy': 1,
'professionalData_experienceLevelId': 5,
'relationsNumber': 500,
'skills': [{'name': 'Continuous Improvement'},
{'name': 'Six Sigma'},
{'name': 'Lean Manufacturing'},
{'name': 'Operational Excellence'},
{'name': 'Mining'},
{'name': 'Wireless'},
{'name': 'Marketing Management'},
{'name': 'Strategy'},
{'name': 'Business Strategy'},
{'name': 'Change Management'},
{'name': 'Competitive Analysis'},
{'name': 'Cross-functional Team...'},
{'name': 'Leadership'},
{'name': 'Management'},
{'name': 'Product Marketing'},
{'name': 'Strategic Planning'},
{'name': 'Product Management'},
{'name': 'Team Leadership'},
{'name': 'Business Process...'},
{'name': 'Telecommunications'},
{'name': 'Management Consulting'},
{'name': 'Program Management'},
{'name': 'Project Management'},
{'name': 'Operations Management'},
{'name': 'Vendor Management'},
{'name': 'Business Analysis'}],

'supplierParty': 'linkedin',
'updateDatetime': '2015-12-21 13:38:57'
}
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Appendix B

APPLIED REGULAR EXPRESSIONS

# Remove URLs and/or emails from job titles
pattrn = re.compile(r"[\S]+\.(ca|com|org|fr|gov|net)")
df["transformed"] = df["transformed"].str.replace(pattrn, "")

# Replace .NET by dotnet to eliminate complications when removing periods
df["transformed"] = df["transformed"].str.replace(".net\b", "dotnet")

# Replace periods between word by a space
pattrn = re.compile(r"\.(?=[\w]{2})")
df["transformed"] = df["transformed"].str.replace(pattrn, " ")

# Replace periods in acronyms by empty string
df["transformed"] = df["transformed"].str.replace(".", "")

# Remove parens character
df["transformed"] = df["transformed"].str.replace(re.compile(r"\(.*\)"), "")

df["transformed"] = df["transformed"].str.replace(re.compile(r"co(?!\w)(\s)*-?(\s)*"), "co ")
df["transformed"] = df["transformed"].str.replace(re.compile(r"\bcofounder\b"), "co founder")
df["transformed"] = df["transformed"].str.replace(re.compile(r"\bcoowner\b"), "co owner")

transforms = [
# senior/junior
(re.compile(r'\bsr\b'), 'senior'),
(re.compile(r'\bjr\b'), 'junior'),
# IT
(re.compile(r'\bit\b'), 'information technology'),



# C*O
(re.compile(r'\bceo\b'), 'chief executive officer'),
(re.compile(r'\bcoo\b'), 'chief operating officer'),
(re.compile(r'\bcto\b'), 'chief technology officer'),
(re.compile(r'\bcfo\b'), 'chief finance officer'),
(re.compile(r'\bchief financial officer\b'), 'chief finance officer'),
(re.compile(r'\bchief operations officer\b'), 'chief operating officer'),
# VP
(re.compile(r'\bvp\b'), 'vice president'),
(re.compile(r'\bvice-president\b'), 'vice president'),
#technician vs tech
(re.compile(r'\btech\b'), 'technician'),
#coop
(re.compile(r'\bco[-|\s]op\b'), 'coop'),
#addon
(re.compile(r'\badd[-|\s]on\b'), 'addon'),
# Nurses
(re.compile(r'\brn\b'), 'registered nurse'),
(re.compile(r'\brpn\b'), 'registered practical nurse'),
#T.A.
(re.compile(r"\bta\b"), "teaching assistant"),
(re.compile(r"\bteacher assistant\b"), "teaching assistant"),
(re.compile(r"\bteacher's assistant\b"), "teaching assistant"),
(re.compile(r"\bteacher's assitant\b"), "teaching assistant"),

