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1. INTRODUCTION

The question whether seasonal adjustment procedures are, at least approximately,
linear data transformations is essential for eeveral reasons, First, much of what
is known about seasonal adjustment and estimation of regression models rests

data. For instance, Sims (1974), Wallis (1974), Ghysels and Pecron (1993),
Hansen and Sargent (1993), Sims (1993), among others examined the effect
of filtering on estimating parameters or hypothesis testing. Naturally, the
linearity of the filter is assumed, since any nonlinear filter would make the
problem analytically intractable, Second, the theoretical discussions regarding
seasonal adjustment revolve around a linear representation. Indeed, for more
than three decades, seasonal adjustment has been portrayed in the context of
spectral domain representations, See, for instance, Hannan (1963), Granger and
Hatanaka (1964), Nerlove (1964), Godfrey and Karreman (1963), among others,
The frequency domain analysis led to the formulation of seasonal adjustment as a
signal extraction problem in a linear unobeerved component ARIMA (henceforth
UCARIMA) framework, where the emerging optimal minimum mean-squared
error filters are linear.

The theory of signal extraction involving nonstationary processes, which
will be the case covered here, was developed by Hannan (1967), Sobel (1967),
Cleveland and Tiao (1976), Pierce ( 1979), Bell (1984), Burridge and Wallis (1988)
and Maravall (1988). As a result, the widely used X-11 Census method, and its

example, adopted the linear-filtering paradigm. Finally, whenever nonlinearities
in time series are discussed, the possibility that such nonlinearities may be (partly)
produced by seasonal adjustment is never seriously entertained.

Several authors have examined the linear representation of the X-11 program,
notably, Young (1968), Wallis (1974), Bell (1992) and Ghysels and Perron (1993).
Young (1968) investigated the question whether the linear filter was an adequate



approximation and found it to be a reasonable praxy to the operations of the
actual program. This result was, to 8 certain extent, a basic motivation as
to why the linear filter representation was extensively used in the literature.
The main objective of our papet is to reexamine the question posed by Young.
We come to quite the opposite conclusion, namely, that the standard seasonal
adjustment procedure is far from being a linear data-filtering process. We reached
a different conclusion, primarily because we ook edvantage of several advances in
the analysis of time series, developed over the last two docades, and the leaps in the
computational power of computers which enabled ue to conduct simulations which
could not be easily implemented before. We rely both on artificially simulated
data as well as actual series published by the U.S. Census Bureau to address
the guestion of interest. In section 2, we first discuss the sttributes of the X-11
program that might be the source of nonlinear features. In section 3, we propose
several properties that allow us o assess whether the actual program can be
adequately presented by a linear filter. For instance, in the context of s linear
UCARIMA, we expect the nonseasonsl 1(1) component and its X-11 extraction to
be cointegrated and expect the extraction error to be a Jinear process. Finally, the
difference between the unadjusted series filtered with the linear lter and the X-11
adjusted series should not be nonlinearly predictable. Through a combination of
simulations and statistical hypotheses, we verify these properties for 8 large class of
model specifications. Finally, we propose to reexamine the effect of X-11 filtering
in linear regression models and study whether spurious relationshipe are produced
by the nonlinearities.

In section 4, we report the results from the simulations and for a large class
of data published by the U.S. Census Bureau.

2. ON POTENTIAL SOURCES OF NONLINEARITY IN
THE X-11 PROGRAM

In this section, we will identify features contained in the X-11 program which
may be sources of nonlinearity. Since the program is slmost exclusively applied to
monthly data, we cover exclusively that case and ignore the quarterly program.
In » first subsection, we describe the different versions of the X-11 program. This
distinction is important since the operstions potentially inducing nonlinearity in
the date traneformations differ from one version to another. Individual subsections



are devoted to the different features we need to highlight: (1) Multiplicative
versus additive, (2) Outlier detection, (3) Moving Average Filter Selection and
(4) Aggregation.

2.1. The decompositions

One must distinguish between two versions of the X-11 program. One is called
the additive version and is based on the following decomposition:

Xg 5TCg+S¢+TD¢+H¢+I‘ (2!)

where X; is the observed process, while TC, is the trend-cycle component, S, the
seasonal, TD, and H, are respectively the trading-day and holiday components.
Finally, [, in (2.1) is the irregular component. The second version is called the
multiplicative version and is based on the decomposition:

Xy=TC, x S x TD, x H, x I, (2.2)

There would be no need to disti nguish between the two versions if a logarithmic
transformation applied to (2.2) would amount to applying the additive version of
the program. Unfortunately, that is not the case as the multiplicative version has
features that are distinct from the additive one. These will be discussed shortly. It
may parenthetically be noted that one sometimes refers to the log-additive version
of X-11 when the additive version is applied to the logarithmic transformation of
the data.

The first of several parts in both procedures deals with trading-day and holiday
adjustments. Typically, one relies on regression-based methods involving the
number of days in a week, etc. as regressors. Since a linear regression model
is used, we will not explore this aspect of the program any further. Neither the
simulations nor the empirical investigation consider effects related to TD, oc I,
In our empirical analysis, we were careful to select series where no trading-day and
holiday effects appear to be significant. For further discussion of trading-day and
holiday adjustments, see, for instance, Bell and Hillmer ( 1984). The extraction of
the TC,, S, and I, components will be more of interest for our purposes. These
components are not estimated with regression-based methods, but instead are
extracted via a set of moving-average filters. This is the most important part
of the X-11 program. While it consista of a series of moving-average filters, it is



important to note that ihe same set of filters are not necessarily applied to a
series through time. Hence, the filter weights mey be viewed as time-varying.
In addition, both the edditive and multiplicative X-11 procedures are designed
to identify extreme velues, or so-called outliers, and replace them one by one
by sttenusted replacement values. These two features, namely the scheme
determining the selection of moving-average filters and the outlier corrections,
make the application of the additive procedure different from the default option
linear variant of the program.

