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RESUME

Dans ce papier, nous étudions un modeéle de volatilité stochastique avec déformation du
temps. Le processus de volatilité est supposé évoluer dans un temps opérationnel détermine
par I'arrivée de linformation sur le marché boursier. Cette arrivée étant non observable, nous
utilisons le volume de transactions et les prix passés comme approximation de la déformation
du temps. Nous admettons également un effet de levier par I'asymétrie de la déformation du
temps par rapport aux prix passés.

La spécification économétrique est basée sur le modéle espace d'états pour les modéles
de volatilité stochastique proposés notamment par Harvey, Ruiz et Shephard (1992) et combinée
avec le filtre de Kalman pour processus avec déformation du temps étudié par Stock (1988).
Nous utilisons des données quotidiennes de la bourse de New York, S&P 500 et volume de
transactions, pour estimer le modele et trouvons une forte évidence pour la déformation du
temps. Notamment, lorsque le volume monte, {a volatilité devient plus erratique (moins
persistante et sujette 4 des chocs plus grands). Ce résultat s'obtient aussi suite & une baisse
des prix. Par contre, une hausse des prix rend la volatilité plus persistante. Nous présentons
également plusieurs extensions du modeéle de base.

Mots ciés :  volatilité stochastique, filtre de Kalman, processus de diffusion avec temps local,
mouvements de valeurs boursiéres, volume de transactions.

ABSTRACT

In this paper, we study stochastic volatility models with time deformation. In our setup,
the fatent process of stochastic volatility evolves in an operational time which differs from
calendar time. The time deformation can be determined by past volume of trade, past price
changes, possibly with an asymmetric leverage effect, and other variables setting the pace of
information arrival.

The econometric specification exploits the state-space approach for stochastic volatility
models proposed by Harvey, Ruiz and Shephard (1992) and uses the Kalman filter framework
proposed by Stock (1988) to handie continuous time processes with time deformation. Daily
data on the price changes and volume of trade of the S&P 500 over a 1950-1987 sample are
investigated. Strong evidence for time deformation is found, and its impact on the behavior of
price series is analyzed. We find that increases in volume accelerate operational time, resulting
in volatility being less persistent and subject to shocks with a higher innovation variance.
Downward price movements have similar effects, while upward price movements increase
persistence in volatility and decrease the dispersion of shocks by slowing down the operational
time clock. We present the basic model as well as several extensions.

Key words : stochastic volatility, Kalman filter, diffusion processes and local time, stock price
movements, volume of trade.






1. INTRODUCTION

Stochastic processes used in finance are most often assumed to be generated by a
first-order stochastic differential cquation of the form :

(Lh dX(s) = a(s, X(s), ©) dT + b(s, X(s), ) dM(s)

where X(s) is a n-dimensional process adapted o a filtered probability space (Q, F, P)

evolving in some operational time. The process is parameterized by o € ®" with dM(s)
a m-dimensional semimartingale process, while a(s, X(s), ©) and b(s, X(s), &) are hoth
hounded predictable processes of dimensions n and nxm respectively.  Equations
like (1.1) have been adopted to describe security, bond and derivative prices as well as
information flows, mortgage values, inventories and other state variables such as
technology. Depending on the context, the operational time s is most often assumed to
be calendar time, denoted s =1, or sometimes market time when trading dales are
explicitly modeled [sce, e.g., Melino (1991) or Sawyer (1993) for discussion].
Whenever the assumed operational time scale s differs from t, there is so-called time
deformation. A very simple example of the separation of operational time and calendar
time can be found in the early works of Clark (1973) and Tauchen and Pitts (1983) on
trading volume.! Madan and Scneta (1990), and Madan and Milne (1991) introduced a
Brownian motion evaluated at random time changes govemned by independent gamma
increments as an alternative martingale process for the uncertainty driving stock market
returns.  Camr and Jarrow (1990) show a connection between local time and the
Black-Scholes option-pricing model. More recently, Detemple and Murthy (1993)
have used local time scales to characterize an intertemporal asset pricing with
heterogeneous beliefs in which assets are held in equilibrium.

In this paper, time deformation is used to model stochastic volatility. Several
authors, including Chesney and Scott (1989), Clark (1973), Hull and White (1987),
Johnson and Shanno (1987), Scowt (1987), Tauchen and Pitts (1983) and
Wiggins (1987), proposed and discussed stochastic volatility (henceforth SV) models
which attempted to describe the joint process of a security price, say y(1),

! There is now an extensive literature on trading voluine, including both theoretical and empirical
papers. See, for instance, Anderson (1992), Easley and Olara (1992), Foster and Viswanathan
(1993a,b), Gallant, Rossi and Tauchen (1992), Hausman and Lo (1991), Huffman (1987),
Karpoff (1987}, Lamourcux and Lastrapes (1990, 1993), Wang (1993), among others.



and its conditivnal volatility o(i), ie., X = (y(1), o(1))' in calendar timet. A sV
model typically takes the form :

(1.2a) dy(1) = py() dt + o(t)y(t)dwl(l)

(1.2b)  dlogo(t) = a(b ~ o())dt + cdwz(t)

where w, (1) and w,(1) are two standard independent Wiener processes. Our paper does
not assume that the volatility process moves continuously and smoothly through
calendar time, as is usually assumed and described in (1.2b). It is clear that key
variables affecting volatility, like the arrival of information to the market, tend not 1o
evolve continuously and smoothly through time. Therefore, we assume an operational
time scale s for the volatility processes, with s = g(1), a mapping between operational
and calendar time, such that :2

(1.3a)  dy() = py()) dt + o(g(t)) y() do, (1)

(1.3b)  dlogo(s) = a(b - o(s)) ds + cdwz(s) .

Hence, volatility moves continuously but only when the pace of information arrival and
other state variables set the clock of time evolution. The set of cquations in (1.3) can

be viewed as a special case of (1.1) letting X(s)a(y(g‘l(s)), o(s))' or alternatively
X(t) = (y(1), o(g(t))y. Several extensions of (1.3) fitting the general structure described
in equation (1.1) will be discussed in the paper.

What can be accomplished by letting stochastic volatility evolve in an operational
time scale which differs from calendar time? Obviously, the flow of information and
other variables which determine the evolution of s are latent. Hence, we must specily
the mapping s = g(1) in terms of observable processes. We propose 1o use past volume
of trade and other variables such as past price changes allowing possibly for an
asymmetric response o create a leverage effect. Therefore, our setup provides a way
of introducing data on trading volume in the specification of stochastic volatility
models.  Furthermore, it provides a rationale for leverage effects through the
specification of asymmetric responses of s to past price changes, i.c., operational time
evolves differently in bult and bear markets. It also appears from our empirical results
that our specification provides an alternative 10 a class of processes put forward by
Merton (1976a,b) for option pricing, where jumps in the underlying securily returns

2 ‘The mapping s = g{t) must satisly certain regularity conditions which will be discussed later.



are permitted.  Merton suggésled to include a Poisson jump process to distinguish
between the arrival of normal information, modeled as a standard lognormal diffusion,
and the arrival of abnormal information, modeled as a Poisson process. We find that
operational time typically moves slowly, but every so often one finds dramatic
increases in market speed. In Merton's setup, the information arrival spells are purcly
exogenous, whereas our approach has the sources of these changes modeled both in a
multivariate sense, via the introduction of volume series, and in an endogenous fashion
through past price changes.  Using daily S&P 500 data and NYSE volume from
1950-1987, we find that increases in volume accelerate operational time, resulting in
volatility being higher and less persisient and subject o shocks with a higher
innovation variance. Downward price movements have similar cffects, while upward
price movements increase persistence in volatility and decrease the dispersion of shocks
by slowing down the operational time clock.