(re.compile(r"\bra\b"), "research assistant"),
# HR
(re.compile(r'\bhr\b'), 'human resources'),
# Customer service reps
(re.compile(r'\bcsr\b'), 'customer service representative'),
# qa / qc
(re.compile(r'\bqa\b'), 'quality assurance'),
(re.compile(r'\bqc\b'), 'quality control'),
# database administrator
(re.compile(r'\bdba\b'), 'database administrator'),
(re.compile(r'\bdatabase admin\b'), 'database administrator'),
(re.compile(r'\bdb admin\b'), 'database administrator'),
# financial service representative
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(re.compile(r'\bfsr\b'), 'financial service representative'),
# Misspellings
(re.compile(r'\bfreelance\b'), 'freelancer'),
(re.compile(r'\bdesiginer\b'), 'designer'),
(re.compile(r'\bbiomed\b'), 'biomedical'),
(re.compile(r'\bgoverenment\b'), 'government'),
(re.compile(r'\bmachanic\b'), 'mechanic'),
(re.compile(r'\bbusiness owner\b'), 'owner'),
(re.compile(r'\br(\s)*&(\s)*d\b'), 'research development'),
(re.compile(r'\br and d\b'), 'research development'),
(re.compile(r'research/development'), 'research development'),
(re.compile(r'\beditor-in-chief\b'), 'editor_in_chief'),
#eit => engineer in training
(re.compile(r'\beit\b'), 'engineer in training'),
#ESL
(re.compile(r'\besl\$'), 'english as a second language instructor'),
(re.compile(r'\besl instructor\b'), 'english as a second language instructor'),
(re.compile(r'\besl teacher\b'), 'english as a second language instructor'),
(re.compile(r'\benglish as a second language^'), 'english as a second language instructor'),
(re.compile(r'\benglish as a second language teacher\b'), 'english as a second language instructor'),
(re.compile(r'\besl instructor\b'), 'english as a second language instructor'),

(re.compile(r"\binternship\b"), "intern"),
(re.compile(r"\bsummer intern\b"), "intern"),

(re.compile(r"\bis\b"), "information systems"),
(re.compile(r"\bgis\b"), "geographic information system"),
(re.compile(r"\bpr\b"), "public relations"),
(re.compile(r"\badmin\b"), "administrator"),
(re.compile(r"\brep\b"), "representative")

]
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Appendix C

LIST OF TOP 500 JOB TITLES

customer service represen-
tative

owner sales associate

project manager administrative assistant research assistant
president sales representative manager
intern consultant account manager
teaching assistant cashier general manager
software developer assistant manager director
volunteer server receptionist
teacher store manager sales manager
graphic designer operations manager project coordinator
business analyst supervisor account executive
student executive assistant instructor
software engineer accountant office manager
associate customer service vice president
registered nurse principal partner
chief executive officer financial analyst sales
controller project engineer senior consultant
executive director labourer marketing manager
business development man-
ager

branch manager marketing coordinator

web developer office administrator senior project manager
owner/operator founder senior accountant



office assistant financial advisor summer student
staff accountant team leader legal assistant
research associate co founder production manager
analyst bookkeeper designer
barista sales consultant accounting clerk
bartender electrician product manager
program manager managing director quality assurance analyst
human resources manager administrator board member
general labourer waitress cook
member territory manager technician
chief finance officer researcher senior software engineer
realtor senior software developer tutor
marketing assistant brand ambassador editor
hostess programmer senior business analyst
lawyer line cook security guard
human resources assistant photographer coop student
professor programmer analyst co owner
director of operations mechanical engineer lecturer
accounting assistant production supervisor team lead
systems analyst personal support worker senior manager
information technology
consultant

art director program coordinator

buyer developer english as a second lan-
guage instructor

english teacher human resources coordina-
tor

senior financial analyst

assistant professor assistant production assistant
marketing intern senior account manager process engineer
regional sales manager district manager carpenter
network administrator inside sales representative business development
secretary creative director information technology

manager

C-ii



engineer assistant store manager graduate teaching assistant
writer human resources generalist machine operator
shift supervisor coordinator laborer
heavy equipment operator welder event coordinator
producer financial services represen-

tative
retired

operator technical writer service manager
system administrator business manager postdoctoral fellow
design engineer customer service manager security officer
physiotherapist merchandiser mechanical designer
personal trainer technical support recruiter
driver truck driver research analyst
electrical engineer president & chief executive

