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Abstract

A time bank is a group of people that set up a common platform to trade services among them-
selves. There are several well-known problems associated with this type of time banking, e.g.,
high overhead costs and difficulties to identify feasible trades. This paper constructs a non-
manipulable mechanism that selects an individually rational and time-balanced allocation which
maximizes exchanges among the members of the time bank (and those allocations are efficient).
The mechanism works on a domain of preferences where agents classify services as unaccept-
able and acceptable (and for those services agents have specific upper quotas representing their
maximum needs).
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1 Introduction

Time banks have now been established in at least 34 countries. In the United Kingdom, for example,
there are more than 300 time banks, and in the United States time banks are operating in at least 40
states.1 A time bank is a group of individuals and/or organizations in a local community that set up
a common platform to trade services among themselves. Services supplied by members of a time
bank typically include legal assistance, gardening services, medical services, child care and language
lessons. Members of a time bank earn time credit for each time unit they supply to members of the
bank and the earned credit can be spent to receive services from other members of the bank.2 For
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1“Time Banking: An Idea Whose Time Has Come?”. Yes Magazine.
2Some time banks are not based on a “one-for-one” time system, meaning that members of the time bank need not get

one unit of time back for each unit of time they supply (Croall, 1997).
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example, a gardener who supplies two hours of time may, for example, get a haircut and one hour of
child care in return for his gardening services. Even if time banks traditionally have had a very simple
organization, most of the nowadays existing time banks take advantage of computer databases for
record keeping, and a physical coordinator keeps track of transactions and match requests for services
with those who can provide them.

A critical factor for a time bank to function smoothly is the coordination device matching requests
for services with those who can provide them. Our basic observation is that this type of service
exchange shares many features with some classical markets previously considered in the matching
literature, including, e.g., housing markets (Scarf and Shapley, 1974; Abdulkadiroğlu and Sönmez,
1999; Aziz, 2016b), organ markets (Roth et al., 2004; Biró et al., 2009; Ergin et al., 2017), marriage
markets (Gale and Shapley, 1962), and markets for school seats (Abdulkadiroğlu and Sönmez, 2003;
Kesten and Ünver, 2015). In particular, if a time bank is organized as a matching market, the time
bank will have a structure of what in the matching literature is known as a many-to-many matching
market. This follows since any member of a time bank can trade services with any other member of
the very same time bank and there are no obstacles that prevent a member of a time bank to supply
and receive multiple services from members of the very same time bank. Such matching markets have
previously been considered by, e.g., Echenique and Oviedo (2006), Konishi and Ünver (2006), and
Hatfield and Kominers (2016).

The above mentioned matching markets are centralized as the agents in the system (e.g., tenants,
patients, or students) report their preferences over the items to be allocated (e.g., houses, organs, or
school seats) to a clearing house and a mechanical procedure determines the final allocation based on
the reported preferences and a set of predetermined axioms. Even if time banks often take advantage
of computer databases, there is no mechanical procedure that determines the trade of services among
the members in the bank based on reported preferences, and it is exactly in this respect that time banks
can learn from classical matching markets.

By organizing a time bank as a matching market, it will be possible to solve a number of problems
which have been associated with time banks across the world. For example, time banks typically
encounter long run organizational sustainability since they experience high overhead costs, e.g., as
staff is needed to keep the organization running and, in particular, to help out in the coordination
process (Seyfang, 2004). Moreover, it may be challenging for a physical coordinator to identify and
coordinate longer trading cycles, and members of time banks often experience that time credits are
comparatively easy to earn but harder to spend.3

A computer-based clearing house (e.g., an internet-based interface for reporting needs and re-
quests together with an algorithm for matching needs and requests), on the other hand, can help in
reducing costs related to coordination and it can identify and coordinate longer cycles in order to
maximize trade in the time bank. In addition, problems related to participation and maximality can be
solved by designing the matching algorithm in such a way that it always recommends maximal trades
where an agent can never lose by joining a time bank (individual rationality and maximality) and by
requiring that all members of the bank should receive exactly as much time back as they supply to the
bank (time-balance). Furthermore, those allocations turn out to be efficient.

Given the interest in allocations that are individually rational, maximal, and time-balanced, a first
3This is the reverse situation compared to conventional credits which generally are hard to earn, but easy to spend.
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observation is that such allocations always exist on the general preference domain.4 However, even
if an allocation satisfying these specific properties can be identified, two new problems arise. First,
it is often natural to require that the algorithm should be designed in such fashion that it is in the
best interest for all agents to report their preferences truthfully (non-manipulability). This property is
incompatible with individual rationality, efficiency and time-balance on a general preference domain
(Sönmez, 1999, Corollary 1).5 Second, because members of a time bank can exchange multiple time
units, it is not clear that it is easy for members to generally rank any two “consumption bundles”. For
example, is two hours of hairdressing, two hours of gardening and one hour of babysitting strictly
better, equally good, or less preferred to one hour of hairdressing, one hour of gardening and three
hours of housekeeping? Hence, it may be an obstacle for members to report their preferences if
multiple time units are on stake and if multiple agents are allowed to be involved in a cyclical trade.

As we demonstrate, the above two problems can be solved simultaneously by considering a re-
stricted preference domain. This restricted domain is an extension of the dichotomous domain pop-
ularized by Bogomolnaia and Moulin (2004).6 In the considered domain, individual preferences are
completely described by (i) partitioning the members of the bank (or, equivalently, the services that
the members provide) into two disjoint subsets containing acceptable and unacceptable members, and
by (ii) specifying a member specific upper time bound for each acceptable member. The former con-
dition reflects that an agent is not necessarily interested in all services provided in the bank (an agent’s
“horizontal” preference) whereas the latter condition captures the idea that an agent may, for example,
be interested in at most one haircut but can accept up to 10 hours of babysitting (an agent’s “verti-
cal” preference). One advantage of adopting this preference domain is that it facilitates for agents to
report their preferences as not all possible bundles have to be ranked strictly.7 Agents then strictly
prefer receiving more time units from acceptable services to receiving fewer time units from accept-
able services (without exceeding upper bounds and receiving unacceptable services). In this sense, an
agent may have many different indifference classes and preferences are not dichotomous but rather
polychotomous.

We define and apply a priority mechanism to solve the problem of exchanging time units between
members in a time bank. It is demonstrated that the priority mechanism can be formulated as a min-
cost flow problem (Proposition 1). Consequently, it is not only possible to identify time-balanced
trades, it is also computationally feasible. The definition of the priority mechanism is flexible as it can
be adopted on the restricted preference domain or the general domain. Our main result shows that the
priority mechanism is non-manipulable on the restricted preference domain and it always makes a se-
lection from the set of individually rational, maximal, and time-balanced allocations (Theorem 1). To
prove this result, a number of novel graph theoretical techniques are needed. In particular, Appendix

4This follows since the allocation in which all agents receive their initial endowments is individually rational and satisfy
time-balance. The conclusion then follows directly from the observation that the number of individually rational allocations
that satisfy time-balance is finite and, consequently, that there exists an allocation among those which maximizes trade in
the time bank.

5This impossibility should come as no surprise given the results in, e.g., Hurwicz (1972), Green and Laffont (1979),
Roth (1982), Alcalde and Barberà (1994), Barberà and Jackson (1995), or Schummer (1999).

6In fact, Bogomolnaia and Moulin (2004) and a series of subsequent papers, argue that it is natural to consider a dichoto-
mous domain in problems involving “time sharing”.

7The strict preference domain is often considered in the matching literature. However, the dichotomous domain is much
smaller in size than the strict preference domain, but is is not a subset of the strict domain since indifference relations are
allowed in the former but not in the latter domain.
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B demonstrates an equivalence result between the min-cost flow problem and a circulation-based
maximization problem.8

Due to the above mentioned impossibility, a priority mechanism where non-manipulability is
abandoned is considered on the general domain. In this case, the priority mechanism is demonstrated
to be at least be partly non-manipulable in the sense that any agent that regards the selection of the
priority mechanism as most preferred from the set of individually rational, efficient and time-balanced
allocations will be unable to manipulate the outcome of the mechanism in his advantage (Theorem 2).

