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ABSTRACT

In this paper we complete the presentation of a new hybrid 2 x 2D flux transport dynamo (FTD) model of the solar
cycle based on the Babcock—Leighton mechanism of poloidal magnetic field regeneration via the surface decay of
bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT)
simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation
defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this
coupling is the definition of an emergence function describing the probability of BMR emergence as a function of
the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this
function, together with other model parameters, against observed cycle 21 emergence data. We present a reference
dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase
relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole
strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place
through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the
mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The
model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can
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even shut off entirely following an unfavorable sequence of emergence events.
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1. INTRODUCTION

Close to a century has now gone by since the discovery of
the underlying magnetic nature of the eleven-year sunspot
cycle (Hale et al. 1919). The magnetic polarity reversals of the
leading and following (with respect to rotation) components of
large bipolar magnetic regions (BMRs) is now thought to
reflect the presence, somewhere in the solar interior, of a large-
scale, dominantly axisymmetric zonally oriented (toroidal)
magnetic field, antisymmetric about the Sun’s equator and itself
undergoing polarity reversals approximately every eleven
years, for a full magnetic cycle period of ~22 years. The
rotational shear of a pre-existing dipole, later detected on the
solar surface (Babcock & Babcock 1955), can act as an
inductive source for such an internal toroidal magnetic flux
system. However, closing the dynamo loop requires an
inductive mechanism capable of regenerating the dipole from
this internal toroidal component, in a manner such as to lead the
cyclic polarity reversals of both of these large-scale compo-
nents of the solar magnetic field.

Many candidates for this toroidal-to-poloidal hydromagnetic
inductive mechanism have been identified, starting with
cyclonic convection (Parker 1955) and its associated mean
electromotive force, and the surface decay of BMRs (Bab-
cock 1961), now referred to as the Babcock-Leighton (BL)
mechanism. These were joined more recently by helical waves
along thin magnetic flux tubes (Schmitt 1987; Ossendrij-
ver 2000), and shear instabilities in the tachocline (Dikpati &
Gilman 2001), the stably stratified rotational shear layer located
beneath the base of the solar convection zone, as revealed by
helioseismology. In all cases, the rotational influence mediated
by the Coriolis force is the key agent that breaks the mirror

symmetry of the inductive flows, thus allowing one to
circumvent Cowling’s theorem.

Of these various candidates for poloidal field regeneration,
the BL mechanism stands out as the only one that can be
directly observed operating at the solar surface, and as such is
far better constrained than any other. In particular, the
distribution of tilt angles of BMRs, namely the angle defined
by a line segment joining each pole of the BMR measured with
respect to the east-west direction, is now well characterized
from white light (Howard 1991; Dasi-Espuig et al. 2010) and
magnetographic observations (Wang & Sheeley 1989). This tilt
arises through the action of the Coriolis force, and associated
with it is a net dipole moment so that, effectively, a poloidal
magnetic component is being produced from the pre-existing
deep-seated toroidal component, ultimately giving rise to
emerging BMRs (see Fan 2009 for a review). The magnitude
of this tilt, and its pattern of variations with latitude, BMR flux
and separation, and statistical fluctuations about the mean, all
play a key role in setting the magnitude of the surface dipole
moment produced in the course of a sunspot cycle.

Because the BL mechanism operates at the solar surface, a
transport mechanism is also needed to carry the surface
poloidal magnetic field down into the interior, where rotational
shearing is taking place. Here again a number of appropriate
candidate mechanisms are available, including advection by
large-scale meridional flows pervading the solar convection
zone, as well as turbulent transport effects, namely isotropic
diffusive transport and directional turbulent pumping. Viewed
globally, the BL mechanism is a non-local inductive effect: the
surface source of poloidal field is driven by the deep-seated
toroidal component, on timescales much shorter than the
magnetic cycle period.
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Dynamo models of the solar cycle relying on the BL
mechanism of poloidal field regeneration have undergone a
vigorous revival in the last 25 years or so, spurred by Wang
et al. (1989), Wang & Sheeley (1991), Choudhuri et al. (1995),
and Durney (1995). Many such models are now dispersed in
the literature (for recent reviews see Charbonneau 2010; Karak
et al. 2014). The vast majority rely on a two-dimensional
axisymmetric formulation of the problem, whereby the large-
scale flows and magnetic field components are both axisym-
metric, and the dynamo equations solved in a meridional (r, )
plane. Typically, helioseismology-compatible parameteriza-
tions for solar-like internal differential rotation and meridional
circulation are introduced, and these flows are assumed steady
(the so-called kinematic approximation).

Many such models do differ in how they incorporate the BL
mechanism, a fundamentally non-axisymmetric effect, into the
axisymmetric dynamo equations (compare, e.g., Durney 1995;
Dikpati & Charbonneau 1999; Nandy & Choudhuri 2001;
Muiioz-Jaramillo et al. 2010). They also differ in assumptions
made regarding the primary magnetic field transport mech-
anism. As a consequence, models based on rather different
input physics can do roughly as well as one another in
reproducing the primary characteristics of the observed solar
cycle. However, the differences can matter a lot in practice.
Perhaps no better illustration of this point can be found than the
widely differing dynamo model-based predictions of sunspot
cycle 24 made by Dikpati et al. (2006) and Choudhuri et al.
(2007), each using a distinct BL. model “calibrated” to earlier
sunspot cycles.

This problem is compounded when introducing data
assimilation into the model-based prediction, as the data sets
must then also be preprocessed in some way to accommodate
the axisymmetric formulation of the dynamo model used for
forecasting. Both the afore-cited model-based prediction
schemes used distinct geometrically simplified implementa-
tions of different data sets being assimilated, and in all
likelihood these differences also contributed to the widely
varying predictions for the amplitude of cycle 24. Ideally, data
assimilation should be carried out using full-disk magneto-
grams and/or detailed observations of active region emer-
gences, including complete positional and timing information.
Either way, this requires a dynamo model with a geometrically
complete representation of the solar surface, and thus demands
abandoning axisymmetry.

One extreme possibility consists in turning to global
magnetohydrodynamical (MHD) simulations of solar convec-
tion. Despite remarkable progress in the past decade (for a
review see, e.g., Section 3 of Charbonneau 2014), such
simulations still cannot accommodate sufficient spatial resolu-
tion to resolve convection and magnetic field evolution in the
surface layers, or even capture the interior process of magnetic
flux rope formation and buoyant rise (but on the latter see
Nelson et al. 2013, 2014; Fan & Fang 2014). Typically, such
simulations also fail to drive regular, solar-like polarity cyclic
reversals in the large-scale magnetic field they generate (but see
Passos & Charbonneau 2014 for the closest results yet).

Intermediate approaches are also possible: finding a way to
include the full non-axisymmetric representation of, at least, the
surface processes, while retaining the kinematic approach for
the transport of magnetic flux. To our knowledge, only two
such models exist in the literature (Yeates & Muiioz-
Jaramillo 2013; Miesch & Dikpati 2014, hereafter MD2014),
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as they include a full three-dimensional kinematic representa-
tion of the solar convection zone up to the surface. Here again,
they mostly differ in how they incorporate the localized
emergence of new magnetic flux: Yeates & Mufioz-Jaramillo
(2013) impose localized flow perturbations at the base of the
convection zone to trigger the eruption of active regions out of
the toroidal flux, while MD2014 and Miesch & Teweldebirhan
(2015) apply a surface flux deposition technique, through an
empirical masking of the deep-seated toroidal field.

In this series of papers we present a BL dynamo model that
belongs to this same category. We retain a fairly conventional
two-dimensional axisymmetric kinematic flux transport
dynamo (FTD) model, specifically the model described in
Charbonneau et al. (2005), without its non-local poloidal
source term, and couple it to a two-dimensional surface flux
transport (SFT) simulation. The latter provides the source term
for the former through the upper boundary condition, and in
turn the FTD provides the emergences required as input to the
SFT simulation. We opted to call this a “2 x 2D” dynamo
model. This is still a kinematic model, in that it uses steady
parametrized large-scale flow fields compatible with helioseis-
mology and surface measurements. Specifying the form of
these flows requires the adjustment of many model parameters,
in order to generate the most “solar-like” dynamo solutions
possible.

In Lemerle et al. (2015, hereafter Paper I) we introduced a
genetic algorithm-based method for formally carrying out this
optimization problem, in the context of the SFT simulation.
The optimization process is set to minimize deviations with
respect to synoptic magnetograms (and derived global
quantities). Not only does this approach find an optimal
solution, but it also allows us to map a range of acceptable
solutions, thus providing robust Monte Carlo-like confidence
intervals on best-fit model parameters and allowing the
identification of parameter degeneracies. A key result is that
the range of acceptable surface meridional flow profiles nicely
fits surface Doppler measurements (Ulrich 2010), even though
these data are not used to constrain the optimization process.

In the present paper we extend the procedure to the coupled
model described above, and thus produce an “optimal” 2 x 2D
BL dynamo model of the solar cycle. The use of quotes is
motivated by the fact that even this basic optimal model
involves unavoidable stochastic components, associated with
the flux emergence process, so that it can only fit the Sun
(meaning, e.g., the sunspot number (SSN) time series) in a
statistical sense. Indeed, the SFT solutions presented in Paper I
already show how the uncertainties in global cycle character-
istics are dominated by the inherent stochasticity of the flux
emergence process.

