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RESUME
Burns et Mitchell {1947) ont Proposé d'analyser les cycles d'affaires 3 travers la
chronologie des points de retournement. Dans ce papier, au lisu d'appliquer des méthodes
Spectrales directement ayx données, nous suggérons I'analyse Spectrale de la chronologie des
points de retournement, La chronologie des cycles peut étre vue comme une réalisation d'un

peut nous montrer cominent deux chronologies sent relides 'une a rautre. En plus, en utilisant
un algorithme tel que Proposé par Bry et Boschan (1971), on peut déterminer une chronologie
pour des séries individuelles comme le taux d'intérét, 'ofire de monngaie, etc. Ceci nous permet
d'étudier les Comouvements entre le processus identifié par la chronologie du NBER et les
points de retournement d'une série individuelle, Une telle analyse nous permet de mettre dans
une nouvelle perspective 1a relation entre les cycles des difiérentes séries mesurant factivité
réelle et les agrégats monétaires.

Mots clés : algorithme de Bry-Boschan, cycles d'affaires, analyse spectrale Walsh--Fourier.

ABSTRACT

discrete processes provides an easy tool to assess the similarities and differences between
alternative reference chronologies. Indeed, a formal comparison via the coherence can inform
us how the two chronologies are related. Moreover, using an algorithm such as proposed by
Bry and Boschan (1971), we can date peaks and troughs in a set of individual time series like
interest rates, money supply, etc., allowing us to study the comovemaents between the process
identified by the NBER chronology and the turning point process associated with any individual
series. Such analysis allows Us to describe the association of cycles between different saries
measuring real activity and monetary aggregates in a very novel perspective.

Key words: Bry-Boschan dating algorithm, business cycles, Walsh-Fourier spectral analysis.






1. INTRODUCTION

The measurement of business cycle phenomena has been a very active area of
research since at least the thirties, when Burns, Mitchell and Tinbergen proposed a variety
of statistical methods to examine macroeconomic data, To some, the phenomenon of

business cycles was one of regimes, like expansions and recessions, which led 1o the work

coverage of business cycle phenomena and spectral decompositions. Business cycle
chronologies and spectral analysis of time series have been largely independen
developments, as they were techniques associated with two very different views about
modeling business cycles. In this paper, we propose 1o pair the two developments.
Indeed, we suggest to apply spectral methods not to the data directly but instead 10 time
series consisting of business cycle chronologies. A business cycle chronology, such as
the one produced by the NBER whick covers a sample of monthly observations starting
in 1854, can be viewed as a realization of a random variable over a discrete space,
usually two states, resulting in an alternating sequence of expansions and recessions.
Such a time series, when stationary, has a spectral representation allowing us 10 take
advantage of tools developed over the last several decades but hitherto not exploited.!
Before we get into the technicalities about how 1o apply spectral methods to such
discrete processes, let us explain what the advantages would be. First, they provide an
casy tool 10 assess the similarities and differences between alternative reference

chronologies. Indeed, 1wo chronologies may be different not only in the dating of peaks

! tanaka (1964) proposed an approach somewhat similar 1o ours when he estimated the spectral

Ha

dcmity of a zigzagged pattern of the U.S. business cycles with s discrete-valued triangular pattem,
taking its maximum values at the business cycle peaks and its minimum values at the woughs,
Moore and Zarnowitz (1986) also displayed such zigzagged patterns 10 show the matching time
of reference chronologies for four countries.



and troughs but also in the number of recessions and expansions. A formal comparison
via the coherence can inform us how the two chronologies are related. Second, using an
algorithm such as the one proposed by Bry and Boschan (1971), we can date peaks and
troughs in a set of individual time series like interest rates, money supply, et€., allowing
us 1o study the comovements between the process identified by the NBER chronology and
the turning point process associated with any individual series. Such is an alternative way
0 dcscribé the association of cycles beween different series measuring real activity and
monetary aggregates. Third, while it is true that by focusing on business cycle phases
instead of the actual series like GNP much information is thrown out, it should be noted
that applying spectral analysis 10 chronologies aims at investigating nonlinear properties
of the data instead of the lincar ones. Namely, the spectral methods are applied 10 time
series reflecting duration of cycles, regime switches and turning points. A relaied issue
is the critical dependence of empirical stylized facis regarding business cycles on the
detrending of the data. The methods we propose put emphasis on turning points instead

of wrends, which has certain advantages.

Applying spectral methods 10 the rectangular processes of two states requires some
rechnical discussions. The well-known Fourier transform based on sinusoidal functions
is one of at least two ways 10 proceed and compute a spectral decomposition of 2 series
within a class of orthogonal functions. An alternative approach consists of a frequency-
based analysis of time series via the Walsh-Fourier transform based on Walsh functions,
which are similar t0 trigonometric functions, except that they take rectangular shap«as.2
Both Fourier and Walsh-Fourier representations have their merits in the. analysis of
discrete-valued time series and will be used throughout the paper. There are, however,
some clear advantages 10 using the Walsh-Fourier analysis for decomposing chronologies.
Section 2 includes 2 brief introduction of the Walsh-Fourier analysis with the technical
material appearing in an Appendix. We discuss the univariate spectral analysis of two

alternative U.S. reference cycle chronologics given by the NBER and Romer (1992).

2 References regarding Walsh functions and their use include Ahmed and Rao (1975).

Kohn (1980ab); Morettin (1981) and Stoffer {1987, 1990, 1991).