A variety of real-life problems have previously been considered in the matching literature in-
cluding the above mentioned house allocation problem, kidney exchange problem and school choice
problem. There are, however, several differences between these problems and the time banking prob-
lem. For example, in the time banking problem, an agent may receive and supply multiple time units.
In the school choice problem and the kidney exchange problem, on the other hand, students are allo-
cated at most one school seat and a patient is involved in at most one kidney exchange, respectively.
Furthermore, in many matching problems including, e.g., the school choice problem and the house
allocation problem, preferences are typically strict and indifference relations are consequently not al-
lowed (the kidney exchange problem is often defined on a dichotomous domain). Generalizations to
allow for a weak preference structure have recently been proposed by Alcalde-Unzu and Molis (2011)
and Jaramillo and Manjunath (2012). However, both these papers only allow agents to trade at most
one object. The papers closest to the model investigated here are Athanassoglou and Sethuraman
(2011), Aziz (2016a), Biró et al. (2017) and Manjunath and Westkamp (2017), which we describe
below.

Athanassoglou and Sethuraman (2011) and Aziz (2016a) consider a housing market where ini-
tial endowments as well as allocations are described by a vector of fractions of the houses in the
economy. The fractional setting makes it possible to analyze, e.g., efficiency based on (first-order)
stochastic dominance, and it is demonstrated that the efficiency and fairness notions of interest con-
flict with non-manipulability. Even if a similar impossibility is present in the model considered in this
paper, the fractional setting is analyzed using different axioms and mechanisms. In addition, Athanas-
soglou and Sethuraman (2011) and Aziz (2016a) are unable to find any positive results related to
non-manipulability in their, respectively, considered reduced preference domains.

Biró et al. (2017) consider, as this paper, a model where agents are endowed with multiple units of
an indivisible and agent-specific good, and search for balanced allocations. In their reduced preference
domain, agents have responsive preferences over consumption bundles. On this reduced domain, they
demonstrate that, for general capacity configurations, no mechanism satisfies individual rationality,
efficiency, and non-manipulability. Given this negative finding, they characterize the capacity con-
figurations for which individual rationality, efficiency and non-manipulability are compatible. They
also demonstrate that for these capacity configurations, their defined Circulation Top Trading Cycle
Mechanism is the unique mechanism that satisfies all three properties of interest. Hence, the main dif-
ference between this paper and Biró et al. (2017) is that they consider a different preference domain
and, consequently, need a different mechanism to escape the impossibility result.

Finally, Manjunath and Westkamp (2017) have independently considered a model closely related
8The min-cost flow problem is considered in the main part of the paper since it is more intuitive and, moreover, can be

introduced using minimal notation.
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to the one considered here.9 In their model, an agent can supply distinct services and in our model
each agent supplies multiple copies of one service. They also require time-balance and consider
a preference domain classifying services as unacceptable and acceptable (no need to specify upper
bounds on services since each service is available in one unit). Given this, Manjunath and Westkamp
(2017) define a priority mechanism over the set of individually rational and efficient allocations. The
main differences between their work and ours is that (i) they allow agents having distinct services
whereas each agent in our model has a specific service that comes in multiple copies (ii) their priority
mechanism chooses from the set of individually rational and efficient allocations whereas ours chooses
from the set of individually rational and maximal allocations (and as we show, any priority mechanism
may choose different allocations in their setting and in ours), and (iii) for the non-manipulability
result they use a bipartite graph approach whereby capacities for unacceptable services are reduced
one-by-one (following the priority order) whereas we use a direct circulation based graph with upper
capacities on edges (where the min-cost flow corresponds to the allocation chosen by the priority
mechanism). In summary, Manjunath and Westkamp (2017) have a more general model and this
paper has a more demanding objective, since we find not only efficient but also maximal allocations.

The remaining part of the paper is outlined as follows. Section 2 introduces the theoretical frame-
work and some basic definitions. The priority mechanism is presented in Section 3. The main results
are presented in Section 4. Section 5 discusses our results and concludes. All proofs are relegated to
the Appendix.

2 The Model and Basic Definitions

This section introduces the time banking problem together with some definitions and axioms.

2.1 Agents, Bundles, and Allocations

Let N = {1, . . . , n} denote the finite set of agents. Each agent i ∈ N is endowed with ti ∈ N
units of time that can be used to exchange services with the agents in N . Let t = (t1, . . . , tn) denote
the vector of time endowments. Because the exact nature of the services is of secondary interest, the
problem will be described in terms of the time that an agent receives from and provides to other agents
in N . Let xij denote the time that agent i ∈ N receives from agent j ∈ N , or, equivalently, the time
that agent j provides to agent i. Here, xii represents the time that agent i ∈ N receives from or,
equivalently, spends with himself. It is assumed that xij belongs to the set N0 of non-negative integers
(including 0) representing standardized time units (e.g., 0 minutes for zero units, 30 minutes for one
unit, 60 minutes for two units, etc.)

The time that agent i ∈ N receives from the agents in N can be described by the bundle (or
vector) xi = (xi1, . . . , xin). The bundle where agent i ∈ N spends all time with himself is denoted
by ωi (where ωii = ti and ωij = 0 for j 6= i). An allocation x = (x1, . . . , xn) is a collection of n

9As of July 19, 2018 we have only seen a conference presentation of Manjunath and Westkamp (2017) and a preliminary
draft sent to us, no working paper is available on the webpages of the authors.
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bundles (one for each agent in N ). An allocation is feasible if

n∑
j=1

xij = ti for all i ∈ N, (1)

n∑
j=1

xji = ti for all i ∈ N. (2)

This means any agent i receives the same amount of time from other agents that the agent supplies to
other agents (recall that an agent can receive time from and spend time with himself). In this sense,
any feasible allocation satisfies the time-balance conditions (1) and (2). In the remaining part of the
paper, it is understood that any allocation is feasible.

2.2 Preferences and Preference Domains

A preference relation for agent i ∈ N is a complete and transitive binary relation Ri over feasible
bundles such that xiRix′i whenever agent i finds bundle xi at least as good as bundle x′i. Let Pi
and Ii denote the strict and the indifference part of Ri, respectively. Let Ri denote the set of all
preference relations of agent i ∈ N . A (preference) profile R is a list of individual preferences
R = (R1, . . . , Rn). The general domain of profiles is denoted by R = R1 × · · · × Rn. A profile
R ∈ R may also be written as (Ri, R−i) when the preference relation Ri of agent i ∈ N is of
particular importance.

A restricted preference domain R̃ = R̃1 × · · · × R̃n ⊂ R will be considered for our main
results. As explained in the Introduction, this restricted domain is based on the idea that any preference
relationRi ∈ R̃i (1) partitions the set of agentsN\{i} into two disjoint sets containing acceptable and
unacceptable agents, denoted by Ai(Ri) ⊆ N \ {i} and Ui(Ri) = N \ (Ai(Ri) ∪ {i}), respectively,
and (2) associates with each acceptable agent j ∈ Ai(Ri) an upper bound t̄ij ∈ N0 on how much
time agent i at most would like to receive from agent j. Here one may may interpret (1) as agent
i’s “horizontal preference” over acceptable and unacceptable services and (2) as agent i’s “vertical
preference” of how much agent i needs at most of each service. Then, for agent i ∈ N , the preference
relation Ri belongs to R̃i if for any allocations x and y:

(i) ωiPixi if xik > 0 for some k ∈ Ui(Ri) or xij > t̄ij for some j ∈ Ai(Ri),

(ii) xiIiyi if both ωiPixi and ωiPiyi,

(iii) yiPixi if yiRiωi, xiRiωi and
∑

j∈Ai(Ri)
yij >

∑
j∈Ai(Ri)

xij , or

(iv) yiIixi if yiRiωi, xiRiωi and
∑

j∈Ai(Ri)
yij =

∑
j∈Ai(Ri)

xij .

The first condition states that an agent strictly prefers not to be involved in any trade rather than re-
ceiving time from an unacceptable agent or exceeding his upper bound from an acceptable agent. The
second condition means that an agent is indifferent between any two bundles containing an unaccept-
able agent or exceeding his upper bound from an acceptable agent. The last two conditions reflect a
monotonicity property and state that an agent weakly prefers bundles with weakly more acceptable
agents whenever bundles do not contain any unacceptable agents and as long as the time bounds t̄ij
are not exceeded for acceptable agents.
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Remark 1. For the restricted domain R̃, a report Ri for agent i ∈ N is given by a set of acceptable
agents Ai(Ri) together with an upper time bound t̄ij for each j ∈ Ai(Ri). An equivalent formulation
of the reported preference for agent i ∈ N is a vector t̄i = (t̄i1, . . . , t̄in) ∈ Nn0 where t̄ii = ti. Then
t̄ij = 0 stands for j ∈ Ui(Ri), i.e., agent i is willing to accept at most zero time units from agent j.
Whether the first or the second formulation is used is just a matter of choice.