In Section 2 we discuss the formulation of the coupled model
and its components. In Section 3 we turn to its calibration
against observed solar features. In Section 4 we present self-
consistent reference dynamo solutions and examine their
patterns of long term variability. In Section 5 we discuss the
limitations of the calibration technique and compare some of
the results with direct solar observations. We conclude by
summarizing our most salient results as well as possible paths
of improvement and ongoing work.

2. MODEL

The contemporary version of the original scenario proposed
by Babcock (1959) runs as follows:
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(0) at solar maximum, strong toroidal magnetic fields are
present deep in the solar interior, antisymmetric with
respect to the equator;

(1) during the ascending and descending phases of the solar
cycle, toroidal flux loops rise and emerge at the solar
surface in the form of BMRs, twisted due to the Coriolis
effect, such that the western spots tend to be closer to the
equator (tilt following on average Joy’s law);

(ii) surface diffusion/transport near the equator allows for
more cancellation of the western polarities, when
merging with their counterparts from the other hemi-
sphere, leaving the remaining “eastern” flux to be
transported toward the poles and trigger the polarity
reversal of magnetic polar caps;

(iii) the new surface dipole is subducted and sheared by
differential rotation, building up a new internal toroidal
magnetic structure, opposite to the preceding one and
ready for...

(iv) ...the generation of a new population of BMRs during
the next half-cycle (from now on, we refer to this half
magnetic cycle, or sunspot cycle, as simply a “cycle”).

The numerical implementation we propose for carrying out
this scheme is quite simple:

(i) new BMRs are continuously deposited at the solar
surface, at times, latitudes and longitudes, tilts, angular
separations, magnetic fluxes and polarity generated
through a (probabilistic) flux emergence algorithm based
on the strength and spatial distribution of the deep-seated
magnetic fields;

(ii) the SFT equation is solved on the solar spherical surface,
and generates the expected cancellation, decay, transport
and specific features typically observed in surface
magnetograms (see Paper 1);

(iii) the FTD equation is solved in the meridional plane, using
the evolving results of the surface simulation as a time-
dependent upper boundary condition on the poloidal
field; transport of this poloidal field to the base of the
convection zone and subsequent shearing by differential
rotation eventually builds up strong toroidal magnetic
fields deep in the convection zone;

(iv) the dynamo loop is closed by allowing this deep-seated
magnetic structure to generate the emergences required in
step (i).

2.1. Basic Ingredients

In the depths of the solar convection zone or in the tangles of
photospheric turbulent motions, magnetic fields are dispersed,
transported, amplified or destroyed by small and large-scale
flows. In the solar interior and photosphere, these processes are
well-captured by the MHD induction equation:

a—B:Vx(uxBanxB), 1)

ot
with 7 the net magnetic diffusivity, including contributions
from the small microscopic magnetic diffusivity 1, = ¢2/4no,
(with o, the electric resistivity of the plasma), as well as a
dominant turbulent contribution associated with the destructive
folding of magnetic field lines by small-scale convective fluid
motions. We adopt here the kinematic approximation, whereby
the flow u is considered given. This approximation has been
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shown to be appropriate in reproducing reasonably well the
synoptic evolution of the solar surface magnetic field (see, e.g.,
Wang et al. 2002a; Baumann et al. 2004), as well as the overall
solar dynamo properties (see, e.g., Karak et al. 2014, and
references therein). On spatial scales much larger than
convection, two flows contribute to #: meridional circulation
up (r, 0) and differential rotation w$2(r, 6)é;. Both these flows
can be considered axisymmetric (9/0¢ = 0) and steady
(0/0t = 0) as per the kinematic approximation. They can be
expressed in spherical polar coordinates (r, 6, ¢) as

u(r, ) =

V x (¥(r, )éy) + wli(r, 0)és, (2)
p(r)/po

up (r,0)=u, (r,0)é,+up(r,0)ép

where the meridional flow has been formulated in terms of a
stream function ¥(r, 6), thus ensuring mass conservation in a
p(r) = py&™ density profile, with £ (r) = (R/r) — LLm = 1.5
for an adiabatic stratification, R the solar radius,
and w = rsin6.

2.1.1. Meridional Circulation

We opted to use a modified form of the meridional flow
profile introduced by van Ballegooijen & Choudhuri (1988).
This flow can be defined through a separable stream function of
the form:

m+1 2m+1 2m+p+1
V0, 0) = up®, )X [~ as™ ol ,
r m+ 1 2m + 1 2m+p + 1
(3a)
where
2m + 1)(m + —m
o @ Dt p)
m+ p
_CmAp+Dm,
) = —gb b
(m+ Dp

and &, = (R/R;,) — 1. Parameters p and m determine the depth
and concentration of the return flow, down to r = R,,. For the
purpose of the foregoing analysis and calibration, parameters p
and R, will be treated as free parameters, while the polytropic
index m is set at 1.5, appropriate for an adiabatic stratification.

We deviate from the original formulation of van Ballegooi-
jen & Choudhuri (1988) by using the following latitudinal
dependence, also used in Paper I:

ug(R, ) = —:—i erf? (v sin 0) erf” (w cos ), (3b)
0

with u} a normalization factor such that u, is the maximum
meridional flow velocity and ¢, n, v, and w parameters that
allow us to generate a very wide range of solar-like surface
meridional flow profiles. The value of n is fixed to 1 as to
prevent the formation of a0 ms ™' plateau near the equator. We
developed this flexible formulation in Paper I to allow for the
inclusion of various profiles used in flux transport modeling
(e.g., van Ballegooijen & Choudhuri 1988; Dikpati &
Charbonneau 1999; Wang et al. 2002b) and measured on the
Sun (e.g., Ulrich 2010).



THE ASTROPHYSICAL JOURNAL, 834:133 (18pp), 2017 January 10

2.1.2. Differential Rotation

Unlike meridional circulation, the solar internal differential
rotation profile is well constrained by helioseismology. We use
here the helioseismically calibrated solar-like parameterization
introduced in Charbonneau et al. (1999):

_ QRR, 0) — Q, r— R
Qr, 0) = Q. + B T— [1 + erf(—éc/2 ]], (4a)

with Q. = 2.724 prad s~', R. = 0.7R, and surface rotation
QR, 0) = Qo(1 + arcos?0 + ascos*0), (4b)

where a, = —0.1264, a; = —0.1591, and ), = 2.894 urad s !
(see also Snodgrass 1983). The thickness 6. of the transition
region between differential and solid rotation, the tachocline,
near the base of the convection zone, is kept as a free
parameter.

2.1.3. Magnetic Diffusivity

In the stably stratified core, the presumed absence of
turbulence suggests a net diffusivity (n.) given by Ohmic
dissipation, while in the bulk of the convection zone, enhanced
turbulent dissipation (7),) of the magnetic field is expected to
dominate. The following parametric profile, given by Dikpati &
Charbonneau (1999), allows for a smooth transition between
these two regimes:

n(r) =1, + Z[1 + erf(r - R)] )

2 6./2

where R, takes the same value as in the preceding differential
rotation profile.

In the surface layer, supergranular convective motions drive
a random walk that disperses magnetic flux, and can be
modeled as a diffusive process (Leighton 1964) characterized
by an effective magnetic diffusivity of order 7z ~ 10'*—
10"? cm?s™". This value is used solely in the SFT part of the
model. The overall radial profile of 7(r) consequently includes
an implicit step function at r = R. The exact values for 7., 7,
and 7, as well as &, are virtually impossible to determine from
first principles, such that they must be treated as unknown
parameters needing a proper calibration.

2.2. Flux Transport Dynamo

The large-scale axisymmetric magnetic field simulated in the
FTD component of the model can be expressed as

B(r,0,1) =V x (Ay(r, 0, Néy) + By(r, 0, )és,  (6)

Bp=B,é,+Byéy

where Bp and B,é, are respectively the poloidal and toroidal
vector components of the field. Inserting this decomposition for
B, along with Equation (2) for the flow, into the MHD
induction Equation (1) then yields the usual two evolutionary
equations for the scalar components A4(r, 8, 1) and By(r, 0, 1):

O0A,
ot

L V)(wAy) + U(V2 - %)Ad)’ (7a)
w w
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OBy B
= = —w(up - V)(—¢) + n(V2 - %)sz
ot w w

1 9n 0(wBy)
—(Veup)By, + — 27
(Veup)By + wdr Or

+ wBp - V. (7b)

These two equations are linear in A, and By, but are coupled by
the shearing term in Equation 7(b) which acts as a source for B
proportional to Ay No such source appears explicitly in
Equation 7(a). Here the regeneration and amplification of the
poloidal field is supplied by a continuous input from the SFT
simulation, providing a time-evolving surface boundary
condition for A, which effectively acts as a source.

2.3. Surface Flux Transport

Following earlier modeling work on surface magnetic flux
evolution, in particular in Paper I, we consider the magnetic
field to be predominantly radial on global scales and we solve
only the r-component of Equation (1), at r = R. This leads to
the usual two-dimensional linear advection—diffusion equation
for the scalar component By = BAR, 6, ¢, 1),

OBy 1 0 . OBy
PR __ < lug(R, 0)Brsinf] — QR, ) =&
o Reimgog & OBrsind] = QR 05
* Rz[sine 00 - 09 * sin?§ 0¢?
B,
— =+ Spmr (6, ¢, 1), (8)
TR

to which two supplementary terms have been added: a source
term Sgyr (0, ¢, ) to account for the discrete emergence of
new surface flux in the form of BMRs, and a linear sink term
—Bg/7x to allow for an exponential decay of the surface field
with time. Schrijver et al. (2002) originally found such a decay
on a timescale of 5-10 years to be necessary to preclude secular
drift and ensure polarity reversal of the polar caps when
modeling surface flux evolution over many successive cycles of
differing amplitudes. This was subsequently justified physically
by Baumann et al. (2006) as the effect of a vertical turbulent
diffusion, or equivalently a convective submergence, on the
decay of the dominant dipole mode, two physical mechanisms
that cannot be directly included in the SFT model. We included
this term in Paper I but did not find it to be required for the SFT
results to match the synoptic magnetogram of cycle 21. We test
it again here, with 7% treated as a free parameter.

