Université de Montréal
,“.,‘ Faculté des arts ot des aciences
Départeme:

CAHIER 9534

ESTIMATION AND INFERENCE IN NEARLY UNBALANCED,
NEARLY COINTEGRATED SYSTEMS

L

Serena NG' and Piarre PERRON'

Département de sciences économiques, Université de Montréal and Centre de
recherche et développement en économique (C.R.DEE.).

August 1995

The authors acknowledge grants from the Social Sciences and Humanities Research
Council of Canada (SSHRC), the Fonds pour la formation de chercheurs et I'aide & la

C.P. 6128, succursale Centre-ville Télécopieur (FAX): {514) 343-5831
Montréal (Québec) H3C 347 Courrier électronique {E-Mail): econo@tornade ERE Umontreal. 0A



Ce cahier a également été publi¢ au Centre de recherche et développement en
gconomique (C.R.D.E.) {publication no 3295).

Dépét légal - 1995
Bibliothéque naticnale du Québec
Bibliothéque nationale du Canada ISSN 0709-9231




RESUME

Cet article s'attarde au réle de la normalisation dans un contexte d'estimation par
moindres carrés des vecteurs de cointégrations. 1l est démontré, par le biais d'un
exemple empirique et d'expériences de Monte Carlo, que lorsqu'une des variables (1)
retourne fortement vers sa moyenne, comme cCest le cas lorsqu'il y a une grande
composante moyenne mobile négative ou encore lorsque le ratio signal-bruit gst faible,
certaines normalisations vont donner des estimés de moindres carrés qui ont de
mauvaises propriétés en échantillons finis et qui sont trés inconsistants dans un cadre
asymptotique local bien détini, alors que des normalisations alternatives peuvent donner
des estimés avec de trés bonnes propriétés. Le choix de Ja variable dépendante a aussi
des implications pour les résidus basés sur des tests de racine unitaire pour la
cointégration. On utilise deux modsles asymptotiques locaux pour fournir une explication
théorique de ces résultats. On suggére de classer la densité spectrale & fréquence zéro
des séries en différence premiére comme point de repére en pratique pour déterminer
quelle variable dépendante devrait étre utilisée.

Mots clés : racine unitaire, cointégration, normalisation.

ABSTRACT

This paper considers the role of normalization in least squares estimations of
cointegrating vectors. It is shown, by means of an empirical example and Monte Cario
simulations, that when one of the I(1) variables has a strong tendency for mean reversion,
as would be the case when there is a large negative moving-average component or a low
signal-to-noise ratio, some normalizations will yield least squares estimates that have very
poor finite sample properties and are outright inconsistent in a well-defined local
asymptotic framework, while alternative normalizations can yield estimates with very good
properties. The choice of the regressand also has implications for residual-based unit
foot tests for cointegration. We use two local asymptotic models to provide theoretical
explanations to these results. Ranking the spectral density at frequency zero of the first-
differenced series is suggested as a practical guideline to determine which variable to use
as the regressand.

Key words : unit root, cointegration, normalization.






1. Introduction

Cointegration is an important concept. It provides a-tight analytical framework for analyzing
the comovements of variables at low frequencies. A convenient way to obtain consistent esti-
mates of cointegrating vectors is least squares estimation. This paper is concerned with the
robustness of the static least squares estimator in single equation estimations of cointegrating
vectors and of the role of normalization in estimating these cointegrating relationships.

A static cointegrating regression consists of regressing a variable belonging to the coin-
tegrated system on the contemporaneous values of the remaining variables in the system,
where all variables are known to be or can be tested as being J(1). An important finding,
due to Stock (1987), is that the least squares estimator for this regression is super-consistent.
That is to say, it converges at a rate of 7. However, it has also been shown that serial cor-
relation in some series and/or correlation among the variables in the system will, in general,
induce as§mptotic bias, asymmetry, and nuisance parameters to the limiting distribution of
the least squares estimator. See Phillips and Hansen (1990) among others. Accordingly, the
least squares estimator is sub-optimal relative to fully efficient estimators such as the FIML
estimator of Johansen (1991), and the Dynamic Ordinary Least Squares [DOLS} estimator
of Saikkonen (1991) and Stock and Watson (1993).

In spite of the inefficiency of the least squares estimator, its properties are still worthy of
investigation for several reasons. First, the least squares estimator provides the theoretical
basis for the construction of more efficient estimators. Indeed, the fully-modified estima-
tor [FM-OLS] of Phillips and Hansen (1990} and the Canonical Cointegrating Regression
[CCR] of Park (1992) are built upon consistency of the static OLS estimator. Second, super-
consistency of the static OLS estimator implies that the estimates should be reasonably
precise. This provides a rationale for using the least squares residuals from the static regres-
sion as the basis of tests for cointegration. See, for example, Phillips and Quliaris (1990).
Properties of the least squares estimator have direct implications for the size and power
of tests for cointegration to the extent that they affect the properties of the least squares
residuals. Third, least squares estimation of the cointegrating vector provides an estimate
of “equilibrium error” for use in subsequent estimations of error correction models. Least
squares estimation of the long-run cointegrating relationships therefore affects the estimated
dynamics of the cointegrated system.

Estimations of cointegrating vectors require the practitioner to take a stand on normal-
ization. In most instances, this means deciding which variable to put on the left hand side as
the regressand. This has not been seen as an issue of much consequence as the conventional



wisdom bholds that while the normalization is known to imply different point estimates for
elements of the cointegrating vector (except in the unrealistic situation when the R? of the
regression is unity), it is not thought to have implications for the properties of the estimator
in large samples. In particular, all normalizations yield super-consistent estimates. Accord-
ingly, the regressions are usually normalized in 2 way to facilitate economic interpretation.
However, few (if any) studies have examined if and when normalization affects the precision
of the estimates. Our analysis in subsequent sections suggest that it does. We show, us-
ing a bivariate model, that the least squares estimator can yield drastically different point
estimates of the cointegrating vector depending on the normalization. Section 2 suggests
two data generating processes to be used for analysis and presents simulation results which
highlight the parameter space where the estimation problem will arise. Section 3 provides
a theoretical explanation for the simulation results by means of local asymptotic analyses.
Section 4studies the properties of residual based unit root tests in this context. Some ob-
servations on alternative estimators of cointegrating vectors are discussed in Section 5. We
conclude with practical guidelines for inference and estimation.

We shall use the after-tax Fisher equation to give a synopsis of the problem. The Fisher
equiation is defined as

(1=1)i=r+7%,

where 7 is the average marginal tax rate, i is the nominal interest rate, 7° is the expected
rate of inflation, and r is the real interest rate which is assumed to be a constant. The
expected rate of inflation is unobserved, and replacing it by the actual rate of inflation will
induce an errors-in-variable problem. Least squares estimation will yield estimates that are
inefficient and possibly suffer from simultaneity bias. But as long it can be shown that 1 and
x are I(1) variables and that they are cointegrated, consistency of the estimates is implied by
standard asymptotic results. To show this, we need to review the unit root and cointegration
tests used in this study, as well as estimators of the spectral density at frequency zero used

to construct these tests.

1.1 Preliminaries

Throughout this analysis, we use three statistics to test for the presence of a unit root,
namely, the Phillips and Perron (1988) Zay test, its modified variant MZ.,,, and the t,,
statistic of Said and Dickey (1984). These statistics are also used for testing the pull hypoth-
esis of no cointegration. A constant term is included in the regressions where appropriate.
The Said and Dickey (1984) t,, statistic is constructed from an augmented autoregression



with a constant and & lagged first-differences of the data. The statistic tends to overreject
the unit root hypothesis when there is a large negative MA component in Ay,. However,
as discussed in Ng and Perron (1995), the size of the test is more robust if we use a data
dependent method to select the truncation lag, k. In this analysis, k is selected using a
general to specific procedure to test for the significance of the last lag beginning from the
largest lag, kmaz. [See Ng and Perron (1995) for details). _

The Phillips-Perron Zoy test is defined as T(& — 1) = (s* = s?)(2T-2 ST 52,)7, where
¥: are the demeaned data, 52 = -1 ZL, a2, ‘and @y are the residuals from the first-order
autoregression

Yo =p+ay + u,. ‘ (1)

The estimate of the spectral density at frequency zero of u;, denoted s?, is constructed
by applying a Quadratic kernel to the sample covariances of the regression residuals. The
bandwidth is selected using Andrews’ ( 1991) automatic procedure based on an AR(1) ap-
proximation. Note that to ¢nsure consistency of the unit root and cointegration tests, the
estimated residuals from (1) must be used instead of the (demeaned) first-differences of the
data [See Phillips and Ouliaris (1990)].

The MZ,, statistic is relatively new and warrants some explanation. Perron and Ng
{1994) discuss a class of tests proposed by Stock (1990) which can be viewed as modifications
of tests of Phillips-Perron and Sargan-Bhargarva. The MZ,, statistic, a member of this class,
is defined as r

MZ. = (7 -T )1y 7)1,
=1
It can be viewed as a modified Phillips-Perron test because it can be written as

MZoy = Zaw + T(& - 1)2/2,

where & is the least squares estimate of a in the autoregression (1). Even though & converges
to 1 at rate T under the standard asymptotic framework, Nabeya and Perron (1994) showed
that & is inconsistent for a when the noise function of the unit root series has an AR or MA
coefficient local to -1.

The properties of the least squares estimator imply that the M Zoyu statistic is asymptot-
ically equivalent to Zou since & is consistent for q = 1. However, as shown in Perron and
Ng (1994), Z,,, will diverge to ~o0 regardless of the choice of the spectral density estimator
when the root of Ay, is local to unity, and a kernel estimator based on the estimated residu-
als from (1) will speed up the rate of divergence. The problem originates from the fact that
@ is not consistent for a in these local cases, and the estimated residuals give inconsistent
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estimates of the autocovariances. For this reason, kernel based Zo, tests are severely over-
sized as Schwert (1989) and many others have shown using simulations. The M Z,, statistic
achieves an exact size that is quite close to the nominal size because the modification factor.
T(& — 1)?/2, offsets the explosive terms in the unmodified statistic, i.e. Zau.

It is important to clarify that MZ,, achieves small size distortions in the boundary cases
only-if a consistent estimator of the non-normalized spectral density at frequency zero is
used. An estimator that we have investigated in some detail is the autoregressive spectral
density estimator, first used by Stock (1990). It is defined as

k
sha=0u/(1- 22)3.-)’, (2)
where values for b; and o2 are obtained from the regression:
1 k
Ay = o+ boye-1 + Z biDye-j + € (3)
=1
Note that the lagged level ye—1 is needed to ensure that the statistic is bounded above zero
under the alternative hypothesis of stationarity. Otherwise, the estimate converges to zero
100 fast and the test MZo, is inconsistent.

