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If God does not explain parsimony, 
what does ? 

Jonathan St‐Onge* 
Although many scholars take parsimony for granted today, Elliott Sober shows in 
his latest book, Ockham’s Razors, that they might not be rationally justified to do 
so. In particular, he claims that the famous Ockham’s Razor, the heuristic that 
says one should not postulate more entities than necessary, rests on some implicit 
assumptions that go back to Newton and his rules of reasoning. The problem is 
that Newton justified those basic rules on theological grounds, that is, the world is 
parsimonious because God is orderly. All is not lost : Sober suggests that two 
contemporary perspectives from probability theory do justify parsimony. The first 
one is related to Bayesianism, and the fact that Ockham’s Razor is embedded in 
Bayes’ theorem. Sober criticizes this view and argues for an alternative, one in 
which predictive accuracy is more fundamental. I suggest that Sober might be right 
about the unseen role of predictive accuracy, but that this does not entail that 
Bayesians should adhere to Sober’s framework. It is my contention that Sober’s 
case against Bayesian model selection has more to do with the Bayesian worldview 
than the methodology per se.       

The search for parsimony in science and philosophy is often 
characterized as finding the simplest theories that best carve nature at 
its joint. One way to justify it is through Ockham’s razor, the heuristic 
that says one should not postulate more entities than necessary, so 
long as the theory keeps explaining the data. There are some issues 
with this heuristic. In his latest book, Ockham’s Razors (2015), the 
philosopher of science Elliott Sober shows that a major one has to do 
with the fact that the widespread use of parsimony in science goes 
______________ 
* L’auteur est étudiant à la maîtrise en philosophie (Université du Québec à 
Montréal). 
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back to Newton and his “Rules of reasoning”. The relevant rules in 
this context are the following ; (i) No more causes of natural things 
should be admitted than are both true and sufficient to explain their 
phenomena (nature does nothing in vain) ; (ii) Therefore, the causes 
assigned to natural effects of the same kind must be, so far as 
possible, the same1. The issue is that Newton himself did not really 
justify those rules, except for his unpublished commentary on the 
Book of Revelations in which he writes that simplicity in nature comes 
from the fact that God is orderly. Since then, many great scientists have 
appealed to Ockham’s razor for various reasons, but, as Sober points 
out, the question about what exactly rationally justifies the epistemic 
relevance of parsimony in science is still open. 

The aim of this paper is to critically evaluate two contemporary 
views of parsimony that arise in the context of model comparison and 
selection. The first one holds that parsimony is epistemically relevant 
because it reflects predictive accuracy. In that paradigm, parsimonious 
models provide more accurate predictions when fitted to old data. 
This view is put forth by Sober in the second chapter of his book. 
Second, parsimony is related to the plausibility of a model in Bayesian 
statistical inference. In that story, parsimony is embedded in the 
optimal trade-off between accuracy and complexity to avoid 
overfitting, that is, when models explain perfectly the observed data, 
but fail to properly predict new data. This paradigm relies heavily on 
the likelihood function, which conveys how probable some observations 
are for different settings of a model’s parameters. According to 
Sober, if we substitute one paradigm for the other as the goal of 
inference, the epistemological landscape undergoes a fundamental 
change2. This dramatic change, says Sober, is marked by the fact that, 
in the first paradigm, likelihood and parsimony can clash. That is to 
say, a model can be predictively accurate and confer lower probabilities 
on the data at hand. When this happens, Sober suggests that we 
should be reductionists about parsimony ; “If parsimony contributes to 
the achievement of some more fundamental epistemic goal, I am all 
______________ 
1 Cited in Elliott Sober, Ockham’s Razors : A User’s Manual (Cambridge, Ma : 
Cambridge University Press, 2013), p. 33. 
2 Elliott Sober, “Bayesianism–its Scope and Limits”, in Bayes’ Theorem, ed. 
Swinburne, R, (Oxford : Oxford University Press, 2002), pp. 1-17, here 
p. 12. 



If God does not explain parsimony, what does ? 

  77 

for it. If it does not, I am not. 3” In other words, he claims that 
predictive accuracy in model comparison is a more fundamental goal 
than parsimony as classically understood in the likelihood paradigm4. 

Given that model comparison and selection cuts across science 
and philosophy, parsimony enjoys a privileged position. As Sober 
makes clear in his book, the case of parsimony is key because it is 
concerned with what all knowledge should be like. It entails a shared 
belief that simplicity is somehow desirable. In this context, I examine 
Sober’s claims that we should privilege predictive accuracy over 
plausibility when performing model comparison, and thus, we should 
prefer likelihood comparison above Bayesianism, as proposed by the 
likelihoodist approach advocated by Sober. Bayesianism is a school of 
thought in probability theory that adheres to the Bayesian 
interpretation of probability — that is, the meaning of probability is 
found in the degree of belief in an event of a rational agent. For 
Bayesians, probability is fundamentally about uncertainty and our 
inability to extract ourselves from any given point of view. If Sober is 
right, Bayesianism fails to recognize that parsimony is not only about 
likelihoods, and thus needs revisions. I suggest that, first, Sober tends 
to inflate the differences between Likelihoodism and Bayesianism, but 
that in principle, there are no reasons why Bayesians could not 
integrate predictive accuracy in their model comparison, and that, 
second, there are significant compromises that come with the 
acceptation of Sober’s likelihoodism which might not be 
advantageous for Bayesians. 