There are other advantages (o time deformation in stochastic volatility models, but
before discussing them, we need 1o elaborate briefly on econometric issucs. Estimating
SV models represents some stiff challenges for econometricians. Lately, several
methods were proposed involving the use of simulated methods of moments, the
Kalman filter or Bayesian inference. Recent contributions include Gallant and Tauchen
(1992), Gouriéroux, Monfort and Renault (1992), Harvey, Ruiz and Shephard (1992)
and Jacquier, Polson and Rossi ( 1992). The approach suggested by Nelson (1988) and
Harvey et al. (1990) relies on the Kalman filter and a state -space representation of the
SV model. The resulting estimator is a quasi-maximum likelihood estimator,
henceforth QMLE, and therefore has the disadvantage of being asymptotically
inefficient. Yet, its main advantage is in terms of numerical computations which are
casy to perform. It has been argued, however, notably by Jacquier et al. (1992) that the
QMLE algorithm entails important efficiency losses in relevant parts of the parameter
space. Following Nelson (1988) and Harvey, Ruiz and Shephard €1993), we also adopt
a state-space representation of a stochastic volatility model but use results of Stock
(1988) to incorporate the effects of time deformation. This leads 1o a time-varying
state -space model for which we consider the QMLE approach as advocated by Harvey
etal (1993). It appears that the time -deformation time-varying  state-space
representation considerably improves the fit, particularly of the tail behavior of stock
returns.  Hence, allowing for time deformation in SV models may reduce the
inefficiency of the QMLE approach.



The paper is organized as follows. In section 2, we present the basic model,
starting with a brief review of {ime - deformation models. Econometric issues are dealt
with in section 3. Empirical results appear in section 4. Several extensions of the
basic model are presented in section 5. Conclusions follow.

2. A TIME DEFORMATION APPROACH TO STOCHASTIC VOLATILITY

In this section, we present the basic model. It will be useful to first provide a
short discussion on time deformation, following closely the work of Stock (1988).
“Fhen we will move 1o stochastic volatility models with deformation of time.

Let us consider a continuous time process £&(s) evolving in an operational time
which we shall denote by s. The time deformation model relates the latent process &(s)
1o the observable process Y‘, appearing in calendar time t as follows :

@.n Y, = &) t=1,..,T

where Y‘ is a discrele n-dimensional variable. The mapping s = g(t) determines the
relation between operational time s and calendar time . Obviously, the mapping g(1)
will have 10 satisfy certain regularity conditions, which will be discussed shortly. Stock

considered a stable linear ™ order stochastic differential equation

Q2 D EE) = [AID'_lé(s) +.+A_DE+A E(s) + X(s; B)lds + dn(s)

where D is the mean-square differential operator, A, n X n real matrices fori=1, .., T
and X{s; P is an exogenous variable process, depending on a parameler vector B. The
innovation process 1)(s) is Gaussian with zero-mean increments and covariance matrix
E[dn(s) dn(s)] = Ids for s = s and 0 otherwise. For the purpose of presentation, we
will adopt Stock's linear process specification, while the discussion will be extended to
a larger class of processes later in the section. To describe an investor's information,

let us consider the probability space (Q, F,P) and the nondecreasing  family

- b
F={ .9}} t=0

m~dimensional vector process adapted to the filtration I, ie., Zl is ‘9‘~meusumblu

of sub-o-algebras in calendar time. Furthermore, let Z‘ be a

The increments of the time deformation mapping g will be assumed to be F |

measurable via the logistic transformation :



A NNt

dg(t;?‘hl) : [T .
)] i =er Z'_‘)Eexp(czt_l)/ TLt:lcxp(cZ‘M')

fort - 1<t Equation (2.3), setting the speed of change of operational time as a
measurable function of calendar time process Z!AI, is complemented with additional
identification assumptions :

240 0<pr 7)<

(2.4b)  pO) =0
T
@40 13l Apw =1,

These three technical conditions, which will not be discussed at length here as they are
covered in detail in Stock (1988), guarantee that the operational time clock progresses
in the same direction as calendar time without stops or jumps.3 Given that g is
constant between successive calendar time observations via (2.3), its discrete time
analogue Ag(t) = g() - 8(t - 1) takes the same logistic form appearing in (2.3).

The first-order autoregressive case, i.e., setting r = 1 in (2.2) will be of particular
value to us and therefore further developed here. The solution in operational time of a
first-order linear process can be expressed as :4

- 8
25 &) =M goy o S M e
.

where 5" < s. To recover the solution in calendar time, we lot § = gWands' =gt - )
and take advantage of equation (2.1), yielding :

Jjumps in the stock return process, as proposed by Merton (1976a, b). The time deformation will
govern the (stochastic) volatility of the return process.  Arbitrarily farge (yet finite) changes in
operational time will make the stock return process extremely volatile through the conditional
variance.

4 For notational convenience, we shall drop the index to the matrix A [+ Since we will exclusively
treat the first-order AR case in the remainder of the section,



; o AM _ oy
(262) Y =¢ Y tY t=1,..,71

@ob) v~ N, -X(1 - e YY)

. 15T
@6c)  Ag =expcZ_) /5L, expZ, D}

Hence, the process £(s) while linear in operational time becomes a doubly stochastic
process in calendar time also featuring conditional heteroskedasticity govemned by
Ag(n).3

The brief digression on time deformation facilitates the presentation of the process
of main interest, which is a SV model with time deformation. Lel y(l) be any price
process which, as most often assumed, follows a geometric Brownian motion :

2.7) dy() = py(tdi + o(g) y(t) dw(y)

where w(t) is a Wiener process. As noted in the introduction, we assume thal
instantaneous volatility of the process, ie., 6(-), does not evolve in calendar time, but
instead has its evolution determined by g(1). The technical restrictions on the mapping
g(-) make this a legitimate process.6  For the moment, we will assume that the
instantaneous volatility process obeys !