The kernel and s%p estimators are both consistent when the roots of Ay: are bounded
away from the unit circle, and the two estimators should give very similar estimates under
standard conditions. Note that the estimator formulated according to (2) and (3) is consis-
tent for the true spectral density function of the first-differences of the data only under the
null hypothesis of a unit root because the estimates are bounded above zero even under the
alternative of stationarity. In spite of this, it is still superior to kernel based spectral density
estimators that use the residuals from (1) from the point of view of unit root tests. To see why
this is the case, note that for an ARMA process Ay, satisfying A(L)Ay: = ¢+ B(L)ey, the
spectral density at frequency zero is defined as fa,(0) = 02B(1)*/A(1)*. Thus, fay{0) =0
if y, is stationary. However, if y. is I(1) but the moving average component is close to -1,
then B(1) and hence fay{0) will be close to zero. When the error process is highly nega-
tively autocorrelated, fay(0) will also be small because A(1) is large. As discussed earlier,
& is inconsistent in both cases in the limit, and it is in precisely these two cases that kernel
estimators based on estimated residuals from (1) will severely over estimate fay(0). The shr
estimator does not depend on & and has been shown by Perron and Ng (1994) to consis-
tently estimate fa,(0) even when Ay, has an MA or an AR coefficient local to -1. This has

desirable implications for unit root tests.



From the above discussion, it becomes clear that kernel estimators based on the estimated
residuals and s, based upon (3) are constructed with consistency of the unit root tests in
mind. However, better estimates are possible if one’s interest is in Jay(0) itself. For kernel
based estimators, the demeaned first-differences of the data can be used in place of the
estimated residuals from (1). For the autoregressive spectral density estimator, one can
obtain more efficient éstimates using an autoregression of the form (3) without the inclusion
of the lagged level. As we will see later, this statistic plays an important role in our analysis.

We now summarize the saljent implications of this subsectjon:

* The Z,, and MZ,,, tests are asymptotically equivalent except when the noise function
of the series exhibits large negative serial correlation. In that case, Z,,, diverges to —co
but MZ,, is O,(1). Of the three tests considered, the size of Z,, is most distorted,
and the size of M Z,, is more robust to a large negative MA component than t,,,.

]

® The spectral density at frequency zero of Ay is small when there is negative serial

correlation in the residuals.

With this backdrop, we now turn to our empirical example.

1.2 Testing the Fisher Equation

To test the Fisher equation, we use monthly observations from 1954:1 10 1993:11 for the
U.S. taken from CITIBASE (479 obsérvations). The interest rate is the three month yield
on treasury bills (FYGM3) at annual rates, inflation is the annualized quarterly change in
the consumer price index (7 = 4log(punew¢/punew,-3)). .

We first examine the properties of the data and the results are reported in Table 1. All
three unit roots tests conclude that there is a unit root in the nominal interest rate (1,).
However, while Z,, strongly rejects the presence of a unit root in the inflation rate (m),
M2Z,, and t,, cannot reject the unit root hypothesis. Such inconsistencies across unit root
tests are symptomatic of negative residual serial correlation in view of the discussion of the
previous subsection. '

The spectral density at frequency zero used in the unit root tests, when normalized, are
in the range of unity for i¢ according to both the kernel and the s? 5 estimates [see columns
(1) and (3) in Table 1]. But, whereas the normalized Quadratic kernel spectral density for ,
is around one, it is much smaller and is closer to zero according to s% 5. These discrepancies
in the spectral density estimates reinforce our conjecture (based on the discrepancy between
Zou and MZ,,) that there is negative serial correlation in the inflation series.



The more efficient estimates of the spectral density function based on the first-differences
of the data are shown in Columns 2 and 4. The Quadratic and autoregressive spectral
estimates are 1.243 and .906 respectively for interest rate. For the inflation series they are
312 and .253 respectively. The small values of the latter estimates again suggest negative
residual serial correlation. It is of interest to note the large discrepancy between the residuals
based kernel estimate (i.e. those used in the unit root tests) and the kernel estimate based on
the first-differenced data for the inflation series. This discrepancy reflects the poor properties
of &, of which negative residual serial correlation is a possible cause.

The conclusion that one would draw from these results is that the interest rate series
is unambiguously I(1). The more robust MZ,, and t,, tests suggest that 7 is also I(1)
but there is strong negative serial correlation which induces a strong force for the series to
revert to its mean. Indeed, estimations of ARIMA models for =, reveal the significance of
negative ynoving average lags. The best model selected by the AIC criteria suggests 7, is
an ARM A(1,3) with an autoregressive coefficient that is almost one and with the moving-
average coefficient at the third lag in the neighborhood of -.8, far outweighing the sum of
the positive moving average coefficients at lags one and two. A

‘Granted the result that both i and = are I{1), we then proceed to estimate the Fisher
equation and test if the two series are cointegrated. The Fisher equation makes no suggestion
as to whether empirical tests of the relationship should use 7 or 7 as the regressand, so that
without a strong @ priori reasoning, it is equally legitimate to use ¥ as the regressand as it
is to use . Assuming an average marginal tax rate in the U.S. of around .3 over the sample,
one would expect a regression of i on 7 to yield an estimate of 1/(1 = 7} > 1. 1f we regress
# on i, we would expect a regression coefficient of 0.7. Furthermore, the estimates from the
two equations should be (a.pproximately) the reciprocal of each other. Table 2 reports'the
estimation results.

The estimated coefficient from the equation with i as the regressand is quite different from
our prior as it falls short of unity. The coefficient from the equation with 7 as the regressand
suggests a marginal tax rate of .22, which seems plausible. But, the two estimated coefficients
are evidently not the reciprocal of one another. One might argue that inefficiency of the static
least squares estimator might be the source of the problem. However, discrepancies remain
even when the equations are estimated with an efficient estimator such as the DOLS. The
second through fourth columns of Table 2 augment the static least squares regression with
four, eight, and twelve leads and lags of the regressor. For the equation with i on the left hand
side, estimation by DOLS raises the point estimate of the coefficient, but it continues to fall
short of one. For the equation with 7 on the left hand side, the additional regressors made
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practically no change to the statjc least squares estimates. Furthermore. the coefficients from
the two regressions look like they are identical rather than being the reciprocal of one another.
Not only do the regressions give puzzling evidence about the empirical Fisher relationship,
the results from the various residual based tests for cointegration are just as confusing. The
Phillips-Perron statistic always reject the null hypothesis of no-cointegration, the Said-Dickey
statistic suggests no-cointegration, while the M 2. statistic gives mixed results depending
on which variable is used as the regressand.

The above example suggests that the choice of normalization can potentially yield dra-
matically different point estimates on coefficients of economic interest. As will become clear,
one of the two estimates has very poor properties. The key to finding the appropriate
hormaliza.tion lies in the spectral density at frequency zero of the first-differences -of the
regressand relative to those of the first-differences of the regressors. The rest of this anal-
ysis provides a formal framework for analyzing the issues raised, with the aim of providing
practical recommendations for which variable to use as the regressand.

2. When Might Normalization Matter?

In t\his section, we first present the two data generating processes used, and then report
simulations to illustrate the nature of the problem. Unless noted otherwise, all simulations
are performed using 1,000 replications. The programs are written in C with routines from
Press, Teukolsky, Vetterling and F lannery (1992) running under IRIX 5.2 on an SGI system.

2.1 The Data Generating Processes
There are many ways to model a cointegrated system. One possibility is the common trend
framework of Stock and Watson (1988). Consider a bivariate model

I = 7;/‘1 + e e;t ~ (0) 012)7
v
Bt = e+ vy, v ~ (0, 03)-

T2kt + €24 €3¢ ~ (01‘7:)’

The variables z, and ¥: are driven by a common stochastic trend g, as well as stationary
innovations e}, and €3, that are serially and mutually uncorrelated. Furthermore, e}, and e,
are uncorrelated with v, at all leads and lags by assumption. A non-zero drift can be added
to uy, but is omitted without loss of generality. Letting z, = zi/01, ye =y} o, € = e5./01,
€2t = €3,/02, 71 = ¥{ /0y, and 73 = Y3/02, we have:

DGP1: Tt = Vg + ey, e ~ (0,1),
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Y Yapht + €21, e ~ (0,1),

pe = Pr-1tUn Vy ™~ (0,0‘3). (4)

The variables z, and y: are now of unobserved components form as in Clark (1987). It is
observationally equivalent to an ARIMA model for a large range of correlations. It can be

written as

Az'

Ay = Taviten—en-1F ul + Guiy, : {5)

it

x x
v+ e — €11 = Y 0ui_y,

where 0, is such that 8z(1 + 92)"* = otlviol + 203! and 6, is such that 0,(1+ 63" =
oiy3o? +203)7 . The model can also be parameterized as '

N Az, = Myt e~ -1 = a7,
Yz T2 12 o~
W = Ty = ~—€1t + €q¢ = It + U?, (6)
T Bt T

where E(#5T]) # 0. Because of the absence of exogeneity between Tt and y;, OLS estimation
is,vin principle, sub-optimal asymptotically regardless of the choice of the normalization.

The above parameterization of DGP1 shows that it belongs to the class of triangular
inodels 2nalyzed in Phillips {1991}

DGP2: Az, = Ui uye = €31 + Oz€10-1 + C12€2,

¥y = Bzt ua Uge = €z + Byeze-1 + 021, M

where E(ujcua) can be zero.

We begin our analysis with DGP1. We will then show that the results are not unique to
the particular parameterization of the data. Suppose it is known that there is a cointegrating
vector in the bivariate system. Substituting out the common trend in z: and y; of DGP1,

we can either write

Y= ﬁ:cx: + ezt — ﬁzelte 48: = 72/71: {8)
or Iy = ﬂyyt + €1 — ﬁye'zt: ﬁy =N /72' (9)

Since standard asymptotic results show 7T consistency for the coeficients of both regressions,

(8) and (9) form equally legitimate basis for estimating the cointegrating vector.
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2.2 Simulation Results

To examine the precision of the estimates from both regressions. we simulate DGP1 with
o2 = 1. The coefficient 72 is set to one and we vary 7 over the range .01 and 5. Table
3 reports the simulation results for sample sizes of 50, 200 and 500, ‘Turning first to the
results from regressing z, on y, (Table 3.2}, we see that estimates of the true regression
coefficient, v, = 3,, is precisely estimated over the range of parameter values considered and
the accuracy of the estimates increases as the sample size increases. There is one feature
of the results that is noteworthy. Since by construction, ¥t is not weakly exogenous for zy,
the least squares estimator for By and all test statistics associated with it should have non-
standard limiting distributions. Upon examining the upper and lower five percent critical
values of the empirical distribution of the t statistic on B,, we find that for large values of ~,,
the empirical distribution of the ¢ statistic is indeed being shifted to the left of the normal
distributign. However, as the value of 7 falls, the distribution approaches normality, In the
extreme case when 7, = .01. the upper and lower five percent critical values are practically
the same as those from the normal distribution, even with a moderate sample size of 200.