One contribution of this paper will be to bring forth a more 
hands-on approach in the debate. The way I will do it is to present 
parsimony as an empirical object as understood by the machine 
learning community, something that Sober does not talk about. I have 
chosen this particular focus because I take machine learning to be the 
modern science of inferring and learning plausible models from 
observed data, which then can be used to make predictions about 
______________ 
3 Sober, “Ockham’s razors”, p. 149. 
4 Although Sober criticizes the likelihoodist, it is important to realize that he 
has nothing against likelihood. On the contrary, he advocates that likelihood 
might be more important than parsimony itself. What he is saying is that we 
should look at the first paradigm because in the second one parsimony and 
likelihoods go hand in hand, so we cannot learn about them independently. 
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future data5. In this context, parsimony is not an abstraction but 
rather an empirical result of our experiments with statistical 
modelling. Given the success of Bayesian methods in machine 
learning, it is worthwhile to include this complementary aspect in the 
debate of what rationally justify parsimony. 

The roadmap of the paper is as follows. In the first section, I will 
present Sober’s case for predictive accuracy and Likelihoodism in his 
book. In the second section, I will describe how model comparison is 
performed from the (Bayesian) machine learning perspective. I 
conclude by looking at where Sober does hit the mark about the 
Bayesian (likelihood) framework, even after integrating the hands-on 
view of machine learning, and why those criticisms do not seem 
sufficient for Bayesian to give up their methodologies. That said, 
model comparison is complicated and thus my argument remains 
partial. 

1. Predictive accuracy in Model Comparison and Likelihoodism 

Sober proposes the following example to illustrate how parsimony 
is relevant for predictive accuracy. Let’s suppose that you sample 100 
corn plants each of two fields. In the first sample, says Sober, average 
height is 52 inches. In the second sample, average height is 56 inches. 
Then, we need to imagine coming back yet another day to do the 
same exercise. The key question is to know which of the following 
two predictions is more accurate : (i) we are going to have the same 
result ( x1= 52 inches and x2  = 56 inches) or (ii) we can lump together 
the two samples and predict that x  = 54 inches. Sober suggests that 
we give names to the two predictions. I call the first situation H1 to 
reflect the one “adjustable parameter” (which Sober calls DIFF, for 
difference in the two populations) and the second, H0, because there 
is no free parameter (which Sober calls NULL). This setup is useful 
because it leads to the following question : “which model, when fitted to 
______________ 
5 see Zoubin Ghahramani, “Probabilistic machine learning and artificial 
intelligence”, Nature 521 (2015) : pp. 452-459, here p. 454. Also, Sober lumps 
together all Bayesians. But as we know, there are as many interpretations of 
Bayes' theorem as there are Bayesians. I was curious to know if what Sober 
wrote about Bayesianism in the context of biology can easily be translated 
into another domain, machine learning. 
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the old data you have, will more accurately predict the new data that you 
do not yet have ? 6” 

The key point in the above example is that, if we were only 
interested in the plausibility of a model, we would think that H1 is 
true and H0 is false. Recall that the plausibility of a model is defined 
by the optimal trade off between accuracy and complexity, given 
some observations. Thus, we should expect that a model with an 
adjustable parameter is more likely than one that presupposes that 
two populations happen to have exactly the same height ( x  = 54 
inches). Models with adjustable parameters make more flexible 
predictions, which we can adjust once we have more data. However, 
if we take predictive accuracy into account, we find ourselves in a 
situation where H1 has a higher likelihood, but H0 could be more 
predictively accurate. For example, if we sample over and over again 
from the same corn field populations, H0 might be a better guide to 
predictive accuracy because it “keeps you to the straight and narrow ; 
[whereas] DIFF (H1) invites you to stray.” 7 By that Sober means the 
null hypothesis forces you to have a good rule, whereas H1 gives you 
the a more flexible space to make up complex models. Given the 
possible discrepancy between parsimony and likelihood, Sober claims 
that we should not limit ourselves to the plausibility of a model. I 
next use that (overly simple) example to introduce the (likelihoodist) 
model comparison advocated by Sober. 

Before we move on to discuss model comparison, we take a brief 
detour to examine the Likelihoodism that Sobers advocates. 
Likelihoodism is an approach to statistical inference that poses itself 
as a middle ground between frequentism and Bayesianism8. 

