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RESUME
Cette étude analyse le choix du nombre de retards dans le contexte du test de Saig-
Dickey pour Ia présence d'une racine unitaire dans un modéie ARMA général. Il est démontré
qu'une relation déterministe entre lo nombre de retards et la taille de I'échantilion est dominée

En particulier, on étudie des régles dépendantes des données qui ne sont pas contraintes a
respecter la condition de borne inférieure autrement imposée par Said-Dickey. Le critére
d‘informatiob d'Akaike entre dans cette catégorie. Les propriétés analytiques du nombre de
retards déterminé par une classe de critéres d'information sont comparées aux propriétés de
Ceux basés sur un test sequentiel de la signification des coefficients sur les retards additionne-!s.
Limpact de 'une ou l'autre de ces méthodes sur les propriétés asymptotiques du test de racine
unitaire est analysé et des simulations sont utilisées pour illustrer leyr comporiement distinctit
dans le cas d'un échantillon fini, Nos résultats favorisent les méthodes fondées sur des tests
séquentiels plutot que sur des critéres dinformation, étant donné Qu'elles démontrent moins de
distorsions de niveau et ont des puissances comparables.

Mots—clés : Dickey-Fuller, Said-Dickey, critére d'information, sélection de modéle, général
spécifique.

ABSTRACT

This paper analyzes the choice of the truncation lag in the context of the Said-Dickey test
for the presence of a unit root in a general autoregressive moving-average model. It is shown
that a deterministic relationship between the truncation lag and the sample size is dominated by
data dependent rules which take sample information into account. In particular, we study data
dependent rules which are not constrained to satisty the lower bound condition imposed by Saig-
Dickey. Akaike's information criterion falis into this category. The analytical propenties of the
truncation lag selected according 1o a class of information criteria are compared to those based
on sequential testing for the significance of coefficients on additional lags. The asymptotic
properties of the unit root test under various methods for selecting the truncation lag are
analyzed, and simulations are used 1o show their distinctive behavior in finite samples. Our
results tavor methods based on sequential tests over those based on information criteria since
the former show less size distortions and have comparable power,

Key words: Dickey-Fuller, Said-Dickey, information criteria, order selection, general to specific.






1. Introduction.

Testing for the presence of a unit root in a time series of data has become a common
starting point of applied work in macroeconomics. Except in very special cases, one
often assumes that the series to be tested is driven by serially correlated innovations
and tests for the presence of a unit root using statistics which take serial dependence
into account. One such statistic that has become very popular is the Augmented
Dickey Fuller ¢ test due to Dickey and Fuller (1979) and Said and Dickey (1984).
Their test, hereafter referred to as tp, is based on estimates from an augmented
autoregression. The test, is valid for stationary and invertible ARM A noise functions
of unknown order provided the truncation lag, &, is chosen in relationship to the
sample size, T, to satisfly lower and upper bound conditions.

An issue that arises with the implementation of 1, is the choice of k. Wark of
Schwert (1989), Agiakloglou and Newbold (1991) and Harris (1992) have found the
order of the autoregression to have important size and power implications. This
paper provides a formal analysis of the relevance of k in the test procedure. One of
our objectives is to show, via simulations, that a deterministic rule which relates & to
T is inferior to a data dependent rule which takes sample information into account.
Another objective is to clarify the role of the lower and the upper bound on & in the
limiting behavior of the statistic t,. We study the asymptolic properties of {, and of
the estimates from the augmented autoregression with k chosen using different data
dependent rules. Among these are information based model selection rules (such as
the AIC and the Schwartz criteria), and sequential testing for the significance of the
coeflicients on lags (such as F or ¢ lests). We show that with parameter values for
which size problems surface, information based rules tend to select values of k that are
consistently smaller than those chosen through sequential testing for the significance
of coefficients on additional lags, and the size distortions associated with the former
method are correspondingly larger. Thus, the choice of the data dependent rule has
bearing on the size and power of the test. These issues are of particular relevance in
finite samples.

The paper is structured as follows. Section 2 puts forth the Said and Dickey frame-
work, the role of the upper and lower bound conditions on k, and the implications for
t, with and without the lower bound. Section 3 provides a discussion of procedures
typically used to select k. Formal definitions of ‘deterministic’ and ‘adaptive’ rules



are given. The properties of 1, with k chosen according to information criteria and
sequential testing for the significance of coefficients on lags are analyzed in Sections
4 and 5, respectively. Implications of these results are presented in Section 6. We
conclude with suggestions for procedures to select k and directions for future research.

Proolfs of theorems are given in a technical appendix.

2. The Said-Dickey Approach.

2.1 The Test Statistic.

Suppose the Data Generating Process (DGP) for {y:} is given by

Yo = pYr-1 T Uy, (2.1

1 q
uy = Zﬁiul-i + e+ 29;'€¢-j,
3 i=t

where e ~ i.2.d.(0,02) with bounded fourth moment. Assuming that {u} is station-
ary and invertible with autoregressive and moving-average polynomials that do not

share common roots, {y:} evolves according to
o0 B
Ay = (p— Vs + 2 divei + € (2.2)
i=1

where the coefficients di (i = 1,---,00) are functions of the parameters {ai, 0551 =
Leapd =1, ...»q}. The true order of the autoregression is infinity when g > 0. The
null hypothesis of interest isp=1,in which case a unit root is said to exist and the
DGPisan ARIMA(p,1, q)- Since Ay, = e under the null hypothesis, (2.2) can also

be seen as an autoregression in Ay, augmented by yi-1, Viz.:

o0
By =(p— Ny + S dibye-i+ e (2.3)

=)
When the orders p and g are unknown, as is often the case in practice, Said and
Dickey (1984) suggested approximating the infinite autoregression by a truncated

version whose order is a function of the number of observations, T

k
Dy = doye-1 + Z d; Dye-i T ks (2'4)

=1
where dg = p — 1, and for future reference, we denote d(k) = (dy,- - ,di). The OLS
estimates are similarly defined as dp=p-1 and J(k) = (31,...,3k), The order of
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truncation, &, is assumed to satisfy some conditions to ensure consistency of the least
squares estimates. More precisely, Said and Dickey (1984) assumed

(A1) kis chosen as a function of T such that k%/T — 0 and k — oo as T — oo,

(A2) there exist ¢ > 0 and r > 0 such that ck > T1/7.

Assumption (A1) is based on the work of Berk (1974) who showed consistency of
the parameter estimates in an autoregression of the form (2.4) but without the level
regressor, y;..;, and when the process is stationary. The assumption is imposed to
ensure that the number of regressors does not increase too fast as to induce excess
variability in the estimators. Assumption (A2) is often an overlooked condition. It is
a lower bound condition which restricts & to be at least a polynomial rate in T. 1t
rules out values of k that are proportional to log T". Intuitively, (A2) prohibits & from
being oo small as to provide an inadequate approximation to the true model. It is

more restrictive than
A2 k satisfies £1/2 o dil = 0 and k — oo as T — co.
I=k+1

Assumption (A2') was used by Berk (1974), and, in related work by Lewis and
Reinsel (1985), to show consistency of the OLS estimates in an autoregression applied
Lo a stationary process. Note that (A2') is satisfied for any {ue} thatis a stationary
and invertible ARM A process as longask — o0 as T — oo irrespective of the rate
at which k increases. Of particular importance is the fact that unlike (A2), (A2)
allows k to grow at a logarithmic rate. In Berk (1974) and Lewis and Reinsel (1985),
Assumption (AQ') is strengthened to

(A2")  k satisfies T1/? YRepldl = 0ask - coand T — o

to ensure VT consistency of J(k) Note that (A2”) implicitly rules out & growing at a
log(T) rate and is basically equivalent to (A2). Consistency of J(k) may be achieved
at a rate slower than T if (A?2) is satisfied but not (A2").

