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Abstract

The belief-weighted Nash social welfare functions are methods for aggregating
Savage preferences defined over a set of acts. Each such method works as follows. Fix
a 0-normalized subjective expected utility representation of every possible preference
and assign a vector of individual weights to each profile of beliefs. To compute
the social preference at a given preference profile, rank the acts according to the
weighted product of the individual 0-normalized subjective expected utilities they
yield, where the weights are those associated with the belief profile generated by
the preference profile. We show that these social welfare functions are characterized
by the weak Pareto principle, a continuity axiom, and the following informational
robustness property: the social ranking of two acts is unaffected by the addition of
any outcome that every individual deems at least as good as the one she originally
found worst. This makes the belief-weighted Nash social welfare functions appealing
in contexts where the best relevant outcome for an individual is diffi cult to identify.
Keywords: preference aggregation, uncertainty, subjective expected utility, Nash
product.
JEL classification numbers: D63, D71.

1. Introduction

1.1. Context and related work

This note reconsiders the problem of aggregating preferences obeying the axioms of Sav-
age’s theory of choice under uncertainty. In that theory, uncertain prospects are modeled
as acts, namely, mappings from states of nature to outcomes, and an individual’s preference
is summarized by her subjective assessment of the likelihood of the possible events and the
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utility she attaches to the conceivable outcomes: she compares acts according to their sub-
jective expected utility. Aggregating such “Savage”preferences is notoriously problematic.
Mongin (1995) shows that any rule which transforms a collection of Savage preferences into
a Savage social preference and respects the Pareto (indifference) criterion —that is, deems
two acts equally good when all individuals do—must be radically uncompromising: at most
profiles, the social preference coincides with the preference of one of the individuals.1 In
reaction to this incompatibility result, one may follow the “Savage approach”—that is,
focus on aggregation rules that violate the Pareto criterion but guarantee a Savage social
preference—or the “Pareto approach”—focus on rules that satisfy the Pareto criterion but
need not yield a Savage social preference.2

The Savage approach is motivated by Mongin’s (1997) criticism of the Pareto crite-
rion. He argues that if two individuals agree on the comparison of two acts only because
the differences between their subjective beliefs compensate the differences between their
utilities, society should not be bound by the “spurious unanimity” of their preferences.
Building on that criticism, Gilboa, Samet and Schmeidler (2004) suggest that the Pareto
criterion should be respected only when the individuals agree on the probabilities of the
events relevant to the uncertain prospects they compare. This weakened Pareto criterion
implies that if society’s preference is Savage, its utility for the outcomes is a weighted sum
of its members’utilities, and its belief a weighted sum of their beliefs. Gilboa, Samuelson
and Schmeidler (2014) study a different weakening of the Pareto criterion.
Relaxing the Pareto criterion makes sense if the individuals’probability measures do

indeed represent their assessments of the likelihood of the events: when such assessments
differ, a least one individual must be mistaken and society should not be compelled to
respect the unanimous preferences of its members because they cannot all be well informed.
In Savage’s theory, however, a subjective probability measure is just an abstract system
of weights. These weights may reflect in part the individual’s assessment of the likelihood
of the events, but they may reflect other subjective considerations as well.3 This point is
made, for instance, by Duffi e (2014). In such contexts, no subjective probability measure
can be wrong, and dropping the Pareto criterion is dangerous. This is the motivation for
the Pareto approach.4

1Hylland and Zeckhauser (1979) establish a similar result in a multi-profile context. Chambers and
Hayashi (2006) show that, at some profiles, Paretian aggregation is impossible even if society’s preference
is only required to satisfy Savage’s P3 or P4 axiom.

2The Savage approach is often called the ex-post approach as it yields ex-post (i.e., conditional) social
preferences satisfying the Pareto principle with respect to the individual ex-post preferences. Likewise,
the Pareto approach is often called the ex-ante approach as it imposes the Pareto principle with respect
to the individual ex-ante preferences.

3A related diffi culty is that a given preference satisfying Savage’s axioms admits, on top of Savage’s rep-
resentation, multiple state-dependent expected utility representations. If utility is indeed state-dependent,
then the probability measure from Savage’s theorem (derived under the wrong assumption that utility is
state-independent) does not correctly reflect the individual’s beliefs. Savage and Aumann (1987) discuss
the example of a man whose wife is gravely ill. He may find the event that she dies very likely, yet attach
a low weight to it —reflecting the fact that he does not enjoy life without her. See Baccelli (2017) for a
comprehensive and recent discussion.

4We have nothing to add to the debate about the Pareto criterion under uncertainty. There is evidence
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Mongin (1997) shows that the Pareto criterion can be respected if society’s preference
is allowed to be of the state-dependent subjective expected utility type. When that is the
case, Chambers and Hayashi (2006) prove that Pareto indifference implies that the social
utility function over the set of acts is a weighted sum of the utility functions of its members.

To the best of our knowledge, and regardless of their relative merits, neither the Sav-
age nor the Pareto approach have so far offered a complete resolution of the problem of
aggregating Savage preferences. Results such as those of Gilboa, Samet and Schmeidler
(2004) and Chambers and Hayashi (2006) do not tell us (i) how the individual utilities
should be calibrated and (ii) how this calibration should depend on the preference profile.5

Therefore, they do not define a social welfare function (or SWF, for short), namely, a map-
ping assigning a social preference to every profile of individual Savage preferences. This
is the criticism that Dhillon and Mertens (1999) already formulated against Harsanyi’s
(1955) theorem on the utilitarian aggregation of von Neumann-Morgenstern preferences
over lotteries: since no restriction is imposed on how utilities are calibrated, “the ‘individ-
ual utility functions’become arbitrarily complex functions of the preferences of all other
individuals, making the sum-formula basically meaningless.”.

1.2. Our contribution

As a partial solution to that problem, we define and axiomatize the class of belief-weighted
Nash SWFs. The simplest example of such a SWF uses fixed equal weights. For each Savage
preference over acts, choose a 0-normalized subjective expected utility representation —one
where the utility of the worst outcome for that preference is zero.6 At any preference
profile, rank the acts according to the product of the individual 0-normalized subjective
expected utilities they yield. There are infinitely many possible 0-normalizations for each
preference but the social ranking does not change with the chosen normalizations because
all 0-normalized utilities associated with a given preference are a positive multiple of each
other and society’s utility is their product.7

More generally, under a belief-weighted Nash SWF, an act is evaluated according to
a weighted product of the individual 0-normalized subjective expected utilities it yields.
The weights depend on the profile of beliefs of the individuals, but not on their utilities

that individuals differ in their assessments of the likelihood of many events, and we agree that the Pareto
criterion is problematic when such differences exist. At the same time, we believe that a satisfactory
weakening of it requires a theoretical model of behavior where the “likelihood assessment”component of
an individual probability measure can be formally disentangled from its “residual”component. A recent
paper that addresses this problem is Mongin and Pivato (2016).

5This remains true even if the weights in these representation theorems have somehow been determined.
6In the formal analysis below, we do not assume that a worst outcome exists. Rather, we suppose that

an individual’s preference is representable by a bounded utility function, and the 0-normalization means
that the infimum of such a function is zero.

7Note that the worst outcome need not be the same for all individuals, and the measure of an individual’s
welfare is relative to the outcome she finds worse. This is in contrast with Nash’s (1950) analysis of the
bargaining problem, where the disagreement utility vector is generated by an outcome that is the same
for all individuals.
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for the outcomes.
Our axiomatization of this class of SWFs falls squarely in the Pareto approach. We

impose the weak Pareto principle but no restriction on the social preference beyond the
condition that it must be an ordering. Of course, there are many Paretian SWFs. In
order to understand what makes the belief-weighted Nash SWFs special, it is instructive
to first take a look at another natural solution: relative utilitarianism. Adapted to the
context of uncertainty, relative utilitarianism compares two acts according to the sums
of the (0, 1)-normalized subjective expected utilities they yield —the latter normalization
consisting in assigning utility 0 to any outcome that an individual deems worst and 1 to
any outcome she finds best.8 Observe that, in contrast to the belief-weighted Nash SWFs,
a double normalization is required to obtain a well-defined SWF.
Under relative utilitarianism, the recommended social ranking of two acts may change

with the set of outcomes that are considered relevant. In particular, it may be affected
by the addition of an outcome that an individual deems worse than the one she initially
found worst, or better than the one she initially found best.
In many applications, identifying the worst relevant outcome for each individual may

be relatively easy, but determining the best one is diffi cult. As an illustration, consider
the problem of developing medical treatment against two diseases, A and B. Let xd denote
the quality of the treatment developed against disease d : say that xd = 0 if no treatment
exists, xd = 1

2
if a good treatment is made available, and xd = 1 if the treatment is excellent

(these numbers are a convenient way of indexing the possibilities but have no meaning —we
could use xd = α, β, γ instead). The relevant outcomes are all the pairs x = (xA, xB) in
the set

X =

{
0,

1

2
, 1

}
×
{

0,
1

2
, 1

}
.