The picture is very different when we regress y, on z. (see Table 3.b). The true value of 3.
is 1 /. which we also report for convenience. For large values of v, 3, tends to be downward
biased when T=50, but the estimates are reasonably accurate. The precision of the estimates
starts to deteriorate when v, falls below unity. When 7 = .2, the least squares estimator is
severely biased downwards. For example, the mean of 3, is only 1.101 when 4, = 5 at T=30.
Although the bias is reduced as T increases, there is still a substantial discrepancy between
the true value of 5 and the average estimated value of 3.483 at T=500. As 7 diminishes
and hence 3, increases, one might expect ﬁ,, although biased, to at least increase with the
true coefficient. However, the simulations reveal that as v, — 0 and hence B: = o, 3,
tends towards 0 rather than jncreases with 3;. Curiously, the ¢ statistic associated with 3,
appears to diverge to —co as 4; — 0 but approaches normality as v, increases.

The above simulation results clearly illustrate the fact that the choice of the regressand
can severely affect the precision of the estimates. How do these results relate to our empirical
example of the Fisher equation? We want to suggest that z, should be treated as inflation
and y; as the interest rate. We also want to suggest that the estimate from a regression of 7,
on i, is to be trusted. To justify these interpretations, we first note that regressions of y, on
z: become problematical when v is small. Also recall that DGP1 implies Az, is an MA(1}



process with parameter ., where
.___g’_—-—- = ___.._oj_—.—— (10)
| T+ @) 7ioi+20
Since 11 = /o1, m — 0 if either 7] — 0, or if o? — oc. The former corresponds to the
case when the common trend, ge, 15 8 weak driving force of z¢. The latter corresponds to
the case of large variability in the idiosyncratic noise of z, , s0 large that even though these
innovations are stationary, their impact dominates that of the stochastic trend in Z:.

The value of 7; affects the econometric analysis involving z: because it follows from (10)
that as 73 — 0, 8z — —1. Such a process, referred to as nearly integrated nearly white noise
by Nabeya and Perron (1994), has a strong tendency to be mean reverting. This feature is
inherent in our inflation series. As mentioned earlier, a moving average coefficient at lag 3 of
.0.8 is found in the inflation series. The issue, of course, is not so much the size of the MA
coefficient on a particular lag, but the sum of the coefficients at all lags. Although DGP1
allows only an MA(1) in +hé noise function of Az, it nevertheless encompasses the feature
that is of interest.!

One way to judge if the simulated values of z. indeed behave like a nearly integrated
nea‘rly white noise process is to examine the size of the unit Toot tests. As mentioned earlier,
Zgy is oversized relative to t,,, and more so relative to M Z,,. In Table 4, we report the
exact size of the three statistics for the nominal size of five percent.? At very small values
of 1. all tests reject the unit root hypothesis, as expected. The parameter space of interest
is when 7 falls short of unity. A m of 0.5 translates into a moving average coefficient in
Az, of -0.6. Previous work by Schwert (1989) and Perron and Ng (1994) have documented
that unit root tests suffer from size distortions even when 0 is -.5, and it is not surprising
that we also detect some size distortions. The size problem becomes severe when 11 = .1.
Z4u almost always rejects the unit root hypothesis, while t,, rejects it almost half the time.
These, of course, are cases when fa,(0) is small. By contrast, M Zay, while stil] oversized,
is not as distorted even under the conditions considered.

If large negative residual serial correlation is indeed the reason why the estimates have
properties that depend on the normalization, then we should observe similar results from
DGP?2 given by (7). We simulate DGP?2 letting the noise function in Az, be a moving average
process. Given that y; = Bz + uan, it follows thaﬁ Ay, = BAz: + Aug,. Since ug is itself

tPerron {1994) suggests that a negative moving-average component should be present in the inflation
series if the monetary authorities react to offset inflationary/ disinflationary pressures that are inconsistent
with an inflation target for the path of the price level. This makes inflation strongly mean reverting.

2]n the simulations, the bandwidth is selected using Andrews’ (1991) automatic procedure using an AR(1)
approximation. The value of kmaz in fay is 5, and for 82 p in MZ,, is 10.

10



a stationary moving-average process, Auy, is over differenced. Thus, if Az, has a negative
moving-average component, Ay, will inherit a moving average component that has an even
stronger tendency for mean reversion. In other words, the moving-average component in y,
is more negative than that in z,. In light of the results from DGP1, one might then expect
that if the data were generated by DGP2, using y, as the regressand will give more precise
estimates because it has a smaller spectral density at frequency zero than Zs.

Figure 1 provides a summary of the results for DGP?2 assuming oy; = oy; = 0 for the
case 3 = 1. Least squares regressions of y, on z, give very accurate estimates regardless of
the values of 8, and 8,. However, when we use Z: as the regressand, the estimates, while
invariant to the values of 0y, are severely downward biased when 0: is negative and the biases
are larger the closer 0. is to -1. For example, when 4§, = —.8, B is estimated to be below 5
when we use z, as the regressand, half the true valye.

The plxcture that emerges from the simulations of the two DGP’s points to the following
general observation. If the first difference of one of the series has negative serial correlation
(or a small spectral density at frequency zero), estimates based upon an equation with
that series as the regressand always have better properties than those normalized on other
variables. The next section provides a theoretical rationale for this result.

3. Local Asymptotic Analysis

This section uses local asymptotic analyses to explain why the static least squares estimator
experiences substantial downward bias for certain normalizations only. The first subsection
analyzes DGP1, and the second subsection focuses on DGP2.

3.1 DGP1: v, local to 0

A notable feature of the simulation results reported for DGP1 is that the least squares
estimator is severely downward biased when v, is small and when we use y, as the regressand.
We therefore parameterize

n = ¢/VT, c#0,

where we recall that DGP1 is the unobserved components model given by (4). The parameter
7 tends to zero as T ~ oo at rate VT. We also recall that 4, — 0 if the noise to signal
ratio is large (o) — oc) or if the common trend component is small (7 ~ 0). This in turn
implies that the moving average component (6:) in (5) is

9,=—1+5/\/_T_—+—1 as T - oo,
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for some non-centrality parameter § > 0. This local parameterization of 8, has been used
in Nabeya and Perron (1994) and Perron and Ng (1994) to analyze the local asymptotic
properties of 1(1) processes with MA(1) noise functions. Extending the “nearly integrated
nearly white noise” terminology in the univariate case to the present multivariate model, y
and . can be said to have a spearly cointegrated nearly unbalanced” relationship when 71
is local to zero. We begin our analysis with the following lemma.

Lemma 1 : (Sample Moments) Let z. and y be generated by (4) with 1 = ¢/VT. Let
W,(r) be a Wiener process defined on C[0.1]. Then as T — oo:

i T vl zt= Pl W,{(r)idr + 1;

i, T2EL, 92 = 130l [ Wolr)dr;

fii. T3P,y = 1205 Jo W, (r)*dr.

The proolf to the lemma is sgandard and is omitted. Part (ii) of the lemma is the usual result
for an J{1) process and follows from the fact that v is invariant to local variations in 7.
However, this is not the case with z,, which is a white noise process in the limit and 5T 2?
is @,(T). A consequence of this slower rate of normalization is that the sample moment for
zlis influenced by o2 (normalized to 1} in the limit. The properties of the least squares
estimator from the two normalizations are then immediate from Lemma 1. These results are

summarized in the following theorem.

Theorem 1: Let z, and ¥ be generéted by (4) with m = c/\/T. Let Ey be the least

squares estimate from a regression of T, o1t Y, and let 3. be the least squares estimate from

a regression of y. on Zt. Let W,{r) be a Weiner process independent of W,(r). As T — oo,
From a regression of Tt on ¥ with 3, = /72,

1. T8, = c[m = T'/*By;i

% Jo Wa(r)dWi(r)
2 T(B, — B) = Tt
(511 ﬂy) ’720" fol W,,(r)zdr
3. t5, = N(0,1).
From a regression of yi on Z: with Bz = 12/ M

1203 fo Wa(r)?dr

. T-VB. = ;
! P 202 fg Wy(r)idr +1

~12 R —7a/c .
2 TP~ ) = c2g? fy Wylr)idr + 1
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3. T"lniz’* = it 7
o eo(fd Wo(r)2dr)

Remarks:

1. The main result of the theorem is that in this local framework, Ey is consistent but /3, is
not. Absent the influence of 07 (normalized to 1) on the sample moment of z?, T-1/33,
would have converged to y,/c, the true regression coefficient. However, the presence of
o} = 1 in the denominator of the estimator induces a downward bias to the estimator.
This explains the simulation results that regressions with y, as the regressand yield
estimates that can be far below the true value.

2. Note that T-1/23, approaches (0 when ¢ is either very large or very small. Our local
asymptotic analysis shows that ¢ appears in the numerator and the denominator of the
limiting distribution of the normalized least squares estimator. Hence, 4, — 0 when
¢ is very large (and hence T~'/23, is small) or when c is small (and hence T1/23, is
large). This feature can be seen from the simulations as noted earlier.

3. In the standard asymptotic framework with v, fixed, the distribution of tz, is non-
standard since weak exogeneity between z, and y, is not satisfied in the regressions.
Obtaining asymptotic normality of the test statistics js the motivation for the modi-
fications t:) 1, introduced by Phillips and Hansen (1990). However, as stated in the
theorem, 3, is asymptotically mixed normal and tE, is asymptotically standard normal
even though the exogeneity assumption is violated in finite samples. The reason for
this result is that as g, — 0, ¥« becomes weakly exogenous for the innovations in z,
in the regression with z, as the regressand. However, this is not the case when Yt is
used as the regressand; those regression residuals have a non-trivial correlation with
the innovations driving z,. In consequence, the ¢ statistic has non-standard properties
even when suitably standardized.

4. The theorem suggests that it is desirable from the point of view of both estimation and
hypothesis testing to use as regressand the variable that is “less integrated”. In other
words, the variable whose spectral density at frequency zero is the smallest. There are
two intuitive reasons why this works well. The first is that using the “more integrated”
variables as regressors amounts to putting the variables with more variability in the
right hand side of the regression. As is well known, the greater are the variations in
the regressors, the more precise are the parameter estimates. The second rationale can
be seen with reference to the two regression specifications given in (8) and (9). Given
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that 71 — 0, B — o© and B, — 0 asymptotically, the regression error in (8) with yr as
the regressand has a variance that diverges at the same rate as 7 approaches 0. The
regression noise in (9) with ¢ as the regressand is, on the other hand, invariant to 71
and has finite variance in the limit. The choice of normalization is obvious viewed in
this light. :

3.2 DGP2: 6 local to -1
Recall that DGP2 is the triangular representation of a cointegrated system:

Az, = Uiy uye = €t + Oz€1e-1 + T12€20

y = Pzetum, Uy = €t + Oyea-1 + onern

To ratiogalize the results of Figure 1, our local asymptotic framework lets §; — —1in the
limit. That s, '
9, =—1+6/VT, §>0.

