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RESUME

Nous utilisons la méthode de Laplace pour évaluer I'effet de filtrage de
données sur la distribution de Pestimateur mco dans des échantillons de taille finie.
Notre étude se concentre principalement sur le biais de l'estimateur mco dans le modele
dynamique autorégressif d'ordre un avec régresseurs exogdnes. Les formules de
Papproximation de Teffet de filirage (linéaire) sont tras simples et requitrent
uniquement des opérations d'algebre matricielle. Nous illustrons la méthode au moyen
du filtre X~ 11 et étudions sa précision.

Mots clés : modeles autor€gressifs, biais d'échantillon fini, filtre X-11, ajustement pour
les effets de saison.

ABSTRACT

It is common for an applied researcher to use filtered data, like seasonally
adjusted series, for instance, to estimate the parameters of a dynamic regression model.
In this paper, we study the effect of (linear) filters on the exact finite sample
distribution of parameters of a dynamic regression model with a lagged dependent
variable and a set of €xogenous regressors.  So far, only asymptotic results are
available. Our main interest is to investigate the effect of filtering on the small sample
bias and mean squared error. In general, these resulis entail a numerical integration of
derivatives of the joint moment generating function of two quadratic forms in Normal
variables. The computation of these integrals is quite involved. However, we take
advantage of the Laplace approximation to the bias and mse which substantially
reduces the computational burden, as it yields relatively simple analytic expressions.
We obtain an analytic formula for approximating the effect of filtering on the finite
sample bias and mse. We evaluate the adequacy of the approximations by comparison
with Monte Carlo simulations, using the X-11 filter as specific example.

Key words : autoregressive models, small sample bias, X-11 filter, seasonal adjustment
filter.






1. INTRODUCTION
The single equation dynamic regression model :
Ly Y=oy, + x;ﬁ + &

has been of interest in many econometric research programs, from the distributed lag
model to its more recent use in the context Euler equation estimation or the vast
literature on testing for unit roots. Of course, the nature of the assumptions on the
regressors and disturbances have changed along these different programs.

While (1.1) is often a starting point for econometric analysis, it is also common
for an applied researcher to use filtered data like seasonally adjusted series, for
instance. The fact that filtered data are being used is typically ignored in theoretical
considerations.  There are some notable and well-known exceptions though.
Sims (1974) and Wallis (1974), in particular, studied seasonal adjustment and
regression analysis with exogenous regressors.  They explored the nature of the
asymptotic bias and the statistical properties of seasonal adjustment in regression when
adjusted and unadjusted data were used. Recent work by Ghysels and Perron (1993),
Hansen and Sargent (1993) and Sims (1993) has refocused attention on the subject.
The emphasis of the first paper is slightly different from the other two. Namely,
Ghysels and Perron are concerned with the effect of seasonal adjustment filtering on
tests for a unit root, interpreting equation (1.1) as possibly having a constant and trend
as ex0genous regressors X, and a general error process satisfying a set of regularity
conditions [see, e.g., Phillips (1987)]. Hansen and Sargent, and Sims, on the other
hand, dealt with rational expectations models with either exogenous sources of
seasonality, discussed mostly by Sims, or endogenous mechanism generating seasonals,
as considered by Hansen and Sargent,

In the models described above, the parameters of direct interest are not o and/or
B but "deeper” paramelers mapping into o and B. Sims argued that using seasonally
adjusted data, despite the potential severe biases and loss of information, may produce
betler estimates of the so-called deeper parameters. Hansen and Sargent endorsed such
findings with a set of examples and developed a general asymplotic apparatus to deal
with the question of interest. So far, most results for rational expectations models are
based on a set of examples. For the case of unit root lests, we are perhaps on firmer
ground, as there appears to emerge a general conclusion, namely that seasonal



adjustment procedures which produce biases in stationary models seem to have a
power -reducing effect (in finite samples as well as asymplotically), since the biases are
mostly upwards, at least for the standard and commonly used Census X-11 filter.

There is, of course, an extensive literature on the finite sample and asymptotic
properties of the OLS estimator for o in equation (1.1). Particularly for the AR(1)
model with or without constant and/or time trend, especially with o in the vicinity of or
exactly equal to unity. Developments of the asymptotic distribution theory include
Mann and Wald (1943), White (1958), Phillips (1977, 1978, 1987), Nabeya and
Tanaka (1990), Perron (1991) and many others. Drawing on these results, Ghysels and
Perron (1993) provide analytic characterizations of the effect of filiering on the
asymptotic distribution of the OLS estimator of & both in the unit root and stationary
cases. In this paper, a first and modest attempt is made to develop a general anaiytic
characterization of filtesing on the finite sample distribution of the OLS estimator for o
While the developments of a small sample distribution theory are not as abundant as
large sample results, there are nonetheless considerable contributions to draw from. All
theoretical developments in finite samples revolve around the fact that, with Normal
disturbances, the OLS estimator for o can be expressed as a ratio of quadatic forms in
vectors of random Normal ii.d. series. The major challenge is to find relatively simple
expressions that make the effect of filtering on the finite sample behavior transparent
enough to be expressed as analytic formulae.