Remark 2. For any agent i ∈ N and Ri ∈ R̃i, the preference Ri is polychotomous in the following
way: for any h = 0, 1, . . . ,min{ti,

∑
j∈Ai(Ri)

t̄ij} = m, all allocations x and y such that for all
j ∈ Ai(Ri) xij ≤ t̄ij and yij ≤ t̄ij for all j ∈ Ai(Ri), xik = 0 = yik for all k ∈ Ui(Ri) and∑

j∈Ai(Ri)
yij = h =

∑
j∈Ai(Ri)

xij are ranked indifferent by Ri. Let I(h) denote this indifference
class. Then under Ri all allocations in I(m) are strictly preferred to all allocations in I(m− 1), and
in general, for h = 1, . . . ,m, underRi all allocations in I(h) are strictly preferred to all allocations in
I(h−1). Thus,Ri containsm+2 indifference classes (where I(0) = {ωi} and ωi is strictly preferred
to all allocations which are positive for some unacceptable service or exceeds the time bound for an
acceptable service). In this sense, preferences belonging to R̃i are polychotomous.

2.3 Axioms and Mechanisms

Let F(R) denote the set of all feasible allocations at profile R ∈ R̃. Allocation x ∈ F(R) is
individually rational if, for all i ∈ N , xiRiωi. Allocation x ∈ F(R) Pareto dominates allocation x′ ∈
F(R) if xiRix′i for all i ∈ N and xjPjx′j for some j ∈ N . An allocation is efficient if it is not Pareto
dominated by any feasible allocation. An allocation x is maximal at R if

∑
i∈N

∑
j∈Ai(Ri)

xij ≥∑
i∈N

∑
j∈Ai(Ri)

x′ij for all individually rational allocations x′. All individually rational and maximal
allocations at profileR ∈ R̃ are gathered in the setX (R) ⊂ F(R). Note thatX (R) 6= ∅ for allR ∈ R̃
and that any x ∈ X (R) is efficient.10

A mechanism ϕ with domain R̃ chooses for any profile R ∈ R̃ a feasible allocation ϕ(R) ∈
F(R). Mechanism ϕ is manipulable at profile R ∈ R̃ by an agent i ∈ N if there exists R′i such that
R′ = (R′i, R−i) ∈ R̃, and for x = ϕ(R) and x′ = ϕ(R′) we have x′iPixi. If mechanism ϕ is not
manipulable by any agent i ∈ N at any profile R ∈ R̃, then ϕ is non-manipulable (on the domain R̃).

3 Priority Mechanisms

Often in real life the chosen allocation is based on a priority mechanism: any such mechanism uses a
priority-ordering, which may be deduced from a lottery or from a schematic update based on previous
allocation rounds. Let π : N 7→ N be an exogenously given priority-ordering where the highest
ranked agent is i ∈ N with π(i) = 1, the second highest ranked agent is i′ ∈ N with π(i′) = 2, and
so on.

Given R ∈ R̃, i ∈ N and Z∗ ⊆ X (R), allocation x ∈ Z∗ belongs to the set X i,Z∗(R) if xiRix′i
for all x′ ∈ Z∗, i.e., if allocation x is weakly preferred to any allocation in the setZ∗ under preference
Ri. In the special case where the set Z∗ is based on the choice made by some agent i′ 6= i for some
profile R ∈ R̃, i.e., where Z∗ = X i′,Z∗∗(R) for some Z∗∗ ⊆ X (R), the set X i,Z∗(R) is denoted by
X i,i′(R).

10If x is not efficient, then there exists an individually rational allocation x′ such that x′iRixi for all i ∈ N and x′jPjxj

for some j ∈ N . But then
∑

i∈N
∑

j∈Ai(Ri)
xij <

∑
i∈N

∑
j∈Ai(Ri)

x′ij meaning that x is not maximal, a contradiction.
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Definition 1. An allocation x ∈ X (R) is agent-i-optimal at profile R ∈ R̃ if x ∈ X i,X (R)(R).

Note the difference between the sets X i,X (R)(R) and X i,Z∗(R). The former set contains all agent i’s
most preferred allocations in the set X (R) whereas the latter set contains all agent i’s most preferred
allocations in a subset Z∗ of X (R).

Definition 2. Let π be a priority ordering and N = {i1, . . . , in} be such that π(ik) = k for all
k = 1, . . . , n. Then x ∈ X (R) is a π-priority allocation at profile R ∈ R̃ if:

(i) x belongs to X i1,X (R)(R),

(ii) x belongs to X ik,ik−1(R) for all k = 2, . . . , n.

One way to think about the set of priority allocations is the following. First, the highest ranked agent
identifies all his most preferred allocations in the set X (R). Then the agent with the second highest
priority identifies all his most preferred allocations in the set identified by the highest ranked agent,
then the agent with the third highest priority identifies all his most preferred allocations in the set
identified by the second highest ranked agent, and so on. Formally, this means that if x is a π-priority
allocation, then:

x ∈ X in,in−1(R) ⊆ X in−1,in−2(R) ⊆ . . . ⊆ X i2,i1(R) ⊆ X i1,X (R)(R) ⊆ X (R). (3)

Note that a priority allocation is agent-i-optimal for the agent i ∈ N with π(i) = 1. Moreover, all
agents in N are, by construction, indifferent between all allocations in the set X in,in−1(R).

Definition 3. A mechanism ϕ is a priority mechanism if there exists a priority ordering π such that
for all profiles R ∈ R̃ the mechanism ϕ selects a π-priority allocation from the set X (R).

Since a priority mechanism always makes a selection from the set X (R), it chooses an individually
rational, maximal, and time-balanced allocation (which is efficient).

4 Results

As we show in Section 5, it is impossible to construct an individually rational, efficient, and non-
manipulable mechanism on the general domainR. Our first main result demonstrates that this impos-
sibility can be avoided on the restricted domain R̃ if trades are based on a priority mechanism.

Theorem 1. Any priority mechanism with domain R̃ is non-manipulable.

Below we demonstrate that a priority mechanism can be formulated as a min-cost flow problem
(Proposition 1). To formulate this problem, a bipartite graph needs to be defined and specific val-
ues must be attached to the vertices and the edges in the graph.

Definition 4. For any profile R ∈ R̃, the bipartite graph g = (N,M,E, u) is defined by two disjoint
sets of vertices, N and M , a set of edges, E, and a profile of upper bounds u = (u(i, l))(i,l)∈E on the
flow between any two edges, defined by:

(i) N = {1, . . . , n},

8
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Figure 1: Edge capacity 1 is color-coded by gray, while capacity 2 is denoted by black edges. The
edges connecting two copies of the same agent are marked by dashed lines.

(ii) M = {n+ 1, n+ 2, . . . , n+ n},

(iii) E = {(i, n+ j) ∈ N ×M : j ∈ Ai(Ri) or j = i}, and

(iv) for all i ∈ N and each edge (i, n + j) ∈ E where j ∈ Ai(Ri) we set u(i, n + j) = t̄ij and
u(i, n+ i) = ti.

Example 1. Let N = {1, 2, 3, 4}, t1 = t2 = 1 and t3 = t4 = 2. Let R ∈ R̃ be such that
A1(R1) = A2(R2) = {3, 4} (with t̄13 = t̄14 = t̄23 = t̄24 = 1) and A3(R3) = A4(R4) = {1, 2}
(with t̄31 = t̄32 = t̄41 = t̄42 = 2). The constructed graph g is depicted in Figure 1.

The interpretation of the graph g is that the agents in M should be regarded as copies of the agents
in N and in particular, agent n + i ∈ M is the copy of agent i ∈ N . Furthermore, agents i ∈ N

and n + j ∈ M are connected by an edge if agent j is acceptable for agent i or if j = i. Because
an allocation will be defined by the flows between the agents in N and M , the above construction
guarantees that n+j ∈M can only provide time for an agent i ∈ N if agent i finds agent j acceptable
or if agent j is his own copy. Finally the upper bound on flow from n + j to i where j ∈ Ai(Ri) is
equal to the upper bound of how much time agent i wants from agent j. A flow x specifies for each
(i, l) ∈ E a non-negative integer xil ∈ N0.11 Any flow x is equivalent to an allocation in the usual
sense: xii = xi(n+i), xij = xi(n+j) for all j ∈ Ai(Ri), and xij = 0 for all j ∈ Ui(Ri).