These outcomes are uncertain and health policies may be regarded as acts mapping
states of nature into X. The precise specification of the set of relevant states of nature is
irrelevant for the point we want to make. There are two individuals with Savage preferences
over the set of acts. The specification of their beliefs is also unimportant. Individual 1
suffers from disease A; her utility for the outcomes is given by the function u1(x) = xA for
all x = (xA, xB) ∈ X. Individual 2 suffers from disease B and her utility for the outcomes is
u2(x) = xB for all x ∈ X. Observe that, given X, the functions u1, u2 are (0, 1)-normalized:
infX ui = 0 and supX ui = 1 for i = 1, 2. Relative utilitarianism deems the (constant acts
producing in all states of nature the) outcomes (1

2
, 0) and (0, 1

2
) equally good9 because both

8Relative utilitarianism was originally proposed in the context of risk. In that framework, it evaluates
a lottery according to the sum of the (0, 1)-normalized von Neumann-Morgenstern utilities it generates.
The criterion has received several axiomatizations: see Dhillon (1998), Karni (1998), Dhillon and Mertens
(1999), Segal (2000), and Börgers and Choo (2017a, 2017b). All these papers assume that society’s
preference over lotteries is of the von Neumann-Morgenstern type. In the context of uncertainty, and as
a corollary to Mongin’s (1995) theorem, relative utilitarianism does not always produce a Savage social
preference over acts. It is therefore completely unclear how the axiomatizations proposed in the context
of risk could be adapted to uncertainty.

9As usual, we identify a constant act with the outcome it yields in all states.
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generate a sum of (0, 1)-normalized (subjective expected) utilities equal to 1
2
.

Suppose now that, in fact, an excellent treatment cannot possibly be developed against
B. The set of relevant outcomes then becomes

Y =

{
0,

1

2
, 1

}
×
{

0,
1

2

}
.

Given Y, the individual (0, 1)-normalized utility functions over the set of outcomes are
now v1(x) = u1(x) = xA and v2(x) = 2u1(x) = 2xB. Relative utilitarianism deems (0, 1

2
)

preferable to (1
2
, 0). Thus, in order to decide whether a good treatment against A (and

no treatment against B) is preferable to a good treatment against B (and no treatment
against A), society needs to know whether an excellent treatment against B (and A) is
possible or not. There need not be anything morally wrong with this view, but it may
be diffi cult to implement in practice. In many contexts, such as the one above, the best
relevant outcome for each individual is hard to determine.
In the example above, the Nash SWF (with, say, fixed equal weights) is more appealing.

Because u1, u2 are 0-normalized for both X and Y (that is, infX ui = infY ui = 0 for
i = 1, 2), the Nash SWF deems the outcomes (1

2
, 0) and (0, 1

2
) equally good independently of

whether the set of relevant outcomes isX or Y. Of course, determining the social preference
still requires a correct specification of the worst relevant outcome for each individual. In
many cases, this may not be an impossible task.

The example illustrates a general property of the Nash ranking: it is unaffected by
the addition of any outcome that all individuals find at least as good as the one they
initially found worst —even if such a new outcome is better than the one they initially
found best. As discussed above, this property is compelling when the best outcome for
an individual cannot be determined with confidence, an arguably frequent case. In this
note, we show that the belief-weighted Nash SWFs are the only weakly Paretian SWFs
satisfying this “Independence of Harmless Expansions”property and a continuity condition
to be described below.

1.3. More connections with the literature

Kaneko and Nakamura (1979) axiomatize the Nash SWF for aggregating von Neumann-
Morgenstern preferences over lotteries. As we have seen in Sub-section 1.1, aggregating
Savage preferences over acts is a quite different exercise. Indeed, the (non-degenerate)
belief-weighted SWFs have no counterpart in the lottery framework. There are two further
major differences between Kaneko and Nakamura’s work and ours. The first and most
important one is conceptual: their analysis is restricted to problems where all individuals
agree on what the worst relevant outcome is: a lottery is then evaluated according to
the product of the von Neumann-Morgenstern utility gains it generates with respect to
this common worst outcome. The scope of applicability of the SWFs we define is much
broader: they allow society to rank the relevant acts for any profile of Savage preferences.
The second remaining difference is more technical, though also important. Kaneko and
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Nakamura use an independence axiom embodying an assumption of neutrality which our
Independence of Harmless Expansions axiom completely dispenses with.
Another related paper is West (1984). The author considers the problem of ranking

social gambles, namely, acts that return a positive amount of money to each individual if a
given event occurs, and zero to everyone otherwise. In this very special context, it turns out
that (the suitable version of) Pareto indifference10 is compatible with the requirement that
society has well-defined beliefs and tastes, and the author shows that the latter requirement
essentially forces a multiplicative aggregation of the individual utilities and beliefs. This
argument cannot be used in our framework because of Chambers and Hayashi’s (2006)
impossibility results.

2. Framework

Let S be the set of possible states (of nature). Subsets of S are called events. Let X be an
uncountable set of conceivable (social) outcomes, and let X be the set of finite or countably
infinite subsets of X containing at least two elements. For each X ∈ X , let A(X) be the
set of functions from S to X. Elements of X are called relevant outcomes and elements of
A(X) relevant acts. If x ∈ X, we abuse notation and also use x to denote the constant act
assigning outcome x to every state.
For any X ∈ X , a preference over A(X) is an ordering R ⊆ A(X)× A(X). We call R

Savage if there exist a non-constant, bounded function u : X → R and a finitely additive,
non-atomic probability measure p on 2S —henceforth called a belief—such that

aRb⇔
∫
S

(u ◦ a)dp ≥
∫
S

(u ◦ b)dp

for all a, b ∈ A(X).We let P denote the set of all beliefs. The function U(., u, p) : A(X)→
R defined by

U(a, u, p) :=
∫
S

(u ◦ a)dp for all a ∈ A(X)

is a Savage representation of R. We denote by U(X,R) the set of such representations. If
U(., u, p) and U(., v, q) are two Savage representations of R, then p = q and v = αu + β
for some positive real number α and some real number β. We let p∗(R) denote the unique
belief p ∈ P such that p = p∗(R) for every Savage representation U(., u, p) of R. Let R(X)
denote the set of all preferences over A(X) and R∗(X) the subset of Savage preferences.
Write R = ∪X∈XR(X) and R∗ = ∪X∈XR∗(X).
Let N = {1, ..., n} be a finite set of individuals. A (social choice) problem is a list

(X,RN) where X ∈ X and RN = (R1, ..., Rn) ∈ R∗(X)N . We simply call RN a preference
profile (over A(X)) —but keep in mind that R1, ..., Rn are Savage preferences. The set (or

10If each individual i is indifferent between the gamble (xi, 0) and the sure monetary payoff yi, then
society is indifferent between the social gamble ((x1, ..., xn), (0, ..., 0)) and the vector of monetary payoffs
(y1, ..., yn).
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domain) of all problems is denoted by D. A social welfare function (or SWF) is a mapping
R : D → R such that R(X,RN) ∈ R(X) for every (X,RN) ∈ D.
A few comments are in order about the setting just described.
(1) In the spirit of Arrow (1963), a SWF is a completely ordinal object that aggre-

gates preference orderings: no utility information is available. We interpret R(X,RN) as
society’s preference over A(X) when individual preferences are given by the profile RN .
In contrast to Mongin (1995), the preference profile RN is variable. This variable-

profile approach has a long tradition in social choice theory where recommending a SWF
is interpreted as designing a “constitution” —a fully specified procedure for solving not
just one but any possible preference aggregation problem. The underlying view is that, in
order to avoid arbitrariness, the social decision maker must first commit to such a formal
procedure before asking individuals to report their preferences.
Clearly, the variable-profile approach cannot avoid the incompatibility between the

Pareto principle and collective Savage rationality. But it allows one to formulate collective
rationality requirements that vary with the profile that society’s preference summarizes.
The basic idea is that society can afford to be more rational when its members agree than
when they do not. More on this in Subsection 5.3.
(2) In contrast to the standard Arrovian formulation, the set over which society’s

preference is constructed is allowed to vary. When the set of relevant outcomes expands,
society’s preference over the originally relevant acts is a priori allowed to change: if X ⊆
X ′ and the preference profile R′N over A(X ′) coincides over A(X) with the profile RN ,
R(X ′, R′N) need not coincide with R(X,RN) on A(X). The axiom of Independence of
Harmless Expansions discussed in the Introduction and formally defined in the next section
will restrict the extent to which society’s preference is allowed to change.
Note also that society’s preference is constructed on sets of acts with an at most count-

able range of outcomes X whereas the set of conceivable outcomes X is uncountable. That
relevant alternatives always form a “small” subset of all the conceivable ones is perhaps
not a bad assumption.11

(3) Society’s preference over A(X) may only depend upon individual preferences over
that set. This is a natural restriction because X is a large unstructured set and individual
preferences over acts whose outcomes belong to X may therefore be diffi cult to elucidate.
Moreover, since no structure is imposed on X, there is no natural reference point outside
A(X) which could help define the social preference on A(X).
(4) Individual preferences are of the Savage type but society’s preference need not be.

The set of possible SWFs is therefore quite large, and axioms such as the Pareto criterion
should not be expected to have much bite.

11The assumption that X is uncountable is used below in the proof of the neutrality lemma and in steps
1 and 2.3 of the proof of our main result. The assumption is stronger than necessary and can be replaced
by the condition that X is a sigma-ideal of subsets of X.
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3. Theorem

For any X ∈ X and R ∈ R∗(X), a Savage representation U(., u, p) of R is 0-normalized
if infX u = 0; it is (0, 1)-normalized if in addition supX u = 1. We denote by U0(X,R)
the set of 0-normalized Savage representations of R and by U∗(., X,R) the unique (0, 1)-
normalized Savage representation of R. If (X,RN) ∈ D and Ui ∈ U(X,Ri) for each i ∈ N,
define UN : A(X) → RN+ by UN(a) = (U1(a), ..., Un(a)) for all a ∈ A(X). With a slight
abuse of notation, write p∗(RN) := (p∗(R1), ..., p

∗(Rn)), U(X,RN) :=
∏
i∈N
U(X,Ri), and

U0(X,RN) :=
∏
i∈N
U0(X,Ri). Let ∆N =

{
γ ∈ [0, 1]N |

∑
i∈N γi = 1

}
denote the simplex in

RN .
A SWF R is a belief-weighted Nash SWF if there is a function γ : PN → ∆N such that,

for all (X,RN) ∈ D and all a, b ∈ A(X),

aR(X,RN)b⇔
[∏
i∈N

Ui(a)γi(p
∗(RN )) ≥

∏
i∈N

Ui(b)
γi(p

∗(RN )) for all UN ∈ U0(X,RN)

]
. (3.1)

We call γ the weight function associated with R. Since for every Ui ∈ U0(X,Ri) there
exists a positive real number αi such that Ui = αiU

∗(., X,Ri), (3.1) is equivalent to

aR(X,RN)b⇔
∏
i∈N

U∗(a,X,Ri)
γi(p

∗(RN )) ≥
∏
i∈N

U∗(b,X,Ri)
γi(p

∗(RN )).