For the general case, the exact moments of a ratio of quadratic forms in Normal
variables are complicated functions of infinite sums of invariant polynomials with
multiple matrix arguments, see Smith (1989). The strategy followed in this paper is to
settle for approximations to the finite sample properties of the OLS estimator of a.
The method of approximation is one which needs to strike a delicate balance between
(1) accuracy of approximation and (2) analytical simplicity of the approximation. An
approximation which we propose as striking this balance, providing serviceable
solutions to the study of filtering affects, is that of the Laplace approximation. The use
of the Laplace approximation has been advanced by Phillips (1983), where it was
proposed as a method of extracting marginal density approximations of instrumental
variable estimators in a small sample theory context for the general single equation
case. This method has also recently been adopted in the Bayesian statistics literature
by, among others, Daniels and Young (1991), DiCiccio and Martin (1991), Tierney and
Kadane (1986) and Tiemey, Kass and Kadane (1989). Lieberman (1992) proposes and
develops the Laplace approximation to the moments of a ratio of quadratic forms in
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Normal variables and discusses the accuracy of the approximation. As the analytic
expressions are relatively simple, they allow us to characterize the effect of filtering on
the distributional properties of the OLS estimator explicitly, as desired. Indeed, the
formulae we present characterizing the effect of filtering only involve linear algebra
operations and hence do not require numerical integration as is often the case; see, for
instance, Hoque and Peters (1986) and Magnus (1986).1 Also, numerical integration to
compule exact moments can often be cumbersome and ill-behaved. None of these
problems appear in the approach pursued in this paper. We specifically focus on the
X-11 filter case or, more precisely, the linear approximation to this standard seasonal
adjustment procedure. We evaluate the adequacy of the Laplace approximation with
Monte Carlo simulations, using the X~11 filter-as specific example.

In section 2, notation, definitions and regularity conditions are introduced.
Section 3 covers the Laplace approximation and its resulting formulae. The latter are
used in section 4 to study the effect of the X-11 filter on estimation of & in small
samples. Section 5 concludes.

2. NOTATION, FILTERS AND ESTIMATORS

The purpose of this section is to introduce the notation and structure necessary
to characterize and define the estimators. Consider again the dynamic regression
model :

2.1) ylzozyl_1+x;ﬁ+£t t=-4,..,0,1,.., T+k

Note that the sample starls at t = -L and ends at T+k to accommodate
two-sided filtering of data. It is assumed that the regressors are nonstochastic and that
the error process € = (e_ [ &T+k) has a known covariance matrix, i.e., Beg' = Q,
The covariance matrix does not have to be diagonal, hence, we can allow for MA error
process, for instance.

Suppose now that the data is filtered with a known linear filter. The most
prominent example is that of the X-11 filter and its linear approximation, discussed by
Young (1968), Wallis (1974) and Ghysels and Perron (1993), for instance. The filter
weights of the possibly two-sided filter are represented by the vector f = (f.t’ . fk).
On the basis of this vector, we define the (T+ 1) x (T+k + £ + 1) filter matrix F as

! An alternative approach not requiring numerical integration either was proposed by Kiviet and
Phillips (1993). Except in some very special circumstances, their approach is not directly
applicable here as it assumes uncorrelated errors.
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This matrix transforms a sample of size F=T+k+1+1into a filtered data set with
T +1 observations, since at each end of the sample, data are discarded by the
two-sided filter. On the basis of (2.1) and (2.2), we further define filtered and
unfiltered data sets as y' = (¥_p» - » Ypyd» IX L Vg = Fy, (T + 1) x 1 and y;; = Uy,
(T + 1) x 1, where the matrix U cuts away observations at each end of the sample, so
that yp, and y,, are filtered and unfiltered data sets of equal sizes T + 1 drawn from the
same random vector & Formally stated,

U= O, et It O ra e

Each element of yp and ¥y, will be denoted yf and yL:, respectively, t=0, ..., T.
We write £, = FE, &; = Ug, X; =UX and X = FX, where XK=& LR

While this setup is relatively simple, it should be noted that it is not unrealistic.
In pariicular, one can think of a simaﬁon_whefe a statistical agency releases data
simultaneously, unadjusted and adjusted, ‘covering the same sample period, while the
agency has actually more raw data available than is released to the public. The setup
also has another advantage which needs to be emphasized at this stage. The filter
matrix F appearing in (2.2) is not a square matrix. Consequently, filtering will always
entail information loss that cannot be recovered or undone by an estimation procedure
such as GLS which would essentially amount to taking the inverse of the matrix F.2

The fact that Q and F are known matrices implies that the covariance matrices
of the filtered and unfiltered errors are also known, namely :

C2 In finite samples taken from a stationary data generating process, we know that the distribution
of estimators such as the OLS estimator of & in (2.1) depends on the initial starting value ¥

(for refercnces, see Introduction). The matrices F and U, while creating an equal sample size,
do not guarantee that the first elements of yE: and y‘f are the same. In fact, the first elements of
the two data vectors will almost surely be different.
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(2.3a) EeueU' = QU = UQu
and

(2.3b) EEFSF‘ = QF = FQF,

Upon setting

(b 0 0 .. 00
ba 1 0 . 00
ba? a1 .00 A-A" irae (-1,
24 R,= b=
0 otherwise
bocy"1 a‘7'2 ay'g‘ a IJ
we have
a0y )
(253) Eyy=Q “RaQRa Ix 9,
(2.5b) Eypyi;EQ[);:FRaQR:xF' (T+Dx(T+1)
and
" —0Y - .
(2.5¢) EyUyU“QU"URaQRaU T+ Dx(T+1).

The matrix R o 15 formulated such that it is assumed that Vg is drawn from the
unconditional distribution of the {yt} process.3

Let Dl = [IT OTxl]’ D2 = [OTX1 Lr] and Zj = D2 Xj,j =For U. Then the OLS
estimator of c and 8 may be written as :

A
2. =y S y./y B.y.
(2.62) a] y) SJ yJ/yJ JyJ

and j=F U

A 1 A
2. .=(2 7. : .~o Doy
(2.6b) ,BJ (ZJ Z}) ZJ (D2 yJ a] | yJ)

3 One exception, as noted in (2.4), is when (@t = |, for instance. In such a case, the starting value
of the process does not affect the small sample distribution of the OLS estimator.



where
5,=1/2 (D} A;D, +D; A;D))
B,=Dj A;D,
A =1 X (X xj)" X;

The OLS estimator &F has the obvious disadvantage that, apart from its small
sample bias, it may not be consistent in large samples even if we start oul with a white
noise innovation structure for the DGP of the raw data process. In other words, even
though Q may be diagonal, it is clear that QF will typically be nondiagonal.