Several major individual chronologies are also considered. The reference dates of the

latier were selected by the Bry and Boschan dating algorithm for cyclical turning points,

The univariate spectral analysis of the NBER and the Romer chronologies reveal
a double peak in the spectrum for cycles between two and six years. Such heterogeneity
Suggests that not all cycles are alike and that probably diﬂ'erem sources of impulses and
propagation mechanisms may be at work. This result holds before WWII as well as in
the post-WWHU era. There is also a peak at the seasonal frequency before the WW1I.
When we compute the coherency of the NBER and the Romer chronologies, we find that
it averages to about 0.95 in the Post-WWII era, yet only 10 0.79 before WWIL. Qutside
the business cycle frequency band, the two chronologies do not maich very closely, as the

average coherencies at high and low frequencies are at most 50 10 60 percent.

Studying comovements among individual series also yields interesting insights
about business cycle comovements. Using Walsh coherencies, we first compare pre- and
post-WWII cycles and find striking differences in the cyclical behavior of prices, bond
yields and the stock market across the two eras. The pattern of comovements between
industrial production and the NBER reference cycle also shows dramatic changes at the

short end of the spectrum around seasonal {requencies.

Besides comparisons of pre- and post-WW1I eras, we also investigate the stylized
facts for the latter period for a larger set of series. Alternative detrending methods tend
to affect business cycle frequencies dffferently. as noted by Canova (1991) Tor instance,
in his elaborate study of delrending and stylized facts. As a result, some important
empirical evidence regarding business cycle behavior critically depends on detrending
methods. The approach via spectral decompositions of chronologies has the advantage
that it does not depend in any direct way on delrending.3 We therefore study post-WwiI

Obviously, some algorithns for selecting wming points proceed according 10 a certain trend
specification,



business cycle facts, via coherence analysis, through the spectral represemation of several

chronologies associated with a set of major economic time series.

In section 2, we review some of the basic tools of the Fourier and Walsh-Fourier
analysis ‘used in the remainder of the paper. Section 3 is devoted to the spectral
decomposition of some of the basic reference chronologies.  Section 4 covers
comovements between individual series, including & study of pre- and post-WWIl as well

as a review of stylized facts since WWIL Conclusions appear in section 5.
2. MOTIVATION

Spectral analysis is well covered in many textbooks of time series analysis. s
conventional use involves Fourier transforms of weakly statiopary processes. For a
univariate lime series X, which has time invariant mean and aulocovariances
ytzcov(x‘, xM), one has wo fundamental relationships : namely, the Cramer

representation

x= [T dw) @

n

where E{dz(u))?lziﬂ]:f(w)dw when w=A and zero otherwise, and the spectral

representation of the autocovariances

Y < ﬁe o) . 2.2

Equations (2.1) and (2.2) both involve Fourier wransforms. The first equation slates that
a stationary process can be thought of as a noncountably infinite sum of uncorrelated
components, and the second equation provides the spectral representation f(w) of the
covariance structure of the process. When a sample of size N of the process X, is

available, one usually draws on the periodogram, denoted lf(u)) where F refers



to Fourier, 10 estimate the spectrum.  For any frequency wef -n, n). one defines the

periodogram as :

L) = CXw) + SXw) (2.3)
where
1
Cw) = (NZ.) Z{i, X, cos{wt) (2.4)
2.2 R
S, (w) = (N) =1 X, Sin(wt) . (2.5)

The C,(w) and S,(w) functions are the cosine and sine transformations of the observed
. N . . .

series & )|, The computed frequencies are ;= 2a)/Nforj=0,1, .., [N/ For most

economic time serics, spectral representations have been documented in the literature.

Granger (1966) reported, for instance, the "typical” spectral shape of series.

1t is not uncommon to apply spectral analysis to transformed series instead of the

raw data x.. Perhaps the best example is that of seasonal adjustment, where the spectral
properties of x‘SA instead of X, are studied. Such filters are, at least in principle, designed

10 extract from the raw series those features of the data that are of interest 10 the
researcher. We essentially apply a similar principle here in a different context. Namely,

let us construct a binary time series b, where :

b= CH(X . .oy X,o . Xy 1) 2.6)
b€ (1,1} vt @.7)

Xi= (¥ 2, ) (2.8)



For convention, the rectangular patterns are scaled according to whether the economy is
in expansion, b, = +1 or in recession, b, = .14 Note that the function CH, generating
a chronology, may be a function of several series when X, is multivariate. Such is the
case, for instance, with the NBER chronology, based on dating commitiees gathering
evidence from a multitude of series. The function mapping X, into b, may also vary
through time, hence CHL., 1), since the dating commitices may change the modus operandi
of defining the phases of the business cycle. Moreover, producing a chronology may
involve future as well as past observations, hence the leads and lags appearing in (2.6).
The algorithm proposed by Bry and Boschan (1971) is another example where a specific
rule applies 10 2 single series, i.e.. b = CH(xyyo -onr Xpp o Kiar 1). Yet, another example
is the algorithm proposed by Hamilon (1989) based on a Markov switching regime

framework.