28  dlogos)? = Allogats)’] ds + d1(s) »

i.e., follows a first-order autoregression in operational time 5. Equation (2.8) will be
replaced later on by an Omstein-Uhlenbeck process. The logarithmic transformation
allows us to deal with the nonnegativity of the volatility process. Eguations @10
and (2.8) together with the time deformation mapping g(t) = s form the basic

S Doubly stochastic processes have been discussed in detail by ljgstheim (1986).  Stability
conditions and existence of moments have been studied for cases where Ag() is Markovian.
It may be worth noting at this point that the Zt—l process need not bt EXOgenous. lndeed,

Stock (1988) showed that by sctting Zl'l = Y%_l, one obtains an ARCH - like process having

the additional feature of a random cocfficient model. We will not be concerned with ARCH
processes, but instead apply the deformation to the volatlity, as noted in the introduction.

A formal discussion of the stochastic process theory with time deformation or focal time appears,
for wstance, in Jacod and Shiryayev (1987).



SV model.  Supposc now that (y(} represents a discrete time sample of the process
in (2.7).7 A standard Euler approximation to (2.7) yiclds :

29 log y =4 +log Y1+ 9§ € ~iid N@, 1),

Following Harvey, Ruiz, and Shephard (1992), we can rewrite (2.9) as :

(210 logllog y, - log Yeor - K]z = ht + log 63

where hl = log o,lZ E log C% = -1.27 and Var log 6? = . Since log 0% = log O(g(l))z,
we use the discrete time approximation to (2.8) appearing in (2.6), yielding the
complete representation of our model -

@11a) logllogy, - logy,_, - A= -127+ b+ ¢

_ Mgt
(2.11b) h(-c h'“lirvl

where C( = log ef + 1.27 and A satisfies (2.6.2). Apart from the parameter A, whose
treatment is discussed, for instance, by Gouriéroux, Monfort and Renault (1992), we
obtain a state-space model with time -varying coefficients similar 1o that obtained by
Stock (1988), except for the properties of the C( process which is no longer Gaussian.8
Consequently, the estimation procedure based on the Kalman filter will result here in a
quasi-maximum likelihood cstimator, similar to Harvey, Ruiz and Shephard (1992).
For convenience of the exposition, we took an AR(1) model in continuous time,
ie,r=1,in (22). The Kalman filter procedure can handle higher order cases by
stacking the equation as a r-dimensional VAR(1).

Obviously, the SV model with time deformation can be viewed simply as a model
with a doubly stochastic process for ht, replacing the wusual linear or
Ornstein-Uhlenbeck processes. Yet, the stochastic. variation in the autoregressive
cocfficient has a very specific interpretation through the specification of the mapping
&(1). Let us therefore tum our altention now to a description of the functional form that

7 We use lower case Y, instead of upper case in order to distinguish scalars from vectors.

8 The innovations V‘ and Ct are assumed iid.  Comelation between the two processes would

create asymmeltrics in the conditional variance {see Harvey and Shephard (1993)]. We do not
nced to assume such a correlation, since the asymmetry will come through the time defonmation
(as will be discussed later in the text).



will be adopted here. The work by Tauchen and Piits (1983) and Gallant, Rossi and
Tauchen (1992) suggests that Z‘~l should include both past volume and price
movements. With respect o price movements, we will adopt a functional form which
can allow for asymmetries in the time deformation when prices move upward or
downward. Such asymmetry allows us to investigate so~called leverage effects in the
conditional variance [cfr. Black (1976) and Christie (1982)]. Several recent empirical
studies, including Gallant, Rossi and Tauchen (1992), Nelson (1989, 1991), and Pagan
and Schwert (1990) indecd suggest asymmetries in the condilional variance function.
Finally, we also include a set of predetermined processes o account for nontrading day
effects and possibly other periodic patterns discussed, for instance, by Baillie,
Bollerslev and Ghysels (1993) (see section 5 for further discussion). This resulls in the
following specification of the logistic function 9

(2.12)  expc’ Z‘_l) = cxp(c(‘j dl re v te, Alogy ,+¢y FAlog y(-l') .

The specification of the time deformation function is chosen in light of certain existing
stylized facts we would like the model to fit. Other specifications can be chosen,
however. The general model we develop holds for any process ZH, which is assumed
to capture the flow of information. The specification in (2.12) is just one of possibly
many, yet is directly related to the existing literature on conditional variance models.
Further research may find other scries appropriate as well.

It might be useful to describe the stochastic behavior of the process obtained so
far. Referring to some of the empirical results, discussed later, we must first observe
that coefficient A in (2.11b) is found to be negative. Therefore, when ¢ > 0, the
model predicts that increases in volume make Ag() increase. This acceleration in

operational time resulls in a decline in a =exp AAg(1) and an increasc in an defined
in (2.6b). These two effects imply that the hl process becomes more erratic since ils
persistence declines and it is subject to larger shocks. Thus, trading volume increases

are paired with volatilily increases, an empirical fact documented via SNP fitting by

Note first that the timing of d( differs from the other processes. Since the variables entering dl
are predetermined, they are measurable with respect to 9’!_ . and therefore legitimate for
seting the pace of operational time changes Ap(t). Moreover, it should be observed that € d isa
vector of paramclers, since dl may be multivariate, as will be discussed in further detail in
section 5. The volume serics | has not yet been explicitly specitied.  Gatlant, Rosst and

Tauchen (1992) report a strong upward trend i volume  lo accommuodate this, we will adopt
the approach of Gallant, Rossi and Tauchen who detrend the original data with 2 quadratic rend.
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Gallant, Rossi and Tauchen. If we find €p < 0 combined with ¢y > 0, while lcll > lcpl
o ensure Ag(t) > 0, then a change in piice of the same magnitude but of the opposite
sign will result in Ap(t) to be smaller with upward price movements and larger with
falling prices. Consequently, declining stock prices have an effect of making the

volatility process more erratic (ie., a, declines and 0‘34 increases), while a positive price

move of the same size has an opposite effect : namely, a, increases and 034 decreases.

So far, we studied a continuous time first-order AR(1l) model.  Since time
deformation makes this process nonlinear in calendar time, there is a certain degree of
arbitrariness in choosing the structure process &(s). Yet, when no time deformation is
present, we may want 1o mimic standard processes considered in the literature. We
therefore extend our analysis in this section to the standard Ornstein - Uhlenbeck
(henceforth O-U) process  often  considered in  stochastic volatility  models.
Nelson (1990) shows that the EGARCH model approximates in discrete time a
diffusion model of the type :

(2.13a) dilogy(t)] = h(g(0)) dt + YD)y dwl(l)

(2.13b)  d (s) = aff - h(s)] ds

where w, and W, are two standard independent Wiener processes. Obviously, when
equation (2.13b) cvolves in calendar time instead of operational time, we recover the
standard formulation considered by Nelson and others. We now let the stochastic
volatility evolve in the operational time clock s = g() and solve equation (2.13b) for
s > §', yielding :

” S
214)  hs) =1 - ¢ %) gy pene S [ et dw, (1) .
.