A A
Consequently, it is not clear when we compare o4 and o whether we are studying the
effect of filtering or the combination of lagged dependent variables in a regression with
autocorrelated residuals. Since it is assumed that QF and QU are known, with Q, U

and F known, it is relatively straightforward to extend our study to GLS estimators.4

Finally, we need to discuss some regularity conditions regarding the admissible
set of filters as expressed by the filter weights f—t’ S fk in (2.2). The restrictions we
impose are the same as in Ghysels and Perron (1993). 1t is important to note, however,
that these restrictions, while crucial for the asymptotic theory to hold in the unit root
case o = 1, are not essential for the development of small sample results.  Yet, the
regularity conditions greatly simplify our analysis. Moreover, most filters which come
to mind when one considers seasonal adjustment procedures feature the restrictions we
are about to discuss. In particular, as Ghysels and Perron noted, the linear
approximation to the X~11 procedure is among the admissible set of filters. The
restrictions can be formulated as follows :

k

@7 @i=k O f_j = fj forj=1,..,kand (¢ X . fj =1

With these restrictions holding, we can greatly simplify our results as often Xy = X
and consequently AF = AU as well as BF = BU. Indeed, when the exogenous regressors

4 The extension to the GLS estimator is straightforward and will not be dealt with explicitly. In
general, this estimator will not unravel the effect of filtering, because the F matrix is
noninvertible.



consist of a constant andfor a trend, then the conditions in (2.7) result in this
simplification. Again, it should be stressed that such restrictions are not necessary, yet
they greatly simplify, for instance, the dependence of O on the filter matrix F as A
and B in (2.6a) are invariant to filtering.

3. THE LAPLACE APPROXIMATION AND THE EFFECT OF FILTERING ON
BIAS AND MEAN SQUARED ERROR

The OLS estimators 3:., Jj=F or U, introduced in the preceding section, are
ratios of quadratic forms in Normal variables. -For the general case, the exact moments
of such a ratio are complicated functions of infinite sums of invariant polynomials with
multiple matrix arguments, as discussed in Smith (1989). Alternative formulas which
involve unsolved integrals are presented by Magnus (1986) and Sawa (1972). For our
purposes, the exact resulis presented so far within the literature are analytically too
complicated for the analysis of filtering and estimation. The bias and mean squared
error of the estimators, filtered and unfiltered, entail a numerical integration of
derivatives of the joint moment generating function of the two quadratic forms in hand
and the filtering effect is not easy to isolate analytically, as will be made clear in this
section, -

Another route often taken to unveil the statistical properties of (’)\c, is to compute
numerically the cumulative density function of the ratio of quadratic forms. Several
algorithms have been suggested, including Imhof (1961), Davies (1973) or Shively

etal (1990). It is possible, for instance, to define a median unbiased estimator for gcj,
as introduced by Andrews (1993) and to analyze the effect of filtering on it, but once
again, the computational burden and lack of analytic expressions make this route
unatiractive as well.

As discussed in the Introduction, an alternative approach consists of utilizing
approximations to the moments of this ratio via the Laplace method. As will be shown
in this section, the approximations have the appeal of providing relatively simple
analytic expressions, only involving matrix operations which are computationally
straightforward with almost any standard econometrics software package. Moreover, it
is relatively easy to isolate the effect of filtering with the Laplace approximation to the

tal
moments of the estimators a;( with the resulting expressions.



we first briefly review the Laplace approximation, as derived by
Lieberman (1992). Then, we discuss bias and mean squared error with and without
{iltering. More specifically, in Section 3.1, we briefly discuss the Laplace
approximation 1o the ratio of quadratic forms. In Section 3.2, we derive the bias and
mean squared error with filtered and raw series.

3.1 The Laplace approximation

A
For simplicity of the exposition, we first omit all subscripts on ¢, y, S and B,
returning to the previous notation once the general approximation is established.

A
The ™ moment of o involves inversion of the joint moment generating function
of y'Sy and y'By, being

(3.1) M, w,) = E exp(w, ySy+a, y' By

As in Phillips (1982, p. 35), the expression for the moments of o can be readily
deduced to be

I
) n Io Io M, i§l @)
3.2) E(o) = B

T
e " Jo, =0

dwu, sy deI,

r
where @, = z Wy The first and second moments were given explicitly by Hoque
i=1

and Peters (1986), but were retained as unsolved integrals.

To make (3.2) suitable for the application of Laplace's method, the last integral
can be rewritten as

O 0 I iy
33 BE@'= | .- _i g, 0. i)=:1 w,,) exp(h(0, izl @) dw,, . do,,

where
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I
r JM(“’] , iz 1 @,,)

80,1 o=

r
/MO, I @i, and
i=

dw’ =1

1 (”1=O

r r
h(0, izl mZi) = log M(0, izl mZi)'

The essence of the Laplace method is that when a key parameter tends to infinity, most
of the contribution to the type of integrals in (3.3) arises from the immediate
neighborhood of one point. Two distinct approximations are plausible, depending on
whether the maximum of h(-) is attained at an inferior point on the domain of
integration, or at a boundary point. Lieberman (1992, Lemma 1) shows that when
T - =, the integrand’s value boundary points @, =0,i=1,..,r, and their immediate
vicinity determine indeed most of the integral. Using this feature, it is shown that the

A
Laplace approximation to the moment of the estimator ozj is

E (@) =EyS.y)/Ey B y)
A %37 iTiY e

[regardless of the order of the moment, see Lieberman (1992, Theorem 1)). The
subscript L indicates that we are dealing with the Laplace approximation. With the full
notation of the present paper, allowing for filtered and unfiltered data sets, the Laplace

A
approximation for the first two moments of aj, j=F, Uare:

1S g+ ('S
b T A P e

' Yy
H; By by + QB

A
B4 E (aj) =

" \/ 2 Y o2 ) y
3.5) E, (&_)2 _ (_‘ﬁ Sj M + tr(Q,.SJ.)) +2f tr(Qj Sj) + 2,uj. Sj QJ. Sj u}.}
J

' y 2
(uijuj + lr(ﬂj B))

