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Résumé

Cette thèse est une collection de trois articles dont deux portent sur le
problème d’appariement et un sur le problème d’agrégation des préférences.
Les deux premiers chapitres portent sur le problème d’affectation des élèves
ou étudiants dans des écoles ou universités. Dans ce problème, le mécanisme
d’acceptation différée de Gale et Shapley dans sa version où les étudiants
proposent et le mécanisme connu sous le nom de mécanisme de Boston sont
beaucoup utilisés dans plusieurs circonscriptions éducatives aux Etats-Unis
et partout dans le monde. Le mécanisme de Boston est sujet à des manipu-
lations. Le mécanisme d’acceptation différée pour sa part n’est pas manipu-
lable mais il n’est pas efficace au sens de Pareto. L’objectif des deux premiers
chapitres est de trouver des mécanismes pouvant améliorer le bien-être des
étudiants par rapport au mécanisme d’acceptation différée ou réduire le dégré
de vulnérabilité à la manipulation par rapport au mécanisme de Boston.

Dans le Chapitre 1, nous étudions un jeux inspiré du système d’admission
précoce aux Etats-Unis. C’est un système d’admission dans les collèges par
lequel un étudiant peut recevoir une décision d’admission avant la phase gé-
nérale. Mais il y a des exigences. Chaque étudiant est requis de soumettre son
application à un seul collège et de s’engager à s’inscrire s’il était admis. Nous
étudions un jeu séquentiel dans lequel chaque étudiant soumet une applica-
tion et à la suite les collèges décident de leurs admissions dont les étudiants
acceptent. Nous avons montré que selon une notion appropriée d’équilibre
parfait en sous-jeux, les résultats de ce mécanisme sont plus efficaces que
celui du mécanisme d’acceptation différée.
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Dans le Chapitre 2, nous étudions un mécanisme centralisé d’admissions
dans les universités françaises que le gouvernement a mis en place en 2009
pour mieux orienter les étudiants dans les établissements universitaires. Pour
faire face aux écoles dont les places sont insuffisantes par rapport à la de-
mande, le système défini des priorités qui repartissent les étudiants en grandes
classes d’équivalence. Mais le système repose sur les préférences exprimées
pour départager les ex-aequos. Nous avons prouvé que l’application du mé-
canisme d’acceptation différée avec étudiant proposant aprés avoir briser les
ex-aequos est raisonable. Nous appelons ce mécanisme mécanisme français.
Nous avons montré que le mécanisme français réduit la vulnérabilité à la
manipulation par rapport au mécanisme de Boston et améliore le bien-être
des étudiants par rapport au mécanisme standard d’acceptation différée où
les ex-aequos sont brisés de façon aléatoire.

Dans le Chapitre 3, nous introduisons une classe de règles pour combiner
les préférences individuelles en un ordre collectif. Le problème d’agrégation
des préférences survient lorsque les membres d’une faculté cherchent une stra-
tégie pour offrir une position sans savoir quel candidat va accepter l’offre. Il
est courant de classer les candidats puis donner l’offre suivant cet ordre. Nous
avons introuduit une classe de règles appélée règles de dictature sérielle aug-
mentée dont chacune est paramétrée par une liste d’agents (avec répétition)
et une règle de vote par comité. Pour chaque profile de préférences, le pre-
mier choix de l’agent en tête de la liste devient le premier choix collectif. Le
choix du deuxème agent sur la liste, parmi les candidats restants, devient le
deuxième choix collectif. Et ainsi de suite jusqu’à ce qu’il reste deux candidats
auquel cas le comité vote pour classer ces derniers. Ces règles sont succincte-
ment caractérisées par la non-manipulabilité et la neutralité sous l’extension
lexicographique des préférences. Nous avons montré aussi que ces règles sont
non-manipulables sous une variété d’extensions raisonable des préférences.
Mots-clés : Appariement, mécanisme d’acceptation différée, mécanisme de
Boston, mécanisme français, agrégation des préférences, règle non-manipulable,
règle de dictature sérielle augmentée.
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Abstract

This thesis is a collection of two papers on matching and one paper on
preference aggregation.

The first two chapters are concerned with the problem of assigning stu-
dents to schools. For this problem, the student proposing version of Gale and
Shapley’s deferred acceptance mechanism and a mechanism known as Boston
mechanism are widely used in many school districts in U.S and around the
world. The Boston mechanism is prone to manipulation. The deferred accep-
tance mechanism is not manipulable ; however, it is not Pareto efficient. The
first two chapters of this thesis deal with the problem of either improving
the welfare of students over deferred acceptance or reducing the degree of
manipulation under Boston.

In Chapter 1, we study a decentralized matching game inspired from
the early decision system in the U.S : It is a college admission system in
which students can receive admission decisions before the general applica-
tion period. But there are two requirements. First, each student is required
to apply to one college. Second, each student commits to attend the college
upon admitted. We propose a game in which students sequentially make one
application each and colleges ultimately make admission decisions to which
students commit to accept. We show that up to a relevant refinement of sub-
game perfect equilibrium notion, the expected outcomes of this mechanism
are more efficient than that of deferred acceptance mechanism.

In Chapter 2, we study a centralized university admission mechanism that
the French government has implemented in 2009 to better match students to
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university schools. To deal with oversubscribed schools, the system defined
priorities that partition students into very coarse equivalence classes but relies
on student reported preferences to further resolve ties. We show that applying
student-proposing deferred acceptance mechanism after breaking ties is a
reasonable procedure. We refer to this mechanism as French mechanism. We
show that this mechanism is less manipulable than the Boston mechanism
and more efficient than the standard deferred acceptance in which ties are
broken randomly.

In Chapter 3, we introduce a class of rules called augmented serial rules
for combining individual preferences into a collective ordering. The aggrega-
tion problem appears when faculty members want to devise a strategy for
offering an open position without knowing whether any given applicant will
ultimately accept an offer. It is a commonplace to order the applicants and
make offers accordingly. Each of these augmented serial rules is parametrized
by a list of agents (with possible repetition) and a committee voting rule. For
a given preference profile, the collective ordering is determined as follows :
The first agent’s most preferred alternative becomes the top-ranked alterna-
tive in the collective ordering, the second agent’s most preferred alternative
(among those remaining) becomes the second-ranked alternative and so on
until two alternatives remain, which are ranked by the committee voting rule.
The main result establishes that these rules are succinctly characterized by
neutrality and strategy-proofness under the lexicographic extension. Additio-
nal results show that these rules are strategy-proof under a variety of other
reasonable preference extensions.
Keywords : Matching, deferred acceptance, Boston mechanism, French me-
chanism, preference aggregation, strategy-proofness, augmented serial rule.
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1

Chapitre 1

Pareto Dominance over Deferred
Acceptance through
Decentralization

1.1 Introduction

Since the successful design of the medical labor market clearinghouse in
the United States, two-sided matching theory has mainly focused on cen-
tralized matching markets. Many matching markets, including markets for
physicians, osteopaths, gastroenterologists, lawyers, have moved to centrali-
zed matching markets ; or at least have experimented with the possibility. At
the same time, numerous matching markets remain decentralized ; and some
have even returned to a decentralized mechanism after a period of operating
through a clearinghouse. The market for gastroenterologists for instance, in-
troduced a clearinghouse in 1986 ; returned to decentralized market in 1990 ;
and, reintroduced a clearinghouse in 2006 (Niederle and Roth, 2009). And
yet, little is known about decentralized markets and how they compare to
centralized systems. To broaden the scope of market design, we need to un-
derstand decentralized markets and their potential.

Empirical studies have shown that centralized markets which succee-



2

ded all share a stability property (Roth, 1984b). A matching is stable if
it matches all agents to acceptable partners and no unmatched pair prefers
one another to their proposed partners or one of their proposed partners.
A stable matching exists for any market. Also, when preferences are strict,
there is a stable matching that each agent on the same side finds at least
as desirable as any stable matching. This matching is obtained by applying
the agent-proposing deferred acceptance (DA) algorithm to this market
(Gale and Shapley, 1962). Currently, DA is used in many cities in the United
States (like New York and Boston) to assign students to public schools. While
DA has the advantage of being stable, it has been criticized for its lack of
Pareto efficiency (Kesten, 2010). In general, efficiency is not compatible with
stability (Roth, 1982; Ergin, 2002; Abdulkadiroğlu et al., 2009). At the same
time, no dominant strategy incentive compatible rule (strategy-proof rule)
Pareto dominates DA (Kesten, 2010; Abdulkadiroğlu et al., 2009; Alva and
Manjunath, 2017). A natural question is whether one can consider weaker
incentive requirements for which students find the expected outcomes more
desirable than the outcome produced by DA.

In this paper, we model and analyse a decentralized market and compare
the outcomes produced to the outcome produced by DA. We consider a per-
fect information game that captures the possibility of coordinated actions.
In the United States, many colleges have early admissions programs, where
they can admit students before the general application period. In an impor-
tant program, early decision, colleges offer binding early admissions. Each
applicant is required to (1) apply to exactly one college and (2) commit to
attend that college if admitted. Our matching game captures this feature :
first, students make applications sequentially. Each student applies to one
college, if any. Then, colleges sequentially decide on which applicants to ad-
mit. Finally, as reflected in the binding commitment, each student attends
the college to which he is admitted (if any).

While the classic equilibrium concept for a perfect information game is
subgame perfect Nash equilibrium (SPE), there are undesirable SPEs in the
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game just described. They involve students playing strategies that are weakly
dominated in some subgames. Since we do not expect such equilibria in prac-
tice, we consider a refinement of SPE that induces undominated Nash
equilibria in every subgame (SPUE). We show that the outcomes ac-
cording to this solution concept weakly Pareto dominate the outcome pro-
duced by DA. This result is part of a new trend of literature that reconsiders
the possibility of Pareto dominance over DA (Abdulkadiroğlu et al., 2011;
Troyan, 2012; Dur and Morrill, 2016).

An early literature (Roth, 1984a; Crawford, 1991) established that when
some students depart from a matching problem, the remaining students are
better-off in the new student-proposing DA outcome. This result has been
recently generalized (Kojima and Manea, 2010) to show that when some
students remove from their acceptable set some colleges they do not obtain,
then the other students are better-off in the DA outcome of the resulting
problem. The game suggested in this paper can be viewed as a decentralized
version of this procedure. However, for the game we consider, this involves
showing that the procedure is actually an SPE.

It is very well-known that in a simultaneous game where participants
cannot observe each other decision and coordinate their actions, the SPE
outcomes are equivalent to the set of stable matchings (Alcalde and Romero-
Medina, 2000; Sotomayor, 2004; Echenique and Oviedo, 2004). However,
there are decentralized markets where perfect information could be a good
approximation, the economics job market for new economists being a case in
a point. Indeed, this market features a platform, the Economics Job Market
Rumors, where many of the offers and acceptances are published. 1

The purpose of this paper is not to describe outcomes in markets as
they are currently organized ; but rather, to offer insights for alternative
design. Because of technology advances, markets can now be organized by
designing platforms that help participants to coordinate their actions. The
results of this paper show that there might be gains from moving toward

1. https ://www.econjobrumors.com/wiki.php.
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such institutions.
The paper most closely related to ours is (Suh and Wen, 2008), which

studies a similar game in a marriage market. The key difference is that they
propose a strong assumption on preferences which ensures that the student
optimal stable matching is the unique SPE outcome. In a recent independent
contribution, Dur et al. (2017) studied a game in which students sequentially
submit preference relations and the Boston mechanism is applied afterwards.
By introducing a refinement, they also show that the outcomes produced
by the game Pareto dominate that of DA. Next, (Haeringer and Wooders,
2011) study a decentralized job matching market where workers apply many
times. They show that the worker optimal stable matching is the unique SPE
outcome. More broadly, the paper is related to a number of contributions in
decentralized matching such as Diamantoudi et al. (2015), Pais (2008), Wu
(2015) and Romero-Medina and Triossi (2014).

The rest of the paper is organized as follows : in section 2, we formally
introduce the model, then we derive the results in Section 3. We collect all
proofs in the appendices.

1.2 Model

1.2.1 Many-to-one matching market

Let S = {s1, ..., sn} denote a finite set of students and C = {c1, ..., cm} a
finite set of colleges. Let S ∪C denote the set of agents with a generic agent
denoted by v. Remaining unmatched is denoted by ∅.

Each student s has a strict preference relation Ps over C ∪ {∅}. Given
s ∈ S and Ps, let Rs denote the weak preference relation associated with Ps :
for each {v, v′} ⊂ C ∪ {∅}, v Rs v

′ if v Ps v′ or v = v′. Let P denote the set
of preference relations and PS the set of preference profiles P = (Ps)s∈S. For
S ′ ⊂ S, we often write (PS′ , P−S′) instead of P .

Each college c has a maximum number qc ∈ N of students it can admit, its
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capacity. Let q := (qc)c∈C denote the profile of capacities. Each college c has
a strict preference relation �c over the set 2S of all subsets of S. Given c ∈ C,
and c’s preference relation �c, �c is the weak preference relation associated
with �c and Ch�c : 2S → 2S is c’s choice function induced by �c as follows :
for each S ′ ∈ 2S, Ch�c(S ′) := max�c 2S

′ . Note that Ch�c is well-defined
because �c is strict. It is convenient to work with choice functions instead
of colleges’ preference relations. We assume that each preference satisfies the
following properties :

Susbtitutable. For each pair S ′, S ′′ of sets such that S ′ ⊆ S ′′ ⊆ S, we have
Ch�c(S

′′) ∩ S ′ ⊆ Ch�c(S
′).

Acceptant. For each S ′ ⊆ S, |Ch�c(S ′)|= min{qc, |S ′|}.

In the sequel, we write Chc without referring to c’s underlying prefe-
rence relation �c. Let Ch = (Chc)c∈C denote a profile of substitutable and
acceptant choice functions.

A market is a tuple (S,C, P, Ch, q) that consists of a set S of students,
a set C of schools, a preference profile P , a profile of choice functions Ch
and a capacity vector q. Since S,C and q mostly remain fixed throughout
the paper, we suppress them and instead denote market (S,C, P, Ch, q) by
M = (P,Ch).

A matching is a function µ : S ∪ C → 2S∪C such that
(1) for each s ∈ S, |µ(s)|≤ 1 and µ(s) ⊂ C ∪ {∅},
(2) for each c ∈ C, |µ(c)|≤ qc and µ(c) ⊆ S and
(3) for each s ∈ S and each c ∈ C, µ(s) = {c} if and only if s ∈ µ(c).

By convention, for each v ∈ S ∪ C, we write µv instead of µ(v) and for each
s ∈ S and c ∈ C, µs = c instead of µs = {c}. Let M denote the set of
matchings. We extend agents’ preferences to the setM in the natural way :
for each agent v and µ, µ′ ∈M, v prefers µ to µ′ if and only if he or it prefers
µv to µ′v. Similarly, v finds µ at least as desirable as µ′ if and only if he or
it finds µv at least as desirable as µ′v. We write µ R µ′ if for each s ∈ S,
µs Rs µ

′
s.
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If µv = ∅, then agent v is unmatched under µ. Let M = (P,Ch). A
matching µ is individually rational (IR) at M if for each s ∈ S, µs Rs ∅
and for each c ∈ C, Chc(µc) = µc. Next, we say that µ is blocked by the
pair (s, c) ∈ S × C at M if c Ps µs and s ∈ Chc(µc ∪ {s}). Finally, we say
that µ is stable at M if it is IR at M and it is not blocked by any pair at
M .

A (matching) rule ϕ : PS → M selects a matching ϕ(P ) ∈ M for each
P ∈ PS. Given P ∈ PS and µ, µ′ ∈M, we say that µ Pareto dominates µ′

(for students) at P if µs Rs µ
′
s for each s ∈ S and for some s ∈ S, µs Ps µ′s.

We say that µ weakly Pareto dominates µ′ at P if µ Pareto dominates µ′

at P or µ = µ′. A rule ϕ Pareto dominates a rule ϕ′ if for each P ∈ PS, ϕ(P )

weakly Pareto dominates ϕ′(P ) at P and for some P ∈ PS, ϕ(P ) Pareto
dominates ϕ′(P ). Finally, rule ϕ weakly Pareto dominates rule ϕ′ if ϕ Pareto
dominates ϕ or ϕ = ϕ′.

1.2.2 Matching game

Let π : {1, 2, ..., n} → S be a bijection and O the set of all such bijections.
Each bijection describes an order according to which students apply. Given
π ∈ O, we index the students in such a way that for each t = 1, 2, ..., n,
sπ(t) = π(t). Given π ∈ O, the game form induced by it is as follows :

Applications phase : student sπ(1) either applies to some college c ∈ C
or chooses ∅ to remain unmatched. Let a1 ∈ C ∪{∅} denote his decision. For
each t = 2, ..., n, student sπ(t) observes all application decisions a1, ..., at−1

and takes an action at ∈ C ∪ {∅}.

Admissions phase : colleges offer admissions, sequentially in the order
of their index numbers. Given any application decisions a1, ..., an, college c1

offers admissions to a subset o(c1) ⊆ {sπ(t) ∈ S|at = c1} of its applicants. For
each j = 2, ...,m, college cj observes all decisions a1, ..., an, o(c1), ..., o(cj−1) ;
and offers admissions to a subset o(cj) ⊆ {sπ(t) ∈ S|at = cj} of its applicants.

Each student’s action consists of applying to a college or choosing to
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remain unmatched. Each college’s action consists of admitting some students
from among its applicants. A history is an ordered collection of actions.
Let h0 be the history where no student has yet applied. Given π ∈ O and
t = 0, ..., n − 1, the ordered collection ht := (h0, a1, ..., at) of actions is a
history after which sπ(t+1) has to play. LetHt

π denote the set of such histories.
Any history after which all decisions are made is a terminal history. The
outcome attached to the terminal history (h0, a1, ..., an, o(c1), ..., o(cm)) is the
matching µ defined as follows : for each t = 1, ..., n, (i) if at = ∅, then
µsπ(t) = ∅, (ii) if at = c and sπ(t) ∈ o(c), then µsπ(t) = c and (iii) if at = c and
sπ(t) /∈ o(c), then µsπ(t) = ∅. The game form just described is a well-defined
finite extensive-form game of perfect-information. Given an order π
and a market M , let G[π,M ] denote the game induced by π and M .

Let π ∈ O and t = 1, ..., n. A strategy σsπ(t) of student sπ(t) is a function
σsπ(t) : Ht−1

π → C ∪ {∅} specifying an application decision σsπ(t)(h
t−1) ∈

C ∪ {∅} for each ht−1 ∈ Ht−1
π . Let ∆t

π denote the set of such strategies and
∆π = ×nt=1∆t

π the set of strategy profiles for students in the game form with
order π.

It is straightforward to see that for each history hn = (h0, a1, ..., an) and
each c ∈ C, the optimal admission of c is o(c) = Chc({sπ(t) ∈ S|at = c}). This
is because c does not get any further applications and therefore can choose
only from {sπ(t) ∈ S|at = c}. Henceforth, we ignore colleges’ strategies and,
abusing language, only speak of a students’ strategy profile as equilibrium of
G[π,M ].

In any game G[π,M ], one can use Kuhn (1953)’s backwards-induction
algorithm to find a strategy profile that induces a Nash equilibrium in every
subgame of G[π,M ]. Such a strategy profile is a subgame perfect Nash
equilibrium (SPE) of G[π,M ].
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1.3 Results

We first describe the student-proposing deferred acceptance (DA) algo-
rithm (Gale and Shapley, 1962). Given a market M = (P,Ch),

Step 1. Every student proposes to his most preferred acceptable college under
P (if any). Let Ŝ1

c be the set of students proposing to college c. College
c tentatively accepts the students in S1

c = Chc(Ŝ
1
c ) and rejects the

students in Ŝ1
c \ S1

c .

Step t. (t ≥ 2). Every student who was rejected at Step (t − 1) proposes to
his next most preferred acceptable college under P (if any). Let Ŝtc
be the set of students proposing to college c. College c tentatively
accepts the students in Stc = Chc(S

t−1
c ∪ Ŝtc) and rejects the students

in (St−1
c ∪ Ŝtc) \ Stc.

The algorithm terminates when each student is either accepted or rejected
by all of his acceptable colleges. The tentative acceptances of the later stage
become final. Given a choice profile Ch, let DACh denote the rule that
selects for each P , the DA outcome for M = (P,Ch). We simply call it DA.

We now give an example where a DA outcome Pareto dominates an SPE
outcome.

Example 1. Let S = {s1, s2, s3}, C = {c1, c2} with capacities qc1 = qc2 = 1,
and preferences are as follows :

Ps1 Ps2 Ps3 �c1 �c2
∅ c2 c1 s2 s1

c1 c2 s1 s3

s3 s2

Students move under the order specifies index numbers. We represent only
the relevant part of the tree. 2

2. Specifically, we omit colleges’ moves and the part where s1 applies to c2 and the
subsequent subgame since such application will be accepted and c2 is not acceptable to s1.
We also represent the outcome in the terminal histories of the tree obtained when colleges
choose optimally from among their applicants.
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Figure 1.1 – SPE outcome Pareto dominated by DA
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By Kuhn’s algorithm, there are two SPEs. They are represented by the
sequence of connected arrows and the sequence of connected double arrows
represented. In both SPE outcomes, s1 is unmatched. Clearly, the outcome of
the first SPE,

(
s1 s2 s3

∅ c1 c2

)
, is Pareto dominated by the DA outcome,

(
s1 s2 s3

∅ c2 c1

)
,

the second SPE outcome.

As the example suggests, the underlying feature of the first SPE is that
some students apply to colleges that they deem unacceptable ; but they re-
main unmatched in the equilibrium. While such behavior do not affect the
outcome of the applicants in question, it may induce a subsequent student
to apply to a college that is less preferred for him than the one to which he
would have otherwise applied.

Note that s1’s strategy of applying to the unacceptable college c1 is weakly
dominated. Indeed, his strategy of choosing to remain unmatched weakly do-
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minates his strategy of applying to c1 : under c1’s strategy of admitting s1,
he prefers the outcome of the first strategy to the outcome of the later. The
instance of an SPE containing a weakly dominated strategy is representa-
tive of a more general issue : an SPE may have strategies that are weakly
dominated in some subgames, that is, their restrictions to some subgames
may contain weakly dominated strategies. We deal with these non-intuitive
strategies next.

