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1 Introduction.

The statistical analysis of models with nonstationary variables has received considerable at-
tention in the last decade, as seen from the many theoretical results that have been developed
and the numerous applications that have been reported. It is by now common practice to
report the outcome of some unit root test on each variable, perform tests for the presence
of cointegration and, using one of the many asymptotically optimal procedures, estimate
the cointegrating vectors. For a review, see Campbell and Perron (1991), Stock (1995) and
Watson (1995). Consider for example the following simple relation between a scalar y: and
an m dimensional vector z, with all variables being I(1):

v = f'z + v, (1.1)

Of special interest is to ‘test the null hypothesis of no cointegration. This is often done
applying a unit root test to the estimated residuals, b, = y, — #'z,, where f§ is the OLS
estimate of B. Note that (1.1) contains the univariate unit root problem as a special case
with 8 = 0 and ¥ = y,. This model is quite general because substantial heterogeneity and
autocorrelation are permitted in the errors {v.} and the first differences of the data, Az, .
Usually some kind of “mixing conditions” are imposed, see e.g. Phillips and Perron (1988),
such that one can apply a functional centra) limit theorem to the partial sums of the errors.
The basis of many unit root tests is the following first-order autoregression:

O = ady-y + uy,

with the least-squares estimate denoted & and iy = O — &by, It is by now well known
that, under the null hypothesis of no cointegration (or the null hypothesis of a unit root
when £ = 0), the least squares estimator, &, converges to 1 at the fast rate of T. However,
the limiting distributions of T(4 — 1) and of its associated t-statistic depend on nuisance
parameters arising from serial correlation in the errors {Av}. A popular approach to re-
move this dependence of the asymptotic distribution on the nuisance parameters has been
to apply some kind of transformation to the basic least-squares estimates. For the uni-
variate case, early examples of transformed unit root tests are those of Phillips (1987) and
Phillips and Perron (1988). In the multivariate case, transformed statistics were proposed
by Phillips and Ouliaris (1990). To apply these transformations, consistent estimates of
0k, = limr_ o T-1 3T E(Av}) and 0? = limp_y T-1E(S%), with Sp = >T, Av, are
needed. These are usually based on the estimated residuals i, since & converges to 1 at the



fast rate of 7. For example, to estimate ok, one uses st=T"" vT 4}, and to estimate a?
the most popular method has been to use a kernel-based estimator of the form:

T (T-1) T

sha=T Y @+ 2T 3 k(j,Mr) Y ek (1.2)

t=1 j=1 t=k+1
Here k(j, Mt) is some kernel that weights the sample autocovariances, Mr is a bandwidth
which acts as a truncation lag parameter when k(j, Mz) = 0 for |j| > Mr. While many
variants of unit root and cointegration tests have been proposed, almost all use in some way
such estimators to eliminate the effect of nuisance parameters on the asymptotic distribution.

It is important to note that the above estimators of 03, and o? both depend on the
properties of & via the use of the estimated residuals #,. However, it has also been shown
that the least-squares estimate of a is severely biased in samples of typical sizes (and remains
so even in quite large samples) when there is substantial correlation in the errors. This feature
has been extensively documented in Perron {1996) for the univariate case, and is recently
analyzed in Ng and Perron (1995) for the multivariate case. This can explain the substantial
size distortions of the tests in the presence of important serial correlation.

Given these biases in the least-squares estimates, one would like to construct cointegration
and unit root tests that are affected as little as possible by the dependence on &. An
obvious possibility is to use the residuals under the null hypothesis, i.e. Av, (or Ay, in
the univariate unit root problem). However, if both 0%, and o? are estimated using the
residuals under the null hypothesis, it was shown by Phillips and Quliaris (1990) that the
Lests become inconsistent. This result was more or less perceived as implying an impossibility
to altogether avoid the use of the least squares estimates & in constructing estimates of the
nuisance parameters.

The theme of this paper is that, on the contrary, it is possible to construct estimates of
the nuisance parameters that are consistent under the null hypothesis and ensure consistent
tests while avoiding any dependence on &. The idea is to use the residuals under the null
hypothesis, Ad, to construct s? and to use a particular formulation of the autoregressive
spectral density estimator to estimate the spectral density at frequency zero of Av,. Such
an estimator was first proposed by Stock (1990) and is defined by s4g = s4/(1 — b(1))?,
where b(1) = TF, b; and 2, =T} YT 1 65 with b; and éy obtained from the following
autoregression:

k
Ady = bobrr + }: b AD—j + k-

j=1



It is the aim of this paper to analyze the properties of such an autoregressive spectral
density estimator. Without much loss of generality we concentrate on the univariate case
where § = 0 with 5, = ¥, and the problem of interest is that of testing for a unit root.
The focus is on the properties of the estimator when there is substantial correlation in the
error process. We first show that such an estimator of the spectral density at frequency
zero has much smaller biases and mean squared errors compared to a kernel based estimator
of the form (1.2) which is constructed using the least-squares residuals. These features
are analyzed using both simulations and local asymptotic analyses where the errors are
modeled as AR(1) or MA(1) processes with parameters approaching the boundaries —1 or
+1 as the sample size increases. The qualitative results obtained extend immediately to the
multivariate framework.

The plan of the paper is as follows. Section 2 motivates the analysis in terms of the
Phillips-Perron test for the Presence of a unit root. Section 3 discusses the data-generating
processes used for the simulations and Ppresents the results. Section 4 presents a framework
to analyze the local asymptotic properties of the spectral density estimators. Section 5
summarizes the implications of the different estimators of the spectral density at frequency
zero for the unit root tests. In particular, we discuss how the use of the autoregressive
spectral density estimator allows unit Toot tests that show little size distortions even in the
presence of substantial serial correlation in the errors. Section 6 offers concluding comments.
A technical contribution of this Paper is to derive the limit of the autoregressive spectral
density estimator in several local asymptotic frameworks. These proofs are contained in a
mathematical appendix.

2 Motivation.

We motivate our analysis with the problem of testing for a unit root. We consider a series
{y:}1_o generated by:
Y = oy + uy, (2.1)

with @ = 1 under the null hypothesis. The errors {u:} are assumed to be a linear Pprocess
of the form u, = £ bie,_; with e ~ i4.d.(0,02). Let B(z) = 14 &b =1/01 4
2,a2') =1 [A(2). We further assume that B(z) is non-zero on the unit circle, that
A(0) # 0 and that £1/2 221 lar4i] = 0 for some increasing sequence k (note that the latter
condition is automatically satisfied if U is a stationary and invertible A RM A process).
We shall focus on the Phillips and Perron ( 1988) Z, test, which is defined as:



Zo=T(a—1)-(s* = s/ {:U.’.xL (22)
t=1

where & is the OLS estimate of the autoregressive parameter in (2.1), 82 =T v i,
@i, = ys — Gy,—1 and s? is a consistent estimator of o%. The analysis can easily be extended
to the case where additional deterministic components are included in the regression (2.1).
The form of Z, remains the same with y.1 replaced by the residuals from a projection of
¥i-1 on the deterministic components.

A consistent estimator of o? often used is the non-parametric estimator, siy 4, defined
in (1.2). Simulation results of Schwert (1989), DeJong et al. (1992), and Phillips and
Perron (1988), among others, have shown that Z. based upon s%,, suffers from severe size
distortions, especially when there is substantia! negative correlation in the residuals u, (see
Haug (1993) concerning cointegration tests). There is also evidence that the choice of the
kernel and the methods to choose the truncation lag do not affect much the finite sample
properties of the test (see Kim and Schmidt (1990)).

The bad size properties of the test can be explained by the fact that & is severely biased.
In Perron (1996), it was shown that the finite sample distribution of the normalized least-
squares estimator, T(& — 1), is very badly approximated by its limiting distribution when
there is substantial serial correlation in the residuals and the adequacy of the asymptotic
approximation deteriorates when additional deterministic components are included in the
regression. Indeed, the properties of & affect the properties of Z, not only in 2 direct way
via T(&— 1), but also in indirect ways via the estimates of the nuisance parameters sty 4 and
2 since they are constructed using the least-squares residuals di, and hence depend on the
biased estimate &.

The size problem found in Z, is not unique to the use of the kernel estimator. As an
alternative to s, ,, consider the standard autoregressive spectral density estimator following
the work of Berk (1974). It is defined by s} = s&/(1 - #(1))?, where b(1) = ©4_; b; and
8%, =T 1L 41 & with b; and é, obtained from the following autoregression:

&
= Z bjtly—j + eu- (23)
=

The estimator can be seen as parametric autoregressive approximation of o?. Since T'(a —
1) = O,(1), one can use the results of Berk (1974) to show that s} is consistent provided
K/T —0andk —»ooasT — oo Simulations showed that unit root tests continue to have

severely distorted sizes when based upon s}. The problem is that the autoregressive spectral
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density estimator still depends on the estimated residuals, i,. Hence, a starting point to
modify the Phillips-Perron test is to try to get rid of the dependence of the test statistic on
a.

As a first step in eliminating this dependence, let us analyze the case where, instead of
using s} = T-'5°7 42 as an estimate of 0%, we use the residuals under the null hypoth-
esis, ie. 83, = T-15T Ay}, This estimator is obviously also consistent under the null
hypothesis of a unit root. A little algebra shows that, in this case, Z, can be written as

MZ, = (T Yy - s’)/(2T"£y}_,), (24)
=1

which is exactly the modified unit root test proposed by Stock (1990) and further analyzed
by Perron and Ng (1995). 1t is called a modified Phillips-Perron test because it can also be
written as:

MZ, = Z, + (T/2)(& - 1)%. (2.5)

Since & converges to 1 at rate T, the correction factor is asymptotically negligible and Z,
and M2Z, are asymptotically equivalent. However, when large negative serial correlation is
present in the residuals and hence & is severely biased, the correction factor (T/2)(a@ - 1)?
can be important even in quite large samples.

The representation (24) is interesting in several aspects. First, it shows that using
the residuals under the pull hypothesis to construct a consistent estimate of o2 eliminates
the dependence of the unit root test on & except insofar as the spectral density estimate
s* remains constructed using the least-squares residuals, Secondly, writing MZ, = (yr —
Ts?)/(2T-! ST vk ),itis €asy to see that a necessary condition for the test to be consistent
against stationary alternatives is that T's? diverges under such alternatives. This is important
because it shows that we cannot construct s, ,; using the residuals under the null hypothesis
if 02 is estimated using the same residuals, i.e. Aye. This is because T's, 4 = 0p(1) under
stationary alternatives when constructed with Ay, as shown by Phillips and Quliaris (1990).