2.4. Numerical Solution and Coupling

The FTD Equations (7) and SFT Equation (8) are solved
concurrently, each on a separate two-dimensional computa-
tional grid on which spatial discretization is carried out via the
Galerkin finite-element method, and implicit temporal dis-
cretization through the one-step ©O-method (see, e.g.,
Burnett 1987).

The SFT simulation is solved over a regular Cartesian grid in
(0, ¢) representing the whole solar surface, with longitudinal
periodicity enforced through a padding of ghost cells. Rigorous
flux conservation is also required since only a small fraction of
the emerging magnetic flux ultimately builds up the axial
dipole observed at sunspot minima. We minimize numerical
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discretization errors by adopting double precision arithmetics, a
256 x 128 longitude-latitude grid, and 8000 time steps for the
eight-cycle runs that will be analyzed in Section 3 (for more
details on numerical errors see Paper I, Section 2.4 and
discussion therein).

The FTD simulation is solved simultaneously over a regular
96 x 128 Cartesian grid in (r, 6), from pole to pole and
0.5 < r/R <3.0. Below r=0.5R, the radiative core is
considered perfectly conductive and the A, = B, = 0 bound-
ary condition is applied. For r > R, the absence of flows and
electrical currents imposes By = 0. The spherical geometry
finally constrains Ay = By, = 0 at the poles. The overall
scheme 1is similar to that described in Charbonneau
et al. (2005).

With such spatial resolutions and typical time steps of ~4
and ~40 days respectively in the SFT and FTD simulations, the
former dominates the computational workload by a factor
of ~20.

2.4.1. From SFT to FTD

The surface (r = R) boundary condition on A is updated at
every FTD time step, via the longitudinal averaging of the SFT
solution ((Bg)? (6, t)) and integration of the resulting latitudinal
function:

Ay(R, 0,1) =A) + Re f (Bg)? (8, t)sin 0d0, )

sin
where Aq? is set to zero at the poles. This provides the coupling
from the SFT toward the FTD model.

Such coupling assumes that physical processes responsible
for surface magnetic flux evolution occur only inside the single
FTID grid layer located at r = R, which is of thickness
~3.7 Mm for our working spatial mesh.

2.4.2. From FTD to SFT: Emergence Function

The coupling from the FTD toward the SFT is the emergence
of BMRs. In view of the considerable complexity of the various
processes involved in the formation, destabilization, buoyant
rise, and emergence of deep-seated magnetic flux tubes (see,
e.g., Weber et al. 2011 and review by Fan 2009), we opted here
to input emerging BMRs directly into the SFT component of
the model, based on a semi-empirical emergence function
giving, as a function of the strength of the internal magnetic
field, the probability that the emergence of a BMR will occur.

Calculations of the destabilization and buoyant rise of
magnetic flux tubes carried out in the thin-tube approximation
do offer some useful guidance. From the stability diagrams
obtained by Schiissler et al. (1994) and Ferriz-Mas et al.
(1994), one can infer the depth, latitude, and magnetic
amplitudes at which toroidal flux tubes are expected to
destabilize. According to their results, and depending on the
level of subadiabaticity in the outer reaches of the radiative
core, instability growth rates near r/R =~ 0.7 remain approxi-
mately constant, or show a smooth increase with latitude, from
the equator up to ~270°, and then fall Bffrapidly to zero over a
latitudinal width of ~5°. A lower threshold of order 10*-10° G
is also required, on the amplitude of the magnetic field inside
concentrated flux tubes. A crucial missing link is the degree of
magnetic field amplification taking place during the formation
of these toroidal flux tubes from the dynamo-generated large-
scale magnetic field. Accordingly, we define this lower limit as
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B* ¢ [10', 10%] (with units that depend on the exact para-
meterization of Equation (10) below), and treat it as another
free parameter to be calibrated. Modeling also shows that a
certain level of twist is required for the tube to maintain its
coherence during the rise through the convective envelope
(Fan 2009). Accordingly, we introduce the quantity
|Bmix| = |BsIP 1A%, evaluated at depth r*/R € [0.60, 0.80]
and with exponents in the ranges b € [0.5,3.0] and
a € [0.0,2.0], and use it to build the following quasi-
normalized emergence function:

|Bmix| — B* Bmix
6B* max | Bpix |

_ ot e Ul
x((l W)90+ug)(l erf( 7 ))

(10)

C

|F5 (6, r>|=%(1 + erf(

The first part of Equation (10) sets a lower threshold on B,ix
above which emergences can take place, as well as a possible
saturation (¢ — 0) or linear growth (¢ — 1) of the probability
above B*. The transition scale 6B* is set to some fraction of B
(see Section 3). The second part accounts for the latitudinal
dependence of the instability’s growth rate, which we assume
to increase linearly from p, € [0, 1] at the equator to 1 near
latitude £* € [65°, 90°], followed by a quick drop to zero in
8¢* = 3° (see Figures 1 and 2 of Ferriz-Mas et al. 1994). The
sign of Fg(0, 1) is given by the sign of the input B,;.

The emergence process is made inherently non-deterministic
with the following sources of stochasticity:

(1) at every SFT time step, the number N(¢) of new BMRs to
emerge is extracted from a uniform random distribution,
proportional to the sum ), F3(0, t) at the corresponding
FTD time step;

(ii) the probability of emergence of a BMR at a given latitude
is made proportional to Fg(6, 1).

Also, independently from the distribution of Fg(f, 1), and as
determined in our analysis of Wang & Sheeley’s (1989)
database entries (see Appendix A of Paper I):

(iii) emergence longitudes are assumed to be random;

(iv) magnetic fluxes & are extracted from a log-normal
distribution centered at log ®, = 21.3(log Mx) with
standard deviation ojog = 0.5(log Mx) (Paper I,
Equation (13)), independently of cycle phase and
amplitude (following Bogdan et al. 1988);

(v) magnetic bipole separations ¢ follow a power law with
flux, with a Gaussian dispersion about it (Paper I,
Equation (15));

(vi) magnetic bipole tilts « relative to the equatorial direction
follow a linear increase with latitude (Joy’s law) and a
Gaussian spread with standard deviation decreasing
exponentially with log® (Paper I, Equations 16(a)
and 16(b).

The input of BMRs in the SFT simulation enters the source
term

N

Semr (0, ¢, 1) = > Bi(0, )op(t — 1), (11a)

i=1


off
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with 8p the Dirac delta. Each new BMRs is placed at its given
position (0;, ¢;) and time f;, with a Gaussian distribution for
each pole:

Bi(0, ¢) = Bige 9+/27" 4 _Bjye 012" (11b)
Bi(0,¢) B;_(0,¢)

where ;. and ;_ are the heliocentric angular distances from
the centers (0,4, ¢,,) and (6, ¢,_) of the two poles,
respectively, and o = 4° the width of the Gaussians.

The preceding steps dictate the relative probability of given
emergences to occur, but the actual number N(f) of BMRs to
emerge every time step remains adjustable. We introduce
a proportionality factor K between the emergence function
Fp(0, 1) and the actual emerged butterfly diagram, so that
N(t)=K->yFs(0,1t). Therefore, K effectively acts as a
dynamo number in the model. Here however, the fact that the
poloidal source term depends on a number of emergences N(?),
rather than being directly proportional to the underlying
toroidal flux, means that the relationship is not formally linear.
Nonetheless, as described in Section 4.1, the model appears to
behave linearly when averaged over many different stochastic
realizations of emergences. Stochastic aspects notwithstanding,
K may thus be considered a dynamo number in a statistical
sense, as it sets the mean growth rate in the linear regime. This
dynamo number is akin to that encountered in the classical
mean-field framework, where it is defined as the dimensionless
product of the strength of differential rotation and turbulent
electromotive force over magnetic dissipation. Moreover, as
demonstrated by the dynamo solutions to be discussed
presently, the value of K also sets the absolute mean amplitude
of the dynamo, together with the tilt-quenching mechanism
introduced in Section 4.2.

As a result, for the reference dynamo solution presented in
Section 4.2, with the working spatial mesh and time stepping
described above and after adjustment of K to obtain stable,
solar-like solutions, the value of N(¥) varies from 5-15 per SFT
time step (50—150 per month) near cycle maxima down to 0—1
per SFT time step (0—10 per month) at cycle minima.

Meanwhile, the exact distribution of these newly emerged
BMRs, i.e., the shape of F(0, 1), is mostly critical if one strives
to match the observed butterfly diagram. The next logical step
is now to carry out a calibration of all parameters describing the
full model, using observed emergences as a constraint, as
detailed in the following section.