A third festure, specific to the multiplicative version, is also a potential source
of significant nonlinearity. Indeed, despite the multiplicative structure of the
decomposition in (2.2), the program equates the 12-month sums of the seasonally
adjusted and unadjusted data rather than their products. Since the filters in the
X-11 program are two-sided, one must also deal with the fact that, at each end of
the sample, the symmetric filters need to be replaced by asymmetric ones due o
Jack of observations. This feature is also a deviation from the default option linear
filter, but it will not be considered in our simulsiton design, a8 will be discussed
in the next section.

2.2. Multiplicative versus additive

The bulk of economic time series handled by the U.S. Bureau of the Census and
the U.S. Bureau of Labor Statistics are adjusted with the multiplicative version of
the program. Only 8 small portion ie treated with the additive version, apparently
around one percent of the 3000 series covered by the two aforementioned agencies.
The Federal Reserve uses the additive version more frequently, because of the
nature of the time series it treats. Roughly 20% of the 400 o so series it deals with
are additively adjusted. Young (1968) described the features of the muitiplicative
version, emphasizing the complications and departures of (log-) linearity due to
the equating of the 12-month sums of the seasonally adjusted and unadjusted
data. If the equality of sums condition were dropped, then the logarithm of the
seasonal factors could be expressed as linear filters of the raw data, just as in
the additive version. Young (1968, p. 446) justifies the presence of the feature in
the multiplicative X-11 program arguing that “traditionally, economists have not
wanted to give up ...(the condition of equating sums)... just to obtain s linear
model... the desire to present seasonally adjusted series in which annual totals
rather than products are unchanged”.



In the remainder of the paper, we keep in mind the distinguishing features of
the additive and multiplicative X-11 programs.

2.3. Outlier detections

The treatment of extremes, or outliers, is a key element in seasonal adjustment
programs like X-11. Because thia feature is similar for the additive and
multiplicative versions, we will discuss it using the former as example. The X-11
Program produces a first estimate of the seasonal and irregular components S, + N
via a twelve-term MA filter trend-cycle estimator. Seasonal factors are obtained
from this preliminary estimate using a weighted five-term moving average. At this
point, the program has obtained a first-pass estimate of the irregular component
process {1;}. The scheme to detect outliers is activated at this stage. First,
a moving five-year standard deviation of the estimated 1, process is computed.
Hence, extractions of 1; will be evaluated against a standard-error estimate only
involving the past five yeass, i.e., sixty observations jn a monthly setting. We
shall denote the standard error applicable to /, as a‘l , where the superscript
indicates that one has obtained a first estimate. The standard error is reestimated
after removing any observations on I, such that || > 2.5 a,w, yielding a second
estimate af" , where the number of observations entering the second estimate is
random. The second-round estimated standard error a‘m i8 used to clear the Se+1,
process from outlier or influential obeervations. The rules followed to purge the
process can be described as:

(1) A weighting function w; is defined as:

1 if 0<, <1506
W= 25-L/o" if 150® <1, <250 (2.3)
0 I >250™

(2) S + I, is replaced by an average of two annual leads and lags plus the
contemporary observation weighted by w, if

w, < 1. (24)

The formula in (2.4) replaces any perceived outlier by the smoothed nearest
neighbor estimate. The 1.5 and 2.5 values in (2.3), setting the benchmarks of the



weighting function play, of course, & key role besides the two-step standard-error
estimate a?) described earlier. The (2.3) - (2.4) schemes are, however, entirely
based on rules of thumb and not so easy to rationslize. The value of 1.5 af”
in (2.3) which sets off the correction scheme, since it determines whether wy <1,
is quite tight.

2.4. Moving average filter selection

We will continue with the additive version of the program again for the sake of
discussion. The seasonal plus jrregulas components modified through (2.3) - (2.4)
will be denoted (Si + Ii). The series is used to compute 8 new set of seasonal
factors which are applied to the original raw series, yielding a first estimate of the
seasonally adjusted series, which we shall denote X A Obviously, if the outlier
correction procedure were turned off, then S, + L would be used to compute
the seasonal factors and, ae 8 result, different estimates of seasonally adjusted
series would already be obtained at thie stage. The X-11 procedure continues
with a second and final iterstion of seasonal adjustment. As a first step in
this second stage, one extracts again the trend-cycle component by applying &
Lhirteen-term Henderson moving-average filter to the seesonally adjusted XA
series [the design of Henderson MA filters is described in the papers covering the
linear X-11 appraximation, formulae for the Henderson filter weights also sppear in
Macauley (1931) or Gouriéroux and Monfort (1990)]. The trend-cycle component
estimate obtained st this paint will be denoted TC?). The moving-average filter
selection scheme now comes into play. To describe the scheme, let us define two
annual average percentage changes: piy is the average change of (X34 - ch),
and iy the average change of TC™M. The averages are updated as new raw data
are added to the sample and are therefore made time-varying. The filter selection
scheme can then be formulated as follows:

(1) spply nine-term Henderson MA if
s < 0.99 pag; (25
(2) apply thirteen-term Henderson MA if

0.99 py <pu < 3.5 pu; (26)



(3) apply twenty-three-term Henderson MA if
354y < B (27)

‘The Henderson MA filter thus selected is reapplied to X it* to yield a second
estimate T'C{.  Thi, Yields a new estimate of the seasonal and irregular

2.5. Aggregation

So far, we have highlighted the two distinct features that represent the possible
causes of nonlinearity and/or time variation in the actual X-11 filtering process.
However, another source of nonlinearity also needs to be highlighted. It is

separate decomposition (2.1) for two series, say X, and Y;, is not the same as
the decomposition for a Z; process defined as Z, = X+ Y. The question
whether seasonal adjustment should precede or follow aggregation is discussed
in Geweke (1978) and was recently reexamined by Ghysels (1993). When the
seasonal-adjustment process is linear and uniform, then aggregation and seasonal
adjustments are interchangeable.  Another potential source of nonlinearity

interchangeable, and one applies the procedure to disaggregated series with only
the aggregated series available to the public. In Practice, this setup is quite
common. We therefore included in our simulation design a setup similar to
the effect of aggregation combined with seasonal adjustment. This issue was,
of course, studied separately. We first investigated the potential sources of
nonlinearity produced by the internal design of X-11.