The challenge therefore is to construct an estimator s? that is consistent for o? under
the null hypothesis, with T's? diverging under stationary alternatives, and is such that the
estimator does not depend on &. This is achieved using a modified autoregressive spectral
density estimator based on the first-differences of the data. Such an estimator, which we
denote by s% 5, is defined in the present context as:

shr = s%/(1 - B(1))2, (2.6)



where 5%, = T™' 0,41 &4, b(1) = Tiaa b;, with b; and {éu} obtained from the following
autoregression estimated by OLS:

k
Ayy = boyi1 + 3 bjAyi—; + €k (VA))
j=1
Under the conditions stated on the errors {u}, consistency of the parameter estimates in the
above regression under the null hypothesis that y; bas a unit root follows from the results of
Berk (1974), Said and Dickey (1984) and Ng and Perron (1995) provided the truncation lag
is such that k — oo and k3/T — 0 as T — oo. Consistency of s} p for o2 follows.

The above autoregressive spectral density estimator differs from (2.3) in two ways. First,
it uses Ay, instead of i, and second, the lagged level y;—; is included as a regressor. The
introduction of the lagged level is of no importance under the null hypothesis of a unit root
since by — 0 at rate T. In other words, s} and s%p are asymptotically equivalent under the
null hypothesis. The introduction of the lagged level, however, ensures the consistency of
unit root tests by making the estimate bounded below by zero under stationary alternatives.
This is an important property because the requirement that T's? diverges is now satisfied.
An overlooked advantage of 535 over s} is that the former based upon (2.7) is immune to
potentially severe biases in & caused by the presence of substantial correlation in the errors.

Given that s%pg based upon (2.7) does not depend on &, it is likely to provide a better
estimate of o2 than s¥ 4 in finite samples. The next sections of this paper establish that this

is indeed the case.

3 The Experimental Design.

In this section, we discuss the experimental design used to evaluate the relative properties
of s¥y 4 and s3 5. We keep the design very simple to better highlight the types of correlation
that induce problems of inference. To that effect, we consider errors as being generated by
simple AR(1) or MA(1) models. Hence, the data-generating processes are of the form

Y1 = Y1 + U (3.1)

where the initial condition is set to yo = 0 and the errors {u,} are generated by either of the
following:
MA(1): ug=e +0e,
AR(1): uy= pu-1+éy

(3.2)



with up = ey = 0 and ¢, ~ 1.2.d.(0,02). Note that, in this case, the true value of o2 is
02(1+6)? and 02/(1 ~ p)? for MA and AR models, respectively. We present both simulation
experiments and theoretical analyses based on these specifications.

We consider the case where the data are assumed to have an unknown mean. Corre-
spondingly, s}, , is constructed using residuals i, obtained from the regression (2.1) with a
constant included. Also, the regression used to construct the autoregressive spectral density
estimator is

k
Ay = c+ boyeq + Z biAye_; + e (3.3)

i=1
The aim of the simulation experiments is to quantify the bias and mean squared error of
sk a and s%g for a range of values of 8 and p- The emphasis of our discussion is on cases
where there is substantial serial correlation in the errors. The innovations {e,} are generated
as i.1.d. N(0, 1) random variables using the GASDEYV function in Press et al. (1992). In ali
cases, 2,000 replications are used. Three sample sizes are considered, T = 100, 200 and 500.

3.1 Results for s},, with estimated residuals.

We report results for the kernel-based estimator constructed as in (1.2) using the Parzen
window. This is a kernel that operates with a truncation point. Although other kernels are
possible, the choice of this kernel is with little loss of generality given that our focus is on
processes for u, with roots close to the boundary of unity. The Parzen kernel was found to
produce estimates with relatively good finite sample properties in Ng and Perron (1994). It is
among the best windows that provide non-negative estimates by construction and for which
the bandwidth acts as a truncation lag parameter. We also tried other windows such as the
Quadratic spectral advocated by Andrews (1991). The results are qualitatively similar.
Several methods to choose the truncation lag were considered. We analyzed the properties
of the estimator using fixed truncation lags ranging from 1 to some maximal order Mgp(max)
which increases with the sample size. We set Mr(max) = 6,10 and 14 for T = 100, 200 and
500, respectively. For data-dependent selection rules, our base case is the asymptotically
optimal data-dependent method suggested by Andrews (1991) using an AR(1) approxima-
tion. Another experiment that we tried was to calculate the optimal bandwidth using an
ARMA(1,1) approximation with the true values of the parameters. This led to estimates
with even worse properties, especially in the negative M. A(1) case. The reason is that for
such a process the optimal bandwidth is relatively large and for reasons explained below, the
properties of sf, , deteriorate as the bandwidth increases since the estimated residuals are



not good approximations to the true residuals. We also considered experiments using the
pre-whitening device suggested by Andrews and Monahan (1992). This produced significant
improvements only for AR(1) errors with positive coefficients. However, there were neither
significant improvements nor marked deteriorations in cases with large negative AR(1) or
M A(1) coefficients. To conserve space, these results will not be reported (but are available
on request). Readers will be reminded of the advantages of prewhitening where appropriate.

The results are presented in Table 1.2 and 1.b for the bias and mean squared error,
respectively. Consider first the base case with i.i.d. errors. For a given sample size the bias
decreases, as expected, as the truncation lag increases. For a fixed truncation lag, it also
decreases rapidly as the sample size increases. The mean squared error eventually increases
with the truncation lag but it is relatively small in all cases and decreases rapidly as T
increases, especially using an automatic bandwidth selection procedure. For models with
positive M A coefficients, the bias and MSE are large for small values of the truncation
lag but both decrease substantially as the truncation lag increases. However, for a given
truncation lag, the error decreases less rapidly as the sample size increases than in the .2.d.
case.

Consider now the case with a large negative moving average coefficient. Here the bias
and MSE initially decrease as the truncation lag increases but start increasing at larger lags.
More importantly, for 6 = —.8 the bias and MSE barely decrease as T increases even when
an automatic bandwidth selection procedure is used. The MSE is, in all cases, several orders
of magnitude greater than in the i.i.d. case. Indeed, the bias and MSE at ¢ = —.8 are very
large in relative terms since the true value is o? = .04. Although the bias and MSE diminish
somewhat more quickly in cases of large negative autoregressive errors, the estimator still
gives imprecise estimates of o? given that the true values are small when p is negative. When
the autoregressive coefficient is positive, both the bias and MSE decrease as the truncation
lag increases but they are very large compared to-other cases and again decrease only very
slowly as T increases.

We also present, in the last column of Tables 1.a and 1.b, the minimal value of the bias
and MSE for each case over all possible integer valued bandwidths. While these figures
correspond to the best case possible and cannot, in general, be attained in practice, they

provide a useful benchmark for comparison with the bias and MSE of sy later.



3.2 Results for the Autoregressive Spectral Density Estimator, s2p

This subsection discusses results pertaining to the behavior of s4g constructed using the
augmented autoregression (3.3). For the construction of the autoregressive spectral density
estimator, s} g, the only nuisance parameter to determine is the order of the autoregression
k. We first considered deterministic rules whereby k is a fixed value in the integer interval
between 1 and kmaz. We used kmax = 4, 8 and 14 for T = 100, 200 and 500, respectively.
We also considered data dependent rules whereby & is chosen according to statistical criteria.
This includes i) a general to specific recursive procedure using a five and a ten percent ¢ test
for the significance of the last lag (given the upper bound kmaz), and ii) rules based on the
AIC and the Schwartz information criteria. The ¢ test tends to select orders of truncation
that are higher than information based rules, with the order of truncation increasing with
the significance level of the test. Thus, of the data dependent rules considered, the Schwartz
criterion produces the tightest model and the ten percent ¢ test is the most liberal.

The results for the bias and MSE are presented in Tables 2.a and 2.b respectively. A
notable property of s is that its bias and MSE decrease rapidly as the sample size increases.
However, for T = 100 or smaller, the bias and variance of s p can be large, especially at an
overly liberal value of k.

For small sample sizes, for example at T = 100, the results are sensitive to the choice of
kmax. For larger values of k max, the estimates exhibit occasional outliers which increase
the bias and MSE substantially. This occurs because when k is large relative to the total
sample the biases of the least-squares estimates b; are such that vk, bi is occasionally close
to 1 causing a singularity in the denominator of s4r- This problem is less severe when no
constant is included in the autoregression but more so when a time trend is included. When
the sample size is larger, say T = 150 or greater, this sensitivity to the choice of k max
disappears.

Consider first the base case with i.i.d. errors. For low values of the truncation lag, the
bias and MSE are small, but increase substantially as the truncation lag increases. With
positive moving average errors, the bias eventually decreases and the MSE increases as the
truncation lag increases for a fixed T. However, the errors decrease noticeably as T increases.
While the variations in performance across selection procedures reduce as the sample size
increases, the tight Schwartz criterion tends to produce the smallest MSE with positive
moving average models.

It is of interest to note that both the bias and the MSE display a clear oscillating pattern
as the truncation lag varies from odd to even values. More precisely, bias and MSE are
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substantially smaller at even than at odd lags. This can be seen from the fact that the
autoregressive representation of an MA model has coefficients (—8)' at the i*h lag. An even
k always ensures that the calculation of T, b, is balanced, in the sense that the number of
odd and even terms always match.

For negative moving-average errors, several features are noteworthy. First, the bias and
MSE of s35 both decrease as the truncation lag increases for a fixed T when 8 < -05.
Accordingly, a more liberal data dependent method (e.g., the recursive t-test) produces
in this case smaller MSE than one that tends to select a tight structure (e.g., Schwartz’s
criterion). Thus, while the MSE obtained using a recursive ¢ test is higher than that obtained
using the Schwartz criterion when 6 is positive, the reverse is true when 8 is negative.

We now turn to cases of AR(1) errors. It is useful to note at the outset that since the
true autoregressive order of u, is one in all data generating processes considered, any over
parameterization of the autoregression will lead to increases in the MSE. Accordingly, it
is easy to understand why a tight selection procedure such as that based on the Schwartz
criterion might produce estimates that have the lowest MSE. This is indeed the case with
lpl < 0.8, where we observed that bias and MSE increase as the truncation lag increases
given a fixed T and they both decrease rapidly as T increases. When p is close to one, the
bias and MSE of the estimator are large, but diminish as T' increases. When p is close to
-1, bias and MSE increase somewhat as k increases with a given T but fall rapidly as T
increases.

ln view of the oscillating magnitude of the bias and MSE for the case of MA(1) errors
with positive coefficient, the errors associated with data dependent rules could be further
reduced if the rules are specified to choose over a range of even valued truncation lags.
Simulations to that effect are presented in the last four columns of Tables 2.2 and 2.b. As
can be seen, the bias and MSE are substantially reduced in the positive M A case. Indeed,
with a search restricted to even lags, the MSE with k selected using recursive t-tests on
the significance of the last lag is decreased in all cases, even with AR(1) errors. For the
data-dependent methods using the AIC and the Schwartz criteria, the MSE is reduced with
MA(1) errors but slightly increased with AR(1) errors. The latter can be explained by the
fact that the true order (k = 1) is outside the permissible range for k, being 2 to kmaz. In
practical settings, one should expect a pure pumerical advantage in using an even number

of autoregressive lags in empirical work.
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3.3 Comparison of s, and s.