\A distinct feature of DGP2 is that the variables in the system can be weakly exogenous
with respect to each other. In other words, 01z and o7, may or may not be zero. As we will

now show, the properties of the least squares estimator depend on this assumption.

Lemma 2 : (Sample Moments) Let z, and y: be generated by (7) and let Wy(r) and Wa(r)
be independent Wiener processes defined on the space C[0,1].
If 012 % 0:

1. T2 5L, 22 = ok Jg Wa(r)?dr;

2. T2 5L, y? = B0% [ Walr)'dr;

3. T2 2'{:1 zoug — 0

4. 72T, 2z = Bod 1 Wa(r)dr.

Hon=0

1. TYL, 22 = ol + 5202 J§ Wa(r)?dr;

2 T-VTT 42 = Bro2(1+ 8 3 Wa(r)dr) + (2Bom + ady)ot + (1 +6))o%;
3. TVCL, zum — onol;
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55 s 1. SN

4. T5T 2y = Boi(1 + 82 [ Wi(r)dr) + onoi.

Results for the case oy5 = 0 are straightforward applications of the results in Nabeva and
Perron (1994). Of note is that the rates of normalization for the case o, 5 0 is higher than
for the case oy = 0. The reason is that z, is driven by two partial sums when o1z # 0
one relating to its own innovations, and one relating to the innovations in the ¥t process.
Therefore even though the partial sum of innovations in z, induces mean-reversion, this effect
is dominated by the stochastic trend consisting of integrated innovations on Y. Accordingly,
z, behaves like 2 strictly I(1) variable when oy, # 0. The properties of the least squares
estimator can now be summarized in the following theorem.

Theorem 2 : Let z, and y: be generated by'( 7). Let By be the least squares estimator with
z¢ as the s‘egressand, and let B, be the least squares estimator with y, as the regressand.
If oy, # 0:

1B, =1/8=3,;

2 ﬁr => B = 52-
Ifoy, = 0:
~ B(1 + 62 fol Wi(r)2dr) + oy,

L TR W erd) + e el Fyozjor 7 /8= B
on

T+ T W,(ryedr) ™ P =P

2 8.5+
Remarks:

1. An interesting aspect of Theorem 2 is that the issue of normalization is irrelevant when
012 # 0 as far as consistency of the least $quares estimator is concerned. The intuition
is essentially that both z; and y: have the same order of variability as standard I(1)
variables in the limit. In particular, both variables are dominated by the stochastic
trend built upon innovations in Y1, even though the DGP looks superficially as though
innovations in z, were the source of variation. Although cross correlation among vari-
ables of a cointegrated system induces nuisance parameters which invalidate classical
inference, oy, # 0 has the unusual but desirable effect of retaining the I{1) nature
of the series, allowing standard asymptotic results to apply to this local asymptotic
framework.
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2. In a regression of y¢ on z; when g12 = 0, 5, - B=fifon=0 We are back to the
result of the standard [ (0) asymptotic framework, where the least square estimator is
susceptible to simultaneity bias. The result stated in the above theorem generalizes
to cases where the innovations are correlated at different lags, and the extent of the
bias is independent of the value of B. The least squares bias will persist unless z. is
orthogonal to the regression error, 3 condition that is determined by whether 021 = 0.

. From a regression of z¢ on Yu, E, does not converge to 1/8 = By even if oz = 0. The
reason is that in this case, ¥ inherits the nearly integrated nearly white noise property
of zy, and its sample moments also require a smaller rate of normalization. Station-
ary innovations in ¥ which would otherwise have converged to zero in the standard
asymptotic framework have a pon-trivial effect in this local asymptotic framework, as
seeh from the sample moment of y? in Lemma 2. This in turn generates a downward
bias on the least squates estimator. In general, the bias in ﬁ, is a function of o and
the true value of 8,. However, it can be shown that holding oz fixed, the larger is 3,
the more precise are the estimates B, and B, for B, and f; irrespective of the value of
gq1. Simulations confirm this to be the case.

. Under the assumption that g1 = 0, 3 and I both behave like stationary processes in
the limit. Accordingly, the Jeast squares estimator does not converge at the fast rate
of T as would be the case with strictly integrated variables, but at the slower rate of
T as in the case of stationary variables. An implica.t;ion of Theorem 2 is that there
is a discontinuity in the limiting distribution of the least squares estimator at 012 = 0.
However, as we show in Figure 2, there is substantial Jeakage around 032 = 0 in finite
samples in the sense that when oq7 is greater than but close to zero, the precision of

the estimates are still affected. This is so even when the sample size is as large as 500.

_ The limiting distributions of the estimators are of little practical interest and their
expressions are henceforth omitted. Suffice it to mention that when o1z # 0, neither
T(;§y — B,) nor T(ﬁ, — B.) is mixture normal, both are non-centrally located, and are
influenced by all the nuisance parameters in the model. Accordingly, although both
estimators are super-consistent, test statistics associated with them cannot be used for
inference.

. From a practical standpoint, pormalizing the cointegrating regression on the variable
with the smallest spectral density at frequency zero (in this case ye) is still the pre-
ferred choice. When o312 # 0, the issue of normalization is irrelevant and hence the
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prescription can do no worse than alternative normalizations, When 013 = 0y = 0,
using y; as the regressand is the only normalization that can yield asymptotically un-
biased estimates. The results reported in Figure 1 supports this claim. When c12=10
but o3, # 0, estimators such as the DOLS and the FM-OLS will give asymptotically
unbiased and efficient estimates provided y, is the regressand. This is because these
estimators provide the proper cure for the problem with the QLS estimator by ren-
dering the regression error uncorrelated with the regressors. However, oy, is not the
only source of bias in a regression with z, as the regressand. Thus, even fully effi-
cient estimators will have limited ability in improving the properties of the estimates,
Simulations (available on request) confirm these results.

- DGP1 is a special ‘case of DGP2 with o1; = 0 and oy, # 0 for a given sample size.
It wg'ould seem. by implication of Theorem 2, that the static least squares estimator

-1

will be biased whethqr normalized on z, or ye- However, Theorem 1 suggests that
a consistent estimator can be obtained when normalized on z,. To understand these
apparently contradicting results, we need to clarify the assumptions underlying the two

* local asymptotic models. In the first model, parameterizing ¥, to be local to zero has
two effects. It induces a (non-invertible) negative moving average component to the
noise function of z,, and it changes the correlation between the regression innovation
and the regressor. As mentioned earlier, the regression innovations with z, as the
regressand are weakly exogenous for y, in the limit. Under DGP2, 4, is parameterized
to be local to -1 holding oy, and o fixed. The results of the two theorems therefore
hold under similar but not identical conditions. ‘

4. Residuals Based Tests for Cointegration

Residuals based tests for cointegration are valid in the standard asymptotic framework be-
cause the least squares estimator is super-consistent. However, to the extent that the choice
of normalization affects the properties of the least squares residuals, the size and power of
tests of the null hypothesis of no cointegration might also be affected. To see if this is the
case, we use the least squares estimates of cointegrating vectors reported in the Section 2
to construct the estimated residuals. Three statistics, Z,, MZ,, and t,, are then used to
test for the presence of a unit root in these residuals using the 5 percent critical values in
Phillips and Ouliaris (1990). Accordingly, the power of the tests is the frequency that the
statistics reject a unit root in the estimated residuals. The size of the tests is constructed as
follows. For DGPL, v in (4) is set to 0 and €2 is specified as a random walk independent
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of p;. Thus, z. and y, are both J {1) but are not cointegrated. - Similarly, for DGP2, an
independent random walk is added to un in {7). In this setting, uy and uz can still be
correlated depending on the values of g1 and oz, Without loss of generality, we report
results for T = 200. Results pertaining to DGP1 are given in Table 5 and those for DGP2
are given in Table 6.3

The least squares residuals under DGP1 with y, as the regressand [see (8)] are:

fig = (B — Ex)z! + ez — B2ty (11)

where 8z = 12/1- Theorem 1 shows that B, is an inconsistent estimator for Gz if 71 — 0 as
T increases. Then

Aty = (ﬂ: - B:)'flvt + Dey — Berlt

is a stat.:ionary and invertil.)le process even as T increases. Accordingly, the least squares
autoregression in iz will yield a regression coefficient of one. This evidence of a unit root
will lead us to conclude that there is no cointegration even though z; and y. shares the
common trend y,. Simulations reported in Table 5 suggest that M Z, and t, will suffer from
this problem, whereas Z. is more likely to conclude correctly that there is cointegration
when 7 is small. The discrepancy between Z, and the other two tests is again due to the
presence of a negative moving-average component in Az, leading Z, to over-reject the unit
root hypothesis. :
The least squares residuals from a regression with z, as the regressand are similarly
defined as
g = (By — By + €1 — Byeans (12)

with B, = m/7- Since B, is a consistent estimator for By, L1, fy is O,(T/?), which
is indicative of a process that is stationary or I(0). An autoregression in iz will yield 2
least squares coefficient that is away from one in the limit, and the null hypothesis of no
cointegration is rejected. This is consistent with the Monte-Carlo results (see Table 5B).
Under DGP2, the regression residuals are: ‘ ’

gt = (B~ Bz)ze + un 4 (13)

when normalized on ¥, and
Uy = (By = By)yr — Byua (14)
31n constructing the Zq, test we used a Quadratic kernel with a bandwidth selected using the automatic

procedure of Andrews (1991) based on an AR(1) approximation. For the statistic M Zayu, kmaz = 4 in
constructing s4 g, and kmaz=5 in constructing tp.
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when normalized on z,. Given super-consistency of 4, and ﬁ,, when a1 # 0, both serie:
have partial sums that are Op(T2). Unit root tests on these residuals are then consistent
following the analysis of Phillips and Ouliaris {1990). ‘

When oy; = 0, the results in Table 6 suggest that the residuals based cointegration
tests will also reject the null hypothesis of no cointegration. The reason, in this case, is
that although the least squares estimator is biased and inconsistent, both z, and y: are
stationary series in the limit. The two sets of residuals defined above have partial sums
that are O,(T*/?), and standard tests once again reject the null hypothesis of a unit root,
However, neither series has a stochastic trend in the limit, and it might be more appropriate
to think of z, and y, as sharing common features in the sense of Engle and Kozicki (1993).

5. Some Observations on Alternative Estimators

Asymptotically efficient methods of estimating cointegrating vectors have been proposed in
the literature. Does least squares bias of the type examined here extends to these estimators?