3. A SIMULATION STUDY

The effect of filtering on the statistical properties of time series and properties
of estimators in linear regression models and cointegration tests are reasonably
well understood when the sdjustments are performed with a linear filter. The
seminal papers by Sims (1974) and Wallis (1974) justified the routine use of
seasonslly adjusted series in linear regression models. Their result, namely
that linear regressions with filtered series yielded consistent estimators, together
with the more recent developments by H and Sargent (1993), Ghysels and
Perron (1993), Sims (1993), Ericsson, Hendry and Tyan (1994) and Ghysels and
Lieberman (1994) all rely on the key assumption thst the filter is linear and
uniformly applied to all peries {and aleo in certain cases that it is two-sided and
symmetric like the linear X-11 filter). In dealing with the guestion of potential
nonlinearities in the actual X-11 procedure, we have to give up the elegance of
econometric theory as there is no Jonger an explicit and easy characterization
of the operstions of the filter. The key question then is whether the features
described in the previous section intervene to a degree that the linear filter can
no longer be viewed as an adequats sepresentation of the adjustment procedure
in practice. A subsidiary question is to find out what effects are produced by the
actual procedure if in fact the linear approximation is inadequate. The only way
Lo sddress these questions i through simulatione.

Unfortunately, the question of the simulation design ie not simply one of a
judicious choice of data generating processes. 1t ie first and foremost a question
sbout what we characterize as departures from » linear filter and how these are
messured. We settled for a design centered around two broad topics which follow
certain established traditions in the literature. First, we define a set of desirable
properties which any filtering procedure should have to ensure that the linear
approximation is adequate. This part of the design follows & tradition in the
time series siatistics literature concerned with defining propertiee that seasonal
adjustment procedures cught to have |see, for instance, Bell and Hillmer (1984)
for discussion and references]. Second, we also focus on questions which have a
tradition rooted in the econometrics literature, particularly as established since
Sims (1974) and Wallis (1974). Here we are not e0 much concerned with univariate
filtering but rather with the measurement of relationships among economic time
series through linear regression analysis. It is perhaps worth noting that since
Young (1968) did not examine nonlinearities through simulated data we cannot



power of computers, and (2) progress in the theory of time series analysis. Like
Young, we will also study roal data except that our analysis of actual series will
only be complementary to the simulation results to verify the similarities between
the two,

Examining (statistical) properties of adjustment procedures and studying
regression output will require, in both cases, generating data which subsequently
are filtered with the linear filter and the X-11 adjustment program. We will
therefore devote a first subsection to the description of the data generating
processes. A second subsection deals with the properties of linear approximation
while a third subsection covers seasonal adjustment and regression analysis. A
final and fourth subsection deals with technical notes regarding the simulations.

3.1. The data generating processes

We generated data from a set of linear UCARIMA models, with Gaussian
innovations. Each Procese consisted of two components, including one exhibiting
seasonal characteristics, Let the X process consist of two components:

X = XN+ X3 (31

where X represents a nonseasonal process and X7 displays seasonal
characteristics. Obviously, equation (3.1) is adapted to the additive
decomposition (2.1). The multiplicative one will be discussed later. The first
component in (3.1) has the following structure:

(1-L)XNS = 1+ ansl)els 3.2

with e i.id. N(o, o} g) and where @ns is the moving-averags parameter. The
Pprocess is chosen to be I(1) and invertible, determined only by two parameters,
namely, ays and o3, The (monthly) seasonal component has the following

- structure:

T+Lt o+ LMXF=(1 - agL')e? (3.3)



with €7 egain i.id. N(0, 1). Here also two parameters determine the process.
Obviously, the data generated have neither trading-day ot holiday effects, nor is
there an explicit distinction made between the TC, and I; components appearing
in (2.1). This simplification was done purposely. Indeed, it is well known that
the decomposition of 8 time seriee into 8 trend cycle, a seasonal and irregular
components js not unique. Hence, it is not clear st the outset that if we were
to define a structure for X]2 a8 the sum of two components, TCq and I, the
X-11 program would pelect exactly that same decomposition. For similar reasons,
it is not clear that the X-11 procedure will identify S, as exactly equal to X;'.
Conseguently, we must view our design as one where four paramieters are selected
to form an X, time series with the stochastic structure

(1= L)X, = u(L)ee (3.4)

where & is i.3.d. N(0, 03) and

A, ()(z7") = A1 +z+...+ M4+t PR B
(1-as2?)(1 - asz” )+
adsll - 2)(1 - (1 - ansz)(1 - ansz” V)

The sdditive version of the X-11 program will operate on the time series X, and
choose a decomposition TCy+ Si+ Is. Theoretically, this decomposition is defined
by tsking the maximal variance of the irregular component [see for instance Bell
end Hillmer (1984) or Hotta (1989) for further discussion]. :

In section 3.4, we will provide further technical details regarding parameter
values and sample sizes. Before leaving the subject, however, we would like
1o conclude with a few words regarding the multiplicative decomposition. The
same stepe as described in (3.1) through (3.4) were followed except that the
generated series were viewed as the logarithmic trensformation of the series of
interest. Hence, exp(X,) = exp(X{" 9) exp(X?) was computed before applying the
multiplicative X-11 program.