For the i.i.d. case, a tight selection criterion, such as the Schwartz’s criterion, permits s
to have as low a bias as s}, , with the MSE remaining slightly higher. For positive moving
average errors, the MSE of %, at the optimal truncation lag for a given T is higher than the
MSE of s}, , similarly evaluated at an optimal truncation lag especially at T = 100, though
the difference is only marginal at larger sample sizes.

Significant differences between sty 4 and s, surface when 6 is negative, in particular if it
is close to —1. The bias and MSE of 84 are dramatically smaller and decrease much more
rapidly than s},, as T increases. For-example, with T = 200 and 8 = —0.8, the smallest
MSE for s}, (with a bandwidth of 4) is .920 while the smallest MSE for s} (with k = 8)
is .012. The comparisons are even more dramatic with T = 500.

For AR(1) errors, with [p] < 0.8, a tight selection procedure such as those based on
information criteria permits the MSE’s to be as small as those obtained with s3,, evaluated
with an optimal selection procedure for the bandwidth. The statistic s is inferior to stya
only in the case of positive AR(1) errors when pre-whitening is applied.

When p is close to the boundary of one, v, is nearly non-stationary with a power spectrum
that becomes unbounded when p approaches 1. It is then not surprising that neither s 5 nor
sl produce satisfactory estimates of o2. While the bias remains high compared to other
cases, it is substantially smaller with s than with S{ya- Also, unlike the bias of s3, 4> the
bias of s%; decreases noticeably as T increases.

For p close to -1, the bias and MSE of s} g are dramatically smaller than those of Sty a-
Indeed, even though a tight selection procedure produces the smallest MSE for 5%, any
data-dependant rule would have resulted in a dramatically smaller bias and MSE than stya
constructed using an optimal bandwidth. For example, with T' = 100 and p = —0.8, the
MSE of 54 using a data-dependent method to select k varies from .022 (t-10) to .004 (SW)
while the smallest MSE of s%,, (at My = 3) is 1.04. The differences remain as important
for larger sample size.

Our simulation results therefore lead to the following general observations. In well be-
haved cases (6 > .5 and |p| < .8), both sir and s}y, produce good estimates of 0 but
sty 4 is somewhat better in a mean squared sense if evaluated at the optimal bandwidth. In
such cases, the choice of the optimal truncation lag appears to be more important than the
choice between the two estimators. In the AR(1) case with a large value of p, both estimators
have rather poor properties. However, s3 g has noticeably smaller biases and slightly smaller
MSE. In cases of large negative serial correlation (MA or AR}, the properties of s p are
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dramatically superior than those of s}, , irrespective of the method to choose k. Therefore
the cases in which the choice of the estimator for the spectral density at frequency zero

matters is when 6 — —1, and |p| — £1. In all three cases, s}, , appears inferior.

4 Theoretical Results.

To analyze the behavior of the estimates from a theoretical perspective, we adopt the ap-
proach of Nabeya and Perron (1994), treating the MA or AR coefficients as local to the
relevant boundaries. We consider a slight extension of the models specified by (3.1) and
(3.2) with {y} generated by the following nearly integrated model:

ye = (1+ ¢/ Tyra + uee (4.1)

The series has an autoregressive root local to unity with non-centrality parameter c. Under
the null hypothesis of a unit root, ¢ = 0. The advantage of this generalization is that it
allows deriving the local asymptotic power of unit root tests. Our results are used to that
effect in Perron and Ng (1995). There are three relevant cases. The first is when the MA

coefficient is local to —1, in which case the process is described by:

u, = e + Orec,

(4.2)
07 = 1+ 6/VT.

Throughout, {e} is assumed to be i.i.d.(0,0?). This specifies that the M A coefficient ap-
proaches —1 at rate VT. As T increases, the errors have a non-invertible moving average
representation and {y,} is white noise. Hence, this model was labelled as a “nearly-integrated
nearly white noise” process. The second case is when the AR coefficient is local to +1 and
the process is described by:

Uy = priée—r + €,

pr=1+¢/T.

This specifies that the AR coefficient approaches +1 at rate T. As T increases, the errors
have a unit root and {y;} has accordingly two unit roots. Hence, this model was labelled as

a “nearly twice integrated” process. The third case is when the AR coefficient is local to -1

(43)

and the process is described by:

U = prUe-1 + €ty

pr=—(1+¢/T).

(4.4)

12



This specifies that the AR coefficient approaches —1 at rate T'. As T increases, the errors
have a negative unit root and y, = Yi-2 + €, a process with a unit root at period 2. Hence,
this model was labelled as a “nearly seasonally integrated” process.

All these specifications were found to be usefu] in providing good approximations to the
finite sample distribution of the least-squares estimator in an autoregression of order one,
Our aim in characterizing the limits of Siva and s}p in these local frameworks is similarly
to obtain better approximations and additional insights about their behavior when there is
substantial serial correlation in the errors. We also summarize relevant results about the
implied behavior of the unit root tests.

-

4.1 Local Asymptotic Properties of s3,,.

In this section, we consider the limit of sty 4 for the case where My acts as a truncation lag.

The results are stated in the following Lemma.

Lemma 4.1. Let {y,} be generated by (4.1) and let s{y4 be constructed as in (1.2).
a) Suppose that {u,} is generated by (4.2) then My's}, , is Op(1).
b) Suppose that {u,} is generated by (4.3) then (M7T) s}, 4 is O,(1).
c) Suppose that {u.} is generated by (4.4) then (MyT)"s}, , is O0,(1).

This Lemma is proved in Perron and Ng (1995) en route to explaining the properties
of unit root tests that adopt a kernel estimate for ¢?. These asymptotic limits of s}, , are,
however, interesting in their own right. In all cases considered sty 4 is not only an inconsistent
estimator of 02 but diverges as T" increases (since Mr is required to increase as T increases).
The rate of divergence is more severe in the autoregressive cases compared to the negative
moving average case. These theoretical results are in accord with the simulations reported
earlier, namely, that biases and MSE are large and do not decrease much as the sample size
increases when the AR coefficient is close to 1 or the MA coefficient is close to —1.

To give some intuition to the local asymptotic properties of s, ,, write the estimator as:

sha = si+ 2T TR kG, M) S, iy
= S+ 2T DI kG, M) T weue;
+2(6 - o) T TMLk(j, Mr) L L yeerviejn
—2(& - a)T“’(ZjﬁT, k(j, Mr) EZ—._;“ Yt-1te—j + Ejﬁirx k(j, MT)):zT=j+1 Yemjm1e)-



In the negative moving-average case, & is not consistent. The third and fourth terms no
longer vanish for any given j, and the effects accumnulate as My increases. In the positive
AR(1) case, & is consistent, but the sum of the autocovariances of u, does not converge
because it is a nearly integrated process, giving the result stated. In the negative AR(1)
case, & is inconsistent and u, has a unit root with an autocorrelation at lag j that is either
-1 or 0 depending on whether j is odd or even. Hence the estimator diverges at rate M7T.
The oscillation in the autocovariances partly explains why the bias and MSE are smaller
in the negative AR than the negative MA model. The other reason relates to the different
rates at which the MA and AR parameters approach their limit values. In the M A case
6 approaches -1 at rate VT but in the AR case p approaches -1 at rate T. Hence, a given
equal value of p and @ corresponds to a non-centrality parameter ¢ that is further away
from the boundary than the corresponding non-centrality parameter é. For example, a value
p = —0.8 can be seen as much further from the boundary of -1 than is a value for 6 of -0.8.

The results of the above Lemma hold irrespective of the choice of the kernel, and is the
reason for our earlier claim that the choice of the Parzen kernel in the simulations is without
loss of generality. The choice of the kernel affects the O,(1) factors in the Lemma but not
the rate of divergence of the estimators. The unimportance of the choice of the kernel in
these situations is corroborated by the empirical findings of Kim and Schmidt (1990). While
the choice of the kernel is of secondary importance for the issue considered here, the value of
the truncation point Mr is of special importance because it dictates the rate of divergence

of sty 4.

4.2 Local Asymptotic Properties of the Autoregressive Spectral Density Esti-

2
mator, syp.

The regression used to construct the autoregressive spectral density estimator is evidently
the same regression used to construct the unit root test of Said and Dickey (1984). However,
the noise function of the three cases of interest each has, in the limit, a root on the unit
circle. Hence, we cannot appeal to results in Said and Dickey (1984) to derive the limit s4r
in the local asymptotic frameworks. To that effect, we provide, in the appendix, detailed
proofs of the results stated in this section.

Consider first the case pertaining to a large negative moving-average coefficient. Since
0? = ¢2(1 + 0r)?, we have that the limiting value is 0 since 07 — —1 as T — oco. The next

Theorem shows s34 to be consistent in this case.
AR
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Theorem 4.1. Let {y,} be generated by (4.1) and (4.2). Let s, be obtained by applying
OLS t0 (2.7). Then s — 0 provided k — oo and k/T — 0 as T — oo,

Since y, is a white noise process in the limit, Ay, is over differenced. In spite of this,
Theorem 4.1 shows that the augmented autoregression can still be used to construct a con-
sistent estimate of ¢2. Since in the limit o2 is 0, all that is required is that b(1) = oo as
T — o0, a result which follows if k¥ — oo and k/T — 0as T — oo. The consistency of s},
in this case is to be contrasted with the limit of s}y 4 which diverges. This explains why in
the simulations, the bias and MSE are much smaller with shg than with s}, ,.

Consider now the case pertaining to a large positive autoregressive coefficient. Note that
since 02 = 6?/(1 ~ pr)?, we have that the limiting value satisfies T-203 — o2/ asT — o
given that pr = (1 + ¢/T).

Theorem 4.2. Let {y,} be generated by (4.1) and (4.3). Let %, be obtained by applying
OLS t0 (2.7) with k — 00 and k = o(T1). Let T(¥1) - (1)) — n, where y is a random
variable defined in the Appendix (equation (A2.4)). Then T-2s%p — a2/(c + ¢ + )%

Note that in this case s%5 is not consistent for the true value even under the null hy-
pothesis of a unit root (¢ = 0). Furthermore, it converges to a random variable in the limit.
While u, is a unit root process with non-centrality parameter ¢, in an augmented autore-
gression in Ay, it is a unit root process with non-centrality parameter ¢ + ¢ + 7. Thus, the
augmented autoregression will not, in general, identify u, as a unit root process even when
¢ = 0. This accounts for the relatively poor performance of s3p in models with positive
residual autocorrelation. Recall, however, that Slya = Op(MrT) so that it understates o?
since My /T — 0 as T — oo. But, unlike $%yas 8% g is of the same order as the true value o2
Hence, our theoretical result indicate that we can still expect siR to be a better estimator
than s, ,, even though both are likely to have poor properties since neither is consistent.