Recall that the time-balance conditions (1) and (2) must hold for any allocation. In the language of
min-cost flow problems, this means that the required flow (between the vertices in the bipartite graph
g) is dictated by conditions (1) and (2) which must be reformulated for the bipartite setting as follows:∑

j∈Ai(Ri)∪{i}

xi(n+j) = ti for all i ∈ N, (1’)

∑
i∈Aj(Rj)∪{i}

xj(n+i) = ti for all i ∈ N. (2’)

A natural interpretation of the bipartite graph is therefore that agents inM supply time to the demand-
ing agents in N . To obtain a maximal outcome, it is important to prevent flows between agents in N

11In general, flows may assign real numbers to edges, but for our purpose we restrict flows to assign integers.
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and their own copies in M whenever there are other feasible flows or, equivalently, to prevent agents
to supply time to their own copies whenever it is feasible to supply time to other distinct agents (by the
time-balance conditions, any agent supplying time to other agents also receives in return more time
from acceptable agents). This can be achieved by introducing an artificial cost whenever agents sup-
ply time to themselves. Let, for this purpose, cil denote the cost associated when l ∈ M is supplying
time to agent i, and let, in particular, for each (i, l) ∈ E:

cil =

{
−1 if l = n+ i

0 otherwise.
(4)

For a given profile R ∈ R̃, a given graph g = (N,M,E, u) and given costs c = (cil)(i,l)∈E , the
(artificial) cost is minimized at any allocation x ∈ F(R) that solves the following maximization
problem:12

max
∑

(i,l)∈E

cilxil s.t. conditions (1’), (2’), xil ∈ N0 and xil ≤ u(i, l) for all (i, l) ∈ E. (5)

An allocation x ∈ F(R) is a maximizer if it is a solution of the maximization problem (5). Let
V(R, c) ⊆ F(R) denote the set of all maximizers at profile R ∈ R̃ for given costs c = (cil)(i,l)∈E .
For notational convenience, the value of an allocation x at cost c is given by V (x, c) =

∑
(i,l)∈E cilxil.

Lemma 1. If allocation x belongs to V(R, c) at profile R ∈ R̃, then x ∈ X (R).

The set of maximizers V(R, c) is non-empty for any profile R ∈ R̃ since V(R, c) ⊆ X (R) and X (R)

is non-empty and finite for all R ∈ R̃. However, as stated above, agents need not be indifferent
between all allocations in the set V(R, c) since V(R, c) ⊆ X (R). Hence, in order to define a priority
mechanism based on a solution to maximization problem (5), a refined selection from the set V(R, c)

is necessary which will be based on the priority-ordering π.
To modify the costs c in order to take the priority-ordering π into account, let ε0 ∈ (0, 1) and

εi−1 = (1 + ti)εi for each i ∈ {1, . . . , n}. By construction of εi, it follows that:13

1 > ε0 ≥ εi >
n∑

k=i+1

tkεk > 0 for all i ∈ {0, . . . n− 1}. (6)

To guarantee a larger flow to agents with higher priorities, the value associated with a flow will be
monotonically increasing with higher priorities. More specifically, let for each (i, l) ∈ E:

c̃il =

{
−1 if l = n+ i

επ(i) otherwise.

The above construction means that the agent with the highest priority (i.e., the agent with π(i) = 1)

12Note that costs of edges are non-positive and the max-cost flow problem is equivalent to the usual min-cost flow
problem.

13To see this, note that εn−1 = (1 + tn)εn > tnεn since εn > 0 and, consequently, εn−2 = (1 + tn−1)εn−1 =
εn−1 + tn−1εn−1 > tnεn + tn−1εn−1. Condition (6) then follows by repeating these arguments.
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will receive the highest edge weight (for edges (i, l) ∈ E\{(i, n + i)}), the agent with the second
highest priority (i.e., the agent with π(i) = 2) will receive the second highest edge weight, and so on.

Our second main result demonstrates that a mechanism that selects an allocation from the set
of maximizers for each profile in R̃ and any given priority-ordering is a priority mechanism. From
Theorem 1, it is already known that such a mechanism is non-manipulable on the domain R̃.

Proposition 1. For a given priority-ordering π, a mechanism ϕ selecting for each profile R ∈ R̃ an
allocation from V(R, c̃) is a priority mechanism based on π.

5 Discussion

5.1 Singleton Cores

Theorem 1 establishes that in our time-banking problem there exist mechanisms which are individ-
ually rational, efficient, and non-manipulable on the domain R̃. This is surprising as previously a
number of impossibility results for the combination of these axioms have been established by apply-
ing a singleton cores result by Sönmez (1999). Below we connect his result to time banking.

Let R̃1 denote the set of all profiles R ∈ R̃ such that for all i ∈ N and all j ∈ Ai(Ri) we have
t̄ij = 1 and ti = 1 (i.e., any agent demands at most one time unit of any acceptable service and any
agent provides at most one unit of time). This corresponds to the classical dichotomous domain by
Bogomolnaia and Moulin (2004). Then it is easy to check that the domain R̃1 satisfies Assumption
A and B of Sönmez (1999).14 Hence, his main result applies, which shows the following: if there
exists an individually rational, efficient, and non-manipulable mechanism, then for any profile where
the core is non-empty we have (i) the core is single-valued and (ii) the mechanism chooses a core
allocation. However, here for any R ∈ R̃1, if the core of R is non-empty, then the set of individually
rational and efficient allocations is a singleton (and the core is a singleton).15 But then any priority
mechanism chooses this allocation for the profile R.

Once non-unitary endowments are allowed (as it is the case for time banks), the domain R̃ does
not satisfy Assumption B by Sönmez (1999). We show this in the example below.

Example 2. We use the instance introduced in Example 1. Recall that, N = {1, 2, 3, 4}, t1 = t2 = 1

and t3 = t4 = 2, and R ∈ R̃ is such that A1(R1) = A2(R2) = {3, 4} (with t̄13 = t̄14 = t̄23 =

t̄24 = 1) and A3(R3) = A4(R4) = {1, 2} (with t̄31 = t̄32 = t̄41 = t̄42 = 2). If 3 comes before
4 in the priority order π, then (3, 3, 12, 0) is the unique π-priority allocation (where this stands for
1 receiving one time unit from 3, 2 one unit from 3 and 3 receiving one unit from each 1 and 2). If
4 comes before 3 in the priority order π, then (4, 4, 0, 12) is the unique π-priority allocation. Note
that (3, 3, 12, 0)P3(3, 4, 1, 2)P3ω3 but there exists no R′3 such that (3, 3, 12, 0)P ′3ω3P

′
3(3, 4, 1, 2) (as

14In our framework (without externalities) Assumption A says that for any allocation x we have xiIiωi if and only if
xi = ωi and Assumption B says that whenever for two allocations x and y with xiPiyi and xiRiωi, there exists a preference
relation R′i such that xiR

′
iωiR

′
iyi.

15Note that for any R ∈ R̃1, if the set of individually rational and efficient allocations is not a singleton, then any two
individually rational and efficient allocations dominate (via some coalition) each other and the core must be empty: more
formally, for R ∈ R̃ and any two distinct individually rational and efficient allocations x and y, we have for S = {i ∈
N : xii = 0} we have for all i ∈ S, xiRiyi, and for some j ∈ S, xjPjyj , i.e., x dominates y with the coalition S (and
the same argument applies for y in the role of x and x in the role of y). Thus, the core (which consists of all undominated
allocations) is empty.
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(3, 3, 12, 0)P ′3ω3 implies 1 ∈ A3(R
′
3) and t̄′31 ≥ 1, and thus (3, 4, 1, 2)P ′3ω3), i.e., Assumption B is

violated for the domain R̃.

The above example also shows that in general we do not have dichotomous preferences in the
domain R̃. We may have many distinct indifference classes for preferences in the domain R̃ and yet
by Theorem 1, there exists an individually rational, efficient, and non-manipulable mechanism.

Finally, we show that a priority mechanism with the same order may select different allocations
when choosing from the set of individually rational and efficient allocations (as in Manjunath and
Westkamp (2017)).