The discussion above applies when the DGP is an infinite autoregression, as would
be the case if hloving average components were present. When dealing with a finite
autoregression, (A2") is automatically satisfied. In fact, k need not grow to infinity
50 long as il is selecled to be larger than the true order. Hence, most of the results
below also apply to the case of a finite autoregression. For a more specific treatment
of this case, see Hall (1992). '



Said and Dickey’s result states that when k satisfies {Al) and (AZ), the least
squares estimates d(k) are T consistent, and the coefficient 0n Y1y provides a basis
for testing the unit root hypothesis. The limiting distribution for the statistic on
do = (p — 1) for testing p =1 is such that

t, = ( i ' W(r)dW(r)) ( / ' W(r)"'dr)_l/z, (2.5)

where W(r) is a standard Brownian motion in the space C|0,1]. Percentiles of this
distribution are given in Fuller (1976). The result stated in (2.5) extends naturally to
the inclusion of deterministic components in (2.4). In that case, the Wiener process

is replaced by its detrended counterpart.

2.2 A Useful Result.

Of interest are the properties of the test statistic when k is chosen as a function of
T to satisfy (Al) but not necessarily (A2), since such procedures are commonly used
in applied work as we discuss below. The following Lemma considers the validity of
Said and Dickey’s (1984) result when the lower bound condition (A2) is not imposed.

Lemma 2.1 : Let {y.} be given by (2.1). Lett, be obtained from the truncated
autoregression (2.4) with k chosen such that (Al) is satisfied. i) The asymptotic
distribution of t, continues to be given by (2.5) without (A2). ii) d(k) = (dy, - Ldi),
is not, in general, T consistent for d(k) = (d1,- - ,dx) if (A2) or (A2") does not hold.
In that case, there exists a A, with |d;| < C, M for some constant Cyand0 <A<,
such that A-*(d; — di) = Op(1), (i = 1,2 k)-

Lemma 2.1 states that although \/7—' consistency of the coefficients on Ay, is not
assured without (A2), do is still consistent for dp at rate T, and ¢, attains the same
limiting distribution as defined in (2.5) with Assumption (A1) alone. The proof of
consistency of do and d(k) under (A1) and (A2) is given in Said and Dickey (1984).
The lower bound condition enters the analysis only when considering the properties
of coefficients pertaining t0 Dy Specifically, VT consistency of g(k) requires, from
Lemma 2 of Berk (1974), that

E ((T—k)"‘i{ 5 utﬁ(e:k»et))’) <kT-K) 3 &—0  (26)

j=1 =kl i=k+]



Since (e« —€,) is the error in approximating an infinite autoregression by a truncated
autoregression, it is larger the smaller is k ; the role of the lower bound is therefore
intuitive in this context. Sufficient conditions for (2.6) to hold are provided by either
(A2), as invoked by Said and Dickey (1984), or (A2”), as used by Berk (1974) and
by Lewis and Reinsel (1985). Recall, however, that k growing al a logarithmic rate
is ruled out by either (A2) or (A2").

To see the ramifications of this condition, suppose that {u.} is an MA(1) with
coefficient 6, and, hence, d; = —(-8)'. The condition (2.6) is equivalent to requiring
that log{k) + log(T — k) + klog#? diverges to —co. Now take k = blog(T) for some
constant & > 0. Clearly, ¥*/T — 0 and (Al) is satisfied, but the condition for
VT consistency is (approximately) 1 + blog(6?} < 0. This condition fails when
18] > exp(—1/2b). Hence, for any fixed rule satisfying k = blog(T), there will exist a
range of values of § such that (2.6) does not hold. In that case, J(k) will not achieve
consistency at rate VT, but at the slower rate of TO-92 witha =1+ blog(6?) in
the case of an M A(1) (or, equivalently, |8]-*(d; — di) = O,(1) as stated in Lemma
2.1). As we will see in subsequent sections, this Jogarithmic rate is of special interest.

The result that the estimates for the coefficients on Ay,.; might achieve consis-
tency at a rate slower than VT extends to the case when {u,} satisfies a general
ARMA(p,q) model, using the fact that the coefficients d; are such that |d,| < C, M,
0 < A <1 for some constant C, (see, e.g. Fuller (1976)). The important point is
that (5 — 1) will continue to be order T consistent even without the lower bound
condition. The asymptotic equivalence of t, with and without (A2) follows from this
result, and the result that consistency of the least squares estimates is enough to
ensure the consistency of 5} for o2

Although all estimates from the regression (2.4) will be consistent whether or
not (A2) holds, the lower bound condition on k is important. The coefficients on
the stationary regressors will converge at a rate slower than V7 when the lower
bound condition is not satisfied. Therefore, choices of k& which satisfy (A2) will
yield coefficient estimates on the stationary differences that achieve consistency at a
faster rate, and can be expected to lead to unit root tests having beiter finite sample

properties than those which do not.



3. The Selection of k.

This section consists of three parts. First, in Section 3.1, we use shinulations to show
that any a priori rule which presets the value of k is likely to result in size distortions
and/or power loss unless that value of k happens to be chosen appropriately. This
is so, even if k is chosen to be a fixed function of T. In Section 3.2, we discuss
the specifics of two data dependent rules whereby the relationship between k and T
depends on the given sample of data. In Section 3.3, we further restrict our analysis
to data dependent rules which satisfy (A1) only and analyze the limiting distribution

of 1, when such data dependent rules are used.

3.1 Rules of Thumb.
3.1.1 Fixing k.

Although the asymptotic distribution of {, is derived under the assumption that k
increases al- an appropriate rate with T, the theoretical conditions (A1) and (A2)
provide little practical guidance for choosing k. The common practice is to fix k at
a value that is independent of T. Using {2.1) as the DG P, we considered numerous
parameterizationsof a; and §; with k fixed to be 1 through 10. As the results reported
in Table l.a (mo‘ving average case) indicate, the properties of the statistic can be quite
different depending on the chosen value of k. For example, when 8 = ~0.8, fixing
k to be 4 yields an exact size of 28 per cent instead of the 5 per cent nominal size,
noting that the exact size worsens to 0.939 when 6 is -0.95. However, size distortions
are much smaller the larger is k. Although size distortions are much smaller when @
is positive, t, is oversized when k is odd but undersized when k is even.

Although in autoregressive models (see Table 1.b}) the exact size of the test for
all choices of k is generally close to the nominal size (provided k is larger than the
true order), the choice of k has implications for power. As is evident from Table 1.b,
an over parameterized model is associated with lower power. Thus, while a liberal’
choice of k will reduce size distortions in moving average models, il will, in general,
yield lower power.

We also performed similar simulations for T=200 and T=>500. As expected, power
increases for every value of k in both {he MA and the AR cases. With respect to
the size of the lest, the results for the AR case are qualitatively the same as when

T = 100. For. positive moving average models, the zig-zag pattern of size distortions
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as k alternates between odd and even persists even when T is 500. However, for
negative moving average models, size distortions increase with T for a given value of
k. For example, with 0 = —0.8 and & = 3, the exact size increases from .455 to .598
as T increases from 100 to 500.

3.1.2 Choosing k as a fixed function of T.

Any rule that defines k as a deterministic function of T fits into this category. A rule
often used in unit root tests is due to Schwert (1989). For given constants ¢ and d,

the truncation lag, &, is chosen according to
k= int {c(T/wO)”‘} .