Consider now the case pertaining to a large negative autoregressive coefficient. Note that
since 0% = 67/(1 — pr)?, we have that the limiting value satisfies 6 — 02/4 as T — oo since
pr = —(1+ ¢/T). The next Theorem shows s%r to be consistent for o2 in this case.

Theorem 4.3. Let {y,} be gererated by (4.1) and (4.4). Let s}, be obtained by applying
OLS to (2.7) with k — 00 and k = o(T"3) as T — co. Then $4p— 024

In the standard framework, Ay, is a stationary process when y, is integrated of order one.

For the DGP in question, ¥: has a seasonal unit root of period two, and hence Ay, remains
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non-stationary. Heuristically, consistency of s  follows from the fact that all the variables in
the augmented autoregression are I1(1). Although the number of regressors increase with the
sample size, we show in the Appendix that consistency of the parameter estimates continue
to hold as in a regression with a fixed number of J (1) regressors. The consistency of s3pin

this case is again to be contrasted with the limit of s}, which diverged.

5 Implications for Unit Root Tests.

We now consider the implications of the local limits of 3, and 5% for unit root tests using
the same local asymptotic frameworks. The spectral density estimator is, of course, not the
only quantity that affects the properties of unit root tests. The sample moments of other
quantities also matter. Indeed, the three cases of interest are, respectively, a white noise, a
twice integrated, and a seasonal unit root process in the limit. Their non-standard nature
will invariably be associated with sample moments with non-standard properties, and these
are analyzed in detail in Perron and Ng (1995). The following two lemmas summarize those

results.

Lemma 5.2. Let {y} be generated by (4.1) and let sty 4 be constructed as in (1.2).
a) Suppose that {u,} is generated by (4.2) then (M1T) ™" Z, and (MrT) "M Z, are Oy(1).
b) Suppose that {u} is generated by (4.3) then Z, and MZ, are 0,(1).
c) Suppose that {u.} is generated by (4.4) then (MrT) ™ Z, and (MrT)*MZ, are Oy(1).
In all cases, the divergence of Z, and M Z, is to minus infinity.

The implications for the unit root tests depend on the particular cases considered. With
negative serial correlation, Za and MZ, diverge to minus infinity at rate (MrT). If a
statistic has a limiting distribution that diverges to —oo and critical values from a bounded
distribution are used in hypothesis testing, the consequence will be large size distortions.
This is essentially why size distortions are reported for Z,. Even though such results are
widely reported for the negative MA case, the problem is important in the negative AR
case also. In such cases, the selection of My in unit root tests entails considerations beyond
the usual bias-variance trade-off of s}, as analyzed in Andrews (1991), because increasing
the truncation lag can aggravate size distortions in the tests. In the case of autoregressive
errors with positive coefficients, Z, and M Z, remain bounded as T increases even though
sly 4 diverges. Hence, less size distortions are expected. These results are confirmed by

simulations.



We now consider the limit behavior of the same unit root tests when $%g is used as the

spectral density estimator at frequency zero.

Lemma 5.3. Let {y;} be generated by (4.1 ) and let s} be obtained by applying OLS to
(2.7) as an estimator of o2.

a) Suppose that {u,} is geaerated by (4.2) then Z, = O,(T) but MZ, = 0O,(1).

b) Suppose that {u.} is generated by (4.3) then Z, , MZ, are both 0,(1).

c) Suppose that {u,} is generated by (4.4) then Z, = O,(T) but MZ, = H(1).

For the two cases of negative serial correlation (a and c), the implications are first that
Zo remains with large size distortions even if s%r is used instead of sty4. This is because
the bias in the least squares estimator still affects Z, directly via & and indirectly via the
least squares residuals (when constructing s2). However, the statistic M Z, is now bounded
in probability in the Jocal asymptotic framework where the MA(1) or the AR(1) coefficient
converges to —1 as 7' — oo.

It is interesting to remark that in the first and third model when consistency of 52,
obtains, & in the regression y, = ayi-1 + uy is not consistent for a (see Nabeya and Perron
(1994)). In such cases, the distribution of M Z, is bounded, but that of Z, is not. Recall
that MZ, can be seen as a modified Z, [see (2.5)]; in effect 3% works in conjunction with
the modification factor to nullify much of the effects inflicted by inconsistency of & upon Z,.
On the contrary, when & is consistent for a as in the second model, s3 R is not consistent
for 02 though they diverge at the same rate. However, in this case, s3 5 has no influence on
the order of either Z, or M Z4, and both have the same bounded limiting distributions. The
above Lemma therefore shows that M Z, can do better but can do no worse than delivering
the same asymptotic properties as Z,.

The foregoing analysis suggests that, if we construct M Z, using s} g, we will essentially
have a unit root test that does not have any dependence on & While the limiting distri-
butions are different from those obtained using the standard asymptotic framework, we also
found the standard asymptotic distribution to be a reasonable approximation to the finite
sample distribution of MZ,. For this reason, use of the standard asymptotic critical values
yielded unit root tests with good size properties for all the parameters considered in the
simulations. Details are contained in Perron and Ng (1995). The consequence is dramatic
improvements in size properties over unit root tests which do have a dependence on & (eg.,
Z,) in the problematic parameter space. To give an idea of the magnitude of the size im-
provement, consider the M A(1) case with = —0.8 and T = 100. The size of MZ, using
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s%p is .09, while the size of Z, using sk, is .98, when the nominal size of the test is .05.
Such contrasts in size remain in larger samples.

The above Lemmas also indicate that in order to have unit oot tests with good properties,
simply replacing siy 4 by s% g will not be sufficient; we need to remove total dependence of
the test statistic on &. There exist several other tests that also do not have a dependence on
&. One example, also suggested by Stock (1990), is a modified Sargan-Bhargava test defined
by

T
MSB = (T Y4,/
t=1
Another statistic, considered in Perron and Ng (1995), is a modification of the Phillips-Perron
Z, test. It is defined as

T
MZ = Zo+ (1/2)(L via /5 M@ - 1)
=1
Alternatively, it can be written as MZ, = (T~'yr — s2)/l2s)(T* T, y2 )M = MSB x
M Z,, which evidently does not depend on &. The results of Perron and Ng (1995) show that
MZ., MSB and MZ, have very similar size and power properties, and all perform much
better than unit root tests that depend on &. The autoregressive spectral density estimator

discussed here can therefore be used in a rather broad range of applications.

6 Conclusions.

This paper has considered estimating the nuisance parameter o2 in the context of unit root
or cointegration tests. We have shown that a particular formulation of the autoregressive
spectral density estimator can provide estimates far superior to the traditional kernel-based
estimator constructed using least-squares residuals. The gains are important in cases of
strong negative correlation and there are little losses in accuracy in the other cases. When
used in conjunction with tests that do not depend on 4, it allows unit root or cointegration
tests to have substantially improved size in the presence of strong serial correlation in the
residuals. Also, this marked reduction in size distortions does not come at the expense of
a reduction in power. The estimator is very easy to construct and requires basically only 2
standard autoregression estimated by OLS. For these reasons, we believe that this estimator
is of substantial interest for applications.

An issue that remains unsolved is an optimal method to select the order k of the autore-
gression. The relative merits of the data dependent methods for selecting k are discussed in
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Ng and Perron (1995) in the context of testing for a unit root from an augmented regressior
such as (2.7). While we advocated the use of a general to specific recursive procedure on the
ground that it produces unit root tests with better finite sample size and power, it does not
follow that this procedure is better in the context of producing estimates 3% g that have the
smallest mean-squared error. As seen from the results here, too large a k max can induce ex-
cessive variability in the estimates when the sample size is small. As well, a liberal selection
rule is preferred with negative moving-average errors, but a conservative rule is preferred
with positive moving-average errors, and with (finite order) autoregressive errors in general.
This being said, it is not clear that the MSE of the spectral density estimators is the appro-
priate criteria for selecting , since our ultimate objective s to test for the presence of a unit
root, and not obtain an estimate of o2 that is as precise as possible. Clearly, the optimal
lag length should depend on the underlying data-generating process. Hence, an important
avenue for future research is to devise optimal data dependent rules for 3% p which produce
unit root tests with good size both when the root of the error process is away from the unit
circle and when it is close to it.

Finally, it is important to note that the estimators considered here are clearly aimed at
providing estimates of the nuisance parameters in the context of testing for unit roots or
cointegration. In this case, the class of possible estimators is constrained by the requirement
that the estimates be bounded (or at least converge to zero at a rate slower than T') under
stationary alternatives. This is needed to ensure consistency of the tests. If one is interested
solely in an estimate of (2 times) the spectral density function at frequency zero of some
series, say Ay, then better estimates are available. Since one is no longer constrained to use
the least-squares residuals to construct sty 4, the first-differences Ay; can be used. Also, in
the construction of the autoregressive spectral density estimator 3% g, one need not include
the lagged level y,_, in the autoregression (2.7). These alternative constructions not only
ensure consistency of the estimators under stationary alternatives but also more efficient

estimates when the level of the series contains a unit root.

19



References

[1] Andrews, D.W.K. (1991), Heteroskedastic and Autocorrelation Consistent Covariance
Matrix Estimation, Econometrica 59, 817-854.

[2] Andrews, D.W K. and J. Monahan (1992), An Improved Heteroskedasticity and Auto-
correlation Consistent Covariance Matrix Estimator, Econometrica 60, 953-966.

[3] Berk, K.N. (1974), Consistent Autoregressive Spectral Estimates, The Annals of Statis-
tics 2, 489-502.

[4] Campbell, J.Y. and P. Perron (1991), Pitfalls and Opportunities: What Macroe-
conomists Should Know About Unit Roots, in NBER Macroeconomics Annual 6 (0.J.
Blanchard and S. Fisher, eds.), Cambridge: MIT Press, 141-201.

[5] Chang, M.C. (1989), Testing for Overdifferencing, North Carolina State University Doc-
toral Dissertation.

[6] Chang, M.C. and D.A. Dickey (1994), Recognizing Overdifferenced Time Series, Journal
of Time Series Analysis 15, 1-18.

[7] DeJong, D.N., J.C. Nankervis, N.E. Savin and C.H. Whiteman (1992), The Power
Problems of Unit Root Tests in Time Series with Autoregressive Errors, Journal of
Econometrics 92, 323-343.

{8] Dickey, D.A. (1990), Recognizing Overdifferenced Series, Proceedings of the Business
and Economics Statistics Section, American Statistical Association.

[9] Fuller, W.A. (1976), Introduction to Statistical Time Series, New York: John Wiley.

[10] Golub, G.H. and C.F. van Loan (1984), Matriz Computations, Baltimore: John Hopkins
University Press.

[11] Hau% A.A. (19922, Residual Based Tests for Cointegration: A Monte Carlo Study of
Size Distortions, Economics Letters 41, 345-351.