Example 3. LetN = {1, 2, 3, 4} and t1 = t2 = t3 = t4 = 1. LetR ∈ R̃ be such thatA1(R1) = {2},
A2(R2) = {3}, A3(R3) = {1, 4}, and A4(R4) = {3} (with t̄12 = t̄23 = t̄31 = t̄34 = t̄43 = 1).
Then X (R) = {(2, 3, 1, 4)}, i.e. there is a unique individually rational and maximal allocation which
is chosen by any priority mechanism. However, the allocation (1, 2, 4, 3) is individually rational and
efficient which is selected by any priority mechanism which chooses from the whole set of individually
rational and efficient allocations and where agent 4 occupies the first position in the priority order.

5.2 General Domain

On the general domain, there does not exist any mechanism satisfying individual rationality, efficiency,
and non-manipulability. This is a simple consequence of (Sönmez, 1999, Corollary 1): The general
domain contains as subdomain marriage markets where N is partitioned by men M and women W
where for any “marriage market” R we have ti = 1 and Ri is strict for all i ∈ N , and both (i)
Ai(Ri) = W for all i ∈ M and t̄ij = 1 for all j ∈ W and (ii) Ai(Ri) = M for all i ∈ W

and t̄ij = 1 for all j ∈ W . For such marriage markets, the core is non-empty and not a singleton,
i.e., by (Sönmez, 1999, Corollary 1) there does not exist any individually rational, efficient, and non-
manipulable mechanism.

Our final result demonstrates that this impossibility can, at least partly, be escaped. For this, with
slight abuse of notation, let for any R ∈ R the set X (R) stand for the set of all individually rational
and efficient allocations under R. Then one can adapt the definition of a priority mechanism as in
Section 3. We show that a priority mechanism is partly non-manipulable on the general domain R in
the sense that any agent i ∈ N who finds the selection of the priority mechanism to be agent-i-optimal
at a given profile inR will be unable to manipulate the mechanism at that specific profile.

Theorem 2. For any profile R ∈ R and any given priority-ordering π, a priority mechanism is non-
manipulable by any agent i ∈ N that finds the selection of the mechanism agent-i-optimal at profile
R. In particular, the agent i ∈ N with π(i) = 1 cannot manipulate a priority mechanism at any profile
R ∈ R.

5.3 Concluding Remarks

This paper has modeled a time bank as a matching market. On a restricted but yet natural preference
domain, it has been demonstrated that a priority mechanism can be formulated as a min-cost flow
problem and, furthermore, that such mechanism is non-manipulable and always makes a selection
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from the set of individually rational, efficient, and time-balanced allocations. No mechanism with
these properties exists on the general preference domain (Sönmez, 1999, Corollary 1).

Given that non-manipulability must be relaxed to obtain individual rationality, efficiency and time-
balance on the general preference domain, this paper has demonstrated that non-manipulability need
not be completely abandoned as manipulation possibilities can be prevented for some agents even
on the general domain. Results with a similar flavor has previously been obtained in the literature.
For example, on the marriage market (Gale and Shapley, 1962), it is well-known that there exists
no mechanism that prevents both men and women from manipulating but no man (or woman) can
successfully manipulate a mechanism that always selects the men-optimal (women-optimal) stable
matching (Dubins and Freedman, 1981; Roth, 1982). Another example is the assignment market
(Shapley and Shubik, 1972) where it is well-known that either the buyers or the sellers can manipulate
any individually rational and stable mechanism on the general domain but where it is possible to
construct mechanisms that prevent at least one of these groups from manipulating (Demange and
Gale, 1985). A final example is from Andersson et al. (2014) where it is shown that it is impossible
for an agent to successfully manipulate an envy-free and budget-balanced mechanism if it selects
the agent’s most preferred envy-free and budget-balanced outcome for each preference profile on a
general preference domain (this rule is also minimally manipulable in the sense of Andersson et al.,
2014).

Even if the considered priority mechanism has been demonstrated to satisfy all properties of inter-
est on a restricted preference domain (and even partly on the general domain), the mechanism can be
criticized from a fairness perspective as it discriminates low priority agents. For this reason, it is im-
portant to characterize the entire class of mechanisms that satisfies the axioms of interest to see if such
discrimination can be avoided or not (or alternatively, one might randomize over priority orderings).
Moreover, even if the considered domain restriction is natural for the time banking problem, it may
also be of importance to find a maximal domain result where the above mentioned impossibility can
be escaped as this will give important information about how much more detailed preferences may be
reported to a time bank. Both open problems are left for future research.

Appendix A: Proofs

Appendix A contains the proofs of all results except Theorem 1, which is in Appendix B.

Proof of Lemma 1. Suppose that allocation x belongs to V(R, c). The fact that x is feasible and
individually rational follows directly from the construction of the graph g = (N,M,E, u) and by
definition of the maximization problem (5), i.e., n + j ∈ M is only connected to an agent i ∈ N if
agent j ∈ Ai(Ri) ∪ {i}, all flows are between connected agents and the flow never exceeds the upper
bounds t̄ij on any edge (i, n+ j) ∈ E.

To show that allocation x is maximal, it will be demonstrated that x minimizes the total flow
between agents i ∈ N and their respective clones i + n ∈ M . Because x ∈ V(R, c) is a maximizer,
it follows that:∑

(i,l)∈E

cilxil ≥
∑

(i,l)∈E

cilx
′
il for any feasible allocation x′ in program (5). (7)
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Given the construction of the costs in condition (4), it now follows from condition (7) that:

n∑
i=1

ci(n+i)xi(n+i) ≥
n∑
i=1

ci(n+i)x
′
i(n+i).

Because ci(i+n) = −1 for all i ∈ N , by condition (4), the above inequality can be rewritten as:

n∑
i=1

x′i(n+i) ≥
n∑
i=1

xi(n+i).

But this condition means that allocation x minimizes the total flow between agents i ∈ N and their
respective clones i+ n ∈M among all feasible allocations, which is the desired conclusion. �

Proof of Proposition 1. It is first demonstrated that V(R, c̃) ⊆ V(R, c) for each profile R ∈ R̃.
Suppose now that x ∈ V(R, c) but x′ /∈ V(R, c) for some x′ that is feasible in the optimization
program defined in (5). To reach the conclusion, it is sufficient to show x′ /∈ V(R, c̃).

Note that x ∈ V(R, c) and x′ /∈ V(R, c) imply V (x, c) > V (x′, c). This conclusion together with
cil ∈ {−1, 0} and xil ∈ N0 for all (i, l) ∈ E and ε0 < 1 gives V (x, c) > V (x′, c) + ε0. Because
c̃il ≥ cil for all (i, l) ∈ E by construction, it holds that V (x, c̃) ≥ V (x, c). This together with
the above inequalities imply V (x, c̃) > V (x′, c) + ε0. To complete this part of the proof, we show
that V (x′, c) + ε0 ≥ V (x′, c̃), since this condition together with the above conclusions then show
V (x, c̃) > V (x′, c̃), i.e., that x′ /∈ V(R, c̃).

To demonstrate V (x′, c) + ε0 ≥ V (x′, c̃), we partition E into two disjoint sets, E1 and E2, where
the former set contains all edges (i, l) in E where l 6= i + n and the latter contains all edges (i, l) in
E where l = i + n. Consequently, cil = 0 < c̃il = εi for all (i, l) ∈ E1 and cil = c̃il = −1 for all
(i, l) ∈ E2. Hence, the inequality V (x′, c) + ε0 ≥ V (x′, c̃) can be rewritten as:

V (x′, c) + ε0 =
∑

(i,l)∈E

cilx
′
il + ε0,

=
∑

(i,l)∈E1

cilx
′
il +

∑
(i,l)∈E2

cilx
′
il + ε0,

=
∑

(i,l)∈E2

c̃ilx
′
il + ε0,

≥
∑

(i,l)∈E

c̃ilx
′
il

=
∑

(i,l)∈E1

c̃ilx
′
il +

∑
(i,l)∈E2

c̃ilx
′
il,

=
∑

(i,l)∈E1

εix
′
il +

∑
(i,l)∈E2

c̃ilx
′
il,

= V (x′, c̃).
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or, equivalently, as:

ε0 ≥
∑

(i,l)∈E1

εix
′
il. (8)

Conditions (6) and (1’) together with the fact that εixil ≥ 0 for all (i, l) ∈ N ×M now give:

ε0 >
∑
i∈N

εiti ≥
∑

(i,l)∈E1

εix
′
il.