1

where uj =E(jy)=j R(’; X'B, with R; the same matrix as R o EXcept that b is replaced

in the first column by (1 - a)‘l. The expressions (3.4) and (3.5) clearly reveal the
appeal of using the Laplace approximation. The exact first and second. moments
involve the (numerical) integration of some complicated matrix formula. In contrast,
equations (3.4) and (3.5) involve fairly simple and straightforward matrix operations
such as calculating the trace of a matrix product.
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32 Bias and mean squared error with filiered and raw data series - the Laplace
approximation -

We turn our attention now to characterizing the effect of filtering on the finite
sample properties of our estimators via the Laplace approximations. First, we will
present the general formula, followed by several specific cases that are of interest.
From equations (3.4) and (3.5), the Laplace approximations to the bias and mean

squared error of &j are
"S- J(S. -
p.zj(Sj oB i )u’. + u(Qj' { Sj oB.))
' ¥
u ; Bjuj + Lr(Qij)

. A
BxasL(aj) =

N y 2 Yo 12
{ uj Sj pj + tr(Qij)] + 2{u(Qj Sj) 2+ 2 pj SJ.Q}.S.;L}
' Y
Ly B ouy+ tr(Qij))

3.6) MSEL(aj) =

wS, 1 +uw(@l S)
+ o a—2-J——-‘—J—————-—Jy——J-, j=F,u
H Byt + w( @ B)

Both formulae yield an approximation to the effect of filtering on the bias, by
computing, say, the difference BiasL(&F) - BiasL(&U), and on the mean squared error,

by the difference MSEL(&F) - MSEL(&U). It may be worth emphasizing that so far no
restrictions have been imposed on the filtler matrix F, nor on the nature of the
€X0genous regressors. Imposing restrictions on either one or both will greatly simplify
the expressions in (3.5) and (3.6). One set of restrictions, arising fairly naturally in the
design of filters are those appearing in (2.7). Combined with the fact that the
€X0genous regressors only contain at most a linear trend and a constant yields the
following set of assumptions

Assumption 3.1 : Let the filter matrix F satisfy (2.7) and the regressors be at most 2
constant and a linear trend, then Sj =8, Bj =B and uj =pforj=UorF.

While the assumption is not absolutely necessary to study finite sample
behavior, as noted in Section 2, it does make it easier to obtain even simpler formulae.
Let us first consider the case where ji = 0 fotlowed by that where the mean vector
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is nonzero. The former corresponds, of course, to the AR(1) mode! without intercept,
while the latter is one where a constant and/or a linear trend are included.

Theorem 3.1 : Let assumption 3.1 hold with £ =0. Then, the filtering effect on the

bias of the estimator &F can be expressed as :
. A . N
3.7 BxasL(aF) - BxasL(ozU) =

(vec(S'sB"))'[(FaU) e (FeU) - (UsF) o (UeF) ] vec (deﬂy).
(vec(B'eB ")) '[(FeU) & (FeU)jvec (QeQY)

Moreover, EL(&F) is independent of T.
Proof : See appendix.

Hence, with it = 0, the Laplace approximation becomes independent of T,

a consequence of the design of the matrices S, B and € in this particular case. As
shown in section 4, formula (3.7) can be used to compute the asymptotic bias. This
formula is, in fact, relatively simple (one can use small values of T) in comparison to
those used by Ghysels and Perron (1993) and Hansen and Sargent (1993).

The following result covers the case where 11 is no longer equal to the zero
vector, namely :

Theorem 3.2 : Let Assumption 3.1 hold and let 1 #0. Then,

1+ (vec S,)' (FoF) vec QY

(38) Bias (&) - Biss. (& )= (S~ _aBju -
L L% HBy 1 + (vec B! (FeF) vec Q7

1+ (vecS ) (Uel) vec Q7

1+ (vec B))" (UeU) vec Q'
where Sl =(8 - oB) (U(S - ozB)y)'1 and Bl =B Bu)'l.

Proof : See appendix.
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The result in Theorem 3.2 does not simplify as elegantly as that in Theorem 3.1.
Both (3.7) and (3.8) are relatively straightforward to compute, however. Note also that
this time the Laplace approximation depends on the sample size.

4. ON THE ADEQUACY OF THE LAPLACE APPROXIMATION

The purpose of this section is Lo provide an evaluation of the adequacy of the
Laplace approximation as a device to study the effect of filiering on dynamic linear
regression parameter estimation. The evaluation consists of comparing (1) simulations
of bias and mse via Monte Carlo, (2) the Laplace approximation and (3) the asympiotic
bias and mse. This will enable us to assess the difference between small sample
propeities and asymptotic results while at the same time appraise the accurateness of

the analytical expression for BiasL(&j) and MSEL(&‘). We shall consider several
situations, all involving the linear approximation to the X-11 filter. In all our
experiments for o, we used the grid a = -0.95, -0.9, -038, ..., 0.8, 0.9, 0.95. Three
different sample sizes were studied, namely T + 1 =60, 120 and 180. Since we study
the monthly X-11 filter, this consists of 5, 10 and 15 years of data (after filtering). All
Monte Carlo simulations involved 10,000 iterations using GAUSS (version 3.0). We
now turn to the different cases considered.