Figure 2.1 displays the business cycle rectangular paterns for a variety of series
ranging from the NBER and the Romer chronologies 1o several major individual patterns
generated by the Bry and Boschan dating algorithm for wrning points. The switching
points with zero crossings from +1 10 -1 correspond 10 downturns and from -1 10 +1
reflect upturns. Hence, the length between sign changes reflects the durations of cycles.
Table A.l in the Appendix repors some summary statistics for the duration data
appearing in Figure 21. A distinction is made between the pre-WWII and post-WWII
data series for two rtiasons : (1) in some cases, the series involved are not exactly the
same over those two eras, and (2) there has been much discussion about the distinct

business cycle patterns.5

‘4 The values +1 and -1 are arbitrary and the procedures we use are invariant 10 scaling.

s Some of the most recent papers on this subject include Diebold and Rudebusch (1992),
Romer (1992), Watson (1992), among many others.
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We would now like to investigate several features of the series by First,
in analogy with standard spectral analysis, we would like to decompose the square wave
patiern of series b, in orthogonal harmonic components. We expect, of course, that the
business cycle frequencies will be dominant in the spectral shape, yet other cycles may
be revealed as well. Second, we would also like to study comovements aCross
chronologies using 2 frequency-domain representation. Such analysis serves two
purposes : namely, (1) to examine compeling chronologies, like the NBER and the
alternative proposed by Romer (1992) for instance, and (2) to study relationships between
different series of economic activity through their chronology transforms. For instance,
one may investigate the stock market and cyclical comovements with by series obtained
from the Dow Jones and the NBER. It is clear that spectral analysis enables us 1o
formally asses the similarities and differences between two chronologies of the business
cycle. Such comparisons are generally not straightforward, since chronologies may not
only differ with respect 10 the location of a turning point, but may also involve a different
number of recessions and expansions. Furthermore, when the b, series of say the NBER
and the Dow Jones are examined, it is clear that we apply spectral analysis in the context
of a regime switching framework. Namely, we by-pass the linear properties of the series
through the CH(., .) filter and study the association of business cycle phase pattemns across

series.

When the b, series is weakly stationary, then the fundamental spectral
representation theorem tells us we can apply Fourier _transforms of the series and

compute 3

.

n
Cylo) = (.;.) T, b, cos(wn) @9

Sy(@ = (%)"f T, by sin(@) 2.10)
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and proceed as usual 10 €ompute a spectral decomposition., Yet, as the b, series is a
Square-waved series, an aliernative spectral decomposition may be considered as well.
To approximate Square waves, one can replace the sine and cosine functions by so-called
Walsh functions. Such functions, which will be discussed shortly, are displayed in
Figure 2.2 on top of the standard Fourier harmonic functions. The spectral analysis based
on such functions is called the Walsh-Fourier analysis and is, 10 our knowledge, new in
terms of econometric applications, Obviously, one may expect Walsh functions,
appearing in Figure 2.2, to be a better approximation 1o decompose the patterns displayed
in Figure 2.1 for the various macroeconomic chronologies. There are, however, some
technical issues which need to be addressed. In the Appendix 10 the paper, we provide
a summary of some of the issues. Here, we shall limit ourselves 10 a presentation of
some basic results which will aid the reader 10 follow the analysis without being

distracted by the details.

Walsh functions are Square wave functions that take only two values, +1 and -1
(up and down).6 This is in contrast 10 the sinusoids cos(2nnw) and sin(2nnw)
(n=1,2,..) which are characterized by their frequency of oscillation n in terms of the
complete cycles they make on the interval 0 S 0 < 1, Figure 2.2 displays the first eight
continuous Walsh functions W(n, w),(n =0, 1, w L,0Sw<l) superimposed on Fourier
harmonics. The Walsh functions W(n, @) are characterized by the number of times n
they switch signs in the unit interval 0 S w < 1. Fbr example, W(4, w) switches four
times on the interval 0 € © < 1 from +110 -1 at 148, then from -1 10 +1 at 3/8, from +1

to -1 at 5/8 and, finally, from -1 to +1 at 7/8.7

In our setup, the series b, only assumes two values, yet Walsh functions can be used for the
spectral decomposition of scries taking a finite number of states. See Stoffer (1991) for examples
and applications,

As discussed in detail in the Appendiz, it should be noted that Walsh functions, unlike
trigonometric functions, are aperiodic. Therefore, the notion of frequency was generalized 1o
handle Walsh functions. This generalized frequency, called sequency or Harmuth sequency,
measures half cycle lengths. Twice the sequency corresponds 10 the Fouries-based fi requency. We
conducied both sequency-based and frequency-based Walsh-Fourier analyses. As the results with
both approaches were similar, we have chosen to report only the frequency-based Walsh-Fourier
analysis, which is directly comparable with the Fourier spectrum,
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Figure 2.2
Walsh and Fourier Harmonics
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We now turn our atiention 10 a short discussion of computational issues. The
discrete-valued Walsh functions W, m/N) n=m=0,1, .. N - 1, corresponding 10
sample of length N = 2P where p is a positive integer, arc generated viaa (N x N) Walsh-

ordered Hadamard matrix Hy/(p) described in the Appendix. -

The finite-order Walsh-Fourier wransform of a series by is expressed as :

dy(w) = By(p) bn' JyN 2.11)

- where ;= m/N,n=0,..,N-1and by is the vector (by, -, by By analogy (o the
Fourier analysis, the Walsh periodogram of a series b, is obtained by squaring each
element of (2.11),
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W 2 - -1
o @) = dy(@) = N2 T b Win.ap)? 2.12)
In order 1o make the Fourier and Walsh-Fourier Spectra comparable, one computes

Iy @) = (1Y (@y.p) » @02 j=1.(m-2n @.13)

where l;v(mj) represents the periodogram ordinate corresponding to frequency mj.s

A useful measure of the degree of association between two time series, i.e., two

. 1 .
chronolog:es, bl and b?, is the coherency,

fi2(@)

— e O< <1 (2.14)
[f; (@) ()] 2

Kyp(w) =

where f);(w) and f0(@) are the Walsh-Fourier spectra of two series, while f5(®) is the
Cross-spectrum of two series. The Cross-spectrum is a measure of covariance between the

series in much the same wity as the Fourier spectrum is computed.