Some further notation and terminology is needed to state our axiomatic characterization
of the belief-weighted Nash SWFs. We let N := {1, 2, ...} denote the set of positive integers.
The symbols Pi and Ii denote the strict preference and indifference relations associated with
the individual preference Ri, and P(X,RN) and I(X,RN) are the strict social preference
and indifference relations associated with R(X,RN). If (X,RN), (X ′, R′N) ∈ D and X ⊆
X ′, we say that R′N coincides with RN on A(X) if R′i ∩ (A(X)×A(X)) = Ri for all i ∈ N.
Similarly, R(X ′, R′N) coincides with R(X,RN) on A(X) if R(X ′, R′N)∩ (A(X)×A(X)) =
R(X,RN). Finally, if (X,RN) ∈ D, a ∈ A(X), and (at) is a sequence of acts in A(X),
we say that (at) converges to a with respect to RN if the sequence (UN(at)) converges to
UN(a) for all UN ∈ U(X,RN).

We now state the axioms used in our characterization theorem. The first needs no
introduction; part (ii) of this axiom is known as Pareto Indifference.

Weak Pareto Principle.12 For all (X,RN) ∈ D and all a, b ∈ A(X), (i) if aPib for all
i ∈ N , then aP(X,RN)b, and (ii) if aIib for all i ∈ N , then aI(X,RN)b.

The second axiom plays a central role in our characterization.

12The Weak Pareto Principle is often called the ex-ante Pareto axiom as it requires unanimity with
respect to the individuals’ex-ante preferences (over acts). It is stronger than the ex-post Pareto axiom
which only requires unanimity with respect to the individuals’ex-post preferences (over outcomes).
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Independence of Harmless Expansions. For all (X,RN), (X ′, R′N) ∈ D, if (i) X ⊆ X ′,
(ii) R′N coincides with RN on A(X), and (iii) for all x′ ∈ X ′ and i ∈ N there exists some
xi ∈ X such that x′R′ixi, then R(X ′, R′N) coincides with R(X,RN) on A(X).

The motivation for this axiom was already presented in the Introduction. Although
the SWF R is requested to produce a social ordering for every problem in D, the social
decision maker may in fact be uncertain about the correct specification of the problem
she is facing. The axiom assumes that this indeed occurs when two problems (X,RN),
(X ′, R′N) are related by conditions (i), (ii), and (iii). Since the decision maker is unable
to assert whether the correct formulation is (X,RN) or (X ′, R′N), the ordering R(X ′, R′N)
should coincide with R(X,RN) on A(X).
Independence of Harmless Expansions is an independence condition very much akin

to Arrow’s Independence of Irrelevant alternatives. Indeed, Arrow’s axiom in our setting
would correspond to the statement obtained by dropping proviso (iii) in our axiom.
Independence of Harmless Expansions is also related to Dhillon and Mertens’(1999)

Independence of Redundant Alternatives. In our framework, the latter axiom would require
that if (i) X ⊆ X ′, (ii) R′N coincides with RN on A(X), and (iii’) for all x′ ∈ X ′ there
exists some x ∈ X such that x′I ′ix for all i ∈ N, then R(X ′, R′N) coincides with R(X,RN)
on A(X). This is a weaker axiom than Independence of Harmless Expansions because
condition (iii’) is more restrictive than (iii) in two respects: it imposes not only that, for
each individual, each outcome x′ in X ′ be at least as good as the worst outcome in X, but
that there be a common outcome in X that all individuals deem equivalent to x′.
Our axiom is also related to Kaneko and Nakamura’s (1979) Independence of Irrelevant

Alternatives with Neutral Property. The latter is a stronger and rather complicated axiom
that mixes the same independence condition as ours with the requirement that the names
of the outcomes should not affect the social ordering.
Finally, it may be worth pointing out the apparent similarity between our axiom and

Nash’s Independence of Irrelevant Alternatives. This similarity is misleading because the
objects on which the conditions are formulated are very different. As a matter of fact, the
primary role of Nash’s independence axiom is to establish that the solution to the bargain-
ing problem must be maximizing some underlying ordering defined over utility space; the
fact that this ordering is the product ordering follows from Nash’s scale invariance axiom,
not from his independence axiom. By contrast, Independence of Harmless Expansions is
the axiom responsible for the product form in our characterization.

Our third axiom requires a form of continuity of the social preference at every given
preference profile. It does not impose any restriction across profiles.

Continuity. For all (X,RN) ∈ D, all a, b ∈ A(X), and every sequence (at) in A(X)
converging to a with respect to RN , (i) if atR(X,RN)b for all t ∈ N, then aR(X,RN)b,
and (ii) if bR(X,RN)at for all t ∈ N, then bR(X,RN)a.

Theorem. A SWF satisfies the Weak Pareto Principle, Independence of Harmless Ex-
pansions, and Continuity if and only if it is a belief-weighted Nash SWF.

We emphasize that our axioms perform three tasks: (i) they force us to use 0-normalized
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Savage representations of the individual preferences at all preference profiles13, (ii) they
imply that social welfare is a weighted product of these individual 0-normalized Savage
utilities, and (iii) they imply that the weights attached to the individual Savage utilities can
only depend on the profile of beliefs. The only (but important) remaining indeterminacy
lies in the choice of the function that computes the weights for every profile of beliefs. This
indeterminacy can be somewhat reduced by imposing further axioms: see Section 5.3 for
a discussion.

4. Proof

In order to prove our theorem, we begin with a lemma showing that Pareto Indifference
and Independence of Harmless Expansions imply a strong form of outcome neutrality.14

Let Π(X) denote the set of bijections from X into itself. If (X,RN) ∈ D, π ∈ Π(X),
a ∈ A(X), and RN ∈ R∗(X)N , let aπ ∈ A(π(X)) be the act given by aπ(s) = π(a(s)) for
all s ∈ S, and denote by Rπ

N the preference profile on A(π(X)) given by aπRπ
i b
π ⇔ aRib

for all i ∈ N and all a, b ∈ A(X).

Outcome Neutrality. For all (X,RN) ∈ D, a, b ∈ A(X) and π ∈ Π(X), aR(X,RN)b⇔
aπR(π(X), Rπ

N)bπ.

Lemma. If a SWF satisfies Pareto Indifference and Independence of Harmless Expan-
sions, then it satisfies Outcome Neutrality.

Proof. Let R satisfy Pareto Indifference and Independence of Harmless Expansions. Let
(X,RN) ∈ D, a, b ∈ A(X) and π ∈ Π(X).We prove that aR(X,RN)b⇒ aπR(π(X), Rπ

N)bπ.
The converse implication follows immediately since a = (aπ)π

−1
, b = (bπ)π

−1
, X = π−1(π(X)),

and RN = (Rπ
N)π

−1
. Let us thus assume that

aR(X,RN)b. (4.1)

Step 1. aπR(π(X), Rπ
N)bπ if π(X) ∩X = ∅.

Let X = X ∪ π(X). For each i ∈ N , let Ri be the Savage preference over A(X)
which coincides with Ri on A(X) and is such that xI iπ(x) for all x ∈ X. This is well
defined because π(X)∩X = ∅. Observe that p∗(Ri) = p∗(Ri) and Ri coincides with Rπ

i on
A(π(X)). Moreover, for all x ∈ X and i ∈ N, there exists some xi ∈ X such that xRixi :
just take xi = x if x ∈ X and xi = π−1(x) if x ∈ π(X). Let RN = (R1, ..., Rn). Applying

13Contrast this with Gilboa, Samet and Schmeidler (2004) and Chambers and Hayashi (2006), where
the appropriate normalization of the individual utilities is left unspecified and may vary arbitrarily across
preference profiles. Note also that, because of the product form, the particular choice of 0-normalizations
is inconsequential.
14This lemma is reminiscent of (but logically unrelated to) a result of Sen (1977): for social welfare

functionals (i.e., mappings from profiles of utility functions into social orderings), the suitably defined
conditions of Unrestricted Domain, Pareto Indifference, and Independence of Irrelevant Alternatives imply
“Strong Neutrality”.
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Independence of Harmless Expansions to (4.1),

aR(X,RN)b. (4.2)

Since aπI ia and bπI ib for all i ∈ N, Pareto Indifference implies aπI(X,RN)a and
bπI(X,RN)b. Hence from (4.2),

aπR(X,RN)bπ. (4.3)

For all x ∈ X and i ∈ N, there exists some xi ∈ π(X) such that xRixi. Since RN

coincides with Rπ
N on A(π(X)), (4.3) and Independence of Harmless Expansions therefore

imply aπR(π(X), Rπ
N)bπ.

Step 2. aπR(π(X), Rπ
N)bπ.