(a) The case of 1 =0

The AR(1) model with no intercept is usually tnken as a bench mark. It is
particularly appropriate to start with this case since, as noted in Theorem 3.1, the
Laplace approximation to the bias is independent of T. The Laplace approximation to
the MSE, however, does depend on T. We report the results both via graphs and
\ables. Table 4.1 gives a summary of the differences in bias and MSE. Since the

Laplace approximation to the bias of &U always equals zero, which corresponds to the
asymptotically consistent estimator &U it is not reported in Table 4.1. Moreover, as
s
BiasL(&U) = 0, it follows that the difference in bias simply comesponds (o BiasL(ocF).
The shape of the curve BiasL(&F), which appears as the solid line in Figure 4.2, is

rather interesting. First, BiasL(&F) > 0 for all values of & considered. Second, it hasa
rotated S-form, with large biases for & < _0.8 and 0.2 < € 0.9. By large biases we
mean an order of magnitude between 0.02 and 0.05. It should also be noted that the
Laplace approximations coincide with the asymptotic biases in the filtered case,
reported in Ghysels and Perron (1993, Table 1). Hence, the Laplace approximation in
the filtered case is also consistent. Next, we turn to the Monte Carlo simulations
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displayed in Figure 4.1. Here, we note the familiar downward bias of &U in small

samples for positive o. However, we also observe an upward bias for ch ie., X-11
filtering reverses the sign of bias over the same range for o. 1t should be noted that the
biases, whether filtered data are used or not, appear quite similar for T+ 1 =060, 120
and 180.5

Let us now turn  our attention to the difference in biases, i.e.,

BiasL(&F) - BiasL(?xU), and compare the analytic results with the Monte Carlo
simulations. Such a comparison appears again in Figure 4.2 and is summarized in
Table 4.1. Clearly, the Laplace approximation and hence the asympototic distribution
theory in this case are both a very good predictor of the small-sample behavior for
differences in bias. The full line in Figure 4.2, which represents the Laplace
approximation, tracks the Monte Carlo curves quite closely. The only evidence of
discrepency occurs when o takes exireme negative values. Since this range of the
parameter space is less interesting, this discrepency is not very important for practical

purposes. The numerical results in Table 4.1 report this finding in further detail.

Regarding the MSE, we also find the Laplace approximation to be quite
accurate except at the edges of the parameter space, in particular for values near -1 but
also close to one. Near one, however, we find that the approximation error to the effect
of filtering on the MSE is still quite acceptable. Figure 4.3 covers the T = 60 case,
while the next figure covers T = 180. As T grows, we find much improvement around
the extreme negalive values for o and also around one. Overall, the results for the
MSE are very satisfactory and quite similar to those of the bias, considering the fact
that the region around the extreme negative values is empirically less relevant.

(b) The case of u# 0

We now turn our attention to a case where p # 0. Obviously, many such cases
can be constructed. We will focus on a specific one, which is fairly representative, and
comment on other particular cases we considered, though do not report all the details.
A most relevant case to focus on with g1 # 0 is one with seasonal dummies and a time
wend. Because of the presence of seasonal dummies, it should be noted that

5 Similar findings, also based on Monte Carlo simulations, were reported recently in the
econometrics textbook by Davidson and MacKinnon (1993).
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XU and XF are no longer equal. The seasonal patiern chosen has mean shifts equal to
_1.0 for the first three months of the year, 0.0 the next three, 1.0 for the third quarter
months and, finally, 0.0 once again, for the remaining three months. Other patterns of
seasonal level shifts were considered as well, yet this had very little impact on the
results we found. ‘The trend slope coefficient was set to 0.01. Here, we did not find
that the results were robust t0 perturbations. Indeed, with large trend coefficients, the
Laplace approximation deteriorated considerably, as will be discussed shortly.

The results for the Laplace approximation will again be reported via figures and
details appearing in Table 42. This table includes sample sizes T = 60, 120 and 180,
while the figures report only the largest and smallest sample size. Figures 4.5 and 4.6
cover T = 60, the former displaying the difference in bias obtained via Monte Carlo
and Laplace approximations, followed by the difference in MSE. Hence, we do not
report here the details of the bias itself but only the difference in bias (and MSE)
before and after filtering. Lieberman (1992) provides a detailed discussion of the
Laplace approximation of the bias and MSE in regression models with trends and
intercepts.

Figures 4.5 through 4.8 show patterns that are quite similar to those reported in
the p = 0 case. Again, for extreme negative values of &, the Laplace approximation to
both the bias and MSE tend to lose accuracy. Also, for the MSE approximation, there
is an increase in error as & approaches unity. This error decreases again as T grows. It
should also be noted that as the trend coefficient increases, the accuracy tends to
decrease. Yet, here again one must take extreme values of the trend coefficient like 0.2
or 0.5, which are typically not relevant in most practical circumstances.

5. CONCLUSION

The Laplace method is yet a relatively unexplored tool of econometric theory.
In this paper, we proposed this method to characterize bias in estimation induced by
filtering data series. As many data series in applied econometrics are filtered, such a
tool is quite relevant and useful, The results in the paper can easily be used and
extended for the GLS estimator, since it is assumed that & and F are known so that the
typical GLS transformation can be performed. Other types of approximation methods
could also be explored in further research. Overall, we found that the Laplace
approximation strikes a balance between (1) simplicity of calculations and (2) accuracy
of the approximations. Indeed, the relatively simple formulae seem to describe the
effect of filtering very well both for the bias and MSE, with the exception of values for
o near -1, i.e., part of the parameter space which is of lesser practical importance.
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APPENDIX
Proof of Theorem 3.1 : From (3.4) and Assumption 3.1, we know that with 1 =0 :

tr(Qy(S aB)) u(QY(s oB))
u(Q;B) tr(Q[Y,B)

Bias (aF) - BlasL(aU) =

tr(QF(S oB)) Lr(QyB) - u(ﬂy(s -aB)) tr(QF B)
tr(QyB) tr(QyB)

Noting that tr(A) tr(B) = tr(AeB) and ACeBD = (AsB) (CeD), we find that :

r((€QpeQ) ((S-aB)eB)) - tr(( @Qy) ((S-aB)eB))
B:asL(aF) - Bias (aU) QF QU QU
t r((QFsﬂu)(BeB) )

tr(( 12Q0) (SeB)) - r ((QYeQ?) (SsB) r(QeQ7) (BeB))
QF ® QU® <B)) Cera (QU® :3
tr( (Qy®Qy) (BeB))

u((QY @gy) (BeB))

The last term can be shown o be equal to ¢, hence cancelin

g out with the second term
and yielding :

r(QeQ))) - (2FeQY) ) (SeB))

Bias, () - Bias, (&, ) =
L% L% tr ((Q}sQ)) (BsB))

Next, it must be noted that from 2.7),

Qgggg = (FQ'F) o (UQ'UY) = (FeU) (eQ") (FeU"),

using again ACeBD = (AeB) (CsD) twice.
(CeA) vec B, from Theorem 3 in Magnus an
in (3.7) follows.