[12] Kim, K. and P. Schmidt (1990), Some Evidence on the Accuracy of Phillips-Perron Tests
Using Alternative Estimates of Nuisance Parameters, Economics Letters 34, 345-350.

[13] Lewis, R. and G.C. Reinsel (1985), Prediction of Multivariate Time Series by Autore-
gressive Model Fitting, Journal of Multivariate Analysis 16, 393-411.

[14] Nabeya, S. and P. Perron (1994), Local Asymptotic Distributions Related to the AR(1)
Model with Dependent Errors, Journal of Econometrics 62, 229-264.

{15] Ng, S. and P. Perron (1994), The Exact Error in Estimating the Spectral Density at
the Origin, forthcoming in Journal of Time Series Analysts.

{16} Ng, S. and P. Perron (1995), Unit Root Tests in ARMA Models with Data Dependent
Methods for the Selection of the Truncation Lag, Journal of the American Statistical
Association 90, 268-281.

[17] Perron, P. (1996), The Adequacy of Asymptotic Approximations in the Near-Integrated
Autoregressive Model with Dependent Errors, Journal of Econometrics 70, 317-350.

20



(18] Perron, P. and S. Ng (1995), Useful Modifications to Some Unit Root Tests with Depen
dent Errors and their Local Asymptotic Properties, forthcoming in Review of Economi,
Studies.

[19] Phillips, P.C.B. (1987), Time Series Regression with Unit Roots, Econometrica 55
277-302.

[20] Phillips, P.C.B. and S. Quliaris (1990), Asymptotic Properties of Residual Based Tests
for Cointegration, Econometrica 58, 165-193.

{21] Phillips, P.C.B. and P. Perron (1988), Testing for a Unit Root in Time Series Regression
Biometrika 75, 335-346.

[22] Press, W.H., S. Teukolsky, W. Vetterling and B. Flannery (1992), Numerical Recipie:
in C, 2nd ed., Cambridge: Cambridge University Press.

[23] Said, S.E. and D.A. Dickey (1984), Testing for Unit Roots in Autoregressive-Moving
Average Models of Unknown Order, Biometrika 71, 599-607.

[24] Schwert, G.W. (1989), Tests for Unit Roots, A Monte Carlo Investigation, Journal of
Business and Economic Statistics 7, 147-160.

[25] Stock, J. H. (1990), A Class of Tests for Integration and Cointegration, manuscript,
Harvard University.

[26] Stock, J.H. (1994), Unit Roots and Structural Breaks, in R.F. Engle and D. McFadden
(eds.), Handbook of Econometrics, vol. IV, ch. 46, Amsterdam: Elsevier.

[27) Watson, M.W. (1994), Vector Autoregressions and Cointegration, in R.F. Engle and D.
McFadden (eds.), Handbook of Econometrics, vol. IV, ch. 47, Amsterdam: Elsevier.

21






Appendix A: Mathematical Results

The following regression equation estimated by OLS is considered throughout this ap-
pendix: .
Bye=Ddoyi-1 + 3 by + eq. (AL1)
=1
We denote the OLS estimates by {b:}%, and the estimated variance of the residuals as
sy = T'TL, . &4 As a matter of notation, we let “=” denote weak convergence in
distribution and “—~" convergence in probability. Also, W(r) is the unit Wiener process
defined on C[0,1] and J.(r) = g ezp((r — s)c)dW(s) is the Ornstein-Uhlenbeck process with
drift parameter ¢. The norm of a matrix B is defined by || B ||= sup{ || Bz F:l=l<1},
where || z [|= (2'z)1/? is the standard Eucledian norm of a column vector z. We also let ¢
denote an arbitrary constant which is not necessarily the same throughout.
Proof of Theorem 4.1
We need to show 1% — oo, that sh =T'LL,,, &, is bounded as T — 0, and
hence that s§p = s3,/(1 - 5. )2 — 0 with k/T - 0andk — 00 as T — oo, It
is useful first to note the following representation derived in Nabeya and Perron (1994) for
{v:} generated by (4.1) and (4.2). Define X, = (14¢/T)X,_, tey, ar = (1-§/vVT)(1 -¢/T),
br =1-(1 = ¢/T)1 = §/v/T) with ar — 1 and T'/%1 — § as T — oo, then

Yo = arec + br X, + 0, (T3, (A1.2)

where the presence of the 05(T="2) term is due to the fact that we specify a = 1 + ¢/T
instead of a = exp(c/T) as in Nabeya and Perron (1994).

Some of the arguments below are similar to those in Chang (1989) and Chang and Dickey
(1994). We define the following vectors of dimension (k+1):

Ui = (yi-1, Z}), with 2y = (Ayuas,. .., Byiy),

T
Vp=T"1 E U Ay,
i=k+1
V= 3(—17.4)01' .. )0))
~and-the following (k + 1) by (k + 1) matrices:
N T 2{:&“ vi, EtT:H-I Year gy
Rr =T71 Z DU =T"?

= T T
=kl E¢=k+1 Y12, Et=k+l leal
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03T Thip(afela + X)) 1
. 1 2 -1
fr=o? Z12 -1 ,
-1 2 -1

1482 f3 J(r)2dr 1
1 2 -1
R=o0? -1 2 -1

results that are useful for subsequent derivations.

Lemma 1.1. Let X, = (1 + ¢/T) X + €, then a) |E(Xes)l < C; b) |E(X: X,)| £ TC
fort,s,< T; ¢) E(Ty Xee)? = O(T?), d) $T, Xire = Oy(T); and €) T~ SLXE =
o2 fg Jo(r)dr.

Parts (a) through (d) are straightforward generalizations of results in Fuller (1976), part

(e) is a standard result for pear-integrated processes. The following Lemma collects some
useful results derived in Nabeya and Perron (1994).

Lemma 1.2. Let {y,} be generated according to (4.1) and (4.2) and let e = g oo €7/ 0e-
Then as T — o0, a) TV vl = a? + a6 fy Jo(r)tdr ; b) T T yuy = =02 ¢)
YT =5 Oc€on + 0.8J(1); and d) T7! T ul=2 a2

Using Lemma 1.2, it is straightforward to derive the convergence results stated in the

following Lemma.

Lemma 1.8. Let {y:} be generated by (4.1) and (4.2). Then fori,j =1,..-, k,

) TS Vet = atifi=1,

0 otherwise;

o1 + 8 f3 J(r)3dr) if i = J,
0262 f3 Jo(r)?dr if i # 53
202 ifi=3,

¢) T VT thmitlen; = ~a?ifli-jl=1,

b) ! ZT:kﬂy«-,y:_, = {
0 otherwise.
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The following bounds can also be derived using Lemma 1.1.

Lemma 1.4, Le; {y:} be generated according to (4.1) and (4.2): a) Elyw]| < Cifs=1¢,
s=1+1,and [Elyy,]| < CT-/? otherwise; b) Eluw,) =0 for |t ~3|>1 and 1Efum,]) <«
otherwise; ¢) E[y"T | Yeu P <CT? if j = —1 and Bl v P <CT if J# -1
BT, ueu;]* < CT for > 1;e) E[ZzT:ku wye-j]? < CT? for any j.

We now consider the Limiting behavior of the moment matrix fy.

Lemma 1.5. a) R - R)| 0, b) |Rr - Byl = Oy(k/T1/2),

Proof: To prove (a), we show that each element of flr converges in distribution to the
corresponding element of R, Consider first the (1,1) element of Rr. Using Lemma 1.2, we
have

T 1
T3 42, = 0?1 4+ & /0 J(r)2dr).

t=k+41
For the remaining elements in the first row of Ry, using (4.2) and parts (2) and (b) of Lemma

1.3, we have:
T i Y Ayey = T Tk Yeor(ueo + FUi-2) = 02,
T ki Vi By = T Tk e (upms + FUtmiz1) = 0.
fori=2,.. k. Consider now the elements of the lower right k x k matrix of Ry. We have,
fori,; = 1, k:
! Z;k“ Ayidy,; = 7! E?:Irﬂ(%yt—i‘l F Ui )($Y1-5o1 + Upy)
T Elkir vt + 3T ThkniVimici¥icjon (AL3)
+ T2 ):gTzk“ Yimioitij + T2 Z:g?‘:g.“ Yi—jert,.

The last three terms converge to zero using parts (a) and (b) of Lemma 1.3. Thus, by Lemma
1.3(c), 71 DI Ay Ay ; = 20lifi=j, ~o2if li—jl =1 and 0 otherwise. This proves
part (a).

For part (b), define the matrix Q = Ry — Rr. We show that each element, g (1, =
L.,k + 1), are such that TE(g}) < C, for some constant C. Consider first, the (1,1)

element. We have:
T Z;I;Hx v, Vit E:T=k+1 (arery + brX, 1)?

Y Etr—.-kﬂ(“%etz—x +ORXE, + 2arbr X rer.y)

I

I
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and
T
TE(¢}) = 4a2TTbZTT’2E[ Z X <G,

t=k+1
using (c) of Lemma 1.1 and the fact that ar = O(1) and Tt = O(1).
Consider next the (1,2) element. We have

TE(¢h) = E[T'/? Tl We1By — i)’
< E[TTL, aeav- — oD + E[T £ 4 ve-1be-2)?-

The second term after the inequality is 05(1) using Lemma 1.4(e). Consider the first term:

E{T-? ELH-](?/'-I“(—! -a)f
< E[T—lﬂ E;r:k“(“?‘d-l - ‘73)]2 + E[TlanT-l {-—k+1 X(-]et-lP
+E[arbrT VAL e + E[6rTY*brT™ Lok Xe-rer-af
<C,

using Lemma 1.1(c), the fact that ar — 1 and standard arguments fori.i.d. random variables.

Fori=2,...,k, we have

TE(¢?:41) = E|T-'/* E‘Tﬂﬂ Y1 Byl
= BT S Yemrtii + T3 Yieryemia]
< E[T* T en yiortei]” + E[cT-3? Tkt Yeor¥i-i-1)?
<C,

using (c) and (e) of Lemma 1.4. Consider now the elements of the lower right sub-matrix of
Q. We have, using (A1.3), fori= 1,...k:

Gitri4 = TSl —200) +T7° Tk ¥
+26T72 kg Yemim1Uemi
TE(¢41) < E[T-ll? 2:T=k+1(“3--’ 201 + E[‘?T’s“ T=k+l vl
$2E[ T T Yimic1bemil®
<G,
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using Lemma 1.4 and the fact that
E[T= o (ud - 207)J
= BT\ z\:tT=k+1 {(e} ~a2) + (07el_; - ol)+ 207ece; 1]
S BT ELu(el = o) + E[T-135T, | (6e? , — ad)f
+E[207T-1/2 EcT.—.kn ecer1}]?
<C,
where the last inequalities follow using standard arguments and the fact that |6r| £ 1. For
the elements with )i — il =1, we have:
TE(q,?“‘H,) < E[r-172 E?:kﬂ(ui-iulﬂ +62)? + E[*T5/2 1T=k+l Yemic1Yt-j1)?
+E[cT-32 }:Lk“ Yimimit—j]? + EfcT-32 ):¢T=k+1 Yemjm1Usi)?
S Cr
and for [{ — j| > 1,
TE(‘J-ZH.:M)
< E[T2 ZZ-.k-n uu )P+ EleT-312 EtT:hH Yimic1¥e-j)?
HE[T O T yeimrues, )2 + EleT =" Ty yemsmrue?
<C.
Hence, we have E([|Q|[?) < C(k+1)*/T since Q is a matrix of dimension (k+1) x (k+ 1).0
We consider now results pertaining to the vector V4 stated in the following Lemma.
Lemma 1.6. a) |Vr|| = 0,(k'/2); b) [|Vp - Vi = O,(k/T)V2.