______________ 
6 Sober, “Ockhams Razors”, p. 128. 
7 Ibid. 
8 Note that sometimes, likelihoodists are at war with the frequentists (i.e. 
ecology, see Burnham and Anderson 2006 ; Aho et al. 2014). Some other 
times, likelihoodists want to distinguish themselves from Bayesians (i.e. 
biology, Forster & Sober 2001 ; Sober 2008). We focus exclusively on the 
second situation. That said, it is worth noting that one of the main 
differences between the three is related to the Law of likelihood. Both 
Bayesians and likelihoodists conform (in different ways, related to their uses 
of likelihood functions) to the the Law of likelihood, whereas frequentists do 
not. 
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Likelihoodists assume that the law of likelihood stands by itself, without 
making appeal to priors as in Bayesianism. This law states the 
following : that evidence E favors hypothesis H1 over H2 if and only 
if Pr(E|H1) > Pr(E|H2). For example, we could say that a cough 
favors the hypothesis that someone has the flu over cancer if and 
only if Pr(cough|flu) > Pr(cough|cancer). For Sober, this probability 
statement does not require prior beliefs to make sense. This is key 
because likelihoodists want the data to “speak for themselves”. To be 
clear, recall that likelihood is not the same as probability, i.e. the 
cancer hypothesis can be very likely without being highly probable. 
Another distinctive feature is that likelihoodists do not like to talk 
about “catchalls”9. That is to say, likelihoodists do not talk about the 
probability of having a cough, given the negation of not having the 
flu. In epistemology, Sober targets Bayesian model averaging, in 
which the weighted average of the likelihoods of all the alternative 
theories must be taken into account10. Conversely, Sober claims that 
Likelihoodism is more responsible because it limits itself to only assess 
well-grounded, specific hypotheses. In brief, Likelihoodism is 
characterized by the belief that we can access the world as it is, and 
that should be enough to discuss epistemology. 

Sober’s argument for Likelihoodism is both theoretical and 
political. Sober argues that we should choose to be likelihoodists not 
only for its theoretical virtues, but also because this is more 
“scientific” than to appeal to degrees of belief (as Bayesians do) when 
talking about various hypotheses. In Sober’s words, “Likelihoodism is 
an epistemology for the public world of science ; it aims to isolate something 
objective on which agents can agree despite the fact that they differ in 
terms of their prior degrees of confidence in the hypotheses under 
consideration.”11 This is meant to contrast with Bayesianism, under 
which term Sober lumps all the various flavors under the idea that 
they are an epistemology for the private world. Moreover, Sober argues 
that Likelihoodism is more modest because, contrary to Bayesians, 
likelihoodists do not believe that it is possible to always compute 
posterior probabilities12. Yet again, likelihoodists claim that statistical 
______________ 
9 Sober, “Ockham’s Razors”, p. 84. 
10 Ibid., p. 83. 
11 Ibid. 
12 Ibid. 
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inference would be better served by focusing on specific hypotheses 
favored by the evidence. I will come back to these claims later on. 
For now, we move on to model comparison under the likelihoodist 
perspective. 

Model comparison is about finding a common measure to 
compare different models and select the one that best explains the 
data at hand. This is a much more difficult task than it first appears, 
as models vary in important ways from domain to domain. For Sober, 
the solution to model comparison is related to maximum likelihood 
estimation (MLE). MLE is a statistical method used to find the 
parameter value that maximizes the likelihood function, given some 
observations. The resulting parameters are known as “maximum 
likelihood estimators”. In our corn plant example that point 
estimation would be the parameter that maximizes the H1 
likelihood13. Given our sample means of 56 and 52 inches, the 
number that makes the observed difference the most probable is 
simply the difference between the two, 4 inches. Sober calls that 
estimate L(H1). It is thought to be a fitted model upon which we can 
make predictions about new observations. Note that the common 
wisdom in this kind of problem is to work with the logarithm of the 
likelihood function, since it is strictly increasing, and thus we can 
show that to maximize the likelihood is the same as minimizing the 
neg log likelihood (i.e. “the maximum likelihood criterion”). This 
method is well known to have some problems related to parsimony. 

One of the main issues with MLE in model comparison is that it 
tends to systematically pick up the most complex model (the one with 
more adjustable parameters) as the best one. More parameters entail 
more flexibility to fit the data at hand. Often, this translates into 
overfitting, i.e. the inability to effectively predict new data. Once again, 
in our corn plant example, this means that because we allow our 
sample means to differ in H1, our model might fail to make precise 
predictions about other corn fields. This is why Sober introduces the 
Akaike Information Criterion (AIC). Information criterion in model 
comparison is a way to score each model in a way that integrates 

______________ 
13 Given that Ho has no free parameters, the expected mean that would have 
generated is fixed and needs not to be optimized. 
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complexity by penalizing models that have more parameters. The 
AIC is central to Sober’s argument and is described next. 