3.2. Properties of linear approximations

The design of seasonal adjustment filters is typically motivated on the basis of a set
of desirable properties which the procedure ideally should exhibit. Most often,



these theoretical discussions revolve around a linear Tepresentation. In reality
however, as we noted in section 2, there are many potential sources of nonlinearity.

to exploit certain properties of the linear X-11 filter which will allow us to predict
what will happen if the actual procedure were approximately linear. Let us denote
the seasonally adjusted series, using the linear X-11 filter, as:

X4 = Gﬁ_,, (L)X, (3.5)

where the linear polynomial lag operator in (3.5) represents the X-11 filter. It
has been shown that the linear filter includes the (1 + L 4 .. +L") operator
[see, e.g., Bell (1992) for further discussion]. Moreover, the filter has the properties
that ©5 (1) = 1 [see Ghysels and Perron (1993)] implying that it will leave the
zero frequency unit root in the X process unafected when the process follows the
specification described in section 3.1.

The purpose now is to identify & set of properties that would hold if X-11
were linear and to associate with those properties statistical tests which can be
conducted either with simulated data, with real data or both,

We will first consider a class of relatively weak conditions applicable to
simulated dats, in particular we know that:

Property 1L: The X3 and X594 processes are cointegrated,

Obviously, we would also like the actual X-11 procedure to yield an estimate
of the nonseasonal component which is cointegrated with X¥*. Suppose that we
denote X34 as the seasonally adjusted series using the actual X-11 procedure.
Then the following property should also hold: '

Property 1X: The X8 and X34 processes are cointegruted,

Failure of property 1X to hold is an indication of inconsistencies when the
actual X-11 program is applied to the data. Some cautjon is necessary, however,



being exactly 1(1) and for which there is an exact (though not necessarily unique)
linear relationship canceling the zero frequency unit roots. In our context, it is
perhaps more appropriate to interpret cointegration as a property we expect to
hold approzimately for the X-11 adjusted data when the filter approaches its linear

version.

A second property i8 much stronger as it is borrowed directly from the
theoretical linear signal extraction framework where we know that the extraction
error defined as: :

64 = X\ - xPA=l- e)li-u([')lxcﬂs - e)‘i—u(L)Xzs (38)

will also be a linear process. Moreover, a8 ok, (1) and X do not have &
zero-frequency unit root, it follows that 854 is stationary. This yields s second
property of interest, namely:

Property 2L: The estraction-ervor process §L9A is linear and stationary.

It will be interesting, once agnin, to investigate whether a similar property
holds for the X-11 program. Let 654 be the extraction-error process defined as
in {3.6) yet involving X34 instead of X 54. We are then interested in:

Property 2X: The ezlraclion-ervor process 534 is linear and stationary.

Again, if this property fails to hold this is an indication that there are
significant departures from linearity. So far, we examined properties which are
only applicable to simulated series since they involve the unobserved component
series. Clearly, instead of comparing X¥S with X154 and X34, seapectively; it
‘s also useful to analyze X4 and X5A in terms of cointegration and linearity.
This yields two additional properties, namely,

Property 3: The X4 and X34 processes are cointegrated.
Property 4: The (XF°4 - X3A) process is linear and stationary.

The latter is simply a combination of Properties 2L and 2X, since XBA -
XS54 = 654 - 634, Likewise, the former is a consequence of Properties 1X
snd 1L. Properties 3 and 4 are relatively straightforward to implement both with
actual and simulated series.



The properties discussed so far pertain to the possible sources of nonlinearity
associated with the internal operations of the program discussed in the previous
section. At the end of section 2, it was noted that the combination of seasonal
adjustment and aggregation can also be a source of nonlinear features. To
investigate this aspect of the problem, we included in the simulation design a
second process, called Y:, with the same stochastic properties as the X: process.
It should be noted though that while V; is replica of X, in terms of laws
of motion, its path generated by an independent realization of the innovation
Processes for the unobeerved components, which will be denoted by analogy, Y;N¥
and Y%, We also define the ¥4 and ¥;*4 processes to describe extractions.
The process of ultimate interest for our purposes will be the Z, process defined
as Z; = X; +Y,. Given the nature of aggregation, we restrict our attention to
the additive version of the X-1] program. Hence, Z; consists of two components,
namely, Z7 = X7 + Y2, For the linear X-11 filter, one can unambiguously define
the Z/54 process since summation and linear filtering are interchangeable. For the
X-11 procedure, however, one must distinguish between two potentially different
outcomes. If seasonal adjustment js pecformed on the Z, process using the X-11
program, then the outcome will be denoted Z344, The superscript A indicates
that the aggregated series was adjusted. Conversely, if X; and Y, are adjusted
separately, then Z542 = XFA4Y54, We could investigate Properties 1 through 4,
again, using the Z, Process and its extractions, This, to a certain extent, would
be repetitive, except for the fact that the stochastic properties of the Z; process
would differ from those of X, in each case. Instead of repeating such analysis, we
will instead focus exclusively on the aggregation effects. In particular, we will be

Property 5: The 544 ang Z3A° processes are cointegrated.

Property 6: The (Z344 - Z7AP) process is linear and stationary.

Both properties follow naturally from arguments similar to those used to
formulate Propesties 3 and 4.
3.3. Linear regression and filtering

Ultimately, economists are interested in’understanding the comovements between
economic time series. Until the work of Sims (1974) and Wallis { 1974) discussions



regarding seasonal adjustment were mostly centered on & single economic series.
We now have some strong results regarding (linear) filtering and seasonality in
(linear) regression models. To date there has been no attempt to aseess how fragile
this finding is when faced with the practical and soutine application of the X-1n
procedure. 1s this section, we describe how our simulation design attempts to
shed light on this selatively simple and fundamental question.