1.3.1 Subgame perfect undominated Nash equilibrium
(SPUE)

Given an order π, a market M and a non-terminal history h ∈
⋃n−1
t=1 Ht

π,
let G[π,M |h] denote the subgame of G[π,M ] that starts at h. Moreover,
given t = 1, ..., n and σsπ(t) ∈ ∆t

π, let σsπ(t) |h denote the restriction of σsπ(t) to
G[π,M |h]. Let σ|h= (σs|h)s∈S. The matching attached to the terminal history
reached when σ is executed starting from h (and colleges choose optimally)
is denoted by µ(σ|h).

Given π ∈ O, a market M = (P,Ch) and t = 1, ..., n, a strategy σsπ(t)
weakly dominates a strategy σ′sπ(t) in a subgame G[π,M |ht−1 ], if for each
strategy profile σ−sπ(t) , student sπ(t) finds µ(σ|ht−1) at least as desirable as
µ(σ′sπ(t) , σ−sπ(t) |ht−1) with at least one preference. A strategy σsπ(t) is undomi-
nated in a subgame G[π,M |ht−1 ] if it is not weakly dominated in G[π,M |ht−1 ]

by any strategy. A strategy profile σ ∈ ∆π is undominated (in G[π,M ]) if for
each t = 1, ..., n, and each ht−1 ∈ Ht−1

π , σsπ(t) is undominated in G[π,M |ht−1 ].

Remark. Any strategy that involves an application to an unacceptable college
c is weakly dominated in the subgame starting at the history in which it occurs.
Either c admits the applicant in question, in which case he prefers choosing
to remain unmatched to applying to c. Or c does not admit him, which is the
same outcome as choosing to remain unmatched.

We consider SPEs in which no strategy is dominated in a subgame. Hence,
we obtain the following refinement of SPEs.
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Subgame perfect undominated Nash equilibrium (SPUE). Given π ∈
O and a market M , the strategy σ ∈ ∆π induces an undominated Nash
equilibrium in every subgame of G[π,M ].

Given π ∈ O and a market M , let MSPUE(G[π,M ]) denote the SPUE
outcomes of G[π,M ]. This mild refinement of SPE produces outcomes that
weakly Pareto dominate the DA outcome.

1.3.2 Equilibrium characterization

Applications to unacceptable colleges are wasted and therefore ruled out
in any SPUE. However, these are not the only « wasted » applications. Any
application to an acceptable college that is rejected is also wasted. The appli-
cant is unmatched in the corresponding SPUE outcome, yet such application
may affect other students.

Example 2. Consider a variation of Example 1 where student s1’s preference
relation becomes the one in which c1 is the unique college that is acceptable to
him. Applying Kuhn’s backwards-induction algorithm again yields the same
SPEs identified in the tree of this example. The SPE outcomes are now the
DA outcome

(
s1 s2 s3

∅ c1 c2

)
and the matching

(
s1 s2 s3

∅ c2 c1

)
. Student s1 applied to

c1 in an SPE but is not admitted. The other students prefer the outcome of
the SPE where he chose to remain unmatched to the one where he applied to
c1.

Given s ∈ S and c ∈ C, let P c
s ∈ P denote student s’s preference relation

in which c is the unique college that is acceptable to him and P ∅s ∈ P a
preference relation in which he finds no college acceptable.

Let π ∈ O and M = (P,Ch). We define the following profiles :
(i) P (h0) := P .
(ii) For each t = 2, ..., n and each history ht−1 = (h0, a1, ..., at−1),

P (ht−1) := (P a1
sπ(1)

, ..., P at−1
sπ(t−1)

, Psπ(t) , ..., Psπ(n)).
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To elaborate, consider a history ht−1 = (h0, a1, ..., at−1). First, P (h0) is the
initial profile P according to M . Next, P (ht−1) is the profile obtained from
P as follows : (i) for each t′ < t, we replace the preference relation Psπ(t′) of
sπ(t′) with P

at′
sπ(t′) ; and (ii) for each t′ ≥ t, we let Psπ(t′) unchanged, that is,

Psπ(t′)(h
t−1) = Psπ(t′) .

Consider now an SPE that involves a wasted application to an acceptable
college. The student who played such a strategy has an alternative strategy
where he chooses to remain unmatched at the history where he made such
application. It turns out that such a strategy may be part of another SPE.
Yet, the subsequent students finds the outcome of the later one as desirable
as the outcome of the first one.

In naming it, we relate this form of strategic behavior to a social choice
theory concept of similar property. 3 LetM = (P,Ch), π ∈ O and t = 1, ..., n.
Let σsπ(t) ∈ ∆t

π. Then,

Bossy strategy. For each history ht−1 ∈ Ht−1
π , letting DAChsπ(t)(P (ht−1)) :=

v,
(i) if v = c for some c ∈ C, then σsπ(t)(ht−1) = v and

(ii) if v = ∅, then σsπ(t)(ht−1) = v′ with v′Rsπ(t) ∅ and v′ 6= ∅ for at least
one history.

In a bossy strategy σsπ(t) , (i) at each history ht−1 with DAChsπ(t)(P (ht−1)) =

c, sπ(t) applies to c and (ii) at each history ht−1 with DAChsπ(t)(P (ht−1)) = ∅,
sπ(t) either chooses to remain unmatched or applies to an acceptable college ;
and, in at least one such history he applies to an acceptable college.

At some history ht−1 such that DAChsπ(t)(P (ht−1)) = ∅ ; a bossy strategy
may recommend an application to an acceptable college. It turns out that
the student sπ(t) is not admitted by this college in the SPUE of the subgame

3. We thank William Thomson for making a parallel between non-bossiness, a social
choice theory concept, and the property embodied in the strategy mentioned ; which led
to the choice of bossy strategy. This is an analogy to non-bossiness introduced for social
choice functions (Satterthwaite and Sonnenschein, 1981) : A social choice function is bossy
when some agent can change the outcome for others without changing his own.
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that follows. Then, sπ(t) gets the same thing whether or not he makes the
corresponding application. However, choosing to remain unmatched would
have helped the remaining students.

A strategy without the application mentioned has a flavour of some soli-
dary. Let M = (P,Ch), π ∈ O, t = 1, ..., n and σsπ(t) ∈ ∆t

π.

Solidary strategy. For each history ht−1 ∈ Ht−1
π ,

σsπ(t)(h
t−1) = DAChsπ(t)(P (ht−1)).

Theorem 1. Given π ∈ O and a market M , the subgame perfect undomina-
ted Nash equilibria of G[π,M ] correspond to the strategy profiles σ = (σs)s∈S

such that for each student s ∈ S, σs is either a bossy strategy or a solidary
strategy.

Appendix 1 contains the proof of Theorem 1.

1.3.3 Pareto dominance over deferred acceptance

Our main result is the following :

Theorem 2. The outcome of every SPUE weakly Pareto dominates DA.

Appendix 2 contains the proof of Theorem 2. The following corollary
follows from the optimality of the outcome of DA.

Corollary 1. The outcome of DA is the unique stable matching that can
arise in an SPUE.

Since the order of applicants can affect the SPUE outcome, it is important
to understand the markets for which the outcome is order independent (see
Moldovanu and Winter (1995) for a related concept). Before doing so we first
show that some key features of the SPUE outcome are order independent
for any market. A student who is matched at some order is also matched
at any other order. The same thing holds for an unmatched student. This
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result resembles a feature of the set of stable matchings (Roth, 1984b, 1986), 4

known as rural hospital theorem. A student who is matched at some stable
matching is also matched at any other stable matching and the same thing
holds for an unmatched student. Furthermore, a college with unfilled seats at
some stable matching is matched to the same set of students at each stable
matching.

Rural hospital properties. Given a non-empty subset M′ ⊆ M and
{µ, µ′} ⊂ M′,

(i) for each v ∈ C ∪ S, |µv|= |µ′v| and

(ii) for each c ∈ C, |µc|< qc implies µc = µ′c.

Proposition 1. Given a market M = (P,Ch), the set of SPUE outcomes
associated with the set of all possible orderings O satisfies the rural hospital
properties.

Appendix 3 contains the proof of Proposition 1. We note that Proposition
1 is not a negative result as in the medical labor market. It is positive in the
sense that the order does not change a matched student to unmatched or an
unmatched to matched.

Order independent G-Outcome. for each {π, π′} ⊂ O,
MSPUE(G[π,M ]) =MSPUE(G[π′,M ]).

Corollary 2. If a market M = (P,Ch) induces an order independent G-
outcome, then for each π ∈ O,MSPUE(G[π,M ]) = DACh(P ).

Appendix 4 contains the proof of Corollary 2. Next, we characterize mar-
kets that induce order independent G- outcome. We first need a new concept.
Given a rule ϕ and a market M = (P,Ch), let Pϕ ∈ PS denote a profile de-
fined in such a way that for each student s, ϕs(P ) is his unique acceptable

4. Hatfield and Milgrom (2005) partially obtained the rural hospital theorem on the
set of stable matchings, when colleges have substitutable preferences coupled with another
condition.
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college, if any. Let Pϕ
S′ denote the restriction of Pϕ to S ′. Let ϕ be a rule and

S ′ a group of students. Suppose that we replace PS′ by Pϕ
S′ . Then, we require

that the rule selects the same matching. 5

Claims consistency. For each S ′ ⊆ S,

ϕ(Pϕ
S′ , P−S′) = ϕ(P ).

Theorem 3. A market M = (P,Ch) induces an order independent G-
outcome if and only if DACh is claims consistent at P .

Appendix 5 contains the proof of Theorem 3. It is worth connecting
claims consistency to the popular version. Let Ch be a choice profile. Let
(S, P, Ch, q) be a market, S ′ ⊆ S a group of students and q′ a profile of capa-
cities such that for each c ∈ C q′c ≤ qc. We call the market (S ′, PS′ , Ch|2S′ , q′)
a sub-market of (S, P, Ch, q) where Ch|2S′ is the restriction of Ch to 2S

′ .
Next, the extended DA rule D̃A

Ch
is defined as follows : for each P ∈ PS

and each S ′ ⊂ S, D̃A
Ch

selects the DA outcome for (S ′, PS′ , Ch|2S′ , q′).
Let µ ∈M and S ′ ⊂ S. We define the sub-market (S ′, PS′ , Ch|2S′ , qµ) with

respect to S ′ and µ as the one that results from a departure of the students
in S \S ′ with their outcomes at µ ; that is, for each c ∈ C, qµc = qc−|µc \S ′|.
Then, given a choice profile Ch and P ′S ⊂ PS, DACh is consistent on P ′S if
for each P ∈ P ′S and each S ′ ⊆ S, letting µ = D̃A

Ch
(S, P, Ch, q), we have

µ|S′= D̃A
Ch

(S ′, PS′ , Ch|2S′ , qµ).

The matching literature has focused on PS and searched for choice profiles Ch
for which DACh is consistent on PS. The following condition for responsive
preferences (Ergin, 2002) and for acceptant substitutable preferences (Ku-
mano, 2009) is the answer. 6 A reversal in a choice profile Ch consists of three
distinct students i, j, k and two distinct colleges c, c′ such that there exist

5. Variants of consistency have been explored in the literature, ranging from consis-
tency, bilateral consistency to average consistency (Thomson, 2011).

6. Let �c be c’s preference relation over S ∪ {∅}. A preference relation �̄c over 2S is
responsive to �c, if for any subset S′ of students with |S′|< qc, S′ ∪ {s}�̄cS′ ∪ {s′} if
and only if s �c s′ and S′ ∪ {s}�̄cS′ if and only if s �c ∅.
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two disjoint subsets Sc, Sc′ ⊂ S \ {i, j, k} verifying (C) j /∈ Chc(Sc ∪ {i, j}),
k /∈ Chc(Sc ∪ {j, k}) and i /∈ Chc′(Sc′ ∪ {i, k}) and (S) |Sc|= qc − 1 and
|Sc′ |= qc′ − 1. A choice profile has no reversal if there is no reversal in it.
Given a choice profile Ch, DACh is consistent on PS if and only if Ch has
no reversal (Klijn, 2011).

Given a choice profile Ch that has no reversal and each P ∈ PS, DACh

is claims consistent at P . 7 However, claims consistency additionally charac-
terizes markets (P,Ch) for which Ch may have a reversal.

Theorem 3 also characterizes markets for which the DA outcome is Pareto
efficient. Together with Corollary 1 and Theorem 2, we can conclude that it
is only on those markets that SPUE outcomes do not improve over the DA
outcome. Otherwise, there are some SPUE outcomes that Pareto dominate
the DA outcome. Furthermore, there is some SPUE outcome that is Pareto
efficient.

Proposition 2. For each market M = (P,Ch), there is an order π ∈ O
such that some µ ∈MSPE(G[π,M ]) is Pareto efficient.

Appendix 6 contains the proof of Proposition 2.
Given µ ∈ M, let µC = {s ∈ S| µs 6= ∅} denote the set of students

matched under µ. We combine Theorem 1 and Proposition 1 to derive the
following corollary.

Corollary 3. Let M = (P,Ch).
(i) For each π ∈ O, each µ ∈ MSPUE(G[π,M ]) and each v ∈ S ∪ C, we

have |µv|= |DAChv (P )|.
(ii) If DAChC (P ) = S, then for each π ∈ O, MSPUE(G[π,M ]) is a sin-

gleton.

Appendix 7 contains the proof of Corollary 3. According to Corollary 3
(ii), for each marketM = (P,Ch) such that DAChC (P ) = S and each order π,

7. Since Ch has no reversal, for each P ∈ PS , DACh(P ) is Pareto efficient (Kumano,
2009). Let S′ ⊆ S and P ′ := (PDAS′ , P−S′). It is proven (Kojima and Manea, 2010a)
that DACh(P ′)R′DACh(P ). Thus, for each s ∈ S′, DAChs (P ′) = DAChs (P ). Therefore, if
DACh(P ′) 6= DACh(P ) then, DACh(P ′) Pareto dominates DACh(P ) at P .
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MSPUE(G[π,M ]) is a singleton. Each student can unambiguously compare
his components in the outcomes of various orders. Then, we can focus on
markets satisfying the hypothesis of (ii) and ask the following question : what
are students’ preferences regarding their orders ? We ask whether students
prefer to play earlier or later.

Let S ′ ⊂ S and {π, π′} ⊂ O. Then, S ′ has the same relative ordering in
π and π′, which we denote π|S′= π′|S′ , if for each {s, s′} ⊂ S ′, s is ordered
before s′ in π if and only if s is ordered before s′ in π′. Formally, for each
{s, s′} ⊂ S ′, π−1(s) < π−1(s′) if and only if π′−1(s) < π′−1(s′).

Proposition 3. Let M = (P,Ch) be such that DAChC (P ) = S. Let s ∈ S and
{π, π′} ⊂ O be such that (i) π|S\{s}= π′|S\{s} and (ii) π′−1(s) < π−1(s). Then,
s is at least as good in the SPUE of G[π,M ] as in the SPUE of G[π′,M ].

Appendix 8 contains the proof of Proposition 3.

1.4 Conclusion

Although matching markets are decentralized, the literature has privile-
ged the study of centralized matching markets. However, empirical studies
show that stability is a constraint for a successful design of centralized mar-
kets. This has the consequence that deferred acceptance (DA) is used in
almost all well-known centralized markets. At the same time DA fails to
achieve efficiency. We showed that decentralization can result in outcomes
that Pareto improve over DA. This is, in our knowledge, the first contribu-
tion to obtain such a result in decentralized setting.
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Chapitre 2

University Admissions Reform in
France : An Analysis of a New
Mechanism

2.1 Introduction

University admissions policies in France have been one of the most hotly
debated issues over the last two years. At the centre of the debate is a nation-
wide centralized admissions system that the Ministry of Higher Education
(MHE) implemented in 2009 to simplify the process for students and to bet-
ter match students to university school programs. This system replaced a
decentralized admissions system that was producing ‘poor matches’. Under
the previous system, universities did not use a uniform application process
and did not coordinate their admission decisions. Since students had to pre-
pare different applications for each school, most applied to a small number
of schools. Moreover, students could potentially receive multiple offers which
prompted many to hold on to current offers while waiting for better ones.
Consequently, a considerable number of seats remained vacant even though
some students never received an offer of admission.

As a solution, a task force of academic leaders commissioned the design of
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a centralized clearinghouse to coordinate admissions. It was implemented na-
tionwide in 2009 and since then, nearly 800,000 students participate each year
for the allocation of seats in nearly 12,000 programs. 1 In its June 1, 2016’s
memorandum to the student association « Droits des Lycéens », the MHE
explained how the system prioritizes applicants at oversubscribed schools. 2

We model the French university admissions system as a school choice pro-
blem in which students are strategic agents and school seats are objects that
come with priorities.

In this paper, we introduce a new mechanism for school choice motivated
by the French university admissions system. We systematically compare it to
current school choice mechanisms with respect to how it balances trade-offs
among design goals : The new mechanism is a compromise between existing
mechanisms. We also introduce a new notion of degree of manipulability to
rank mechanisms.

Since school choice was established as a field of market design fifteen
years ago, two mechanisms with opposite properties have dominated the de-
bate. First, there is the old Boston (or immediate acceptance) mechanism
which has received considerable attention because it is widely used in real-
life. Broadly, this mechanism considers the first choices of students first ; and,
up to capacity and following the priorities, immediately makes assignments.
Then it looks at the second choices of students who didn’t get their first
choices and proceeds as before immediately filling the remaining vacancies
and so on. Unfortunately, the immediate acceptance feature of this mecha-
nism provides it with poor incentive properties. Clearly, it is in a student’s
best interest to avoid top-ranking a popular school in which he has low prio-
rity. A student who otherwise reports such preferences could miss out on his
second choice simply because other students with lower priority ranked it
first. If the student had ranked his second choice first, he would have been

1. All public universities in France but l’Univresité Paris Dauphine have joined the
clearinghouse.

2. The document can be assessed at :
http://www.youscribe.com/BookReader/Index/2734749/?documentId=2913196.

http://www.youscribe.com/BookReader/Index/2734749/?documentId=2913196
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more likely to be assigned a seat at that school. Evidently, the mechanism
has a justified envy problem ; a student might prefer one school to his assi-
gnment and at the same time some of that school’ seats may be assigned to
students who have lower priority. An (individually rational and non-wasteful)
matching that eliminates justified envy is said to be stable. 3

The second mechanism that has been influential in school choice is Gale
and Shapley (1962)’s famous Deferred Acceptance (DA) algorithm. It pro-
duces stable matchings which are student-optimal stable matchings. 4 In ad-
dition, this mechanism has a good incentive properties : No student has an in-
terest in misrepresenting his preferences (Dubins and Freedman, 1981; Roth,
1982). A mechanism with this property is said to be strategy-proof. Not
only does a strategy-proof mechanism elicit truthful preferences but it also
simplifies the strategic aspect of reporting. Finally, a strategy-proof mecha-
nism levels the playing field by preventing sophisticated students from taking
advantage of strategically less sophisticated students (Pathak and Sönmez,
2008). Because of these properties, economists have argued for the use of DA
over the Boston mechanism. 5

However, one salient feature of real-world school choice lessens the theo-
retical appeal of DA. School priorities often exhibit indifferences (or ties)
among students. The French system also has this feature. Indeed, there are
selective schools which use academic files to strictly order students ; and
non-selective schools which give priorities according to educational district
but leave students within the same district tied. With coarse priorities, DA

3. A matching is wasteful if the capacity of some school is not fully assigned and some
student prefers it to his assignment.

4. The outcome of DA is student-optimal when priorities are strict. Otherwise, the
outcome of DA (with exogenous tie breaking) may be Pareto dominated by another stable
matching.

5. A third mechanism that has been proposed is an adaptation of the top trading
cycles algorithm to school choice. Students on the top of school priorities are granted such
priorities which they can trade in cycles. This mechanism is strategy-proof but not stable.
However, across many school districts in which this mechanism has been suggested, the
public has rejected the idea that priorities, which are often given according to residence
or sibling attendance, be used for trade.
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performs poorly on the basis of welfare. Indeed, it is a common practice to
randomly break ties and apply DA with the corresponding strict priorities.
One problem is that the outcome of DA in this case may not be a student-
optimal stable matching (Ergin and Erdil, 2008). What is more, this practice
further entails significant welfare loss (Abdulkadiroğlu et al., 2009). This is-
sue has motivated the literature to reconsider manipulable mechanisms (like
the Boston mechanism). As a series of recent papers (Abdulkadiroğlu et al.,
2011; Miralles, 2009; Featherstone and Niederle, 2016; Troyan, 2012) clearly
point out, there are economic environments where each of the equilibrium
outcomes of the Boston mechanism could Pareto dominate DA. The first
of the cited papers, for instance, considers an environment where students
have correlated preferences and schools have no priorities and shows that the
equilibrium outcomes of the Boston mechanism Pareto improve upon the do-
minant strategy outcome of DA. 6 This raises the question of whether there
is a third mechanism that could balance the incentive and welfare properties
better than DA or the Boston mechanism.

The French system departs from random tie breaking by relying on stu-
dents’ reported preferences to break ties. The simplest rule consists of brea-
king ties so that students who rank a school higher receive priority at that
school over students who don’t.

In this paper, we show that by using an endogenous tie breaking rule one
can improve the welfare of students over DA with random tie breaking. At
the same time this new rule reduces the incentives for manipulation relative
to the Boston mechanism. In particular, we study the set of stable matching
mechanisms in which ties in school priorities are broken according to the
French tie breaking rule. We refer to this stability concept as French priority
stability or FP-stability for short. The drawback, as we show, is that FP-
stable matching mechanisms are generally manipulable. We use a notion

6. This conclusion is in contrast with an earlier one from Ergin and Sönmez (2006) ac-
cording to which, in a complete information environment, the dominant strategy outcome
of DA weakly Pareto dominates each of the Nash equilibrium outcomes of the Boston
mechanism.
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introduced by Pathak and Sönmez (2013) to compare mechanisms according
to their vulnerability to manipulation. A mechanism is less manipulable
than another if any preference profile that is prone to manipulation under
the first is also prone to manipulation under the second and the reverse does
not hold.

In its October, 2017’s report, the « Cour des comptes », which is the
French national court of auditors, revealed that the clearinghouse has been
implementing a school-optimal FP-stable matching mechanism. 7 In this pa-
per, we study all FP-stable matching mechanisms and show that the student-
optimal FP-stable matching mechanism is the most efficient and least ma-
nipulable mechanism in the FP-stable set. For this reason, we refer to it as
the French mechanism. It is a unified mechanism from which a variety of
school choice mechanisms – including the Boston mechanism, DA and two
other mechanisms discussed in the literature – emerge as special cases.