Proof: We start by showing that each element of Vr converges to the corresponding
element of V. Consider the first element. From Lemma 1.2:

T T T
TV 3 Ay =cT Y 2, 47! Y veaw — —a?.

t=k+1 t=k+1 t=k+1
For the remaining elements ,» we have using Lemma 1.3:
T EZ—.k-o-] AyDdy,; ! Ethk-H(%!h—! + “t)(%yl-i-l + )
E&T-3 E?;k“ Ye-1Ytmio1 + T2 E,T_..H,, Ye-rUp—;
+e T2, Yimicyug + T Tkt etiee

- ~0lifi =1 and 0 otherwise.

f
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This proves part (a) since each of the (k + 1) elements of the vector Vr are O,(1).

Let v; (i = 1,...,k + 1) be the ith element of the vector Vyr — V. To prove part (b), we
show that T E(v?) is bounded. Consider the last (k— 1) elements. Using the preceding result
and Lemma 1.4, we have, for 2 <i <k,

T T
E(T-]/2 z: AygAy‘_.-)z S E(T”l/2 z ugut_.')z “+ 0,(1) S C
tzk41 t=k+1

Consider now the first element of the vector T/ 2(Vy — V). We have:

TE(T Tk Byeyir + ol
= TE(T? Ty vy + T Tl Ve + 00
=TE(T™ Tl Yrate + o2)* + 0,(1)
= E[TY2ar Ty €161 + T3 plarbrel, +07)
+TV2 T ST Xew]® + 0,(1)
< E[TPar Ty eeen]’ + E[T~"ar il — €I
+TRE(T Tipp Xecawe) + 0p(1)
<C,

since fp — —1, T3 — 6% and ar — 1, and using Lemmas 1.4 and 1.1(c), and the fact that
T-2 7T, . (€2, —0?)is bounded in probability. For the second element, similar arguments

show that
T

TE(w}) = TVE[T! Z AyAyis + 0P <C,
t=k+1

and part (b) folows.O
The next lemma concerns the inverse of the moment matrix fir.

Lemma 1.7. ||R7'|| = O,(k?) and if k"' /T — 0 as T — oo, then KA RP ~ R — 0.

Let R, be the principal kx k submatrix of Ry. Now Ry is a Toeplitz matrix with minimum
eigenvalue, Amin(Ri) = [203(1 = $3F)] = O(k~?) (see Dickey (1990)). By Corollary 8.1-3 of
Golub and van Loan (1984), Amin(A+E) 2 Amin(A)+ Amin(E), where A and E are symmetric
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matrices defined in this context as

2 -1
-1 2 -
-1 2 -
-2 -1}
-1 2
-1

o *r-! E?:k+](a%ef—l + b%sz—x) ~2 2
2

A= Rk-H =0¢2

00
=o2| 0 000

E=o. 000

00

0

Then Ry = Risy + E, and note that A, min{E) = 0. Thus,

Mo Rr) 2 M Bes) + Auia(E), o1 D () > [2a’<1 %fl’)] . (Aly)
This implies Amin (R71) = 1R | = O,(k?) since the minimal eigenvalue of Ry is the recip-

rocal of the minimal eigenvalue of R7l.
For part (b), we follow developments similar to those in Said and Dickey’s (1984) Theorem
4.1 Let g = |5 — R7'| and Q = Ry ~ Rr, we have,

9= |lR7"(Rr - Rr)R7"|| < IRZ Ry = RrlIRF ) < (¢ + I&F DN
Upon rearrangement, we have
K < k(1 - IRZ QN IR 1211
Note that since E(|QI[?) < C(k + 1)*/(T — ), we have K/3Q|| 0 if k¥ /T = 0. Hence,
K% < (= kR R QU) ™ k= B PR Q) = 0 as T — oo,

which proves Lemma 1.7. O
We are now in a position to prove the following result.

Lemma 1.8. Suppose k — oo and YT 5 0asT — 00, then [|§ — f|| — 0, where
B = RF'V. Also, since T~ '};,-,, nlately + 8X2,) = o2(1 + 82} (r)?dr), we have
118 - Bl = 0, where 8 = R-1V.
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Proof.

18 - Bl

I

W2V — BV = |RF Ve — RV + Ry Ve = BVl
1Bz — BRIVl + 1R Ve = VI
W R~ B AT + KT B /22| Vr = VI = 0

IA

using Lemmas 1.6 and 1.7 and the fact that k**/T — 0. O

Since T, b; is a continuous function of the vector f= (50, biye-es 3;,), the limit of =%, b
is the same as that of sk, Bi, where B = (Bo. B> -- ,Bi) is the solution to B=R1'V. We
have used MAPLE to verify that gi=(k-i+1)S/(0+ (k+1)S) (¢ =1, ..., k), where
§ = 026 f§ J(r)*dr. Hence, v B = k(k+1)S/(2(1 + (k +1)5)) and k7 sk B — 12
as k — oo. This shows that 5, b, — 0o as T — oo with k — oo

Finally, note that the same result holds if k*/T — oo and k/T — 0asT — o0 since
from Lemma 1.8, | — Bl would be bounded below by the case k''/T — 0 and we still
obtain ¥5, b — ocoas I — oo To complete the proof, it remains to show that 82
remains bounded, regardless of the rate at which k approaches infinity. Note first that
2, =TTl &2, < T71 T4 €k, using standard properties of projections. Hence, all
we need to show is that T~ 5T 441 €3, remains bounded. This is straightforward using the
following representation of ew:

oa

e = €1t z biAyi—is
i=k+1

and using the fact that b = -1+ ¢/6VT)(1 - §/VT)'. Details are omitted.

2 The Nearly Twice Integrated Model.

Proof of Theorem 4.2:
It is useful first to state the following Lemma proved in Nabeya and Perron (1994).

Lemma 2.1. Let {y.} and {u} be processes given by (4.1) and (4.3). Define J(r) =
¢ cpl(r—s))dW (5), Jo(r) = J§ copl(r=2)8)dW (s) and QulJu(r) = & exp((r—v)) Jo(v)dv.
AsT — 00

a) T-¥%yr = 0. Q(Js(1));

b) T4 T, 32 = 02 Jg Qe(Jo(r))drs

¢) T3 SL, g = (02/21{Q(Jo(1))! — 2¢ Jo Qe(Jo(r))Pdr};

d) T2 L, ul = ol g Jolr)'dr
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The autoregressive representation of the data-generating process is
Ay = ~(c¢/T*)yr + (1+(c+¢)/T+ 3/T?)Ayey + e,

This implies b; = 0 for i > 1. Thus, lime—oo 5 8= 1 + (c+ ¢)/T + cé/T?. To derive the
limit of &(1), it proves convenient to write the regression (Al.l) as

k
Aye = boyi1 + 618y, + Y6y + [T
=2
where & =74 b=, = (1+<2+£8), and §; = — Thibhi=0(i= 2,..., k) (note that &, =
bo and e, = e,). We need to derive the limit of T'(4, —&1). Let Z} = (A%,_,, ... A k),
Ui = (-1, Ayi-1, Z!), and define the following (k + 1) x (k + 1) matrices:

Tl vi, Zlksr Y1 By v 2
T
Rr= 3 UU = Tkt Aveciyin Tl AV, Then Auaz |,
t=k+1

Ethk-i-l Y12y EZ.W Ay.Z, Zﬁ:u: Z,Z;

Hr Krp

Kr Jr

T = o;
ol
o?

with Hy = T EL V2, Kr = T Cieknn Vi2a + T L, VieaWisy and Jp =
T2 Lhini($Vies + Wiey ) where W, = Zimrexp((t = j)¢/T)e; and V, = 31, exp((t -
i)e/T)W,. Also,

Ao M
A A
R=o? 1

1

where do = [§ Qc(Jy(r))2dr, Ay = 1Qu(Jo(1))2, and A, = Qe(J(1)F — & 3 Qe(Jy(r))2dr +
Jo Je(r)?dr. Note that using standard results (see, e.g., Nabeya and Perron (1994)) we have
T
Hr=T"* Y Vv, = aldg,

t=k+1
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T T
Ky =cT™* Z V.ig +7°° 2 Vi-aWio = ik,

tmk+1 txk+1

T
Jr=T7 Y (Via + Wiaa)* = 002
T

t=k+1
Hence, ||Rr — Rl — 0. Also define Dr = diag{T-3, T, T-1/*,...,T*/*}. We first show
that each element of the matrix DrRyDr converges in distribution to the corresponding

element of R.

Lemma 2.2. Let {y.} be generated by (4.1) and (4.3). Then for i,j = L.,k —1,as
T—o0:

a T2T L1 veciBriar = FQL(D) = M3

b. T2 54 Byl = 02 (QclJe(1)) - & J2QJe(r)dr + fo Jo(r)rdr) = Az;

e TET Ay j > ol ifi=] and 0 otherwise;

d. T-%? EL;‘H Y1 D% = 0

e. T3, By A% = 0.

Proof. To prove (a), note that Ayioy = (¢/T)ye—2 + b1 Therefore

T3 y11B%e1
=T3EL i+ ¢/T)yi-2 + we-1)($¥e-2 + Up-1)
=c(l +¢/T)T* Tloin Ve + T-3(1 + ¢/T) Tiaksa Ye-athe-1 + (1)
= 2Q(Js(1))* = Mol

using Lemma 2.1(b,c). The proof of part (b) follows similarly using Lemma 2.1(b,c,d). To
prove part (c), note that Ayei = (¢/TVyr-ica + ((c + ¢)/T)u1-i-1 + er-i- The result is
immediate after expanding terms. Parts (d) and (e) follow using analogous arguments.0

Now let Q@ = DrhrDr— Rr. 1tis straightforward to show that a typical element of this
matrix, gi;, satisfies TE(g}) < C for some constant C. Hence, E||Q|? < C(k+1)*/T. Also,
since Ry is a block diagonal matrix with lower (k —1) x (k= 1) block being the identity
matrix (scaled), we have [|R7!|| = Op(1). Using arguments as in Said and Dickey (1984), we
have k2||(Dp Ry Dr)™* — R'|| — 0 in probability if KT — 0.