This section sheds some light on this issue.d
. ‘

5.1 Least Squares Based Methods

We consider three estimators: the FM-OLS of Phillips and Hansen (1990), the CCR of Park
(1992), and the DOLS of Saikkonen (1991) and Stock and Watson (1993). All three are least
squares based estimators that are asymptotically efficient, and all require an explicit choice
of a regressand. The FM-OLS and CCR estimates of 0i/dx from the Fisher equation are
-61 and .97 when normalized on i, but are .75 and .81 when normalized on r,. These are in
the same range as the OLS and the DOLS estimates presented in Table 1, suggesting that
the normalization problem also applies to the FM-OLS and the CCR.

To verify the properties of these efficient estimators, simulations were conducted for DGP]
defined in (4) and DGP?2 defined in (7) using the same parameterizations as presented in
Tables 3.2 and 3.b. Each efficient estimator necessitates the choice of a truncation parameter,
k. This is the truncation lag of the kernel estimator of the long-run variance in the case of
FM-OLS and CCR, and the number of leads and lags of first differences of the regressor in
the case of DOLS. As will be discussed below, the results are robust to the choice of the
kernel but are more sensitive to the choice of k.5

*The simulations in this section are done using Gauss 3.2 in conjunction with Coint 2.0 of Culiaris and
Phillips (1994).

*The Parzen window is used in the FM-OLS and the CCR. The same kernel is used to construct standard
errors associated with the DOLS estimator.
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The distributions of these fully efficient estimates are qualitatively similar, but generally
closer to the true values for both normalizations than the OLS estimates.® This resuit is not
surprising since the OLS estimates, though consistent, are biased and inefficient. Of interest
is that the estimates remain noticeably inferior when normalized in one direction. In other
words, there is a “good” and a “pad” normalization, the latter being y: on . in the case
of DGP1 and z; on y; in the case of DGP2. To illustrate the problem, we report results
in Table 7.a for DGP1 with y;=.2, and DGP?2 for gy, = 0 and o1z = .5, both with B =1
When the variable with the smaller normalized spectral density is put on the left hand side
the estimates are always more precise. For example, 3, in DGP1 is .19 on average, close
1o the true value of .2. However, when normalized on y., the average FM-OLS, CCR and
DOLS estimates are at best 2.5,3.5and 4.7 respectively, with the true value of the coefficient
being 5. For DGP2, the estimates from both normalizations are less precise when 012 =
as expec%ed, but even when o2 # 0, the estimates are always better when normalized on ¥:.

An observation of note from Table 7.a is that the FM-OLS and the CCR estimates
cannot be improved upon by varying the choice of k. However, the DOLS estimates for
the “bad” normalization can be made more precise when the lag length is sufficiently large.
For example, the average of the DOLS estimates improves from 3.2 to 4.7 as the lag length
increases from 1 to 8. Indeed, it can be shown that increasing the value of k at an appropriate
rate in the DOLS regression restores consistency of the DOLS estimator when the “bad”
normalization is used. Interestingly, it is solving the problem related to the moment matrix of
(strongly mean reverting) regressors as indicated in Lemma 1 that makes the DOLS estimates
superior to the OLS estimates, and not one of valid conditioning and weak exogeneity that
the estimator was intended for. The choice of k is evidently an important issue here, as
it needs to be large enough to remove the bias in the OLS estimator on the one hand but
without inducing excessive variations to the estimator on the other. Simulations suggest
that for practical sample of sizes between 100 and 200, a choice of k between four and six
will be sufficient to bring B, from an unacceptable range of around 2 under OLS to a more
acceptable neighborhood of around 4.5 when fB; = 1/m = 5. However, for DGP2, k needs
to be slightly larger depending on whether or not 12 = 0. '

It should be noted that while increasing k can improve the precision of the DOLS esti-
mates when the "bad” pormalization is used, the statistic associated with the coefficient
on z¢ is still not well approximated by the standard normal distribution. This can be seen
from Table 7.b. The upper a,gd lower 5% critical values are still far from those of the normal
distribution even as k increases. The departure from normality of the t statistic associated

6The full set of estimates are available on request.
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with CCR and FM-OLS from the "bad” normalization is even more apparent. Thus, from
the point of view of inference, it remains the case that using z, in DGP1 and ¥t in DGP2 as
the regressand is the preferred choice because the spectral density at frequency zero of the
first difference of these variables is smallest. )

Our focus has been on least squares based estimators with the regressand expressed in
level form. It is important to emphasize that our recommendation of using as regressand the
variable whose spectral density of the differenced serjes is smallest is based on analyses of
regression models of this class. There are evidently other methods of estimating cointegrating
vectors. For example, the regressand can be expressed in first-differenced form as in the case
of non-linear ECM.” Evaluating the many alternative estimators is outside the scope of the
present analysis, and we have not explored whether our criteria for choosing the regressand
will generalize. We have nevertheless considered a method of estimating cointegrating vectors
outside an OLS based fram?work, and to this we now turn.

5.2 The Johansen Method

For‘most methods of estimating cointegrating vectors, “normalization” is taken to mean the
choice of the regressand. An exception is the reduced-rank regression approach of Johansen
(1991), wherein normalization is taken to mean the choice of the length of the eigenvectors.
This is sometimes referred to as an empirical normalization. The Johansen procedure does
not pretest for the presence of a unit Toot, and it analyzes all the variables as a system.
Because of these fundamental differences with other estimators that belong to the LAMN
class, it is of interest to ask if the Johansen approach is rid of the problem being analyzed,
Simulations are again conducted for the parameterizations of DGP1 and DGP?2 used
earlier, and selected for discussion (without loss of generality) are results from one param-
eterization of DGP1 and two of DGP2. In Table 8, we report the pair of eigenvectors
(normalized on z.) for various number of lagged first differences used in the reduced rank
regression. In each case, we tabulate the frequency distribution of the cointegrating rank,
7, chosen by the Trace and Max- statistics, noting that if r = 1, the first eigenvector is
the cointegrating vector. Also reported are the upper and lower 5% critical values of the
Wald-type statistic for testing if the estimated cointegrating vector equals the null valye.®
As we can see from the results, conditional on r = 1, the first eigenvector gives quite
Precise point estimates of the true cointegrating relationship in all the cases considered,
though the Wald test tends to over-reject the null hypothesis. This is reminiscent of the size

"See Gonzalo (1994) for a review of these methods.
5The statistic has a x? distribution with 1 degree of freedom. See Johansen (1991) p. 1564 for details.
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distortions in the t test associated with the three fully efficient estimators when the "bad”
normalization is used. Using the 10 percent critical values in Osterwald-Lenum (1992), the
frequency that the Trace statistic concludes 7 =11s between .8 and .9 for DGP1, and also
for DGP2 with on # 0, poting in passing that 7 is never chosen to be zero. However, for
DGP?2 with o1z = 0, that is, when both and z, are nearly integrated nearly white noise,
the size of the statistics is distorted. The size problem is more severe the shorter the number
of lags. With 4 lags, the statistics report 7 =1 with a frequency of only 0.4, and ﬁnds r=2
in the remaining cases. The exact size of the test remains above 50% for a nominal size of
10% when o1z = .25. This is the leakage problem around gy = 0 discussed earlier.

A finding that r=2 in these bivariate DGPs is confounding because if there are n I{1)
series, there cannot be more than n — 1 cointegrating vectors. A finding that r = 2 implies
that both series are stationary. Some intuition to this result can be gained by examining
the propérties of the second eigenvector. Consider DGP2 with g12 = 0, the case when both
series are strongly mean reverting. As seen from Table 8, the first eigenvector is the correct
estimate of the cointegrating vector. The second is the unit vector that selects x,. Since y; is
we%kly exogenous for z; by construction, the eigenvector optimally puts zero weight on the
redundant regressor. Simulations of more complex parameterizations of DGP1 also found
the statistics to under report 7 =1 when the second eigenvector is (1,0). In those cases,
applying a zero weight on the decisively I(1) process will also give a stationary combination
of the variables, although the combination is economically uninteresting. From our analysis,
size distortions with the Trace and Max-A statistics arise when the second eigenvector is of
the (1,0) type. Whether the statistics will select one or two cointegrating vectors will depend
on how strong are the unit oot components relative to the mean-reverting components, and
on the causal structure underlying the variables. In general, the stronger is the unit root
component in both series, the less chance there is of finding two cointegrating vectors and
vice versa. ’ )

Do size distortions in testing for the cointegrating rank arise in practice? Returning to
the Fisher equation example, the Trace and Max-A statistics are 29.17 and 22.03 for the
null hypothesis that r = 0 against the alternative r = 1, and 7.15 for both statistics for
the hypothesis that 7 = 1 against the alternative that r = 292 While we can decisively
reject the absence of any cointegrating vector, we reject the presence of one cointegrating
vector in favor of two cointegrating vectors at the 10% level but not at the 5% level. The

$7The 90 percent critical values are 15.66 and 6.5 for the Trace statistic; and 12.91 and 6.5 for Max-3
taken from Osterwald-Lenum (1962).
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r = 2 scenario is therefore of empirical relevance.’® However, if one had pretested for the
presence of a unit root, one would have dismissed the possibility that r = 2 since it implies
both variables are I{0). One would then obtain the unique cointegrating vector (normalized
on ) of (1, -.87), in line with the fully-efficient least squares estimates based on the =,
normalization. This, however, is based upon results from pretesting for a unit root, and in

* this regard, M Z,,, still plays a useful role.

6. Concluding Comments

Estimations of cointegrating vectors are by now standard practice in dynamic analysis of
time series data. This paper questions two conventional wisdoms on least squares estimation
of cointegrating vectors. First, we show that although the least squares estimator achieves
stiong cansistency in the standard asymptotic framework, it is not so when a regressor has a
large negative moving average component that is modeled as local to —1. Second, we show
that normalization in one direction can yield estimates that are consistent but not the other.
These results extend to least squares based fully efficient estimators.

‘Using an unobserved components framework, we show that a negative moving average
component can arise when a variable in the cointegrating system has a weak correlation with
the common trend, or when the idiosyncratic noise of the variable dominates its total asymp-
totic variance. Such a variable has properties of an I(1) process, but also exhibits a strong
tendency to revert to its mean. For this reason, standard tests have trouble determining
whether or not a unit root is present in the series. A nom-exhaustive investigation suggests
inflation and iﬁventories are integrated processes with large negative moving-average com-
ponents. Gali (1992) also presented evidence for a negative moving component in the noise
function of many macroeconomic time series, and Franses and Haldrup (1994) discussed how
negative moving average errors can arise as a result of additive outliers. The issues analyzed
in the present paper are therefore not merely of theoretical interest, but are also issues of
practical concern. ‘

Our theoretical and empirical investigations lead to the following practical guideline.
The cointegration analyses should begin with tests for the presence of a unit root in the
variables, preferably using a test that is robust to negative MA errors such as the M Zo.