The AIC comes from Akaike’s theorem, which is the 
mathematical formulation that makes the role of parsimony in 
predictive accuracy explicit for Sober14. The theorem states the 
following : 

An unbiased estimate of the predictive accuracy of model 
Data∨L} –k 
M = log {Pr 15. 

This equation states that predictive accuracy is determined by the 
log likelihood of a fitted model, in our case L(H0) and L(H1), minus 
the number of parameters k (i.e. the penalty for the most complex 
models, here the fact that H1 has one more than H0). In other words, 
there is a trade-off between the goodness of fit of the model (higher 
likelihood being rewarded) and simplicity (low value for k, achieved 
by having fewer parameters). The AIC then provides us with two 
scores, or unbiased estimate, to compare our models. 

Akaike’s theorem requires three assumptions ; (i) all sampling 
comes from the same “underlying reality” ; (ii) this data pool is 
normally distributed when repeatedly sampled (“regularity 
assumption”) ; (iii) one of the competing models is considered to be 
true, or at least close to the truth16. Note that the unbiasedness in the 
theorem refers to the estimator that is “centered” on the true value of 
the quantity being estimated, over long run. This is related to the 
third assumption, in which ‘truth’ is given by the Kullback-Leibler 
(KL) divergence (also called relative entropy). This “distance” can be 
cast as a measure of the number of bits wasted by using an 

______________ 
14 To note, AIC has two important extensions, AICC and TIC (Takeuchi 
Information Criterion), that are important to avoid practical problems ; for 
example, AICC is thought to resolve the problem AIC encounters when a 
dataset is small. Given that I am interested into the main conceptual idea of 
AIC, I have decided to not talk about these. 
15 Ibid., p. 131. 
16 Ibid., pp. 133-4. 
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approximation instead of the true (unknown) distribution17. In this 
context, we aim to find the model that minimizes information loss, 
given the observations. In summary, Akaike’s theorem provides us 
with a score (a criterion) based on a model’s predictive accuracy. This 
score is thought to be tied to parsimony because it penalizes 
complexity when comparing models of various complexities. 

On top of the three assumptions embedded in the AIC, there is 
one last requirement. The MLE for each parameter must be unique (or 
“identifiable”). To exemplify what identifiability means, Sober asks us 
to think about a single data point given by your kitchen kettle (say 
pressure) and that we use AIC to find how well a linear model would 
predict that point. There is an infinity of ways that a straight line can 
fit a single point, making it impossible to infer ‘the’ best fitted 
model18. This is what is meant by “uniqueness” of a model. For 
Sober, this uniqueness entails a limit on how complex a model can be 
to evaluate the data at hand19. Sober notes that because Bayesianism 
only consider the average likelihood, and not the “likelihood of the 
most likely member of the model20”, it does not require identifiability 
and thus have the issues to deal with infinitely complex problem. In 
summary, if we satisfy all the requirements above, Sober favors the 
predictive accuracy paradigm because it guarantees a clear-cut 
criterion to compare similar models that differ only in terms of 
parsimony, here embedded in the expected performance of models. 

As mentioned before, a consequence of this focus on predictive 
accuracy is that a false model can score better on the AIC than a true 
model. This unintuitive fact is reflected by another one of Sober’s 
slogans : “instrumentalism for models, realism for fitted models.”21 Being 
instrumentalist here is a synonym for being reductionist about 
parsimony. The realist part is related to Sober’s idea of closeness to 
truth, by which he means “a proposition is close to some target 
proposition that is true.”22 For example, we have the proposition that 

______________ 
17 David Mackay, Information Theory, Inference and Learning Algorithms 
(Cambridge : Cambridge University Press, 2003), p. 34. 
18 Sober, “Ockham’s Razors”, p. 134. 
19 Ibid., p. 135. 
20 Ibid. 
21 Ibid., p. 144. 
22 Ibid., p. 146. 
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my computer is in my bedroom. Although this is false, because my 
computer is actually in my office, the proposition is thought to be 
‘closer to truth’ than saying that my computer is in Canada. Similarly, 
a model with no adjustable parameters (like H0) might be false, but if 
it is close enough to truth (as measured by KL divergence), the model 
can be considered more predictively accurate than the true (and more 
flexible) one. Conversely, a model with adjustable parameters that is 
true (like H1) might be overlooked because when repeatedly fitted to 
old data, and then scored on the basis of predictive accuracy, some of 
the estimates will deviate from the true value. Hence, Sober claims 
that AIC is a tool for instrumentalists and realists : (i) it provides 
evidence for which of two models predict better ; (ii) it provides 
evidence for which of two fitted models (on average) is closer to the 
truth. Here is a brief summary : 

 
 Predictively accurate 

(expected performance, as 
given by AIC) 

Less predictively 
accurate 

TRUE 
model (as 
measured 
by KL 
divergence) 