Values of ¢ = 4 and 12 and d = 4 were used in Schwert’s extensive Monte Carlo
analysis. He found that the size of the test is significantly better with ¢ = 12 the
closer the moving average coeflicient, 0, is to —1. Problems encountered in fixing k
arbitrarily will also arise if & is chosen as a deterministic function of T since one is
faced with a given sample size in practice. In general, there is no way to assure that
arbitrarily chosen values of ¢ and d are adequate for a given data series unless ¢ and
d happen to be chosen correctly.

The simulations highlight the fact that conditions on k& appropriate for asymptotic
inference are not necessarily good practical guidelines for selecting £. Indeed, the
value of k which ensures an exact size ‘close to the nominal size and also produces
high power is highly dependent on the actual DGP, i.e. the values of the AR and MA
parameters. Rules of thumb ignore such sample information and is the main reason
why fixing k is to be avoided as a matter of practice.

3.2 Data Dependent Rules.
3.2.1 Information Based Rules.

The order of an autoregressive process is often chosen by minimizing an objective
function which trades off parsimony against reductions in the sum of squared residu-
als. Following Hannan and Deistler (1988), we consider an objective function of the

general form
Iy = log &} + kCr/T, (3.1)

-y



where Cr is a sequence that satisfies Cr > 9, Cp/T — 0. The familiar Akaike (1974)
Information Criterion (AJC}) is obtained as a special case with Cr = 2. Another
popular criterion is that of Schwartz {1978) with Cr = logT. Other criteria such as
the Bayesian Information criterion (BIC) can be shown to fall within the class of /i
For econometric applications, the AIC and the Schwartz criteria are more common

and will be considered in subsequent sections.

3.2.2 Sequential Tests for the Significance of the Coefficients on Lags.

The premise of a sequential test is a general to specific modeling strategy which
chooses between a model with m lags and a model with r = m + n lags. Let d(m,r)
denote the vector of coefficients (3,"+,,~-~ ,2,) obtained by applying OLS to (2.4),
with 87 = (T = 7)™ Tir41 &y and
T
M, = Z (yt-ls Ayi-ry Ay:-r)l(yl—h Ayea1, " Ay:-y)

t=r+l

Let M7 1(n) be the lower right hand (n x n) block of M:1, We define the wald test
for the null hypothesis that the coefficients on the last n lags are jointly equal to 0 as

Jm,r) = dem, v (M7 (@) d(m, r)/82. (3.2)

We now provide a formal definition of the procedure for choosing % from a set of

possible values {0,1,---, kmaz}, where kmaz is selected a priori.

Definition 3.1 : The general to specific modeling strategy chooses k to be either i)
m + 1 if, at significance level a, J(m,r) is the first statistic in the sequence J(i,1+
n), {i = kmaz—1,---, 1}, which is significantly different from zero, or i) 0ifJ(i,i+n)

is not significantly different from zero for all i = kmaz — 1, kmaz ~ 2,0, 1

The idea is to start with the most general model with kmaz+n— 1 lags and test
if the coefficients of the last lags are significant. 1f they are, k = kmaz; otherwise
the next step is Lo estimate an autoregression of order kmaz — 2 +n and perform the
joint test again. This procedure is repeated until a rejection occurs or the sequential
testing leads to the boundary of zero lags. This procedure has been analyzed by Hall
(1992) in the case of a pure autoregressive process.

The J(m,r) statistic specializes to a t statistic on the last lag if the test is per-

formed with n = 1. This special case of the general to specific procedure has been
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used by Perron (1989). See, also, Perron (1990) and Perron and Vogelsang (1992) for
simulation results for unit root tests allowing a break in the trend function and the
noise {unction assumed to be an ARM A process. Although in principle, one can start
with kmin lags and gradually increase k until the next included lag is insignificant,
Hall (1992) found that a specific to general approach is not, in general, asymptotically
valid in the pure AR case. He also found the finite sample properties of statistics as-
sociated with a specific to general approach Lo be inferior to those based on a general
to specific scheme in more general ARM A models. In subsequent analyses, only the
general Lo specific approach will be analyzed.

3.3 Rules Satisfying the Upper Bound Condition.

We now restrict our attention to deterministic and data dependent rules which satisfy
(A1). Formal definitions for the rules considered are as follows.

Definition 3.2 : Deterministic Rules. Lel ¥ = (E,,%;,...) be the set of points
in Ko = XF2157, where St = {0,1,---,[F/2]}. with kr — oo and BT — 0 as
T — co.

Simply put, K is the collection of deterministic rules that satisfy the conditions
of Lemma 2.1. Our definition of deterministic rules is adapted from Eastwood and
Gallant (1991) who studied the selection of the truncation point in a univariate Fourier
series expansion fitted by least squares. In our context, Schwert’s rule of thumb is,

for example, an element of k.

Definition 3.3 : Adaptive Rules. An adaptive truncation rule is a sequence of
random variables (., = (E,,Eg,u -). We say that an adaptive truncation rule maps
into the set of deterministic rules I if there exists a deterministic rule ky such that
K= (1:-,,752, ---) is a subset of I, and ET —kr . 0.

The following Lemma considers the limiting distribution of , when it is based on

adaptive rules that map into the set of deterministic rules K.

Lemma 3.4 : Suppose we have an adaptive truncation rule K,, = (k, By, ...) that
maps into the set of deterministic rules I stated in Definition 3.2, and let z,(ET)
be the t statistic for testing p = 1 in regression (2.4) estimated with ky lags. Then
to(kr) = 3 W(r)aw(r) (3 Wiryiar) ™"

9



The proof is analogous to Theorem 5 of Eastwood and Gallant (1991) and is
\herefore omitted. The importance of Lemma 3.4 is that the limiting distribution of
{, is the same whether one uses a deterministic rule in K or an adaptive rule that
maps into K. The issue then becomes which of the selection procedures deliver better
finite sample properties in testing for the presence of a unit root.

Deterministic rules are useful for analytical purposes since they help establish
the properties of £, under adaptive rules, However, as seen from the results reported
earlier, size and power will be affected whenever k is fixed in a deterministic way unless
the rule happens to be chosen correctly. Adaptive rules take sample information into
account and are Lherefore likely to dominale deterministic rules. In the next two

sections, our analysis will be further restricted to adaptive rules only.

4. Adaptive Rule 1: Information Criteria.

This section presents properties of % and t, when an information criterion as defined
in (3.1) is used lo select the truncation lag in regression (2.4). A related issue has
been studied by Hannan and Deistler (1988) in the context of stationary variables
with the autoregression

k

I, = Zéixc-i + €. (4.1

=1
The next Lemma summarizes a result of theirs that is relevant to our analysis.
Lemma 4.1 : Letz, bea stationary and invertible ARM A process with finite fourth
moment and 5= (T — k)™* ST 41 € with Eu the OLS residuals from regression
(4.1). Let Cr be a function of T such that Cr >0 and Cr/T — 0, and kr =argmin

k

(log(5?) + kCr/T)- Then limy—ookr/blogT = 1 for some constant b.

The result that the AlIC with Cr = 2 chooses a value of k that is proportional
to logT in a univariate Gaussian ARMA model is due to Shibata (1980). Hannan
and Deistler (1988) provide a unified asymptotic framework to show that the feature
of logT proportionality is generic lo information based rules applied, in particular,
to stationary and invertible ARM A models. The logarithmic rule also extends to
multivariate and/or ARMAX models as Hannan and Deistler (1988) have shown.
Their result is useful in studying the properties of %7 within the context of an aug-
mented autoregression of the form {2.4) derived for an ARIMA (p,1,q) process. The

following Lemma shows that their result extends to this latter case.

10



Lemma 4.2 : Let y, satisfies (2.1) and define 3 = (T~ k)-? DA €%, where &,
are the least squares residuals from the augmented autoregression (2.4). Let Gl =
(T~ k) 'L, & where €k are the OLS residuals from the restricted regression
(4.1) with 2, = Ay,. Then, 6% = 81+ 0,(T=/2) provided k satisfies (A1).