Lets=g() and s' = g(t - 1). We then obtain the following discrete time calendar time
representation :

215 b =[1 - M8O) gy ARO b, +v,

where (-) has been replaced by A to facilitate comparison, while

gty -
(2.16a) v = f MEW-9) dw,(s) .
g(t-1)



From (2.16a), it follows that :
@.16b) v, ~ N(O, -X(I - R U YPINY

Note that equation (2.15) differs from (2.6a), since we introduced an intercept term
which has a time-varying pattern. With A < 0, as noted before, we find from (2.15)
that Ag(t) > O results in a Jarger intercept. Hence, increascs in volume, for instance,
will result in an overall increase in volatility through this additional level effect.

We can modify the specification in (2.15) so that it better fits the Kalman filter

that will be used for estimation. Namely, let El-z h‘ - B Then from (2.15) we have
that

_ -AAg(D)
.17 El =e EH +V,

so that we recover the AR(1) case, except that h( is replaced by ﬁ‘. Accordingly,
equation (2.11a) is modified and thus becomes

(2.18)  logllog y, - logy, | - AP=-12714 BB+ &

Hence, the difference between the AR(1) and O-U processes is the presence of an
intercept in the measurement equation of the lime-varying slate-space model.

3. ECONOMETRIC ANALYSIS

Estimating SV models is a challenging task for economeltricians since the direct
computation of the likelihood function is quite complex. Several approaches have been
suggested recently to circumvent the difficult task of wusing standard maximum
likelihood theory. We shall adopt one of the recently developed methods, namely a
quasi-maximum likelihood procedure based on the state-space representation of the
SV model proposed by Harvey, Ruiz and Shephard (1992). We combine their method
with the Kalman filter algorithm proposed by Stock (1988) to estimate continuous time
processes with time deformation. As our approach is based on a quasi-maximum
likelihood procedure, there is room for improvement regarding asymptotic efficiency.
Other estimation methods for SV models, such as those propused by Gallant and
Tauchen (1992) and Gouri¢roux, Monfort and Renault (1992), which arc based on a
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simulated  method - of - moment approach and the Bayesian inference procedure
developed by Jacquier, Polson and Rossi (1993), arc all computationally more involved.
While one can obviously get efficiency gains from using any such methods, we have
decided to leave this for further rescarch and have settled for the computationally fairly
straightforward Kalman filtering algorithm which we will discuss in the remainder of
this section. We devote a first subsection o the transition cquation of the state-spacc
model. A second subsection deals with the measurement equation.

3.1 Transition cquation

In operational time s, the r™-order linear differential equation ‘representing a
n~dimentional O-U process can be written in a stacked form as :

G.LD) dy*(s) = AIRf - w*(s)] ds + Rd(s) ,

where
E(s) , 0
DE(s) ( :
YyH(s) = . R=10,A=]" 1
: : 0
r-1 I
D' &) A Ay - A

The vector y*(s) is of dimension nr x | and the matrix R is nrx n. The matrix of
coefficients A is of dimention nr x ar, it's elements being n x n, while the mean vector
Bisnx 1. Wc denote the mean-square differential operator by D. The innovation
process 1)(s) is Gaussian with zero-mean increments and covariance matrix
E[dn(s) dn(s)] = L ds for s=¢ and 0 otherwise. The real parts of the roots of
matrix A are required to be negative for stability. We will also assume that they are

distinct in order to adopt a wseful eigenvalue decomposition A = GAG™! , where A is a
diagonal matrix of cigenvalucs of A, which are, in general, complex numbers, while G

is a matrix of eigenvectors of A. Following Stock (1988), we set y(s) = G—!w*(s) and
observe that in operational time the transformed variable satisfies the following
equation :



12

(12w =11 - P GTIRB+ M s
5 AG-D -1
vf e G Rdn(n,
=3

where s >§. Let the calendar time state vector be h(t) = y(g(1)). Evaluating the
previous equation at s = g(7) and ' = g(1 - 1), we find that h(1) satisfics

(3.13) b=l - MED D) GoIRpg , (AED Ry )
MEO 0 G Ran@) .

Developing the first term on the r.h.s of (3.1.3), we obtain

G.14) h(n)=G 'Rp - N D GIRg

4 A8 p fg(r)
r=g(t-1)

A0 G IRan(
and hence,

(.15 b - G 'RE=ACOEED (g -1y - 7R

g(n )
eA(g(t) 0G lRdn(r).

+J

r=g(t-1)
Now, set li(7) = h(7) - G 'RP. Itis easy to note that equation (3.1.5) can be writlen as

g(n

3.1.6) K =MD BV Ry MDD G lRan) .

r=g(1-1

Equation (3.1.6) evalualed at T=1 yields the final representation of the tlransition
equation :



3.1.7) ﬁ' =T, H,,, v,

g(7) o
where 'l" = exp(A Ag(y) and v‘ = f explAg(y) - D1 G "Rdn(r).
1)

r=p{{-

3.2 Measurement cquation
The multivariate analogue of equation (2.1 Ib) can be writien as -

32.n Yz =-1.271 + Gh‘ + Cl .
or in terms of the state vector ﬁ( as :
(32.2) 'Y( =-1271 + Gy + RB + -

where Y, and C‘ are nx1 vectors with clements ¥, = loglA log Yi —A]2.

§“ = log €i2: +127i=1, . nandsisanx | vector of ones.

Treating the system cquations consisting of (3.1.7) and (3.2.1) as a Gaussian state
space with uncorrelated disturbance terms allows us to obtain QML estimators by
means of the Kalman filter,

According to Stock ( 1988), the initial conditions for a Kalman filter algorithm can
be obtained, taking unconditional expectations, assuming that prior to the sample
Ag(y = 1. Adopting the usual notation, we find the one-step ahead forecast of the
state, a1, = 0 and its covariance matrix, Plk) = Z?___O i Q T‘j, where T and Q denote Tt
and Qt= E(v( T';) evaluated at Ag(t) = 1. The matrix Ql will be computed in the
following  way : the G-j) element of Q‘ is known (o be equal to

Ag(v I )

9 j; 0 expl(A, + NAg(0) - Dldr = gl - T“Tﬁ) 1@ +Ij), where g; is the

(i - j) element of the matrix G 'R} RG™ "

Maximizing the quasi-log - likelihood LT yields a vector-of ~parameters estimate,
which is consistent and asymptotically normal. The asymptotic covariance matrix
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obviousty differs from that of the maximum likelihood and cquals J(;llof‘

0
. . 1 321,,!.(90) o1
|Gouriéroux and Monfort (1989)], where Jo = '}‘::3 T J6 Jo and 10 = 'i‘::? T

dL..(8,)
ol . _
VO(T) with o, being the true value of the parameier vector. All computations

were performed with GAUSS version 3.1 on a PC 486-25.
4. EMPIRICAL RESULTS

In this scction, we turn our attention 1o an empirical study of SV models subject to
time deformation. The data used consist of the daily closing vatue of the S&P
composile stock index and the daily volume of shares traded on the NYSE. The data
set is identical to that used by Gallant, Rossi and Tauchen (1992), who describe its
sources in detail. The data are plotied in Figure 4.1 which consists of two parts :
namely, 4.1a displays the price series, while 4.1b contains volume. Both series were
adjusted for seasonal and wrend factors, as described in Gallant, Rossi and Tauchen.
The empirical section is based exclusively on the adjusted series appearing in
Figure 4.1. In the next section, where extension of SV models with time deformation
will be discussed, we will propose models suitable for unadjusted data, ie., models
explicitly taking into account nontrading day effects, trends, elc.