Intuitive scenario — fitted 
model is closer to truth and 
is more predictively accurate 

Unintuitive scenario 

FALSE 
model 

Unintuitive scenario — a 
false model that is more 
predictively accurate 

Intuitive scenario 

 
In this first section, we have seen that Sober prefers 

Likelihoodism because it explains why parsimony is true without the 
need to resort to priors. More precisely, the AIC reveals that 
penalizing complexity plays a central role to avoid overfitting and 
increase predictive accuracy. Although I admit that Sober is probably 
right to distinguish between the two views of parsimony mentioned 
above, I suggest that it does not entail that Bayesians should prefer 
Sober’s Likelihoodism. To see why, we now turn to Bayesian model 
comparison from the machine learning perspective. 
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2. Bayesian Model Comparison in Machine Learning 

Sober systematically juxtaposes his Likelihoodism to Bayesian 
Information Criterion (BIC) and Bayesian Ockham’s razor. I begin 
with the former. BIC and AIC are often introduced together since 
they look similar. Indeed, BIC is an estimate of the average likelihood 
of a model that says the following : 

Pr − (k) log (n) 
BIC (M) = 2log 

Commentators usually note that the BIC was introduced by 
Schwartz (1978) and poses a heavier penalty for complexity. 
However, following Wasserman (2000), Sober argues that AIC and 
BIC reflect the two different paradigms mentioned above. They have 
different goals and must be compared on the same basis as the rest of 
the argument. This view is echoed in the literature23. Interestingly, it is 
not clear who actually advocates BIC from the Bayesian side. This 
criterion is only thought to be one approximation among others for 
posteriors and marginal likelihoods. Moreover, as Sober himself 
notes, BIC is not even that Bayesian in nature as it does not depend 
on priors24. For all these reasons, I say no more on BIC and move on 
towards the Bayesian Ockham’s razor. 

Before getting into Bayesian Ockham’s razor, a little aside on 
priors is required. Recall that priors in Bayesian analysis convey our 
prior beliefs about the phenomenon (or what is called the latent 
variable) of interest, before any observations are made. As mentioned 
before, they are controversial. Oddly enough, it seems to boil down 
to an old debate about realism (objectivity) and rationalism 

______________ 
23 For example, were written about how AIC and BIC are really different 
worldviews. See Ken Aho, DeWayne Derryberry, and Teri Peterson, “ 
Model selection for ecologists : the worldviews of AIC and BIC ”, Ecology 95 
(2014), pp. 631-636. 
24 Although BIC is not very Bayesian, the criterion is equivalent to some 
important results in Bayesian statistics. For example, this is equivalent to the 
Laplace approximation and the minimum description length (MDL) 
criterion, both of which are widely used when approximating the marginals. 
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(subjectivity)25. The following quote captures Sober’s long-held view 
about priors in science : 

If science is about the objective and public evaluation of 
hypotheses, these subjective feelings do not have scientific 
standing [...] A report of the author’s subjective posterior 
probabilities blends these two inputs together. This is why 
it would be better to expunge the subjective element and 
let the objective likelihoods speak for themselves26. 

Compare this quote with David Mackay’s views on the same 
subject, a notorious Bayesian who (willingly) admits not only that 
Bayesians do make assumptions (just like anyone else) when they 
specify free parameters, but that they should make no apologies for 
this. In his words, “there is no such thing as inference or prediction without 
assumptions.”27 Furthermore, he explains that the modern Bayesian 
tends not to take a “fundamentalist attitude to assigning the ‘right’ 
priors” when making model comparison, and that, “many different 
priors can be tried ; each particular prior [corresponding] to a 
different hypothesis about the way the world is.”28 I will say no more 
on that controversy, but we should keep in mind that this debate 
underlies the present discussion. 

Bayesian Ockham’s razor is widely used in the sciences that 
depend heavily on computation, from simulations in physics to 
decoding neural activity in neuroscience29. In its modern formulation, 
Bayesian Ockham’s razor is embedded in Bayes’ theorem30. As such, 
this is not as much a theoretical construct as a direct consequence of 
using Bayes’ theorem. In this context, this is just an empirical fact that 
______________ 
25 This is most certainly an oversimplification of both camps. 
26 Sober, “Bayesianism–its Scope and Limits”, p. 12. 
27 David Mackay, “Information Theory”, p. 34. 
28 Ibid. 
29 See for example Kevin Knuth et al., “Bayesian evidence and model 
selection“, Digital Signal Processing 47, (2015), pp. 50-67 ; Karl Friston and 
Will Penny, “NeuroImage Post hoc Bayesian model selection“, NeuroImage 
56 (2011), pp. 2089-2099. 
30 Mackay, “Information Theory” ; Iain Murray and Zoubin Ghahramani, “ 
A note on the evidence and Bayesian Occam’s razor ”, Gatsby Unit 
Technical Report (2005) : pp. 1-4. 
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simpler models (as provided by Bayes’ theorem) tend to make precise 
predictions when learning models from data. Note that there is a risk of 
confusion here. Sober says that this kind of prediction, which is based 
on the plausibility of a model, is different from the prediction 
problem solved by the AIC31. I hope to make this distinction clear by 
presenting Bayesian Ockham’s razor as taught in machine learning. 