Choose ρ ∈ Π(X) such that ρ(X) ∩X = ρ(X) ∩ π(X) = ∅. This is possible because X
is uncountable. By Step 1, (4.1) implies

aρR(ρ(X), Rρ
N)bρ. (4.4)

Next consider the bijection π ◦ ρ−1 ∈ Π(X). Since (π ◦ ρ−1)(ρ(X)) ∩ ρ(X) = ∅, Step 1 and
(4.4) imply

(aρ)π◦ρ
−1
R((π ◦ ρ−1)(ρ(X)), (Rρ

N)π◦ρ
−1

)(bρ)π◦ρ
−1
. (4.5)

By definition, (π ◦ ρ−1)(ρ(X)) = π(X). Moreover, (aρ)π◦ρ
−1

= aπ since (aρ)π◦ρ
−1

(s) =
(π ◦ ρ−1)(aρ(s)) = (π ◦ ρ−1)(ρ(a(s))) = π(a(s)) for all s ∈ S. Likewise, (bρ)π◦ρ

−1
= bπ and

(Rρ
N)π◦ρ

−1
= Rπ

N . Hence (4.5) reduces to a
πR(π(X), Rπ

N)bπ. �
Proof of the theorem. The proof of the “if”statement is straightforward. To prove the
converse statement, fix a SWF R satisfying the Weak Pareto Principle, Independence of
Harmless Expansions, and Continuity. This SWF satisfies Pareto Indifference, hence also
Outcome Neutrality, by the above lemma.

For any pN ∈ PN , define D(pN) = {(X,RN) ∈ D | p∗(RN) = pN} . This is the domain
of problems in which the belief profile is pN . Define the binary relations �pN , ∼pN , and
%pN on RN+ as follows: for all v, w ∈ RN+ ,
(i) v �pN w if and only if there exist (X,RN) ∈ D(pN), UN ∈ U0(X,RN), and a, b ∈ A(X)
such that UN(a) = v, UN(b) = w, and aP(X,RN)b,

(ii) v ∼pN w if and only if there exist (X,RN) ∈ D(pN), UN ∈ U0(X,RN), and a, b ∈ A(X)
such that UN(a) = v, UN(b) = w, and aI(X,RN)b,

(iii) v %pN w if and only if v �pN w or v ∼pN w.

Replacing A(X) with X in statements (i) and (ii) yields an equivalent definition of
the relations �pN ,∼pN , and %pN , and we will freely use both definitions in the remainder
of the proof. To check that the two formulations are indeed equivalent, fix pN ∈ PN ,
v, w ∈ RN+ , and suppose there exist (X,RN) ∈ D(pN), UN ∈ U0(X,RN), and a, b ∈ A(X)
such that UN(a) = v, UN(b) = w, and aP(X,RN)b (respectively, aI(X,RN)b). We must

11



find (X ′, R′N) ∈ D(pN), U ′N ∈ U0(X ′, R′N), and x, y ∈ X ′ such that U ′N(x) = v, U ′N(y) = w,
and xP(X ′, R′N)y (respectively, xI(X ′, R′N)y). Note that U ′N(x), U ′N(y) are well defined
because of our convention to identify an outcome with the constant act assigning that
outcome to every state of nature.
To do this, simply choose any two distinct outcomes x, y ∈ X \ X and define X ′ =

X ∪ {x, y} . For each i ∈ N, let R′i be the Savage preference on A(X ′) which coincides
with Ri on A(X) and is such that xI ′ia and yI

′
ib. Let U

′
i be the Savage representation

of R′i which coincides with Ui on A(X). Let R′N = (R′1, ..., R
′
n) and U ′N = (U ′1, ..., U

′
n).

Because R′N coincides with RN on A(X), we have p∗(R′N) = pN , hence (X ′, R′N) ∈ D(pN).
Because UN ∈ U0(X,RN) and xI ′ia and yI

′
ib for all i ∈ N, we have U ′N ∈ U0(X ′, R′N) and

U ′N(x) = v and U ′N(y) = w. Finally, since for all x′ ∈ X ′ and i ∈ N there is some xi ∈ X
such that x′R′ixi, Independence of Harmless Expansions and Pareto Indifference imply
xI(X ′, R′N)aP(X ′, R′N)bI(X ′, R′N)y (respectively, xI(X ′, R′N)aI(X ′, R′N)bI(X ′, R′N)y), and
we are done.

Step 1. For all pN ∈ PN , (i) the binary relation %pN is an ordering, and (ii) for all
v, w ∈ RN+ one and only one of the following statements holds: (a) v �pN w, (b) w �pN v,
(c) v ∼pN w.

Fix a belief profile pN ∈ PN .
To prove reflexivity and completeness of%pN , fix two (possibly equal) vectors v, w ∈ RN+ .

Let x0, x1, x2, x3 ∈ X be four distinct outcomes and let X = {x0, x1, x2, x3} . For each
i ∈ N, choose a number zi ∈ R+ such that zi 6= vi, wi, define ui : X → R+ by ui(x0) = 0,
ui(x1) = vi, ui(x2) = wi, and ui(x3) = zi. Define Ui : A(X)→ R+ by Ui(a) = U(a, ui, pi) =∫
S

(ui ◦ a)dpi for all a ∈ A(X), and let Ri be the preference on A(X) represented by

Ui : by construction, Ri ∈ R∗(X) and p∗(Ri) = pi. Letting UN := (U1, ..., Un) and
RN = (R1, ..., Rn), we have (X,RN) ∈ D(pN) and UN ∈ U0(X,RN). Since R(X,RN) is
complete and reflexive, we must have x1R(X,RN)x2 or x2R(X,RN)x1. Since UN(x1) = v
and UN(x2) = w, we have v %pN w or w %pN v.

To prove transitivity of %pN , fix v1, v2, v3 ∈ RN+ such that v1 %pN v2 %pN v3. By
definition, there exist (X1, R1N), (X2, R2N) ∈ D(pN), U1N ∈ U0(X1, R1N), U2N ∈ U0(X2, R2N),
x1, y1 ∈ X1, and x2, y2 ∈ X2 such that

U1N(x1) = v1, U1N(y1) = v2 = U2N(x2), and U2N(y2) = v3, (4.6)

and
x1R(X1, R1N)y1 and x2R(X2, R2N)y2. (4.7)

By Outcome Neutrality and because X is uncountable, we may assume that X1∩X2 =
∅. Let X = X1 ∪X2. For each i ∈ N, define ui : X → R+ by

ui(x) =

{
U1i (x) if x ∈ X1,
U2i (x) if x ∈ X2,

(4.8)
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and define Ui : A(X) → R+ by Ui(a) = U(a, ui, pi) =
∫
S

(ui ◦ a)dpi for all a ∈ A(X). Let

Ri be the Savage preference on A(X) represented by Ui, let UN = (U1, ..., Un), and let
RN = (R1, ..., Rn).
Note that RN coincides with R1N on A(X1) and with R2N on A(X2). Moreover, because

U1N ∈ U0(X1, R1N) and U2N ∈ U0(X2, R2N), (4.8) implies that UN ∈ U0(X,RN). Moreover,
for all x ∈ X and i ∈ N, there exist x1i ∈ X1, x2i ∈ X2 such that xRix

1
i , xRix

2
i . We may

therefore apply Independence of Harmless Expansions to (4.7) and conclude

x1R(X,RN)y1 and x2R(X,RN)y2.

On the other hand, (4.6) and (4.8) imply y1Iix2 for all i ∈ N , hence by Pareto Indifference,

y1I(X,RN)x2.

Transitivity of R(X,RN) now implies x1R(X,RN)y2. Since (X,RN) ∈ D(pN), UN ∈
U0(X,RN), and UN(x1) = v1 and UN(y2) = v3, the definition of %pN gives us v1 %pN v3.
This establishes the transitivity of %pN and completes the proof of statement (i) in Step 1.
The proof of statement (ii) is similar to the proof of transitivity and omitted for brevity.

Step 2. For all pN ∈ PN there exists γ ∈ ∆N such that, for all v, w ∈ RN+ , v %pN w ⇔∏
i∈N

v
γi
i ≥

∏
i∈N

w
γi
i .

Note that the number γ in the above statement may vary with pN . To prove that
statement, fix p

N
∈ PN . In order to alleviate notation, we write �, ∼, and % instead of

�pN , ∼pN , and %pN . We use ≥, >,� to write inequalities in RN+ .
We begin by establishing three properties of % . The first, scale invariance, is key to

the multiplicative form of the SWFs satisfying our axioms.

Step 2.1. % is scale invariant : v % w ⇔ λ ∗ v % λ ∗ w for all λ ∈ RN++, where
λ ∗ v = (λ1v1, ..., λnvn).

To check this point, fix v, w ∈ RN+ , λ ∈ RN++, and suppose v � w (respectively, v ∼ w).
By definition, there exist (X,RN) ∈ D(pN), UN ∈ U0(X,RN), and a, b ∈ A(X) such that
UN(a) = v, UN(b) = w, and aP(X,RN)b (respectively, aI(X,RN)b). For each i ∈ N,
define Vi : A(X) → R+ by Vi(c) = λiUi(c) for all c ∈ A(X), and let VN = (V1, ..., Vn).
Observe that VN ∈ U0(X,RN) and VN(a) = λ ∗ v, VN(b) = λ ∗ w. Since (X,RN) ∈ D(pN)
and aP(X,RN)b (respectively, aI(X,RN)b), the definition of � (respectively, ∼) implies
λ ∗ v � λ ∗ w (respectively, λ ∗ v ∼ λ ∗ w), as desired.
Step 2.2. % is weakly monotonic: v � w ⇒ v � w.

This follows immediately from the fact that R satisfies (part (i) of) the Weak Pareto
Principle.