Lemma 4.2 implies that the difference between the residual sum of squares from
an augmenled autoregression and a restricted one is 0,(T=1/2) uniformly in k. Hence,
the information criteria and the corresponding values of k that minimize such criteria
are asymptotically the same in both cases. Thus the AIC and Schwartz criteria,
when applied to the augmented autoregression defined in (2.4), also select truncation
lags that are proportional to log T under the null hypothesis of a unit root. The
implication for the unit root test is summarized in the following Theorem.

Theorem 4.3 : If & js selected using an information criterion in the class I as
defined in (3.1), then t, has a limiting distribution defined by (2.5) under the null
hypothesis of a unit root.

The order of truncation selected by the AJC or the Schwart: criteria is propor-
tional to log T Since such a rule satisfies (A1) that &%/T — 0 and £ — o as T — oo,
it is also an adaptive rule that maps into the set of deterministic rules K. The result
therefore, follows directly from Lemmas 2.1 and 3.4. Theorem 4.3 still holds when
the DGP is a finite instead of an infinite autoregression provided the information crj-
terion does not asymptotically underparameterize the model; see Hall (1992). Note,
however, that the information criteria is not an adaptive rule that maps into the set
of deterministic rules which satisfy both (A1) and (A2).

4.1 A Special Case: An MA(1).

Since the truncation lag selected from regression (2.4) when the series is an ARIMA
(p,1,q9) and the truncation lag selected on the basis of (4.1) when the series is a
stationary and invertible ARM A process have the same asymptotic properties, we
cah, for simplicity, use the restricted framework to provide more insight about the
properties of the truncation lag selected using information criteria. Specifically, we
consider an M A(1) process defined as:

fod
=€+ 0ey = ZQS:'I:--‘ + e,

i=1

11



where ¢; = —(—0)'. The true order of the autoregression is infinity for all values of

0 # 0. The estimated regression is

k
Iy = Z¢£It~i + €

i=1
It is straightforward to show that 5% is approximately related to k by
-1
52 = o2(1 - 624D (1- 070+0)
Minimizing the Akaike information criterion, log & + 2k/T , the solution is asymp-

totically equivalent to:
HAIC) = (log(T) + logl(6” — 1) log 6?] - log2) (llog 6°1)7"- (4.2)

Table 2 presents the approximation to ‘IE(AIC) provided by (4.2) for various values
of |0] and T. For small 0, ¢; is small and declines geometrically as 1 increases.
One might then expect the AJC to chose a low order since extra paramneters have
little information content but reduce the degrees of freedom. Table 2 shows that,
indeed, for |0} < 0.4, low values of k are selected by AIC. However, as 10} gets
large, ¢; will remain non-negligible even for i quite large. Increasing the length of the
autoregression should, in principle, improve the approximation to the DGP. However,
the k selected by AIC only increases at a logarithmic rate. Except when T becomes
impracticably large, the AIC will abandon information at large lags in favor of a very
parsimonious model. Hence, in practice, one can expect the chosen k to be no higher

than five even with T as large as 500 when |8} is close to 1.

5. Adaptive Rule 2: Testing for the Significance of Coefficients on Lags.

This section analyzes the properties of k and t, when % is chosen by the J(m,r)
statistic described in Section 3.2 to sequentially test for the significance of coeffi-
cients on additional lags. The following Lemma is useful in establishing the limiting

distribution of ¢,.

Lemma 5.1 : Let {y:} be generated by (2.1) and suppose that Assumplions (A1)
and (A2') hold. Let d(k) be obtained from the augmented autoregression (2.4) and
let J{k — n,k) be as defined in (3.2). Then J(k=n,k)is asymptotically distributed

as x? with n degrees of freedom.
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Berk (1974) proved consistency and asymplotic normality of the coefficients in the
restricted regression under (A1) and (A2”). See also Lewis and Reinsel (1985). The
crucial element in the proof of Lemma 5.1 is the fact that when {Oy,} is a stationary
and invertible ARM A process, the coefficients d(k) converge to 0 at a rate that yields
an asymplotic equivalence between the Wald test that J(k) = d(k) and the Wald
test that J(k) = 0. Indeed, Lemma 5.1 requires Assumption {A2") to ensure that
ﬁd(k) — 0, which, in turn, ensures agymptotic normality of \/Tg(k).

5.1 A Special Case: An MA(1) and the ¢ Test.

We now specialize the sequential procedure described in Section 3.2.2 to the case
where n = 1. The square root of the statistic J{k — 1, k) then simplifies to a ¢ test

for the significance of the coefficient on Lhe last lag in an autoregression of order k:
tz = VTd(G2T M (1))~1/2,

The sequential procedure chooses a value of & if t; issignificant at some pre-specified
level a in an estimated autoregression of order k, while the t-statistics i3 areinsignif-
icant in estimated autoregressions of order k for all k in the range (k, kmaz]. We can
show that if Ay, is an MA(l),ile. Ay, = e, + be,.q,

-1t
Jk ~ 0'&—-1(] - 02)(1 - 02(k+l)) ,

-1/2
t;. ~ ﬁok—l“ _ 02)((] - 92):)(] - 92(k+2)))

The above results show that both {5 and VTdy will converge to zero if k increases
at a polynomial rate. Given the result of Lewis and Reinsel (1985, Theorem 4) that
o4 = (de - dx)/(5EM (1)) is asymptotically distributed N{0,1) if k increases
at a polynomial rate satisfying (A1) and (A2"), t;, can be shown to have the same
asymptotic distribution under Lhese restrictions on the rate of increase of k.

It is of some interest to note that the results above also imply that a specific o
general procedure starting from any lower bound kmin that tests for the significance
of the coefficient on the last lag would select a % that increases to infinity at a
logarithmic rate when {Ay,} contains a moving average componém. Hence, such a
specific to general procedure would have the same asymptotic properties as a selection

rule based on an information criterion.
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Note that the asymptotic normality result of Berk {1974) and Lewis and Reinsel
(1985) used to prove Lemma 5.1 requires that % increases at some polynomial rate, or
at least at a rate that ensures (A2") is satisfied. A logarithmic rate is not sufficient.
We now show that the truncation lag selected by a general to specific procedure will
be of an order higher than logT provided kmaz increases at a rate faster than log 7"

In fact, the selected truncation lag will grow at the same rate as kmaz.

Lemma 5.2 : If E is selected by means of the general to specific strategy described
in Definition 3.1 and kmaz increases at a rate such that (Al) and (A2') are satisfied,

then k increases at the same rate as kmaz .

The intuition behind the result stated in Lemma 5.2 is as follows. Under the
assumptions of Lemma 5.1, J(k=n,k)1s asymptotically distributed as a x? random
variable with n degrees of freedom. The limiting probability that J(k — n,k) is
statistically significant is therefore o, the size of the test. For a given k < kmaz to
be chosen, it must be the case that all prior statistics in the sequential procedure
{(J(i - n,i); i = kmaz — 1,...k~1) are statistically insignificant. This event occurs,
for large samples, with probability ol ~ cx)""‘““’z. Since k < kmaz and kmaz — oo,
this probability vanishes as T — oo unless % increases at the same rate as kmaz.

The importance of Lemma 5.2 s that if kmaz is chosen to increaseat a polynomial
rate, then % will also increase at a polynomial rate. This implies that Assumption (A2)
or (A2") can be satisfied with judicious choice of kmaz, thereby ensuring the results
of Lemma 5.1 hold. Lemina 5.2 allows us to state the following Theorem concerning

the limiting behavior of the unit root test under this truncation lag selection rule.