The first step in Bayesian modelling is to plug in the relevant 
models (H1 and H0 in the corn plant example), and the priors over the 
parameters of those models (the averages associated with H1 and H0), 
in Bayes' theorem. Then, if the problem is simple enough, we 
compute the posterior beliefs that we should entertain about the 
model’s parameter, given the observations. This procedure can be 
written in the following way : 

p (w ∨ D , H) = p (D ∨ w , H) p (w ∨ H) / p (D ∨ H) 

Where H is the model (the probability distribution over the 
observed data), D is the data (or observations), and w is the 
parameters. At the first level of inference (i.e. model fitting, or 
parameter inference), we simply assume a model to be true and we 
infer the parameters with the posterior probability. At the second 
level of inference, the one we are interested in for model comparison, 
the relevant quantity becomes the marginal likelihood (also called the 
“model evidence”). As claimed by Sober, at this stage we wish to infer 
the most plausible model given the data and because the marginal is 
an integral, we effectively average over models. The posterior 
probability of each model can be written as follows : 

p (H ∨ D) ∝ p (D ∨ H) p (H) 
(posterior) (likelihood x prior) 

This is simply Bayes' theorem reformulated32. Note that the ratio 
of two marginals p(D|Hi)/p(D|Hj) is known as the Bayes factor33. 

______________ 
31 Sober, “Ockham’s Razors”, p. 144. 
32 Many authors often note that if we assume no preference by assigning 
equal chances to the priors, then model comparison p(m|D) is proportional 
to the likelihood of a model p(D|m). In practice, though, subjective priors 
are chosen if needed. 
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Then, to compare different models we need to compute their 
respective marginals : 

p (D ∨ H) = ∫ p (D ∨ w , H) p (w ∨ H) dw 

The right hand side of the equation is the definition of the 
marginal that we can obtain via the sum and product rules in 
probability theory. Now, we focus on the many interpretations of 
what the marginal means. An information theoretic definition is that 
the log2 of (1/p (D ∨ H)is equivalent to the number of bits of 
surprise at observing data D under hypothesis H34. Another one, 
closer to our discussion, is that the marginal is the probability of 
generating the data set D from a model whose parameters are sampled 
at random from the priors35. In that sense, the automatic Ockham’s 
razor is just the fact that an overly simple model (narrow distribution, 
or small variance) has low probability of generating the data set D, 
while an overly complex one (broad distribution, or large variance 
with many parameters) explains very little of the data as a whole (see 
fig 1). In fig 1, note that the marginal is on vertical axis while the 
horizontal axis reflects all the possibilities of the given data set. The 
most parsimonious model (in red/pink) is the one that offers the best 
blend, i.e. the probability mass that best captures (generate) the 
observed data. This is how the marginal is thought to reflect a 
preference for simpler models ; namely, higher model evidence (the 

                                                                                                     
33 Bayes factor (also called odds ratio) is thought to be the main way 
Bayesians do model comparison. This is the law of likelihood but for 
Bayesian purposes. The full form it usually takes is P(H1|E)/P(H2|E) = 
P(D|H1)/P(D|H2) x P(H1)/P(H2). That said, the automatic Ockham’s razor 
is embedded in evaluating the evidence P(D|Hi) so I have decided to focus 
on that. 
34 Ghahramani, “Probabilistic machine learning”, p. 453. 
35 Christopher Bishop, Pattern Recognition and Machine Learning (New York : 
Springer, 2006), p. 162. Also note that this idea of generating the data set from 
our priors is thought to be very useful in machine learning. Indeed, 
generative models are useful to learn features in general (Hinton 2006). This 
sampling approach is absent from the toolbox if we limit ourselves to an 
approach like Likelihoodism. 



If God does not explain parsimony, what does ? 

  89 

marginal) will favor the model that most likely would have had 
generated the data at hand. 

 
To illustrate how the marginal is embedded in Bayes' theorem, we 

can think of a simple curve fitting exercise. In the figure below (see fig 
2), we have some data points plotted on various graphs whose 
underlying structure we wish to uncover through inverse (Bayesian) 
inference. In this simple example, the graph on the left can be 
thought as an overly simple model. So much so that the ‘model 
evidence’ may not even resemble the green line in fig 1. The graph on 
the right is an example of overfitting ; namely, a model with too many 
parameters for the data. If we were to compute the marginal 
likelihood of this model, the probability mass would spread all over 
the data space, similar to the cyan line above. Note that this is 
different from the problem encountered when optimizing likelihood, 
as there is no “fitting” of the model to the data36. The blue line is the 
model, or hypothesis, that here we know is the true function. Given 
that all the probability distributions are normalized, we know that this 
model would be the one with higher “evidence”. As in fig 1, this is 

______________ 
36 Ghahramani, “Probabilistic machine learning”, p. 454. 

 

Figure 1: an illustration of Ockham’s razor from the machine 

learning perspective. Taken from Ghahramani 2011) 
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“just right” when the marginal is the highest given the data set D. 
This is why the marginal can be cast as an automatic Ockham’s razor. 