But then condition (8) must hold. Hence, V(R, c̃) ⊆ V(R, c). This conclusion and Lemma 1 imply
that for a given priority ordering π, any mechanism ϕ choosing for each profile R ∈ R̃ an allocation
from V(R, c̃), selects a π-priority allocation from X (R).

To conclude the proof, it needs only to be demonstrated that ϕ is a priority mechanism. But this
follows directly from the construction of the weights εi. To see this, recall from condition (6) that
εi >

∑n
k=i+1 tkεk for all i ∈ {1, . . . , n − 1}. Hence, assigning one additional time unit to agent i

in maximization problem (5) is strictly preferred to assigning tj time units to each agent j ∈ N with
π(i) < π(j). Thus, V(R, c̃) is a selection from V(R, c) ⊆ X (R) that first maximizes the number
of time units that agent i1 ∈ N with π(i1) = 1 exchanges with acceptable agents (i.e., a selection
from the set Z i1,V(R,c)(R)), and then maximizes the number of time units that agent i2 ∈ N with
π(i1) = 2 exchanges with acceptable agents (i.e., a selection from the set Z i2,i1(R)), and so on. This
is the definition of a priority mechanism. �

Proof of Theorem 2. To obtain a contradiction, suppose that the priority mechanism ϕ is agent-i-
optimal at profile R ∈ R but that agent i ∈ N can manipulate the mechanism at profile R. This
means that there are two profiles R ∈ R and R′ = (R′i, R−i) ∈ R such that x = ϕ(R), x′ = ϕ(R′)

and x′iPixi. It will be demonstrated that x′ ∈ X (R) because if this is the case, then the mechanism ϕ

cannot be agent-i-optimal since x = ϕ(R) and x′iPixi. Hence, to obtain the desired contradiction, it
needs to be established that x′ is individually rational and efficient at profile R, i.e., that x′ ∈ X (R).

It is first proved that x′ is individually rational at profile R, i.e., that x′jRjωj for all j ∈ N . The
relation x′jRjωj for j 6= i follows directly as Rj = R′j and x′ = ϕ(R′) ∈ X (R′). Relation x′iRiωi
follows by the assumption x′iPixi and the fact that xiRiωi (as x = ϕ(R) ∈ X (R)). Hence, x′jRjωj
for all j ∈ N .

It is next proved that x′ is efficient at profile R, i.e., that there is no allocation x′′ that Pareto
dominates x′ at profile R. To obtain a contradiction, suppose that there is an allocation x′′ that Pareto
dominates x′ at profileR (without loss of generality, it can be assumed that x′′ is efficient). This means
that x′′jRjx

′
j for all j ∈ N and x′′jPjx

′
j for some j ∈ N and, in particular, that x′′iRix

′
iPixi. As x′ is

individually rational at profile R, by the above conclusion, it follows that x′′ is individually rational
at profile R. But then because x′′ is individually rational and efficient at profile R, it follows that
x′′ ∈ X (R). Then the mechanism ϕ cannot be agent-i-optimal since x′′i Pixi. Hence, x′ is efficient at
profile R.

Hence, x′ ∈ X (R) and it then follows that a priority mechanism is non-manipulable by any agent
i ∈ N that finds the selection of the mechanism agent-i-optimal at profile R ∈ R.

The fact that agent i ∈ N with π(i) = 1 cannot manipulate a priority mechanism at any profile
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R ∈ R follows directly from the above conclusion and the fact that a priority mechanism, by defini-
tion, always selects an agent-i-optimal allocation for each profile R ∈ R for the agent i ∈ N with
π(i) = 1. �

Appendix B: Proof of Theorem 1

This Appendix first introduces a graph theoretical tool, referred to as the circulation-based model (Ap-
pendix B.1). It will then be demonstrated that the circulation-based model, without loss of generality,
can replace the min-cost flow problem when analysing the priority mechanism (Appendix B.2). These
insights enable us to prove Theorem 1 (Appendix B.3).

Appendix B.1: The Circulation-Based Model

Let Z denote the set containing all integers. For any profile R ∈ R̃, construct a weighted directed
graph DR = (V,A) with capacities c : A 7→ N0 and weights w : A 7→ Z on its arcs. For ease of
notation, we write D instead of DR whenever the profile R is unambiguous. Each agent i ∈ N is
represented by two vertices, denoted by iin and iout. These 2n vertices build the vertex set V of the
graphD. We draw a directed arc between each pair of type (iin, iout), pointing to iout and refer to this
arc as the inner arc of agent i ∈ N . The inner arc has capacity c(iin, iout) = ti. If agent i finds agent
j acceptable, then (jout, iin) belongs to the (directed) arc set A of the graph D. Any such arc is called
regular and has capacity c(jout, iin) = t̄ij , i.e., the upper time bound on how much time agent i wants
from agent j. Note also that the vertices of type iin have incoming regular arcs and a single outgoing
inner arc, while vertices of type iout have outgoing regular arcs and a single incoming inner arc. We
define in Appendix B.2 the weights w : A 7→ Z using a priority order. An instance of the model is
illustrated in Figure 2 (the figure contains some concepts which are explained later in the Appendix).

Definition 5. A circulation is a function C : A 7→ N0 where:

(i) C(u, v) ≤ c(u, v) for every (u, v) ∈ A,

(ii)
∑

(u,v)∈AC(u, v) =
∑

(v,w)∈AC(v, w) for every vertex v ∈ V .

Condition (i) is a capacity constraint which ensures that agents do not exchange services beyond their
time endowment ti = c(iin, iout), and that the upper time bound t̄ij on how much time agent i wants
from agent j is not exceeded. Condition (ii) is the classical flow conservation rule, stating that the
total flow of the incoming arcs of a vertex equals the total flow of the outgoing arcs, i.e., that an agent
provides and receives the same amount of time. The latter condition can also be formulated as:

C(iin, iout) =
∑

(jout,iin)∈A

C(jout, iin) =
∑

(iout,kin)∈A

C(iout, kin) for every agent i ∈ N .

We call C(iin, iout) the flow value at agent i. Circulations in a graph D are in one-to-one correspon-
dence with allocations in the time banking problem, e.g., for an allocation x the corresponding flow
value of the inner arc at agent i is C(iin, iout) = ti−xii and the flow value of any regular arc at agent
i is C(jout, iin) = xij for all j ∈ N . The allocation value for agent i is defined as ti − xii. Another
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Figure 2: Agents are denoted by i, j, k and l. Inner arcs are marked by horizontal lines, while regular arcs are
bent. Arc weights and capacities are written above and below each arc, respectively. The arc weights of agents
i, j, k and l on the inner arcs are given by 36, 38, 34 and 32, respectively. All arc weights on regular arcs are
set to zero. Each agent has an endowment of 3. The max weight circulation saturates all regular edges except
(lout, jin) which is left empty, and (lout, iout) which carries one unit of flow. Hence, agent i sends to 2 time
units to agent k and 1 time unit to agent l, agent j sends 2 time units to agent i and 1 time unit to agent k, agent
k sends 3 time units to agent j, and agent l sends 1 time unit to agent i.

way of expressing this is that the allocation value ti − xii of agent i in the time banking problem
equals the flow value C(iin, iout) at agent i in the circulation model.

Appendix B.2: Replacement Result

This section demonstrates that by placing appropriate weights on the arcs in the graph D, the max-
imum weight circulations correspond to the outcome of the min-cost flow problem used in Sec-
tion 4 to identify the outcome of the priority mechanism (Proposition 2). This result implies that
the circulation-based model can be adopted in the proof of Theorem 1.

Let π be a priority ordering. Let tmax be the largest time endowment of any agent inN , and define
the weight w(u, v) on each arc (u, v) in the directed graph D = (V,A) by:

w(u, v) =

{
t
2(n+1−π(i))
max if (u, v) = (iin, iout),

0 otherwise.
(9)

In Figure 2 this means that agents j and l have the highest and the lowest priorities, respectively (note
also that tmax = 3 since all agents, by assumption, have capacity 3). Let w(C) denote the weighted
sum of flow values of the agents in N at circulation C, i.e., w(C) =

∑
i∈N C(iin, iout) · w(iin, iout).