Moreover, since tr(ABCD) = (vecD")'
d Neudecker (1988, p. 31), the result
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Next, we show that the Laplace approximation is independent of the sample

size. When =0, EL(QF) = u(ﬂl’;S) u(gkl B). The matrices S and B with y =0 are

(01...00
10...00
1o AT
s=ip;p,+DyDp=7 | D
00...01
0010
10...0)
01
B=D;D,=|. -
0 0

Although it is tedious to show, as the filter is symmetric, the matrix

Qy =FR R F‘ is symmetric and the elements on each diagonal are all the same,

giving @ Ur Q S= —2—(T Qf  t T QF12) T Q‘Flz’ where Q.F1 is the 1,2 element in QF

QY
Further, tr Qy B=T QF v and hence E, (aF) = EL2 , which is independent of T.
o)

F1,1
QED.

Proof of Theorem 3.2 : From (3.8) and Assumption 3.1, we know that with it # 0

QL -1y ~
BiasL(?xF) - BiasL(&U)=U'(i,éu“B)E L+ tr(Q'(S-aB)) 122:38 BN
14+ (' BRY )

1 + tr(('(S-0B) py ' Q) (S-aB)
L+ w((u BB

Setting S, = (S - aB)) (S oB) and B, = (pBu)‘1 B as well as steps similar to
those in the proof of Theorem 3.1 yields the resun appearing in (3.7). QE.D.



|
|
{
§
i

23
REFERENCES

Andrews, D.W.K. (1993), "Exactly Unbiased Estimation of First Order Autoregressive/
Unit Root Models”, Econometrica 61, 139-166.

Chan, NH. and C.Z. Wei (1987), "Asymptotic Inference for Nearly Nonstationary
AR(D) Processes"”, Annals of Statistics 15, 1050- 1063.

Daniels, HE. and G.A. Young (1991), "Saddle Point Approximation for the Studentized
Mean, with an Application to the Bootstrap", Biometrika 78, 169-179.

Davidson, R. and 7. MacKinnon (1993), "Estimation and Inference in Econometrics",
Oxford University Press,

Davies, R.B. (1973), "Numerical Inversion of a Characteristic Function”,
Biometrika 60, 415-417. :

Dicicio, T.J. and A.M. Martin (1991), "Approximations of Marginal Tail Probabilities
for a Class of Smooth Functions with Applications to Bayesian and Conditional
Inference”, Biometrika 78, 891-902.

Ghysels, E. and P. Perron (1993), "The Effect of Seasonal Adjustment Filters on Tests
for a Unit Root”, Journal of Econometrics 55, 57-99.

Hansen, L.P. and T Sargent (1993), "Seasonality and Approximation Errors in
Rational Expectationg Models", Journal of Econometrics 55, 21-56.

Hoque, A. and T.A. Peters (1986), "Finite Sample Analysis of the ARMAX Models”,
Sankhya B(48), 266-283.

Imhof, IP. (1961), "Computing the Distribution of Quadratic Forms in Normal
Variates", Biometrika 48, 419-426.

Kiviet, ILF. and GDA. Phillips  (1993), "Alternative Bias Approximations in
Regressions with a Lagged-Dependent Variable®, Econometric Theory 9, 62-80.

Lieberman, O. (1992), "A Laplace Approximation for the Moments of a Ratio of
Quadratic Forms in Normal Variables”, Discussion Paper No. 9301, CREST, Paris.

Magnus, J.R. (1986), "The Exact Moments of a Ratio of Quadratic Forms in Normal
Variables", Annales dEconomie et de Statistique 4, 95-109,

Magnus, J.R. and H. Neudecker ( 1988), "Matrix Differential Calculus with Applications
in Statistics and Econometrics" (John Wiley, Chichester).

Mann, HB. and A, Wald (1943), "On the Statistical Treatment of Linear Stochastic
Difference Equations”, Econometrica 11, 173-220.

Nabeya S. and K. Tanaka (1990), "A General Approach to the Limiting Distribution for
Estimators in Time Series Regression with Nonstable Autoregressive Errors”,
Econometrica 58, 145-163.

Perron, P. (1991), "A Continuous Time Approximation 1o the Unstable First-Order
Autoregressive Process : The Case without ap Intercept”, Economerrica 59,
211-236.



24

Phillips, P.C.B. (1977), “Approximations to Some Finjte Sample Distributions
Associated with a First-Order Stochastic Difference Equation”, Econometrica 45,
463-485.

Phillips, P.C.B. (1978), *Edgeworth and Saddle Point Approximations in a First Order
Autoregression”, Biometrika 65, 91-98.

Philtips, P.C.B. (1982), "Small Sample Distribution Theory in Econometric Models of
Simultaneous Equations”, Discussion Paper No. 617, Cowles Foundation, Yale
University.

Phillips, P.C.B. (1983), "Marginal Densities of Instrumental Variable Estimators in the
General Single Equation Case”, Advances in Econometrics 2, 1-24.

Phillips, P.C.B. (1987), "Towards a Unified Asymptotic Theory for Autoregression”,
Biometrika 74, 535-547.

Sawa, T. (1972), "Finite Sample Properties of the k-Class Fstimators”,
Econometrica 40, 653-680.

Shively, T.S., C.F. Ansley and R. Kohn (1990), "Fast Evaluation of the Distribution of
the Durbin-Watson and Other Invariant Test Statistics in Time Series Models",
Journal of the American Statistical Association 85, 676-685.

Sims, C.A. (1974), "Seasonality in Regression”, Journal of the American Statistical
Association 69, 613-626.

Sims, C.A. (1993), "Rational Expectations Modelling with Seasonally Adjusted Data”,
Journal of Econometrics 55, 9-20.