Step 2.3. % is continuous: for all u, v ∈ RN+ and every sequence (ut) in RN+ converging
to u, (i) if ut % v for all t ∈ N, then u % v, and (ii) if v % ut for all t ∈ N, then v % u.
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This follows from Continuity and Independence of Harmless Expansions. Fix u, v ∈ RN+
and a sequence (ut) in RN+ converging to u. We only prove statement (i); the proof of (ii)
is the same, mutatis mutandis.
Suppose ut % v for all t ∈ N. For each t ∈ N, there exist (X t, Rt

N) ∈ D(pN), U t
N ∈

U0(X t, Rt
N), and xt, yt ∈ X t such that U t

N(xt) = ut, U t
N(yt) = v, and

xtR(X t, Rt
N)yt. (4.9)

Moreover, there exist (X0, R0N) ∈ D(pN), U0N ∈ U0(X0, R0N), and x0, y0 ∈ X0 such that
U0N(x0) = u and U0N(y0) = v.
By Outcome Neutrality and because X is uncountable, we may assume thatX t∩X t′ = ∅

for all distinct t, t′ ∈ N ∪ {0} . Define X = ∪t∈N∪{0}X t. For each i ∈ N, define ui : X → R
by

ui(x) = U
t(x)
i (x), (4.10)

where t(x) is the unique integer t ∈ N ∪ {0} such that x ∈ X t. Define U i : A(X) → R by
U i(a) =

∫
S

(ui◦a)dpi for all a ∈ A(X). Let Ri be the Savage preference on A(X) represented

by U i, let UN = (U1, ..., Un), and let RN = (R1, ..., Rn). Note that RN coincides with Rt
N

on A(X t) for each t ∈ N∪ {0} . Moreover, because U t
N ∈ U0(X t, Rt

N) for each t ∈ N∪ {0} ,
(4.10) implies that UN ∈ U0(X,RN).Moreover, for all x ∈ X, all t ∈ N∪{0} , and all i ∈ N,
there is some xti ∈ X t such that xRix

t
i. Applying Independence of Harmless Expansions to

(4.9), we get
xtR(X,RN)yt for all t ∈ N. (4.11)

Since UN(yt) = v for all t ∈ N ∪ {0}, we have ytI iy0 for all t ∈ N ∪ {0} and all i ∈ N.
From (4.11) and Pareto Indifference,

xtR(X,RN)y0 for all t ∈ N. (4.12)

Since UN(xt) = ut → u = UN(x0), we have UN(xt) → UN(x0) for all UN ∈ U(X,RN).
That is, the sequence (xt) in A(X) converges to x0 with respect to RN . Because R satisfies
Continuity, (4.12) now implies x0R(X,RN)y0. Since (X,RN) ∈ D(pN), UN ∈ U0(X,RN),
and UN(x0) = u and UN(y0) = v, the definition of % yields u % v.

Step 2.4. There exists γ ∈ ∆N such that, for all v, w ∈ RN+ , v % w ⇔
∏
i∈N

v
γi
i ≥

∏
i∈N

w
γi
i .

Since % is continuous, it admits a continuous numerical representation: there exists a
continuous function W : RN+ → R such that, for all v, w ∈ RN+ , v % w ⇔ W (v) ≥ W (w).
Because % is scale-invariant and weakly monotonic, we have that for all v, w ∈ RN+ and all
λ ∈ RN++, (i) W (v) ≥ W (w) ⇔ W (λ ∗ v) ≥ W (λ ∗ w) and (ii) v � w ⇒ W (v) > W (w)
(hence also (iii) v ≥ w ⇒ W (v) ≥ W (w) because W is continuous).
By a theorem of Osborne (1976), properties (i) and (iii) imply that there exist non-

negative real numbers γ1, ..., γn and an increasing function g : R → R such that W (v) =
g(
∏
i∈N

v
γi
i ) for all v ∈ RN+ . Since in our caseW also satisfies (ii), not all the numbers γ1, ..., γn
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can be zero, and we may assume without loss of generality that γ = (γ1, ..., γn) ∈ ∆N .
SinceW represents %, we have v % w⇔

∏
i∈N

v
γi
i ≥

∏
i∈N

w
γi
i for all v, w ∈ RN+ . This completes

the proof of Step 2.
Since pN was arbitrary in the argument above, we have proved that there exists a

function γ : PN → ∆N such that, for every pN ∈ PN and all v, w ∈ RN+ ,

v %pN w ⇔
∏
i∈N

v
γi(pN )
i ≥

∏
i∈N

w
γi(pN )
i .

Step 3. For all (X,RN) ∈ D and all a, b ∈ A(X), we have

aR(X,RN)b⇔
[∏
i∈N

Ui(a)γi(p
∗(RN )) ≥

∏
i∈N

Ui(b)
γi(p

∗(RN )) for all UN ∈ U0(X,RN)

]
Fix (X,RN) ∈ D and a, b ∈ A(X). If

∏
i∈N

Ui(a)γi(p
∗(RN )) ≥

∏
i∈N

Ui(b)
γi(p

∗(RN )) for all

UN ∈ U0(X,RN), Step 2 implies UN(a) %p∗(RN ) UN(b) for all UN ∈ U0(X,RN), and the
definition of %p∗(RN ) (and the fact that it is an ordering) implies that aR(X,RN)b. Con-
versely, if

∏
i∈N

Ui(b)
γi(p

∗(RN )) >
∏
i∈N

Ui(a)γi(p
∗(RN )) for some UN ∈ U0(X,RN), Step 2 implies

UN(b) �p∗(RN ) UN(a) and the definition of %p∗(RN ) implies bP(X,RN)a.�
A general comment is in order about the proof. Because the argument given above

works for any fixed profile of beliefs, the theorem remains true on the subdomain of pref-
erence profiles over acts where the beliefs of all agents are the same. This means that the
result can be reformulated in the context of the aggregation of von Neumann-Morgenstern
preferences over lotteries: properly rewritten, our axioms characterize the (exogenously)
weighted 0-normalized Nash SWFs in that context, and Anonymity easily pins down the
uniform 0-normalized Nash SWF. It is instructive to compare this variant of our result
with Dhillon and Mertens’(1999) characterization of relative utilitarianism: dropping the
requirement that society’s preference be von Neumann-Morgenstern and strengthening In-
dependence of Redundant Alternatives to Independence of Harmless Alternatives leads us
to give up relative utilitarianism in favor of 0-normalized Nash welfarism.

5. Discussion

This section addresses three criticisms that may be formulated against the belief-weighted
Nash SWFs.

5.1. Lack of rationality?

In this subsection, we fix the set of relevant outcomes X and drop it from our notation
whenever there is no risk of confusion. Thus, we write A instead of A(X) for the set of
relevant acts, and a problem (X,RN) reduces to its profile component RN .
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Perhaps the main drawback of a belief-weighted Nash SWF (henceforth simply called
a Nash SWF) is that the social preference it recommends (henceforth called a Nash prefer-
ence) may not be of the Savage type. More precisely: if R is a Nash SWF that never puts
weight one on a single agent’s belief (i.e., γ(p∗(RN)) � 1 for all profiles RN), then there
exist profiles RN where R(RN) is not a Savage preference. This is problematic because
Savage’s axioms are generally regarded as criteria of rationality in the face of uncertainty.
In order to assess the severity of this problem, it is important to examine (i) which of

Savage’s axioms may be violated by a Nash preference, and (ii) whether these axioms are
compelling for a social preference.

Let us begin by recalling Savage’s axiomatic system. Let R be a preference relation
on A. For all a, b ∈ A and E ⊆ S, define the act aEb by (aEb)(s) = a(s) if s ∈ E and
(aEb)(s) = b(s) otherwise. Call an event E R-null if aEc I bEc for all a, b, c ∈ A, and let
E+(R) be the set of events which are not R-null. For all E ⊆ S, define the relation RE on
A by aREb⇔ [aRb and a(s) = b(s) for all s ∈ S \ E] . Savage’s axioms are:

(P1) R is an ordering,

(P2) for all a, b, c, c′ ∈ A and all E ⊆ S, aEc R bEc⇔ aEc
′ R bEc

′,

(P3) for all x, y ∈ X, all a ∈ A, and all E ∈ E+(R), xRy ⇔ xEa R yEa,

(P4) for all x, x′, y, y′ ∈ X such that xPy and x′Py′, and for all E,E ′ ⊆ S, xEy R
xE′y ⇔ x′Ey

′ R x′E′y
′,

(P5) there exist a, b ∈ A such that aPb,
(P6) for all a, b, c ∈ A such that aPb, there is a partition {E1, ..., En} of S such that cEia
P b and a P cEib for i = 1, ..., n,

(P7) for all a, b ∈ A and all E ⊆ S, (i) [aPEb(s) for all s ∈ E] ⇒ aREb and (ii) [b(s)PEa
for all s ∈ E]⇒ bREa.

Let us examine which of these axioms may be violated by a Nash preference. For
simplicity, let us assume that N = {1, 2} and let R be the uniform Nash SWF ranking
acts according to the (uniformly weighted) product of their (0, 1)-normalized utilities.
The very basic axiom (P1) poses no problem: R(R{1,2}) is an ordering for every profile

R{1,2}. One can also check that the somewhat technical conditions (P5) to (P7) are satisfied
by R(R{1,2}) at every R{1,2}.15

On the other hand, R(R{1,2}) violates each of the separability axioms (P2) to (P4) at
some profile R{1,2}. To see that (P2) need not hold, let x, y ∈ X, E ⊆ S, and suppose
R{1,2} is such that p∗(Ri)(E) = 1

2
for i = 1, 2 and

U∗(x,R1) = 1, U∗(y,R1) = 0,

U∗(x,R2) = 0, U∗(y,R2) = 1.