The shortcoming of the French mechanism is its manipulability. In one
forum, the following was posted to a thread discussing a student who was
not assigned to a university spot :

« (. . .) She should have placed the faculty of her district as her first choice. »

One media source explains this issue in the following terms :

« Candidates must balance between strategy and preferences in ordering
their choices. There is a chance of being admitted in a program if it is

placed on top of the list. »

We study the performance of the French mechanism from two different pers-
pectives. From an ex-post perspective, students know all information about
school priorities. In this environment, we show that the French mechanism is

7. The report is published after we accomplished the first version of this paper. It can
be accessed in the following address :
https://www.ccomptes.fr/sites/default/files/2017-10/
20171019-rapport-admission-post-bac_0.pdf.

https://www.ccomptes.fr/sites/default/files/2017-10/20171019-rapport-admission-post-bac_0.pdf
https://www.ccomptes.fr/sites/default/files/2017-10/20171019-rapport-admission-post-bac_0.pdf
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less manipulable than the Boston mechanism. From ex-ante perspective, stu-
dents do not know all information about priorities. In that setting, we consi-
der an environment of correlated economies that generalizes the framework
of Abdulkadiroğlu et al. (2011). We show that the Baysian Nash equilibrium
outcomes of the French mechanism Pareto improve upon the dominant stra-
tegy outcome of DA. In contrast, the equilibrium outcomes of the Boston
mechanism do not Pareto dominate DA nor do they systematically Pareto
dominate the French mechanism. Correlated economies provide a good ap-
proximation of several school choice environments. For one, students often
express similar preferences about schools based on criteria as job opportu-
nities, academic reputation and safety. What is more, in real-world school
choice, schools often use a general exam score and set thresholds and ranges
for which students are perceived to be equivalent. This causes priorities to
be coarse and correlated.

The French university admissions system has an additional concern re-
lated to selective schools. These are schools whose objective is to admit the
most qualifying student body possible. These schools use various criteria in-
cluding grades, letter of recommendations and student’s class rankings to
arrive at a strict ordering of students. Since their seats are assigned through
a manipulable mechanism, it would be desirable if the strategic behavior did
not jeopardize this goal. Ideally, admission to these schools should reflect
student’s qualifications instead of their strategic sophistication. Ideally, we
would like to have a mechanism for which the set of students assigned to each
selective school is insensitive to manipulation. Under the French tie breaking
rule this requirement is not compatible with other design goals most noti-
ceable FP-stability. Instead, we require that no student be able to receive
a seat at a selective school through manipulation. We say that a school is
not strategically accessible via a mechanism if no student can manipu-
late it and obtain a seat at that school. We prove that no selective school is
strategically accessible via the French mechanism.

A natural question, that we have addressed, is how the presence of ties
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affects the incentive property of the French mechanism. We first show that by
transforming some ties into strict relations does not entail less manipulable
mechanisms : We cannot draw a conclusion from Pathak and Sönmez (2013)’s
notion. We propose the following notion of relative accessibility. A mecha-
nism is less strategically accessible than another if any school which is
strategically accessible by some student via the first mechanism is also stra-
tegically accessible by the same student via the second and the reverse does
not hold. We show that some transformations of ties into strict relations in-
duce a French mechanism that is less strategically accessible than the French
mechanism induced by the original priorities.

Related Literature

We are not aware of any existing paper that has studied the French uni-
versity admissions system. However, a variety of other papers are similarly
motivated by real-world school admissions reforms. In one paper, Chen and
Kesten (2017) study school choice reforms in China and proved that in some
provinces these reforms have led to less manipulable and more stable mecha-
nisms (which they called parallel mechanisms). Broadly, they characterized
a parametric family of mechanisms in which DA and the Boston mecha-
nism emerge as extreme cases. In another paper, Doğan and Yenmez (2016)
study the Chicago Board of Education decision to implement a new admis-
sions procedure. They show that an alternative but unified enrolment system
improves upon on student’s welfare. Third, Westkamp (2013) study the se-
quential university admissions system used in Germany. He showed that a
student-optimal procedural stable matching mechanism Pareto improve upon
the German mechanism.

On the methodological front, the current paper is built on a notion in-
troduced by Pathak and Sönmez (2013) and a model developed by Abdulka-
diroğlu et al. (2011). The paper has a methodological contribution. Indeed,
the idea of comparing mechanisms by their strategic assessibility is new in
the matching literature. The paper is also related to Abdulkadiroğlu et al.
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(2015) who augmented student’s choices by adding a « targeting » variable
that they used to break ties. They proved that expanding choice improves
the welfare of students over DA with random tie breaking.

Finally, the current paper is part of a vast research program, school choice,
dedicated to improving the practice of school admissions. To this end, one
part of the literature discusses practical considerations regarding the de-
sign of school choice mechanisms (Abdulkadiroğlu et al., 2005, 2006; Pathak,
2016). A second part of the literature addresses concerns about the welfare
loss associated with DA suggesting more efficient but nonetheless manipu-
lable alternatives (Kesten, 2010; Ergin and Erdil, 2008). The third part of
the literature developes an axiomatic approach to school choice mechanisms
including DA (Kojima and Manea, 2010a; Morrill, 2013a; Ehlers and Klaus,
2014) and the Boston mechanism (Kojima and Ünver, 2014; Afacan, 2013;
Doğan and Klaus, 2016). 8 Roth and Sotomayor (1990) provide a good treat-
ment of matching markets more generally. Though not directed related to the
current paper, there has also been a lot of recent work on ties in matching
(Ehlers, 2014; Jaramillo and Manjunath, 2012; Bogomolnaia et al., 2005;
Ehlers and Erdil, 2010).

It is very well-understood that not all school admissions design goals are
compatible. Some goals should be traded off against others. A significant part
of the literature is dedicated to clarifying the nature of these trade-offs. This
paper is part of that tradition ; it does not, as it might appear, endorse the
use of the French mechanism over DA or the Boston mechanism.

The remainder of the paper is organized as follows. In Section 2, we
present the model and the three mechanisms of interest. In Section 3, we
present the results. In Section 4, we conclude. We defer all proofs to the
Appendix.

8. The top trading cycles mechanism has also been the object of axiomatic study (Ab-
dulkadiroğlu et al., 2017; Morrill, 2013b).
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2.2 School choice model and three mechanisms

We consider the school choice model introduced by Abdulkadiroğlu
and Sönmez (2003). 9 There are a finite set of students and a finite set of
university schools (schools for short). Each student demands one seat and
each school has a maximum capacity. Each student has an outside option
that we denote by ∅.

Formally, a school choice problem consists of :
1. a finite set I = {1, 2, . . . , n} of n > 2 students,
2. a finite set S = {a, b, c, . . .} of m > 2 schools,
3. a capacity vector q = (qa, qb, qc, . . .),
4. a list of preference relations R = (R1, . . . , Rn),
5. a list of basic priorities �= (�a,�b,�c, . . .) and
6. a list of tiebreakers π = (πa, πb, πc, . . .).

For each student i, Ri is a preference relation over S ∪ {∅} which we as-
sume to be strict. 10 For each student i and each preference relation Ri, let Pi
denote the asymmetric part of Ri. Then, for each i ∈ I and a, b ∈ S, a Ri b

if and only if a Pi b or a = b. We say that school a is an acceptable choice
for student i under Ri if a Pi ∅. Let R denote the set of preference relations
and RI the set of preference profiles R = (Ri)i∈I . For each school a, �a is
a weak priority order over I. 11, 12 If two students i and j are in tie under
�a, we write i ∼a j. If student i has higher priority than student j under
�a, we write i �a j. 13 We say that school a has a complete indifference
priority under �a if for each i, j ∈ I, i ∼a j. In that case, we denote the
basic priority as �CIa . Given a school a, a basic priority �a and a i ∈ I, let

9. Balinski and Sönmez (1999) figure among the earlier literature that initiated the
application of matching to school admissions problem.
10. A preference relation is strict if it is complete, transitive and antisymmetric.
11. A priority order is weak if it is complete and transitive.
12. We assume that each student is acceptable to each school.
13. Alternatively, the relation �a can be viewed as a subset of I×I such that (i, j) ∈�a

if and only if i �a j. Therefore, i ∼a j if and only if (i, j) ∈�a and (j, i) ∈�a. And i �a j
if and only if (i, j) ∈ �a and (j, i) /∈ �a.
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Ei
�a = {j ∈ I|j ∼a i} be the indifference class that contains student i. Given
�a and a subset I ′ of students, let �a|I′ denote the restriction of �a to I ′.
If the basic priority �a is strict, we say that school a is a selective school.
Otherwise, we say that school a is non-selective. For each school a, πa is
a strict order over I. We call a pair τ = (�, π) consisting of a basic priority
profile � and a tiebreaker profile π a priority profile. Given a priority profile
(�, π) and a school a, let �πa denote the strict priority order that is obtained
from �a by breaking all ties in �a according to πa. In the remainder of the
paper, we refer to a pair (R,�) of a preference profile and a basic priority
profile as an economy. We say that an economy (R,�) is correlated if
students have the same ordinal preferences and schools have the same basic
priorities, that is, for each i, j ∈ I, Ri = Rj and for each a, b ∈ S, �a=�b.
We say that students have correlated preferences under the preference
profile R if for each i, j ∈ I, Ri = Rj.

A matching is a function µ : I → S ∪ {∅} such that for each school a,
|µ−1(a)|≤ qa. LetM denote the set of matchings. A mechanism is a func-
tion ϕ : RI →M that assigns to each preference profile R a matching ϕ(R).
We denote by ϕi(R) the component for student i. We now require desirable
behaviors of a mechanism.

For a mechanism to attract much participants, it should promote voluntary
participation. We say that a matching µ is individually rational under R
if for each student i, we have µ(i) Ri ∅. A mechanism ϕ is individually
rational if for each preference profile R, ϕ(R) is individually rational. Given
an economie (R,�) in which � is a strict basic priority profile, we say that
a student-school pair (i, a) is a blocking pair for µ under (R,�) if a Pi µ(i)

and either |µ−1(a)|< qa or for some student j ∈ µ−1(a), i �a j. We say that
a matching µ is stable under (R,�) if µ is individually rational and there
is no blocking pair for it under (R,�). In school choice, school seats are me-
rely objects to be assigned to students. Therefore, only student preferences
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need to be considered for welfare evaluations. A matching µ is (Pareto) ef-
ficient under R if there is no other matching µ′ such that for each student
i, µ′(i) Ri µ(i) and for some student j, µ′(j) Pj µ(j). Otherwise, we say
that the matching µ′ Pareto dominates the matching µ. A mechanism ϕ is
efficient if for each preference profile R, ϕ(R) is efficient. A mechanism ϕ is
strategy-proof if for each preference profile R and each student i, there is no
preference relation R′i such that ϕi(R′i, R−i) Pi ϕi(R). Many mechanisms used
in real-world are not strategy-proof. However, some of them are less prone to
manipulation than others. Pathak and Sönmez (2013) introduced a notion to
compare mechanisms by their vulnerability to manipulation. We say that a
preference profile R is vulnerable under mechanism ϕ if there is a student
i and an alternative preference relation R′i such that ϕi(R′i, R−i) Pi ϕi(R).
In that case, we say that student i manipulates ϕ at R via R′i and that
mechanism ϕ is manipulable under R. A mechanism φ is as manipulable as
mechanism ϕ if whenever a preference profile R is vulnerable under ϕ, then
it is also vulnerable under φ. A mechanism ϕ is less manipulable than a
mechanism φ if φ is as manipulable as ϕ and there is at least one preference
profile which is vulnerable under φ but not under ϕ. Two mechanisms are
equally manipulable if the same set of preference profiles are vulnerable
under both mechanisms. A mechanism ϕ is strongly less manipulable
than a mechanism φ if ϕ is less manipulable than φ and for each preference
profile R, any student who can manipulate ϕ under R can also manipulate
φ under R. 14

In the previous incentive notions, there is no indication to the set of
schools towards which the strategic behavior is oriented nor the set of stu-
dents who have those incentives. It might be desirable that some schools be
spared from the strategic behavior. In our application, selective schools are
such schools. We say that school a is strategically accessible by student i via
mechanism ϕ if student i can manipulate ϕ and obtain a seat at school a,

14. If a mechanism ϕ is strongly less manipulable than a mechanism φ then, for sure
ϕ is less manipulable than φ and in addition, at any preference profile R where a given
student i can manipulate ϕ, student i can also manipulate φ at R.
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that is, there is a preference profile R and a preference relation R′i such that
ϕi(R

′
i, R−i) = a and a Pi ϕi(R). We say that school a is not strategically

accessible via mechanism ϕ if that school is not strategically accessible by
any student via ϕ. As stated in the following lemma an individually rational
mechanism is strategy-proof if no school is strategically accessible.

Lemma 1. Let ϕ be an individually rational mechanism. Then, if no school
is strategically accessible via ϕ then ϕ is strategy-proof. 15

For each school a, let Iϕa be the set of students for whom school a is
not strategically accessible via ϕ. We consider a mechanism φ to be as stra-
tegically accessible as mechanism ϕ if any school which is not strategically
accessible via φ by some student is also not strategically accessible via ϕ by
this student. That is, for each school a, Iϕa ⊇ Iφa . We consider a mechanism ϕ

to be less strategically accessible than mechanism φ if φ is as strategically
accessible as ϕ and there is a school a which is not strategically accessible via
ϕ by some student but strategically accessible via φ by this student. That
is, for each school a, Iϕa ⊇ Iφa and for some school b, Iϕb ) Iφb . We say that
school a is strategically accessible by student i via mechanism ϕ under R if
there is a preference relation R′i such that a = ϕi(R

′
i, R−i) Pi ϕi(R). A me-

chanism ϕ is strongly less strategically accessible than a mechanism φ if
for each preference profile R each school which is strategically accessible by a
student via ϕ under R is also strategically accessible by the same student via
φ under R and there is a preference profile under which some school is not
strategically accessible by some student via ϕ but is strategically accessible
by this student. Two mechanisms are equally strategically accessible if
each school is strategically accessible by the same set of students via both
mechanisms.

It is important to note the following distinction in our definition of stra-
tegic accessibility. Suppose that school a is strategically accessible via me-

15. For the proof, let ϕ be an individually rational mechanism and suppose that ϕ is
manipulable by student i. Then, there is R and R′i such that ϕi(R′i, R−i) Pi ϕi(R). Because
ϕ is individually rational, then for some school a, ϕi(R′i, R−i) = a. Therefore, school a is
strategically accessible.
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chanism ϕ by student i. We do not require that in at least one instance in
which he can manipulate and obtain a seat at school a, school a be the best
school that student i can obtain via a manipulation although it is plausible
to suppose that when such strategic opportunity is available, he will instead
manipulate and obtain a seat at the school that he finds best. However, we
will show that under the French mechanism, if a school is strategically ac-
cessible by some student, then it is strategically accessible in an instance in
which that school is the best that the student in question can manipulate
and obtain a seat at.

2.2.1 Deferred Acceptance mechanism

The Deferred Acceptance (DA) mechanism is suggested by Gale and Sha-
pley (1962) and adapted for school choice by Abdulkadiroğlu and Sönmez
(2003). In the current context of weak priorities, it consists of exogenously
breaking ties according to the tiebreakers and simulating rounds of applica-
tions and rejections of its standard algorithm. Let τ = (�, π) be a priority
profile and R a preference profile. Recall that �π is a strict priority profile
obtained from � by breaking ties according to π. The steps of the algorithm
are as follows :

Step 1 : Each student applies to his first acceptable choice (if any). Each
school a rejects the lowest ranked applicants under �πa who are in ex-
cess of its capacity and provisionally keeps its remaining applicants.

In general, at
Step `, ` > 1 : Each student who is rejected at Step ` − 1 applies to

his next acceptable choice (if any). Each school a considers its new
applicants together with its applicants who were held at Step ` − 1

and rejects the lowest ranked under �πa who are beyond its capacity
and provisionally keeps the remaining applicants.

The algorithm terminates whenever each student is either held or has applied
to all his acceptable choices. The outcome associated with this process is
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the matching in which each student who is accepted at the terminal step
is matched to the corresponding school and the others remain unmatched.
Let DA�π(R) denote this matching. Given the priority profile τ = (�, π),
let DAτ denote the mechanism that assigns to each preference profile R the
matching DA�π(R). Let � and �′ be two strict basic priority profiles and R
a preference profile. Let r1 and r2 be the number of steps that the deferred
acceptance producingDA�(R) andDA�′(R) terminate, respectively. Let r ≤
min{r1, r2}. We say that the algorithms that lead to DA�(R) and DA�′(R)

have the same steps until r if at each Step ` ≤ r of both algorithms, the same
applications and the same rejections are made.

2.2.2 Boston mechanism

Prior to the 2005-2006 school year, the Boston public schools were using a
mechanism that simulates many rounds of immediate acceptances applications-
rejections mechanism. In fact, it is a popular school choice mechanism today.
We next describe it formally. Given a priority profile τ = (�, π) and a prefe-
rence profile R, it is executed as follows :

Step 1 : Each student applies to his first acceptable choice (if any). Each
school a rejects the lowest ranked applicants under �πa who are in ex-
cess of its capacity and immediately accepts the remaining applicants.
Each school a reduces its capacity by the number of students it accep-
ted. Let q1

a be the number of seats that remain after the current step.

In general, at
Step `, ` > 1 : Each student who is rejected at Step `−1 applies to his `’s

acceptable choice (if any). Each school a consider its new applicants,
rejects the lowest ranked ones under �πa who are in excess of its
capacity that remains after Step ` − 1 and immediately accepts the
remaining applicants. Each school a reduces its capacity that remains
after Step `− 1 by the number of students it accepted. Let q`a be the
number of seats that remain after the current step.
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This procedure terminates when each student is either accepted or has ap-
plied to all of his acceptable choices. In the later case he remains unassigned.
Let BM τ denote the mechanism that assigns to each preference profile R the
outcome obtained at the end of this procedure when the priority profile is τ .
We refer to this mechanism as Boston mechanism. 16

Note that at each step of the Boston mechanism, acceptances are im-
mediate. Once a school accepts an applicantion, it no longer considers the
possibility of rejecting him in later steps. There are other variants of the
Boston mechanism.

(a) First Preference First mechanism

More than 50 school districts in England had been using a school ad-
missions mechanism known as First Preference First (FPF) until 2007
(Pathak and Sönmez, 2013). The set of schools is partitioned into two sets.
One set is referred to as equal preference schools and the other as first
preference first schools. Given a priority profile τ = (�, π), the outcome
of the FPF mechanism indexed by τ , which we denote by FPF τ , for the
preference profile R is the application of DA with R and the following strict
priorities :

— Each equal preference school a uses the strict priority �πa ,
— Each first preference first school a uses the following strict priority :

Any student who ranks school a at a certain position has higher prio-
rity than any student who ranks that school lower than that position.
Among students who rank school a the same, the priority is determi-
ned according to �πa .

Remark. The Boston mechanism is a special case of the first preference
first mechanism when each school is a first preference first school ; and, DA
a special case when each school is an equal preference school.

16. This mechanism is also called immediate acceptance mechanism to stress that, in
contrast to DA, acceptances at each step are immediate.
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(b) Secure Boston mechanism

In studying the Boston mechanism, Dur et al. (2016) were concerned
with students loosing priority at schools where they have guaranteed seats.
Student i has a guaranteed seat at school a with basic priority order �a if
there are at most qa students (including student i) who either have higher
priority than student i or are in tie with student i under�a. 17 Let G�a denote
the set of students who have guaranteed seats at school a under �a. Note that
this set may be empty. They propose a mechanism in which no student looses
his priority at a guaranteed school. They refer to this mechanism as secure
Boston mechanism that we describe. Let τ = (�, π) be a priority profile.
For each preference profile R, the outcome that the mechanism selects for it
is the application of DA for R and the following modified priority profile �̂ :
For each school a and each i, j ∈ I :

— if i ∈ G�a and i �πa j, then i �̂a j,
— if i, j /∈ G�a , then

– if student i has ranked school a higher than student j under R,
then i �̂a j,

– if student i and j have ranked school a the same and i �πa j, then
i �̂a j.

Let sBM τ denote the secure Boston mechanism induced by τ = (�, π). Then,
for each preference profile R, sBM τ (R) = DA�̂(R).

Remark. Top trading cycles mechanism
A third mechanism which is interesting mentioning is the so-called top

trading cycles mechanism. It is implemented via the following algorithm : Let
a preference profile R and a priority profile τ = (�, π) be given.

Step 1 : Each student who finds no school acceptable is removed from
consideration. Each of the remaining students points to his most pre-
ferred school. Each school a points to its highest ordered student under
�πa. There is at least one cycle because the set of students is finite as

17. A student i has guaranteed seat at school a under �a if |{j ∈ I|j �a i}|≤ qa.
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well as the set of schools. For each of these cycles, each student is as-
signed to his first choice. The students in each cycle are removed from
consideration and the capacity of each school in that cycle is reduced
by one.
In general, at

Step `, ` > 1 : Each school which has no remaining seat is removed from
consideration. Each student who finds no remaining school acceptable
is removed from consideration. Each of the remaining students points
to his most preferred remaining school. Each remaining school a points
to its highest ordered remaining student under �πa. Because the set
of remaining students is finite as well as the set of remaining schools,
there is at least one cycle. For each of these cycles, each student is
assigned to the school that he has pointed to. The students in each
cycle are removed from consideration and the capacity of each school
in that cycle is reduced by one.

The algorithm terminates when either all schools have been removed from
consideration or all students have been removed from consideration.

Observe that DA exogenously breaks ties according to the tiebreaker pro-
file and simulates the rounds of applications-rejections. Another alternative
is to break ties endogenously, that is, based on student preferences. The me-
chanism that we describe next adopts this approach.

2.2.3 French mechanism

In the French university admissions system, there are selective schools
which strictly order students based on their academic performances and non-
selective schools which define priority based on student’s educational district.
France is divided into 30 educational districts. For each non-selective school,
each student who belongs to the same division as the school has higher prio-
rity over each student who is outside that district. But students in the district
remain in tie. Similarly, students outside the district remain in tie. We des-
cribe next how the French system breaks ties.
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A. French tie breaking rule

To begin, the set S of schools is partitioned into T categories. Let {S1, . . . ,ST}
be such a partition. Given a preference profile R, we say that school a is
student i’s `’th absolute choice under Ri if there are exactly ` schools that
he finds at least as good as school a under Ri. 18 Given a school a in category
t, we say that school a is student i’s `’th relative choice under Ri if there
are exactly ` schools in St that he finds at least as good as school a under
Ri, that is, there are exactly ` schools that he finds at least as good as school
a under the restriction Ri|St . 19

We first sketch a literal description of the French tie breaking.
— First priority : For any tie, the student who relatively ranks the

school at a certain position has higher priority over the student who
relatively ranks it lower than that position.