”Using DGP1 to calibrate the data to the time series properties of i; and 7, shows that the Trace and
Max- statistics indeed suffer from size distortions. Specifically, 47 is .6, and vz is I; (1 - 6L)e;, = o1,
vie is N(0,{1.25)%), (1 - BL)es, = (14 25L)3,, vag ~ N{D, (-5)%), and v, is N(0,(.5)%). The normalized
spectral densities for the two series are .2 and 1.2 respectively in 100 simulations. The order of the variables
in the VECM is %, and then z,. The Trace and Max-X statistics based on 4 lags find r = 1, 80% of the
times, and r = 2, 20% of the times using 2 test with nominal size 10%.
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Step two is to rank the variables by their estimated normalized spectral density at frequency
zero, preferably using estimators that are more efficient than those used in the unit root
tests. For instance, one can use a kernel based estimator with the demeaned first-differences
of the data, or an autoregressive spectral density estimator based on the autoregression (3)
without the lagged level. Step three is to choose the variable with the smallest estimated
normalized spectral density at frequency zero as the regressand. The steps proposed applies
to other least squares based estimators of the cointegrating vector.

There are other instances when 2 regression can be nearly unbalanced. For example, if
the error process of an I(1) series has a large autoregressive root, so that the series is close
to being twice integrated. Accordingly, its spectral density at frequency zero is very large.
Although we have not provided a theoretical analysis to such cases, simulations reveal that
the least squares estimator is also more biased when normalized in one direction. However,
using the variable with the s'mallest spectral density at frequency zero as the regressand still
gives more precise estimates.

Qur focus has been on estimating a single cointegrating vector. As discussed in Harg-
reaves (1994), ordinary least squares (and its more efficient variants) can also be used to
estimate multiple cointegrating vectors from a single equation with multiple regressors. In
that methodology. the second through r cointegrating vectors are constructed to be orthogo-
nal to the first. The choice of the regressand is even more important in that context because
all cointegrating vectors are normalized on the same regressand. Our recommendation of

comparing the values of the spectral density function will be especially useful.

24



References

Andrews, D. W. K. ( 1991), Heteroskedastic and Autocorrelation Consistent Matrix Estima-
tion, Econometrica 59, 817-854. )

Clark. P. K. (1987), The Cyclical Component of FU.S. Economic Activity, Quarterly Journal
of Economics 102, 798-814.

Engle, R. F. and Kozicki, S. (1993), Testing for Common Features, Journal of Business and
Economic Statistics 11, 369-379.

Franses, P. H. and Haldrup, D. N, ( 1994), The Effects of Additive Outliers on Tests of Unit
Roots and Cointegration, Journal of Business and Economic Statistics 12, 471-478.

Gali, J. (1992), How Well Does the 1S-LM Model Fit Postwar U.S. Data?, Quarterly Journal
of Economics CVII, 709-738.

Gonzalo,}J - (1994), Five Methods to Estimate Cointegratng Vectors, Journal of Econometrics
60, 203-234. !

Hargreaves, C. (1994), A Review of Methods of Estimating Cointegrating Relationships, in
C. Hargreaves {ed.), Nonstationary Time Series Analysis and Cointegration, Oxford
University Press.

Johansen, S. (1991), Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian
Vector Autoregressive Models. Econometrica 59, 1551-80.

Nabeya, S. and Perron, P. (1994), Local Asymptotic Distribution Related to the AR(1)
Model with Dependent Errors, Journal of Econometrics 62, 229-264.

Ng, S. and Perron, P. (1995), Unit Root Tests in ARMA Models with Data Dependent
Methods for the Selection of the Truncation Lag, Journal of the American Statistical
Association 90, 268-281.

Osterwald-Lenum, M. (1992), A Note with Quantiles of the Asymptotic Distribution of the
: Maximum Likelihood Cointegration Rank Test Statistics, Ozford Bulletin of Economics
and Statistics 54, 461-472,

Ouliaris, S. and Phillips, P. C. B. (1994), COINT 2.0: GAUSS Procedures for Cointegrated
Hegressions, Predicta Software. -

Park, J. Y. (1992), Canonical Cointegrating Regressions, Econometrica 60, 19-143.

Perron, P. (1994), Non-stationarities and Nonlinearities in Canadian Inflation, Economic
Behaviour and Policy Choice under Price Stability, Bank of Canada.

Perron, P. and Ng, S. (1994), Useful Modifications to Unit Root Tests with Dependent Errors
and their Local Asymptotic Properties, CRDE Discussion Paper 3194, Université of
Montréal.

25



Phillips, P. C. B. (1991), Optimal Inference in Cointegrated Systems, Econometrica 59, 283~
306.

Phillips, P. C. B. and Hansen, B. E. (1990), Statistical Inference in Instrumental Variables
Regression with I(1) Processes, Review of Economic Studies 57, 99-125.

Phillips, P. C. B. and Ouliaris, S. (1990), Asymptotic Properties of Residual Based Tests for
Cointegration, Econometrica 58, 165-193.

Phillips, P. C. B. and Perron, P. (1988), Testing for 2 Unit Root in Time Series Regression,
Biometrika T5, 335-346.

Press. W. H., Teukolsky, S., Vetterling, W. and Flannery. B. (1992), Numerical Recipies in
C, second edn, Cambridge University Press, Cambridge. :

Said, S. E. and Dickey, D. A. (1984), Testing for Unit Roots in Autoregressive-Moving
Avegage Models of Unknown Order, Biometrika 71, 399-607.

Saikkonen, P. {1991}, Aéymptotically Efficient Estimation of Cointegrating Regressions,
Econometric Theory 7, 1-21. .

Schwert, G. W. (1989), Tests for Unit Roots: A Monte Carlo Investigation, Journal of
‘ Business and Economic Statistics T, 147-160.

Stock, J. H. (1987). Asymptotic Properties of Least Sqﬁa.res Estimators of Cointegrating
Vectors, Econometrica 85, 1035-1056. )

Stock, J. H. (1990), A Class of Tests for Integration and Cointegration, manuscript, Harvard
University.

Stock, J. H. and Watson, M. W. (1988), Testing for Common Trends, Journal of the Amer-
ican Statistical Association 83, 1097-1107.

Stock, J. H. and Watson, M. W. (1993), A Simple Estimator of Cointegrating Vectors in
Higher Order Integrated Systems, Econometrica 61:4. 783-820.

26



S A 4 Yo eg~ €0° 19~ 86L " 208" “} 88L” seL” T uo u

T0°2- 06°02~ SL EE~ osL” 6€L" 6TL" 609" 4 uo 1

3 ) 2 (z1)s100a (8)s100 (v)s0a s10

sysiieuy uorjeabejurod iz erqes

‘Blep ay3y jJo seodusiaeIIIp
-184TF 8Y3 jo soueraea ardues 8Y3 o3 sisjs1 "5 seseo Tfe ur ‘g = ¥ 03 388 ST ber uoyjeounay
Yy ’‘1aas1 pebber ayjy INCYITA Ing (g) uotjenbs og IeTTUTS uorssaabaiozne ue WoXJ pelonaysuod
ST (¥4v¥),8 ajeuy3se ayy {v) -™zm 3o UOTRONIISUCD Byl uyl pasn age S@jewTyse asayl g =
¥ buysn (z) uoyssaabsiojne syy Wo1z3 pajonijsuco sy (uv),s ojeuryse aYyy (c) -sjeax uorjeryur
Y3} Jo ®sed ay3 uy uorjoates U3IpTapueq orjewojne say3 I03J pesn 81 uoTjewtxoadde (g)yw
ue jeyy jdeoxa (1) ur se Pa30978s ST yjpTmpueq syj lejep ay3 jo S80USI8IJTP~-18AT] pouesusp
8y} Huysn pejonizsuoo ST (s0),s sjeuyryse paseq-tauxsy orjeapenb ayg (z)-™g JOo uorjzonijsuoo
3yl uy pesn aJe s8jewrlss asayy, ‘uorjewtxoadde (T)yy . ue Butsn peryrdde ST Yapimpueq
gyl 3j3oeres o3 poyjzauw (1661) ,smaapuy ‘(1) uoysssiabaiojne A8pI0-38IT3 8yl woxj sTenpisax
s@aenbs-3sest ayy buysn pejonaysuco ST (SD),s =23euyyse peseq-TauIey oyjeapenb ayyg (1) :se3oN

€6e° |90c°0 |[21€'0 [09T'T | bg 2 L0° 1T~ TE 0b- 1
906°0 | ¥IO'T |€¥2°T | vse T |oT 2= L0 8- £9°6~ T
(v) (c) {2) (1) .

%8/ (uv),s "8/ (s0),s "3 ZH g

§3833% 300y 3tun

uoylenby Ieyst4 eyy jo sTsiieuy :1 eyquey

27



6LL - |91S°- 09¥ "~ ozt - 09€" 060°T |8LE'T €LY T 296°1 3
1€2°G- | 68076~ | TL9 Y- |ZST'V- ZTT €~ cLz e~ |z68 1- | L¥LT- | E€9L7T- | onses !
oL~ | vso°- 092"~ 650° ves” et 1 fetvet 60V°T LI9°T 56
€0T°G- | LLL ¥~ |9eS"¥- |196°C- y00°€- | 912'T- | LSB'1- (16°1- | 119°T- | o=r ¥
9¢g - | 0EV - 9ee - LT - €€G" 981°1 | 08E€°'T ¥ss° 1 065°1 63
yog y- | Lov:y- |vsu vy~ |8YBE- | 6GB7C- 9102~ |96L°T- |09L°T- | BELTT- o= 03
97 Jo uoT3INATAISTA teotatdug
868°'y | 856°T 69v° T 6L6° 06V " 961" 860" 6v0" oto" 00S
GGL'y | 868°T sZy 1 £66° oLY” 061" 660" Lyo* 600" 002
eve'v | 989°1 8921 ovs” 8IvV" 691" 880" €vo- voo* 0S
R
0°S 0°¢ s'1 0°1 06 oz 01" 50" 10" g='4
sejeuT3sd 510
.HHN? \.AH..QV.(QQ:m\\rV
g 4 it =K
T
- 1y 4 My = 1god
Wi =g ‘'m+h'g o= X :uorsseibey

-

¥t 3iqel

28




0081 986" 9L9° y01 "~ 0Tt g~ €¥0°9~ TLG°0T~ B8L'9T~ | LL9° Lt~ wm..u
LYL T~ vrec e~ S06° 2~ 06¢€ " v- LbYy 8-~ 626°02~ | €OE TP~ YEB"BL~ | €L L0OD~ 0051 3
L0991 TL0°T Z6G6° 9GQT "~ S86° T~ 16 G~ TTT° 6~ 082°9T~ | ¥G6 " pi~ na‘_u,
9891~ STE ¢~ |4 78 880° b~ 09¢° g~ ¥L¥ 02~ | 96 0p- 9TV 6L~ | €2°68E~ 00zl g
82S5°T [ TT1'1 T 100° 6IL°T- | L8v'v- [ 2S6°L- | 1(G'GI- | 6L6°00 %3
veL't- 19927z~ (1992~ |zigoe- | ppees- €9L°81~ | 206°G€~ | 600" €4~ | €6° LGk o6y 03
¥3 J0 UoTINQTIAISTA TestaTduy
ooe- L6V 099" 6L6° €GBT €8¥ ¢ 6€6°¢ 802" ¢ 868" 00g
00z 1 4:1 169° 8ve" 6L9°T 6LV 2 681" ¢ €06 T cee: 002
661" LLY: £19° (44" 61¢°1 I0T°1 [4: YA |4 A ¥60° 08
2 g* SL° 1 z S ot 0z 601 g +
0°g [V 4 ST 0°T 110 (1A ot* 50" 10° e
s8jeuTIsSy §70
W/t =g oy iy o o= K tuorssagbay