Theorem 5.3 : If kmaxz satisfies (Al) and (A2") and % is chosen from the general to
specific sequential procedure stated in Definition 3.1, then t,,(l?:) has the same limiting
distribution as (2.5).

Since k maps into a deterministic rule in the set K by Lemma 5.2, the result
follows from Lemma 3.4. In fact, % maps into the set of deterministic rules thal
satisfy (A1) and (A2) since % increases at a polynomial rate under the conditions of
Theorem 5.3.
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6. Finite Sample Simulations.

The results of the preceding sections can be summarized as follows. An information
criterion will choose values of & that are proportional to log T, a rate ruled out by
{A2). However, the k selected using the J(m, r) statistic to test for Lhe significance of
lags will increase at the same rate as the prespecified kmaxz, itself increasing at a poly-
nomial rate. Because a logarithmic rate of increase is slow compared to a polynomial
rate, an information criterion will choose values of & that are generally much smaller
than a general to specific ¢ test, for example. Although the log proportionality rule
might fail the lower bound condition, the limiting distribution of 1, is unaflected. In
such a case, the estimales of the coefficients on Ay;.; in the augmented autoregression
will be consistent at a rate slower than VT for some DGPs. In the MA(1) case, a
large value of 6] is more likely to be associated with a slower rate of consistency for
c?(k). We now examine the implications of these results in finite samples.

The results reported below are based on 5000 simulations for different values of
0; and a;. For each parameterization, the selected values of & and the corresponding
values of ¢, are recorded. The simulations were performed on a 486/25 MHz PC
with code compiled using the Borland C (Version 3) compiler. Random numbers are
generated using the ranl() function from Press et al. (1988) with time (in seconds)
as seed. We considered T = 100, 200, and 500. For a given T, different values for
kmaz and kmin are examined. We focus on results for T = 100 with kmaz = 10
and kmin = 0 without loss of generality, and discuss results for other configurations
where appropriate. The complete set of results is available on request.

We select, for presentation, results based on two information criteria: the AJC
and Schwartz. The results for the BIC and the Hannan — Quinn criteria show no
appreciable difference. For the general to specific strategy, we considered the t as well
as the F test, but only present resuits for the ¢ test at the § and the 10 percent levels.

In general, a tighter model is selected using a lower significance level.

6.1 Frequency Distribution of k.

We first examine the number of times & = ; (i =1,---,10) is being selected by each of
the procedures during the 5000 simulations. Reported in Table 3.a {moving average)
and 3.b (auloregressive) are the frequency counts. As we can see, both information

criteria consistently select values of k that are less than three. While the ¥'s selected
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for autoregressive models seem appropriate given that the DG Ps considered are of
order no higher than four, the information criteria yield very parsimonious models
when the DGP is driven by a moving average process. Although the true order of
autoregression is infinity in those cases, the AIC and Schwartz criteria continue
to choose values of two and three for k. When 8 is large, the coefficients in the
autoregression die off only slowly. Truncating the autoregression at a low order will
yield a more parsimonious model but at the loss of information. The cost of parsimony
will be judged in terms of the size and power of t, in the next subsection.

In the moving average case, {he values of k selected by a general to specific mod-
eling strategy are quite evenly distributed over the range {2, kmaz = 10}, with some
imass concentrated at k = 1. This result follows directly from Lemma 5.1. A further
implication of the Lemma is that the chosen value of k will be closer to kmaz the
more liberal is the size of the test. Thus, the frequency of k chosen to be five and
above is higher under the 10 percent t test than under the 5 percent { test.

6.2 Size and Power.

Having confirmed that information criteria choose values of k that tend to be small,
we now proceed to show that in many cases, the method used to choose k can have size
and power implications. The results are reported in Tables 4.2 and 4.b for T = 100,
with the power of the test evaluated at p = 0.95 and 0.85. Turning first to moving
average models (Table 4.a), we see that for positive values of 6, the size of the test
is similar for all methods of selecting k. When 8 = 0.8, the 10 percent 1 lest picks
& to be five or smaller 40 percent of the time, whereas the AIC picks k to be in the
same range twice as often (See Table 3.a). Although such variations in the choice of k
appear to yield small size differences, power is slightly higher the more parsimonious
is the model. It is well known Lhat the Schwartz criterion imposes a heavy penalty
for over parameterization. Thus, for positive moving average models, the Schwartz
criterion tends Lo yield higher power for a given size.

The result that stands out in Table 4.a is the large size distortions when 8 is
negative. The problem of size distortion with unit root tests in the presence of
negalive moving errors is well documented (e.g., Schwert (1989)). Although Schwert
used deterministic rules to select k, he also noted that the exact size depends on the
choice of k. Our results confirm that the more conservative the criterion for selecting

ihe truncation order, the larger the size distortions associated with t,. For example,
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T

size distortions associated with the conservative Schwartz criterion are significantly
larger than those associated with the 10 percent t test, the most liberal of the criterion
considered. From the frequency counts, we see that the Schwartz criterion chooses
values of & less than three 90 percent of the time, whereas the 10 percent t test chooses
values of k greater than three with a probability of 0.9,

Table 4.b indicates that for autoregressive models, all methods produce estimates
of k that are as large as the true order with high probability. Accordingly, all selection
procedures produce an exact size that is close to the nominal size. The 10 percent
¢ test tends to have lower power, however. According to the frequency counts, the ¢
test tends Lo over parameterize autoregressive models. For example, the 10 percent
t test selects k greater than four over 40 per cent of the time when the DGF is a
fourth order autoregression. Thus, under parameterization is associated with larger
size distortions and over parameterization with power loss when T = 100.

The size of the test for moving average models with 7 = 200 are reported in
Table 4.c. Note that size distortions in negalive moving average models persist as T
increases. The Schwartz criterion continues to be associated with significantly larger
size distortions than the 10 percent t test. However, in cases for which size distortion
is not an issue, as in auloregressive models, the discrepancies in power across selection
procedures vanish almost completely when T = 500. We report, in Table 4.d, the
size and power for autoregressive models at T = 200. Compared to the results for
T = 100, power is higher throughout, and the differences in power across selection
procedures are smaller. Thus, discrepancies in power across selection procedures are
small for typical sample sizes encountered in economic analyses, but size distortions
are not. At or an F test therefore has an advantage over information criterion in

that they produce tests with more accurale size without much loss of power.

6.3 The Choice of k and Size Distortions.

When 8 in the noise function is large and negative, y, is close to having a common
factor and behaves more like a white noise than an integrated process. The asymptotic
properties of the normalized least squares estimator in this case have been shown in
Nabeya and Perron (1992) and Perron (1992) to be different from those derived under
standard assumptions. In view of those results, one would conjecture that there is
also a discrepancy between the finite sample distribution of ¢, and its approximate

distribution as defined by (2.5). But, as we can see, the extent of size distortions
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varies with k. This suggests that k affects the adequacy of (2.5) as an approximating
distribution. The question is, how?

Using a local asymplotic framework, Pantula (1991)parameterized 0as —{1-T"7)
and showed that the limit of {, is given by (2.5)enlyif 0 <7 < 0.25, but diverges to
oo at rate TPk if 025 <7 < 0.625, with limiting distribution given by:

KT, = — (jol W(r)?dr)'l . (6.1)

Since k = O(T*) by assumption, and (6.1) is valid for 7 > 0.25, the limiting
distribution of ¢, will always tend to —oo. But, the larger is the rate of increase of k,
ihe slower the rate of divergence, and the smaller are the discrepancies between the
exacl and the approximate distributions of t,. Consequently, even though 7 is 0.35
when T = 100 and 8 = —0.8, size distortions are noticeably smaller at larger values
of k when critical values from (2.5) are used for hypothesis testing.