3. MODEL CALIBRATION

The various physical components of the coupled SFT-FTD
model introduced in the preceding section jointly involve a
large number of numerical parameters; 27 to be precise. Nine of
these can be fixed confidently either through observations or
theoretical considerations. Five (R, Qy, ., a,, and a,) are the
numerical parameters defining the differential rotation profile
(see Section 2.1.2), another (m) is the polytropic index
characterizing the stratification within the convection zone,
and yet another (n) is used to formulate a flexible surface
meridional flow profile but is set to 1 to reflect solar
observations (see Section 2.1.1). The last two parameters to
be held fixed, 6B* and 6¢*, control the shapes of the latitudinal
and magnetic masking used in the emergence function (see
Section 2.4.2); experimenting with the model reveals that
within reasonably wide ranges, the exact values chosen for
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Table 1
Parameter Values
Parameters “Reference Tested Optimal
Values Intervals Values
(C =042 (C € [0.92, 0.94])

r/R 0.705 [0.60, 0.80] 0.68 + 393
b 1.0 [0.5, 3.0] 1.5 + 53
a 0.0 [0.0, 2.0] 0.0 + 58
c 1.0 [0.0, 1.0] 1.0 + 9
B*© 4107 [10%, 10 10 + 00
i 45 [64, 90] 70 + §
I 0.0 [0.0, 1.0] 05 + 33
8./R 0.05 [0.04, 0.10] 0.05 + 3%
R,/R 0.69 [0.60, 0.70] 0.60 + 092
up/ ms 18 °[8, 18] 17 £ |}
logp 2.0 [-1.0, 2.0] —07 + 13
q 2.5 120, 27 1+
v 1.0 120, 2% 7+ 1
w 35 2% 29] 1+)
log(n, /em*s™") 9 [7, 11] 8.0 + 7§
log(n, /em? s 10.7 [11.0, 13.0] 120 + 33
log(1z/em* s~ ") 12.48 ©[12.38, 12.82] 1278 + 5%
Tr/years £32 €17, 32] 10 + §°
Notes.

# Reference values as to approximate velocity and diffusivity profiles and
emergence algorithm used by MD2014, leading to the solution shown in
Figure 1(a).

® Solutions for the first seven parameters (1", b, a, ¢, B*, {*, and ) result from
the full W21 x 8-18 optimization. Solutions for the remaining eleven
parameters (0., Ry, Uo, Ps g, Vs W, 7)es T M, and Tg) result from the subsequent
W21 x 8-11 optimization. “Optimal values” listed in bold font correspond to
one chosen optimal solution (see Figures 1(e) and (f)) among the acceptable
solutions bounded by the given error bars. Other combinations of parameters
allowed by the error bars should still be used with care, considering the shape
of the parameter-space landscape inside the optimal region and in particular the
correlations described at the end of Section 3.5.

¢ The units of B* depend on the values of exponents b and a, since they must be
the same than the units of |Bpix| = |By|’|A4|* to ensure coherence in
Equation (10).

4 Threshold value B* unavailable from MD2014.

¢ As determined in Paper I, where the initial interval were ug € [5, 30] m s’],
ng € [102, 104 km?s™!, and 7 € [2!, 2°] years. The linear correlation
between u, and 7z obtained from the surface analysis should still be
considered in conjunction with the final results given in the rightmost column.
 As opposed to the optimal intervals obtained in Paper I, where w = 8 4 2%,
v=20+ 13 and g = 2.8 + }Y) - 212500z,

€ 7 > 32 years is similar to removing term —Bg/7x in Equation (8).

these parameters have little impact on the global dynamo
behavior. Consequently, they are fixed at values 0.1B* and 3°
respectively.

This leaves 18 adjustable parameters, which are listed in
Table 1. Eleven pertain to the linear terms in the model,
including the shape of the meridional flow, magnetic diffusivity
and surface sink (6, Ry, Ug, P> 4, Vs W, 1e> s, Ng, and 7x), and the
remaining seven (r*, b, a, ¢, B*, £*, and p,) to the form of the
nonlinear emergence function (Equation (10)).

3.1. Validation with the MD2014 Model

The large number of model parameters listed in Table 1
results from the very general forms adopted for many model
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Figure 1. Left: time-latitude contour plots of the toroidal magnetic field component B4(r", 0, #), at /R = 0.68, for (a) a two-cycle reference solution approaching that
by MD2014, (c) an example of an acceptable solution with C = 0.92, and (e) an optimal solution (Cp.x = 0.94). (g) Raw density plot of observed BMRs, extracted
from Wang & Sheeley’s (1989) database, where all emergences in a given hemisphere and cycle have been attributed the same polarity. Right: (b), (d), and (f)
time-latitude contour plots of the emergence function Fp(6, f) associated with each of the solutions presented at the left, with their respective fitness factor C. (h)
Smoothed version of the density plot presented at the left. All diagrams show the last quarter of simulations W21 x 8 (last two repetitions of cycle 21), which was

used for optimization. Time, given in years, starts at the beginning of the eight-cycle runs. Vertical dotted lines indicate the times of activity minima.

ingredients, notably the meridional flow profile and emergence
function. This gives the model great flexibility, in that it
includes as a subset a number of published models. As an
example and a form of validation exercise, we now reproduce a
dynamo solution resembling that presented in MD2014.

Since MD2014’s model includes a full two-dimensional
representation of the solar surface and an emergence algorithm
similar to ours, direct contact is allowed between specific
features of the two models despite significant differences in
algorithmic implementation and numerical procedures. Their
(single-cell) meridional circulation profile (described in Dikpati
2011) and magnetic diffusivity profile (described in Dikpati &
Gilman 2007) may be closely approached by ours, through the
parameter values listed in the first column of Table 1. Similarly,
their emergence function is comparable to the one we describe
in Section 2.4.2, with a latitudinal masking approximated by
parameters , =0 and ¢* =45° (a low-latitude cutoff
conducive to the production of a solar-like butterfly diagram
but hard to justify from the point of view of stability of thin flux
tubes) and applied only to the B, component evaluated near
depth r*/R = 0.705. The magnetic masking includes a lower
threshold B* of unspecified value and apparently no upper
saturation threshold (parameter ¢ = 1). The detailed parameter-
ization of individual emerging BMRs nonetheless differs

significantly from ours, in a generally more deterministic
manner. The latitude of emergence is directly associated with
the location of the peak toroidal field, as comparedto the
probabilistic approach we use. The tilt, separation, size, and
flux of the spot pair are mainly determined by the value of B,
and the latitude of emergence, and so are deterministic rather
than stochastic.

In order to minimize the differences associated with
stochastic realizations of our emergence procedure, we limit
this exercise to the input of observed emergences. Following
Paper I, we use the comprehensive database of over 3000
BMRs gathered by Wang & Sheeley (1989) for cycle 21. By
feeding these data into Equations 11(a) and 11(b), the 2 x 2D
simulation is indirectly forced to run in a cycle-21-like mode.
The remaining model parameters are set to mimic MD2014’s
model (first column of Table 1). We obtain the two-cycle
solution presented in Figure 1(a), for the synoptic evolution of
By at the base of the convection zone. This solution
resembles MD2014’s result in that it presents a strong mid—
high-latitude poleward branch. Our low-latitude equatorial
branch is however much weaker. Applying the appropriate
latitudinal and magnetic mask from MD2014, we obtain the
emergence function, or equivalently the probabilistic distribu-
tion of emergences, presented in Figure 1(b). This resembles


d
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the pattern of emergence produced in MD2014, with surface
emergences strongly localized around +40° latitude, with a
hint of equatorward propagation (see their Figure 2(a), keeping
in mind that the slanted thick poleward streaks going from mid
to high latitudes on this time-latitude plot reflect post-
emergence SFT, not emergence per se).

3.2. Numerical Optimization

We now seek to select model parameter values so as to
obtain a solar-like dynamo solution. This defines a numerical
optimization task which consists in optimizing the 18
parameters listed in Table 1 to yield the closest possible fit to
solar observations.

The first choice to be made is the goodness-of-fit measure to
be used to drive such optimization. We opted to use a single
fitness measure, namely the value of the linear correlation
coefficient C between the synoptic distribution of synthetic and
observed emergences of BMRs. This presupposes that the
magnetic flux tubes producing BMRs upon emergence through
the photosphere rise radially through the convection zone, on a
timescale very much shorter than the cycle period. Models
based on the thin flux tube approximation support this idea, at
least for the more strongly magnetized flux tube presumably
producing the larger BMRs (see, e.g., Fan 2009, and references
therein).

Next we must select a suitable observational data set against
which to optimize the model. As for the preceding validation
exercise, we use Wang & Sheeley’s (1989) BMR database for
cycle 21. In order to minimize any influence of the initial
condition (solar minimum-like dipolar configuration, as
introduced in Paper I), we generate a sequence of eight
replicates of the cycle 21 database (hereafter W21 x 8), by
sequentially inverting the latitudes of emergence from one
replication to the next, and use the output corresponding to the
last two cycles to compute the correlation coefficient.

3.3. Genetic Algorithm (GA): PIKAIA

We perform the numerical optimization of C using the GA-
based optimizer PIKAIA® 1.2 (Charbonneau & Knapp 1995;
Charbonneau 2002). GAs allow for an efficient and adaptive
exploration of the parameter space, and are thus quite robust at
handling global optimization problems. As described in
Paper 1, they also allow for a quasi-Monte Carlo sampling of
the parameter space about the current optimum solution, thus
helping to construct error estimates on optimal parameter
values. In the present context PIKAIA is operating in an 18-
dimensional parameter space (see Table 1), with the fitness
measure given by the correlation C. Calculating the fitness of a
single trial solution (18-parameter vector) implies running the
SFT and FTD simulations in parallel, with appropriate coupling
through the surface boundary condition, and finally evaluating
C. For our working spatial mesh and time stepping this requires
about twenty minutes on a single-core modern CPU. For a
typical optimization run of 500 generations with 96 trial
solutions per generation, this adds up to 667 core-days, but the
fitness calculation being almost trivial to parallelize across the
population, the wall-clock time can be brought down to a
few days.