We propose to look at the linear regression model
W=fot Bt 67

for i = NS,LSA and SA and where yNS and z}'° are independently generated
processes meen 260, 80 that o= A =0in our simulations. For the additive
version of the X-11 program, the processes appearing in the regression model a7
were defined as follows: }

y=0-10) Yiandzi=(1- L)X} (3.8)
for i = NS,LSA and SA while for the multiplicative version it was:
w=0-0 log Yy end =} = (1 - L)log X;. (3.9)

To tackle immediately on the most practical question, we focus on testing
the null hypothesis By = 0, i.e., examine how spuricus relationships can emerge
from departures from linear filtering in & linear regression model. Obviously,
since the error process in equation {3.7) will not be i.5.d. we need to correct for
the serial dependence. This will be done in the nowadays established tradition
among econometricians by using nonparametric procedures often referred to as
heteroscedastic and sutocorrelation consistent estimators for the variance of the
residual process. The details are described in the next section. To conclude, we
would like to note that to simplify the design, we will adopt a strategy similar
to the one used in the construction of the aggregate process Z, described in the
previous section. In particular, the series X, and Y, used to run the regression
in (3.7) will be independent draws from the same process stiucture.

3.4. Technical details

Seversl technical details need to bs explained regarding the actual simulation
setup. We will, in particular, describe the choice of parameter values to generate



the data. Next, we wil) explain how we conducted the statistical inference

-regarding the properties described in section 3.2. Then, we turn our attention to

the specifics about the linear regression model of section 3.3, Finally, we conclude
with some information of the software used in the computations,

(a) Parameters and DGP’s

We have tried to cover a reasonably wide class of processes. A total of
forty eight cases were considered, that is, sixteen model configurations with three
different settings for the innovation variances 0%s and 0. The parameter settings
appear in Table 3.1. All data series were generated independently.

We first considered what wil] be called small-variance cases which correspond
0 0%s = 02 = 1, The “large” standard error was chosen three times larger and
hence & nine-times larger variance, i.e., oy g = 02 = 9. Cases 1 through 16 have a

Table 8.1; Data Generating Processes

Cases Qng g C&ses Qng | ag
1/17/33| 0.010.0] 9/25/a1| 0005
2/18/34| -05] 0.0 10/26/42 | -0.5[ 0.5
3/19/35| 0.5] 0.0 11/27/43] 05[05
4/20/36 | 0.910.0 | 12/28/44| 0905
5/21/37] 0.0|-05[13/29/45| 0.0 0.9
6/22/38 | 0.5 | -0.5[14/30/46 | 0.5 0.9
7/23/39 ] 051 05]15/31/47| 05 0.0
8/24/40] 091-05]16/32/48 0.9 0.0

Cases 1-16; oy = 03 =1/ Cases 17-3%: opg = og=3/
Cases 33-48: o g = l,04=3.

For the regression model (3.7), we conducted an extensive Monte Carlo
study to examine the distribution of the t statistic for By = 0 when the actual



{unobserved component) series are used versus the linear and X-11 filtered series.
The number of replications was 500, which is low by the usual standards, but
the X-11 program was not available to us in a convenient format to construct
a computationally efficient simulation setup. Even a stripped down version of
the X-11 program would still be very demanding in terms of CPU time. At the
end of the section, we will provide more details regarding software use. For the
regression model, we investigated both & “gmall” sample which amounted to ten
years of monthly data, i.e., 120 observations, in fact, 83 years or 996 data points
to be more precise. The properties 1 through 6 were not studied via Monte Carlo,
but instead for a single large sample. Conducting all the tests associated with
the properties, which will be discussed in just a moment, in association with the
X-11 program in & Monte Carlo experiment was simply beyond our human and
computational resources.

(b) Test statistics

in the section 3.2, we formulated several properties which we expect to hold if
no significant nonlinearities occur in the X-11 program. We now turn our attention
to the analysis of these properties via statistical hypothesis testing. The null
hypothesis of Lhe test statistics will correspond to a situation where a property
of interest holds whenever it relates to linearity and stationarity conditions, ie.,
Properties 2L, 2X, 4 and 5. Because of the structure of cointegration tests, the
situation will be slightly different with such tests. Indeed, the null hypothesis
will correspond to a lack of cointegration and hence Properties 1L, 1X, 3and 5
will be violated. The testing procedure proposed by Engle and Granger (1987)
and Johansen (1991) were used 1o test the cointegration hypothesis. Since both
procedures are by now widely known and applied, we refrain here from formally
representing the tests. Instead, in the remainder of this section, we shall focus on
the tests for nonlinearity in time series and conclude with observations regarding
the t statistics in the linear regression model.

Obviously, there are many tests for nonlinearity in time series. The size and
power properties against specific alternatives have been the subject of several
Monte Carlo studies, including, moet, recently, Lee, White and Granger (1993).
"With 48 series and seversl properties to investigate, we were forced to make a
very restrained and selective choice. Tests proposed by Tsay (1986), Luukkonen,
Saikkonan and Terasvirta (1988), and Teay (1988) were used in our investigation.



Tests in this class are all designed according to a unifying principle, namely, they
are all of the same form and yield an F-test.

The first step in all F-type tests consists of extracting a linear structure
via an AR(p) model. Let the fitted value be denoted %, and the residual g4,,
while the original series is denoted z,. Obviously, z; will be a stand-in series
for any of the series involved in testing the properties of interest formulated
in the preceding section. The second step consists of regressing &, onto p lags
of z,, a constant and a set of nonlinear functions of past realizations of the
Z, process. This operation yields a residual denoted é. Finally, a F-test is
computed from the sum of squared residusls obtained from both regressions.
The tests differ in terms of the choice of nonlinear functionals used to form the
regression producing the & residuals, Tsay (1986) proposed to use the {z1.,,
Te-vEe-2, oy Te-1T4op, Ti_y, Te-2i-y, ..., z}_,} regressors. Luukkonen, Saikkonan
and Terisvirta added cubic terms to Tsay’s test, namely, {z}_,, ..., _,}. Finally,
the second test proposed by Tsay (1988) is designed to test linearity against
threshold nonlinearity, exponential nonlinearity and bilinearity. The fact that the
test is designed against threshold nonlinearity may be of value, as the outlier
detection schemes described in section 2 may result in threshold behavior of the
linearly filtered versus X-11 filtered series. To conduct the test, one selects a
threshold lag, say, z,_4. Again, an AR(p) regression is fit to compute normalized
predictive residuals ¢, similar to a CUSUM test. Then one regresses €, onto p
lags of z;, a constant, the regressor sets {Tiiéiy, .. .., Tepbip}t, (€i-16ia,
vy Cropby_poa}, {Zeoy exp(~z}_,/7), G(zi-a), 20-1G(2-4)} where v = max LA
and 5y = (T,-q - F4)/Ss with £ and Sa being the sample mean and standard
deviation of z,_4 while G(-) is the CDF of the standard normal distribution. One
proceeds in the same manner as in the other two F-tests. In ell cur computations,
welet p=12andd =1 and 2.