— Second priority : Among students in ties who relatively rank the
school the same, the student who absolutely ranks the school at a
certain position has higher priority over the student who absolutely
ranks it lower than that position.

— Third priority : Among students in ties who rank the school rela-
tively and absolutely the same, the student who is ordered higher in
the tiebreaker of the school has higher priority over the student who
is ordered lower.

We propose a simple way of formalizing this tie breaking procedure. Given
a preference profile and a tiebreaker profile, we construct a strict ordering of
all students which is served to break ties.

Let a preference profile R and a tiebreaker profile π be given. Given a
school a ∈ St, we construct two weak (possibly strict) orderings of students,
one based on how students relatively rank school a under R and the other
based on how they absolutely rank school a under R.

18. That is, |{b ∈ S|b Ri a}|= `.
19. That is, if a ∈ St, then we have |{b ∈ S| b Ri|St a}|= `.
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Ordering according to relative rankings : Let �Ba be a weak (possi-
bly strict) ordering of students such that for each i, j ∈ I,

— if student i relatively ranked school a higher than did student j under
R, then i �Ba j and

— if student i and student j have relatively ranked school a the same
under R, then i ∼Ba j.

In the following representation, we identify each position, in the preference
profile, where school a is relatively ranked by at least one student and collect
all students who ranked it at that position in the same indifference class.

R1|St . . . Rn|St school a ranked
1 . . . . .

2 a . . . . ←− � −→
...

... . . .
...

. . . . .

|St| . . . . a ←− � −→

�Ba

{1, . . . , }

...
{, . . . , n}

Ordering according to absolute rankings : Let �Aa be a weak (pos-
sibly strict) ordering of students such that for each i, j ∈ I,

— if student i absolutely ranked school a higher than did student j under
R, then i �Aa j and

— if student i and student j have absolutely ranked school a the same
under R, then i ∼Aa j.

We construct a similar representation as before.

R1 . . . Rn school a ranked
1 . . . . .

2 a . . . . ←− � −→
...

... . . .
...

. . . . .

m . . . . a ←− � −→

�Aa

{1, . . . , }

...
{, . . . , n}
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Let π̂a be a strict ordering of students constructed as follows :
— first, the ties in �Aa are broken according to πa. Let �Aπa be the strict

ordering obtained and
— π̂a is the strict ordering obtained when ties in �Ba are broken according

to �Aπa .

The ordering π̂a is used to break ties in any basic priority of school a. For
each basic priority �a of school a, let �π̂a be the strict priority obtained from
�a by breaking ties in �a according to π̂a. Let �π̂= (�π̂a)a∈S.

We define a function f from the set of problems to the set of strict basic
priority profiles such that for each problem (R,�, π), f(R,�, π) = � in
which � =�π̂ and we have (i) for each school a, π̂a is the strict ordering
obtained as above with the preference profile R and the tiebreaker πa and
(ii) �π̂ is obtained from � by breaking ties according to π̂ .

Remark.
(i) In constructing the French tie breaking for a problem (R,�, π), we

consider the ranking of unacceptable schools under R as if they were accep-
table. This is required to obtain well-defined priority orders because we define
a priority order of a school as a weak order of students in which all students
are acceptable. This is without loss of generality because the mechanisms that
we consider are all individually rational.

(ii) Each student has a first relative choice for each category. Therefore,
in contrast to absolute choices, a student has more than one (exactly T ) first
relative choices. He may also have, more than one second relative choices.
For each of the categories that contain more than one school, he has a second
relative choice.

Observe that when there is only one school per category or there is only
one category, the French tie breaking rule takes the following simplified ver-
sion. Let a priority profile (�, π) and a preference profile R be given. For each
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school a and each indifference class E�a and two students i, j ∈ E�a , student
i has higher priority than student j under the French priority for school a
if and only if either student i has ranked school a higher than student j or
both students have ranked it the same and student i is ordered higher than
student j under πa.

B. French priority stability

After breaking ties according to the French rule, it is natural to study
mechanisms that do not violate the strict priorities obtained.

Let τ = (�, π) be a priority profile and R a preference profile. Let
� = f(R,�, π) be the strict priority profile obtained by breaking ties in
� according to the French rule. We say that a matching µ is French priority
stable or FP-stable for short under (R, τ) if µ is stable under (R,�). We say
that a mechanism ϕ is τ -FP-stable if for each preference profile R, ϕ(R) is
FP-stable under (R, τ).

Proposition 4. (Gale and Shapley, 1962) For each priority profile τ and
each preference profile R, there is an FP-stable matching under (R, τ) that
each student finds at least as good as any other FP-stable matching under
(R, τ).

We refer to the matching identified in this proposition student-optimal
FP-stable matching and the mechanism that selects it for each preference
profile, student-optimal FP-stable matching mechanism.

Remark. An alternative procedure would be to apply the top trading cycles
algorithm after the French tie breaking. Obviously this procedure will violate
FP-stability.
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C. French mechanism : Simplified and generalized

We refer to the student-optimal FP-stable matching mechanism as the
French mechanism. 20 However, we consider two versions. Let τ = (�, π)

be a priority profile.

Simplified French mechanism : Suppose that there is one school per
category or there is only one category. In that case, for each priority profile τ ,
we refer to the French mechanism as simplified French mechanism that
we denote by FM τ .

Generalized French mechanism : Suppose that there is at least two
categories and that each category contains more than one school. In that
case, for each priority profile τ , we refer to the French mechanism as gene-
ralized French mechanism that we denote by gFM τ .

For the rest of the paper, except Section 3.3, we focus on simplified French
mechanisms for tractability consideration. But many results hold for the
generalized case.

D. The French mechanism unifies school choice mechanisms

We say that a mechanism ϕ is a French mechanism if there is a priority
profile τ such that ϕ = FM τ . We show that the mechanisms that we have
previously described are French mechanisms.

DA is a French mechanism : Let a priority profile τ = (�, π) be given.
The DA mechanism DAτ is the French mechanism where the basic priority
profile is �π and the tiebreaker profile is π. Since there is no tie in �π, we
have FM (�π ,π) = DA(�π ,π). Therefore, for any priority profile τ = (�, π), we

20. This mechanism has superior properties over any other FP-stable matching mecha-
nism according to many respects. A second rational for singling out this mechanism is that
it has been a reference in school choice.
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have

DAτ = FM (�π ,π).

Boston is a French mechanism : Let a priority profile τ = (�, π) be
given. The Boston mechanism BM τ is the French mechanism where the
basic priorities are the complete indifference priority profile �CI but the
tiebreaker profile is �π. First, the following lemma shows that FM (�CI ,�π) =

BM (�CI ,�π).

Lemma 2. When schools have complete indifference priorities, the French
mechanism is equivalent to the Boston mechanism.

The proof appears in the Appendix 10. Now, becauseBM (�,π) = BM (�CI ,�π),
for each priority profile τ = (�, π), we have :

BM τ = FM (�CI ,�π).

First Preference First is a French mechanism : Let a priority profile
τ = (�, π) be given. The first preference first mechanism FPF τ is a French
mechanism where each equal preference school a has the basic priority �πa
and each first preference first school a has a complete indifference basic prio-
rity �CIa . Let �̂ denote such a basic priority profile and � = f(R, �̂, π).
In that case, the priorities constructed for each school a in the first prefe-
rence first mechanism coincides with �a. We have FPF (�,π)(R) = DA�(R).
Therefore, for each priority profile τ = (�, π),

FPF τ = FM (�̂,π).

Secure Boston is a French mechanism : The secure Boston mechanism
suggested by Dur et al. (2016) also turns out to be a French mechanism. Let
a priority profile τ = (�, π) be given. For each school a, let qga be the number
of students who have guaranteed seats at that school. Let �IatB be the basic
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priority profile in which for each school a, ties occur only at the bottom and
the strict part concerns the qga students who have guaranteed seat at school
a and ordered according to �πa . 21

Example 3. Illustrating IatB basic priority

Let (�, π) be priority profile such that students in {1, . . . , qga} have guaranteed
seat at school a and �πa : 1 . . . qga . . .. Then, we have :

�IatBa

1
...
qga

qga + 1, . . . ,m.

Then, for each priority profile τ = (�, π), we have the following equiva-
lence :

sBM τ = FM (�IatB ,π).

The following table summarizes these equivalences.

21. Ehlers and Westkamp (2011) studied a more general but similar class of priority or-
ders and refer to them as indifference at the bottom priority structures. The only difference
is that the strict part can be any subset of students.
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Table 2.1 – French mechanism unifying school choice mechanisms

French mechanism/
version Equivalent mechanisms Priority*

simplified DA A
simplified Boston B
simplified First Preference First A or B
simplified Secure Boston C

(*) Indicates the modified priority of each school under FM :
A : strict priority

B : complete indifference priority
C : IatB priority.

2.3 Results

We study the French mechanism according to two different perspectives.
In ex-post perspective students know the exogenous tiebreakers. In ex-ante
perspective, they do not know this information.

2.3.1 Ex-post perspective

The classic modeling choice in school choice is the complete information
environment. We maintain the same modeling choice and study all FP-stable
matching mechanisms.

We know from the previous section that under strict basic priorities the
French mechanism and DA are equivalent. It is well-known that in this case,
DA may not be efficient. Ergin (2002) characterizes the class of priorities that
induce efficient DA. Therefore, the French mechanism may not be efficient
for some strict priorities. It is not also difficult to construct examples of weak
basic priorities for which any FP-stable matching mechanism is not efficient
under the reported preferences.
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For strict basic priorities the French mechanism, equivalent to DA, is
strategy-proof while any other FP-stable matching mechanism is not. This
result places the French mechanism at the frontier of least manipulable me-
chanisms in the FP-stable matching mechanisms. However, if there are some
ties in the basic priorities, the French mechanism may not be strategy-proof.

Example 4. Manipulability of the French mechanism
Consider an example of four students and three schools a, b and c where

each school has a capacity of one but school c has a capacity of two. Let a
priority profile τ = (�, π) such that πa = πb = πc and a preference profile R
be specified as below. Let � = f(R,�, π).

�a �b �c πa

1, 2 1, 2 3, 4 1

3, 4 3, 4 1, 2 2

3

4

R1 R2 R3 R4

c a c c

a b a b

b c b a

�a �b �c
2 2 3

1 1 4

3 4 1

4 3 2

We have

FM τ (R) = DA�(R) =

(
1 2 3 4

b a c c

)
.

Student 1 is assigned to his third choice school. Suppose now that he reports
the preference relation Ra

1 in which he ranks school a first. Let Ra = (Ra
1, R−1)

and �′ = f(Ra,�, π). Because �′a : 1 2 3 4, we have FM τ
1 (Ra) = a. Since

student 1 prefers school a to school b, he manipulates FM τ at R via Ra
1.

The fact that the French mechanism is the least manipulable mechanism
among FP-stable matching mechanisms for strict basic priorities, can be
extended, with no surprise, to any weak basic priority.

Proposition 5. For any priority profile τ ,
(i) the French mechanism FM τ is equally or less manipulable than any
τ -FP-stable matching mechanism and
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(ii) the French mechanism FM τ is equally or strongly less manipulable
than the school optimal τ -FP-stable matching mechanism.

The proof of part (i) appears in Appendix 11 and part (ii) in Appendix
13. Because the French mechanism is manipulable for some priorities, this
proposition has the implication that it is not possible to design FP-stable
matching mechanisms which are strategy-proof.

Corollary 4. There is no class of mechanisms (ϕτ )τ indexed by priority
profiles such that for each priority profile τ , ϕτ is strategy-proof and τ -FP-
stable.

We continue by establishing that any agent can replicate his truthful
outcome via a simple strategy.

Lemma 3. Let τ be a priority profile, R a preference profile and Ra
i a pre-

ference relation in which student i ranks school a first. If FM τ
i (R) = a, then

FM τ
i (Ra

i , R−i) = a.

The proof appears in Appendix 12. While the French mechanism is ma-
nipulable, there is a limit to successfully manipulating it. In any instance,
it is potentially manipulable by only students who obtained less than their
second choice schools.

Lemma 4. No student can manipulate the French mechanism or the Boston
mechanism to obtain a seat at his true first choice.

This lemma is actually a corollary of a forthcoming proposition (Propo-
sition 9). We defer its proof to the corollary in question. Turning to strategic
accessibility, the French mechanism also remains the least strategically ac-
cessible mechanism among FP-stable matching mechanisms.

Proposition 6. For any priority profile τ ,
(i) the French mechanism FM τ is equally or less strategically accessible

than any τ -FP-stable matching mechanism and
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(ii) the French mechanism FM τ is equally or strongly less strategically
accessible than the school-optimal τ -FP-stable matching mechanism.

The proof appears in Appendix 13. We next provide an example in which
the French mechanism is strongly less manipulable and less strategically ac-
cessible than the school optimal FP-stable matching mechanism.

Example 5. Consider an example of three students and three schools and let
a priority profile τ = (�, π) such that πa = πb = πc : 1 2 3 and a preference
profile R be specified as below.

�a �b �c
3 1 2

1, 2 2, 3 1, 3

R1 R2 R3

a b c

b a b

c c a

Then the outcomes for R of the French FM τ and the school optimal τ -FP-
stable matching mechanism are respectively(

1 2 3

a b c

)
and

(
1 2 3

b c a

)
.

Therefore, the French mechanism is not manipulable under R while every
student can manipulate the school-optimal version. No school is strategically
accessible under R via the French mechanism. But every school is strategically
accessible by at least one student via the school-optimal τ -FP-stable matching
mechanism.

We next compare the French mechanism to known school choice mecha-
nisms. First, DA is evidently less manipulable than the French mechanism
(or both mechansims are equally manipulable). But compared to other ma-
nipulable mechanisms like the Boston mechanism, the French mechanism
performs better. For some priority profiles, the Boston mechanism is strategy-
proof. In those cases, DA and Boston are equivalent (Kumano, 2013).

Theorem 4. Let τ be a priority profile in which the basic priority of each
equal preference school is strict. Then the French mechanism FM τ is equally
or less manipulable than the first preference first mechanism FPF τ .
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The proof of the theorem appears in Appendix 14. Since the Boston me-
chanism is a first preference first mechanism in which every school is a first
preference first school, we have the following corollary.

Corollary 5. For each priority profile τ , the French mechanism FM τ is
equally or less manipulable than the Boston mechanism BM τ .

In the following example, the Boston mechanism is manipulable but the
French mechanism is not. Let τ = (�, π) be such that πa = πb = πc : 1 2 3

and the basic priority profile is specified as follows :

�a �b �c
1, 2 3 2, 3

3 1, 2 1

Let a preference profile R be such that for each i = 1, 2, 3, Ri : a b c. Then
FM τ

1 (R) = a, FM τ
2 (R) = c and FM τ

3 (R) = b. Both student 1 obtained his
first choice and student 3 his first choice without object a. Therefore, they
cannot manipulate FM τ at R. In addition, student 2 cannot obtain neither
a nor b with any strategy even if it involves top ranking them. Therefore, R
is not vulnerable under FM τ . Now, BM τ (R) = FM τ (R) and if student 2

ranks school b first then he is assigned to it. Therefore, R is vulnerable under
BM τ .

While the ranking of mechanisms in Corollary 5 is based on inclusion of
vulnerable preference profiles, the result cannot be strengthened by further
considering the inclusion of manipulating agents.

Example 6. French is not strongly less manipulable than Boston
Consider an example of a set I = {1, 2, 3} of three students and a set S =

{a, b, c} of three schools each with capacity one. A priority profile τ = (�, π)

such that πa = πb = πc and a preference profile R are specified in the tables
below :
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�a �b �c πa

1, 2 3 2 1

3 1 3 2

2 1 3

R1 R2 R3

b a a

a b b

c c c

Then, we have

FM τ (R) =

(
1 2 3

c a b

)
and BM τ (R) =

(
1 2 3

b a c

)
.

Suppose that student 1 reports the preference relation R′1 : a b c under FM τ .
Then we have FM τ

1 (R′1, R−1) = a. Therefore, student 1 manipulates FM τ

at R via R′1 but cannot manipulate BM τ at R because he obtained his first
choice. In addition, student 3 can manipulate the Boston mechanism BM τ

at R but cannot manipulate the French mechanism FM τ at R.

Because the French mechanism is less manipulable than the Boston me-
chanism, whenever the latter is strategy-proof, so is the first.

Corollary 6. The set of priority profiles for which the Boston mechanism is
strategy-proof is a proper subset of the ones for which the French mechanism
is strategy-proof.

This corollary further shows how the French mechanism is less manipu-
lable than the Boston mechanism. Finally, we compare the French mechanism
to the Boston mechanism from the viewpoint of strategic accessibility.

Proposition 7. For each priority profile τ , the French mechanism FM τ is
equally or less strategically accessible than the Boston mechanism BM τ .

This proposition is actually the corollary of a forthcoming proposition.
For this reason, we defer the proof to the corollary in question. Comparing
mechanisms by their vulnerability to manipulation does not point to the
set of schools towards which manipulations are centred around. We first ask
whether there are FP-stable matching mechanisms in which selective schools
can achieve the goal of recruiting a qualified student body. The idea of ba-
sing admissions to selective schools on academic files justifies the requirement
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that access to this kind of schools be prevented from strategic misrepresen-
tation. First, we show as a lemma that strategic accessibility as we define it
is effective via the French mechanism.

Lemma 5. If a school is strategically accessible by a student via the French
mechanism, then it is also strategically accessible when it is the best school
that he can obtain via manipulation.

The proof of the lemma appears in Appendix 18. Fortunately, via the
French mechanism, selective schools are spared from a possible bias of the
mechanism due to its manipulability. A manipulable mechanism can bias the
selection goal of selective schools by assigning non qualified students to these
schools simply because these students are much strategically sophisticated.
Of course, the strategic behavior of students towards non-selective schools
can affect the student body at selective schools.

Theorem 5. For each priority profile τ ,
(i) no selective school is strategically accessible via the French mechanism

FM τ and
(ii) no equal preference school is strategically accessible via the first pre-

ference first mechanism FPF τ .

The proof appears in Appendix 15 in which it is a corollary of the following
lemma and the fact that the first preference first mechanism is a French
mechanism.

Lemma 6. No student can manipulate the French mechanism to obtain a
seat at a school where he is not in tie with any other student.

The proof appears in Appendix 15. This lemma is precise about the set of
students who can engage in manipulation and towards which schools under
the French mechanism. Only students in tie at a given school can manipulate
the French mechanism to obtain a seat at that school. Motivated by this
observation we ask the natural question of how the size of indifference classes
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affects the incentive properties of the French mechanism. From the lemma,
it might be tempting to conclude that when we transform some ties into
strict relations, the induced French mechanism will be less manipulation than
the initial one. However, a careful look reveals that this conclusion can be
misleading.

Example 7. Inconsistent splits can be detrimental
Consider an example of three students I = {1, 2, 3} and three schools S =

{a, b, c} each with a capacity of one. Let τ = (�, π) be such that πa = πb =

πc : 1 2 3 and another basic priority �′b of school b are specified as below along
with a preference profile R. Let τ ′ = (�′, π) where �b is replaced by �′b in �.

�a �b �c �′b
1, 2 3 1, 3 3

3 1, 2 2 2

1

R1 R2 R3

b b c

c c b

a a a

Then,

FM τ (R) =

(
1 2 3

b a c

)
and FM τ ′(R) =

(
1 2 3

a b c

)
.

Students 1 and 3 obtained their first choices under FM τ (R) and therefore
cannot manipulate FM τ under R. Furthermore, by ranking school c first,
student 2 cannot get a seat there because 3 �c 2. Therefore, student 2 cannot
manipulate FM τ under R.

However, by ranking school c first student 1 is assigned a seat there because
1 �πc 3. Student 1 can manipulate FM τ ′ under R.

In this example, we split the indifference class in �b inconsistently with
πb, that is, student 1 has higher priority than student 2 under πb but 2 �′b 1.
However, even if we split the indifference classes consistently with π the pro-
blem remains.
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Example 8. Consistent split does not entail comparing mechanisms
by vulnerability to manipulation

Consider a set I = {1, 2, 3, 4} of students and a set S = {a, b, c, d} of
schools each with a capacity of one. A preference profile R and a priority
profile τ = (�, π) such that πa = πb = πc : 1 2 3 4 are specified below :

�a �b �c �d
1, 2 3 4 1, 4

3, 4 1, 2, 4 2 3

1 2

3

R1 R2 R3 R4

c c c b

b b a c

d a b d

a d d a

Then we have

FM τ (R) =

(
1 2 3 4

d c a b

)
.

Consider the following basic priority �′b for school b in which we split the
indifference class consistently with πb and let �′= (�−b,�′b) and τ ′ = (�′, π).

�′b
3

1, 2

4

Then we have

FM τ ′(R) =

(
1 2 3 4

d a b c

)
.

Let Rb
2 be a preference relation n which student 2 ranks school b first. Then,

we have FM τ ′
2 (Rb

2, R−2) = b. Therefore, student 2 manipulates FM τ ′ under
R.

Next, each of students 2, 3 and 4 obtains at least their second choices
under FM τ (R) and, by Lemma 4, cannot manipulate FM τ under R. Fur-
thermore, student 1 cannot manipulate FM τ under R. Indeed, student 1 can
manipulate FM τ only to obtain a seat at school b. Suppose that he reports the
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preference relation Rb
1. Let µ = FM τ (Rb

1, R−1) and suppose that µ(1) = b.
Then, µ(4) = c. Because 2 �a 3, µ(2) = a. Therefore, because 3 �b 1, we
have µ(3) = b. Contradicting the assumption that µ(1) = b. Therefore, the
preference profile R is not vulnerable under FM τ .

This means that we cannot compare French mechanisms induced by a
priority profile and its consistent split via the « less manipulability » mea-
sure. A split consists of transforming some ties into strict relations without
reversing the existing strict relations in the basic priorities. A basic priority
order �′a is a split of �a if for each i, j ∈ I, i �a j implies i �′a j. 22 A
basic priority order �′a is a πa-consistent split of the priority order �a if
�′πa=�πa .