To reinforce the importance of a large k when 0 is large and negative, we report,
in Table 5, the size of the tesi at selected parameter values for T = 200 and T = 500
when a different lower bound, kmin, is prescribed. We set kmin and kmaz to four
and twelve when T = 200, and to six and fourteen when T = 500. Evidently, the
larger is kmin, the larger is k, and the smaller are the size distortions.

The importanceof kmin and kmagz in all selection procedures must be emphasized.
I we raise the value of kmin and let the information criteria select k from the range
[kmin, kmaz], and kmin > log T, the criteria will choose kmin in large samples since
log T is outside the permissible range. Loosely speaking, the choice of kmin can be
seen as a practical way of imposing the lower bound condition {A2). On the other
hand, it is the choice of kmaz that is more important in a general to specific model
selection strategy. By Lemma 5.1, the test statistic will choose k € [kmin,kmax]
with declining probability as k moves away from kmaz. Thus, the larger is kmaz, the
higher the probability that a Jarger k will be chosen. The larger is k, the betler the

size, at the expense, however, of power losses.

7. Conclusions.

This paper has analyzed issues related to the selection of the truncation lag in unit
root tests of the type proposed by Dickey and Fuller (1979) and Said and Dickey

(1984). We have focused on the implications of the lower bound condition on {,
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used in Said and Dickey (1984). Procedures which do not satisfy this condition tend
Lo select truncation lags that are too smal] for some parameter values. Information
based rules such as AJC and Schwartz fit into this category.

A general feature of our results is that an overly parsimonious model can have large
size distortions, but an over parameterized model may have low power. I]ov»;ever, the
size problem is more severe than power loss in the sense that discrepancies in power
across selection procedures diminish as T increases, but size distortions persist even
for large sample sizes for some methods of selecting k. In this regard, a ¢ or F test
for the significance of lags will have an advantage over information based rules such
as the AJC since they produce tests with more robust size properties across models.

There remains, of course, several avenues for further research that follow from
the framework used in this paper. First, given the problems associated with approx-
imating a general ARM A process by a finite autoregression, one might be tempted
to construct unit root tests from an estimated ARMA(p,q) process whose order is
selected using a consistent procedure, such as the one discussed in Dickey and Said
(1981). However, in view of the problems associated with maximum likelihood esti-
mates of processes with moving-average components, it is not evident that the latter
method can provide statistical improvement. A comparison of the various estimation
methods in the context of unit root tests would be useful.

The second is an extension of the results to the multivariate case whereby vector
auloregressive processes are used to approximatle more general multivariate linear
processes. While one expects, and preliminary work suggests, the same qualitative
results to hold, the analysis is not a straightforward extension because of possible
cointegration among the variables.

The third topic concerns the issue of optimal lag selection. Our analysis has
concentrated on two particular classes of lag length selection that are widely used in
practice. None of these need be optimal. The difficulty, however, lies in finding the
proper way to assess the procedures for selecting k since the purpose of estimating
these autoregressions is not in obtaining a particular estimate that is as precise as
possible, bul rather the unit root test itself. The optimality criterion therefore needs
to be based on an appropriale trade-off between type I and type 11 errors in the

application of the unit root test.
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Appendix

The following notation will be used in this Appendix. Unless otherwise stated, we
shall let C; be an arbitrary constant (not necessarily the same throughout). Let Dy =
diag{(T~ k)", (T—k)-1/2, e (T=k)" Y2} Ul = (e-1, X, X! = (Ay,_y,. .. yAYek)
Let My = Z;r:k“ UU{ and Ry = Z;’;k“ X X{. Thus,

Ry

]

T
3 (By-1, 89122, Bye) (Byecy, Dyes, ..., Ayiy),

t=k4 1

and )
(T = k)T v2, (T— k)Tl v X]

(T=k)22 8l v X, (T — k) Ry

DrMiDr =

Note that from Said and Dickey (1984), the limit of DyM, Dy is block diagonal with
the two blocks corresponding to the limits of (T~ k)2 ):,T:k“ yi_, and (7= k)-1R,.
We also let M{'(1) be the first diagonal element of the matrix M7, and M(k) be
the lower right hand & x k block of Mt

For a matrix C, the matrix norm is defined by IC|| = supPy.u<; ICz ||, where
for a vector z, ||z]| = (2'2)'/2. Using this norm, Lemma 3 of Berk (1974) showed
that K'/2)(T — k)R;' = T=Y| — 0, where I'is a ¥ x k matrix with typical elements
Tij= E(Aye-idy._;).

Proof of Lemma 2.1

The proof for consistency of the least squares estimates in the augmented au-
toregression (2.4) is given in Said and Dickey (1984) and will not be repeated here.
It is nevertheless important to point out the two steps involved in. the proof. The
first step is to show that E(DrMyDr)=t — M- converges to 0 for some limit-
ing block diagonal matrix M. For this step, Assumption (A1) is sufficient and the
argument follows from Lemma 3 of Berk (1974). The second step is to show Lhat
I1Dr T, Uiewll = O,(k/?). The combination of the two steps imply Tdy = 0,(1),
VT(d; - d;) = Op(1) (i = 1,...,k), and %, — o2. Assumption (A2) is used only in
this second step, and more specifically, to ensure that

i=1 \t=k41 i=k1

2
E((T—k)"‘i({: Ay:_,(e.k—e.)) ) SCKT-k) Y d =0, (A1)
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as T — oo for some constant Cy. Note that (A2") is also enough to guarantee that
{A.1) holds. However, (A.1) is sufficient but not necessary to ensure that {, has the

limiting distribution given by (2.5). To see this, we first express {, as:

-1/2
t=k+41

T
t, = ((T— K y) (33T - 2 )

From Said and Dickey (1984}, T-UM) = o2 [ W(r)dr provided (A1) holds.

Consider now the numerator:

T T T 00
(T - k)“ Z Yt-1€thk = (T - k)" Z Y160t (T - k)—‘ Z Yi-1 Z d;Dyei-
k41 t=k+1 k4] i=k4]

(A2)
It is straightforward to show that (T =K' C i yeee = o? [} W(r)dW(r) pro-
vided k — oo and k/T — 0 as T — co. Consider now the second term in (A.2). We

have:
EWT - k)™ S Vet e Dyl
= ik ):?ik-n did:‘(T - k)'z }:"rzk“ Z:{:k«bl Elye-1Dye-i3 s—lAys—j]
<O TR G R 5 S C1T%en NE R N
= a2y M) = C1A*/(1 = X)? = 0 as k — co.

The first inequality follows from Said and Dickey (1984, p.601) who state that there
exists a constant C; such that (T — ARG D DO E[y(_;Ayt_;y,_;Ay,-j] < C.
The second inequality uses the fact that Ay, is a stationary and invertible ARMA
process, and hence there exists A, 0 < A <1, such that |d:] < C3 M for a different
constant C;. Therefore, (T — k)™* ST i1 Vemr€ek = 02 J& W(r)dW(r) under the sole
condition that k/T — 0 and k — oo as T — oo. Neither (A2) nor (A2") is needed to
establish the limiting distribution of (2.5).

To consider the properties of d{k) without the lower bound condition, it can be
seen, from Lemma 2 of Berk or Lemma 5.2 of Said and Dickey (1984), that consistency
of d(k) still holds if

2
E ((T - k)”’}k: ( i wpoj{€k — et)) ) < Cik _Z & < CR*F/(1 =) - 0.

j=1 \t=k41 i=k+1
(A.3)

24



The condition (A.3) is satisfed for any stationary and invertible ARM A process
provided k — oo, which is assured under (Al). More generally, the rate at which

d(k) converges to d(k) can be found by writing

d(k) - d(k) = (T - k)M (k) - )T -850, Xew
(A4)
T = K T, Xee + T-Y(T - B) ' s Xew — ).