- gt ayqey

29



190° £€90° 0L0"* 880° L60° 19¢° 16v° 8e8" 0°t 3
660° 260° ¥90° 980° 601" 161" (1] 169° 866" “ZH
R

160° oLo* yot* 602" 686" 986" o't 0°'1 0°t °Z
0°S 07 ST 0°'1 06" oz’ ot s0°* 10° w

(1'8)~('a‘A)

¢ Mg 4 ML =X

- ey 4 Y =" :aDa

-poz=1 ‘X uo s369L 300 3ITUN jo ezIg Vv °eIqel




VT T Y UINSTA CTA +tes"s BuT33al pue oisz o3 ‘L butjjes 4q pajonaysuon st ezyg
.nux‘;Au~dv.n.ﬂ.ﬂxtm~f.>v Mo g ML <K Mgy i iy A+ M = W :geq

(o10°) (800*) (€00*) (t10") (zr0°) (zoo*) (zoo") (zoo") (100°) S
666" 866" Z86" LY6" LLse 1€0° €00° 200" v00° 3
{ot0°) | (s10°) (z10°) (€10°) (110°) (900°) (zo0-) (€00°) (t00°*)

966° 866° 1L6° 8¢6" 255 520" 500 €00 900" “ZH
(110°) (800°) (600°) (810°) (6£0") (tL0°) (1£0°) (z00") (too-)

0°1 0'1 0°'1 0°'1 666° 908" £g¢g° 150" 520° A
0°s o-¢ S T 0°Y 0s* oz* ot s0° 10° 4

X uo £ jo uorssaabey woxy sTenpysey buysn <g

(800°) | (c10°) (s10°) (o10°) (sco-) (e1e-) (svs-) (068°) (000°1) ,
€26° 6v6" 566° 296" 066" 0001 000°1 000°T 000°T 3
(610°) | {g00") (610°) (810°) (cco-) (sg1°) (tey-) (008°) (L66°)

c€eg” vog:* 868° 0Z6°* 996° L86° V66" v66° 666" “ZW
(€10°) | (rzo*) {veo-) (oco-) (o0g*) (r18°) (sg6-) (000°1) | (000°7)

000°1 0001 000°1 000°T 000°1 000" T 0001 000°T 000°T A
0°g 0z S 1 0°1 05 * oz* ot G0- T6° s

£ wo x30 uorseeiboy woxy srenprsay buysp ¥

”
T00Z=1 ‘1d4DQ UT uotjevibejuton oy 30 syseyjodin [inN eyy burinefey jo (ezig) demod s erquy

31



T WG WL U e eu -

(T'o)N~"n ‘{T'O)N~

Mg Mp +.XQH—> m.«&«.b +

Pigtgte="n {"0='XV 14DG

(880°) (z80*) (s60°) (860°) (980°) (080°) (€60°)

000°1 000°1 000°7Y 000°1 000°T 000°1 000°1 | §°=fo

(980°) (t60°) (¢L8o*) (9c0°) (zso*) (g60°) (zs0°) .

0001 000°T 0001 000°1 000°1 000°1 000°1 ;on:o 3

{060°) (8L0°) {(to1°) {€£60°) {980°) {o9t0°) (vs0°)

000°1 000°1 000°Y 000" 1 000°T 666°0 866°0 | 6 =0

(L80*) (z60*) (680°) (z80°) (gs0°) (z60°*) {es0*)

000'T 000°T 000°1 866°0 666°0 000°T 000°1 o=t'o “2H

(trz*) (szz2"*) (vez*) (zez*) (ccz*) {o82°) {vze*)

966°0 000°1 000°1 000°T 000°1 000°1 000°1} 6°'=Yo

(VAT AD] (612°) (tze*) (Lxe”) (svz*) (662°) (98¢"°)

000°T 000°1 000" 1 000°1 000° 1T 000°T 000°T o=0 "2
08°0 05°0 YR 00°0 0Z°0- 05°0~ 08°0- i)

x uo X Jo uoysseiboy woxJ sTwnpysey fuysn °d

(cLo*) (890°) (sLo*) (veo*) (Leo") {101°) (cLe°)

000°T 000°T 000°T 000°1 000°1 000°T 000°1| g5 =0

(8Lo*) (z60") (veo") (990°) (z80") (€60°) (6t1"*) .
000°7Y 000°1 000°T 666°0 L66°0 ¥96°0 568°0 o=o "

(980°) {ogo"* (L80") (s90°) (oc0") (zot*) (zee*)

666°0 666°0 866°0 866°0 866°0 666°0 666°0 ]| 5 =0

{LLo°) (880") (t80°) (1¢0°) (ze0°) (v60") (sot*)

L66°0 866°0 666°0 L86°0 9L6°0 9L6°0 1z6°0 | o=*o “ZHW

(L61") (o81°) (s91°) (1s1°) (691°) (scv”) (v96°) ’
000°1 000°1 000°1 000°1 000°1 000°T 000°1| s'=Uo

(t61°) (o61°) (661°) (981°) (o61°) (vee") (ves*) .
000°T 000°1 000" T 000°T 000" 1 000°T 000°T o=t'o °Z
08°0 05°0 020 00°0 0z 0~ 050~ 08°'0- ]

cgoz=l {1=¢ f{tapag ug uoyaywabesu

X uo x jo uoyssoibey wolj sTENpPIsoYd pursn ¥

§00 ©N 3O sysoyjodhy TINN °ul puyjoefey jo (oz¥s) Iemod

9 oYdqel

2




81 1Te- 60 €i'v | s o 1 61 s | zom- Or'y | 6b 9T SE- 609§ 15 zg¢- W 66 1="g g it
€61 vy wr 6 ¥ -1 8s1 88 1 8y €6 [0 LA B | 61wl zo1- 86 OF- 1="g wna
o't ocor- 8- - 9L ILE | KR bE - LI R Y4 3 8 w6r | vt wu- [4 8 R ' W~ 6v'9- 1= omtio
681 86°1- €©®wl o 81 8- 161 ooz W o &7 o 891 €6°1- | w1 ggy- 1 6L1- 1="g doa
wl oor wi v €81 6L'1- | €91 061 1 68t Wi o 6671 S6'1- | 6E)  pey- 99't 08'1- =g

6™ 001 86 9¢°L- ws 986 LA 440 Wi e 9w 69Nl T U9 | we vl € 961 §="g 149G
STOWA 40D s10d | s7I0ow4 DD §100 | S70WaA ¥ s1100

8 = ) b=y z =y
OTI8¥3e38-3 8Y3 jo 3¢ Iamol pue zeddn g+, a1qe]

8€6” b6 966" 0%6° - €ve- (ST RN ETTE S€6° 296" 1="g c-otiy
TTO'T 800 T | 500°T | 800°T | 500°T | to0°1 L00'T [S00°T |oto T 1="g | zasa
199" 96L " 156" 299" S8L” L06" |8L9" 99L €98° 1="¢g oty
666" 866 666" | 000°T | 666" 866" | 966" 66 S66° 1="g | ezdoa
z61" |66l T0Z" 061" 861" 661" |16t 96T 861" z ="g

bese |sts'e | usev | testz | 695 ¢ | oce s €1.°z |8zv'e |ser v s="g| 1doa
ST0Wd | 4DD §10a | sI0WA ¥OO. | 8100 | STOWd | a99 5104

8= b=y z =y

SIOjBWTIBY JuetioTim A11eoT303duisy swos Jo sejewrysy ebeieay YL eTqel

33



odAy 1Inu 243
X, peiiodel mol 3yl
b1a 8yl syaodax .0

‘anTea 8N13 BY3I ‘1=1 apniouod 8

Qﬁu ale ..lemz ~.H.u:. GNHHDDMM no
sxauym ‘ g=g 3eud sresyl

pue 35 34l gi10dax .,

pezirewou ' (g-'T) 810100AUD
- guoTseaibaa duel peoNpal

I8yl

D13I8TIEIS \-XEW pue 80
-g1soyjodAy [TnU dY3 I8P

Buysel a0j O118TIRIE PIE

eiL 843l
un g jo enyea 33 87

M 3yl jo
-suotienba >uel-paonps

qeyy setousnbaij

g
L]

gonyea 1e5TATIAD %56
1 eyy Butrajos woij
aaushia, poriegqel mol 381ty 943l

X uo
'} yoea 104

oYy ut pesn s9OUdX33JIpP A8ATI pobbe1 jo asqunu Y3 8T 3 :®ION
068" 068" [21:N yi8” L¥S” LPS | oswn
9V € v€00° sz°¢ 8100° vz £100° sqnm .
{(Lys"1 'T) (o°1- '1T) (Lve - 'T) (o"1- ‘1) (o1e - 'T) (0T~ ‘1) | ooawebp mwwa
oLL” 69L" z9¢” z9¢€” 160° 160" | v s
€0°6 6800° 66 6500° 6601 0600° sqmw 0=T0
(691 ‘1) | (z10°1- ‘1) (vp0° ‘1) | (9T0°T- ‘%) {(v00" ‘1) (BTT-1-'1) | seausdp | 2450
788" 8L8" £88° £88° 108" 108" | wew'u
e 1800 - €5°S Zv00° zs° ¥ 8¥00" .aaﬁ
(vzv 9-'1) (toz - '1) | (oze 2= ‘1) (g61 - ‘1) (z9g's 'T) (661 - '1) | somotp | TdDQ
g = 3 L= z =3

sanpeooxd ussueyol 3y

”

2 03 peijerey 80FISTIELIS 8 °TqBL




OLS: y on «x

OLS: x on

Figure 1: DGP2

~
I 8090+%020
D}aq

35






Université de Montréal
Département de sciences économiques
Centre de documentation
C.P. 6128, succursale Centre-ville
Montréal (Québec)

H3C 3J7

Cahiers de recherche (Discussion papers)
1994 3 aujourd’hui (1994 1o date)

Si vous désirez obtenir yn exemplaire, vous n’avez qu’a faire parvenir votre demande el votre
Ppaiement (5 3 I'unité) @ I'adresse ci-haut mentionnée. | To obtain a copy ($ 5 each), please
send your request and Prepayment to the above-mentioned addres X

9401

9402 :
9403 .
9404 :
9405 :

9406 :
9407 :

9408 :
§409 :
9410 .
9411 :

9412 :

Mercenier, Jean et Bernardin Akitoby, "On Intertemporal Genera]-Equilibn'um
Reallocation Effects of Europe’s Move to a Single Market", janvier 1994,
41 pages.