15The preference R(R{1,2}) satisfies (P5) because the function (w1, w2) 7→ u1u2 is strictly quasi-concave
on (0, 1]2 .
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Then
∏

i=1,2 U
∗(x,Ri) =

∏
i=1,2 U

∗(y,Ri) = 0 and
∏

i=1,2 U
∗(xEy,Ri) =

∏
i=1,2 U

∗(yEx,Ri) =
1
4
, so that xEy P(R{1,2}) yEy = y and yEx P(R{1,2}) xEx = x, a violation of (P2) (with
c = y and c′ = x).
Since R satisfies the Weak Pareto Principle, we know from Chambers and Hayashi

(2006) that violations of (P3) and (P4) must occur. For the sake of completeness, we
quickly provide examples of such violations.
To see that (P3) may fail, let x, y, z ∈ X, E ⊆ S, and suppose R{1,2} is such that

p∗(Ri)(E) = 1
2
for i = 1, 2 and

U∗(y,R1) = 0, U∗(x,R1) =
1

2
, U∗(z,R1) = 1,

U∗(y,R2) = 1, U∗(x,R2) =
1

2
, U∗(z,R2) = 0.

Then
∏

i=1,2 U
∗(x,Ri) = 1

4
>
∏

i=1,2 U
∗(y,Ri) = 0 and

∏
i=1,2 U

∗(xEz, Ri) = 3
16
<
∏

i=1,2 U
∗

(yEz, Ri) = 1
4
, so that xP(R{1,2})y and yEz P(R{1,2}) xEz. Since the latter preference im-

plies that E ∈ E+(R(R{1,2})), R(R{1,2}) violates (P3).
For a violation of (P4), let x, y, y′ ∈ X, E ⊆ S, and suppose R{1,2} is such that

p∗(R1)(E) = 1
3
, p∗(R2)(E) = 2

3
, and

U∗(y,R1) = 1, U∗(x,R1) =
1

2
, U∗(y′, R1) = 0,

U∗(y,R2) = 0, U∗(x,R2) =
1

2
, U∗(y′, R2) = 1.

Letting E ′ = S \ E, we have
∏

i=1,2 U
∗(xEy,Ri) = (5

6
)(1
3
) >

∏
i=1,2 U

∗(xE′y,Ri) =

(2
3
)(1
6
) and

∏
i=1,2 U

∗(xEy
′, Ri) = (1

6
)(2
3
) <

∏
i=1,2 U

∗(xE′y
′, Ri) = (1

3
)(5
6
), so that xEy

P(R{1,2}) xE′y and xE′y′ P(R{1,2}) xEy
′. But

∏
i=1,2 U

∗(y,Ri) =
∏

i=1,2 U
∗(y′, Ri) = 0 <∏

i=1,2 U
∗(x,Ri), a violation of (P4) (with x′ = x).

Savage proposed axioms (P1) to (P7) as rationality criteria applicable to an individual
preference relation. We would like to argue that the relevance of these axioms should
be reexamined if R is a social preference. The reason is that such a preference is not a
primitive concept; rather, it is constructed from a profile of individual preferences through
a SWF: R = R(RN). Therefore,
(a) the appeal of an axiom imposed on a social preference R = R(RN) may well depend

upon the preference profile RN that R summarizes, and
(b) the preference profile RN itself may have to enter into the proper formulation of an

axiom imposed on the social preference R(RN).

As an elementary illustration of claim (a), supposeX = {x, y} and N = {1, 2} . If R{1,2}
is a profile such that xP1y, yP2x, and p∗(R1) = p∗(R2), it is unclear whether (P5) should be
imposed on R(R{1,2}). Note in particular that the popular relative utilitarian SWF (which
ranks acts according to the sum of the (0, 1)-normalized utilities they generate) indeed
deems all acts equally good at R{1,2}.
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By contrast, if R′{1,2} is a unanimous profile (that is, R
′
1 = R′2), then (P5) is to-

tally compelling for R(R′{1,2}) because the preference aggregation is trivial and society
should behave as a single individual. Note that any Paretian SWF R indeed recommends
R(R′{1,2}) = R′1 = R′2, which of course is a Savage preference.
We focused on (P5) for simplicity but, as we will see later, claim (a) also applies to the

other Savage axioms.

We now come to claim (b). Savage’s separability axioms (P2) to (P4) are restrictions of
the following type: “if an act a is weakly preferred to an act b, and if acts a′, b′ are suitably
related to a, b, then a′ should be weakly preferred to b′”. We claim that in a social decision
context, simply knowing that “a is weakly preferred to b”may not be informative enough
to conclude that “a′ should also be weakly preferred to b′”. Indeed, a social preference
summarizes an entire profile of individual preferences; this profile is the reason why a is
weakly preferred to b and it may not be wise to ignore it when deciding whether society
should also weakly prefer a′ to b′.
Consider our earlier example of a violation of (P2). Given the profile R{1,2} described in

that example, a sensible motivation for the social preference aEb P(R{1,2}) b is that act aEb
offers both individuals a chance to get their favorite outcome whereas b yields individual
1′s favorite outcome —which is also 2’s worst— in all states. Ex-ante, aEb appears more
equitable than b.16 But the social preference a P(R{1,2}) bEa, which (P2) then prescribes,
cannot be justified on similar grounds —indeed, the opposite preference is supported by the
same fairness considerations. This suggests that (P2) may not be a reasonable restriction
on R(R{1,2}).
On the other hand, at a profile R′{1,2} where p

∗(R′i)(E) = 1
2
for i = 1, 2 and U∗(a,R′i) =

1, U∗(b, R′i) = 0 for i = 1, 2, the requirement aEb P(R′{1,2}) bEb ⇔ aEa P(R′{1,2}) bEa is
completely natural —and indeed satisfied by any Nash SWF R. A plausible reason for the
social preference aEb P(R′{1,2}) bEb is that both individuals prefer the former act to the
latter, and this same reason justifies the preference aEa P(R′{1,2}) bEa.

This discussion again backs claim (a) —but also claim (b): the preference profile itself
may have to enter the premise of an axiom bearing on the social preference that summarizes
it. In that spirit, here is a variant of (P2) which the Nash SWFs satisfy.

(WP2) for all a, b, c, c′ ∈ A, all E ⊆ S, and all RN such that cIic′ for all i ∈ N, aEc R(RN)
bEc⇔ aEc

′ R(RN) bEc
′.

This is admittedly a much weaker separability condition but we believe it lies on safer
grounds than (P2). The restriction assumed on RN is meant to guarantee that the reason
behind the social preference between aEc and bEc also justifies the preference between aEc′

and bEc′.

Axiom (P4) admits a particularly interesting variant. Denote by W (Ri) = {x ∈ X |
yRix for all y ∈ X} the set of worst outcomes according to the preference Ri, and consider

16This well-known argument is a variant of Diamond’s (1967) criticism of utilitarianism —applied to
social preferences over acts rather than lotteries.
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the following requirement:

(WP4) for all x, x′, y, y′ ∈ X, all E,E ′ ⊆ S, and all RN such that x, x′ /∈ ∪i∈NW (Ri) and
y, y′ ∈ ∩i∈NW (Ri), xEy R(RN) xE′y ⇔ x′Ey

′ R(RN) x′E′y
′.

An outcome in ∩i∈NW (Ri) is everybody’s worst: call it bad (at RN). An outcome not in
∪i∈NW (Ri) is nobody’s worst: call it good (at RN). Axiom (WP4) requires that society’s
preference between two binary acts that yield either a good outcome or a bad outcome
should be independent of the specification of these two outcomes.

A SWF R satisfying (WP4) generates at each profile RN a well-defined likelihood
relation % (RN ,R) on the set of events:

E % (RN ,R) E ′ ⇔ xEy R(RN) xE′y for all x /∈ ∪i∈NW (Ri) and y ∈ ∩i∈NW (Ri). (5.1)

The interpretation of the statement E % (RN ,R) E ′ is that, at RN , society believes that
event E is at least as likely as event E ′ : this interpretation makes sense because society
always weakly prefers a good outcome if E occurs and a bad outcome otherwise to a good
outcome if E ′ occurs and a bad outcome otherwise.
If R satisfies (WP4), the binary relation % (RN ,R) is transitive for every profile RN .17

Of course, at a profile RN where no good outcome exists (∪i∈NW (Ri) = X) or no bad
outcome exists (∩i∈NW (Ri) = ∅), (5.1) implies that E ∼ (RN ,R) E ′ for all E,E ′: society’s
belief is completely indeterminate.