 
Sober claims that we should prefer Likelihoodism to Bayesianism 

because posteriors are often intractable, and thus it is better to 
constrain ourselves to a specific hypothesis37. Sober is right in that the 
marginal (and the related posterior) is often not computable—it can 
be a high dimensional integral and/or contain unknown latent 
variables that need to be marginalized out38. That said, there are many 
techniques to get around this problem that are widely used and 
empirically successful39. For example, variational inference is an 
approximation method that puts a lower bound on the model 
evidence. In a nutshell, the main idea is to make use of the previously 
seen KL divergence to minimize the distance (or maximize mutual 
information)40 between the approximation and the true marginal 
distribution. This trick entails that we turn an intractable inference 
into an optimization problem, which we hope is solvable via different 

______________ 
37 Sober, “Ockham’s Razors”, p. 84. 
38 Mackay, “Information Theory”, ch. 33. 
39 David Blei et al., “Variational Inference : A Review for Statisticians”, 
Journal of the American Statistical Association 112, (2017) : pp. 1-41 ; Martin J. 
Wainwright and Michael I. Jordan, “Graphical Models , Exponential 
Families , and Variational Inference”, Machine Learning 1 (2008) : pp. 1-305. 
40 In Information theory, mutual information measures the dependencies 
between two random variables. This is the answer to the question : if I learn 
A, how much more do I know about B ? 

 

Figure 2: a simple example of polynomial regression in which the graph 
on the left illustrates underfitting and the one on the right illustrates 
overfitting. 
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algorithms41. The lower bound means that if the KL distance 
becomes null, then the approximation is the marginal. Interestingly, 
variational methods require the same toolkit as the AIC to get to a 
true distribution. Does this similarity means that both methods are 
related to one another ? This question is a good segue into assessing 
how Bayesian model comparison relates to Sober’s criticism. 

The KL divergence is an information theoretic tool that ‘measures 
the distance’ between any two probability distributions. Hence, the 
fact that variational methods in Bayesian model comparison and AIC 
share the same toolbox does not mean anything per se42. In Bayesian 
model comparison, the true distribution being approximated is the 
marginal—the probability that randomly selected parameters from priors would 
generate the data at hand. In AIC, the score is based on which fitted 
model best approximates the true distribution that generates the data. 
Recall that Sober is realist for fitted models, and instrumentalist for 
predictive accuracy. Thus, Sober is right to say that Bayesianism, even 
in machine learning, does not seem to explain why fitted models 
make different predictions from plausible models. Plausibility in 
Bayesian model comparison is indissociable from higher likelihoods43. 
In the corn plant example, we could pick a model that is good at 
generating the two distributions, but in doing so, we fail to detect a 
complementary layer of parsimony hidden away in the comparison of 
expected performance. Ultimately, Sober seems to be right on this 
point, “predictive accuracy isn’t the same as fit-to-old-data, nor is it 
the same as the model’s probability of being true”44. Nothing in the 
model evidence of Bayesian model comparison seems to capture the 
supplementary layer of parsimony as currently provided by the AIC. 

______________ 
41 Bishop, “Pattern Recognition”, ch. 10. 
42 That said, Sober often talks of the AIC as a kind of magic bullet because it 
is an information criterion. The fact variational methods were developed in 
Bayesian model comparison can be thought to take the informational gloss 
off the AIC and Likelihoodism. 
43 In Sober’s book, this is why we should think common ancestry is more 
parsimonious than the model of multiple ancestors. The former hypothesis 
is simply more parsimonious because it is more plausible than the second. 
For Sober, this idea is particularly well developed in the work of Hans 
Reichenbach on parsimony. 
44 Sober, “Ockham’s Razors”, p. 130. 
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That said, I do not think that this means we should accept the whole 
likelihoodist story. 