Gauthier, Céline et Michel Poitevin, "Using Ex Ante Payments in Self-Enforcing
Risk-Sharing Contracts”, février 1994, 38 pages. .
Ghysels, Eric et Joanna Jasiak, "Stochastic Volatility and Time Deformation : an
Application of Trading Volume and Leverage Effects", février 1994, 37 pages.
Dagenais, Marcel G. et Denyse L. Dagenais, "GMM Estimators for Linear
Regression Models with Errors in the Variables”, avril 1994, 33 pages.
Bronsard, C., Fabienne Rosenwald et Lise Salvas-Bronsard, "Evidence on
Cerporate Private Debt Finance and the Term Structure of Interest Rates", avril
1994, 42 pages.

Dinardo, John, Nicole M. Fortin et Thomas Lemieux, "Labor Market Institutions
and the Distribution of Wages, 1973-1992 : A Semiparametric Approach”, avril
1994, 73 pages.

Campbell, Bryan et Jean-Marie Dufour, "Exact Nonparametric Tests of

- Orthogonality and Random Walk in the Presence of a Drift Parameter”, avril

1994, 32 pages.

Bollerslev, Tim et Eric Ghysels, "Periodic Autoregressive Conditional
Heteroskedasticity", mai 1994, 29 pages.

Cardia, Emanuela, "The Effects of Government Financial Policies : Can We
Assume Ricardian Equivalence?", mai 1994, 42 pages.

Kollmann, Robert, "Hidden Unemployment : A Search Theoretic Interpretation”,
mai 1994, 9 pages. ,

Kollmann, Robert, "The Correlation of Productivity Growth Across Regions and
Industries in the US", juin 1994, 14 pages.

Gaudry, Marc, Benedikt Mandel et Wemer Rothengatter, "Introducing Spatial
Competition through an Autoregressive Contiguous Distributed (AR-C-D)
Process in Intercity Generation-Distribution Models within a Quasi-Direct Format
(QDF)", juin 1994, 64 pages.



9413 :

9414 :
9415 :
9416 :

9417 :

9418 :

9419 :

9420 :

9421

9422 :

9423 .

9424

9425 :

9426 :

9427 :

9428 :

9501 :

Gaudry, Marc et Alexandre Le Leyzour, "Improving a Fragile Linear Logit
Model Specified for High Speed Rail Demand Analysis in the Quebec-Windsor
Corridor of Canada”, aofit 1994, 39 pages.

Lewis, Tracy et Michel Poitevin, "Disclosure of Information in Regulatory
Proceedings”, juillet 1994, 38 pages.

Ambler, Steve, Emanuela Cardia et Jeannine Farazli, "Export Promotion and
Growth", aoit 1994, 41 pages.

Ghysels, Eric et Haldun Sarlan, "On the Analysis of Business Cycles Through
the Spectrum of Chronologies", aoiit 1994, 37 pages.

Martel, Jocelyn et Timothy C.G. Fisher, "The Creditors’ Financial
Reorganization Decision : New Evidence from Canadian Data”, aofit 1994,
21 pages. :

Cannings, Kathy, Claude Montmarquette et Sophie Mahseredjian, "Entrance
Quotas and Admission to Medical Schools : A Sequential Probit Model",
septembre 1994, 26 pages.

Camnings, Kathy, Claude Montmarquette et Sophie Mahseredjian, "Major
Choices : Undergraduate Concentrations and the Probability of Graduation”,
septembre 1994, 26 pages.

Nabeya, Seiji et Pierre Perron, "Approximations to Some Exact Distributions in
the First Order Autoregressive Model with Dependent Errors”, septembre 1994,
40 pages.

Perron, Pierre, "Further Evidence on Breaking Trend Functions in
Macroeconomic Variables", octobre 1994, 50 pages.

Vogelsang, Timothy J. et Pierre Perron, "Additional Tests for a Unit Root
Allowing for a Break in the Trend Function at an Unknown Time", novembre
1994, 57 pages.

Ng, Serena et Pierre Perron, "Unit Root Tests in ARMA Models with Data
Dependent Methods for the Selection of the Truncation Lag", décembre 1994,
41 pages.

Perron, Pierre, "The Adequacy of Asymptotic Approximations in the Near-
Integrated Autoregressive Model with Dependent Errors”, décembre 1994,
37 pages. :

Ghysels, Eric et Pierre Perron, "The Effect of Linear Filters on Dynamic Time
Series with Structural Change”, décembre 1994, 35 pages.

Boyer, Marcel, Jean-Jacques Laffont, Philippe Mahenc et Michel Moreaux, .
"Sequential Location Equilibria Under Incomplete Information”, décembre 1994,
38 pages. ‘

Perron, Pierre et Serena NG, Useful Modifications to Some Unit Root Tests
with Dependent Errors and their Local Asymptotic Properties”, décembre 1994,
41 pages.

Garcia, René et Pierre Perron, “An Analysis of the Real Interest Rate Under
Regime Shifts”, décembre 1994, 42 pages.

Boyer, Marcel et Jean-Jacques Laffont, *Environmental Risks and Bank
Liability", janvier 1995, 46 pages.

i



9502 :
9503 .
9504 :
9605 :
9506 :
9507 :
9508 :
9509 :
9510 :
9511 :

9512 :
9513 :
9514 :
9515

9516 :
9517 :
9518 :
9519 :
9520 :
9521 :

9522 ;

Margolis, David. N., "Firm Heterogeneity and Worker Self-Selection Bias
Estimated Returns to Seniority", décembre 1994, 29 pages.

Abowd, John M., Francis Kramarz et David N. Margolis, "High-Wage Workers
and High-Wage Firms", Jjanvier 1995, 73 pages

Cardia, Emanuela et Steve Ambler, "Indexation Lags and Heterodox Stabilization
Programs”, janvier 1995, 29 pages.

Garcia, René et Huntley Schaller, "Are the Effects of Monetary Policy
Asymmetric?", février 1995, 42 pages.

Parent, Daniel, "Survol des contributions théoriques et empiriques lides ay capital
humain”, février 1995, 70 pages.

Parent, Daniel, "Wages and Mobility : The Impact of Employer-Provided
Training”, février 1995, 34 pages.

Parent, Daniel, "Industry-Specific Capital and the Wage Profile : Evidence from
the NLSY and the PSID", février 1995, 21 pages.

Parent, Daniel, "Matching, Human Capital, and the Covariance Structure of
Eamnings", février 1995, 54 pages. :

Garcia, René, "Asymptotic Null Distribution of the Likelihood Ratio Test in
Markov Switching Models", mars 1995, 50 pages.

Garcia, René, Annamaria Lusardi et Serena Ng, "Excess Sensitivity and
Asymmetries in Consumption : An Empirical Investigation", mars 1995,
26 pages.

Sprumont, Yves, "An Axiomatization of the Pazner-Schmeidler Rules in Large
Fair Division Problems”, mars 1995, 26 pages.

Ghysels, Eric, Lynda Khalaf et Cosmé Vodounou, "Simulation Based Inference
in Moving Average Models", mars 1995, 10 pages.

Ng, Serena, “Looking for Evidence of Speculative Stockholding in Commodity
Markets", mars 1995, 25 pages.

Ng, Serena et Huntley Schaller, "The Risky Spread, Investment, and Monetary
Policy Transmission : Evidence on the Role of Asymmetric Information"”,
mars 1995, 26 pages.

Ng, Serena, "Testing for Homogeneity in Demand Systems when the Regressors
are Non-Stationary”, mars 1995, 26 pages.

Ghysels, Eric, Clive W.J. Granger et Pierre L. Siklos, "Is Seasonal Adjustment
a Linear or Nonlinear Data Filtering Process?", mars 1995, 34 pages.

Ghysels, Eric, Alastair Hall et Hahn S. Lee, "On Periodic Structures and Testing
for Seasonal Unit Roots", mars 1995, 45 pages.

Sprumont, Yves, "On the Game-Theoretic Structure of Public-Good Economies”,
mars 1995, 21 pages.

Charles, Sandra, Frangois Vaillancourt et Nicolas Marceau, "The Impact of
Decentralization on Growth and Democracy : A Note", mars 1995, 13 pages.
Sprumont, Yves, "Balanced Egalitarian Redistribution of Income”, mars 1995,
17 pages.

Bronsard, Camille, Lise Salvas-Bronsard et Alain Trognon, "On the Residual
Dynamics Implied by the Rational Expectations Hypothesis”, mars 1995,
18 pages.

i



9523 :
9524
9525 :

9526 :

9527 :

9528 :

9529 :
9530 :
9531 :
9532 :
9533 :

9534 :

Campbell, Bryan et Eric Ghysels, "An Empirical Analysis of the Canadian
Budget Process”, mars 1995, 30 pages.

Ghysels, Eric, Alain Guay et Alastair Hall, "Predictive Tests for Structural
Change with Unknown Breakpoint", avril 1995, 29 pages.

Ghysels, Eric, "On Stable Factor Structures in the Pricing of Risk", avril 1995,
37 pages.

Kollmann, Robert, "Mark Up Fluctuations in U.S. Manufacturing and Trade :
Empirical Evidence Based on A Model of Optimal Storage”, avril 1995,
18 pages.

Laberge-Nadeau, Claire, Georges Dionne, Urs Maag, Denise Desjardins, Charles
Vanasse et J.-M. Ekoé, "Medical Conditions and the Severity of Commercial
Motor Vehicle (CMV) Drivers’ Road Accidents”, mai 1995, 26 pages.
Dionne, Georges, Manuel Artis et Montserrat Guillén, *On the Repayment of
Personal Loans Under Asymmetrical Information : A Count Data Model
Approach”, mai 1995, 32 pages.

Ruge-Murcia, Francisco J., "Government Expenditure and the Dynamics of High
Inflation”, juin 1995, 45 pages. »
Persaran, M. Hashem et Francisco J. Ruge-Murcia, "A Discrete-Time Version
of Target Zone Models with Jumps", juin 1995, 50 pages.

Dionne, Georges et N. Fombaron, "Non-Convexities and Efficiency of Equilibria
in Insurance Markets with Asymmetric Information”, juin 1995, 22 pages.
Bronsard, C., P. Michel et L. Salvas-Bronsard, "Singular Demand Systems as an
Instrument of Scientific Discovery", juillet 1995, 17 pages.

Dionne, G. et C. Fluet, “Incentives in Multi-Period Regulation and Procurement :
A Graphical Analysis”, juillet 1995, 46 pages.

Ng, Serena et Pierre Perron, "Estimation and Inference in Nearly Unbalanced,
Nearly Cointegrated Systems", aoit 1995, 38 pages.

v