officer
chief operating officer

production coordinator accounting manager service technician
finance manager graduate research assistant senior associate
independent consultant sales coordinator freelancer writer
millwright sales assistant account coordinator
junior accountant registered practical nurse communications coordina-

tor
accounts payable clerk team member foreman
computer technician clerk systems administrator
sales executive regional manager data entry clerk
director of sales laboratory technician marketing director
operations supervisor senior account executive managing partner
plant manager property manager general laborer
senior analyst inside sales reporter
front desk agent pharmacy assistant articling student
pharmacist account director treasurer
estimator systems engineer registered massage thera-

pist
freelancer graphic designer lifeguard architect

C-iii



data analyst animator investment advisor
director of marketing quality assurance manager field engineer
program assistant senior developer pharmacy technician
contractor graduate student research intern
customer service associate educator logistics coordinator
human resources consultant business consultant customer service agent
actor law clerk owner operator
national account manager application developer web designer
communications officer superintendent office clerk
dispatcher retail sales associate key holder
marketing specialist crew member technical support specialist
occupational therapist technical analyst management consultant
district sales manager director of finance chef
geologist human resources advisor interior designer
artist associate professor principal consultant
engineering manager area manager student intern
marketing consultant project assistant social worker
president and chief execu-
tive officer

assistant controller customer service specialist

system analyst coach advisor
construction manager engineering intern senior engineer
auditor key account manager technical consultant
payroll administrator undergraduate research as-

sistant
field technician

database administrator technical sales representa-
tive

camp counselor

human resources adminis-
trator

information technology spe-
cialist

senior designer

educational assistant freelancer quality control inspector
cashier/customer service pipefitter phd student
lab technician technical support analyst server/bartender

C-iv



self employed technical support represen-
tative

housekeeper

trainee student nurse programmer/analyst
department manager warehouse manager policy analyst
owner / operator delivery driver counsellor
business systems analyst journeyman electrician warehouse worker
executive chef sous chef architectural technologist
practicum student mechanic project leader
substitute teacher cleaner financial services manager
early childhood educator administrative coordinator phd candidate
financial controller banquet server sessional instructor
administration support worker assistant general manager
real estate agent restaurant manager quality assurance
research scientist management trainee vice president finance
trainer intern architect broker
medical office assistant translator structural engineer
communications specialist lead hand accounts payable
communications assistant equipment operator national sales manager
marketing associate purchasing manager electrical apprentice
mortgage agent project administrator peer tutor
marketing board of directors travel consultant
chief technology officer program director copywriter
field service technician information technology an-

alyst
student teacher

maintenance supervisor vice president operations shipper/receiver
network engineer product specialist human resources intern
technical director flight attendant sales clerk
service advisor senior quality assurance an-

alyst
operations coordinator

shift manager account representative waiter
private tutor communications manager director of business devel-

opment
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project lead territory sales manager occasional teacher
front desk receptionist manufacturing engineer quality assurance specialist
quality manager dishwasher client service representative
recruitment consultant camp counsellor safety advisor
production worker painter quality assurance tester
customer service supervisor brand manager senior systems analyst
credit analyst bilingual customer service

representative
guest service agent

landscaper case manager accounts receivable clerk
various accounting technician senior buyer
java developer account supervisor site supervisor
grocery clerk technical specialist human resources
senior graphic designer caregiver chair
maintenance manager student-at-law placement student
network analyst adjunct professor financial service representa-

tive
facilitator sales engineer child and youth worker
system engineer baker information technology

technician
paralegal warehouse supervisor apprentice electrician
administrative support author research engineer
various positions associate lawyer team manager
financial planner operations laboratory assistant
legal counsel financial consultant planner
quality engineer assistant director salesperson
civil engineer research coordinator student ambassador
research technician pharmacy student data entry
outside sales representative nursing student pilot
marketing analyst yoga instructor senior programmer analyst
internal auditor insurance broker volunteer coordinator
quality assurance techni-
cian

independent contractor general accountant

C-vi



corporate controller production engineer owner/manager
commercial account man-
ager

staff nurse youth worker

public relations intern engineer in training library assistant
employee senior auditor hairstylist
area sales manager communications intern assistant project manager
sales and marketing man-
ager

machinist communications consultant

compositor apprentice software designer
visual merchandiser senior project engineer