Smith, M.D. (1989), "On the Expectation of a Ratio of Quadratic Forms in Normal
Variables", Journal of Multivariate Analysis 31, 244-257.

Tiemey, L. and 1.B. Kadane (1986), "Accurate Approximations for Posterior Moments
and Marginal Densities", Journal of the American Statistical Association 81,
82-86.

Tiemey, L., R.E. Kass and 1.B. Kadane (1989), " Approximate Marginal Densities of
Non-Linear Functions”, Biometrika 76, 425-433.

Young, A.H. (1968), "Linear Approximations to the Census and BLS Seasonal
Adjustment Methods", Journal of the American Statistical Association 63,
445-471.

Wallis, K.F. (1974), "Seasonal Adjustment and Relations Between Variables", Journal
of the American Statistical Association 69, 18-31.

White, 1.S. (1958), "The Limiting Distribution of the Serial Correlation Coefficient in
the Explosive Case”, Annals of Mathematical Statistics 29, 1188-1197.



9201 :

9202 :
9203 :
9204 :
920s
9206 :
9207

9208 :

9209 :
9210 :

9211 :

9212 :

9213

9214

9215

9216

Université de Montréal
Département de sciences économiques

Cabhiers de recherche (Discussion Papers)
1992 a aujourd’huj (1992 to date)

Dionne, Georges and Robert Gagng, "Measuring Technical Change and
Productivity Growth with Varying Output Qualities and Incomplete Panel Data",
32 pages.

Beaudry, Paul and Michel Poitevin, "The Commitment Value of Contracts Under
Dynamic Renegotiation”, 30 pages. ’
Dionne, Georges et Christian Gollier, “Simple Increases in Risk and their
Comparative Statics for Portfolio Management”, 22 pages.

Fortin, Nicole M., "Allocation Inflexibilities, Female Labor Supply and Housing
Assets Accumulation : Are Women Working to Pay the Mortgage?”, 42 pages.
Beaudry, Paul, Marcel Boyer et Michel Poitevin, "Le rdle du collatéral dans le
report des investissements en présence d’asymétries d’information”, 20 pages.

Saving Rate : An Overlooked Explanation”, 34 pages.

Tremblay, Rodrigue, "L’impact fiscal statique et dynamique de ’accession du
Québec au statut de pays souverain", 33 pages.

Mercenier, Jean, " ompleting the European Internal Market : A General
Equilibrium Evaluation Under Alternative Market Structure Assumptions”, 38
pages.

Sprumont, Yves, "Continuous Strategyproof Mechanisms for Sharing Private
Goods", 30 pages.
Tremblay, Rodrigue, "L’émergence d’un bloc €conomique et commercial nord-

américain : Ia compettivité de 1’économie canadienne et la politique du taux de
change”, 37 pages.

*Hollander, Abraham, "Restricting Intra-industry Quota Transfers in Agriculture:

Who Gains, Who Loses?”, 10 pages.

Mandel, Benedikt, Marc Gaudry and Werner Rothengatter, "Linear or Nonlinear
Utility Functions in Logit Models? The Impact of German High Speed Rail
Demand Forecasts", 17 pages.

Ghysels, Eric, "Christmas, Spring and the Dawning of Economic Recovery”, 26
pages.

Canova, Fabio et Eric Ghysels, "Changes in Seasonal Patterns : Are They
Cyclical”, 38 pages.



9217

9218 :

9219 :

9220

9221 :

9222

9223 .

9224 .

9225
9226
9227
9228
9229
9230 :

9231

9232

9233 :
9234

9235

9236 :

il
Campbell, Bryan et Fric Ghysels, "Is the Outcome of the Federal Budget Process
Unbiaised and Efficient? A Nonparametric Assessment”, 34 pages.
Boismenu, Gérard, Nicolas Gravel et Jean-Guy Loranger, "Régime
d’accurmnulation et approche de la régulation : un modéle 2 équations
simultanées”, 27 pages.
Dionne, Georges and Pascale Viala, "Optimal Design of Financial Contracts and
Moral Hazard", 60 pages.
Desruelle, Dominique, Gérard Gaudet et Yves Richelle, "Complementarity,
Coordination and Compatibility : An Analysis of the Economics of Systems”, 52
pages.
Desruelle, Dominique et Yves Richelle, "The Investment Dynamics of a
Duopoly: The Relative Importance of 2 Head Start", 34 pages.
Mercenier, Jean, "Can "1992 Reduce Unemployment in Furope? On Welfare
and Employment Effects of Europe’s Move to a Single Market", 36 pages.
Dufour, Jean-Marie, Eric Ghysels et Alastair Hall, "Generalized Predictive Tests
and Structural Change Analysis in Econometrics”, 46 pages.
Dufour, Jean-Marie et Marc Hallin, "Improved Eaton Bounds for Linear
Combinations of Bounded Random Variables, with Statistical Applications”, 25
pages.
Crampes, Claude et Abraham Hollander, "How Many Karats is Gold : Welfare
Effects of Easing a Denomination Standard, 20 pages.
Bonomo, Marco et René Garcia, “Indexation, Staggering and Disinflation”, 32
pages.
Dudley, Leonard et Jacques Robert, "A Non-Cooperative Model of Alliances and
Warfare", 26 pages.
Arcand, Jean-Louis, “Structural Adjustment and the Organization of Agricultural
Credit in Egypt", 29 pages.
Arcand, Jean-Louis, "Supply Response and Marketing Board Policy : The Case
of Egyptian Cotton”, 38 pages.
Cadot, Olivier et Dominique Desruelle, "R & D : Who Does the R, Who Does
the D?", 18 pages.
Kollmann, Robert, "Incomplete Asset Markets and International Business
Cycles", 36 pages.

. Kollmann, Robert, "Consumptions, Real Exchange Rates and the Structure of

International Asset Markets”, 33 pages.

Arcand, Jean-Louis, "Growth and Social Custom”, 37 pages.