3 http://www.hao.ucar.edu/modeling /pikaia/pikaia.php (2015 March).
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3.4. Choosing Parameter Ranges

PIKAIA is designed to carry out optimization in a bounded
parameter space. The intervals explored for each parameter
(second column of Table 1) are chosen to be physically
meaningful and computationally stable. In particular, para-
meters ug, Mg, and Tr are restricted to the intervals found in
Paper I to better reproduce surface synoptic magnetograms.
Parameters ¢, v, and w, however, are left free to vary in their
original intervals despite the preceding calibration, to allow full
exploration of the domain. Diffusivity values 7. and 7, and
profile parameters &, Rj,, and p are given broad intervals but
still within limits inferred by theoretical considerations and
numerical experiments. Masking parameters are allowed to
vary within ranges inferred from calculated stability diagrams,
as described in Section 2.4.2.

3.5. Optimal Solution for Cycle 21

The first sequence of optimizations are run with all 18
unconstrained parameters allowed to vary freely in the intervals
listed in Table 1, hence called W21 x 8-18. We first analyse
the model’s behavior relative to the parameters involved in the
very definition of the emergence function Fg(0, 1)
(Equation (10)). Figure 2 illustrates the value of the good-
ness-of-fit C as a function of emergence parameters r*, b, a, c,
B*, {*, and p, for a set of 192,000 solutions obtained from four
independent optimizations (different seed populations), 500
generations each, 96 trial solutions per generation. In all four
optimizations, the fitness reaches the same optimal value
Cax = 0.94. Such optimal solution, which parameters are
listed in bold font in the rightmost column of Table 1, is
presented in Figures 1(e) and (f). The fit between the
emergence function (Figure 1(f)) and the smoothed butterfly
diagram of cycle 21 emergences (Figure 1(h)) is good, with
expected butterfly shapes and cycle overlaps.

However, it is clear from Figure 2 that considering only a
single optimal solution is insufficient, optima being surrounded
by a wide variety of sub-optimal but likely acceptable
solutions, besides the clearly unacceptable ones. Also, all
seven parameters presented are not equally constrained by the
fitting procedure. By looking at all solutions standing above the
C > 0.935 level (thick black line), we get a first estimate of the
relative restriction applied on each parameter. For instance,
parameters r*, a, and B are fairly well constrained to a limited
interval within the original boundaries, while parameters b, c,
¢*, and p, show wider regions of acceptable fit.

In order to build meaningful error estimates for each
parameter, we must assess the physical limit of validity of
the optimization criterion. Clearly, there must exist a value of C
above which solutions are physically acceptable, even if not
strictly optimal. An example of such a solution, with C = 0.92,
is presented in Figures 1(c) and (d). The butterfly shape in this
solution is still clearly visible, though a second tail is starting to
build toward the high latitudes. These differences are
significant enough to declare such a solution inferior to the
optimal one, but still at the limit of acceptability in terms of
observed global features. The horizontal blue lines in Figure 2
delimit the solutions that are characterized by a criter-
ion C > 0.92.

Before proceeding further into the parameter analysis, we
now opt to get rid of the variability associated with the
definition of the empirical emergence function (Equation (10)),


http://www.hao.ucar.edu/modeling/pikaia/pikaia.php

THE ASTROPHYSICAL JOURNAL, 834:133 (18pp), 2017 January 10

0.97 o W21x8—18
IR
0.90 o .:“
[
0.68
0.00 & c
0.60 0.65 0.70 0.75 0.80
/R

0.5 1.0 1.5 2.0 2.5 3.0

0.97 W21x8-18

0.00
0.0

0.97

$ad mm mmn

1]

W21x8-18

0.90

068'

0.00
0.0

0.94
m

10*

W21x8-18

1.00

0.0 0.2 0.4 0.6 0.8 1.0
M

Figure 2. Distribution of the fitness C (vertical inverse log scale) as a function
of each of the seven “emergence” parameters (", b, a, ¢, B*, ¢*, and p,). Each
gray dot indicates the parameter-space position of one of the 192,000 solutions
obtained from four independent W21 x 8-18 optimizations. The remaining
eleven parameters are not shown here since their final analysis is based instead
on the W21 x 8-11 optimization (see Figure 4). On each plot, the thick
horizontal line indicates the interval where C > 0.935, and the thick vertical
line the parameter value where true maximum fitness C = 0.94 is reached. Thin
vertical blue lines delimit the parameter values where fitness reaches C = 0.92,
such that any solution above the horizontal blue line is considered acceptable.
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Figure 3. “Stability diagram” used as a mask on the toroidal magnetic field
component By(r", 6, r) shown in Figure 1(e), to produce the emergence function
Fp(d, t) shown in Figure 1(f). This corresponds to Equation (10) with
8B* = 107'B*, and parameters b, a, ¢, B, £*, and i, set to their final values, as
listed in the rightmost column of Table 1.

and pick up definitive values, within the interval of accept-
ability, for the parameters involved. The inferred depth for the
generation of flux instabilities is thus set near its optimal value
r*/R = 0.68, by averaging the magnetic field values between
r/R = 0.68 and 0.70. For simplicity, the relative contribution
to Bnix of the poloidal field is set to zero (a =0), while we
round the optimal exponent of the toroidal contribution to b =
1.5. The lower threshold, above which this diffuse toroidal field
is assumed to be able to generate 1nstab111tles is set to its
hlghest acceptable value, that is B* = 102 The units of B* are
in fact G' in the case b = 1.5 to ensure coherence in
Equation (10). This corresponds to a lower threshold of
~200G in By, as illustrated in Figure 3. The emergence
function Fg remains proportional to Bz, With ¢ = 1.0, rather
than saturating above B*. The highest latitude of emergence is
fixed to £* = 70° (sin£* = 0.94), in accordance with stability
diagrams by Ferriz-Mas et al. (1994), and the equatorial
intercept i, is set to 0.5, such that the latitudinal filter halves
smoothly from ¢* = 70° down to the equator. The final
emergence function (i.e., emergence probability) can now be
mapped as a function of latitude and toroidal field amplitude, as
shown in Figure 3, to form a synthetic “stability” diagram,
which is the model’s equivalent to the stability diagrams
presented in Ferriz-Mas et al. (1994, Figures 1 and 2).

With the emergence function now fixed, we carry out a new
series of four optimizations, hereafter called W21 x 8-11, with
only the 11 physical model parameters (8., Ry, Ug, Ps g5 Vs W, Tes
M Mg, and Tg) left to vary freely in their prescribed intervals.
The corresponding 192,000 solutions are presented in Figure 4
as a function of each parameter value. Again, the optimal
fitness reaches Cy,x = 0.94, and all solutions characterized by
a C > 0.92are considered acceptable. The corresponding
interval for each parameter is used to define final error bars
about the optimal values, as listed in the rightmost column of
Table 1. As mentioned earlier, various combinations of
parameters within these accepted intervals lead to acceptable
solutions, but not all do, due to various correlations between
some pairs of best-fit parameters (see also the discussion in
Paper 1, Section 3.5). Figure 5 depicts two of the strongest such
correlations uncovered in our W21 x 8-11 set of solutions.
The left panel shows a net linear (anti)correlation between the
surface meridional flow speed u, and one of the parameters (p)
setting the depth dependence of the meridional flow in the
interior (see Equation 3(a)). This (anti)correlation has an
unambiguous physical explanation: it leads to all solutions near
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Figure 4. Same as Figure 2, but for the eleven model parameters (6., Ry, o, p, g, v, W, e, N, Mg, and Tg), from four independent W21 x 811 optimizations, while the
seven “emergence” parameters are held fixed to their optimal value listed in Table 1.

the red line having an equatorward meridional flow speed equal
t06.6ms” ' 4+ 8% at r/R = 0.66, that is below the base of the
convective envelope, beneath the layer where the emergence
function is calculated. It is the speed of this return flow that sets
the cycle period, and thus is strongly constrained by the
sunspot butterfly diagram used to establish our goodness-of-fit
measure. The right panel of Figure 5 shows another correlation
between a pair of parameters, in the form of a somehow
triangular constraint on parameter g, which controls the polar
end of the latitudinal dependence of the meridional flow, as a

10

function of maximum flow speed u, (see Equation 3(b)). This
correlation sets a lower limit on the surface flow speed at mid—
high latitude, of the order of >5ms™".

4. A SOLAR-LIKE DYNAMO SOLUTION

Now that the physical model and masking parameters have
been properly calibrated to ensure that function Fp(f, f)
reproduces the observed solar butterfly diagram of surface
emergences, we may use it as the statistical emergence function
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Figure 5. Correlations between the best-fit parameter values for surface
meridional flow speed uy and (left) depth variation parameter p and (right)
latitudinal profile parameter g (see Equations 3(a) and 3(b)). The blue squares
correspond to the C > 0.92 regions on Figure 4, third, fourth, and fifth panels
on the left. The linear best-fit (red line) and Pearson’s correlation coefficient are
also shown on the left panel. In particular, despite the ranges of values for u, p,
and ¢, all these solutions have a peak equatorward flow speed of
6.6ms™" & 8% near r/R = 0.66.

it was meant to be, i.e., providing the missing surface source
term Spvr(d, @, 1) with new emergences generated from deep
seated toroidal flux (Equations 11(a) and 11(b)) and thus
closing the loop for a self-consistent and autonomous 2 x 2D
dynamo.

In all following cases, we use as initial condition the
simulation state at the end of the previously calibrated
W21 x 8 sequences. This ensures that the new simulations
start up from a state representative of a solar activity minimum.