Since e = e it Temains to establish the limit of ||Dr Tieksr Uredll. We start with the
following Lemma.

Lemma 2.3. Let {y.} be generated by (4.1) and (4.3). Thena) Elyy.] < T2C; b) E[Ay?] £
TC; ¢) El(8%)%) < C.
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Proof.  For part (a), since Vo= (1 +¢/T)-r Zie(1+ 8/T) ~ie;, and E(eie;) =0 if
¥,
E(yy,) =
B[St +¢Tyr g0+ /T ¢;) (Toms(l + /Ty 5L, (1 + $/T)*~%e;)]
S CTE(e?) = T?C,
since (1 + ¢/T) and (1 + ¢/T) are bounded by some constant. Analogous arguments show

that E(uu,) < TC and E(y,-3u¢) < T*C. For parts (b) and (c), write Ay, = FYt-r + uy,
and A%y, = £Ay,_, + $ucs + €. It follows that

ElAyl) = E [fiv.] + E[ud] + EE[yu) < TC,
El(A™:)") = El($Ayc1 + $ues + €] < 02 4 0,(1) = .0

Lemma 2.4. || Dy Sl Vel = O,(k/3),

Proof.  Note first that r
1Dz 3 Usel?
t=h41

T T k T
=E(T? Z yt—lez)2 + E(T‘l z A!/t—lex)2 + Z:E‘(T.’/2 E A’y;_met)’
t=k41 t=k+1 =2 t=k41

and that y,_;, Ay,_,, and Ay, iy are independent of e,. The result follows using Lemma
2.3 which allows us to derive the following:

E(T-? ):tr=k+| Yeore)? = T4 Z;T:k«u E[y12~1JE['312] =0,(T71),
E(T- E;rzk-n Ayere,)? = T2 Etr=b+l E[(Ay,-l)z]E'[ef = 0p(1),
fea B(T12 ET.H.: Ay ine)? = tea T 2:7.-5“ E[(Azy,_;“)’]E(ef ) = Op(k).0

We are now in a position to derive the limiting distribution of the estimates &, We have

T T
D7 (8 - 6) = ((DrRyDr)™ — Ri')Dr 3 Uec+ Ry'Dy > Use.. (A2.1)
t=k41 t=k+1
Taking norms, the first and second terms are 0y(1) and O,(k/?) (since 1B = 0,(1)),
respectively, so that || D7} (§ 8l = O,(k*2). Since IDF| = O(T?) and k = o(T'3), we
have [|5~ || — 0. Note that (A2.1) implies D7 (6—6) = 0,(1), and the limiting distribution
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of D' (6 ~ 8) is that of Ry Dr Tisy, Urer which is the same as the limiting distribution of

R Dy YL,y Ure in view of the fact that ||Rr — R|| — 0. We are interested in the second
element of this vector. By block diagonality, the limit of the first two elements is given by

: T?(bo — &) o A - T2y iy

hm u = 1i +1 0’2 . A2.2
T—oo ( T(6 - &) M Tooo | 77 T i Avs-rer o (v )
It is straightforward to show the following limits

T2 T g verer = 02 3 Qe(Jo(r))dW (r) = 02)s;

T . N (A2.3)
T EL 1 Aviren = 02(e 3 QlJo(r)dW (r) + o Jo(r)dW(r)) = oA

Let T(8; — &) — 7, where
1= (=M + dode)/(Rora = AD)- (A24)

Using this result and (A2.2), we have T(8; — 1) = T(é, - &)+ T(61— 1) = n+c+ . Since
{16 —-6l| = 0,itis straightforward to show that 8%, — o} and T-3s%p = olf(n+ c+ @)%
This proves Theorem 4.2.

3 Nearly Seasonally Integrated Model.

Proof of Theorem 4.3: We first define the following variables to be used throughout. Let

A(r) = (¢ = )QeJsa(r) = QelJoa(r))] +2 Jea(r),
B(r) = Joa(r) = Joalr):
C(r) = A(r) - B(r),

where Jex(s) = [2 exp((s — v)e)dWi(v), Joi(s) = Jgexp((s = v)$)dWi(v), Q(Jsi(r)) =
5 exp((r — 8)c)Jgi(s)ds for i = 1,2, Wy(r) and W(r) being independent Wiener processes.
The following Lemma is proved in Nabeya and Perron (1994).

Lemma 3.1. Let {y.} and {u,} be generated by (4.1) and (4.4). Then
a T3ET y2, = (63/8) [J(C(r)* + Blr)})dr;
b. T-2 XL, yerw = —(02/4) fo B(r)'dr;
c. Ty} = (02/8)A(1)%
d. T2 L, u? = (o2/2) [3 Blr)dr.
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The autoregressive representation of the model in terms of (AL.l)is
Aye = (c4/T? + 2¢/T)y,_, - (I+(c+¢)/T+ $/T?) Ay + e, (A3.1

This implies b; = —(1 + o®e 4 #),and b, =0 fori > 1. Thus, im0 3% b = —(14
$E 4 #%) which converges to —1 as T’ — oo. Hence, to prove the Theorem it is sufficient t
prove that the OLS estimates from (AL.1) are consistent for the coefficients stated in (A3.1)

Consistency of s2, for o? then follows immediately. It is convenient to write the regressior
(AL1) as

&
By = boyioy + 64y, + 2 6iBayiigs + €k,
=2

where Ay, iy = Ytwit1 = Yeiywith §; = Z}‘zl-(—l)f“bj (i = 1,..,k). Note that &,
bo, e = ¢, and 2?;{(5.‘ +6n) + & = 2."‘:1 bi. Let Z] = (Azyt-h---‘Azyt-kﬂ), /A
(Vie1, Ay, Z}), and define the following (k + 1) x (k + 1) matrices:

1]

Zthkﬂ vl E;I;b-n Y18y E:T:k«u Yir1Z{
T
Rr= 3 U = i Avieyee Tl Ay, b 3r Ay Z) |,
t=k+1
ZLH: Y12, ZI—.H-: Ay, 2, ZtT=k+1 ZIZ;
Hy %JT
%JT Jr
T = a?
ol
ol
with Hy = T2 SI0L RWZ, + Wy Vi + V2], Jp = Tl V2, where V, = X;, -

Xl',lv
Wi =3"l(¢ — ) exp(2c(t - ITHX:; = X3;) + exp(2e(t — 7)/T)es;)
=1
with X7, = 3¢ exp(2¢(t — 7)/T)es; and Xie= Tioy exp(24(t = 7)/T)ea;-y. Also,

o AJ2
A/2 A

1
1
where Ao = (1/8) LlC(r)3? + B(r)}dr, and ), = (1/2) f3 B(r)?dr. Note that using standard
results (see, e.g., Nabeya and Perron (1994)) we have Hy = 0l and Jr = o2),. Hence,
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{|Rr — Rl| — 0. Also define Dr = diag{T-, T, T/, .,T-Y/?}, We first show that each
element of the matrix Dy Ry Dr converges in distribution to the corresponding element of

R. The relevant results are stated in the following Lemma.

Lemma 3.2. Let {y:} be generated by (4.1) and (4.4). Then fori,j =2,....k,asT —00:
a T-2T ks veca By = (02/4) Jo Blr)*dr = (02/2)M;
b. T-? ET:H) Ayl = (02/2) f(} B(r)'dr = alky;
¢ T3 v Baliinn = 0;
d. T3P T4y By Baye-in = 0;
e. TSl (Bayein)’ = ol
LT VYT 0 Doy Dayioin = 0-

Proof. To prove (a), note that since yi-1 = QTYt-2 + Ut-1 (with ar = 1+ ¢/T) and
Ay = FY-z2 + -1

T3] 1By = T-3car XL 41 oo + T 3car ST 1 Yim2Ue
+ T%ar SLup Yieatinr + T72 o v = (02/ 4) [ B(r)*dr = (07/2)M,
since the first two terms are o,(1), and using the results of Lemma 3.1. For part (b),
T35 Ayt = T2 Zhins (%yt-z + “1—1) (%ya—z + u(—-l)
=T 20 ul, to(l) = (62/2) fg B(r)tdr = k.
Parts (c) to (f) follows analogously using the representation:

AgY-in1 = te ;,{b) Ye-i + [(—C—;:LQ + f:f?;']yt—i—l + €r—it1y

along with the results that T-20T o yeinli-j = 0,(1) and T ST Y-t € =
0,(1).0

Now let Q = DrRyDr — Rr. 1tis straightforward to show that a typical element of this
matrix, g, satisfies TE(g}) < CT for some constant C. Hence, E|Q|* < C(k + 1)?/T.
Also, since Ry is a block diagonal matrix with lower (k—1) x (k—1) block being the identity
matrix (scaled), we have I|R7 || = Op(1). Using arguments as in Said and Dickey (1984), we
have kV2||(DrRrDr)™ — Rzl — 0 in probability if K/T — 0.

Since e = € it remains to establish the limit of || Dr Dicksr Vredll. We start with the

following Lemma.
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Lemma 3.3. Let {v:} be defined as in (4.1) and (4.4). Then
#) Eluf] S TC; b) Ely-su) < TC; ¢) Ely) < TC, 4) ElAY{] < TC; e) Bl(Agyeinn)?) <
C.
Proof: Part (a) follows since U is a near-integrated process, hence Lemma 1.1{b) applies.
Following Nabeya and Perron (1994), define, for s = L., [T/2):
Xiu = Tjai(p})~ies; and X,, = Zialph) e,
Vo = (1= 97) 551 (02)9 Xy + (o ~ P15 (0}) ™ X+ 91 3 (ad)r=iey,
e = Xiw = prXa, - €3, a0d us,y = X;, — (1/pr)Xas + (1 pr)es,
where pr = (1 + 8/T), a7 = (1 + ¢/T), and vp = ar/pr, and note that ] — 1 = O(T-1).
Using these definitions, we have, for t odd and ¢ — 1 = 2s:
E[!/t~1“l] = Elyzauzsnl
SEFEQ-) Eiar(ad) X1 X | + Bl =) Ty (0d)1 X, jegy |
+ El(ar - pr) E}=,(a})""X;‘,X2'.HI + El|(vr/pr) E;=;(0%)'-j€2j€2:+1l
+ E,(‘YT/PT)(Z,"::(“%)"jczj)xl.:+l|~
It is easy to deduce that the second and the fourth terms are 05(1). For the first term,

Bl =1) Das (@) X, Xua] € ETCT(1 = ) (1,‘%’;}3) STC,  (A32)

Similar derivations can be made to show that the third and the fifth terms are also Op(T).
Analogous arguments hold for ¢ even. Thus, Ely,_yu,| < TC. The arguments for the general
case Ely,_;u,| are similar. Consider now, part (c). We have, for ¢ even:

E[yt?] =(1- 7T)2E;=x 2:=1(C‘%‘)"j(a%)'-iE(XlaXl.i)
+ (er - pr)? Ty, Lisi(ad) ™ (ad) = E(X,, X,,) + 1V ar(Tie,(ad) iey;)
+ oarler - pr) T, T (ad )i (a}) E(Xyjey).
Using Lemma 1.1(b), the first and second terms are bounded by T'C. Lemma 1.1 can be
used to show the third and fourth terms are also O,(T). Hence, Efy?] < TC for t even.
Since Ey?] = ot Ely? |1+ 2or Elyeyu)] + E[u?], it follows that E[y?] < T'C for ¢ odd also.
For part (d),
ElAyay) = E [(%ym + U:) (%y.-; + ":)]
=F [%y--ly.-:] + Eluu]+ £E [y, u) + #E[yu] < TC,
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using parts (a) to (c). Now for part (e), we have

Doyioiyr = (e —;qb) Yi-i + {LC_‘_;_Q + %]y:-a—x + €—ig1-

and E[(Asyi-i+1)?] is less than the sum of the expectations of the square of each term,
El(Gatiosn)) € (e 97BN + (Shd + 2P Bl ol + Blefal < ©

using part (c). O
The results in the next Lemma follows.