One advantage of the Walsh-Fourier coherency analysis is that the coherency is
real and takes on negative as well as positive values, i.e., it satisfies the usual correlation
inequality -1 < Ko@) <+ 1. In the rigonometric (Fourier) case, Cross-spectra are
complex-valued, and hence squared coherency rather than coherency is used,
A consequence of this is that Walsh-Fourier coherencies do not only measure a strength

of association, but also its sign.

Various asymptotic results relating the convergence of fgv(.) to Walsh-Fourier speciral density
function f(w) exist, Many of those that are applicable 10 categorical time series are discussed in
Stoffer (1987). Other references include Kohn (1980a,b) and Morettin (1981). More details appear
in the Appendix.
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Beauchamp (1984, chapter 3) provides numerous comparisons between Walsh-
bascd and Fourier-based spectral analyses. Not surprisingly, he finds that the Fourier
analysis is most relevant for smooth-varying time series, while the Walsh-Fourier analysis
is more suitable for serics with sharp discontinuities and a limited number of discretc-
valued realizations. In the remainder of this paper, we will use both types of spectral

methods as complementary rather than substitutes. One must keep in mind though the
relanve advantage that Walsh- Fourier methods may have for series such as those

appearing in Figure 2.1
3. REFERENCE CHRONOLOGIES AND THEIR SPECTRAL DECOMPOSITION

The plots in Figure 2.1 represent a subsel of the chronologics we investigated.
The most well known is the business cycle chronology produced by the National Bureau
of Economic Research, starting in 1854. From the tuming points we reproduced a time

series :

bN +1 if month t is in expansion era according 10 NBER chronology
vt ~1 if month t is in recession cra according to NBER chronology

where the superscript N refers 10 the NBER. This reproduces the time series appearing
at the top of Figure 2.1. Second from the top is a time series corresponding to an
alternative chronology proposed by Romer (1992). The analysis of Romer starts from the
observation that there appear 1o be inconsistencies between the determination of NBER
dates before and after World War 11. Romer proposed an algorithm that chooses postwar
turning points which match the NBER dates, but produces 2 chronology quite different
both in terms of length of cycles and number of recessions and expansions. The binary

series obtained from the Romer chronology will be denoted b‘ .
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Letus first investigate whether there are noticable differences between the Fourier
speclrum and the Walsh-Fourier spectrum.  Figure 3.1 displays both types of speciral
densities for the NBER chronology over three samples. Recall from section 2 that there
are restrictions in choosing a sample length (N = 2P where pis an integer) for computing
Walsh-Fourier spectra.  We selected the following samples : (1) 1905:3-1990:7,
(2) 1896:1-1938:6, (3) 1948:1-1990:8. The first Zample is approximately the “entire
sample,” though the earlier part of the chronology was deleted.? The second sample
Covers the pre-WWH era and, finally, the last sample covers the post-Wwi] era. The
Fourier and Walsh-Fourier spectra for each of the l;xree samples appear in Figure 3.1, For

the chronology proposed by Romer, the specira are reported in Figure 3.2

The (wo curves in each of the plots maich fairly closely, yet here are some
significant differences worth noting. Namely, the Walsh-Fourier spectrum of the NBER
and Romer series gives rise 10 extra specual peaks.'0 The economic interpretation of
several peaks in business cycle bands will be discussed below. The differences appear
1o be in the number of spectral peaks and their location, which means that the average
period of oscillation in rectangular b patterns differ remarkably if one approximaies them
via Fourier or Walsh functions. The frequency band of cycles of two o six years long
are identified via two vertical lines appearing in each plot. For the entire sample of the
NBER series in Figure 3.1, we notice three distinct peaks in the Walsh-Fourier spectrum
for cycles of two years and more. The Fourier spectrum, on the other hand, has only a
single peak located almost exactly at a dip in the Walsh-Fourier spectrum. A similar
exercise applied to the Romer chronology, which appears in Figure 3.2, confirms this

finding. In fact, with the Romer chronology, the three peaks in the Walsh-Fourier

We chose to delete the 19th century part of the chronology 10 have sample size matching N = 1024
data points (p = 10), The earlier part was deleted, as there is greater uncenainty regarding the
locaton of turning points [see, €., Diebold and Rudebusch (1989) for discussion). This choice
of entire sample also allowed for a direct comparison of the NBER and Romer chronologies.

10 Stoffer (1991) also Feports and discusses peaks uncovered by Walsh-Fourier which do not appear
in the Fourier spectra.
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spectrum are much stronger. This seems 10 indicate that there is 2 certain degree of
heterogeneity in business cycle paterns uncovered by the Walsh-Fourier analysis which
remains concealed with the Fourier spectrum. The heterogeneity, suggested by the
Walsh-Fourier spectrum, Can be attributed 10 at least two sOurces. As the sample includes
both pre- and post-WWII observations one may expect heterogeneity in business cycle
lengths to emerge pecause of the distinct character of business cycles before and afier
World War Il. Another source of heterogeneity can be explained in the context of the
impulse propagation framework introduced by Frisch (1933) and Slutsky (1937). There
are diffcren;‘vicws regarding the nature of shocks and their propagation mechanism. This
leads 10 the question, as noted, for instance, by Blanchard and Watson (1986), whether

all business cycles are alike.