Taking norms, the first term is 0,(T~1/?), and the second is O, (k'2T=1/2) by the
results of Said and Dickey (1984), whether or not (A2) is satisfied. Using (A.3),
the third term is O,(k/2A*) for some A such that ldil < G I (A2) or (A2") is
satisfied, the second term in (A.4) dominates since the third term is op(1). In that
case, [|VT(d(k) = d(kD)l| = 0,(k*/2), and VT(d; di) = 0,(1),i=1,...k If (A2
is not satisfied, the third term in (A.4) dominales and “)«”‘(J(k) —d(k)l = O,(k'7?),
or AK(d; = di) = O,(1) (i = 1,..., k).

The proof of Lemma 2.1 is completed by showing 7 — 2 without any lower
bound condition. The result follows from consistency of the least squares estimates.
The proof is standard and is henceforth omitted.

Proof of Lemma 4.2
Let d(k) = (dy,..., d4) be obtained by applying OLS to the augmented autoregression
(2.4), d(k) = (dy,...,d,) be obtained by applying OLS to (4.1) with z, = Ay, We
have d(k) - d(k) = M7 (k)T Xlew, and d(k) - d(k) = RO T, Xilew +
doye) = B! Z,T__:k+, Xiew since dy = 0 under the null hypothesis of a unit root.
Hence, r

d(k) ~ d(k) = (M{'(K) = R7Y) 3 Xlew.
t=k+1
Note from Lemma 5.2 of Said and Dickey (1984) that (T ~ k)-? Thin Xlew| =
Op(K*/*T-Y2). By partition inversion, (T — k)M (k) = ((T — k)" R, — A)~), where

A= (T - k)"(Z‘T:m ytﬂXt)(Z?:kn ya—:Xi)(ZLkn y;{—l)_l
= (T - k)_s(zz—;k.n ZZ:I:‘H yl—lys—leX:)/(T - k)-—'l ZZ_—HJ ytz-l'

Note that (T—k)=257, . 42 = »(1), and by Said and Dickey (1984, p.601), each
element of the numerator of 4 is bounded by Cy/(T - k) for some constant Ci. Since
Ais a k x k matrix, and E(]|AJ?) < C1k?/(T — k), we have k*/2|| 4| converges to zero
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provided K3/T — 0. Thus, (T = KM (k) = (T - KR
T = v () (7 = R Re = (T - M (0) ) (T = BRE

= (T = k)M (k) AT~ KR < T = KM RITANT - k)R-
Since ||(T - )M and (T - KYRi'| are Op(1} (see Said and Dickey {1984))
and kAl — 0, BT - k)M E) - (T~ E}R;Y — 0. Combining these results,
we have

T
PR < KT kM (B)=(T=RRF T RNT 0 3 Xieal
t=k+1
(A5)
— 0 as T — oo provided k3/T — 0.
We are now in a position to prove Lemina 4.2. Using the definitions of &, and
€, we have:

57 = (T = B Tloigr (B3 = doyer = d(k) X0’
524 (T = B BTy vioy = AT = k)7 do Tickn Vi
Hd(k) = R [(T = )7 Tl XX (d(K) = d(R))

2 (k) = d(R)) (T = K)™ Tiess Xef

+2(T = k)~ do (d(k) - d(k)) Thass Xevemr-
We now consider each term individually.
(0). (T = k)" (T = KRBT = k) Tl ¥y = Op(T ) sinee (T k)3 = 0(1) ,
and (T — k)—? 2?:!»1 vi = 0p(1)-
(). (T —-k)™NT~ k)do(T = k) Thosr Yerer = 0,(T""). Since Tdo = Op(1),
we need to show that (T — k)™ ST iar Ye-18u 38 0,(1). Using the fact that ey =
ew + (d(k) — d(k))' X, we have

T T - T
(T-k)" Y Yoot = (T = k)" S y,;,e¢k+(T—k}"(d(k)—d(k))’ S v Xe

t=k+1 t=k+1 t=k+1
The first term is O,(1) (see the proof of Lemma 2.1). We now show that the second
term vanishes. We have, for |di} < G M owith0< A<,
T . . .
- - O,(KM2A¥)0,(K1/?) if (A2) is not satisfied;
— — 1 — 14 P '
R —dCRMT =R 3 v Xl = { 0,(KAT-112)0,(K'/2) if (A2) is satisfied;

k4]
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and is 0,(1) since k2/T ~ @ in the latter case and £ — 00 with X < | in the former.

(iii). For the third term, taking norms, we have
(k) = (k) ((7 = k) STy, XoX2) (k) - Ak
S (k) = dUNINT = k)7 £y, X XK - d(k))|
op(T112)- 0,(1) - 0,(T1?) = 0,(T-1)
using (A.5). Hence, the third term is o,(T~).

(iv). (d(k) ~ d(k)Y(T - k)1 £L,,, Xeéu = (d(k) = d(R)V(T - k)1 ST, Xey

+(d(k) - d(k)Y ( Z XeX ) (d(k) - d(k)).

t=k+1

Taking norms, we have, for the first term,
(k) = AT ~ k) STy, Xeewll < AR = ARDINCT — k)1 5T wor Xeeul|
= 0p(T71%) Op(K12T~112) = g, (k1/2T-1),
For the second term, we have
(k) = d(k)Y (7 = k) Ly, X X2) (d(K) - (i)
S Wd(k) = dUDIIT - k) ST,y X XK - d(i))
= 0,(T™1?). 0,(1) - Op(k3T=112) = o, (K1/2T=1) if (A2) is satisfied;
= 0p(T117) - Op(1) - Op(KM2A%) = o, (KM2T-1/22k) i (A2) is not satisfied.
(v). Since Tdy = 0,(1), we consider
(k) ~ AT ~ k)2 5L, Xy
< (k) = AT = £)72 Ly 0 Xegioa|
= op(T1)0,(k?T=1) = o, (K1/2T~3/2),
Collecting results from (i) to (v), we have |
; ok = GF + 0,(K'/2T1) if (A2) is satisfied;

GF = % + 0, (KT =1122%) if (A2) is not satisfied.
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Since k/T — 0 and E1/2)k o 0 as k — oo and T — oo, we have, whether or not (A2)
is satisfied, .
Ft=051+ o (T~'%).

Proof of Lemnma 5.1

We first note (from the proof of Lemma 4.1) that din) = d(n) + 0,(1), where
d(n) corresponds to the OLS estimates from the restricted regression without the
lagged dependent variable. Using the block diagonality of My, we have the following

asymptotic relation:
J(k = n,k) = (T = k)d(n) (T - BRY (n))" d(n) + op(1),

where Ri}(n) is the lower n x n block of Ri~*. We now apply the following decom-

position:

J(k = n, k) = VT(d(n) = dn)) (T = B R () VTd(R) — dn)
22T (d(n) = dn)) (T - MR;(n)) VTd(n)
+V/TdnY (T - bRF () VTd) + opl)

By Theorem 4 of Lewis and Reinsel (1984), the first term is asymptotically distributed
as x* with n degrees of {reedom. To complete the proof, it remains to show that the
other terms vanish as T — oo. We first nole that ((T — KYRZ ()] —» R, say-
Given that Ay, is a stationary and invertible ARM A process, 2 typical element of
VTd(n), say VTdesi (i = 1,..,n), is such that (VT desil < C VT A+ for some Cy
and 0 < A < 1. Hence, under the conditions of (A2"), VTd(n) — 0. 1t follows that
the last term converges to 0. Finally, to show that the second term also vanishes, we
simply note that under the conditions of (A2"), VT(d(n) ~ d(n)) = 0,(1).