We now turn our attention to the regression model. Since the series in
equation (3.7) were generated independently, we are interested in testing the
null hypothesis f; = 0 knowing that the errors are not Lid. We followed the
customary practice in econometrics of dealing with the tempora! dependence in the
residuals via a nonparametric estimator. The weights were those of the Bartlett
window using 12 lags in the small sample and 24 in the large one [see for instance
Andrews (1992) for a more elaborate discussion].



(c) The Monte Carlo simulations and X-11 procedure

The original creators of the X-11 procedure probably never meant it to be
inserted in & Monte Carlo simulation. The program is structured to be used on
a case by case basis leaving many choices open to the discretion of the user. It
would be impossible to simulate this elaborate day to day implementation of the
procedure in dozens of statistical agencies around the globe. Such “judgemental
corrections” are omnipresent, but they are most likely going to aggravate rather
than sattenuate the nonlinesrities we will investigate. In our paper, we aimed
co-apply the X-11 procedure without any active intervention on the part of
the user. Doing otherwise, at least in & Monte Carlo setup, would simply be
impossible. All calculations were done with the SAS version 6.01 PROC X-11
procedure. While we created samples of 120 monthly observations and 996 data
points, we actually simulated longer samples which were shortened at both ends.
This was done primarily for two reasons: (1) to be able to compute the two
sided linear filter estimates requiring data points beyond the actual sample, and
(2) because we wanted to a certain degree reduce the effect of starting values.
Since all the time series generated are nonstationary, we have to be careful
regarding the effect of starting value. (3) In a sense, the question of starting
velues is quite closely related to many of the questions regarding nonlinearities
in X-11. There is, however, no obvious choice for these values. This implies a
certain degree of arbitrariness in dealing with the problem. In our simulations,
we took ten years of pre-sample data pointe while all components started at zero
initial values. This can be criticized, but any other choice could be subjected to
criticism as well because of the arbitrariness of the issue.

4. STIMULATION AND EMPIRICAL RESULTS

We have identified a set of properties and regression statistics. In this section, we
summarize the findings of the simulation study and we complement them with
empirical evidence drawn from actual economic time series. In a first subsection,
we describe the resulte pertaining to the properties of a linear approximation
described in section 3.2. The results reported in section 4.1 relate to the simulated
data while the next section contains the empirical results. Section 4.3 concludes
with a summary of the regression evidence.



4.1. Simulation evidence on properties of linear approximation

We shall first report the results regarding cointegration tests and then provesd
with the tests for nonlinearity. We report only the cases of the additive
decomposition. The multiplicative decomposition yielded essentially the same
results. Table 4.1 summarizes the cointegration test for the 48 model specifications
for each of the four properties of interest. A lag length of 21 was selected and
& constant and trend were included in all the test regressions. The top panei
of Table 4.1 covers all “small® variance cases, while the middle part covers the
equivalent parameter settings but with a larger innovation variance. The mixed
variance cases, small for NS and large for S, appear in the bottom part. Whenever
the null hypothesis is rejected, we find supporting evidence for the property of
interest. For instance, Property 1L holds, regerdless of the model specification.
This is reassuring, of course, as we expect the linear filter to yield an extracted
series which is cointegrated with the unobeerved component process. The situation
is quite different though for Property 1X. Indeed, with a small innovation variance,
most cases yielded cointegrated processes. Two exceptions are models 1] and 12
The situation is completely different though when we increase the innovation
variance either for both components together or for the seasonal only. Here, the
extracted oeries and the target process are never cointegrated. This is obviously
qQuite problematic and can only be attributed to the nonlinear properties of the
X-11 program which come seriously into play. Since the mixed variance case
is probably the most relevant for practical purpose, it appears from the resuli:
in Table 4.1 that what was identified ns & weak property regarding the linear
sppraximation does not seem to hold. Before turning to the stronger propertios
of linearity, let us briefly look at the aggregation results and property 3. The
latter property only involves observed procesees, namely X4 and X4, and is
therefore more useful as it can be verified empirically. Generally speaking, the
results in Table 4.1 show the same patiern as with properties 1X and iL. This
should not come as a surprise, since Property 3 is essentially a combination of
the two. The results do not exactly conform with the combination of properties
1X and 1L, but the minor differences which occur can be attributed to statisticai
arguments about the sampling properties of tests. Finally, we turn our sttention
to the last property of interest. Here, as noted in section 2, we no longer
investigate the internal modus operundi of the program, but we alse consider
the combined effects of seasonal adjustment and aggregation. Property 5 yields
rather strong results and shows that aggregation adds a potentially important
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source of nonlinearity to the dats-adjustment process. Only less than a third of
all cases yield a cointegration relationship between Z34# and. Z34D, Clearly, all
the potential sources of nonlinearity in ZFA, X3* and Y4 combined make it
quite likely that the linear spproximation will not be adequate in the sense that
seasonal adjustment and aggregation are not interchangeable.

Next, we turn our attention to tests for nonlinearity. Strictly speaking, the
distribution theory for such tests applies to stationary time series only. Therefore,
we have limited our analysis to the cases where cointegrating relationshipe were
found and ignored all other cases. To keep matters simple, however, we focused
on all the small-variance cases, i.e., models 1 through 16, and deleted individual
cases which, according to Table 4.1, did not support the cointegration hypothesis
from the selection of models. Consequently, Tables 4.2 through 4.4 contain some
missing values which correspond to the position in Table 4.1 where the hypothesis
of no cointegration could not be rejected. Hence, conditional on having found
cointegration, we investigate the stronger nonlinear properties.