Figure 3.1
Spectral Decomposition of NBER Chronology
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Figure 3.2
Spectral Decomposition of Romer Chronology
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The first possible source of heterogeneity, namely the pre- versus the post-WWwIi

eras having different Characteristics can be investigated by simply studying the
subsamples. Let us therefore focus on the Separate pre- and post-WWil samples. The
Fourier and Walsh- Fourier Spectra once again do not entirely agree on some critical
issues. In particular, for the Romer pre-WWII spectra, we nolice again a double-dip
patiern with the Walsh-Fourier spectrum, not revealed by the Fourier spectrum. This is
also the case with post-WWII NBER chronology. Several other observations emerge
from the pre- and POsE-WWII comparison, We notice a very different spectral shape for
the two eras, particularly with the Walsh-Fourier analysis, but also with the standard
spectral representation, Moreover, one also observes significant differences beiween the

NBER and Romer chronologies. Indeed, before WWII, we found a double-dip pattern
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pusiness cycle frequency bands. though this is more evident for the NBER chronology.
Hence, the only chronology not exhibiting a double-peak is the NBER one before WWIL
The double peak spectrum emerging from our analysis suggests that the heterogeneity
does not only appear 10 be related to the so-called stabilization hypothesis after WWIL
There is indeed evidence of a mixture of business cycle patierns, relatively long cycles
of over five years and cycles that are much shorter, that is, less than three years. The
advantage of spectral decompositions is to uncover such peaks. We cannol, of course,
from this univariaie decomposition derive the sources of shocks and propagation
mechanism which generate the heterogeneity. .

It is also worth noting that at the end of the frequency domuin ploued in
Figures 3.1 and 3.2, we observe a peak at yearly cycles for the entire sample as well as
the pre-WWil sample, particularly for the Romer chronology. The appearance of such
a peak at the seasonal frequency is related 10 ihe observations made in Ghysels
(1991, 1992) regarding the nonuniform distribution of wrning points throughout the
calendar year. Namely, it suggests that the propensity of the economy 10 emerge from
a recession or end an c#pansion is calendar-dependent. Obviously, the peak which
emerges is not as dominant as those in the business cycle frequency band, yet it is clearly
present in almost all the plots. This finding, which is essentially obtained via
nonparametric methods, i.e., spectral methods, complements the nonparametric duration

analysis discussed in Ghysels (1991).

The spectral plots in Figure 3.1 suggest differences between the NBER and Romer
chronologies. We can measure the association of the two chronologies via the
multivariate spectral analysis discussed in section 2. In particular, we can compute the
coherence between 1wo chronologies. In Table 3.1, we report the average coherencies

over different frequency bands.
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Table 3.1
Average Coherences Between NBER and Romer Chronologies

Over 73.1 24.4 10 64.0 23.310 12.1
Months Months Months

Entire Sample, 1905:3 - 1990:7

Walsh-Fourier 0.82 0.85 0.77
Fourier 0.81 ) 0.87 0.67
. Pre-WWII S;mple, 1896:1 - 1938:6
Walsh-Fourier 0.63 0.80 0.45
Fourier ~ 0.68 0.79 0.47

Post-WWII Sample, 1948:] - 1990:8
Walsh-Fourier 0.95 0.95 0.89

Fourier 0.97 0.96 0.78

Clearly, afier WWIL, the two Spectra are much in agreement, as the coherencies
run on average at 0.95 and higher in the business cycle frequency band, However, before
WWII, the two Spectra are substantially more in disagreement with a coherency of 80 %

or less. Over the entire sample, the coherency is below 90 %, Outside the business cycle

noting that this time the results obtained from the standard spectral methods appear 1o be

in agreement with the Walsh-Fourier coherencies.
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4. COMOVEMENTS BETWEEN INDIVIDUAL SERIES

A key characteristic of the business cycle is that fluctuations are COMIMOR #CTOSS
sectors of the economy. We turn our attention here 10 a set of individual series covering
real activity, prices and financial indicators. We will be interested in a pre- and
post-WWII comparison of comovements as well as a more detailed swdy of post-WWII
series, since a wider range of data series are available for this era. Unlike reference
chronologies, which are the output of some CH(., 1) procedure defined in (2.6), there is
no direct trning point chronology available for in-dividua! series. Hence, for each series
we need 10 construct 4 binary business cycle phase series. Like Watson (1992), we opted
10 use the Bry and Boschan (1971) algorithm to date business cycle phases. The merit
of this method is that it reproduces the NBER chronology quite accurately. All
chronologies appearing in the remainder of this section will be based on the Bry-Boschan
algorithm. A first subsection will be devoted 1o pre- and post-WWI1 comparisons, while

a second section covers the post-WWII era.
4.1 Business cycle comovements before and after WWII

Comparing business cycle features before and after WWII has been the subject of
many réscarch papers. A very incomplete list of 1hé most recent papers includes Moore
and Zarnowitz (1986), Romer (1992), Diebold and Rudebusch (1992) and Watson (1992).
The question whether there has been a fundamental change in the nature of business
cycles has been vigorously debated among economists for several reasons, particularly
with respect 10 the success of postwar stabilization policies. A comparison of both eras
is limited to a relatively small set of series, as there are not many matching pairs of
uniformly defined or approximately similar series. A total of eight series were considered
similar to those studied by Watson (1992). Sources of all the data series are described
in the Appendix, while Figure 2.1 displays the binary processes extracted via the Bry-

Boschan atgorithm for a subset of those series. We focus our attention on four series of
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broad measures of economic activity, namely the industrial production (IP) turning point