Proof of Lemma 5.2 '

Since kmaxz is assumed to increase in such a way that assumption (A2") is sat-
ished, the conditions of Lemma 5.1 hold and J{kmaz, kmaz + n) is asymptotically
distributed as a x? random variable with n degrees of freedom. Let Er be the estimate
of k selected by the sequential procedure described in Definition 3.1. Then:

'rlil?oP VCT # kmaz] =1-a,
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and using the rules of conditjonal probability,

Jim P [k = kmaz - 1)k # kmaz| = a.
This implies

limp_o P [1::7 =kmaz - 1N l::T # kmaz}

= limy_ P {l;r = kmaz — 1!1;1 # kmaz] P {I:'T # kmaz} = a{l — a).

Now - - -

limr_q, Plky = kmaz - 2lkr # kmaz — 10 ky # kmaz] = a

i P [27- = kmaz - 2N ky #kmazr - 1Nky # kmax]

T T Plkr # kmaz - 1Nk # kmaz) '

and
By Plkr # kmaz - 1 Nky # kmaz)
= lim7eq Plkr # kmaz - 1[ky # kmaz)P{kr # kmaz) = (1 - a)2.

This implies

11im P [I;T = kmaz - 20 kp # kmaz — 1Nk # kmaz] = a(l - o).
We can deduce, by recursion, that
limy_. P [I;T = kmin Nk Fhkmin+1...0ky # kmaz}

(A.6)
= “mT_,m[a(] — a)kfna:—kmin].

Now suppose that kmin increases to infinity at a rate slower than kmaz. From (A.6),
the application of the sequential procedure implies the probability that kr reaches
kmin is zero in the limit since kmaz — kmin — oco. 1t follows that for any given kmin
and kmaz, kr must be bounded away from kmin. Since kmin can be any arbitrary
sequence, it follows that k7 has a zero probability of increasing at a rate slower than
kmaz. With the inequality kmin < kmaz, I;T must, therefore, increase at Lthe same

rate as kmaxz.
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Table 2: Approximation to the Selected Truncation Lag
Using AIC in the MA(1) Model.

DGP: x=e + e

gﬁ

t-1
s, ek
Regression: X = Ei:lénxt—if v,

] .2 4 6 8
T=100 1 2 3 3
T=10,000 3 4 7 13
T=1,000,000 4 7 12 23
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Table 4.a: Size and Power of Unit Root Tests;
MA Case, T = 100, kmax = 10.

DGP:y,=py; 1t 8 W = e, + bey 5

Regression: Ay, = bg¥yq El;=16iAyH + vy

I 8 tsig(m) tsig(s) AIC  Schwartz
1.0 .80 .069 073 .068 071
1.0 .50 .083 .087 .082 .088
1.0 .30 .075 077 .070 .069
1.0 .00 .063 .059 .052 .046
1.0 -30 .097 126 27 174
1.0 -.50 116 .158 167 244
1.0 -.80 .304 424 .561 733
.95 .80 .136 151 .146 158
.95 .50 .164 .184 170 .196
.95 .30 .158 162 .152 144
.95 .00 .153 .151 .140 .126
.95 =30 .228 .292 .294 .393
95 -.50 254 .336 317 .510
95 -.80 .534 .704 877 .963
.85 .80 .347 .387 .405 451
.85 .50 .445 .510 .520 .586
.85 .30 .465 513 .536 .505
.85 .00 .486 .540 .580 575
.85 -.30 .5585 .682 .758 .859
.85 =50 .627 753 .860 .936
.85 -.80 .825 .908 .996 1.000
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Table 4.b: Size and Power of Unit Root Tests;
AR Case, T = 100, kmax = 10.

L 4
DGP:y = py,_;+ Lic190y + e
3. . - k
Regression: l!\yt = 0¥t Ei=16iAyt-j +vy

b, é, by &y tsig(lﬂ) tsig(s) AlIC Schwartz
1.0 .6 .0 .0 .0 .078 .075 .066 .060
1.0 -6 .0 0 0 .068 .066 .066 .060
1.0 4 2 0 0 .066 .062 .055 047
1.0 3 .3 25 14 .066 .062 .058 052
.95 .6 .0 0 0 371 .399 404 .394
95 -6 .0 0 0 .101 .099 .087 - .080
.95 4 2 0 0 .346 .336 338 .267
.95 .3 .3 25 .14 .822 .840 .886 .837
.85 .6 .0 0 0 782 .870 .960 .972
85 -6 .0 Q0 0 .269 274 .268 .256
.85 4 .2 0 0 .763 824 .899 .867
.85 .3 ] 25 .14 .901 937 .876 .947
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Table 4.¢: Size of Unit Root Tests; MA Case, T = 200.
kmax = 12.

DGP:y,=py, 1+ U 4 =& + oex—l’

Regression: Ayt =0y T E};_—_léiAyt—i MY

p g tsig(l()) tsig(s) AIC Schwartz
1.0 .80 .056 .060 059 .063
1.0 .50 .061 .064 .056 .064
1.0 30 .061 .064 .061 .066
1.0 .00 .064 .066 .059 .057
1.0 =30 .067 .076 .076 102
1.0 -.50 .085 110 121 .168
1.0 -.80 177 250 .366 557

Table 4.d: Size and Power of Unit Root Tests;
AR Case, T = 200, kmax = 12.

e 4
DGP: Y= Py qt Ei=1¢iAyt~i +uy,

Regression: Ayt = 60yt-—1 + E?:léiayt—-i + vy

/) ¢, ¢ $s ¥y tsig(lo) tsig(f)) AlC Schwartz
1.0 .6 .0 0 0 .063 .060 .057 054
10 -6 .0 .0 0 .063 .064 .058 .056
1.0 4 2 0 0 .062 .061 .056 .048
1.0 ] 3 25 .14 .076 .072 .070 .059
.95 6 .0 0 0 738 815 .897 .908
95 -6 .0 .0 0 .166 .168 160 153
.95 4 2 0 0 712 709 8317 .784
.85 .3 3 25 .14 .979 .988 1.000 .998
.85 .6 .0 .0 .0 955 974 1.000 1.000
85 -6 .0 .0 0 .608 .603 738 .749
.85 4 .2 .0 .0 954 975 1.000 1.000
.85 3 .3 25 .14 .994 .997 1.000 1.000
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Table 5: Size of Unit Root Tests, MA Case;
Different choices of T, kmax and kmin.

DGP: yy=pyy_1+ vy, 0, = + b, _,,
k

Regression: Ayt = 60yt__1 + Ei-—-l‘siAyt—-i + vy
¢ tsig(lo) "sig(s) AIC  Schwartz

a) T = 200, kmax = 12, kmin = 4.
1.0 .80 .066 .068 .066 .056
1.0 .50 .057 .055 .050 .048
1.0 .30 .062 .060 057 .054
1.0 .00 .056 .056 .053 .052
1.0 -30 .061 .059 .051 .050
1.0 -50 .061 .061 .060 .059
1.0 -80 .168 .228 .281 .343

b) T = 500, kmax = 14, kmin = 6,
1.0 .80 .050 .048 .050 .046
1.0 .50 .053 .052 .048 .047
1.0 .30 .057 087 .060 .060
1.0 .00 .052 .052 .053 052
1.0 -30 .065 064 .062 .059
1.0 -50 .059 .060 .058 .056
1.0 -30 .104 134 167 213

¢} T = 500, kmax = 14, kmin = 9.
1.0 .80 .059 .062 .057 .058
1.0 .50 .059 .059 .058 057
1.0 .30 .058 +.058 .059 .056
1.0 .0 .056 .056 .056 .056
1.0 -3¢0 .052 .053 .052 .052
1.0 -50 .058 .056 .056 .056
1.0 -380 .093 .103 .108 116
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