{Insert Figure 4.1 here}

Two types of continuous time models were introduced in section 2, namely the
AR(1) and the Ornstein-Uhlenbeck process. The parameter estimates of the former
appear in Table 4.1, while the second volatility process specification is covered in
Table 4.2. A total of six models were estimated in each case, with the sixth being a SV
model without time deformation, ie., imposing cp=c,=¢ =0. The other five
specifications involve time deformation, yet with different functional forms. The most
general specification is the unconstrained model with Ag(t) as a function of past
volume and prices with a leverage effect. The second model only involves volume, the
third only prices with leverage effect, the fourth prices and volume without leverage
and, finally, the fifth model has Ag(t) determined by past price changes. A total of
seven coefficients in the AR(1) and eight in the O-U case were estimated.  The
parameter A was estimated as 2 sample average of Alogy‘ following the suggestion of
Gouriéroux, Monfort and Renault (1992). Moreover, as there appears to be some minor
autocorrelation left in Alogy , we first fitted first-order autoregressive mudels o Alogy,
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and replaced Alogy' by the residuals 1o estimate the SV models. The autoregressive
cocfficients appear as 2, in both tables.

The empirical results in Tables 4.1 and 4.2 support the view that at least some
form of time deformation is present. Indeed, if we rely on simple Wald tests, we
observe that in most instances, but not all, as will be discussed shortly, the coefficients
of the Ag(t) function appear to be significant. It is important 1o recall at this stage that
the standard errorsg appearing in both tables are in fact based on an incfficient
estimation procedure. Hence, the already strong evidence for the presence of time
deformation would only be enforced if a more efficient estimator were used. There are
some cxceptions though, ie., cases where there appears not to he any statistically
significant time deformation, The most striking casc is the unconstrained model
appearing in both tables involving all three coefficients €, €p and Cp Somehow, there
appears to be some sort of overfit yielding imprecise cstimates in the sense that the
constrained models often yield parameter estimates quite similar 10 unconstrained
models, but in most cases, the constrained model yields a significant coefficient while
the full model doesn't. In terms of the actual path of Ag(t), it turns out that the results
are quite often similar, regardless of the functional specification for time deformation.
This will be discussed in more details later.

The parameter values ali appear to agree with the stochastic process behavior
described in Section 2. In particular, we find that A is negative and always
significantly different from zero, Parameters A and a, are also significant. Past volume
has a positive impact on Ag(t) since €, > 0. This implies, as noted in section 2, that the
marginal effect of increases in trading volume is a volatility process that is less
persistent (in calendar time) as the random AR(1) coefficient decreases, while the
innovation variance increases, The leverage coefficient is also positive, while past
price change always enter with a negative coefficient in the Ag(t) specification.
However, since ’Cll > lcp[ with > 0 and ¢, < 0 it follows that whenever A logp, ,
is negative, we find a greater positive effect of past prices on Ag(t) than when
Alog Py is positive. Hence, bull markets tend to make volatility more persistent,
while bear markets are associated with more erratic behavior of volatility. Of course,
both effects are marginal, as one must also take into account the influence of trading
volume when it appears in Ag(t). Parameter B. appearing only in Table 4.2, since it is
specific to the O-U model, yields mixed results because it is significant in four out of
six specifications. This would mean that we should have g preference for the O-U
specification if one were to choose between the two models. It is interesting to note
though that the time deformation process is not very different across the two tables.
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We complement the Wald tests in Tables 4.1 and 4.2 with LR-type tests and also
investigate joint hypotheses. Tests regarding the time -deformation hypothesis appear
in Table 4.3. The results indicate that when Ag(t) is determined by either one of the
individual serics, volume or prices the Wald and LR iests are not in agreement and
there is also a difference depending on the process specification. However, prices
combined with either a leverage effect or trading volume yield robust and strong resulis
supporting significant lime deformation. Finally, the three series combined again yield
mixed results with the joint LR test favoring time deformation, though none of the
coefficients are individually significant for the AR(1) model. In Table 4.4, we turn our
attention to a number of LR tests regarding the functional specifications of time
deformation. We test whether Ag(t) is determined by (1) volume only against the
alternative of volume and prices with leverage, (2) prices with leverage only against the
same alternative and (3) prices only without leverage and volume once again against all
{hree series. In cach case, the restricted model is rejected. We also test whether
leverage should be introduced once prices and volume determine time deformation and
found mixed results. For the AR(1) model, there is a significant leverage effect, while
the O-U process appears to have a very flat likelihood surface, making the marginal
contribution of leverage to Ag() negligible.

We turn our atiention now to the sample path of the time deformation process
Ag(1) for a number of specifications. As we could not plot all possible combinations,
since it would be quite repetitive, we selected a few represcntative cases. We first
examine the path of time deformation for the AR(1) model with two alternative
specifications of Ag(t) : one involving prices and volume, the other adding leverage
effects. Four plots appear in Figure 4.2. Each Ag(t) specification yields a pair of plots,
one for Ag(t), the other for the innovation variance which also depends on Ag(v).
Figures 4.2a and 4.2b display the pattems of time deformation, both involving prices
and volume with leverage effects included in the latter. They appear to be quite
similar, though Ag() with leverage seems 1o be slightly less erratic. One key feature
emerging from both figures, as well as the adjacent plots conlaining the innovation
variance to the volatility process, is the infrequent appearance of sharp peaks in
operational time acceleration. "Since A is found to be negative, this means that the
conditional variance function becomes locally extremely erratic, unatiached to the
previous period and subject to a large variance innovation shock. As noted in the
introduction, this finding complements a competing specification of laws of motion via
diffusion processes involving jumps. Such processes, proposed by Merton (1967a,b)
were built on the premise that one would occasionally observe abnormal information
leading to the incidence of a jump in assct prices.  Through the time deformation



specification, onc can view such information arrival as extremely rapid acceleration of
market time through the increased trading and pricc movement per unit of calendar
time.  The advantage of SV models with time deformation over Jjump-diffusion
processes is that the former might be relatively casier (o estimate, at least if one is
satisfied with the asymptotically incfficient QMLE algorithm. Indeed, the ML
estimation of Jump-diffusion processes can be quite involved Isce, for instance,
Lo (1988) for details].