[3
series, denoted bf', the S&P common stock price index b‘sp, the producer price index

bfp and bond yields b?Y. Figure 4.1 shows the coherency among these four individual

series as well as their coherency with the NBER reference cycle. The coherency was
computed before and afier WWII so that each plot in Figure 4.1 has two curves.
The frequency band of cycles of two 10 six years are again marked on each plot. It is
worth recalling from section 2 that the Walsh-Fourjer Cross-spectrum is real, unlike the
Fourier cross-spectrum. Consequently, the Walsh-i:ourier coherency can assume negative
values, a clear advantage over its Fourier counlerpan, as it reveals the magnitude as well
as the sign of comovements. The last row of plots in Figure 4.1 shows the coherency of

b:P, b‘w, b‘BY and b,SP respectively with the NBER reference cycle. Among the four

individual series, b?P shows a2 most dramatic change in cyclical pattern. Afier WWII,
there was virtually no cyclical pattern in prices, while before the war, prices moved
strongly pro-cyclical. Kydiand and Prescou (1990) also noted the change in price level
business cycle pauterns, yet they claimed that prices moved countercyclical after WWII,
Our results do not support such a view of post-WWII price behavior. The bond yield
chronology also displays very different patterns across the two samples with two strong
and distinct peaks afier WWII, including one of a short-cycle comovement with the
NBER series (under two years). At the short end of the Spectrum, we also notice a sharp
change of b:P and bf‘ comovements with a strong seasonal coherency before Ww1,
which virtaily disappeared in the last forty years. Itis also interesting and not Surprising
to note that bfp and b:)P show the same dramatic change in coherency as b? and b:’P do.
The stock market was strongly negatively correlated across the frequency domain with
prices, but this is no longer the case since WWIL. Bond yicids and the stock market also

appear negaltively related across all frequencies before the war but little remains since,
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4.2 Coherency since WWII

Stylized facis of business cycle comovements over the post-WWII era have been
documented by a large variety of authors, somefimes using quite diverse siatistical
methods and data transformations for detrending, seasonal adjustment, etc. In general,
one analyzes the timing relation between various series and some reference series, usually
real GNP, by means of cross-correlation coefficients. There €xist more complicated
procedures, however, such as VAR impulse response analysis, common factor and index
models, Documenting stylized facts is quite -scnsixivc 1o prefiltering dawa.  Such
prefiltering occurs either when detrending or seasonally adjusting series. For instance,
Canova (1991) shows in detail thar a multitude of key siylized facts in business cycle
analyses are inconclusive because of prefiliering effects,!? There probably is less
disagreement regarding the location of turning points, panticularly for the posi-WW] era,
than there is regarding the specification of the secular component of macroeconomic time
series. Therefore, we suggest to use the Walsh-Fourier coherency methods here as an

alternative tool of studying post-WWII business cycle features.

Over the typical business cycle, it is claimed that employment varies substantially,
while the determinants of labor supply, like real wages and real interest rates, vary only
slightly [see, €.g., Mankiw (1989)]. The Walsh-Fourier coherencies between the NBER
and individual series plotted in Figure 4.2 confirm this finding to a large degree, except
for the comovements between real interest rates and the NBER chronology. They appear
indeed important, compared 10 the de facto zero coherence between NBER and real wa ges
at all frequencies of the spectrum.’?  In contrast 10 the real wage, we observe strong

procyclicality of labor productivity. It was already noted thai the price level, measured

Several other papers have raised this question, including Singleton (1988), Cogley (1990) and
Ghysels, Lee and Siklos (1993).

It is often claimed that real wages are procyclical. While they are for certain business cycle
frequencies, they also appear negatively correlated with the reference cycle over other business
cycle frequencies.



22

via the PPI, is neither procyclical nor countercyclical. Also, in Figure 4.2, we notice that
the unemployment rate is strongly countercyclical, yet iherc appears to be a sharp
(positive) peak at the seasonal frequency. Hours worked and real wages are typically
found to have low correlation.  Figure 4.3 shows a zigzag coherence paitern which
decomposes the low correlation in a sharp positive peak around the seasonal frequency
as well as a large dip in the business cycle frequency pand. Unemployment and real
wages also show mostly a positive coherency, as would be expected, but again labor
productivity and the real wage are basically uncorrelated across frequencies. Finally,
inflation against the nominal intercst rate as well as against the real inlerest rate also
yields some peculiar patierns. Inflation and real interest rates show a srong negative
correlation in the business cycle frequency band. For the nominal rate, there are two

sharp positive peaks decomposing the comovements.
5. CONCLUSIONS

In this paper, we have introduced spectral methods as # 100l for analyzing business
cycle chronologies. It is a fairly convenient way 10 examine the nature of comovements
across the chronologies of different series, and it is also an ideal 100l to compdre
competing chronologies of reference or other cycles. We uncovered interesting features
regarding (1) the relation between the NBER and Romer chronology, (2) the nature of
pre- and post-WWII business cycle fluctuations and (3) some stylized facts with respect

to the post-WWI1 era.

Of course, as with any application of spectral analysis, one can only rely on it as
a method for decomposing observed series in orthogonal cycles. 1 does not readily yield
economic interpretations of the decomposition. But if one is only paying atiention 10
stylized facts, there are some clear advantages 1o pairing spectral methods with

chronologies.
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Figure 4.2
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Figure 4.3
Comovements - Individual Series
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APPENDIX
A) DATA DEFINITIONS

The reference chronologies were waken from Romer (1992), while the pre-WWII
series were obtained from Watson (1992). All the post- WWII series wert extracted from
CITIBASE. The CITIBASE mnemonics are given in parantheses.

AL A ARAR Ly

Pre-WWI1 data

Pig lron production, 19771 - 1941:12 (NBER, BCD, 1D number n01585).

S&P common stock price index, 1871:1 - 1940:12 [SPPRWARR in Watson
(1992))-

Wholesale price index, 1890:1 - 1940:12 (NBER, BCD, ID number n04010).
RR Bond yields, 1857:1 - 1940:12 (NBER, BCD, 1D number n13024).