For sake of simplicity, we use Ori-F for Teay's original test, Aug-F" for
Luukkonen et al. test and New-F for Tsay’s threshold test. The null hypothesis
of linearity is almost always rejected for properties 4 and 6, regardless of the test
statistic and model specification. Both properties are quite important since they
have an empirical content, i.e., involve series that can be constructed from data.
The results for properties 2L and 2X are mixed and depend on the test being used.
For property 2L, we should not find nonlinearity and indeed most often we don't,
but size distortions seem to be present in quite a fow cases. For property 2X, we
also find a mixture of results. It is interesting to note, however, that whenever we
do not reject the null for property 2L, hence there is no size distortion, we tend
to reject the null of linearity for property 2X.

4.2. An empirical investigation

The empirical investigation reported in this section is meant to match the
simulations of the previous section. In particular, we investigated the properties 3,
4, 5 and 6 with actual data. The data do not involve corrections for trading-day
variations and holidays. Hence, we tried to have the data conform with some
of the assumptions made in the simulation experiments. A total of 39 series
were investigated with some of the series being aggregates of several series.
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According to our information, they are all treated with the multiplicative X-11
program. Such aggregate series were included to address the empirical evidence
regarding properties 4 and 6. To construct X!94 in each case, we used the
two-sided symmetric filter applied to the logs of unadjusted data. Obviously,
because of the number of leads and lags, a fair number of data points were lost at
each end of the sample of unadjusted data. In all cases, data covered ten to fifteen
years of monthly time series. Obviously, such sample sizes were much smaller than
the simulated series. For X4, we took the officially adjusted seriea provided by
the US Census Bureau or Federal Reserve (for monetary data). This may also be
considered as a deviation from the simulation where the SAS X-11 procedure was
used.

Table 4.5 summarizes the results of the Engle-Granger cointegration tests
applied to X34 and X94 for each of the 39 series listod. The BR, NBR and TR
series are borrowed, nonborrowed and total ressrve series of the US money supply.
The BA extension is a break adjusted version of those series. All other series
are drawn from the US Census manufacturing data bank, including industrial
production IP, finished goods inventories FI, work in progress, WI for severa!
two-digit SIC dassification industries, and finally, total inventories T for five
subcategories of the SIC 20 sector (food). In all cases, the aggregate or TOT
was also considered. In quite many cases, we do not reject the null hypothesis,
implying that X 54 and X7 are not cointegrated. In 17 out of the 39 cases, or
almost 50%, we find no cointegration at 10%, and in 21 out of the 39 cases, we
find no cointegration at 5%, Obviously, the sample sizes are smaller compared to
the results reported in Table 4.2, but still more than half of the series confirm the
results found by simulation.

The empirical evidence with respect to the other properties, i.e., nonlinearity of
XS4 — X 54 and properties regarding Z3A° and ZJ44 are not reported via tables,
as they are relatively easy to summarize. All X4 — X34 series were found to
have nonlinearities. The rejections of the null hypothesis were very strong without
any exception. Of course, unlike the simulated data which are by construction
linear, an important caveat must be made regarding the interpretation of this
kind of nonlinearity. Indeed, the individual series may very well be nonlinear,
and we therefore find their difference to be nonlinear as well. For the TRBA, TR,
FITOT, IPTOT, WITOT and TI2NTOT series, we analyzed the nonlinearities via
cointegration properties § and 6, since they involved a combination of aggregation
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and seasonal adjustment. We found no cointegration and evidence of nonlinearity,
though evidence regarding the Jatter is difficult to interpret because of lack of
cointegration, of course. :

4.3. Seasonal filtering and linear regression

We now turn our attention to a final question, which without any doubt is the most
relevant for econometric practitioners: Are there spurious statistical relationships
in linear regression models due to the nonlinear features in seasonal adjustment?
We have computed a Monte Carlo simulation of the distribution of the t statistic
in regression (3.7). There are 48 cases for the DGP and for each case, two filters
(additive and multiplicative), as well as a large and small sample distribution for
three regression t statistics with the true uncbserved components and with the
linearly filtered data and with X-11. Hence, we have a total 576 distributions.
Reporting them all would of course be impossible. Fortunately, it was not very
hard to select or choose some to report as there were remarkable similarities across
the different cases. To illustrate this, we provide graphs of the distribution for
cases 1 through 3 for “mixed” innovation variances both for a multiplicative and
an additive X-11 filter setup. Each graph contains three plots of t distributions
for the By coefficient simulated by Monte Carlo. The first is labeled “True” when
the unobserved component series are used, a second is labeled “Linear” when the
series are linearly fillered and a third is labeled “X-11".

Before discussing the relative position of the three plots in each graph, we need
to make some general observations. Because of the nonparametric correction of
the residual variance estimator, the statistic is distributed a8 x*(1). There are
clearly some minor size distortions since the 5% critical value does not yield a
5% rejection rate but instead s higher one in many cases, 88 will be reported
later. The size distortion issue is not our main concern here, of course. In
particular, it is interesting that while the “true” and “linear” regressions have
very different dependences across their residuals, one observes that they have
quite similar tail behavior for the t distribution. In contrast, the tail behavior
of the *X-11" distribution in small samples slmost elways dominates that of
the two other ones. This means that filtering with X-11 has spurious effects
on finding significant relationshipe among independent series. To continue with
the small sample case, we also notice that the multiplicative filter often causes
more rejections in comparison to the additive decomposition though this is not
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always the case. We will report this more explicitly with numerical results in
Table 4.6. Before we do so, however, let us first turn our attention to the large
sample cases. Here, we notice quite often a shift in the distribution of the “X-11”
case relative to the others. It should parenthetically be noted that some caution is
necessary when visually comparing the large and small sample plots as the scales
of the two plots often are quite different. Moreover, when the peaks of the two
distributions of the filtered cases coincide in large sample we still observe fatter
tails for the X-11 case.