[Insert Figure 2 here]

We tum our attention now (o the volatility process itself, i.c. the ht process as
extracted via the Kalman filter procedure. A first caveat 1o note is that the filtering
algorithm we use, like the eslimation procedure, is only an approximation of the true
latent  volatility process. Indeed, the Kalman filtering algorithm ignores all
non-Gaussian features of the DGP, as noted in section 3. Jacquier, Polson and
Rossi (1992) proposed a procedure that yields an exact extraction algorithm for the
volatility process as a by -product of their Bayesian inference procedure for SV models.
Their algorithm is numerically quite more involved in comparison fo that described in
section 3 and is probably not so easy to modify so that a time deformation SV model
can be handled [see Ghysels and Jasiak (1993) for further discussion]. Figure 4.3a
displays the approximate filter extraction of the volatility process h‘. The figure
consists of two parts, namely, 4.3a displays stochastic volatility as extracted under the
assumption of no time deformation. Hence, Figure 4.3a corresponds to a volatility
process that one would obtain from the approach proposed by Nelson (1988) and
Harvey, Ruiz and Shephard (1992). Figure 4.3b plots hl extracted from a model with
time deformation. In sharp contrast to the standard SV specification, we uncover a
very smooth volatility process. This may not be as surprising, given the plots in
Figure 4.2 where Ag(t) and the innovation variance appeared. Indeed, most of the
erratic behavior of h: obtained through a specification without time deformation is
absorbed through the doubly stochastic random coefficient stochastic volatility
specification. Once time deformation is taken into account, it appears that the
underlying volatility process evolves smoothly in operational time. This yields an
alternative interpretation. Indeed, the smooth evolution of h( in operational time
implies that the process is easier to predict over long horizons. This smooth and
predictable component appears (0 be separated from the more erratic behavior of
market time through Ag(1). This separation into two components is interesting as it
decomposes a volatility process that is itself latent.

[Insert Figure 4.3 here]
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5. EXTENSIONS OF THE BASIC MODEL

Having introduced the basic model, let us now propose several extensions. The
first one will explore the possibility of periodic structures in stochastic volatility and
volume. This extension is closely related to the periodic GARCH structures studied by
Baillie, Bollerslev and Ghysels (1993) and also sheds light on the seasonal adjustments
often performed on conditional variance models. The second one will entail a joint
model for volatility and volume. Such joint modeling of both series is directly related
1o the rescarch by Gailant, Rossi and Tauchen (1992).  They proposed a
seminonparametric, ie., SNP as dubbed by Gallant and Tauchen (1989), modeling
strategy for the joint price -volume process. Our approach will consist of a multivariate
state space model with lime deformation. Each of thesc two extensions will be
discussed in separate subsections.

5.1 Periodicity and time deformation

Price movements and volume of trade exhibit strong seasonal patterns. Some of
these movements, like the so-called January effect, have been widely documented and
belong 1o the large body of literature on stock market anomalies [see, €.8.,
Dimson (1988)]. Most often, one estimates seasonal dummy coefficients for variation
in the mean and in the variance. Such seasonal mean shifts are then removed and the
seasonally adjusted” series are used for furiher analysis involving fiiting a conditional
variance function. This strategy, adopted, for instance, by Gallant, Rossi and Tauchen
(1992) and many others, has many of the pitfalls encountered in dealing with
seasonality in econometric models {see, for instance, Ghysels (1990) for a survey]. An
alternative sometimes considered consists of fitting a conditional variance model with
seasonal lags. A recent example of such a model specification strategy can be found in
Bollerslev and Hodrick (1992) in their study of the behavior of monthly real dividend
series on the NYSE. They fitted a seasonal lag in the mean as well as a seasonal lag in
the ARCH specification to model the series. We propose a different sirategy which,
though it will take advantage of the time deformation specification, has links with a
body of literature dealing with periodic models.

The arrival of information on the stock markel is reasonably well structured
throughout the year. Obviously, there is the closure of the market producing the
nontrading day effect already alluded to, but there is more structure beyond this effect.
At the aggregale level, maay government statistics are released with a specific
calendar. Quarterly GNP and monthly inflation, uncmployment, industrial production,
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capacity utilization, inventories, housing starts and car sales releases are among the
most widely publicized data. Also, the weekly money supply announcements and the
Wednesday T-Bill auctions are closely watched. Most firms also have a fixed calendar
of publishing their annual report and deciding on dividends. These are some examples
explaining the seasonality found in both volume and volatility [see, for instance,
Tables 1 and 2 in Gallant, Rossi, and Tauchen (1992) for empirical evidence].10

The presence of a periodic structure, even after the adjustments are made yielding
the series plotted in Figure 4.1, can be investigated quite easily in the context of the
results produced in the previous section. Tables 5.1 and 5.2 summarize the average
Ag(1) per month and per day of the week over the entire sample, as identified with the
five different functional forms for the lime-deformation process in Table 4.2. The two
tables differ with respect to the sample size involved. Indeed, the second table
cxcludes the year 1987 of the October crash.1! [t affects significantly the Monday and
October Ag(1) average for most specifications, except for the second column which
carresponds o a Ag(t) involving trading volume only.

If we judge these statistics via simple pairwise comparisons with a two-standard
error rule, we certainly find significant Monday and Friday effects. Moreover, the
months of January and May-June seem above while November-December often below
what most other months yield.

A SV model with deformation can accommodate this structure through the dt
variable in the specification of Ag(t) appearing in (2.12). Since each month and each
day of the week may have their own thythm in information arrival, we propose to

specify a mean-shift function setting the pace of A g(1). In particular, let c& dl be equal

to:

12 m 5 ¥

voq D
5.1.1) det“cdnu+zs=lcdsas¢+23:l dja

J§

e

10 Volume of transactions also has a particular patlern due to the regular expirations of stock
derivative contracts.  Some of the most active trading days on the NYSE are related 1o the
so-calied wriple - witching expirations of stock ~index options, and futures and options on
individual stocks, which typically lead i increased trading as money managers execute
computer -driven arbitrage transactions.

The Ag(t) process was not recstimated, however, only the sample size was modified. Hence, the
Ag(t) in Table 5.2 no longer averages 1o 1 over the shorter sample.
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nontrading day and zero otherwise, o = 1 if t=smod 12 and vero otherwise and,

¢V, n = | if the previous day was a
d5 t
finally, oy = 1, the j-th day of the week and zero otherwise.