23 A priority order �′a is a minimal πa-consistent isolation of
student i in the priority order �a if

(1) �′a is a πa-consistent split of �a,
(2) student i is in a tie with another student in �a but not in �′a and
(3) we have �′a |I1=�a |I1 and �′a |I2=�a |I2 ,

where I1 = {j ∈ I|j �πa i} and I2 = {j ∈ I|i �πa j}.
We say that (�′, π) consists of one minimal consistent isolation in

(�, π) if there is a school a such that �′a is a minimal πa-consistent isolation
of some student in �a and for each school b 6= a, �′b=�b.

Example 9. Illustrating minimal consistent isolation
Consider an example of six students and a tiebreaker πa : 1 2 3 4 5 6 for

school a.

�a
1

2, 3, 4, 5, 6
⇒

�′a
1

2, 3

4

5, 6

22. A priority order �′a is a split of �a if �′a ⊂�a.
23. The priority order �′a is a πa-consistent split of the priority order �a if �πa⊂�′a⊂�a.
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The basic priority order �′a is a πa-consistent isolation of student 4 because
in �a student 4 is in a tie but not in �′a and the broken ties do not reverse
the order πa.

While consistent splits do not induce less manipulable mechanisms in
the set of all preference profiles, we would like to know whether we could
recover the comparison in real-world school choice where preferences might
be correlated. We consider the domain of correlated preferences and obtain
a positive result.

Proposition 8. Let τ ′ be a consistent split of τ . Then, in the domain of
correlated preferences, the French mechanism FM τ ′ is equally or strongly
less manipulable than the French mechanism FM τ .

The proof appears in Appendix 16. We continue with a definition and a
lemma.

Definition 1. Given a priority profile (�, π) and two distinct students i and
j, a tie i ∼b j with student i is quasi-cyclic if there is a third (distinct) student
k, a second distinct school a, a third school c distinct from b and two subsets
Ia and Ib of students such that

(1) k �πa i and either
(1-a) student i has higher priority than student j under πb or
(1-b) there is a subset I ′c ⊂ I \ {i, j} such that |Ic|= qc, I ′c and Ib are

disjoint, I ′c and Ia ∪ {k} are disjoint if c 6= a and I ′c = Ia ∪ {k} if
c = a and for each ` ∈ I ′c, ` �πc j.

and,
(2) the subsets Ia, Ib ⊂ I \{i, j, k} are disjoint and such that |Ia|= qa−1,
|Ib|= qb − 1, for each ` ∈ Ia, ` �πa i and for each ` ∈ Ib, ` �b j.

We say that a tie with a student in a priority structure is acyclic if it has no
quasi-cycle.

Then, the lemma in question is stated below.
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Lemma 7. Given a priority structure τ = (�, π), the following are equiva-
lent :

(1) the French mechanism FM τ is strategy-proof
(2) every tie with any student in � is acyclic.

The proof of the lemma appears in the Appendix 17. When the basic
priority profile is a complete indifference priority profile, the French mecha-
nism is equivalent to the Boston mechanism. In that case, the conditions (1),
(1-a), (1-b) and (2) of Definition 1 concern the tiebreaker profile. If (1-a)
holds, then we have k πa i and i πb j. If (1-a) does not hold, then (1-b)
holds and j πb i and there is a student ` such that ` πc j. In any case, there
are three students i, j and k and two schools a and b such that k πa j and
j πb i. This is precisely the quasi-cycle condition identified by Kumano (2013)
that characterizes manipulable Boston mechanisms. 24 Therefore, the lemma
above generalizes the main characterization of Kumano (2013).

We show in an example that inconsistent splits can also be detrimental
to comparing mechanisms by the « strategic accessibility » measure.

Example 10. Inconsistent split can be detrimental to comparing
mechanisms

Consider a set I = {1, 2, 3} of students, a set S = {a, b, c} of schools each
with a capacity of one. A preference profile R, priority profile (�, π) and a
split �′a of �a that is not consistent with πa are specified below :

�a �b �c
1, 3 1, 2 2

2 3 1

3

�′a πa

3 1

1 3

2 2

R1 R2 R3

a b a

b a b

c c c

where πb = πc = πa. The split of the indifference class at �a is not consistent
with πa.

24. Chen (2014) shows that this condition is equivalent to the one where each pair of
two schools have join capacity that exceeds the number of students.
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Consider the tie 1 ∼b 2. Because 1 �πa 3 and 1 �c 3, there is no student
other than student 1 and 2 such that condition (1) of Definition 1 is satisfied
with student 1. School b is not strategically accessible via FM τ . Let Rb

1 be a
preference relation in which student 1 ranks school b first and Rb = (Rb

1, R−1).
Now we have FM τ ′

1 (R) = c and FM τ ′
1 (Rb) = b, that is, school b is strategi-

cally accessible by student 1 via FM τ ′ but not via FM τ .

We are able to rank mechanisms induced by priority profiles and consistent
splits.

Theorem 6. Let τ ′ be a consistent split of τ . Then, the French mechanism
FM τ ′ is equally or less strategically accessible than the French mechanism
FM τ .

The proof of the theorem appears in Appendix 19. The following result
is a corollary of the above theorem which is also nothing but Proposition 7.

Corollary 7. (Proposition 7) Let τ be a priority profile. Then, the French
mechanism FM τ is less strategically accessible than the Boston mechanism
BM τ or both mechanisms are equally strategically accessible.

The proof appears in Appendix 20. By splitting all indifference classes,
we evidently obtain a strategy-proof mechanism which is trivially less stra-
tegically accessible. However, we can derive nested ranked mechanisms by
isolating one agent at each step until we reach the strategy-proof mechanism
induced by the strict priority.

Theorem 7. Let τ = (�, π) be a priority profile. If the French mechanism
FM τ is strategically accessible, then there is a sequence {τ t}Tt=0 of priority
profiles such that

(i) τ 0 = τ ,
(ii) FM τT is not strategically accessible and
(iii) for each t = 0, . . . , T − 1, τ t+1 consists of one minimal consistent

isolation in τ t and the French mechanism FM τ t+1 is less strategically
accessible than the French mechanism FM τ t.
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The proof appears in Appendix 21. These results concern ex-post pers-
pective. We consider an ex-ante perspective in which we compare the French
mechanism to DA.

2.3.2 Ex-ante perspective

We consider now an ex-ante perspective in which no student knows the
tiebreakers. In practice, they are randomly determined. We maintain the
general model in which each school has its own tiebreaker. In this framework,
a mechanism selects a lottery over matchings. We next introduce relevant
notions.

We assume that there is a null object denoted ∅ whose capacity is q∅ = n

and that an unmatched student is matched to the null object and vice versa.
A probabilistic assignment matrix is a n× (m+ 1) matrix p = (pia)i∈I,a∈S′ in
which S ′ = S ∪{∅} and pia represents the probability that student i either is
assigned to school a if a ∈ S or is unassigned if a = ∅. A probabilistic assign-
ment is feasible if for each i ∈ I and each a ∈ S ′, we have (i) pia ∈ [0, 1], (ii)∑

i∈I pia ≤ qa and (iii)
∑

b∈S′ pib = 1. According to a generalization of Bir-
khoff (1946) and Von Neumann (1953) theorem (Kojima and Manea, 2010b),
any feasible probabilistic assignment is a convex combination of determinis-
tic assignments. Therefore, a probabilistic assignment is a random matching
defined as probability distribution over the set M of matchings. A random
mechanism is a function that assigns to each preference profile a random
matching.

We redefine the random counterpart of our mechanisms. Let Ω denote
the set of all tiebreaker profiles.

Random deferred acceptance :
Given a weak basic priority profile �, each school a draws a tiebreaker πa

with the uniform probability
1

n!
. For each preference profile R, the determi-

nistic matching via DA is DA(�,π)(R). Therefore, the outcome of the random
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version of DA which we denote by rDA� for a preference profile R is

rDA�(R) =
∑
π∈Ω

1

(n!)m
DA(�,π)(R).

Random Boston mechanism :
Given a weak basic priority profile �, each school a draws a tiebreaker

πa with the uniform probability
1

n!
. For each preference profile R, the deter-

ministic matching via the Boston mechanism is BM (�,π)(R). Therefore, the
outcome of the random version of the Boston mechanism which de denote by
rBM� for the preference profile R is

rBM�(R) =
∑
π∈Ω

1

(n!)m
BM (�,π)(R).

Random French mechanism :
Given a weak basic priority profile �, each school a draws a tiebreaker

πa with the uniform probability
1

n!
. For each preference profile R, the deter-

ministic matching via the French mechanism is FM (�,π)(R). Therefore, the
outcome of the random version of the French mechanism which we denote
by rFM� for a preference profile R is

rFM�(R) =
∑
π∈Ω

1

(n!)m
FM (�,π)(R).

We first derive a property shared by the Boston mechanism and the
French mechanism. No student can increase his chances of obtaining his first
choices by simply reshuffling his bottom choices.

Proposition 9. Let R be a preference profile and � a basic priority profile.
Let R′i be student i’s strategy that differs from Ri only on the ranking of the
last m − k choices. Let p = rFM�(R) and p′ = rFM�(R′i, R−i). Then, for
each school a ranked in the first k choices under Ri, pia = p′ia.

The proof appears in Appendix 22. Since the Boston mechanism is a
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French mechanism, the above proposition also holds for the Boston mecha-
nism. As a corollary, no student can manipulate to obtain his first true choice.

Corollary 8. (Lemma 4) In a complete information and when the tiebreaker
profile is known to students, no student can manipulate the French mechanism
or the Boston mechanism to obtain a seat at his first true choice.

We now develop an environment to compare the French mechanism to DA.
The following model by Abdulkadiroğlu et al. (2011), ACY for short, serves
as a basis. They consider an environment in which students have correlated
ordinal preferences but differentiated cardinal preferences and schools have
complete indifference basic priorities. Correlated ordinal preferences reflects
real-world school choice. First, students form their preferences about schools
based on criteria that range from job opportunities, safety to academic re-
putation. While perfect correlation of preferences may be a very demanding
assumption, it is a good approximation and a necessary assumption to gene-
rate a clear result. Tractability consideration is also a secondary argument.
If correlated ordinal preferences is motivated from real-world school choice,
complete indifferences of school priorities seems less common. In addition,
when there are no priorities, the very nature of DA, which is respecting prio-
rities, is not being put to test. Troyan (2012) shows that the main result of
ACY is not robust to introducing priorities.

In this paper, we broaden the environment of ACY by considering cor-
related priorities, that is, schools have the same priorities. Priorities derived
form general exam scores is a case in a point. The environment of ACY, in
which schools have complete indifference priorities, emerges as a special case.

Let (R,�) be a correlated economy. Suppose that each school a hasK ≥ 1

indifference classes under �a and let I` be the set of students in the `’s indif-
ference class and n` = |I`|. We assume that

∑
a∈A qa ≥ n. Let R∗ : a1 . . . am

denote the common ordinal preference (each school is acceptable). On the
other hand, students may have different cardinal utilities. Each student has
a vNM utility values v = (v1, . . . , vm) about schools drawn from a finite
set V := {(v1, . . . , vm) ∈ [0, 1]m|v1 > . . . > vm}. We further suppose that
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no student know the cardinal utilities of the other students. For each vNM
utility values v of student i and a random assignment p, his expected uti-
lity is

∑
a∈S′ vapia. The equilibrium notions is a Bayesian Nash equilibrium

in undominated strategies for the French mechanism and weakly dominant
strategies for DA. Because students are fully identified by their types (indif-
ference classes and utility values), we are interested in symmetric equilibria
in which each type of student plays the same strategy. Let f`(v) denote the
probability that a student in I` draws utility values v from V .

Let ∆(R) denote the set of probability distributions over the set R of
preference relations. A strategy for a student in I` is a function σ` : V →
∆(R).

Theorem 8. In any correlated economy, any type of student finds the out-
come of any symmetric equilibrium of the French mechanism at least as good
as the outcome of DA with symmetric tie breaking.

The proof appears in Appendix 24. The proof of the theorem crucially
relies on a lemma stated without proof in ACY for the case where schools
have no basic priorities. It turns out that the proof is not trivial. Given two
lotteries p and p′, we say that p stochastically dominates p′ under Ri if for
each school a we have ∑

b:bRia

pib ≥
∑
b:bRia

p′ib.

In that case, we write that p Rsd
i p′. It is well-known that p Rsd

i p′ if and only if
for each vNM utility values v,

∑
a vapia ≥

∑
a vap

′
ia. For each ` ∈ {1, . . . , K},

let

t` := min{t|
t∑

k=1

qak ≥ n1 + . . .+ n`}

be the index of the marginal school for students in I`. If students report their
preferences truthfully, no student in I` is assigned to a school that is ranked
lower that school with positive probability. The lemma in question is the
following.
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Lemma 8. Under the French mechanism rFM�,
(a) any strategy in which a student in I` ranks any school in {at`+1, . . . , am}

in the first t` rankings is weakly dominated and
(b) any strategy in which a student in I` ranks any school in {at` , . . . , am}

in the first t` − 1 rankings is weakly dominated.

The proof appears in Appendix 23. By Lemma 2, with complete indif-
ference priorities, the French mechanism reduces to the Boston mechanism
and Theorem 8 is nothing but ACY’s main result stated as a corollary here :

Corollary 9 (ACY). In any correlated economy in which each school has a
complete indifference basic priority, any type of student finds the outcome of
any symmetric equilibrium of the Boston mechanism at least as good as the
outcome of DA with symmetric tie breaking.

When school have priorities, the French mechanism makes a difference in
that the Boston mechanism no longer systematically Pareto dominates DA
nor does the Boston mechanism systematically Pareto dominate the French
mechanism. 25

Example 11. Consider an example of three students 1, 2 and 3 and three
schools a, b and c each with a capacity of one. The common basic priority is

�a
1, 2

3

The vectors of cardinal utilities are given as follows :

v1 v2 v3

a 1 1 1

b 0.3 0.3 0.5

c 0 0 0

25. See Troyan (2012) for a more general result.
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We suppose that there is complete information. 26 Under the French mecha-
nism and the Boston mechanism, it is a weakly dominant strategy for student
1 and 2 to report their preferences truthfully. Therefore, under the Boston me-
chanism it is a best response for student 3 to report a preference in which
he ranks b first. Consequently, the assignments under the French mechanism,
the Boston mechanism and DA are as follows

FM or DA BM
a b c a b c

1 1/2 1/2 0 1/2 0 1/2

2 1/2 1/2 0 1/2 0 1/2

3 0 0 1 0 1 0

At the equilibrium of the French mechanism or DA, both student 1 and 2

have expected utilities EU j
i = 1/2(1) + 1/2(0.4) + 0(0) = 0.7, j = FM,DA

and i = 1, 2. At the equilibrium of the Boston mechanism, both student 1 and
2 have expected utilities EUBM

i = 1/2(1) + 0(0.4) + 1/2(0) = 0.5, i = 1, 2.
Therefore, EUBM

i < EUDA
i , i = 1, 2 and the equilibrium outcome of the

Boston mechanism does not Pareto dominate the dominant strategy outcome
of DA.

In addition, the expected utilities of student 3 are EUFM
3 = 0 and EUBM

3 =

0.5. While student 3 prefers the equilibrium outcome of the Boston mecha-
nism to the equilibrium outcome of French mechanism, student 1 and 2 prefer
the equilibrium outcome of French mechanism to the equilibrium outcome of
the Boston mechanism. Therefore, the French mechanism and the Boston
mechanism cannot be Pareto ranked at these equilibria.

2.3.3 Generalized French mechanism

We consider now the generalized French mechanism for which we gene-
ralize some important results. The proof of each of these results is almost
verbatim the proof of the result corresponding to the simplified case.

26. This is a particular case where f1(v1) = 1 and f2(v3) = 1.
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Theorem (Theorem 4 bis and Corollary 5 bis). Let τ be a priority profile
such that the basic priority of each equal priority school is strict. Then the
generalized French mechanism gFM τ is equally or less manipulable than the
first preference first mechanism FPF τ .

Theorem (Theorem 5 (i) bis). No selective school is strategically accessible
via the generalized French mechanism.

Proposition (Proposition 8 bis). Let τ ′ be a consistent split of τ . In the
domain of correlated preferences the generalized French mechanism gFM τ ′

is equally or strongly less manipulable than the generalized French mechanism
gFM τ .

2.4 Conclusion

School admissions mechanisms remain one of the education policies that
the public pays much attention. The DA and the Boston mechanism have
dominated the literature (on school choice). In particular, in a model with
ties in school priorities, no other mechanism that deals with these ties other
than breaking them randomly has been explored. Motivated by the French
university admissions system, this paper presents a novel way that relies on
student preferences to break ties. Clearly, this procedure destroys the incen-
tive to truthfully reveal preferences. But the incentive is reduced compared
to the Boston mechanism.

Because it elicits cardinal preferences, by allowing students to influence
how ties are broken, in an environment of correlated economies its equilibrium
outcomes Pareto improve upon the equilibrium outcome of DA. Because se-
lective schools rely on a manipulable mechanism to recruit their student
body, the later could be made up of sophisticated students, probably with
lower academic files. However, we show that under the French mechanism,
no student could end up at such a school via manipulation. We further in-
vestigate how the size of indifference classes affects the incentive property
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of the mechanism. By transforming some ties into strict relations, the cor-
responding mechanism becomes less strategically accessible. Although this
reduction operation does not induce less manipulable mechanisms in gene-
ral, in the particular domain of correlated preferences it does.

Our study is the first, to our knowledge, that studies the French university
admissions system ; in particular, the comparison of its mechanism to known
school choice mechanisms. Our study enriches the school choice literature by
adding a mechanism that balances trade-offs better than do DA or the Boston
mechanism : It is less manipulable than the Boston mechanism in ex-post
perspective and more efficient than DA in ex-ante perspective and correlated
economies. However, future work is needed to evaluate these advantages via
experiments where students face real incentives.
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Chapitre 3

Strategy-proof preference
Aggregation : Augmented Serial
Rules

3.1 Introduction

In the academic job market, departments often face the difficult situation
in which they must devise a strategy for offering an open position without
knowing ex-ante whether any given applicant would accept it. The usual
practice is to order the applicants in order of collective preferences and make
offers accordingly. In this paper, we study rules for combining (aggregating)
the individual preferences of the faculty members into a collective ordering.

In the example described, a faculty member may find that it is preferable
to misrepresent his preferences and arrive at a collective ordering that he
finds superior to the one that would have resulted from sincere report. To
avoid this incentive issue, we are focused on strategy-proof aggregation.

We are also interested in fair aggregation rules. Two notions of fairness are
probably appealing. From the agents’ perspective, anonymity is a fairness
requirement that a rule be invariant up to renaming the agents. Second, when
the alternatives are considered for a fairness judgement, neutrality requires
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that a rule be invariant to how they are labelled. Neutrality promotes non-
discrimination among applicants based on their names. In practice, such a
discrimination is prohibited by law (as the employment discrimination law
in the United States).

Anonymity is a compelling property when the agent’s opinions have equal
weight. However, it is not uncommon to encounter situations that involve
agents with different decision powers as in the U.N security council. In the
job hiring, for example, the opinion of some faculty members may be weighed
higher, the members who are specialized in the open position being a case in
a point. Nevertheless, some minimal fairness with respect to the agents is still
to require. For example, it is arguably not desirable to completely exclude an
agent from the decision process. For this reason, we formulate a no dummy
requirement, that every agent’s opinion matters (every agent has an impact
on the collective choice in at least one preference profile).

We introduce aggregation rules called augmented serial rules and study
their robustness to preference misrepresentations. Each of these rules is pa-
rametrized by a list of agents (with possible repetition) and a committee
voting rule. For a given preference profile, the collective ordering is de-
termined as follows : The first agent’s most preferred alternative becomes
the top-ranked alternative in the collective ordering, the second agent’s most
preferred alternative (among those remaining) becomes the second-ranked
alternative and so on until two alternatives remain — which are then ranked
by the committee voting rule.

Strategy-proof preference aggregation involves a technical difficulty about
how to model individual preferences over collective orderings. Suppose that
a lie induces a collective ordering that differs from the one induced by truth-
telling. To formalize the robustness of an aggregation rule to preference mis-
representations, we need to extend the agent’s preferences over the induced
collective orderings. We formulate a refinement over extensions and look for
strategy-proof rules under this refinement. Many of the extensions studied
in the literature are refinements. For example, Bossert and Storcken (1992)
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first propose a formalisation (extension) based on Kemeny distance. Un-
fortunately, this type of extension makes it very difficult to find appealing
strategy-proof rules. Bossert and Sprumont (2014) consider the minimal re-
finement. They show that this extension yields a rich class of possibilities.
Unfortunately, this extension is incomplete. A third extension, the lexicogra-
phic extension, which is also well studied in the literature is also a refinement.

We first show that no aggregation rules, other than dictatorial rules, are
neutral and strategy-proof under every refinement. However, interesting ag-
gregation rules emerge under the lexicographic extension. More precisely,
augmented serial rules are succinctly characterized by strategy-proofness
and neutrality. An important subfamily of these rules further satisfy the no
dummy requirement. A small class of these rules are further strategy-proof
under Kemeny extension.

Our results are related to object allocation problem, the following allo-
cation rules called serial dictatorships have received a considerable attention
because they are the simplest strategy-proof and efficient rules « par ex-
cellence » (Hylland and Zeckhauser, 1979; Svensson, 1999) : Agents move
in turn, according to a given ordering, to pick their favorite objects from
among those that remain. The augmented serial rules are the preference ag-
gregation’s natural counterparts. While in serial dictatorship rules, agents
who move earlier get their best objects, this feature is not present in a broad
class of augmented serial rules. Suppose that the faculty members arrived
at a given collective ordering of the applicants. The appointee is the first
applicant (in the ordering) who is available for an offer. Because there is un-
certainty regarding applicants who could be available, the appointee is not
necessary the first ranked applicant. Therefore, there is no certain advantage
for a faculty member to suggest the top candidate, unless this member has
suggested the whole collective ordering.

In other related work, Harless (2016) extends the analysis of Bossert and
Sprumont (2014) to solidarity properties ; and Athanasoglou (2016) finds the
betweenness extension weak and argues for the Kemeny extension. In a recent
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paper, Athanasoglou (2017) introduces a rule inspired from an important rule
studied by Bossert and Sprumont (2014) and formulates interesting solidarity
properties.

The remainder of the paper is organized as follows. We present the formal
model in Section 2 and the results in Section 3. We conclude in Section 4.
We defer long proofs to the Appendix.