Proposition 2. For any given profile R ∈ R̃, let C be a maximum weight circulation where the
weights are defined by condition (9). Let C ′ be the circulation corresponding to an allocation x′

selected for R by a priority mechanism ϕ based on π. Then C ′(iin, iout) = C(iin, iout) for each
i ∈ N .
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Proof. As in the statement of the proposition, let C be a maximum weight circulation and let C ′ be
the circulation corresponding to an allocation x′ selected by a priority mechanism. Suppose, to obtain
a contradiction, that C ′(jin, jout) 6= C(jin, jout) for some j ∈ N . Let agent i be the agent with the
highest priority in π where this holds. Suppose also, without loss of generality, that π(k) = k for all
k ∈ N . To reach the desired contradiction, we consider two cases.

Case (i): C ′(iin, iout) < C(iin, iout). In this case, the maximum weight circulation C assigns
a higher allocation value to agent i than the priority mechanism. We show by induction that this
contradicts the rules of the priority mechanism. Suppose first that agent i is the highest ranked agent
according to the priority order π and recall that the priority mechanism, by construction, restricts
the set of maximal allocations to those that maximize the allocation value of i (see condition (3) in
Section 3). Thus there is no allocation that assigns agent i a higher allocation value than the allocations
in this chosen set, and, consequently, no circulation that assigns agent i a higher value. Hence, agent
i cannot be the agent with the highest priority. Suppose now that agent i is the second highest ranked
agent according to the priority order π. Again, by condition (3) this agent restricts the set of allocations
further. And so, the maximum weight circulation C is still in the chosen set when agent i restricts the
set of allocations further, and it can, consequently, not have a higher allocation value for agent i than
C ′. This argument can be repeated inductively to reach the conclusion that it cannot be the case that
C ′(iin, iout) < C(iin, iout).

Case (ii): C ′(iin, iout) > C(iin, iout). Note first that both C and C ′ are feasible circulations at
profileR. Because agent i is the agent with the highest priority in π whereC ′(iin, iout) 6= C(iin, iout),
by assumption, it follows that C ′(kin, kout) = C(kin, kout) for all agents k = 1, . . . , i − 1. It will
be demonstrated that agents i+ 1, . . . , n cannot make up for the loss C suffered on arc (iin, iout) and
thus C cannot be of maximum weight since C ′ is a feasible circulations at profile R. Recall first that
the set N0 contains only positive integers, so the difference between C ′(iin, iout) and C(iin, iout) is at
least 1. By construction of the weights on the inner arcs, defined by condition (9), it then follows that:

[C ′(iin, iout)− C(iin, iout)] · t2(n−i+1)
max ≥ t2(n−i+1)

max . (10)

Note next that, in the the extreme case, all agents with lower priorities than agent i have flow value
zero in C ′ and a flow value of tmax in C. This means that the weighted sum of the flow values at
agents i+ 1, . . . , n at circulation C is at most:

tmax ·
n∑

j=i+1

t2(n−j+1)
max . (11)

Now, the value of the sum (11) is strictly lower than the right hand side of inequality (10). Conse-
quently, even in the the extreme case when all agents with lower priorities than agent i have flow value
zero in C ′ and a flow value of tmax in C, it holds that w(C ′) > w(C). However, this contradicts that
C is a maximum weight circulation since C ′ is a feasible circulation at graph DR.

Appendix B.3: The Proof

Let ϕ be the priority mechanism based on π where π(i) = i for all i ∈ N . To obtain a contradiction,
suppose that ϕ can be manipulated by some agent i ∈ N at a profile R ∈ R̃. This means that there
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are two profiles R ∈ R̃ and R′ = (R′i, R−i) ∈ R̃ such that for x = ϕ(R) and x′ = ϕ(R′) we have
x′iPixi. Note that R′i 6= Ri. Let C1 and C2 be the maximum weight circulations for the graphs DR

and DR′ induced by the profiles R and R′ = (R′i, R−i), respectively.
The next lemma shows that we may suppose that the set of acceptable agents reported by agent

i at preference relation R′i is a proper subset of the set of acceptable agents reported by agent i at
preference relation Ri.

Lemma 2. Without loss of generality, we may suppose Ai(R′i) ⊆ Ai(Ri).

Proof. We first show Ui(Ri) ⊆ Ui(R
′
i). To see this, suppose j ∈ Ui(Ri) but j /∈ Ui(R′i), i.e., that

agent j is unacceptable underRi but acceptable underR′i. Since x′iPixi, it must then hold that x′ij = 0

by definition of the preferences in R̃i. Hence, any regular arc of type (jout, iin) where j /∈ Ui(R′i)
in the graph DR′ but j ∈ Ui(Ri) in the graph DR will not be active in the solution C1 at profile R′.
Hence, Ui(Ri) ⊆ Ui(R

′
i) ∪ {j ∈ Ai(R

′
i) : x′i(n+j) = 0}. But then we may choose R′′i such that

A(R′′i ) = Ai(R
′
i)\{j ∈ Ai(R

′
i) : x′i(n+j) = 0} and t̄′′ik = t̄′ik for all k ∈ A(R′′i ), and C1 remains

a solution for R′′ = (R′′i , R−i) ∈ R̃. But for x′′ = ϕ(R′′) this implies x′′i Iix
′
i and x′′i Pixi. Hence,

Ai(R
′′
i ) ⊆ Ai(Ri) and x′′i Pixi.

Recall now that, for any profile inR ∈ R̃, each agent k ∈ N reports a set of acceptable agentsAk(Rk)
together with an upper bound on how much time t̄kj agent k ∈ N at most would like to receive from
each acceptable agent j ∈ Ak(Rk). By Remark 1, the report Rk is equivalent to the vector t̄k where
t̄kk = tk and t̄kj = 0 for all j ∈ Uk(Rk). This together with the conclusion in Lemma 2 imply that
there exists at least one agent j that is acceptable for agent i under Ri where agent i reports a strictly
lower or higher time bound t̄′ij at profile R′ than under profile R (i.e., t̄′ij < t̄ij or t̄′ij > t̄ij ). In
general, a manipulation R′i by agent i can consist of both underreporting and overreporting t̄ij’s for
acceptable agents. There are two possible cases for manipulations: one with overreporting and the
other with only underreporting time bounds.

First, consider the case where there is overreporting. If there exists j ∈ N\{i} such that x′ij > t̄ij ,
then by definition of R̃i, ωiPix′i and since x is individually rational under R, we have xiPix′i, a
contradiction. Otherwise x′ij ≤ t̄ij for all j ∈ N\{i} and we can just replace t̄′i with t̄′′i such that
t̄′′ij = min{t̄ij , t̄′ij} for all j ∈ N\{i}. Let R′′i denote i’s preference associated with t̄′′i . Then x′ is still
a maximizer for the profile (R′′i , R−i) and therefore the manipulation only consists of underreporting
upperbounds which are below t̄i.

Second, it remains to establish that agent i cannot manipulate by underreporting time bounds
for acceptable agents, i.e., t̄′ij ≤ t̄ij for all j ∈ N\{i}. Below we are going to show that agent i
cannot gain by underreporting one time bound for an acceptable agent. This is enough to establish
that agent i never can gain by reporting a lower bound for several agents at the same time. Because
any such misreport can be decomposed into a sequence of manipulations in which at each step only
one upper bound t̄ij is changed at the time and agent i is never made better off at any step. Formally,
let k ∈ Ai(Ri) for which t̄′ik < t̄ik and consider the misreport t̄(1)i where t̄(1)ij = t̄ij for all j 6= k

and t̄(1)ik = t̄′ik. Let x(1) be the allocation chosen by the priority mechanism when i reports t(1).
Below we show that agent i cannot gain by reporting t̄(1)i instead of t̄i. In particular,

∑
j∈Ai(Ri)

xij ≥∑
j∈Ai(Ri)

x
(1)
ij . Thus, xiRix

(1)
i . If there is another agent ` 6= k such that t̄(1)i` 6= t̄′i` then consider t̄(2)
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where t̄(2)ij = t̄
(1)
ij for all j 6= ` and t̄(2)i` = t̄′i`. Suppose again that agent i cannot gain by reporting

t̄
(2)
i instead of t̄(1)i . This means again that

∑
j∈Ai(Ri)

x
(1)
ij ≥

∑
j∈Ai(Ri)

x
(2)
ij . Thus, by transitivity

xiRix
(2). This argument can be repeated inductively until the point that t̄(p)i = t̄′i, and if in each

step agent i never gains by reporting t̄(j)i instead of t̄(j−1) we have shown that agent i cannot gain by
reporting t̄′i instead of t̄i. Hence, to complete the proof of Theorem 1, it is enough to show that agent
i cannot gain by misreporting t̄′ij for one agent j ∈ Ai(Ri).