4.1. Quasi-linear Regime

The linearity in B of the FTD Equations 7(a) and 7(b) and
SFT Equation (8) is expected to lead to either growing or
decaying dynamo solutions. In the well-studied mean-field
framework, this behavior is controlled by the ‘“dynamo
number.” Here it is the proportionality constant K between
Fp(0, 1) and the absolute number of emerging BMRs per time
step that play the equivalent role. Since a = 0 and » = 1.5 in
the definition of B, and ¢ = 1 in Equation (10), the number
of emerging BMRs is proportional to B, as long as the latter
exceeds the lower threshold B*. However, the emergence
process itself is inherently stochastic, so the dynamo growth
rate can only be defined in a statistical sense, hence the “quasi-
linear” labeling.

The top panel of Figure 6 depicts the temporal evolution of
the total magnetic energy content inside the simulated Sun, for
~8-cycles sample realizations of a 2 x 2D dynamo run in the
quasi-linear regime at four different dynamo numbers K. From
these few samples, the transition between decaying (small K)
and exponentially growing (large K') solutions seems sharp, but
a more complete analysis reveals otherwise. The middle panel
of Figure 6 shows how the growth rate of the magnetic energy
can show a wide spread at a given value of K. Error bars on the
plot illustrate the intervals of growth rates obtained at each
given K, through ten different realizations of the statistical
emergence procedure described earlier (see Section 2.4.2). We
also performed a similar set of simulations in a reduced
stochastic regime (shown in black on the plot). This reveals the
strong global impact of stochasticity in the emergence process,
particularly by the distributions in separations and tilts of
emerging BMRs. The consequence is that a precise value for
the critical dynamo number cannot be defined, with different
realizations of the dynamo with K € [0.4, 0.6] resulting in
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Figure 6. Top panel: evolution of the total magnetic energy content inside the
simulated Sun, for ~8-cycles sample realizations of a 2 x 2D dynamo run in
the quasi-linear regime at four different dynamo numbers K (horizontal dashed
line indicates the initial energy level). Middle panel: long term growth rate of
the magnetic energy as a function of dynamo number K, for ten independent
realizations of (thick gray) the full statistical emergence procedure (see
Section 2.4.2, stochasticity sources (i) to (vi)) per value of K and of (thin black)
a reduced stochastic emergence procedure (retaining sources (i) to (iv) only,
and fixing bipole separations (v) and tilts (vi) at their observed mean values).
Bottom panel: similar as the preceding panel, but for the oscillation frequency
of the detrended magnetic energy.

dynamo solutions that can either grow or decay. The fact that
this transition region lies significantly below the value K ~ 1
required to reproduce the observed butterfly diagram for cycle
21 in the preceding section suggests that the dynamo should
run in the supercritical regime, with some nonlinear feedback
regulating the mean cycle amplitude. This aspect will be
discussed in the following subsection.

As another indicator of the model behavior, average cycle
frequencies (periods) of the corresponding solutions, are also
presented in the bottom panel of Figure 6, again with error bars
showing the intervals of frequencies obtained for a given K.
Considering the difficulty of measuring cycle periods in
quickly decaying oscillatory solutions (low K), no strong
trend appears from this plot. This suggests how robust the
model is at producing oscillations on a 9—12 years timescale, in
spite of the strong variability associated with stochastic
processes.

4.2. Tilt-quenching and Reference Dynamo Solutions

To overcome the problem of (quasi-)linearity, but without
dealing explicitly with dynamical feedback, some ad hoc
quenching may be added to the dynamo source terms.
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Motivated by the modeling of the buoyant rise of thin magnetic
flux tubes by D’Silva & Choudhuri (1993) and Caligari et al.
(1995) (for a review see Fan 2009, Section 5.1.2, and
references therein), we introduce a quenching of the BMR
mean tilt as a function of the amplitude of the contributing
underlying toroidal field B(/)(r*, 0, t), in order to mimic the
resistance of magnetic tension in strongly magnetized flux
tubes against the twisting imparted by the Coriolis force.
Observationally the situation is less clear-cut (see Section 6 in
Pevtsov et al. 2014 for a recent review). Dasi-Espuig et al.
(2010) and McClintock & Norton (2013) do find an influence
of cycle amplitude on mean tilt angles, varying from cycle to
cycle and from one solar hemisphere to another, but Stenflo &
Kosovichev (2012) do not find a statistically significant
relationship between tilt angles and flux of individual BMRs.
The quenched tilt is written as

ag=— 12

1+ (By/By)? (12
with B, some ajustable critical magnetic field amplitude. In the
context of the present dynamo model, we find a tilt-quenching
with B, ~ 500 G, at dynamo number K = 0.75, to be adequate
to generate stable dynamo solutions, comparable to solar
amplitudes for the butterfly density plot and the monthly
number of newly emerged BMRs. The latter we refer to as a
“pseudo-SSN,” since no consideration is given here to
distinguishing groups versus individual emergences, or assign-
ing them different weights, as is the case in the definition of the
international SSN. For instance, observed cycle 21 peaks at a
SSN of ~175 while the maximum monthly number of newly
emerged BMRs in Wang & Sheeley’s (1989) database is ~50.

Figures 7(b)—(g) illustrate the evolution of the deep toroidal
field, total magnetic energy, BMR density, pseudo-SSN,
surface radial field, and axial dipole moment for a sample
dynamo solution run over more than 300 years and roughly 32
synthetic solar cycles. The temporal series exhibit solar-like
behaviors in many aspects, in particular cycle periods varying
between 8.5 and 12 years, cycle amplitude variations of a
factor three to four in the pseudo-SSN, and long term
variability such as some progressive increase of cycle
amplitude after the occurence of a weak cycle or the triggering
of small cycles after very strong ones. Some significant
hemispheric asymmetries are also noticeable on the various
plots, but polarity reversals remain sharply synchronized,
indicating strong cross-hemispheric coupling. The oscillating
surface axial dipole moment peaks at or near the pseudo-SSN
minimum, in agreement with observations. The phase relation-
ship between the surface dipole and deep-seated toroidal field is
also solar-like, with the dipole peaking at or shortly prior to the
pseudo-SSN minimum.

The overall amplitude of this dynamo solution is, however,
slightly higher than that of the average solar cycle. The axial
dipole moment (panel (g)) oscillates with an amplitude of
~10 G - R? as compared to ~4 G - R? for the Sun. The pseudo-
SSN (panel (e)) peaks between ~50 and ~150, which is
slightly higher than average solar cycle amplitude (=50 for
cycle 21). This corresponds to 50-150 emergences per month
near cycle maxima down to 0—10 per month at cycle minima.
The total number of BMRs to emerge during a cycle varies
from ~2000 for the smallest cycles to ~8000 for the strongest
ones, which is comparable, but again slightly higher on
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average, than the original ~3000 BMRs extracted from Wang
& Sheeley’s (1989) database for cycle 21. Due to the use of a
constant log-normal distribution for BMR magnetic fluxes,
total magnetic flux emerging during a cycle scales linearly with
the number of BMRs. Finally, most presumably due to the use
of a suboptimal profile for the surface meridional circulation
leading to extra flux accumulation near the poles at activity
minima, the peak amplitude of the radial surface field (panel
(f)) builds up at an order of magnitude stronger than observed.
At any rate, a dynamo number K < 1 is more than sufficient to
maintain stable dynamo solutions, with only the BL. mechanism
operating and without having to artificially enhance the
emerging flux (see also Cameron & Schiissler 2015). The
value of K used here for the reference dynamo should even be
brought down a little to better fit solar cycle observations.

Also shown in Figure 7(a) is a series of radius—latitude cuts
of the toroidal field component, at nine different phases of a
synthetic sunspot cycle. The toroidal field reverses amplitude
after ~9years, which is slightly shorter than the average
observed sunspot cycle. The peak toroidal field amplitude near
r/R = 0.7 is reached at mid-cycle, near maximum sunspot
activity. Below the tachocline, the magnetic field from three to
four successive cycles piles up to thinner and thinner layers as
it reaches the depth r/R = 0.6. This is precisely what is to be
expected from the average diffusivity n~ 5 x 10" cm?s™!
used at 0.6 > r/R > 0.7, which corresponds to a diffusive
timescale of ~31 years. Below r/R = 0.6, the magnetic
diffusivity of 10° cm? s7! leads to a diffusive timescale
21000 years. Therefore, while the meridional circulation acts
on a timescale commensurate with the sunspot cycle period, the
deep diffusive processes act on much longer timescales. The
remnants from old cycles appear to be able to feed back into the
dynamo system and induce some long-term memory in cycle
amplitude.

Figure 8 shows some long-term interrelations between cycle
properties, extracted from the preceding dynamo solution.
Panel (c) in the figure shows the strong linear correlation (0.89)
obtained between amplitude (maximum pseudo-SSN) of a
cycle (n) and maximum axial dipole moment at the end of the
preceding cycle (n — 1). This behavior is to be expected from
the quasi-linear transport and shearing of the poloidal magnetic
field accumulated at cycle minimum into a deep toroidal
component peaking at cycle maximum and generating a
proportional number of surface emergences. As shown in
panel (d) of the figure, the reverse correlation is not true,
however, as the stochastic properties of emerged BMRs during
a given cycle n destroy the otherwise expected correlation
between pseudo-SSN and axial dipole amplitude at the end of
the same cycle (n). Also, even if long-term magnetic memory
does exist in the interior, the poor correlations obtained
between amplitude of cycle n and axial dipole moment at the
end of cycles n — 2 (panel (b)) and cycles n — 3 (panel (a))
indicate that it is erased by the stochasticity of flux emergence.
Despite these stochastic sources of fluctuations, hemispheric
cycle amplitudes remain strongly correlated, as shown in
Figure 8(f). All the preceding results are in good agreement
with observed solar cycle characteristics (see, e.g., Mufioz-
Jaramillo et al. 2013, Figure 5).