Post-WWI1 data

Industrial production index, total, 1947:1 - 1993:8 (IP).
- Real S&Ps common stock price index, 1947:1 - 1993:8 (FSPCOM/PUN'EW).
Producer price index, all commodities, 1946:1 - 1993:8, NSA (PW).
- Bond yield, Moody's BAA corporate, percenlage per annum, 1947:1 - 1993:8
(FYBAAC).
Price inflation, 1948:1 - 1993:8, INFLP = {100 * log(PUNEW, / PUNEW, )}
Wage inflation, 1947:1 - 1993:8, INFLW = {100 * log(LEHM, / LEHMHZ)].
- Interest rate, U.S. treasury bills, 1947:1 - 1993:8 (FYGM3). 4
- Real short-term interest rate, 1948:1 - 1993:8, FYGM3R = (FYGM3 - INFLP).
- Unemployment rate, men, 20 years and over, percentage, 3, 1948:1 - 1993:8
(LHMUR).
- Man-hours of employed labor force, 1947:1 - 1993:7 (LHOURS).
Labor productivity, 1947:1 - 1993:7, LPROD = (IP / LHOURS).
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Table A.1
Average Phase Durations* in Months

Series Sample Period P-P T-T P-T T-P
NBER (entire) 1905:3 - 1990:7 55.4 51.2 14.6 40.4
NBER (prewar) 1896:1 - 1938:6 45.0 447 19.0 25.7
NBER (postwar) 1948:1 - 1990:8 63.4 56.7 110 515
Romer (entire) 1905:3 - 1990:7 52.4 53.8 12.7 40.0
Romer (prewar) 1896:1 - 1938:6 407 41.4 12.4 29.0
Romer (postwar) 1948:1 - 1990:8 63.3 574 12.4 50.2
MO1585 1878:4 - 1938:6 44.5 44.8 15.0 29.3
SPPRWARR 1872:8 - 19397 423 42.8 18.5 23.8
M0401X 1890:10 - 1939:8 46.8 47.3 19.8 27.5
M13024 1857:12 - 1940:11 43.3 44.0 20.1 23.2
P 1948:7 - 1991:3 63.4 57.0 37.1 19.8
FSPCOMR 1949:7 - 1990:10 41.5 45.1 19.2 25.9
PW 1948:9 - 1990:10 63.2 62.8 13.2 50.0
FYBAAC 1948:4 - 1990:10 51.1 517 24.5 26.6
INFLP 1949:9 - 19932 45.6 46.3 23.6 21.8
INFLW 1949:12 - 1992:11 36.6 36.8 20.0 16.8
FYGM3 1949:2 - 1989:3 535 55.8 16.9 36.7
FYGM3R 1949:11 - 1993:4 42.0 42.2 21.6 20.1
FMBASE6 1952:12 - 1992:1 417 40.7 16.6 24.6
IPXMCA 1949:11 - 1991:3 50.4 49.7 23.1 26.6
LHMUR 1949:11 - 1992:6 56.9 57.0 37.1 19.8
LPNAG 1948:10 - 1992:2 71.6 72.6 12.6 60.0
LHOURS 1948:5 - 1991:8 62.6 62.7 16.4 46.4
LPROD 1948:6 - 1991:4 439 45.7 16.3 29.0

* P-P: Peak 10 peak; T-T : wough to trough; P-T : peak 10 rough; T-P : wough 1o peak.
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B) TECHNICAL NOTES ON THE WALSH-FOURIER SPECTRAL ANALYSIS

In the remainder of this Appendix, we present a briel technical review of the
Walsh-Fourier theory. The proof of the results have been omitted, but the references will

be provided. The presentation is divided into several subseclions.

A fundamenal difference berween sinusoids and Walsh functions is that the lauer
are aperiodic. Consequently, the value of n in W{n, w) does not have the same
straightforward interpretation as in sinusoidals. T'he notion of sequency is introduced 10
describe a generalized concept of frequency appropriate for functions such as the Walsh
functions that are not necessarily periodic. The frequency parameler i in sinusoidals may
also be interpreied as one hall the number of zero crossings or sign changes per unit time.
So the term sequency will simpty denote half of the frequency. Roughly speaking, while
the frequency is inversely related 1o the length of a full cycle, the sequency is inversely
related to the lengih of hall a cycie. Henceforth, for the sake of comparability between
Fourier and Walsh-Fourier spectral representations, we will adopt the generalized concept
of frequency in reference 10 the Walsh functions. The reader may easily convert back and

forth between the two measures, since generalized frequency is one half of sequency.
Sequency and frequency analyses
- Walsh functions

The square-wave Walsh functions form a complele orthonormal sequence On {0, 1)
and take on only two values, +1 and -1. Suppose that a sample of length N = 2P, where

p > 0 integer, is available.

The Walsh-ordered Hadamard matrix Hy/(p) is obtained by counting the number

of sign changes in each row {or by symmetry in each column) of the Hadamard
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matrix H(p) and then by reordering the rows (columns) in ascending order according to
the number of switches. So the first column of Hy,/(p) makes no sign changes, the second
changes one time, the third two times, elc., and Hy(3) summarizes a discrete-valued
version (W=m/N)n=m = 0, 1, ..., 7, instead of a continucus-valued version 0 < @ < |

exhibited in Figure 2.2,

Hw(3) =

In order to discuss the fast Walsh-ordered Hadamard transform, consider the
recursive generation of the Hadamard matrix by setting initially H(0) = 1 and then

processing by

Hk + 1) =

H .
) H(kj k=0,1,2,..,0p-1.
Hk) -H(k

The Hadamard matrix gives the discrete Walsh functions as rows (or columns).
To obtain the Walsh functions in sequency order W(j, w;), one will reorder the rows of
H(p) according 10 the number of sign changes. The Walsh-ordered Hadamard matrix
Hy(p) can be computed as ;