It is inleresting to observe that the mean-shift function in (5.1.1) establishes a
relationship with the periodic GARCH processes studied by Baillie, Bollersiev, and
Ghysels (1993). Indeed, suppose for the moment that time deformation only depends
on the function specified in (5.1.1), ie., we set ¢, =c = ¢y = 0 in (2.12). Then the
random coefficient model  for ht appearing in (2.11.2) becomes a periodic

autorcgressive modcel of order one, i.c.,
L h = l +V
(5.1.2) ll ap LA \

where o = exp A(c“’ d‘) is specified in (5.1.1) and hence purely deterministic.  Since
GARCH processes can be viewed as discrete time approximations to diffusion
processes, it is not surprising to find an implicit link with the specification of time
deformation having periodic features and periodic GARCH processes. Obviously, the
specification in (5.1.2) is not exactly a periodic GARCH, as it is still a SV model with
an innovation process C!. In addition, it should also be noted that the process v,
exhibits periodic features as a result of (2.6.2). Gallant, Rossi and Tauchen (1992)
removed seasonal effects in volatility and volume through regression-based methods
prior to their SNP model fitting. It is interesting to note that Baillie, Bollerslev and
Ghysels (1993) also found that evidence of periodicity could still be uncovered in the
adjusted volatility and volume data used by Gallant, Rossi and Tauchen ( 1992), like
Tables 5.1 and 5.2 scem to indicate.

Modeling scasonal effects directly and explicitly into the model specification is
generally preferred, though there are many unresolved questions regarding the
economelric practice of scasonal adjustment versus the use of unadjusted series
[see, e.g., Ghysels (1990) for a survey]. The fact that we use periodic structures has an
advantage over, say, seasonal lag specifications.  Tiao and Grupe (1980), who
established the relationship between time-invariant linear models involving seasonal
lags and periodic ARMA models, showed the loss of information and prediction
accuracy involved in the transition from the latter to the former. Indeed, the periodic
models involve sigma algebra where events are conditioned on the scason they occur
since autocorrelations are season-dependent, while lincar seasonal processes involve
seasonal conditioning of events {sce also Hansen and Sargent (1990, Chapter 10) for
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further details]. This analysis has been extended by Baillie, Bollerslev, and Ghysels
(1993) 1o periodicity in conditional heteroskedasticity, showing the link between
periodic ARCH and scasonal ARCH models and the loss of information and
misspecification involved in going from the former to the latter. By analogy, we
should find the period specification appearing in the time deformation model 1o
outperform the other nonperiodic but seasonal or nonseasonal specifications involving
adjusted data.

Of course, the arrival of information on the stock market is determined by factors
other than the purely periodic pattems. Therefore, the d‘ is not the only component
appearing in Ag(l). The fact that volume has a (linear) periodic structure is also a
contributing factor, yet it also adds to the dimension of information arrival due o
informed traders and noise traders in the market. Further research along these lines is
certainly necessary.

5.2 A multivariate model of price volatility and volume with time deformation

As Harvey, Ruiz, and Shephard (1992), and Harvey and Shephard (1993)
observed, it is relatively easy to extend the state Space representation of stochastic
volatility models 1o a multivariate context. This straightforwardly applies 1o the price
process y, governed by equation (2.11), since the Kalman filter procedure developed by
Stock also applies to a vector process.!2 Such extensions, while certainly not without
interest, will not be further explored here. Instead, we will exploit the possibility of
multivariate modeling to propose a structure accommodating both price volatility and
volume subject 1o time deformation. Volume series show a strong upward trend, and a
first-differenced series or alternatively a detrended series as in Gallant, Rossi and
Tauchen (1992) has been proposed to accommodate the nonstationarity. Here, we will
use a generic process denoted v, which is assumed stationary. For the purpose of
presentation, we will again focus on the AR(l) case. Higher order stochastic
differcntial cquations, either for o(g(1)) or v(g()) can be accommodated for by the
usual stacking argument. Following equations (2.5) and (2.6}, we obtain :

logflog y, - log Yoor - 2.]2 10 h, -1.27 C(
= + +

v, 0 1 v, 0 0

(5.2.1)

B

12 1t should be noted that ail asset prices are subject to the same time deformation. This obviously

constraints the volume effect somewlht, since the trading volume of each asset separately cannot
be taken easily into nccount.
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hy b Vit
(5.2.2) = exp(A Ag{) +
v v v,

t t-1 2t
where A in (5.2.2) now represents a 2 X 2 matrix of coefficients. The system of
cquations in (5.2.1) and (5.2.2) is intrinsically nonlinear, through the time deformation
specification, and can therefore be put to use for the same purpose as the SNP approach
1o the joint process proposed by Gallant, Rossi, and Tauchen (1992). Several
expansions can be made, notably by adding more lags, as noted earlicr, and adopting a
more claborate specification for Ag(l) than the one appearing in (2.12).

The bivariate system (5.2.1 and 5.1.2) is of interest for at least two reasons. First,
a SV model with time deformation involving volume serics requires  predictions
regarding trading volume if, for instance, an option-pricing model with SV of the type
Hull and White (1987) is considered. The bivariate system clearly provides a formal
representation of the joint process which can be used to predict volume (and prices) in
an option-pricing model. The second use of the bivariate system is for the purpose of
impulse response function analysis in the context of SV modcls. Since with time
deformation such models are nonlinear, one faces issues similar to those studied by, for
instance, Galtant, Rossi and Tauchen (1993) and Potter (1991).

6. CONCLUSIONS

In the paper, we introduced SV models with volatility evolving in an operational
time, determined by the arrival of information on the market. As proxy for the
information Mow, we used trading volume and past prices, though other serics could be
used as well. Significant time deformation was found yielding a volatility process
evolving smoothly in operational time, yet the changes in operational time, per unit of
calendar time, were found to be very erratic with sporadic large increases associated
with extreme market time accelerations.

The notion of time deformation to model volatility still needs further research. In
particular, in section 5, links between time deformation and periodicity in market
activity were discussed. Moreover, pricing of derivative assets like options with SV
subject to time deformation requires more résearch as well, particularly via multivariate
modeling of volume and prices, as discussed in section 5.
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Table 4.1

Sample : 1950-1987 - Continuous Time AR(1)

Determined by Past Trading Volume
verage Effects

6)] ) 3)
Est SE P Est SE P Est SE P
<, LOIO 0623 o010 g979 0.701  0.16 ~
(:p -0.167 0.096 0.08 - -0.156  0.098 0.10
¢y 0256 0136 0.06 - 0354 0115 000
b3 0.014 0005 0.00 0.012 0.004 0.00 0012 0003 000
A -0.012 0004 0.00 -0.012 0003 000 -0.01 0003 0.00
i 0028 0011 00 0.028 0011 001 0.028 0011 001
a 0.177 0010 0.00 0.177 0010 0.00 0.177 0010 0.00
4) () 6)
Est SE P Est SE P Est SE P
<, 1256 0576 0.03 - -
cp -0374 0077 000 -0s5 10 0.047 0.00 -
] - - -
3 0.014  0.004 0.00 0.015 0.006 0.00 0.012 0003 0.00
A 0012 0003 0.00 -0.013  0.005 000 -001 I 0003 000
A 0.028 0011 001 0.028 0.011 o001 0.028 0011 0.01
a 0177 0010 o000 o, 177 0010 000 0.177  0.010 0.00
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Tablc 4.2
Stochastic Volatility with Time Deformation Determined by Past Trading Volume
and Prices with Leverage Effects