As also shown in panel (e) of Figure 8, cycle amplitude and
period are essentially uncorrelated. This differs from the
behavior observed in the Sun, where a significant antic-
orrelation is inferred between these two cycle measures. Some
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Figure 7. A representative solar-like tilt-quenched 2 x 2D dynamo solution obtained using the optimal parameter values listed in the rightmost column of Table 1. (a)
Latitude-radius snapshots of the toroidal magnetic field between r/R = 0.5 and 1.0, at nine different phases of the dynamo cycle delimited by two vertical continuous
lines in the following plots (color table saturates above 1.5 kG; dashed lines indicate the depth of the tachocline (r/R = 0.7)). (b) Time-latitude contour plot of the
toroidal magnetic field averaged in the depth range 0.68 < r*/R < 0.70; (c) corresponding temporal evolution of the total magnetic energy content inside the
simulated Sun (0.5 > r/R > 1.0; horizontal dashed line indicates the initial energy level). (d) Time-latitude density plot (butterfly diagram) of the number of BMRs
emerged at the surface, as dictated by the emergence function Fp, in turn based on the preceding toroidal field amplitude; (e) corresponding monthly number of newly
emerged BMRs (pseudo-SSN), as a function of time. (f) Time—latitude contour plot of the surface radial magnetic field (color scale saturated above 27 G); (g)
corresponding temporal evolution of the surface axial dipole moment. Vertical dotted lines indicate the times of activity minima as defined by the minimum values of
the pseudo-SSN.
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Figure 8. Amplitude (maximum pseudo-SSN) of cycle n as a function of
maximum axial dipole moment at the end of (a) cycle n — 3, (b) cycle n — 2,
(c) cycle n — 1, and (d) cycle n, for the sample dynamo solution presented in
Figure 7. (e) Cycle amplitude as compared to the period of the same cycle. (f)
Cycle amplitude calculated independently in each hemisphere and plotted
against one another. In each panel is also given the corresponding Pearson’s
linear coefficient.

additional dynamical feedback would likely be required to
reproduce such behavior.

4.3. Long-term Variability

Figure 9 shows the Fourier transforms of the pseudo-SSN
time series, for a sample 32-cycle, tilt-quenched 2 x 2D
dynamo simulation similar to the reference solution of Figure 7,
along with the average spectra constructed from three
statistically independent realizations of a 96-cycle simulation.
The relatively poor sampling of the 32-cycle simulation shows
spectral features similar to those of the 23-cycle solar SSN
spectrum (also shown in the figure), in that it presents a broad
peak between periods of 9-12 years (8—14 years for the SSN)
as well as low-amplitude (5%—-10% of peak power) structures
at other frequencies. However, these secondary features occur
at different frequencies for the SSN and for different
realizations of the pseudo-SSN, and so do not represent
physically robust signals. Indeed, the averaging of three 96-
cycle spectra (equivalent to ~300 cycles in total) reveals no
hint of a low-frequency signature above 2% of peak power, of
the type one would associate with the so-called Gleissberg or
Suess cycles detected in temporally extended records of solar
activity. The cycle period is also much more robust, at
9.5-11 years. These results indicate that despite the strong
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Figure 9. Temporal power spectra of the solar SSN (thin red), of the pseudo-
SSN of a sample 32-cycle tilt-quenched 2 x 2D dynamo simulation (thin
black), and of the pseudo-SSN averaged over three independent realizations of
a 96-cycle simulation (thick black). In all three cases, the Fourier transform was
performed on a signed version of the temporal series, with amplitudes
alternatively reversed from one cycle to the next to impose an oscillation about
zero, and the frequencies subsequently multiplied by two to retrieve the
~10 year sunspot cycle characteristic period. The horizontal dashed line marks
10% of the peak spectral power.

variability in cycle amplitude characterizing the simulations,
the period is very stable, even more so than in the real Sun.

Figure 10 shows two sets of synthetic butterfly diagrams and
associated pseudo-SSN time series, obtained for the same
parameter values as the solution of Figure 7 but using distinct
stochastic realizations for the fluctuating properties of the
synthetic BMRs. The top solution generally resembles panels
(d) and (e) of Figure 7 in its overall amplitude fluctuation
pattern, but now also shows an episode of strongly reduced
cycle amplitude, persisting here for four cycles
(84 <t < 132years) and reminiscent of the 1796-1825
Dalton minimum of the sunspot record. Entry into this low-
amplitude episode is sudden, the preceding few cycles being of
average amplitude or higher. Recovery is however more
gradual, with a few cycles required for the cycle to build back
up to its pre-event average amplitude.

The solution plotted on the two bottom panels of Figure 10
shows yet another interesting behavior: a complete halt of the
cyclic dynamo, here at r ~ 150 years, following a sequence of
unfavorably positioned and/or tilted large BMRs, leading to a
much reduced dipole moment building up in the descending
phase of the cycle peaking at ¢ ~ 118 years. Because of the
lower cutoff B* built into our emergence function (see
Equation (10) herein), once the toroidal magnetic field falls
below this threshold, BMRs are no longer produced, so that the
existing dipole then undergoes simple resistive decay, followed
by resistive decay of the toroidal component, as per Cowling’s
theorem. A distinct inductive mechanism able to operate at low
mean-field strengths, such as the alpha-effect of classic mean-
field electrodynamics, would be needed here to restart the
dynamo cycle (see, e.g., Passos et al. 2014). Ongoing
numerical experiments along these lines suggest that this
would be a feasible path toward the generation of solar-like
grand minima of activity.

In a set of 30 realizations similar to the one displayed in
Figure 7 and the two in Figure 10, 7 shut off before reaching
the 32nd cycle, and 15 before reaching the 96th cycle. The
probability of a dynamo to remain active after a certain number
of cycles thus decreases with time in a manner that appears
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Figure 10. Time-latitude density plot (butterfly diagram) and corresponding monthly number (pseudo-SSN) of newly emerged BMRs, for two distinct realizations of
a 32-cycle, tilt-quenched 2 x 2D dynamo simulation using the same optimal parameter values used to produce the reference solution of Figure 7 (see panels (d)

and (e)).

consistent with a stationary memoryless random process, as
would be expected from the stochastic nature of the properties
of emerging BMRs built into the model. A detailed,
quantitative investigation of these matters, currently underway,
will be the focus of a subsequent paper in this series.

5. DISCUSSION

The dynamo solutions presented above result from the use of
a model calibrated to cycle 21 emergence data through an
optimization process operating on a specific goodness-of-fit
measure and in a bounded search space. These bounds were set
(loosely) on observational and/or physical grounds, but
obviously pose a restriction on the range of solutions accessible
to the optimization. Could we do better than the optimal
solution listed in Table 1? We have carried out a number of
alternative optimization runs in order to answer this question,
as now described.

An 18-parameter optimization similar to that described in
Section 3.5, but using much broader ranges of parameter, does
manage to return a best-fit solution with C = 0.97, significantly
better than the original 18-parameter best-fit solution, which
has C = 0.94. This nominally superior fit, however, is achieved
through a low-latitude cutoff for the emergence function, down
to ¢* = 30°, which is clearly incompatible with stability
diagrams for thin toroidal flux ropes.

We also carried out optimization runs in which the
parameters defining the latitudinal dependence of the
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meridional flow (see Equations 3(a)-3(b)) are constrained to
a narrower range of acceptable values, corresponding to the
best-fit SFT solution obtained in Paper I by fitting actual
synoptic magnetograms, rather than just the spatiotemporal
distributions of BMR emergences. The best-fit solution from
such an optimization reaches only C ~ 0.86, which is much
less satisfactory than the C = 0.94 best-fit solution. More
worrisome is the fact that the surface meridional flow for the
best-fit solution and error bars of Table 1, plotted in Figure 11
(dark gray band), provides a rather poor fit to the Doppler
observations of Ulrich (2010), which lie mostly outside the
range of acceptable solutions from the optimization run. The
best-fit profile of Paper I did much better in this respect
(reproduced herein as the pale gray band in Figure 11).

This suggests some incompatibility between the optimization
of the SFT model relative to surface magnetograms and the
optimization of the coupled SFT-FTD model relative to the
shape of the sunspot butterfly diagram. The W21 x 8-11
optimal solution of Section 3.5 still lies within the surface-
optimized ranges for the maximum meridional flow amplitude
uy, the surface diffusivity 7z, and the exponential decay time 75
obtained in Paper I, while the parameters ¢, v, and w (see
Equation 3(b), setting the latitudinal dependence of the stream
function, do not. Interestingly, despite significant variations in
latitudinal profiles, all acceptable solutions (C > 0.92) have a
peak equatorward meridional flow speed of 6-7 m s~ ' near the
base of the circulation cell; this is consistent with the deep
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Figure 11. Observed and modeled latitudinal profiles of surface meridional
flow. The dark gray band indicates the range of acceptable profiles in the
W21 x 811 optimal solution of Section 3.5, while the pale gray band
indicates the acceptable range obtained in Paper I by fitting the full synoptic
magnetograms. The solid dots and error bars are the Doppler measurements of
Ulrich (2010) for cycles 22 (red) and 23 (black).

meridional flow setting the cycle period in these dynamo
solutions, which leads to a very tight constraint when fitting the
butterfly diagram.