C-vii



Appendix D

LIST OF BOTTOM 500 JOB TITLES

glap shipper vice president marketing -
first year committee

departmental liaison,
recruitment

packaging solutions [42]manager reiki masterteacher
associate - repair dispatch summer student - entreprise

risk management
senior data technician -
production, operations,
engineering

volunteer coordinator and
event manager

software/product verifica-
tion coop

project manager, npi
projects

sales/training/marketing intake manager,human re-
sources coordinatior

district people manager,
human resources

custom mug designer women’s accessories team
lead/floor supervisor

product marketing, docu-
ment solutions

london health sciences foun-
dation

software developer/software
manager

information technology
client

dotnetwork support at nav
canada

jursi/medical student transportation centre
research assistant

coordinator - formation
training group

chemical team co manager customer service represen-
tative/ check-in agent

customer area sales repre-
sentative

system manager, informa-
tion technology-specialist

certifier - medical laboratory equipment brokerage associate and call
centre representative

registered nurse- primary
care

cea homeschool teacher manager - strategic initia-
tives, superstore/hard dis-
count



field recordist, sound editor,
and library curator

athletic therapist - ubc
football

ghg services manager

manager human resources -
heavy oil

public relation community manager contracted driver

co head counsellor: referees senior regulatory affairs of-
ficer - civil aviation

principal technical special-
ist - contract

employment coun-
selor/recruiter

real-estate evaluator estimator driller c

manager, surveillance
design

director of enterprise
projects

senior mechanical design
student

canadian director, human
resources and communica-
tions

project coordinator, cus-
tomer service, trainer

medical laboratory technol-
ogist/ technician

quality assurance mechani-
cal / welding

research student - field
worker

director editorial strategic partnerships -
legal, business, human
resources

sports editor; opinions edi-
tor; news editor

roulette dealer/pitboss commercial mariner and
wildlife naturalist

director - licensing, technol-
ogy contracts

trade compliance lead game designer/project
manager

janitorial and coverall
repair

business operations analyst
- legal and contracts

charter/founding member procurement maintenance manager

sales representative, quality
control and sales verifica-
tion

patent of high-level techni-
cian, as regards hotels man-
agement

job capitan of construction
team, senior structural de-
signer

interior decorating, land-
scape design

athelet clinicial development nurse

guest relationship executive faculty -cca program java sharepoint integration
specialist - cibc wholesale
portal

associate partner, transfer
pricing services

photo intern at hk magazine java ee gwt programmer
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stylist/colourist/barber event coordinator, public
relations, host

visa officer, department of
immigration and citizen-
ship

specialist representative
cardiovascular

digital tattoo project coor-
dinator

front and kitchen staff

recently retired as director
of administration

avp actuary, corporate actuarial senior web designer/front
end web developer

quality assurance coordina-
tor - finished product exam-
ination

native post secondary edu-
cation counsellor

corporate director hse

environment and cultural
heritage assistant

ptp business process expert crossmark canada merchan-
diser

renewals support adminis-
trator specialist

student- agriculture and
food security

information and technology
service manager

senior category manager,
national wholesale

bénévolat / parrainage pour
étudiants étrangers

parts clerk/customer
service representative

independant contractor -
backend developer

special projects/ purchas-
ing manager

instructor part time
evenings

hardware quality assurance
engineer, mswam test engi-
neering

senior vendor consultant software engineering corporate databases

plaque program coordinator ibm websphere instructor intermediate developer, ap-
plication services

project coordinator, hidden
gems

associate woodworker habitat biologist and field
researcher

clerical night staff leadership, speech communication coach prepress specialist and
colour operator

cashier breaker tree lot sales associate coop buyer/planner for
plant services canada

local store marketing team vice predident information technol-
ogy/web devlopment

business analyst, counter-
party credit risk systems

operation building manager technical services represen-
tative - team lead

D-iii



a licenced automotive tech-
nician

faculty of arts social sciences councillor incident manager - enter-
prise accounts