Desruelle, Dominique, "Infant Industries and Imperfect Capital Markets : The
Case Against Tariff Protection”, 30 pages.

Mercenier, Jean et Nicolas Schmitt, "Sunk Costs, Free-Entry Equilibrium and
Trade Liberalization in Applied General Equilibrium : Implications for "Europe
1992°"42 pages. "

Boudijeliaba, Hafida, Jean-Marie Dufour et Roch Roy, "Simplified Conditions for
Non-Causality between Vectors in Multivariate Arma Models", 24 pages.



9237 .

9301 :

9302 :

9303 :

9304 :
9305 :
9306 :

9307 :

9308 :

9309
9310 :

9311 :

9312:
9313 .
9314 :
9315 :
9316 :
9317 :
9318 :

9319 :

iii

Ghysels, Eric, Hahn . Lee et Pierre L. Siklos, "On the {Mis)specification of
Seasonality and its Consequences ; An Empirical Investigation with U S, Data",

Curiosum?", 26 pages.

Lemieux, Thomas, "Unions and Wage Inequality in Canada angd in the United
States”, 66 pages.

Lemieux, Thomas, "Estimating the Effects of Unions on Wage Inequality in a

Harchaoui, Tarek H., "Time-Varying Risks and Returns ; Evidence from Mining
Industries Data”, 20 pages. -

Lévy-Garboua, Louis et Claude Montmarquette, "Une étude économétrique de
la demande de théstre sur données individuelles™, 40 pages.

Montmarquette, Claude, Rache] Houle et Sophie Mahseredjian, “The
Determinants of University Dropouts : A Longitudinal Analysis", 17 pages.
Gaudry, Marc, Benedikt Mandel et Wermner Rothengatter, "A Disaggregate Box-
Cox Logit Mode Choice Model of Intercity Passenger Travel in Germany”, 17

Fortin, Nicole M, “Borrowing Constraints and Female Labor Supply
Nonparametric and Parametric Evidence of the Impact of Mortgage Lending
Rules", 38 pages.

Dionne, Georges, Robert Gagné, Frangois Gagnon et Charles Vanasse, "Debt,
Moral Hazard and Airline Safety ; an Empirical Evidence", 34 pages.

Dionne, Georges, Anne Gibbens et Pierre St-Michel, "An Economic Analysis of
Insurance Fraud”, 40 pages.

Gaudry, Marc, "Asymmetric Shape and Variable Tajl Thickness in Multinomial
Probabilistic Responses to Significant Transport Service Level Changes”, 26
pages.

Laferridre, Richard et Marc Gaudry, "Testing the Linear Inverse Power
Transformation Logit Mode Choice Model", 29 pages.

Kollmann, Robert, "Fiscal Policy, Technology Shocks and the US Trade Balance
Deficit", 38 pages.

Ghysels, Eric, "A Time Series Model With Periodic Stochastic Regime
Switching", 54 pages.

Allard, Marie, Camille Bronsard et Lise Salvas-Bronsard, "C"—Conjugate
Expectations and Duality", 22 pages.

Dudley, Leonard et Claude Montmarquette, "Government Size and Economic
Convergence", 28 pages.

Bronsard, Camille, "L histoire de I’économie mathématique racontée 3 J uliette”,
17 pages.

Tremblay, Rodrigue, "The Quest for Competitiveness and Export-Led Growth”,
16 pages.

Proulx, Pierre-Paul, "L’ALENA", 12 pages.



9320 :
9321 :

9322 :
9323 :
9324 .
9325 :
9326 :

9327 :

9328 :

9329 :

9330 :

9331 :

9332 :

9333 :

9334 .

9335 :

iv
Proulx, Pierre-Paul, "Le Québec dans PALENA", 28 pages.
Dionne, Georges, Denise Desjardins, Claire Laberge-Nadeau et Urs Magg,
"Medical Conditions, Risk Exposure and Truck Drivers’ Accidents : an Analysis
with Count Data Regression Models, 20 pages.
Ghysels, Eric, "Seasonal Adjustment and Other Data Transformations”, 28 pages.
Dufour, Jean-Marie et David Tessier, "On the Relationship Between Impulse
Response Analysis, Innovation Accounting and Granger Causality”, 12 pages.
Dufour, Jean-Marie et Eric Renault, "Causalités 2 court &t a long terme dans les
modéles VAR et ARIMA multivariés”, 68 pages.
Ghysels, Eric et Alastair Hall, "On Periodic Time Series and Testing the Unit
Root Hypothesis", 36 pages.
Campbell, BryanetJ ean-Marie Dufour, "Exact Nonparametric Ortho gonality and
Random Walk Tests", 28 pages.
Proulx, Pierre-Paul, "Quebec in North America : from a Borderlands to a
Borderless Economy : an Examination of its Trade Flows with the U.S.A. at the
National and Regional Levels”, 24 pages.
Proulx, Pierre-Paul, "L’ALENA, le Québec et la mutation de son €space
&conomique”, 36 pages.
Sprumont, Yves, "Strategyproof Collective Choice in Economic and Political
Environments", 48 pages.
Cardia, Emanuela et Steve Ambler, "The Cyclical Rehaviour of Wages and
Profits Under Imperfect Competition", 24 pages.
Arcand, Jean-Louis L. et Elise S. Brezis, "Disequilibrium Dynamics During the
Great Depression”, 64 pages.
Beaudry, Paulet Michel Poitevin, "Contract Renegotiation : a Simple Framework
and Implications for Organization Theory", 48 pages.
Ghysels, Eric et Alastair Hall, "On Periodic Time Series and Testing the Unit
Root Hypothesis”, 36 pages.
Bonomo, Marco et René Garcia, "Disappointment Aversion as a Solution to the
Equity Premium and the Risk-Free Rate Puzzles”, 40 pages.
Ghysels, Eric et Offer Lieberman, “Dynamic Regression and Filtered Data
Series : A Laplace Approximation 10 the Effects of Filtering in Small Samples”,
24 pages.