Overall, Sober criticised Bayesian model comparison on two main 
points : priors (especially subjective priors and noninformative 
priors)45 and the use of average likelihoods instead of looking at 
specific hypothesis. We acknowledge that Bayesians should be using 
something like the AIC to take into account predictive accuracy. Does 
this mean that we should stop inferring and comparing plausible 
models via Bayesian model averaging ? At least in the context of this 
paper, the short answer seems to be the negative. One way to 
motivate this answer is to look at some of the trade-offs incurred by 
endorsing Likelihoodism. A common criticism against the AIC is that 
it does not take into account the uncertainty in the model 
parameter46. Indeed, the penalty for complexity in the AIC is fixed. 
The role of uncertainty is key to motivate the role of averaging in 
Bayesian accounts, a fact that Sober ignores when he criticizes model 
averaging. Bayesians maintain that even the most sensible models 
retain uncertainties at different levels in prediction tasks (i.e. in 
measurement noise, in parameters and their value, and in the general 
structure of the model), whereas Sober implies that if we were to limit 
ourselves to specific hypotheses, the law of likelihood (within the 
AIC) would guarantee certainty in model comparison47. In other 
words, there is a disagreement on the nature of how models represent 
______________ 
45 Noninformative priors are priors thought to be objective, in the sense that 
they attempt to capture ignorance and to be like the frequentist approach. 
They are supposed to “let the data speak by themselves”. As I understand it 
from the Machine learning perspective, the problem is that you cannot make 
Bayesian model comparison with them because they do not necessarily add 
to one. So they are not widely used in model comparison. Instead, many 
authors are just comfortable with subjective priors. Also note that this is an 
example where we should not lump together all Bayesians, especially, as it is 
the case with Sober, when some arguments are specific to those using 
uninformative priors. 
46 Bishop, “Pattern Recognition”, p. 217 ; William D. Penny, “NeuroImage 
Comparing Dynamic Causal Models using AIC , BIC and Free Energy.” 
NeuroImage 59, no. 1 (2012), p. 319–330, here p. 321. 
47 This is closely intertwined with the idea that epistemology cannot do, and 
should not do, the economy of the cognitive sciences that underlie scientific 
inquiries. 
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the world. Bayesians consider models as part of a greater network 
that is highly dynamic, and as such averaging is favored, while 
likelihoodists view models like entities, which can be ‘closer to truth’ 
or not. 

There is another way to motivate why Bayesians should stick with 
model averaging. In a recent paper, Greg Gandenberger proposed 
that the concept of evidential favoring that is at the heart of the law 
of likelihood can only be epistemologically relevant within a Bayesian 
or a frequentist framework48. His argument has two steps. First, any 
statistical approach that aspires to become mainstream should 
provide guidance for beliefs and actions. Although likelihoodists 
usually dissociate the question of what to believe and do and what the 
evidence says49, they admit that if there are strong enough scientific 
evidence (i.e. objectively well-grounded priors) one can subscribe to 
those. For likelihoodists, well grounded-priors might be a prior 
distribution that “comes from a model of the “chance set-up” by 
which those hypotheses obtained their truth values.”50 A coin tossing 
device in which trials can be repeatedly conducted to a obtain 
sequence of event is an example of chance set-up. It is not obvious 
that most hypotheses in science satisfy this criterion. Second, 
Likelihoodism fails to accommodate cases where there is no well-
grounded priors without falling into Bayesianism or frequentism51. In 
summary, if likelihoodists fail to provide a viable alternative to 
scientific inquiry, then Bayesians are allowed to be skeptical about 
Sober’s proposal to adopt his Likelihoodism. 

______________ 
48 Greg Gandenberger, “Why I am Not a Likelihoodist”, Philosophers’ Imprint 
16 (2016) : pp. 1-22. 
49 Richard R. Royall, “Statistical Evidence : A likelihood paradigm”, (Boca 
Raton : Chapman & Hall/CRC, 1997) ; Elliott Sober, “Evidence and 
Evolution : The Logic Behind the Science”, (Cambridge : Cambridge 
University Press, 2008), pp. 412. 
50 Gandenberger, “Why I am Not a Likelihoodist”. 
51 In his paper, Gandenberger goes through a number of various ways that 
likelihoodists might resolve the dilemma. They all fail to provide a satisfying 
middle way to statistical inference as used in science. Ultimately, this is not 
obvious at all how likelihoodists could achieve that without falling into 
something like objective Bayesianism. 
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In conclusion, we have examined two approaches to model 
comparison and two conceptions of parsimony. I argued that we can 
dissociate the approaches from the paradigms. Sober is right to point 
out that the Bayesian model comparison, through the analysis of the 
model evidence, does not seem to capture parsimony in predictive 
accuracy — when model comparison is done on the expected 
performance of a fitted model. As such, there is space for revision 
and further investigations on the subject matter. That said, this 
revision does not entail that we should favor Likelihoodism when we 
assess the plausibility of a model. The argument given by Sober to 
prefer Likelihoodism reflects a particular view about objectivity in the 
scientific world more than model comparison per se. For Sober, if we 
let the data speaks for themselves, we do not need to represent 
uncertainty. Because Bayesians see model comparison through the 
lens of uncertainty, they feel the need to be transparent about their 
assumptions. For them, uncertainty is intrinsic to any kind of 
inference, and parsimony is a practical tool that is especially useful to 
avoid overfitting. 
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