Interestingly, the Nash SWFs satisfy WP4. To see this, consider for simplicity the
uniform Nash SWF R and observe that if x is a good outcome at RN and y is a bad
outcome at RN , then for any event E,∏

i∈N
U∗(xEy,Ri) =

∏
i∈N

p∗(Ri)(E)U∗(x,Ri)

because U∗(y,Ri) = 0 for all i ∈ N. It follows that for any good outcomes x, x′, any bad
outcomes y, y′, and any two events E,E ′,

xEyR(RN)xE′y ⇔
∏
i∈N

p∗(Ri)(E) ≥
∏
i∈N

p∗(Ri)(E
′), (5.2)

and
x′Ey

′R(RN)x′E′y
′ ⇔

∏
i∈N

p∗(Ri)(E) ≥
∏
i∈N

p∗(Ri)(E
′),

hence,
xEy R(RN) xE′y ⇔ x′Ey

′R(RN)x′E′y
′,

as desired.
17This follows directly from the transitivity of the social preference relation R(RN ) : for any events

E,E′, E′′ such that E % (RN ,R) E′ % (RN ,R) E′′ we have xEy R(RN ) xE′y R(RN ) xE′′y, hence xEy
R(RN ) xE′′y, for every good outcome x at RN and every bad outcome y at RN , implying E % (RN ,R)
E′′.
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At any profile RN where a good outcome and a bad outcome exist, the social likelihood
relation generated by the uniform Nash SWF R takes a simple form. From (5.1) and (5.2),

E % (RN ,R) E ′ ⇔
∏
i∈N

p∗(Ri)(E) ≥
∏
i∈N

p∗(Ri)(E
′). (5.3)

The social likelihood of an event is the product of the probabilities attached to it by the
individuals. Society’s belief % (RN ,R) cannot generally be represented by a probability
measure but it is an ordering on 2S.
A subtle aspect of the above construction is that two social beliefs % (RN ,R), %

(R′N ,R) may differ even if the social preferences R(RN), R(R′N) coincide. A social belief
is not a property of a social preference per se; it depends explicitly on the profile that
generates this preference through the SWF.
As an illustration, suppose N = {1, 2} , X = {x, y} , and R is the uniform Nash SWF.

Consider first a unanimous profile R{1,2}. In such a profile, agents have identical beliefs:
p∗(R1) = p∗(R2) = p. Suppose xRiy for i = 1, 2. Since X only contains the two outcomes
x, y, an act a is completely described by the event Ea = {s ∈ S | a(s) = x} . For any two
acts a, b, we have aRib ⇔ p(Ea) ≥ p(Eb) for i = 1, 2 and the social preference at R{1,2}
coincides with the common preference of the individuals:

aR(R{1,2})b⇔ p(Ea) ≥ p(Eb).

Using (5.3), the social likelihood relation generated by R at R{1,2} is given by

E % (R{1,2},R) E ′ ⇔ p(E) ≥ p(E ′),

that is, society’s belief coincides with the common probabilistic belief of its members.
Consider next a profile R′{1,2} where individuals have “opposite beliefs”and “opposite

tastes”: p∗(R′1)(E) = p∗(R′2)(S \E) = p(E) for every event E, U∗(x,R′1) = 1, U∗(y,R′1) =
0, and U∗(x,R′2) = 0, U∗(y,R′2) = 1. For all acts a, b, the social preference at R{1,2} is given
by

aR(R{1,2})b ⇔ U∗(a,R′1)U
∗(a,R′2) ≥ U∗(b, R′1)U

∗(b, R′2)

⇔ [p∗(R′1)(Ea)] [p∗(R′2)(S \ Ea)] ≥ [p∗(R′1)(Eb)] [p∗(R′2)(S \ Eb)]
⇔ [p(Ea)]

2 ≥ [p(Eb)]
2

⇔ p(Ea) ≥ p(Eb),

that is, R(R{1,2}) = R(R{1,2}). But since W (R′1) ∩W (R′2) = ∅ and W (R′1) ∪W (R′2) = X
the social likelihood relation generated by R at R{1,2} is indeterminate:

E ∼ (R{1,2},R) E ′ for all E,E ′ ⊆ S,

so that % (R{1,2},R) 6= % (R{1,2},R).
Upon reflection, this does seem right and (WP4) may be a good alternative to impos-

ing (P4) on the social preference at all profiles. Imposing Savage’s axioms at every profile
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not only yields a well-defined probabilistic social belief, but also forces that belief to be
the same at all profiles that generate the same social preference. However, as the above
example shows, a given social preference may summarize two preference profiles with radi-
cally different belief components —provided these differences are “offset”by countervailing
differences in tastes. Clearly, one cannot expect the same social belief to aggregate both
of these belief profiles well.

To conclude, let us briefly take stock:
(i) the social preference recommended by a Nash SWF at a given profile always satisfies
Savage’s fundamental axiom (P1) but may violate each of (P2) to (P4) —it does satisfy all
axioms when that profile is unanimous;
(ii) there are profiles where it may not be wise to expect the social preference to satisfy
axioms (P2) to (P4);
(iii) profile-dependent variants of Savage’s axioms can be defined —the Nash SWFs satisfy
a variant of (P4) guaranteeing a well-defined, non-degenerate (but non-probabilistic) social
belief at all profiles where a “good”outcome and a “bad”outcome exist.

5.2. Social preference reversals under harmful expansions of the outcome set

Independence of Harmless Expansions guarantees that the social ranking of two acts is
unaffected by the addition of an outcome that all individuals find at least as good as the
one they initially found worst. It does not prevent the social ranking to be affected by the
addition of an outcome that some agent finds worse than all initially relevant outcomes —a
harmful expansion.
Such social preference reversals do occur under the Nash SWFs. The following example

illustrates the possible extent of the phenomenon.
Let N = {1, 2} and X = {x, y} , so that an act a ∈ A(X) is completely determined by

the set Ea := {s ∈ S | a(s) = x} . Let R1, R2 be Savage preferences over A(X) such that
xP1y, yP2x, and p∗(R1) = p∗(R2) = p. Under the uniform Nash SWF, the social preference
at R{1,2} is represented by a social utility function U(·, X,R{1,2}) that is the product of the
(0, 1)-normalized utilities of the individuals. Since U∗(x,X,R1) = U∗(y,X,R2) = 1 and
U∗(y,X,R1) = U∗(x,X,R2) = 0,

U(a,X,R{1,2}) = U∗(a,X,R1)U
∗(a,X,R2)

= p(Ea)(1− p(Ea))

for all a ∈ A(X). Social utility is single-peaked in p(Ea), the probability that the act a
yields outcome x, with peak at p(Ea) = 1

2
.

Let now X ′ = {x, y, z} and let R′1, R′2 be Savage preferences over A(X ′) such that

U∗(x,X ′, R1) = 1, U∗(y,X ′, R1) = 1− ε, U∗(z,X ′, R1) = 0,

U∗(x,X ′, R2) = 0, U∗(y,X ′, R2) = ε, U∗(z,X ′, R2) = 1,

where 0 < ε < 1
2
, and p∗(R′1) = p∗(R′2) = p. Notice that the profile R′{1,2} coincides with

R{1,2} on A(X) and individual 1 finds the new outcome z worse than all previously relevant
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outcomes. For every a ∈ A(X) (a binary act with outcome inX = {x, y}), the social utility
of a at R′{1,2} is

U(a,X ′, R′{1,2}) = U∗(a,X ′, R′1)U
∗(a,X ′, R′2)

= [p(Ea) + (1− p(Ea))(1− ε)] [(1− p(Ea))ε]
= ε(1− ε) + ε(2ε− 1)p(Ea)− ε2 [p(Ea)]

2 .

Since 0 < ε < 1
2
, social utility is now decreasing in the probability that a yields outcome x.

In particular, the social ranking of all acts for which this probability is below 1
2
is reversed.

It should be stressed that such reversals are not proper to the Nash SWFs. Indeed, an
obvious corollary to our Theorem is that no SWF satisfies the Weak Pareto Principle, the
full independence axiom obtained by dropping proviso (iii) from the premise of Indepen-
dence of Harmless Expansions, and Continuity. This impossibility may be interpreted as
a version of Arrow’s theorem in the context of aggregation of Savage preferences.
However, it is possible to guarantee that society’s preference is unaffected by a harmful

expansion if the latter is also useless, i.e., if no individual finds the new outcome better
than all the initially relevant ones. Specifically, consider the following axiom:

Independence of Useless Expansions. For all (X,RN), (X ′, R′N) ∈ D, if (i) X ⊆ X ′,
(ii) R′N coincides with RN on A(X), and (iii) for all x′ ∈ X ′ and i ∈ N there exists some
xi ∈ X such that xiR′ix

′, then R(X ′, R′N) coincides with R(X,RN) on A(X).

This requirement is exactly dual to Independence of Harmless Expansions. It makes
sense in burden-sharing contexts where the best relevant outcome for each individual can
easily be identified but the worst outcome cannot. Given our Theorem, it is straightfor-
ward to show that the Weak Pareto Principle, Independence of Useless Expansions, and
Continuity characterize a class of SWFs that are dual to the belief-weighted Nash SWFs.
Define the (−1, 0)-normalized representation of a preference R ∈ R∗(X) to be the Savage
representation U(·, u, p) of R such that

inf
X
u = −1 and sup

X
u = 0.

Denote it ∗U(·, X,R). A SWFR is a (belief-weighted) dual Nash SWF if there is a function
γ : PN → ∆N such that, for all (X,RN) ∈ D and all a, b ∈ A(X),

aR(X,RN)b⇔ −
∏
i∈N

(− ∗U(a,X,Ri))
γi(p

∗(RN )) ≥ −
∏
i∈N

(− ∗U(b,X,Ri))
γi(p

∗(RN ))

Contrary to the Nash SWFs, these dual Nash SWFs are unattractive from the point
of view of fairness. Because the function (w1, ..., wn) 7→ −

∏
i∈N(−w)cii is strictly quasi-

convex on [−1, 0)N (when c � 0), the corresponding SWF is “equality-averse”. As an
illustration, suppose N = {1, 2} , X = {x, y} , let R be the uniform dual Nash SWF, and
let R{1,2} be a profile such that p∗(R1) = p∗(R2) = p and ∗U(x,X,R1) = ∗U(y,X,R2) = 0
and ∗U(y,X,R1) = ∗U(x,X,R2) = −1. Then

−(− ∗U(x,X,R1))(− ∗U(x,X,R2)) = 0
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whereas for any event E such that 0 < p(E) < 1,

−(− ∗U(xEy,X,R1))(−∗ U(xEy,X,R2)) = −(1− p(E))(p(E)),

hence, x P(X,R{1,2})xEy. Society prefers x, which yields individual 1’s favorite and 2’s
worst outcome in all states, to xEy, which gives each individual a chance to get her best
outcome.