3.2 Model for preference aggregation and pro-
perties

There is a finite set A of m ≥ 2 alternatives and a finite set N of n ≥ 2

agents. Let R denote the set of strict orderings over A. Each agent i has a
strict preference relation Ri ∈ R over A. We interchangeably write a Ri b

and (a, b) ∈ Ri to denote that agent i finds alternative a at least as good as
alternative b. Let Pi denote the asymmetric part of Ri. An element RN ∈ RN

is a preference profile. We write R instead of RN and R−i instead of RN\i.
For each i ∈ N , each Ri ∈ R and each non empty subset B ⊂ A, let
maxBRi denote the alternative ranked first by Ri in B. We often denote an
ordering by listing the alternatives such that from left to right they are listed
in decreasing order. By convention, a preference relation will be indicated by
subscript and a social ordering by a superscript. A(n aggregation) rule is a
function f : RN → R.

We next formulate properties. First, neutrality is a fairness property that
is concerned with alternatives. It requires that a rule be invariant to how
alternatives are labelled. Let π : A → A be a permutation of A. For each
R0 ∈ R, let πR0 ∈ R be the ordering defined as follows : for each {a, b} ⊂
A, π(a) πR0 π(b) if and only if a R0 b. For each R ∈ RN , let πR :=

(πR1, . . . , πRn).

Neutrality. For each R ∈ RN and each permutation π of A,

f(πR) = πf(R).
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With regard to agents, the minimal requirement is that none of them
be ignored in the decision process. The following requirement is a fairness
property that every agent’s opinion (preference) matters.

No dummy. For each agent i ∈ N , there is R ∈ RN and R′i ∈ R such that

f(R′i, R−i) 6= f(R).

There is a classical requirement in social choice that no collective ordering
be excluded from being chosen. This is often referred to as agents’ sovereignty.

Ontoness. f(RN) = R.

The last property is concerned with dominant-strategy incentive compa-
tibility. Its formal definition requires that we extend agents’ preferences over
alternatives to preferences over collective orderings. An anonymous and
complete extension is a function R that maps R to the set of strict order
relations over R. For simplicity, for each agent i ∈ N and each Ri ∈ R,
let R(Ri) = Ri. We will focus on extensions which satisfy the following
requirement that we refer to as refinement.

Refinement (of extensions). For each agent i ∈ N , each preference rela-
tion Ri ∈ R and two collective orderings R0, R1 ∈ R,

Ri ∩R0 ( R1 ⇒ R1 Pi R
0.

Remark. Bossert and Sprumont (2014) proved that any refinement has the
following appealing feature. Given an agent i with preference relation Ri, if
Ri ∩R0 ( R1 then for each B ⊂ A, the alternative recommended by R1 in B
is at least as good as the one recommended by R0 in B according to Ri ; and
there is an instance in which he prefers. An agent i with preference relation
Ri has an unambiguous preference for R1 over R0.

The following property prevents agents from misrepresenting their prefe-
rences.
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Strategy-proofness under R. For each R ∈ RN and each i ∈ N , there is
no R′i ∈ R such that,

f(R′i, R−i) Pi f(R).

We address the question whether there is a rule which is strategy-proof
under every refinement. Unfortunately, when coupled with neutrality, no ap-
pealing rule is available.

Theorem 9. Suppose that there are at least three alternatives. Then, the only
rule that is strategy-proof under every refinement and neutral is a dictatorial
rule which is a rule that always selects the preference relation of a given
agent, for every preference profile.

The proof appears in Appendix 25. This result shows that « strategy-
proofness under every refinement » is a very demanding requirement. The
relaxation that we explore consists of describing possibilities on particular
refinements.

3.3 Results

We describe rules which are strategy-proof under every refinement and
onto when there are two alternatives. Let A = {a, b}. The family of strategy-
proof rules can be described by simple games or winning coalitions. A coali-
tion T ⊂ N is winning with respect to a rule f if for each preference profile R
such that for each i ∈ T , Ri : a b and for each i ∈ T c, Ri : b a then f(R) : a b.
On the other hand, let ω be a collection of non-empty coalitions and define
a rule Saω as follows :

for each R, Saω(R) = a b if and only if {i ∈ N |a Pi b} ∈ ω.

Simple game S. There is a collection ω of non-empty coalitions such that :
i. for each T ∈ ω and T ′ ⊂ N , if T ′ ⊃ T then T ′ ∈ ω and
ii. S = Sxω for some x ∈ A.
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Let ω̂ denote the collection of minimum coalitions associated with ω :

ω̂ = {T ∈ ω|there is no T ′ ∈ ω, T ′ ( T}.

Note that if ω is not empty, ω̂ is not empty as well. Given ω̂, we define a rule
Ŝaω̂ as follows :

Ŝaω̂(R) = a b if and only if for some T ∈ ω̂, T ⊂ {i ∈ N |a Pi b}.

If ω̂ satisfies (i), then Saω = Ŝaω̂. To see this, let R be a profile and suppose
that Saω(R) = a b. Then {i ∈ N |a Pi b} ∈ ω. Therefore, there is T ∈ ω such
that T ⊂ {i ∈ N |a Pi b} and for no T ′ ∈ ω, T ′ ( T . Consequently, T ∈ ω̂
and thus Ŝaω̂(R) = a b. Conversely, let R be a profile such that Ŝaω̂(R) = a b.
Then there is T ∈ ω̂ such that T ⊂ {i ∈ N |a Pi b}. Because ω̂ ⊂ ω, T ∈ ω.
By (i), {i ∈ N |a Pi b} ∈ ω thus Saω(R) = a b.

We focus on the rules based on minimum coalitions. Let C denote the set of
collections of non-empty coalitions that satisfy (i) above and Ĉ = {ω̂|ω ∈ C}.

Strong simple game S. There is a collection ω of non-empty coalitions
such that

i. for each T ∈ ω and T ′ ⊂ N , if T ′ ⊃ T then T ′ ∈ ω,
ii. T ∈ ω if and only if T c /∈ ω and
ii. S = Ŝxω̂ for some x ∈ A.

Lemma 9. (Moulin, 1983, P. 64) Suppose that there are two alternatives.
i. A rule is strategy-proof under every refinement and onto if and only

if it is simple game.
ii. A rule is strategy-proof under every refinement and neutral if and only

if it is a strong simple game.

Since a strong simple game is neutral, we simply write Ŝω̂ instead of Ŝaω̂,
without mention of an alternative as parameter.

3.3.1 Lexicographic extension

In the light of Theorem 9, we need to focus on particular refinements in
order to obtain appealing rules. The following extension yields interesting
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results. An agent i ∈ N with preference relation Ri ∈ R compares two
collective orderings R0 : a1 . . . am and R1 : b1 . . . bm by first comparing the
alternatives a1 and b1 under Ri. If b1 Pi a1, then agent i prefers R1 to R0. If
a1 = b1, then he compares the next ranked alternatives, that is, a2 and b2 ;
and so on. Formally,

Lexicographic extension, Rlex. For each i ∈ N , each Ri ∈ R and two
collective orderings R0 : a1 . . . am and R1 : b1 . . . bm,

i. R0 Rlex
i R0 and

ii. R1 P lex
i R0 if and only if either b1 Pi a1 or there is t > 1 such that

a1 = b1, . . . , at−1 = bt−1 and bt Pi at.

This extension is a refinement. To see this, let i ∈ N and Ri, R
0, R1 ∈ R

such that Ri ∩ R0 ( R1. Let R0 : a1 . . . am and R1 : b1 . . . bm. Suppose that
a1 6= b1. If a1 Pi b1, then because a1 P 0 b1, we have (a1, b1) ∈ Ri ∩ R0.
Because Ri ∩R0 ( R1, we have (a1, b1) ∈ R1 which contradicts the fact that
b1 P

1 a1. Therefore, b1 Pi a1 and thus R1 P lex
i R0. Let t > 1 and suppose

that a1 = b1 . . . at−1 = bt−1 and at 6= bt. Then R0 and R1 can be presented as
follows :

R0 R1

a1 a1

...
...

at−1 at−1

at bt
...

...
am b1

Obviously, at P 0 bt and bt P 1 at. If at Pi bt, then because at P 0 bt, we have
(at, bt) ∈ Ri ∩R0. Because Ri ∩R0 ( R1, (at, bt) ∈ R1 which contradicts the
fact that bt P 1 at. Therefore, bt Pi at and thus R1 P lex

i R0.
We describe rules which have interesting properties under this extension.

Consider a sequential selection (without repetition) from A until all alterna-
tives have been considered. Consider the tree consisting of all such selections.
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At the end of each sequence of selections we attach the collective ordering
consistent with the order in which the alternatives have been selected. As
an example, consider the case of three alternatives and let A = {a, b, c}. We
have the following tree.

•

•

•

•
a

b

c

c

b

•

•
a

c

b

b

c

a

•

•

•
b

a

c

c

a

•

•
b

c

a

a

c

b

•

•

•
c

a

b

b

a

•

•
c

b

a

a

b

c

Let h0 be the initial history in which no alternative is yet selected. Let
H0 = {h0}. For each k = 0, . . . ,m, let Hk denote the set of histories where
exactly k alternatives are selected. For each h ∈

⋃m−1
t=0 Ht, let A(h) denote

the set of alternatives not yet selected at h. Let Γ :
⋃m−2
k=0 Hk → N ∪ (A× Ĉ)

be a function such that
i. for each h /∈ Hm−2, Γ(h) ∈ N ,
ii. for each h ∈ Hm−2, Γ(h) ∈ (A(h)× Ĉ).

It is a function from
⋃m−2
t=0 Ht to N ∪ (A× Ĉ) which assigns to each history

an agent except histories in Hm−2 where an history is assigned to an element
in (A × Ĉ) in such a way that the couple selected contains one of the two
remaining alternatives. We define a rule that takes Γ as a parameter.

We start by an informal definition of the rule. For simplicity let A =

{a, b, c}. Given a function Γ and a preference profile R, let RΓ denote the
collective ordering obtained as follows : the most preferred alternative of the
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agent Γ(h0) is ranked first in the collective ordering RΓ. In the tree, the
selection leads to an history h. Then, the most preferred alternative of the
agent Γ(h) among those remaining is ranked next, and so on.

Example 12. Augmented sequential rules fΓ. Let preference profile R and
a parameter Γ be as specified below.

R1 R2 R3

b c a

c a c

a b b

•3

•2

•

•
a

b

c

c

b

•

•
a

c

b

b

c

a

•1

•

•
b

a

c

c

a

•

•
b

c

a

a

c

b

•4

•

•
c

a

b

b

a

•

•
c

b

a

a

b

c

Then, fΓ(R) : a c b.

For a formal definition, let Γ be a parameter. For each preference profile
R, there is a sequence (hk)mk=0 of consecutive histories starting from the initial
history h0 to the terminal history hm such that

1. the history h1 is reached following the selection of the most preferred
alternative of agent Γ(h0) under R in A(h0),

2. if m > 3, then for each k = 1, . . . ,m − 3, the history hk+1 is reached
following the selection of the most preferred alternative of agent Γ(hk)

under R in A(hk),
3. the history hm−1 is reached following the selection of the alternative

ranked first by Ŝxω̂(R|A(hm−2)) where (x, ω̂) = Γ(hm−2).
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Let RΓ be the collective ordering attached to the terminal history hm that
follows hm−1. We define a rule which selects this collective ordering for each
preference profile.

Augmented sequential rule fΓ. For each preference profile R ∈ RN ,

fΓ(R) = RΓ.

Theorem 10. A rule is strategy-proof under lexicographic extension and onto
if and only if it is an augmented sequential rule.

The proof appears in Appendix 25. In augmented sequential rules the
choice of the next agent who should prescribe the next ranked alternative
is contingent on the history. Therefore, an important class of these rules are
not neutral. However, there is an important subclass of neutral rules. They
are rules where the choice of the next agent who should choose the next
ranked alternative depends on the number of alternatives chosen so far. For
each k ∈ {0, . . . ,m − 2} and each h, h′ ∈ Hk, Γ(h) = Γ(h′). In that case
the rule can be described as follows : there is a list σ : {1, . . . ,m − 2} → N

of agents (with possible repetition) and a strong simple game Ŝω̂. For each
preference profile R, the most preferred alternative of σ(1) listed first in
A, that is a1 = maxARσ(1), is the alternative ranked first in the collective
ordering. The most preferred alternative of the agent σ(2) listed second, that
is a2 = maxA\{a1}Rσ(2), is ranked second in the collective ordering and so on
until two alternatives, say a and b, remain. The alternative ranked first in
Ŝω̂(R|{a,b}), is ranked next and the alternative that remains is ranked last. Let
R(σ,ω̂) be the collective ordering obtained. We refer to the agent who chooses
the tth ranked alternative from those remaining, dictator for position t.

Augmented serial rule f (σ,ω̂). For each R ∈ RN ,

f (σ,ω̂)(R) = R(σ,ω̂).

Theorem 11. A rule is strategy-proof under lexicographic extension and neu-
tral if and only if it is an augmented serial rule.
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The proof appears in Appendix 26. In addition, no dummy further shrinks
augmented serial rules to a class in which each agent is either a dictator for
at least one position or is a member of an element of the set of coalitions
that define the strong simple game.

Proposition 10. A rule f is strategy-proof under lexicographic extension,
neutral and no dummy if and only if it is an augmented serial rule f (σ,ω̂)

such that for each agent i ∈ N either there is a position t such that σ(t) = i

or there is T ∈ ω̂ such that i ∈ T .

The proof appears in Appendix 27. While lexicographic extension yields
possibilities, there are other refinements.

3.3.2 Inverse lexicographic and Kemeny extension

In this section, we consider two other refinements. First, it is straightfor-
ward to define an extension in the same spirit as lexicographic extension but
comparing collective orderings from the bottom up (ie in the opposite order
to the way presented by the lexicographic extension).

Inverse lexicographic extension, Rilex. For each agent i ∈ N , each
preference relation Ri ∈ R and two collective orderings R0 : a1 . . . am and
R1 : b1 . . . bm,

i. R0 Rilex
i R0 and

ii. R1 P ilex
i R0 if and only if either am Pi bm or there is t < m such that

am = bm, . . . , at+1 = bt+1 and at Pi bt.

This extension is also a refinement. We define a rule called inverse aug-
mented sequential rule. For each preference profile R, there is a sequence
(hk)mk=0 of consecutive histories starting from the initial history h0 to the
terminal history hm such that

1. the history h1 is reached following the selection of the least preferred
alternative of agent Γ(h0) under R in A(h0),
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2. if m > 3, then for each k = 1, . . . ,m − 3, the history hk+1 is reached
following the selection of the least preferred alternative of agent Γ(hk)

under R in A(hk),
3. the history hm−1 is reached following the selection of the alternative

ranked last by Ŝxω̂(R|A(hm−2)) where (x, ω̂) = Γ(hm−2).
We define a rule which selects for each preference profile R the collective orde-
ring attached to the terminal history hm and refer to it as inverse augmented
sequential rule. We can straightforwardly adapt the proof of Theorem 10 to
obtain the following result :

Theorem 12. A rule is strategy-proof under inverse lexicographic extension
and onto if and only if it is an inverse augmented sequential rule.

The last extension pertains to the so-called Kemeny extension. This is an
extension in which each agent compares two collective orderings by comparing
the number of pairs over which they differ from his preference relation. Let
δ : R2 → N ∪ {0} be a measure defined as follows : for each (R0, R1) ∈ R2,

δ(R0, R1) = |{(a, b) ∈ A× A|(a, b) /∈ R0 ∩R1}|.

Kemeny extension Rkem. For each i ∈ N and each Ri, R
0, R1 ∈ R,

i. R0 Rkem
i R0 and

ii. δ(Ri, R
1) < δ(Ri, R

0) ⇒ R1 P kem
i R0.

Note that it is open how an agent i ∈ N with a preference relation Ri

compares two collective orderings R0 and R1 such that δ(Ri, R
1) = δ(Ri, R

0).
It was open whether beside dictatorial rules there are rules which are strategy-
proof and onto under Kemeny extension. The following proposition provides
a partition of augmented serial rules between those which are strategy-proof
under Kemeny extension and those which are not.

Proposition 11. Let f (σ,ω̂) be an augmented serial rule. Then, f (σ,ω̂) is
strategy-proof under Kemeny extension if and only if there is i ∈ N such
that for each t ∈ {1, . . . ,m− 2},

σ(t) = i.
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The proof appears in Appendix 28. When there are only three alterna-
tives, every augmented serial rule is such that one agent is trivially a dictator
for all positions except probably the next to last one. Therefore, we have the
following corollary.

Corollary 10. Suppose that m = 3. Then every augmented serial rule is
strategy-proof under Kemeny extension.

3.4 Conclusion

We introduced rules called augmented serial rules for aggregating prefe-
rences. These rules are simple to describe and furthermore they are strategy-
proof across reasonable extensions. They are succinctly characterized by
strategy-proofness under lexicographic extension and neutrality. A subfamily
of these rules are strategy-proof under the Kemeny extension. We also intro-
duced a no dummy requirement that no agent be excluded from the decision
process. An appealing class of augmented serial rules satisfy this requirement.

While the paper exhibits rules which are strategy-proof under Kemeny
extension and onto (beside dictatorial rules), future work is required to cha-
racterize them all.



Annexes

Proofs from Chapter 1

The proofs use known results that we collect first. Let ϕ be a rule and
Ch a profile of choice functions.

DA possesses some form of monotonicity (Kojima and Manea, 2010a).
Let s ∈ S, v ∈ C ∪ {∅} and {Ps, P ′s} ⊂ P . We say that P ′s is an (individually
rational) IR- monotonic transformation of Ps at v, 1 in notation P ′

s i.r.m.tPs

at v, if any college that is ranked above both v and ∅ under P ′s is also ranked
above v under Ps, that is

for each c ∈ C, c P ′s v and c P ′s ∅ ⇒ c Ps v.

Of course, Ps i.r.m.tPs at v ∈ C∪{∅}. The following instance deserves a sepa-
rate illustration as it will be the main form of IR-monotonic transformation
we will be using. Given c ∈ C and s ∈ S, let P c

s be student s’s preference re-
lation where c is his unique acceptable college and P ∅s his preference relation
where no college is acceptable.

Remark. Let s ∈ S, Ps ∈ P, v ∈ C ∪ {∅} and µ ∈ M be such that v Rs

µs Rs ∅. Then, P v
s i.r.m.t Ps at µs.

We say that P ′ is an IR-monotonic transformation of P at matching µ,
in notation P ′ i.r.m.t P at µ, if for each s ∈ S, P ′s i.r.m.t Ps at µs.

1. See (Kojima and Manea, 2010a) for further discussions.
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IR-monotonicity. For each {P, P ′} ⊂ PS, P ′ i.r.m.t P at ϕ(P )⇒ ϕ(P ′) R′

ϕ(P ).

Next, we will use the following incentive compatibility property a rule
might possess.

Strategy-proofness. For each P ∈ PS, each s ∈ S and each P ′s ∈ P , ϕs(P ) Rs

ϕs(P
′
s, P−s).

For each choice profile Ch,DACh is strategy-proof (Lemma 1). Beside this
result, the choice functions themselves have others properties. We collect the
relevant ones.

Path-independence. For each c ∈ C, each S ′ ⊂ S and each s ∈ S,Chc(Chc(S ′)∪
{s}) = Chc(S

′ ∪ {s}).

Irrelevance of rejected students. For each c ∈ C, each S ′ ( Sand each s /∈
S ′, s /∈ Chc(S ′ ∪ {s})⇒ Chc(S

′ ∪ {s}) = Chc(S
′).

We now gather in a lemma the useful results.

Lemma 10. Let Ch be a choice profile. Then

(1) DACh is IR-monotonic (Kojima and Manea (2010a) ; Theorem 1).

(2) DACh is strategy-proof (Hatfield and Milgrom, 2005).

(3) For each c ∈ C, Chc is path-independent (Ehlers and Klaus (2016),
Lemma 1).

(4) For each c ∈ C, Chc satisfies irrelevance of rejected students (Aygün
et al., 2012).

Point 2 of Lemma 1 was first established when each college’s preference
is substitutable and satisfies the law of aggregate demand, that is, for each
c ∈ C with choice function Chc, each S ′ ⊆ S and each S ′′ ⊆ S, S ′ ⊆
S ′′ implies |Chc(S ′)|≤ |Chc(S ′′)| (Hatfield and Milgrom, 2005). However, an
acceptant preference satisfies this law (Ehlers and Klaus, 2016).
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Our proofs also use the following result (Abdulkadiroğlu et al., 2009)
when each college’s preference over subsets of students is responsive to its
preference over individual students. The result is in fact obtained in a more
general model encompassing substitutable and acceptant preferences (Alva
and Manjunath, 2017).

Lemma 11 (Abdulkadiroğlu et al. (2009), claim in Theorem 1). Let M =

(P,Ch) and µ ∈ M. If µ Pareto dominates DACh(P ) at P ; then, the same
set of students are matched in both µ and DACh(P ), in notation, µC =

DAChC (P ).

Finally, by convention we simplify the notation in such a way that given
an order π and t = 1, ...n, st := sπ(t). Since each statement will involve a
unique order, this convention should not create a confusion.

Appendix 1. Proof of Theorem 1

The proof has two parts. In Part 1, we show that each strategy profile in
which each student plays either a bossy strategy or a solidary strategy is an
SPUE. Any SPUE is actually of this kind (Part 2).

Part 1 : Let π ∈ O and M = (P,Ch). Let σ ∈ ∆π be a strategy profile
such that for each s ∈ S, σs is either a bossy strategy or a solidary strategy.
Then, σ is an SPUE of G[π,M ]. The remaining part consists of proving that
σ is a backwards-induction strategy.

By convention, whenever we consider a history ht = (h0, a1..., at), at′ is
the application that st′ makes. To simplify the notation, we suppress the
reference to the choice profile Ch in DACh and just write DA := DACh.
We continue by establishing two important results as lemmas. Lemma 3 will
serve as an induction base of an induction argument we use for the general
proof and Lemma 4 will be the main part of the induction step. For each
v ∈ C ∪ {∅}, let Sv(h0) = ∅ and for each t = 2, ..., n and each history
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ht−1 = (h0, a1, ..., at−1), let Sv(ht−1) := {st′ |t′ ≤ t − 1, at′ = v}. If v = c for
some c ∈ C, then Sc(ht−1) is the applications that c received up to ht−1. If
v = ∅, then S∅(ht−1) is the set of students who chose to remain unmatched
up to ht−1.

Lemma 12. Let hn−1 ∈ Hn−1
π and µn−1 := DA(P (hn−1)).