The analytic form adopted here for the meridional flow
stream function is of course extremely simple: steady and
separable in r and 6, which enforces the same latitudinal
dependence at all depths, and defining a single flow cell per
meridional quadrant. What our butterfly diagram-based good-
ness-of-fit measure thus constrains is primarily the flow at the
base of the convection zone. The misfit with the results from
purely surface optimization suggests that the internal flow is
more complex than the single-cell profile used here. Indeed, the
recent helioseismic inversions of Zhao et al. (2013) and Schad
et al. (2013) suggest multiple cells in radius, which is known to
have a large impact on the operation of FIDs (e.g., Jouve &
Brun 2007). The dynamo modeling work of Hazra et al.
(2014a) indicates, however, that provided additional transport
processes such as turbulent diffusion and/or pumping can
couple the surface and base of the convection zone, solar-like
butterfly diagrams can be produced as long as an equatorward
flow is present at or immediately beneath the base of the
convection zone (see also Jiang et al. 2013).

Another physical inconsistency of the W21 x 8-11 optimal
solution is the meridional flow’s deep penetration below the
base of the convection zone. This is known to be conducive to
the production of solar-like butterfly diagrams (e.g., Nandy &
Choudhuri 2002), but unlikely on dynamical grounds (Gilman
& Miesch 2004), and delicate to reconcile with observed solar
light element abundances (Charbonneau 2007). Finally, both
observations (Ulrich 2010) and numerical simulations (Passos
et al. 2012) suggest that the meridional flow may undergo
systematic temporal variations in the course of the cycle,
presumably driven by the cycling magnetic field. Such effects
are a priori excluded from the meridional flow parameterization
used here.

All these incompatibilities and inconsistencies most likely
reflect, at least in part, the specific choices made for the
parameterization of the meridional flow profile. An interesting
possibility would be to use our GA-based fitting technique to
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invert a spatially resolved discretization of the internal
meridional flow from the sunspot butterfly diagram. Such a
method, dubbed genetic forward modeling, has already been
used successfully to infer the rotational profile of the deep solar
core from low-¢ rotational frequency splittings (see Charbon-
neau et al. 1998).

Genetic forward modeling could also be used to invert
stability diagrams for the emergence of BMRs. Our best-fit
emergence function has a = 0 in Equation (10), implying that
the emergence probability is primarily set by the strength of the
toroidal magnetic component, in agreement with the idea that
sunspots form from axisymmetric toroidal magnetic flux ropes
located at or near the base of the convection zone. However,
our eruption threshold of ~200 G is rather low, even if some
level of amplification is expected in forming a compact flux
rope from a diffuse magnetic field. There is clearly room for
improvement in this model component.

6. CONCLUSIONS

In this paper we have described a new solar cycle model
based on the BL mechanism of poloidal field regeneration
through the surface decay of active regions. This new model is
based on the coupling of a conventional latitude—longitude
simulation of surface magnetic flux evolution (as described in
Paper 1), coupled to an equally conventional axisymmetric
kinematic FTD model defined in a meridional plane (closely
following Charbonneau et al. 2005). The novelty lies in the
coupling between these to model components: the surface flux
evolution simulation provides the source term of the internal
dynamo through the surface boundary condition; while the
internal dynamo provides the magnetic flux emergence, in the
form of pseudo-sunspot bipolar pairs, that act as a source in the
surface magnetic flux simulation. The properties of these
synthetic bipolar pairs—flux distribution, component separa-
tion, tilt angles, etc.—are tailored to reflect observed statistical
properties of real sunspots and active regions, as documented in
Paper I (Appendix).

The other key aspect of the coupling is the emergence
function, which controls the probability of bipole emergence as
a function of the spatiotemporal distribution of the deep-seated
magnetic field produced by the dynamo component of the
coupled model. The emergence probability is assumed to scale
linearly with this emergence function, with the proportionality
constant acting as the dynamo number for the full coupled
model.

The coupled model involves a number of parameters and
functionals that cannot be set from first principles, and thus
must be optimized to provide the best possible fit to solar
observations. We opted to carry out this optimization task
through a genetic algorithm-based maximization of the fit
between the spatiotemporal distribution of sunspot emergences
(butterfly diagram) as produced by the model, and the cycle 21
emergence data of Wang & Sheeley (1989). This scheme
returns not only a globally optimal solution, but also Monte
Carlo-like error estimates on best-fit parameters values.

The magnetic cycles generated by this dynamo model are
intrinsically non-steady, due primarily to the large statistical
scatter about the mean east-west tilt pattern of BMRs (as
embodied in Joy’s law). This is expected, since the axial dipole
component of the bipolar pair is determined by this tilt. As a
consequence, a critical dynamo number can only be defined in
a statistical sense.
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A quenching parametrization of the mean tilt angle based on
the strength of the internal magnetic field readily stabilizes the
mean cycle amplitude, but large fluctuations about this mean
nonetheless persist. Such a quenching is consistent with the
modeling of the buoyant rise of thin magnetic flux tubes (see
Fan 2009, Section 5.1.2, and references therein) and, at the
relatively mild level taking place in our dynamo model, does
not conflict with extant observational analyses (see Pevtsov
et al. 2014). One consequence of tilt quenching is that a very
high-amplitude cycle tends to be followed by a lower-than-
average cycle. This alternation would tend to amplify over time
were it not for the stabilizing effect of the linear sink term used
in Equation (8) with 7 = 10 years. Very low-amplitude cycles
can also be produced by unfavorable emergence patterns,
which then lead to persistently low amplitudes in subsequent
cycles, with slow recovery to normal amplitude values.

Even though the amplitude of successive simulated cycles
are strongly affected by the specific stochastic realization of
flux, separation and tilts in the course of a given cycle, even in
the linear regime the cycle period is largely insensitive to the
value of the dynamo number. The magnetic cycle is also
characterized by good hemispheric coupling, in terms of both
hemispheric cycle amplitude and timing of hemispheric
minima,/maxima.

As a descriptive representation of the observed solar cycle,
the model reproduces a number of well-known features. The
dipole peaks at or slightly before the time of pseudo-sunspot
cycle minimum, and its amplitude shows no correlation with
the maximum pseudo-SSN of the ending cycle. This is a direct
consequence of the strong stochasticity introduced by the
realization of tilt patterns throughout the cycle, which is the
primary source of cycle amplitude fluctuations. However, the
model reproduces the observed positive correlation between
dipole strength at cycle minimum and the amplitude of the
subsequent pseudo-sunspot cycle. This indicates that, as in the
real Sun, the dipole moment generated in the model is a good
precursor of cycle amplitude.

Room for improvement certainly remains. The model fails to
reproduce the observed moderate anticorrelation between cycle
amplitude and duration, yielding instead a very weak positive
correlation between these two quantities. While a few extant
kinematic FTD models do better in this respect (e.g., Karak &
Choudhuri 2011), another possibility is that the origin of this
pattern is to be found in dynamical effects, namely the
magnetic back-reaction on large-scale flows. The recent
analyses of Passos et al. (2012) suggest that an increase in
the speed of the deep equatorward meridional flow may indeed
be driven by a higher-than-average large-scale magnetic field,
which in advection-dominated FTDs would be expected to lead
to a proportional reduction in cycle period (see, e.g., Dikpati &
Charbonneau 1999).

The long-timescale behavior of the simulated cycles also
shows some interesting features, some solar-like and others less
so. The model produces a very stable cycle period of 9.5-11
years, but no well-defined low-frequency spectral peaks that
could be associated with Gleissberg-like long periodicities. The
model does produce occasional Dalton-minimum-like periods
of successive low-amplitude cycles, and can also sponta-
neously shut down the cycle and enter a non-cycling grand-
minima-like state, through an unfavorable stochastic pattern of
bipolar pseudo-sunspot emergences in the course of a cycle.
This is a relatively common occurrence for a simulation using
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the best-fit parameter values obtained in Section 3: more than
one half of simulations initialized with distinct random seeds
were found to undergo shutdown at some point during a 100-
cycle long time span.

In subsequent papers in this series we will investigate cycle
fluctuation patterns in greater detail, and quantify the
occurrence statistics of Dalton-like minima. The few such
events found so far in our extant simulation runs suggest that
entry into these failed minima is rapid, from one cycle to the
next, while recovery to average cycle amplitudes is more
gradual. We also plan to add a weak turbulent alpha-effect in
the convective envelope portion of the domain, and investigate
whether this can pull the model out of a shutdown state, as
existing simulations have already suggested (e.g., Ossendrij-
ver 2000; Karak & Choudhuri 2013; Hazra et al. 2014b).

Because it includes an explicit, spatially resolved representa-
tion of the solar “surface,” the 2 x 2D solar cycle model
presented here is ideally suited for providing synthetic data for
coronal magnetic field reconstructions, as well as for assimila-
tion of magnetographic data toward solar cycle forecasting. The
results presented in this paper indicate that an accurate
determination of the tilt angles of individual emerging bipolar
sunspot pairs will be a critical element of the latter endeavor.

We wish to thank Yi-Ming Wang and Neil R. Sheeley, Jr. for
kindy providing us with their comprehensive database of
bipolar emergences for cycle 21 and Roger Ulrich for his
compilation of latitudinal flow measurements and error
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fellgship of the Fonds de Recherche du Québec Nature et
Technologies (AL) and the Discovery Grant Program (PC) of
the Natural Science and Engineering Research Council of
Canada. Calculations were performed on Calcul Québec’s
computing facilities, a member of Compute Canada
consortium.
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