5.3. Indeterminacy —and how to reduce it

The weight function γ associated with a belief-weighted Nash SWFR is not constrained by
the three axioms in the Theorem. Restrictions on γ may be obtained by imposing further
axioms on R. We explore here the consequences of Anonymity and State Neutrality. The
former is the usual requirement that the social preference should not be affected by a
relabeling of the individuals. The latter is a new axiom saying that the labeling of the
states of nature should be irrelevant.
Some notation is needed to define these properties. Let Π(N) be the set of bijections

from N into itself and let Π(S) be the set of bijections from S into itself. For any X ∈ X ,
π ∈ Π(N), pN ∈ PN , RN ∈ R(X)N , and z ∈ ∆N , define πpN ∈ PN , πRN ∈ R(X)N , and
πz ∈ ∆N by πpπ(i) = pi,

πRπ(i) = Ri, and πzπ(i) = zi for all i ∈ N.
Anonymity. For all (X,RN) ∈ D and π ∈ Π(N), R(X, πRN) = R(X,RN).

For any X ∈ X , π ∈ Π(S), a ∈ A(X), p ∈ P , and R ∈ R(X), define πa ∈ A(X) by
(πa)(π(s)) = a(s) for all s ∈ S, define πp ∈ P by (πp)(π(E)) = p(E) for all E ⊆ S, and
define πR ∈ R(X) by πa πR πb⇔ aRb for all a, b ∈ A(X). If pN ∈ PN and RN ∈ R(X)N ,
let πpN = (πp1, ..., πpn) and πRN = (πR1, ..., πRn).

State Neutrality. For all (X,RN) ∈ D and π ∈ Π(S), R(X, πRN) = πR(X,RN).

A more explicit formulation of the statement R(X, πRN) = πR(X,RN) reads aR(X,RN)b
⇔ πa R(X, πRN) πb for all a, b ∈ A(X). This means that permuting states of nature
yields a correspondingly permuted social ranking of the acts. Note that since constant
acts are unchanged under any permutation of the states, State Neutrality implies that the
social ranking of constant acts is unaffected by a relabeling of the states: xR(X,RN)y ⇔
xR(X, πRN)y for all x, y ∈ X.
Call a weight function γ symmetric if γ(πpN) = πγ(pN) for all pN ∈ PN and all

π ∈ Π(N) and call it invariant (under state relabeling) if γ(πpN) = γ(pN) for all pN ∈ PN
and all π ∈ Π(S).

Proposition. If R is a belief-weighted Nash SWF with associated weight function γ, then
(a) R satisfies Anonymity if and only if γ is symmetric,
(b) R satisfies State Neutrality if and only if γ is invariant.

Proof. Let R be a belief-weighted Nash SWF with associated weight function γ. The “if”
part of statements (a) and (b) is easy to check.
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Step 1. To prove the “only if”part of statement (a), let us assume that γ is not symmetric
and show that R violates Anonymity. Since γ is not symmetric, there exist pN ∈ PN ,
π ∈ Π(N), and i, j ∈ N such that

γi(pN) < γπ(i)(
πpN) and γj(pN) > γπ(j)(

πpN).

Without loss of generality, suppose i = 1 and j = 2. Letting c1 := γ1(pN), c2 := γ2(pN),
c′1 := γπ(1)(

πpN), and c′2 := γπ(2)(
πpN), we rewrite the above inequalities as

c1 < c′1 and c2 > c′2.

These inequalities imply that there exist numbers k1, k2 ∈ (0, 1) such that

c1
c2
<
k2
k1

<
c′1
c′2
. (5.4)

Fix two such numbers.
Let X ∈ X and let x, y ∈ X. For every ε ∈ (0, 1) , define the real-valued functions

uε1, u
ε
2, u3, ..., un on X by

inf
X
uε1 = 0, uε1(x) =

1

2
(1− εk1), uε1(y) =

1

2
, sup

X
uε1 = 1,

inf
X
uε2 = 0, uε2(x) =

1

2
(1 + εk2), u

ε
2(y) =

1

2
, sup

X
uε2 = 1,

inf
X
ui = 0, ui(x) = ui(y) = sup

X
ui = 1 for i = 3, ..., n.

For i = 1, 2, let Rε
i ∈ R∗(X) be the preference with Savage representation U(·, uεi , pi) and,

for i = 3, ..., n, let Ri ∈ R∗(X) be the preference with Savage representation U(·, ui, pi).
Let Rε

N = (Rε
1, R

ε
2, R3, ..., Rn). We claim that

xP(X,Rε
N)y and yP(X, σRε

N)x (5.5)

for ε small enough, meaning that R violates Anonymity.
To establish that (5.5) holds when ε is small enough, note that, because U(x, ui, pi) =

U(y, ui, pi) = 1 for i = 3, ..., n, we have

xP(X,Rε
N)y ⇔ [U(x, uε1, p1)]

c1 [U(x, uε2, p2)]
c2 > [U(y, uε1, p1)]

c1 [U(y, uε2, p2)]
c2

⇔
[

1

2
(1− εk1)

]c1 [1

2
(1 + εk2)

]c2
>

[
1

2

]c1 [1

2

]c2
⇔ (1− εk1)c1(1 + εk2)

c2 > 1

whereas

yP(X, πRε
N)x ⇔ [U(y, uε1, p1)]

c′1 [U(y, uε2, p2)]
c′2 > [U(x, uε1, p1)]

c′1 [U(x, uε2, p2)]
c′2

⇔ 1 > (1− εk1)c
′
1(1 + εk2)

c′2 .
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It remains to check that (1−εk1)c1(1+εk2)
c2 > 1 > (1−εk1)c

′
1(1+εk2)

c′2 when ε is small.
Define the real-valued functions W,W ′ on R2+ by W (z1, z2) = zc11 z

c2
2 , W

′(z1, z2) = z
c′1
1 z

c′2
2 .

Observe that, when ε is small, (1− εk1)c1(1 + εk2)
c2 = W (1− εk1, 1 + εk2) > 1 if W (1, 1)−

∂W
∂z1

(1, 1)εk1+
∂W
∂z2

(1, 1)εk2 > 1. The latter inequality holds if and only if c2k2 − c1k1 > 0,

which is guaranteed by the first inequality in (5.4). Likewise, when ε is small, (1−εk1)c
′
1(1+

εk2)
c′2 < 1 if c′2k2 − c′1k1 < 0, which holds because of the second inequality in (5.4).

Step 2. To prove the “only if”part of statement (b), let us assume that γ is not invariant
and show that R violates State Neutrality. Since γ is not invariant, there exist pN ∈ PN ,
π ∈ Π(S), and i, j ∈ N such that

γi(pN) < γi(πpN) and γj(pN) > γj(πpN).

Suppose again that i = 1 and j = 2 and let now c1 := γ1(pN), c2 := γ2(pN), c′1 := γ1(πpN),
and c′2 := γ2(πpN), so that c1 < c′1 and c2 > c′2, guaranteeing that there exist numbers
k1, k2 ∈ (0, 1) satisfying (5.4). Fix two such numbers.
Fix again X ∈ X , x, y ∈ X, ε ∈ (0, 1) , and consider the profile Rε

N = (Rε
1, R

ε
2,

R3, ..., Rn) constructed in Step 1. As we have shown,

xP(X,Rε
N)y ⇔ (1− εk1)c1(1 + εk2)

c2 > 1.

Next, because U(x, ui, πpi) = U(x, ui, pi) = 1 and U(y, ui, πpi) = U(y, ui, pi) = 1 for
i = 3, ..., n,

yP(X, πRε
N)x ⇔ [U(y, uε1, πp1)]

c′1 [U(y, uε2, πp2)]
c′2 > [U(x, uε1, πp1)]

c′1 [U(x, uε2, πp2)]
c′2

⇔ [uε1(y)]c
′
1 [uε2(y)]c

′
2 > [uε1(x)]c

′
1 [uε2(x)]c

′
2

⇔
[

1

2

]c′1 [1

2

]c′2
>

[
1

2
(1− εk1)

]c′1 [1

2
(1 + εk2)

]c′2
⇔ 1 > (1− εk1)c

′
1(1 + εk2)

c′2 .

Since we have shown in Step 1 that (1− εk1)c1(1 + εk2)
c2 > 1 > (1− εk1)c

′
1(1 + εk2)

c′2 when
ε is small, we conclude that xP(X,Rε

N)y and yP(X, πRε
N)x for ε small enough, meaning

that R violates State Neutrality.�
We have not found a compact characterization of the weight functions γ that are both

symmetric and invariant. The following example, however, shows that the two conditions
jointly do not force γ(pN) = ( 1

n
, ..., 1

n
) for every pN ∈ PN . For each i ∈ N and pN ∈ PN ,

let N(i, pN) = {j ∈ N | pj = pi} and define

γi(pN) =
|N(i, pN)|∑
j∈N |N(j, pN)| .

Under this function γ, the weight attached to an individual’s utility is proportional to the
number of individuals sharing her belief. We do not claim that the resulting Nash SWF
is appealing, and it is clear that symmetric and invariant weight functions which favor
eccentric (rather than popular) beliefs can also be constructed. What the example does
show is that a defense of the uniform Nash SWF (corresponding to γ(pN) = ( 1

n
, ..., 1

n
) for

every pN ∈ PN) requires going beyond traditional symmetry and invariance requirements.
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