It only remains to rule out that agent i cannot gain by reporting a strictly lower time bound t̄ij .
Translating this into the terminology of the circulation-based model, this can equivalently be expressed
as the flow value C(iin, iout) at agent i in a maximum weight circulation cannot be increased by
reducing the capacity on a regular arc (jout, iin). Given this insight, a large part of the remaining
proof will focus on a regular arc (jout, iin).

Recall now that C1 denotes the maximum weight circulations for the true preferences R induced
by the graph DR, and that C2 denotes the maximum weight solution for the misrepresented pref-
erences R′ induced by the graph DR′ . Furthermore, by the assumption that agent i can manipu-
late the priority mechanism, it follows that C2 has a larger flow value at agent i than C1 does, i.e.,
C2(iin, iout) > C1(iin, iout). By construction of the weights in condition (9), the circulation value
of C2 cannot be the same as the circulation value of C1 if the flow value differs for at least one
agent. Thus, the circulation value of C2 must be strictly smaller than the circulation value of C1, i.e.,
w(C2) < w(C1). Note also that the circulation C2 is a feasible circulation in DR since the flows re-
main below the capacity on each edge and it preserves flow conservation. However, the circulation C2

is not optimal in the graph DR since the circulation value of C2 is strictly smaller than the circulation
value of C1 and the circulation C1 is optimal in DR.

Consider next the function defined by the circulation C1 − C2 where C1(u, v) − C2(u, v) ∈ Z
for each arc (u, v) in the graph DR. This function assigns a negative value to the arc (u, v) if the
flow through the arc is larger at circulation C2 than at circulation C1. For convenience, one can think
of these “negative” arcs as arcs turned backwards, with the usual positive flow value on them. Since
both C1 and C2 are circulations in the graph DR, their difference also obeys flow conservation and as
such, it can be decomposed into cycles.

Note first that a cycle decomposition of C1 − C2 need not be unique for the profiles R and
R′. To obtain one such decomposition, we use a simple inductive algorithm that produces a cycle
decomposition of C1 − C2 in a finite number of iterations. This algorithm uses the flow value of
C1−C2 on each arc (u, v) in the graphDR but will not use any information about the arc weights (arc
weights are considered below). First, identify a cycle, say C, based on the circulationC1−C2 and take
its forward or backward arc with a lowest absolute flow value on it. Suppose that the lowest absolute
flow value at some agent in the cycle C is q, then q feasible cycles of type C can be identified. These
cycles represent the first q cycles in the decomposition of C1 − C2. Then, reduce the flow value on
each arc included in the cycle C by q. This will give an “updated” circulation-based on the “original”
circulation C1 −C2. Now, the arc with the lowest flow value in the updated circulation is guaranteed
to null its flow value. Hence, the updated circulation has one less arc and, consequently, one less
cycle than the original circulation. Note, however, that the remaining cycles in the updated circulation
still obeys flow conservation. We proceed in this manner until the whole circulation C1 − C2 is
decomposed into cycles. Note also that since N0 is restricted to a set of positive bounded integers,
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this procedure ends in a finite number of iterations. Moreover, the absolute flow value on an arc
monotonically (but not strictly monotonically) decreases in each inductive step.

Note that the cycles in the decomposition are not necessarily arc-disjoint from each other (i.e.,
several distinct cycles in the decomposition can pass through the same arc), but due to the inductive
argument above, each arc in the cycle decomposition is either a forward arc or a backward arc, de-
pending on the sign ofC1(u, v)−C2(u, v). More precisely, forward arcs are positive, while backward
arcs are negative. Thus, it cannot be the case that one cycle in the decomposition uses an arc with
positive value, while another cycle uses the same arc with negative value.

Consider now a cycle decomposition of the circulation C1 − C2 and add the arc weights to the
arcs in all cycles included in the decomposition. Based on the sign of the total weight of a cycle in
the decomposition, we distinguish positive, zero and negative weight cycles. A positive weight cycle
is called an augmenting cycle. Note that all augmenting cycles pass through (jout, iin), because any
augmenting cycle which does not pass through (jout, iin) would increase the circulation value of C2

in DR′ , which is impossible since C2 is optimal in the graph DR′ .

Lemma 3. Suppose that C1−C2 is decomposed into cycles using the inductive decomposition algo-
rithm from the above. Then:

(i) there exists an augmenting cycle,

(ii) a cycle of weight zero consists exclusively of arcs of weight zero,

(iii) there are no negative weight cycles.

Proof. The proof of Part (i) follows directly since w(C1) > w(C2) and w(C1) equals w(C2) plus
the weight of each cycle in the cycle decomposition of C1 − C2. Part (ii) follows by construction
of the weights, i.e., a cycle of weight zero consists exclusively of arcs of weight zero (obviously, no
combination of the weights on inner arcs with coefficients in the open interval between 0 and tmax
can add up to zero).

Part (iii) is proved by contradiction. Suppose that there is a cycle C of negative total weight in the

cycle decomposition of C1 − C2. Let the reverse of C be denoted by
←
C . The reverse

←
C has positive

total weight and preserves the sign of C2 − C1 on each of its arcs by construction of the inductive

decomposition algorithm. Moreover, we will show that,
←
C can be added to C1 without violating flow

conservation or any capacity constraint in DR. Thus, C1 +
←
C is a circulation of larger weight than

C1. Let now (u, v) be an arbitrary arc in the reverse cycle
←
C . It will be demonstrated that:

0 ≤ C1(u, v) +
←
C (u, v) ≤ c(u, v). (12)

Condition (12) implies that C1 cannot be a maximum weight circulation in the graph DR which

contradicts our assumption. We need to consider two cases. Suppose first that
←
C (u, v) ≥ 0. Then:

C1(u, v) +
←
C (u, v) ≤ C1(u, v) + [C2(u, v)− C1(u, v)] = C2(u, v) ≤ c(u, v).

Note also that because C1(u, v) and
←
C (u, v) are non-negative at the arc (u, v), it follows directly

that C1(u, v) +
←
C (u, v) ≥ 0. Hence, condition (12) holds when

←
C (u, v) ≥ 0. Suppose next that
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←
C (u, v) < 0. In this case:

C1(u, v) +
←
C (u, v) < C1(u, v) ≤ c(u, v).

Furthermore:

C1(u, v) +
←
C (u, v) ≥ C1(u, v) + [C2(u, v)− C1(u, v)] = C2(u, v) ≥ 0.

Hence, condition (12) also holds when
←
C (u, v) < 0.

Lemma 3 thus demonstrated that all cycles in the cycle decomposition ofC1−C2, which pass through
an inner arc, are augmenting cycles. However, we do not know whether these cycles use the arc
(jout, iin) as a forward arc or as a backward arc. The following lemma sheds light on this.

Lemma 4. Suppose that C1−C2 is decomposed into cycles using the inductive decomposition algo-
rithm from the above, and let (jout, iin) be an arbitrary arc in some cycle in the cycle decomposition
of C1 − C2. Then (jout, iin) is a forward arc.

Proof. Note first that C2(jout, iin) is bounded from above by the decreased capacity of (jout, iin) in
DR′ . IfC1(jout, iin) ≤ C2(jout, iin), thenC1 is feasible in the graphDR′ and has a larger weight than
C2, which contradicts the optimality of C2 in the graphDR′ . Thus, C1(jout, iin)−C2(jout, iin) > 0,
which implies that (jout, iin) is a forward arc in all cycles in the decomposition of C1 − C2.

Finally, consider the flow value C1(iin, iout) − C2(iin, iout). To prove Theorem 1, we only need to
establish that C1(iin, iout) − C2(iin, iout) ≥ 0 because this contradicts the assumption that x′iPixi.
For this condition to be false, the arc (iin, iout) must be a backward arc in at least one cycle in the
cycle decomposition of C1 − C2. However, as concluded in the above, being a backward arc in one
cycle also implies being a backward arc in all cycles. From Lemma 3 we know that all cycles that
passes through (iin, iout) are augmenting cycles. Lemma 4 then states that the augmenting cycles use
(jout, iin) as a forward arc, and they must, consequently, leave iin either as a forward arc, along the
only outgoing arc (iin, iout), or as a backward arc, along any of the regular arcs running to iin. Neither
of these two cases allows (iin, iout) to be a backward arc. This concludes the proof and shows that
agent i cannot manipulate the priority mechanism ϕ at any profile R ∈ R̃.
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