We turn our attention now to Table 4.6 where we report rejection rates
obtained from the Monte Carlo simulations. Again, to avoid reporting 576 figures,
we will focus on all DGP’s with & mixed variance covering both the additive and
multiplicative filters in small and large samples. The figures reported in Table 4.6
confirm the size distortion issue which was already noted. In the large sample
case with the “true” unobserved components, the distortions are minor, however.
The results in the table quantify what the plot already revealed, namely that the
rejections in the X columns are far higher than in the two other columns and that
the “true” and “linear” cases are often very close. Moreover, the multiplicative
filter often, though not always, leads to a higher rejection rate than the additive
linear decomposition filter. For the X column, in large samples and using the
multiplicative filter, the rejection rates range from 43.8% to 64.2%, while the
T column ranges from 5.2% to 8.8% and the L column 6.8% to 13%. The resuits )
for the additive filter are equally dramatic for the X column, as rejection rates
range from 47.8% to 63.2%. Finally, the rejection rates drop significantly from
small to large samples in the T and L cases, but often they do not drop much in
comparison with the X-11 filter.

It was noted in the previous section that we only can assess the effect
of potential nonlinearities through simulation. Many more ‘simulations were
performed than are actually reported here. They clearly revealed the reccursing
pattern which was displayed Figures 4.1 and 4.2 and Table 4.6. There indeed
appear to be departures from linearity that have serious effects on statistical
inference in the practical circumstances which were simulated here.
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5. CONCLUSION

This paper probably raises more questions that it actually answers. There is
indeed more research to be done on the topics which were discussed here. The
issue of seasonality will never really easily be resolved and keeps intriguing
generations of time series econometricians and statisticians. A quarter of a century
after Young's paper was written with serious questions regarding the linearity of
adjustment procedures, we find ourselves with the same question, but a different
answer.
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Table 4.5
Summary of Cointegration Tes: Statistics {Propesy 33

Series  Engle-Granger Lag Series  Engle-Granger
Procedure Length Procedure

i. BRBA -4.96+ (15) 21, 1P34 =3.26
2. BR -4.96+ (15) 22, iP36 ~3.67%
3. NBRBA -3.97 (13} 23, 1P»? -6.08+
4. NBR -1.85 ) 24, 1PTOT -4.80+
5. TRBA ~-4.89+ (15) 25. WI20 -3.55
6. TR -0.15 an 26.  WI2% -4.59+
1. FRO -3.81¢ (12) 27, WIl0 -4.§9¢
8 F129 -3.02 (12) 28, WI32 =333
9. FI30 -4.83+ (12) 25, W3 -4.28
10, F132 -3.52 C(12) 30, wi ~3.94+
. FI33 -4.00* 12) 3. WIé ~5.45+
12, FI34 -3.36 (12) 32. w37 -4.G3%
13.  FI36 -4.05 (12) 33.  wrror ~4.00°
4. F137 ~3.51 (12) 34.  TI20A ~1.66
15,  FITOT -4.51+ (12) 3. T120B -1.71
16.  1P20 -3.564 (i1} 36 TROC =179
17.1P29 -4.08* 12) 37. TI20D ~3.77¢
18, 1P30 -4.66+ (12) 38. TI20E ~2.21
19, 1P32 -3.07 an 39. TROTOT ~2.42
20. 1P33 -3.41 (i2)

HNotes:

Signiﬁcslejccliono!lhemllulhe.’b%kvcl.ﬁuml%levcl.enlheIO%‘&@M&
Scrieslloéafchasedonahglcnglhofl.'smm:mia7uo39,onn!Zmaé: i

lag lengihs were chosen on the basis of Schwes's (1987) criserion !l?ﬂ‘/l«})'ﬁ. g
T = numbes  of  observations.) BR: Bomowed  reserves,  BA: Beesk.  adiesid
o

ali iwo-digh SIC industries lisied, IP: lnd\mﬁdylodnqion,\iil:wakhpmﬁaa,'ﬂ i
ioventories of five Dwee-dight industrics 20AB,CDE, TI 20 TOT: Towl of five idusacie
lisied.
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Table 4.6; Monte Carlo Simulations t Statistics
in Linear Regression Model DGP's with Mixed Variances

Additive X-11 Multiplicative X~ 11
Small Sample Large Sample Small Sample Large Sample

Cases T L X T L X T L X T L X

33, 180 200 474 72 86 508 17.2 200 510 68 86 596
34, 176 240 438 54 98 548 172 240 444 64 98 520
35. 180 178 446 s6 68 522 152 178 1394 68 68 438
36. 144 196 552 70 94 596 208 196 554 88 94 566
37. 180 152 564 60 72 608 192 152 582 56 12 642
38. 180 162 53.6 46 16 632 144 162 532 58 16 522
39. 180 156 540 s4 68 576 16.6 156 53.0 70 68 3530
40. 158 206 552 78 86 518 18.8 206 576 74 86 662
4. 152 224 534 80 82 594 164 224 584 52 82 634
42. 168 214 504 76 132 516 162 214 508 56 132 518
43. 202 262 502 60 96 556 162 262 458 86 9.6 500
4. 146 232 490 7.2 112 558 166 232 510 8.8 112 588
45. 173 213 488 68 101 54.1 166 192 480 7.1 100 60.1
46. 161 19.2 499 65 91 513 15.1 181 49.1 6.1 8.1 531
47. 158 181 491 6.1 85 500 148 113 416 59 68 512
48. 141 173 512 58 93 418 310 392 658 56 90 624
Note: The rejection ralcs 0 § © the 5% nominal size icsts. Tmmhfof"l‘mc".x.for"l.imat'wx

for “X-11° in the plots.
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