Sample : 19501987 : Ornstein - Uhlenbeck

P ——————

n 2) 3)
Est SE P Est SE p Est SE P

0516 0915 057 1.248 0430 0.00 -

cp 0204 0173 0.23 - ~0.187  0.091 0.04
¢y 0.246 0301 041 - 0333 0112 0.00
1 0.011 0003 001 0.015 0.003 0.00 0.013  0.004 0.00
A -0.010 0004 001 -0015 0.004 000 -0.011 0.003 0.00
p -0216 0.113 005 -0274 0.085 000 -0.101 0075 O i8
A 0.028 0011 001 0028 0011 0.0t 0.028 0011 001
a, 0.177 0010 000 0177 0.010 000 0.177 0.010 0.00
4) &) (6)
Est SE p Est SE P Est SE P

<, 1.321  0.689 0.06 - -

cp -0372 0082 000 -0225 0.083 0.00 -

Ct - - -

1 0015 0005 0.01 0011 0004 000 0013 0003 0.00
A _0.013 0005 001 -0012 0004 0.00 -0.013 0003 0.00
B _0.159 0.117 0.17 -0247 0.098 0.01 -0237 0093 0.00
A 0.028 0011 001 0.028 0011 001 0.028 0011 001
a 0.177 0010 000 0.177 0010 0.00 0.177 0010 0.00
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Table 4.3
Time Deformation Hypothesis Tests (LR)

Series in Ag(t) AR(]) Orasiein -Uhlenbeck
Volume only® 2.794 5.492
Prices only® 10.599 1.445
Prices with leveragcb 6.455 8.961
Prices and volume® 9.635 11.947
Prices with leverage and volume® 15.994 5.299

Note : The Jikelihood ratio Sttistic is asympiotically distributed as XZ with sespectively a = |, b= 2
and ¢ = 3 degrees of freedom,

Table 4.4
Hypotheses Tests of the Time Deformation Function (LR) -
The Continuous Time AR(1) Model
Hypotheses AR(1) Orastein-Uhlenbeck
HO: C#0C =0C, =0
v P 1
13.200 12911
H :C 20 C 20 C »0
A v P 1
Hy: € =0C #0 C, 20
v P 1
9.538 10.502
H :C #0 C 20C 20
A v P I
HO: Cv=0 Cp#() Cl =0
5.396 5.877
H:C#0C 20cC 20
A v P i
H:C #0C #0C =9
0 v p 1
6.359 0.001

H :C20C z20cC. 20
v P i
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Table 5.1
Average Time Deformation Obtaincd from O-U Processes

Sample 1950-1987

e

n 2) 3) 4) (5
January 0.619 1.039 0.527 0.630 0.474
(0.011) (0.019) (0.009) 0017 0.011)
February 0.592 0.999 0.509 0.585 0.459
(0.008) (0.019) 0.007) 0©.014) (0.010)
March 0.588 0.997 0.502 (.583 0.448
(0.009) (0.018) (0.007) (0.015) 0.010)
April 0.590 1.021 0.509 0.586 0.456
(0.008) (0.022) (0.007) 0.015) (0.009)
May 0.690 1.016 0.592 0.709 0.545
(0.081) (0.020) (0.072) 0.103) 0.079)
June 0.654 1.030 0.551 0.684 0.511
(0.026) (0.020) (0.020) (0.037) (0.023)
July 0.610 1.033 0.520 0.628 0.475
0.011) (0.022) (0.008) (0.019) (0.01DH)
August 0.639 1.102 0.534 0.665 0.490
0.011) 0.025) (0.009) 0.019) 0.011)
September 0.613 0.947 0.533 0.627 0.48!
(0.049) (0.020) (0.032) {0.095) (0.035)
October 5.042 0.958 5.930 5.008 6.453
(4.423) (0.022) (5.379) (4.414) (5.959)
November 0.569 0.915 0.509 0.531 0.451
(0.011) (0.018) (0.009) (0.015) .01
December 0.572 0.932 0.516 0.540 0.463
(0.009) (0.019) (0.008) (0.014) 0.011)
Monday 2.669 0.980 3.014 2.676 3.223
(2.007) (0.014) (2.440) (2.003) (2.703)
Tuesday 0.609 1.027 0.523 0.617 0.474
(0.007) (0.015) (0.005) 0.011) (0.007)
Wednesday 0.601 1.001 0.522 0.595 0.472
(0.006) 0.013) (0.006) 0.011) (0.007)
Thursday 0.610 1.001 0.525 0.613 0.475
(0.008) (0.013) (0.007) (0.013) (0.008)
Friday 0.587 0.990 0.509 0.577 0.455
0.007) (0.013) (0.006) 0.011) (0.007)
Note : Cob (1) through (5) ¢ pond to the time-deformation specifications (2) through (5) in

Table 4.2,
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Table 5.2
Average Time Deformation Obtained From O-U Processes

Sample 1950-1986

) (2) 3) 4) (5)
January 0.621 1.042 0.529 0.633 0.477
0.011) 0.019) (0.009) (0.018) 0.012)
February 0.594 1.004 0.511 0.589 0.461
(0.009) (0.020) (0.007) (0.014) (0.010)
March 0.589 1.002 0.503 0.586 0.448
(0.009) (0.018) (0.007) (0.015) (0.010)
April 0.588 1.027 0.507 0.587 0.453
(0.008) (0.023) (0.007) (0.015) (0.009)
May 0.693 1.023 0.593 0716 0.547
(0.083) 0.021) 0.073) (0.106) (0.081)
June 0.659 1.038 0.554 0.693 0.515
(0.026) 0.021) 0.021) (0.038) (0.023)
July 0.613 1.037 0.522 0.632 0.477
0.011) (0.023) (0.009) (0.020) .01
August 0.639 1.100 0.535 0.665 0.491
.01 (0.025) (0.009) (0.020) 0.011)
September 0.617 0.954 0.534 0.634 0.482
(0.050) (0.021) (0.033) (0.098) (0.036)
October 0.590 0.936 0.526 0.562 0.469
(0.012) (0.019) (0.010) 0.017) (0.012)
November 0.568 0.924 0.505 0.533 0.447
0.011 0.018) (0.009) (0.016) 0.011)
December 0.573 0.944 0.511 0.546 0.460
(0.009) (0.020) (0.008) (0.014) (0.010)
Monday 0.659 0.983 0.568 0.673 0.515
(0.043) (0.014) (0.036) (0.064) (0.040)
Tuesday 0.609 1.029 0.521 0.621 0475
(0.007) (0.014) (0.005) 0.011) 0.007)
Wednesday 0.603 1.004 0.522 0.599 0473
(0.006) 0.013) (0.006) 0.011) 0.007)
Thursday 0.609 1012 0.522 0.614 0.474
(0.008) 0.013) 0.007) 0.012) (0.008)
Friday 0.584 0.993 0.506 0.575 0.452

(0.006) (0.013) (0.005) (0.010) (0.007)
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