Lemma 3.4. Let {y,} be generated by (4.1) and (4.4). Then
a) E(T7' Tlin yire)t =T Tlin Ely? )E[e}] = 0,(1);
b) E(T-! E;r:k-n Ayerer)’ = T-? ExT:Hl E[Aytz—I]E[eﬂ = 0,(1);
¢) ECh (T2 T ks Doyeinie)’ = T, T E[(Doyi—is1)?)Elef] = O,(k).

We are now in a position to prove the following result.
Lemma 3.5. ||Dr ST Uredl = Op(K'72).

Since

|| Dr }:Tgm Used]?
=E(T Tl ve) + E(T? ET:;;H Ayrae)? + Th, E(T'? Tien Doye—inres)’?
The result follows directly from Lemma 3.4.0
We are now in a position to show consistency of the estimates §. We have
T T

D7*(5 - 8) = ((DrhrDr)™ - R7)Dr ¥ Uiet Ry'Dr 3 Uees:

t=k+1 t=k+1

Taking norms, the first and second terms are o,(1) and O,(k'/?) (since R I = Op(1)),
respectively, so that ||DF*(8 — &)l = 0,(k'7?). Since ||D7'|| = O(T) and k = o(T*/?), we
have ||5 — 8] — 0, and §(1) = 5, — —1. Thus, s}p = si, /(1 - §1)? — a2/4, since sk — o%.
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Table 1.A: Exact Bias of s, using the Parzen Window

Mr=1 2 3 4 5 Mr(max) Auto Min
T=100, Mr(max)=6
vid. -0.054  -0.051 -0.046  -0.040 -0.034 -0.029  -0.037  -0.014
MA= 080 -1688 -1.321 -0.877  -0.650 -0.536 -0476  -0428 -0.426
050 -1.053 -0.820 -0.536 -0.388  -0.311 -0.269 -0.220 .0.227
020 -0450 -0.358 -0.246  -0.188  -0.157 -0.140  -0.134 -0.125
-0.20 0.341 0.262 0.170 0.130 0.116 0.115 0.137 0.115
-0.50 0.857 0.705 0.531 0.465 0.455 0.470 0.457 0.455
-0.80 1.071 1.003 0.942 0.957 1.014 1.088 0.939 0.942
AR= 080 -22655 -21.765 -20480 -19.368 -18.373 -17.504 ~-12.244 -12.286
050 2746 -2448 .2.042 -1.741  .1512 -1.340  -0.903 -0.887
020 -0.562 -0.465 -0.342 -0.267  -0.220 -0.192  .0.193  -0.157
-0.20 0.296 0.213 0.121 0.088 0.082 0.086 0.093 0.082
-0.50 0.791 0.544 0.294 0.251 0.273 0.309 0.260 0.251
-0.80 1.925 1.372 0.913 1.031 1.257 1.484 1.148 0.913
T=200, Mrp(max)=10
iid. -0.028 .0.026 -0.021 -0.017  -0.013 0.003  -0.015 0.000
MA= 080 -1640 -1.256 -0.789  -0.545 0415 -0.240  -0.229° -0.233
0.50 -1.032 -0.792 -0.500 -0.346  -0.264 -0.155  -0.149  -0.151
020 -0426 -0.328 -0.209 -0.145  -0.110 -0.057  -0.077  -0.052
-0.20 0.367 0.279 0.174 0.122 0.100 0.098 0.113 0.088
-0.50 0.926 0.735 0.509 0.408 0.372 0.447 0.368 0.366
-0.80 1.207 1.084 0.958 0.947 0.999 1.480 0.953 0.947
AR= 080 -22434 -21431 -19.975 -18.696 -17.531 -13.284  .7956 -8.011
050 -2709 -2395 .1.967 -1.647  -1.401 -0.807  -0.669 -0.612
020 -0542 -0.441 -0312 -0.231  -0.178 -0.082  -0.128  -0.067
-0.20 0.320 0.228 0.124 0.083 0.071 0.086 0.077 0.069
-0.50 0.825 0.542 0.248 0.178 0.178 0.281 0.184 0.178
-0.80 2.172 1.395 0.688 0.700 0.849 1.579 0.947 0.688
T=500, My(max)=14
iid.  -0.013  -0.011 -0.009 -0.007  -0.005 0.011  -0.007 0.001

080 -1618 -1.225 -0.745 -0490  -0.352 -0.121  -0.117  -0.118
056 -1.014 -0769 -0.471 -0312  -0.226 -0.080 -0.082 -0.073

020 -0413 -0314 -0.193 -0.127  -0.091 -0.025  -0.048 -0.013

-0.20 0.388 0.292 0.176 0117 0.087 0.070 0.081 0.059

-0.50 0.967 0.743 0.475 0.342 0.279 0.308 0.245 0.239

-0.80 1.365 1.151 0.911 0.830 0.836 1.579 0.866 0.830

AR= 080 -22305 -21.237 -19.681 -18.306 -17.043 -9.893 -4900 -4.755

050 -2.683 -235 -1.908 -1.571  -1.309 -0.446  -0.386 -0.273

020 -0533 -0431 .0.300 -0.219  -0.166 -0.048  -0.094 -0.036

-0.20 0.341 0.239 0.123 0.073 0.053 0.055 0.049 0.04]

-0.50 0.867 0.553 0.220 0.126 0.109 0.181 0.109 0.108

L -0.80 2327 1.378 0.472 0.383 0.451 1.116 0.583 0.383
The column labelled “Min* gives the smallest value of the bias over all possible integer-valued bandwidths. Sometimes,
the bias obtained using the aut ic bandwidth selecti dure with an AR(1) approximation is slightly smaller
(column Auto). This can occur b the automatic dure selects a bandwidth that is not Becessarily integer-

valued.
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Table 1.B: M.S.E. of s}, using the Parzen Window

Mr=1 2 3 4 5 Mr(max) Auto Min
T=100, My(max)=6
iid. 0.022 0.024 0.032 0040 0.048 0.056 0.040 0.022
MA= 0.80 2.926 1.884 1.023 0.788 0.760 0.802 1.244 0.760
0.50 1.349 0.741 0411 0.326 0.321 0.342 0.485 0.321
020 0225 0.161 0.116 0.111 0.121 0.135 0.139 0.111
-0.20 0.137  0.086  0.047 0.038  0.037 0.040 0.041 0.037
-0.50 0.769 0.518 0299 0236 0.234 0.258 0.232 0.234
-0.80 1.194 1.038 0.911 0.945 1.067 1.236 0.908 0.911
AR= 080 5.13E2 4.74E2 3121E2 3.8E2 343E2 3.14E2 2.17E2 2.02E2
0.50 7.599 6.104 4396 3.390 2.792 2.454 2.695 2.203
0.20 0.340 0.252 0.176 0.153 0.152 0.160 0.177 0.152
-0.20 0.111 0.064 0.033 0.030 0.034 0.039 0.032 0.030
-0.50  0.677 0320 0.101 0.084 0.105 0.136 0.093 0.084
-0.80 4.094 2.072 1.040 1.429 2.146 2.991 1.706 1.040
T=200, M7(max)=10
iid. 0.010 0.011 0.015 0.019 0.023 0.045 0.019 0.010
MA=0.80 2.730 1.651 0.755 0.486 0.416 0.558 0.712 0.413
0.50 1.086 0.664 0.315 0212 0.188 0.264 0.283 0.188
0.20 0.193 0.125 0.072 0.060 0.062 0.102 0.077 0.060
-0.20 0.146  0.087 0.039 0.025 0.021 0.031 0.025 0.021
-0.50 0.876  0.550 0.267 0177 0153 0.250 0.151 0.153
-0.80 1.494 1.193 0.932 0.920 1.032 2.302 0.934 0.920
AR= 0.80 5.03E2 4.59E2 400E2 3.52E2 3.11E2 190E2 1.37E2 1.24E2
0.50 7.367 5.796 3.988 2.900 2225 1.302 1.433 1.295
0.20 0.305 0.212 0.127 0.096 0.086 0.115 0.102 0.086
-0.20 0.114 0.061 0.025 0.018 0.018 0.032 0.018 0.018
-0.50 0.707 0.306 0.068 0.041 0.045 0.119 0.048 0.041
-0.80 4.992 2.062 0.566 0.663 0.996 3.487 1.214 0.556
T=500, Mr(max)=14
ii.d. 0.004 0.004 0.006 0.008 0.010 0.026 0.007 0.004
MA= 0.80 2.634 1.530 0.610 0.320 0.228 0.321 0.362 0.198
0.50 1.038 0.608 0.250 0.138  0.103 0.147 0.138 0.094
0.20 0.175 0.105 0.048 0.031 0.027 0.055 0.034 0.027
-0.20 0.155 0.089 0.035 0.018 0.013 0.018 0.013 0.011
-0.50 0.943 0.557 0.228 0.121 0.083 0.130 0.068 0.067
-0.80 1.888 1.334 0.839 0.713 0.740 2.776 0.801 0.713
AR= 080 4.97E2 451E2 J88E2 3.36E2 2.92E2 TO08E2 60908 62.849
0.50 7.208 5.574 3.691 2.547 1.823 0.596 0.644 0.596
0.20 0.288 0.192 0.101 0.064 0.048 0.066 0.046 0.042
-0.20 0.121 0.061 0.019 0.010 0.008 0.018 0.009 0.008
-0.50 0.762  0.310 0.051 0.019 0.016 0.055 0.018 0.016
080 5544 1941 0250 0.199 0.287 1.864  0.496 0.199

The column labelled “Min” gives the smallest value of the MSE over all possible integer-valued bandwidths. Some-
times, the bias obtained using the automatic bandwidth selection procedure with an AR(1) approximation is slightly
smaller {(column Auto). This can occur b the au tic procedure selects a bandwidth that is not necessarily
integer-valued.
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