Hy() = I, Hp) . B (A1)
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where
F, 0
GS
H(p) = R Cos=2, (A.2)
FS
0 G,
I I Il
with Fg = .Gy = and 1 being the {s x §) identity matrix. Matix B
Iy -1 I 15

in (A.1) is a matrix which bit reverses the order of the matrix H(p). Namely, matrix B
counts essentially the number of sign changes in each row (column) of the H(p) and then

reorders the rows (columns) 10 obtain Hy(p)-
The basic properties of Walsh functions are given in Kohn (1980a, Lemma 1).
. Finite Walsh transform and the logical covariances
Assume that (X(n)} is a discrt;,le-time. zero-mean, second-order stationary time

series. Let Y be the autocovariance function of {b}. For 0 € w < 1, the finite order
Walsh transform is defined as {Kohn (1980a), Stoffer (1987, 1990)] :

d(@ = N Y5 b WG. o) - (A3)
Then
var{dy(@)) = N~ E}‘,;,‘ () WG, @) (A4)

where 1(j) is the logical covariance function of X(1), given {Kohn (1980a)] as :

)= 20 S0 wk -0 20 <j <2
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where m@r is the dyadic addition of m and I, and equal 10 Z?-o | m; - n | 2, where
m; and 7 are the coefficients of binary expansion of n and r respectively. The logical
covariance functions () play the same role in the Walsh analysis as Y(j) do when
working with trigonometric functions,

- The second-order Pproperties of transform and the Walsh spectrum

The limiting behavior of (A.4) gives the Walsh-Fourier spectrum. That is,

var{d(w)} — f(w), as N — o where :

fw) = 375t WG, 0), 0<w<1 (A.5)

is the Walsh-Fourier Spectrum.  We note that f(c) exists, since the absolute summability
of ¥(j) implies the absolute summability of <(j). Specifically, Kohn (1980a, Lemma 3)

shows that if lim > - il 1Y()| < =, then E;:o Jt@)] < o and f(w) are
Ddoo l“<2n 2n

well defined.
As with the usual Fourjer analysis, if the mean of the series is unknown, the only

sequency for which the transform in (A.3) cannot be evaluated is at the zero (m = ()
sequency. Let p = E{b(n)}, all n, and note thatform =0, 1,..., N- 1,

NI Y W m/N) - 8 (A6)

where § is the Kronocker delta. From (A.6), the Mmean-centred transform will be the
uncentred transform, €xcept at m = { and, particularly,

Efdy(m /N)) = N7t g1 KWEm/N) =Ny 8" m=0, .. N.1
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Let wy be dyadically rational. If oy ® @ = 0 as N = 2F —» oo, then
E WdX(@p) — f(©).

The asymptotic covariance of the Walsh-Fourier transform at two distinct sequengcies 0 N
and @, is not generally zero. This is in contrast o the trigonometric case, where the
Fourier transform of the data at two distinct frequencies are, under suitable conditions,
asymptotically independent. 1f 0y N and w, ) are dyadically rational and I, - @y ! N!
with oy ® @ 2 0, i=1,2as N =2°, then [Kohn (1980a,b)]

E{dy(oy )n(@p 0} = 0 -

The basic result is that (Stoffer 1990) under appropriate conditions, dy(@y)
converge in distribution with mean zero and variance f(w), Under these same conditions
and using the resulls above, if (@ N -~ OM N} is a collection of M sequencies close 10

a sequency of interest, @, then
2,“ a0 — f((s)))(2
j=1 ONUN M

where X:a denotes a chi-squared distribution with M degrees of freedom. From this, one

can deduce that M - e d,i(mw) is an estimate of f(w), having variance wiX(®) / M.
fweletM —» 0 as N =32, then this estimate is 8 mean-squared consistent estimate of
flw) (0 <<

C) NOTES ON THE ESTIMATION OF SPECTRA AND COHERENCIES

As illustrated in Figure 2.1, the data have different lengths, and hence to utilize
the Fourier and Walsh-Fourier wransformations, the length of the series were truncated 10
the nearest power. For the sake of comparability between sinusoidal and asinusoidal

waves, the spectral density estimates were computed using an asinusoidal window
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generalor, namely & tent-type kernel with eleven equally weighied periodogram ordinates

in the frequency domain.

The sample periods in Figures 3.1 and 3.2 consist of either 512 monthly
observations or, in the case of the entire sample of reference chronologies, 1,024. Thus,
any arbitrary padding schemes were avoided by the truncation of the series, as both
sample sizes are integer powers of 2. The spectral density ordinates f(o)j) were
decomposed over the following three nonoverlapping business cycle bands : for the
number of observations N = 512 (p=9), the frequency domain was decomposed as
=L .. 7j=8, .., 21,j =22, ..., 42. Hence, these bands are centered ar periodicities
of 189.6, 38.5 and 16.6 months respectively, The first band ranges between periodicities
of 512 10 73.1 months and is thus the band in which long oscillations occur. The
remaining bands are considered as business cycle oscillations and higher frequencies.
When N = 1,024 (p = 10), then the bands considered were quite similar 1o the previous
ones by setting j = 1, ..., 14, Ji=15,..42,j=43, .85 wih averaged periodicities
of 237, 39.3 and 16.6 months.

Let d (o) and dg(w) denote the Walsh-Fourier transforms of the rectangular
cyclical pattern of by and b,. The sample coherency between b, and b, was computed
according to (2.15), where the Cross-spectral estimation f'n(m) was obtained by averagin 2
the values of the product d;(m/N) dy(m / N) over values of m in the neighborhood of w.
Similarly, f, (@) and ?22((0) were obtained by averaging the Walsh periodograms

d,z(m / N) and dzz(m / N) over values of m in the neighborhood of .
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