(i) Assume that st makes an application at hn−1 what solidary strategy
would have recommended at hn−1. Let v′ ∈ C ∪ {∅} be such a decision and
hn = (hn−1, v′) be the history following such application. Then, for each c ∈
C, µn−1

c = Chc(Sc(h
n)).

(ii) Assume that µn−1
sn = ∅ and sn applies to an acceptable college c′ under

Psn. Let h′n = (hn−1, c′) be the history following such application. Then, for
each c ∈ C, µn−1

c = Chc(Sc(h
′n)).

Proof of Lemma 12. (i). Since we only have two histories to consider, we
further simplify the notation in such a way that Sc := Sc(h

n−1) and S ′c :=

Sc(h
n).
Now consider the DA algorithm that produces µn−1 for (P (hn−1), Ch).

Recall that Psn(hn−1) = Psn and for each t 6= n, Pst(hn−1) = P v
st for some

v ∈ C∪{∅}. Therefore, each student in S \{sn} makes a proposal (if any) no
further than the first step of the algorithm. By assumption, v′ = µn−1

sn and

sn ∈ S ′v′ . (1)

Let c ∈ C and consider the set of students proposing to c in the DA algorithm.
There are two cases regarding sn’s proposals.

Case 1 : sn did not propose to c.
Then, (in the first step) c received only proposals from students in Sc. 2

Therefore, µn−1
c = Chc(Sc). Because sn did not propose to c in the DA

process, sn /∈ µn−1
c . Now by (1) sn /∈ S ′c and we conclude that S ′c = Sc. By

substitution, µn−1
c = Chc(S

′
c) = Chc(Sc(h

n)).

2. Sc is the set of students from whom c receives applications before sn’s turn in the
game G[π,M ]. Thus, for each s ∈ Sc, Ps(ht−1) = P cs .
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Case 2 : sn proposed to c.
If sn proposed to c in Step 1 of the algorithm, then µn−1

c = Chc(Sc∪{sn}). If
sn proposed to c in a step later than Step 1, then µn−1

c = Chc(Chc(Sc)∪{sn}).
Since Chc is path-independent, Chc(Chc(Sc) ∪ {sn}) = Chc(Sc ∪ {sn}). In
any case,

µn−1
c = Chc(Sc ∪ {sn}). (2)

First, assume that sn ∈ µn−1
c . Then c = v′ and by (1), sn ∈ S ′c. Hence S ′c =

Sc ∪ {sn}. Then combining this and (2) we obtain µn−1
c = Chc(S

′
c). Second,

assume that sn /∈ µn−1
c . Then from (2), sn /∈ Chc(Sc ∪ {sn}). Since Chc

satisfies irrelevance of rejected students, Chc(Sc ∪ {sn}) = Chc(Sc). Again
c 6= v′ and by (1), sn /∈ S ′c. Thus, S ′c = Sc. Consequently, Chc(Sc ∪ {sn}) =

Chc(Sc) = Chc(S
′
c). Finally, combining the later result with (2) we obtain

µn−1
c = Chc(S

′
c) = Chc(Sc(h

n)).
(ii) For this case, we simplify the notation in such a way that for each

v ∈ C ∪ {∅}, S∗v := Sv(h
′n). With regard to the proof of (i), we only need

to consider college c′ to which sn made an application. Because sn applied
to c′, S∗c′ = Sc′ ∪ {sn}. Consider the DA algorithm that produces µn−1 for
(P (hn−1), Ch). Since µn−1

sn = ∅ and c′ is acceptable to him, sn has proposed
to that college in some step of the algorithm. Then using (2) we obtain
µn−1
c′ = Chc′(Sc′ ∪ {sn}). Combining this with S∗c′ := Sc′ ∪ {sn} we obtain
µn−1
c′ = Chc′(S

∗
c′) = Chc′(Sc′(h

′n)).

Lemma 13. Let t = 1, ..., n− 1, ht−1 ∈ Ht−1
π and µt−1 := DA(P (ht−1)).

(i) Assume that student st makes an application at ht−1 what solidary
strategy would have recommended at ht−1. Let v ∈ C ∪ {∅} be such decision,
ht = (ht−1, v) the history that follows and µt := DA(P (ht)). Then, the same
set of students are matched in both µt−1 and µt, that is, µt−1

C = µtC.
(ii) Assume that µt−1

st = ∅ and st applies to an acceptable college c′ under
Pst and let h′t = (ht−1, c′) and µ′t := DA(P (h′t)). Then, µt−1

C = µ′tC.

Proof of Lemma 13. (i) First, because Pst(ht−1) = Pst , we have P (ht−1) =

(Pst ,P−st(h
t−1)) and P (ht) = (P v

st ,P−st (h
t−1)). Next, because P v

st i.r.m.t Pst
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at v, we have P (ht) i.r.m.t P (ht−1) at DA(P (ht−1)). Because DA is IR-
monotonic, DA(P (ht)) R(ht) DA(P (ht−1)) or equivalently,

µt R(ht) µt−1.

For st, µtst = v because Pst(ht) = P v
st and µ

t−1
st = v. For each student s 6= st,

Ps(h
t) = Ps(h

t−1). Student st is matched to v in both µt−1 and µt and the
preference relation of each s 6= st is the same in both P (ht−1) and P (ht).
Therefore,

µt R(ht−1) µt−1. (3)

Now (3) and Lemma 2 give µt−1
C = µtC .

(ii) First, by definition Pst(ht−1) = Pst and Pst(h′t) = (P c
st ,P−st(h

t−1)).
Since DAst(P (ht−1)) = ∅, DA is strategy-proof and DAst(P (h′t)) is IR at
(Pst(h

′t), Ch) we have DAst(P (h′t)) = ∅. Because P (h′t) i.r.m.t P (ht−1)

at DA(P (ht−1)) and DA is IR-monotonic, we have DA(P (h′t)) R(h′t)

DA(P (ht−1)) or equivalently

µ′t R(h′t) µt−1.

Now with P−st(h′t) = P−st(h
t−1) and µt−1

st = ∅ = µ′tst , we conclude that

µ′t R(ht−1) µt−1. (4)

Finally, with (4) and Lemma 2 we obtain µ′tC = µt−1
C .

We now turn to the proof of Theorem 1. We show that the strategy profile
σ is a backwards-induction strategy of G[π,M ], by induction on t = 1, ..., n,
starting from n.

Induction base (t = n) : We verify that at any history hn−1, sn is at
least as good at following σsn at hn−1 as any other decision. Assume first
that DAsn(P (hn−1)) = c′ for some c′ ∈ C. We show that if sn applies to c′,
then c′ will admit him. This is in fact the conclusion of Lemma 12. By this
result, if c′ is sn’s most preferred college according to Pst , then we are done.
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Otherwise, let c ∈ C be such that

c Psn c
′ (5)

and assume that sn applies to c at hn−1. We show that c will not admit him.
Let µn−1 = DA(P (hn−1)) and for the purpose of this proof let S∗c = Sc(h

n−1).
We next show that µn−1

c ⊂ S∗c . Let st ∈ µn−1
c with t 6= n. Then st applied to

c and therefore st ∈ S∗c . Therefore, µn−1
c ⊆ S∗c and µn−1

c ∪ {sn} ⊆ S∗c ∪ {sn}.
Since c’s preference is substitutable, if sn ∈ Chc(S∗c ∪ {sn}), then

sn ∈ Chc(S∗c ∪ {sn}) ∩ (µn−1
c ∪ {sn}) ⊆ Chc(µ

n−1
c ∪ {sn}). (6)

From (5), (6) and the fact that µn−1
sn = c′, the pair (sn, c) blocks µn−1

at (P (hn−1), Ch), contradicting the stability of µn−1 at (P (hn−1), Ch). In
conclusion, sn /∈ Chc(S∗c ∪ {sn}) and c will not admit sn. Assume now that
DAsn(P (hn−1)) = ∅. Then, the last conclusion says that if sn applies to
an acceptable college, then he will not be admitted. In conclusion, σsn is a
component of a backwards-induction strategy profile.

Induction hypothesis : Let t be such that t < n and assume that for
each t′ with t < t′ ≤ n and each ht

′−1 ∈ Ht′−1
π , student st′ follows σst′ at

ht
′−1.
Induction step : Let ht−1 ∈ Ht−1

π . We show that st is at least as good
at following σst at ht−1 as any other decision. We distinguish two cases :

Case 1 : σst(ht−1) = c′ for some c′ ∈ C.
We consider the case where st applies to c′ (Case 1.1) and a case where

st applies to a college c with c Pst c′ (Case 1.2), if any.
Case 1.1 : st applies to c′. Then c′ will admit him.

Let ht, ..., hn be the histories reached after st’s application and each of the
remaining students follows his strategy in σ. For each t′ = t−1, ..., n, let µt′ :=

DA(P (ht
′
)). We know that st ∈ µt−1

c′ since DAst(P (ht−1)) := σ∗st(h
t−1) = c′

and µt−1 := DA(P (ht−1)). Now apply Lemma 13 to obtain st ∈ µtC ,...,
st ∈ µn−1

C . Next because Pst(hn−1) = P c′
st and µn−1 is IR at (P (hn−1), Ch),

st ∈ µn−1
C implies that µn−1

st = c′. Finally, apply Lemma 12 to obtain that
st ∈ µn−1

c′ = Chc′(Sc′(h
n)). Therefore, c′ will admit st.
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By Case 1.1, if c′ is st’s most preferred college, then we are done. Other-
wise, let c be such that

c Pst c
′ = σst(h

t−1). (7)

Case 1.2 : st applies to c. Then c will not admit him.
Let h′t, ..., h′n be the histories reached after this application and each of the
remaining students follows his strategy in σ. For each t′ = t− 1, ..., n− 1, let
µ′t := DA(P (h′t)). By definition, P (ht−1) = (Pst ,P−st(h

t−1)) and P (h′t) =

(P c
st ,P−st(h

t−1)). Because DA is strategy-proof, DAst(Pst ,P−st(ht−1)) Rst

DAst(P
c
st ,P−st(h

′t)) or equivalently

µt−1
st Rst µ

′t
st . (8)

By (7) and (8) and because Rst is strict, c Pst µ′tst and thus c 6= µ′tst . Now
because Pst(h′t) = P c

st and µ
′t
st is IR at (P (h′t), Ch), we have µ′tst = ∅. Next,

apply Lemma 13 to obtain that st /∈ µ′tC , ..., st /∈ µ′n−1
C . Thus, st /∈ µ′n−1

c .
Finally apply Lemma 12 to obtain that st /∈ Chc(Sc(h′n)) = µ′n−1

c . Hence, c
will not admit st.

Case 2 : DAst(P (ht−1)) = ∅.
By an argument similar to Case 1.2, st cannot be admitted by an accep-

table college. Since applying to an unacceptable college is weakly dominated
at the following subgame, st is at least as good as following σst .

In conclusion, σ is a backwards-induction strategy of G[π,M ].
Part 2 : Let σ ∈ ∆π be an SPUE of G[π,M ]. Then, for each s ∈ S, σs

is either a bossy strategy or a solidary strategy.
Assume by contradiction that there exists some t, such that σst is neither

a bossy strategy nor a solidary strategy of G[π,M ]. Since the restriction
of σst to every subgame is not weakly dominated, st does not apply to an
unacceptable college under Pst at each history. Thus, there exists a history
ht−1 ∈ Ht−1

π and a college c such that DAst(P (ht−1)) = c and σst(ht−1) 6= c.
First, note that sn is at least as good as following either a bossy strategy or
a solidary strategy at each history he has to play. 3 Then, t 6= n. Inductively,

3. Note however that it is not a dominant strategy because it depends on firms strate-
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let t′ < n and assume that for each t′′ = t′ + 1, ..., n, t 6= t′′. We show that
t 6= t′. By simplicity, let σsn(ht

′−1) = c′ for some c′ ∈ C. By Case 1.2 above, if
c′Pst′c, then c

′ will not admit st′ . However, by Case 1.1, c would have admit
st′ , had he applied to it. This contradicts the optimality of σst′ (h

t′−1). In
conclusion, t 6= t′ and t does not exist. This contradiction finishes the proof.

Appendix 2. Proof of Theorem 2

Let π ∈ O and M = (P,Ch). It is enough if we prove that for each
µ ∈ MSPUE(G[π,M ]) and each s ∈ S, µs Rs DA

Ch
s (P ). Let σ be an SPUE

of G[π,M ]. By Theorem 1, σ is such that for each s ∈ S, σs is either a bossy
strategy or a solidary strategy. Let h0, ..., hn be the histories in the execution
path of σ. For each t′ = 0, ..., n, let µt′ := DA(P (ht

′
)). Let t = 1, ..., n and

recall that, by definition, for each t′ ≤ t, Pst(ht
′
) = Pst . Therefore, by (3)

we have µt−1
st Rst ... Rst µ

0
st . First, µ

t−1
st is the outcome for st under σ. Second,

µ0 := DACh(P ). Therefore, it follows that

µt−1
st Rst µ

0
st .

Appendix 3. Proof of Proposition 1

Let π ∈ O and M = (P,Ch). We prove that
⋃
π∈OMSPUE(G[π,M ])

satisfies the rural hospital properties. Let {µ, µ′} ⊂
⋃
π∈OMSPUE(G[π,M ])

and µ∗ := DACh(P ). By Theorem 2, µ R µ∗ and µ′ R µ∗. It is sufficient if
we prove that µ and µ∗ satisfies part (i) and (ii) of the definition of the rural
hospital properties.

gies.
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Part (i) follows from Lemma 2. For part (ii), assume that for some c ∈ C,
|µc|< qc. By part (i), |µ∗|= |µc|< qc. This part is complete if we show that
µc ⊆ µ∗c . Let s ∈ µc. If µ∗s 6= c, then cPsµ∗s, in contradiction with the stability
of µ∗ at M because |µ∗c |< qc and c’s preference is acceptant. Thus, µc ⊆ µ∗c ;
proving that µc = µ∗c . Alva and Manjunath (2017) independently proved a
similar result in a more general model.

Appendix 4. Proof of Corollary 2

Let M = (P,Ch) and assume that it induces an order independent G-
outcome. Let µ ∈

⋃
π∈OMSPUE(G[π,M ]). We show that µ = DACh(P ). Let

s ∈ S and π ∈ O be such that π(1) = s. Now by Theorem 1, µs = DAChs (P ).

Appendix 5. Proof of Theorem 3

“ ⇒ ”. Let M = (P,Ch) and assume that it induces an order inde-
pendent G-outcome and let µ be this unique outcome. Consider DACh. In
the remainder we drop the reference to Ch in DACh. By Corollary 1,

for each s ∈ S, µs = DAs(P ). (9)

We now show that DA is claims consistent at P . Let S ′ ⊆ S. We must show
that DA(PDA

S′ , P−S′) = DA(P ). Now let s ∈ S. We distinguish two cases :
Case 1 : s ∈ S ′. Because (PDA

S′ , P−S′) i.r.m.t P at DA(P ), and DA is
IR-monotonic, it is easily established that DAs(PDA

S′ , P−S′) = DAs(P ).
Case 2 : s /∈ S ′. Let π ∈ O be such that all students in S ′ are ordered first,

and π(|S ′|+1) = s. Let h|S′| = (ho, a1, ..., a|S′|) be a history in the execution
path histories of the solidary strategy profile of G[π,M ]. By (9), we have
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a1 = DAs1(P ),...,a|S′| = DAs|S′|(P ) and thus P (h|S
′|) = (PDA

S′ , P−S′). Since
s = s|S′|+1, according to solidary strategy,

µs = DAs(P
DA
S′ , P−S′). (10)

Combining (9) and (10) yield DAs(PDA
S′ , P−S′) = DAs(P ).

Case 1 and Case 2 establish that DA is claims consistent at P .
“⇐ ”. Let M = (Ch, P ) and assume that DA is claims consistent at P .

We prove thatM induces an order independent G-outcome. Given π ∈ O, let
µπ := MSPUE(G[π,M ]). We now show by induction on t = 1, ..., n that for
each π ∈ O and each s ∈ S, µπs = DAs(P ). By Theorem 1, for each π ∈ O
and each s ∈ S,

π(1) = s⇒ µπs = DAs(P ). (11)

Relation (11) is the induction base (t = 1). As an induction hypothesis, let
t > 1 and assume that for each t′ < t, each π ∈ O and each s ∈ S, π(t′) = s

implies µπs = DAs(P ). We now prove the induction step. Let π ∈ O and let
S ′ ≡ {st′|t′ < t}. Let ht−1 = (ho, a1, ..., at−1) be a history on the execution
path of a solidary strategy. Then, by the induction assumption, for each
t′ < t, at′ = DAst′ (P ). Thus, P (ht−1) = (PDA

S′ , P−S′) and by Theorem 1,

µπst = DAst(P
DA
S′ , P−S′). (12)

Since DA is claims consistent at P , DAst(PDA
S′ , P−S′) = DAst(P ) ; and toge-

ther with (12) we obtain µπst = DAst(P ).

Appendix 6. Proof of Proposition 2

Let M = (P,Ch) and µ = DACh(P ). Let π ∈ O be constructed as
follows : there is s ∈ S such that for each s′ ∈ S, µs′ Rs′ µs. Let π(1) = s.
Let µ′ = DACh(PDA

s , P−s). Then, there is s′ ∈ S \ {s} such that for each
s′′ ∈ S \ {s}, µ′s′′ Rs′′ µ

′
s′ . Let π(2) = s′′. We proceed so until a complete
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ordering. Then, µ is the solidary strategy outcome of G[π,M ]. However, µ is
Pareto efficient (Bando, 2014).

Appendix 7. Proof of Corollary 3

Part (i) follows from Theorem 2 and Lemma 2. For (ii) let M = (P,Ch)

be a market such that DAC(P ) = S where DA := DACh. Let π ∈ O and
{σ1, σ2} ⊂ ∆π two SPUEs of G[π,M ]. We show that they have the same
execution path. For each i = 1, 2 and each s ∈ S, σis is either a bossy strategy
or a solidary strategy. By definition, P (h0) = P . Thus, since DAs1(P (h0)) ∈
C, σ1

s1
(h0) = DAs1(P (h0)) = σ2

s1
(h0) = c1. Let h1 := (h0, c1). By Lemma 4 (i)

and the fact that DAs2(P (h0)) ∈ C, we have DAs2(P (h1)) ∈ C. Because σis2
is either a bossy strategy or a solidary strategy, σ1

s2
(h1) = DAs2(P (h1)) =

σ2
s2

(h1) = c2. Let h2 = (h1, c2). Now by induction, we can easily establish
that σ1 and σ2 have the same execution path. Thus, the same matching is
attached to the common path.

Appendix 8. Proof of Proposition 3

Let M = (P,Ch) be such that DAC(P ) = S where DA := DACh. Let
s ∈ S and {π, π′} ⊂ O be such that π|S\{s}= π′|S\{s} and π′−1(s) < π−1(s).
Without loss of generality, assume that π and π′ are adjacent as represented
below ; the difference between π and π′ occurs only on the elements in boxes :

π′ : s1...st−1 s s
′ ...sn

π : s1...st−1 s
′ s ...sn.

By Corollary 2, MSPUE(G[π,M ]) and MSPUE(G[π′,M ]) are each a single-
ton. Let µπ :=MSPUE(G[π,M ]) and µπ′ :=MSPUE(G[π′,M ]). Let σ ∈ ∆π
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be an SPUE of G[π,M ] and σ′ ∈ ∆π′ an SPUE of G[π′,M ]. Consider the
histories in their execution paths. Since the ordering of the first t−1 students
and the market are the same in both games, the first t histories in these paths
are the same. We represent them as follows :

Execution path of σ′ : h0, ..., ht−1, h′t, ..., h′n.

Execution path of σ : h0, ..., ht−1, ht, ..., hn.

We show that µπs Rs µ
π′
s . Since s decides after history ht−1 in G[π′,M ] and

after ht in G[π,M ], we have

µπ
′

s = DAs(P (ht−1)) (13)

and

µπs = DAs(P (ht)). (14)

Now because P (ht) i.r.m.t P (ht−1) at DA(P (ht−1)), DA(P (ht)) R(ht)

DA(P (ht−1)) as DA is IR-monotonic. Because Rs(h
t) = Rs, with (13) and

(14) we obtain µπs Rs µ
π′
s .

Proofs from Chapter 2

Appendix 9. A useful lemma

Lemma 14. Let � be a strict priority profile, R a preference profile and i a
student and suppose that a = DA�i (R).

(a) Let b be a school and �′ a priority profile such that �′b|−i=�b|−i and for
each school a′ distinct from school b, �′a′=�a′. If a Pi b, then DA

�′
i (R) = a.

(b) Let �′ be a priority profile such that for each school b, �′b |−i=�b |−i
and �′a=�a. If school a is the first choice of student i, then DA�

′

i (R) = a.
(c) Let �′ be a priority profile such that, �′−a=�−a, �′a |−i=�a |−i and

the order of student i is higher under �′a than under �a. Then, DA�
′

i (R) = a.
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(d) Let b be a school distinct from school a and R′i a preference relation ob-
tained from Ri by moving school b to the last position. Then DA�i (R′i, R−i) =

a.

Proof.
(a) This follows directly from the DA algorithm. More specifically, if the

relative order of a student in a school that he did not apply during the DA
process changes, then the outcome remains the same for the new DA process.

(b) This is a repeated application of part (a).
(c) First, we know that DA respects improvement of the priority order

(Balinski and Sönmez, 1999). So DA�
′

i (R) Ri DA
�
i (R) = a. Suppose now

that DA�
′

i (R) Pi a. Because DA�′ is individually rational, we have b =

DA�
′

i (R) for some school b. Let Rb
i be a preference relation for student i

in which school b is his first choice and Rb = (Rb, R−i). Then, we have
DA�

′

i (Rb) = b (Roth, 1982). Because �′b=�b and �′−b |−i=�−b |−i, part (b)
above implies that DA�i (Rb) = b. Finally, b = DA�(Rb) Pi DA

�
i (R) = a

implies that student i manipulates DA� at R via Rb
i , contradicting the fact

that DA� is strategy-proof.
(d) If a Pi b, then the conclusion follows directed from the DA algorithm.

If b Pi a, then DA�(R′i, R−i) Ri a (Kojima and Manea, 2010a) – in Theorem
2. 4 If DA�(R′i, R−i) Pi a, then student i manipulates DA� at R via R′i,
contradicting the fact that DA� is strategy-proof.