assembly worker and heavy
machinery worker

supervisor building security senior planner and project
control

director, acute and tertiary
care

marketing supervisor /
route manager

hamilton relocation engi-
neer

online marketing and social
media consultant

nighttime custodial super-
visor / project manager

store manager assis-
tant/contract

administrator-consulting
services

program manager, epidemi-
ology

biostatistics project engineer/sales rep-
resentative

master of physical therapy
intermediate placement

junior assistant claims ana-
lyst

labourer, concrete finisher

chief geologist, west africa manufacturing/applications
engineering manager, cus-
tom rollforming production
services

manager of team develop-
ment

photographer

electrical 2d cad support /
microstation standards co
ordinator

us accounting manager marketing - higher educa-
tion

human resources - employee
relations advisor

subject matter expert -
immigration and ethno-
cultural statistics section

safety haccp compliance coordina-
tor

crisis line intervention spe-
cialist

instructor supply general manager for latin
america and caribbean

loan underwriter/ credit an-
alyst

independent genealogy
researcher

associate producer for wajd:
music, politics

ecstasy

manager, public sector
strategy and operations

freelancer writer, video
producer-writer, communi-
cations consultant

administrator/head of
retail

copy and print operator project manager, canadian
writing research collabora-
tory

ibm toronto lab

st michael‘s college orienta-
tion leader

executive team - operations
director

senior manager, people and
organization effectiveness

D-iv



area sales representattive manager, sales business de-
velopment

information technology
architect / supervisor
information technology
operations

chiropractor/clinical
acupuncture/mechanical
traction/orthotics/bracing/compression
therapy

hse statistician resource techni-
cian/protection assistant

pixels hand finisher/ draper principal, koven associates
senior information technol-
ogy infrastructure analyst /
vmware engineer

registered nurse, team
leader, mood inpatient unit

judge and time keeper

commercial account consul-
tant, marketing coordina-
tor, book keeper

vice president for market-
ing department of univer-
sity art group

bartender in concessions,
banquet server, server

social worker: inpatient
and outpatient mental
health programs

college professor in human
biology

fund raising project man-
ager

independent consultant -
workshop facilitator

lead software engineer / ar-
chitect consultant

fddfdf

homme a tout faire men of
all trade

reseaarch officer business systems analyst,
aml program

scientific board member marine service technition server, office administrator
and event coordinator

patient food supervisor- student and assistant sec-
ondary teacher

partnering committee mem-
ber

mt sheds onsite logistics management team leader toronto con-
sumer call center

casual patient services clerk
- ambulatory care and men-
tal health

marketing and sport
tourism intern

electrical engineer project engineer

chair joint occupational
health and safety commit-
tee, server and devo

process improvement
analyst - supply chain

receptionist/junior ac-
counts payable

D-v



manager - crm development
and implementation

self employed welder and
fabricator/ owner

customer care representa-
tive / technician dispatch

international conference
manager

vegetarian cook manager release lead for td ameri-
trade

personnel registration bmc partner small owner-cleaning
houses

broker, office leasing sales shop supervisor/cnc pro-
grammer

billing specialists

sap quality management ex-
pert

dining room server, lead
hostess

- vice president, global equi-
ties, external management

branch manager/mutual
fund advisor

wayside team lead director of maintenance en-
gineering utilities and envi-
ronment

intern of customs control account manager, technolo-
gies

currently looking for main-
tenance and reliability roles
in vancouver

registered nurse/administrative
nsg coordinator

senior intergration analyst regional client base repre-
sentative

assistant manager - e com-
merce

vice president communica-
tions/corporate services

clinical counseling intern

airframe technician ch 147
chinook helicopters

project management / con-
trols services

ceramic industry consultant

design consultant, project
coordinator

opso engineering student site expeditor/vendor lead

chauffer and lead coordina-
tor

intern at the information
technology department

senior manager - eastern
canada transportation

special projects major accounts administra-
tor

human resources/ finance
and payroll, store opera-
tions and recruitment

dance captain assistant /
events program / specialty
act
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