Appendix 10. Proof of Lemma 2

Let τ = (�CI , π) be a priority profile, R a preference profile and � =

f(R,�CI , π). In studying the Boston mechanism, Pathak and Sönmez (2008)
propose a model where some students are strategic while others are not and

4. This is because DA is weak Maskin monotonic.
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report their preferences truthfully. They constructed adjusted economies that
allow them to characterize the Nash equilibria of the game. Most importantly,
when all students are not strategic, the adjusted economy for (R,�CIπ ) coin-
cides with (R,�). By Proposition 1 and Proposition 2 therein, there is a
unique stable matching under (R,�) which also coincides with the outcome
of the Boston mechanism BM (�CI ,�π) for R. Therefore, BM τ (R) = FM τ (R).

Appendix 11. Proof of Proposition 5

Let τ = (�, π) be given and ϕ a τ -FP-stable matching mechanism. Let
R be a preference profile that is vulnerable under FM τ . There are two cases
to consider :

Case 1 : ϕ(R) = FM τ (R).
Since R is vulnerable under FM τ , there is a student i and a preference

relation R′i such that FM τ
i (R′i, R−i) Pi FM

τ
i (R). Since FM τ is individually

rational, FM τ
i (R′i, R−i) = a for some school a. Because ϕ(R) = FM τ (R), we

have

a Pi ϕi(R). (15)

Let Ra
i be a preference relation for student i in which school a is his only

acceptable school and Ra = (Ra
i , R−i). By Lemma 3, FM τ

i (Ra) = a. Let
�′ = f(Ra,�, π). Because FM τ

i (Ra) = a and FM τ (Ra) is stable under
(Ra,�′), then by the the fact that the set of students who are assigned is the
same for all stable matchings and ϕ(Ra) is stable under (Ra,�′), student i
is assigned at ϕ(Ra). Therefore, we have ϕi(Ra) = a. Equation (15) implies
ϕi(R

a) Pi ϕi(R), which shows that R is vulnerable under ϕ.
Case 2 : ϕ(R) 6= FM τ (R).
Let� = f(R,�, π). By optimality of FM τ (R), for each student i, FM τ

i (R) Ri

ϕi(R) and a strict relation for some student j. Because ϕ is individually ra-
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tional, FM τ
j (R) = a for some school a. Therefore, we have

a Pj ϕj(R). (16)

Let Ra
j be a preference relation for student j in which school a is his only

acceptable school, Ra = (Ra
j , R−j) and �′ = f(Ra,�, π). By Lemma 3,

FM τ
j (Ra) = a. By arguments similar to Case 1, ϕj(Ra) = a. Therefore,

Equation (16) implies that R is vulnerable under ϕ.

Appendix 12. Proof of Lemma 3

Let τ = (�, π) and � = f(R,�, π). By definition, FM τ (R) = DA�(R).
Suppose that FM τ

i (R) = a. First, we use the following property of DA (Roth,
1982).

DA�i (Ra) = a. (17)

Let �′ = f(Ra,�, π). Because Ra
−i = R−i, we have

�′|−i= �|−i. (18)

Because school a is the first choice of student i under Ra
i , Equation (17)

implies that under the DA process that leads DA�(Ra), student i did not
propose to a school other than a. By Equation (18) and Lemma 14 (b), we
have

DA�(Ra) = DA(�a,�
′
−a)(Ra). (19)

From �a to �′a the priority order of student i has weakly improved because
he has ranked school a first under Ra

i . By Lemma 14 (c), we have

DA�
′

i (Ra) = DA
(�a,�

′
−a)

i (Ra). (20)

Equations (17), (19) and (20) imply thatDA�
′

i (Ra) = a. Therefore, FM τ
i (Ra) =

a.
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Appendix 13. Proof of Proposition 6 and Proposition 5

(ii)

Let τ = (�, π) be a priority profile and R a preference profile. Suppose
that student i can manipulate FM τ under R to obtain a seat at school a.
That is, school a is strategically accessible by student i via FM τ . Let ϕ be
a τ -FP-stable matching mechanism. Then, there is a preference relation R′i
for student i such that FM τ

i (R′i, R−i) = a and a Pi FM τ
i (R). By optimality

of FM τ (R), we have FM τ
i Ri ϕi(R). Therefore, a Pi ϕi(R). Let Ra

i be a
preference relation for student i in which school a is the unique acceptable
school and Ra = (Ra

i , R−i). By Lemma 3, FM τ
i (Ra) = a. Let �′ = f(Ra,�

, π). By the fact that the set of students who are matched is the same in all
stable matchings (Roth, 1982) and the fact that ϕ(Ra) is stable under (R,�′),
we have ϕi(Ra) = a. Therefore, ϕi(Ra) = a Pi ϕi(R). This shows that the
mechanism ϕ is manipulable by student i under R, proving Proposition 5 (ii)
when ϕ is the school optimal τ -FP-stable matching mechanism. The relation
also shows that school a is strategically accessible to student i via ϕ, also
proving Proposition 6 (i) and Proposition 6 (ii) when ϕ is the school optimal
τ -FP-stable matching mechanism.

Appendix 14. Proof of Theorem 4

Let τ = (�, π) be a priority profile and R a preference profile. Let
� = f(R,�, π). Suppose that R is not vulnerable under the first preference
first mechanism FPF τ .

Step 1 : If any student i prefers a first preference first school a to FPF τ
i (R),

then all the capacity of school a are filled in the first step with students who
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have higher priority than student i under �πa.

Suppose, to the opposite, that a seat of school a is either (1) assigned in
a step later than the first step or is assigned in the first step to a student j
such that i �πa j. Let Ra

i be student i’s preference relation in which he ranks
school a first and Ra = (Ra

i , R−i). Let �′ be the adjusted priority order for
R and τ . Then, FPF τ (Ra) = DA�

′
(Ra).

Case (1) : There are less students who rank school a first than its ca-
pacity. Therefore, student i is among the the top qa ranked students under
�πa who rank school a first under (Ra

i , R−i). Therefore, student i is among
the top qa ranked students under the adjusted priority order �′a. Because
FPF τ (Ra) is stable under (Ra,�′), student i is assigned to a seat at school
a under FPF τ (Ra). Because a Pi FPF τ

i (R), FPF τ is manipulable under R.
This contradicts the assumption that R is not vulnerable under FPF τ .

Case (2) : There are less than qa students who ranked a first and have
higher priority than student i under �πa . Therefore, student i is among the
top qa ranked students under �′a. By the same reason, FPF τ

i (Ra) = a, and
the same contradiction follows.

Step 2 : R is not vulnerable under the French mechanism FM τ .

We next show that

FM τ (R) = FPF τ (R).

Let µ = FPF (R). Let �′ be the priority profile obtained by adjusting � as
in the first preference first mechanism. First, we claim that µ is FP-stable
under (R, τ). First, by assumption, the basic priority of each equal preference
school is strict. Therefore, �a =�a and µ has no blocking pair involving such
a school under (R,�). Suppose that there is a student i and a first preference
school a such that a Pi µ(i). By Step 1, any student j ∈ µ−1(a) has ranked
school a first and j �πa i. Therefore, school a is the first relative rank and
the first absolute rank of student j. Then j �a i. By optimality of FM τ (R),
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for each student i,

FM τ
i (R) Ri µ(i). (21)

For each student j who is matched to his first choice under µ, FM τ
j (R) =

µ(j). Suppose that for some student j, FM τ
j (R) Pj µ(j). Since µ is the

student-optimal stable matching under (R,�′), Equation (32) implies that
FM τ (R) is not stable under (R,�′). Because µ is stable under (R,�′), Equa-
tion (32) implies also that there is a blocking pair (i, a) for FM τ (R) under
(R,�′). School a has no seat available, otherwise, µ wouldn’t be stable under
(R,�′). If school a is an equal preference school, then by the assumption
that its basic priority is strict, �′a= �a. Therefore, (i, a) is a blocking pair
for FM τ (R) under (R,�), which contradicts that FM τ (R) is FP-Stable un-
der (R, τ). Therefore, school a is a first preference first school. By a Pi µ(i)

and Step 1, each student in µ−1(a) ranked school a first. Therefore, school
a is assigned to one more student under FM τ (R). Therefore, school a has a
vacant seat under µ. This contradicts a Pi µ(i) and FP-stability of µ under
(R, τ). Therefore, FM τ (R) = FPF τ (R).

We complete now the proof of the theorem. Let µ = FM τ (R) and suppose
that for some school a, a Pi µ(i). We consider two cases :

Case (1) : School a is an equal preference school. Since school a has a
strict basic priority order by assumption, Theorem 5 (i) implies that school
a is not strategically accessible via FM τ .

Case (2) : School a is a first preference first school. Let I ′ = µ−1(a).
Since a Pi FM τ

i (R) = µ(i), by stability of µ under (R,�), we have |I ′|= qa.
By Step 1, each student in I ′ ranked school a first and for each j ∈ I ′,
j �πa i. Let µ′ = ϕ(Ra) and suppose that µ′(i) = a. Then, for some j ∈ I ′,
µ′(j) 6= a. Therefore, a Pj µ′(j).

Let �′ = f(Ra,�, π). Since student i and student j both ranked school
a first and j �πa i, we have j �′a i. Because µ′ is stable under (Ra,�′), this
contradicts the facts that µ′(i) = a and a Pj µ′(j). Therefore, by Lemma 3,
student i could not manipulate FM τ and obtain a seat at school a under R.
That is, R is not vulnerable under FM τ .
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Appendix 15. Proof of Lemma 6 and Theorem 5

Let τ = (�, π) be given. Let i be a student,R a preference profile,R′i an al-
ternative preference relation of student i, FM τ (R) = µ and FM τ (R′i, R−i) =

ν and suppose that

a = ν(i) Pi µ(i), (22)

in which student i does not have an equal priority with any other student
under �a. Let Ra

i be his preference relation in which he ranked school a
first and Ra = (Ra

i , R−i). Let � = f(R,�, π) and �′ = f(Ra,�, π). By
Lemma 3, FM τ

i (Ra) = DA�
′

i (Ra) = a. From argument similar to the one
that established Equation (19), we have

DA
(�′a,�−a)
i (Ra) = a. (23)

Because, student i does not have equal priority with any other student at
�a, we have

�a = �′a. (24)

Therefore, by replacing Equation (24) in (23), we obtain the following

DA�i (Ra) = a. (25)

Because DA�(R) = µ, Equations (22) and (25), imply that student i mani-
pulates DA� under R via Ra

i . This contradicts the fact that DA� is strategy-
proof.

Because the basic priority of each selective school is strict, Theorem 5
follows.

Appendix 16. Proof of Proposition 8
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Let R be a profile of correlated preferences, τ = (�, π) a priority profile
and τ ′ = (�′, π) a π-consistent split of τ . In accordance with the definition
of the French tie breaking, let π′ be the strict tie breaking rule constructed
under π and R. Because preferences are correlated under R, that is, students
have the same preference relation under R, for each school a, π′a = πa. Hence,

π′ = π. (26)

Because τ ′ is a consistent split of τ , we also have �′π=�π. Therefore, by
Equation (26)

�′π′=�π′ . (27)

Consequently, the following equally holds. 5

FM τ (R) = FM τ ′(R).

Suppose that student i can manipulate FM τ ′ under R and obtain a seat at
school b. We show that he can also manipulate FM τ under R and obtain
a seat at school b. Let Rb

i be a preference relation in which student i ranks
school b first and R′ = (Rb

i , R−i). By Lemma 3, FM τ ′
i (R′) = b. By Lemma

4, school b is not the first choice of student i under Ri. Hence, school b is
not the first choice in the common preference relation. Let π′′b be the French
tie breaking rule constructed under π the preference profile R′. Because no
student but student i ranked school b first, student i is ordered first under π′′b .
Next, because R′−i = R−i, we have π′′|−i= π′|−i. By replacing this equality
in Equation (27), we have :

�π′′|−i=�′π′′|−i. (28)

That is, the ordering of students other than student i is the same under �π′′b
and �′π′′b . Then we can compare the ordering of student i under �π′′b and �′π′′b .

Step 1 : The position of student i under �π′b did not decrease compared
to �′π′b .

5. Recall that FMτ (R) = DA�π′ (R) and FMτ ′
(R) = DA�

′
π′ (R).
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Let Ei
�b be the indifference class containing student i under �b. Because

π′′b simply breaks ties in �b, the ordering of student i relative to any student
not in Ei

�b does not change. Because student i is ordered first under π′′b ,
by breaking the indifference class Ei

�b , student i is ordered higher than any
student in Ei

� under �π′′b . Observe that because �′b is a split of �b, the orde-
ring of student i relative to any student not in Ei

�b is the same under both
�π′′b and �′π′′b . Therefore, the ordering of student i is higher under �π′′b com-
pared to �′π′′b or his ordering remains the same under both.

Step 2 : Student i is assigned to a seat at school b under FM τ (R′).

First, recall that FM τ (R′) = DA�π′′ (R′) := µ. Since FM τ ′
i (R′) = b and

FM τ ′(R′) = DA�
′
π′′ (R′), we have DA

�′
π′′

i (R′) = b. By Equation (28) and
Lemma 14 (b), the later equality implies that

DA
(�′

π′′
b
,�π′′−b

)

i (R′) = b.

This equation, Equation (28) and Lemma 14 (c) imply that DA�π′′i (R′) = b.
Therefore, FM τ

i (R′) = b. Because b Pi FM τ ′
i (R) and FM τ (R) = FM τ ′(R),

we have b Pi FM τ
i (R). Then FM τ

i (R′) = b implies student i can manipulate
FM τ under R and obtain a seat at school b.

Towards providing an example in which the French mechanism induced by
a priority profile τ = (�, π) is manipulable but not the mechanism induced
by a split of τ , let i be a student who can manipulate FM τ under R. Let
τ ′ = (�′, π) be a priority profile such for each school a, �′a is a minimal
πa-consistent isolation of i. By Lemma 6, student i cannot manipulate FM τ ′

under R.

Appendix 17. Proof of Lemma 7



99

(1) ⇒ (2). We prove this par contrapositive. Suppose that for some prio-
rity structure τ = (�, π), a tie i ∼b j with student i has a quasi-cycle
constituted of three distinct students i, j and k, three schools a, b and c and
three subsets Ia, Ib and Ic of students satisfying (1), (1-a) or (1-b) and (2)
of Definition 1.

Claim 1. Student i can manipulate FM τ to obtain a seat at school b.

Consider the following components of some preference profiles R and R′ :

Ri RIa∪{k} RIb∪{j}

a a b

b b a

∅ ∅ ∅

R′i R′Ia∪{k} R′Ib R′Ic∪{j}
a a b c

b b a b

∅ ∅ ∅ ∅

If (1-a) holds consider the preference profile R in which the components of
students in Ia∪Ib∪{i, j, k} are specified as above and the component of each
student not in that set is a preference relation in which no school is accep-
table. Then, FM τ

i (R) = ∅. Let Rb
i be a preference relation in which school

b is the first choice of student i. Because i πb j, we have FM τ
i (Rb

i , R−i) = b.
Thus, student i manipulates FM τ to obtain a seat at school b. If (1-a) does
not hold, consider a preference profile R′ in which the components of stu-
dents in Ia ∪ Ib ∪ Ic ∪ {i, j, k} are specified as above and the component of
each student not in that set is a preference relation in which no school is ac-
ceptable. Since j πb i, we have FM τ

i (R′) = ∅. However, FM τ
i (Rb

i , R
′
−i) = b.

Thus, student i manipulates FM τ to obtain a seat at school b.
(2) ⇒ (1). We prove this by the contrapositive. Let τ = (�, π) be a

priority structure and suppose that student i manipulates FM τ at R via R′i
to obtain a seat at school b. That is, b = FM τ

i (R′i, R−i) and b Pi FM τ (R).

Claim 2. There is a tie i ∼b j with student i that has a quasi-cycle.

Let school a be the first choice of student i under Ri. By Lemma 4, b 6= a.
Let Rb

i be a preference relation of student i in which school b is his first choice
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and Rb = (Rb
i , R−i). By Lemma 3, FM τ

i (Rb) = b. Let � = f(R,�, π) and
�′ = f(Rb,�, π). Consider the mechanism DA(�′b,�−b).

Claim 3. DA(�′b,�−b)
i (R) = b.

First, because FM τ (Rb) = b Pi FM
τ (R), we have b Pi DA�i (R). Second,

because �′b|−i= �b|−i, the algorithms to DA�(R) and DA(�′b,�−b)(R) have
the same steps before the step in which student i applied to school b. There-
fore, b Ri DA

(�′b,�−b)
i (R). Suppose now that b Pi DA

(�′b,�−b)
i (R). By Equation

(19), in which school b plays the role of school a, we have DA(�′b,�−b)
i (Rb) =

DA�
′

i (Rb) = b. Hence, student imanipulatesDA(�′b,�−b) at R via Rb, contrary
to DA(�′b,�−b) being strategy-proof. Hence, DA(�′b,�−b)

i (R) = b.

Let r > 1 be the first step of the DA algorithm that leads to µ =

DA(�′b,�−b)(R) in which student i proposed to school b. Since student i can
manipulate FM τ to obtain a seat at school b, by Lemma 6, student i has a
tie with another student under �b. Thus, there is at least one student in Ei

�b
distinct from student i.

Consider the DA processes for (R,�) and (R, (�′b,�−b)) and note that
they have the same steps until r− 1. We continue by establishing two steps.

Step 1 : In at least one step in {r, . . . , r} of the DA process for (R, (�′b,�−b)),
school b either held a student from Ei

�b distinct from student i or received
an application from such a student.

Suppose, to the contrary, that this is not the case. Then either any ap-
plication to school b from a student in Ei

�b distinct from student i has been
received and rejected before Step r or no such a student ever applied to
school b. In either case, school b received the application of student i wi-
thout any other student from Ei

�b to be ever considered. Because the DA
processes under (R,�) and (R, (�′b,�−b)) have the same steps until r − 1,
then at Step r, school b is holding on the same set of students and received
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the same applications in both processes. Let I ′ = Ei
�b \ {i}, and note that

�′b|I\I′= �b|I\I′ . Because school b does not hold and does not receive an ap-
plication from a student in I ′, both processes have the same steps until r.
It is now easy to see that, by induction, they have the same steps until r.
Because DA(�′b,�−b)

i (R) = b, we have DA�i (R) = b. This contradicts the fact
that b Pi DA�i (R) = FM τ (R).

Step 2 : In at least one step in {r, . . . , r}, at least one student from
Ei
�b distinct from student i is rejected by school b in the DA process for

(R, (�′b,�−b)).

Suppose, to the contrary, that this is not the case. Because in at least one
step in {r, . . . , r} school b held or has received an application from at least
one student from Ei

�b , distinct from student i, then one such student is assi-
gned a seat at school b under DA(�′b,�−b)(R). Therefore, the set of students
who could be rejected by school b after Step r − 1, is a subset of the set
{j′|i �b j′} of student who have less priority than student i under �b. We
claim that

DA�(R) = DA(�′b,�−b)(R).

First, recall that the DA processes under (R,�) and (R, (�′b,�−b)) have the
same steps until r − 1. Therefore, at Step r of both processes each school
a′ has received the same new applications and thus has to choose from the
same set Ira′ of students. Let k be a student who is rejected by school b and
j a student who is tentatively accepted by school b both at Step r of the
DA process for (R, (�′b,�−b)). Then i �b j and k �b i. Therefore, k �b j.
Then, by definition of �b we have j �b k. Hence, the set of students in I

r

b

who are in excess of capacity under �′b remained lower ranked under �b.
Therefore, school b holds on to the same set of students at Step r of both
processes. Both processes have the same steps until r. By induction, both
processes have the same steps and thus DA�(R) = DA(�′b,�−b)(R). Because
DA

(�′b,�−b)
i (R) = b by Claim 3, we have DA�i (R) = b. This contradicts the
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fact that b Pi DA�i (R) = FM τ (R).

Let r′ be the first step in which a student from Ei
�b , distinct from student

i, is rejected after Step r. Let j be one such student. We now construct a
quasi-cycle of the tie i ∼b j with student i. For each school a′, let Ir′a′ be
the set of students that school a′ held at step r′ of the DA process under
(R, (�′b,�−b)). Let k ∈ Ir

′
a and Ia = Ir

′
a \ {k}. Let Ib = Ir

′

b \ {i}. Since
school a is the first choice of student i, for each ` ∈ Ia ∪ {k}, ` �πa i. Next,
because FM τ does not violate the basic priorities, for each ` ∈ Ib, ` �b j.
Furthermore, Ia and Ib are disjoint because no student is held by two schools
at each step. Therefore, i, j, k and Ia and Ib satisfy (1) and (2) of Definition
1. It remains to verify that (1-a) or (1-b) of Definition 1 is satisfied. Because
student j is rejected by school b, he has at least one acceptable school under
Rj. Let c be his first choice under Rj. We consider two cases :

Case 1 : c = b. Because student j is rejected by school b andDA(�′b,�−b)
i (R) =

b, we have i �′b j. Since �
′
= f(Rb,�, π), both student i and j have ranked

school b first under Rb. Hence, i πb j.
Case 2 : c 6= b. Let I ′c = Ir

′
c . Because student j is rejected by school

b, he is also rejected by school c at a step less than r′. Hence, at Step r′,
the capacity of school c is full, that is, |I ′c|= qc. Because school c is the first
choice of student j under Rj, for each ` ∈ I ′c, ` �c j and, by definition, for
each ` ∈ I ′c, ` �πc j. Because no student is held by two distinct schools at
the same step, Ic and Ib are disjoint, I ′c and Ia ∪{k} are disjoint if c 6= a and
if c = a, I ′c = Ir

′
a = Ia ∪ {k}.

Case 1 and Case 2 show that (1-a) or (1-b) of the Definition 1 is satisfied.

Appendix 18. Proof of Lemma 5
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Let τ = (�, π) be a priority profile and suppose that school a is strategi-
cally accessible to student i via FM τ . By Claim 2 there is a tie i ∼a j with
student i which has a quasi-cycle. By Claim 1 and the example constructed
wherein student i can manipulate FM τ and obtain a seat at school a under
a preference profile R in which school a is his second choice. By Lemma 4,
school a is the best school that student i can manipulate and obtain a seat
at under R.

Appendix 19. Proof of Theorem 6

Let τ ′ = (�′, π) be a consistent split of τ = (�, π) and suppose that
school b is strategically accessible to student i via mechanism FM τ ′ . Then,
for some R and R′i, FM τ ′

i (R′i, R−i) = b and b Pi FM τ ′
i (R). By Claim 2, there

is a tie i ∼′b j with student i which has a quasi-cycle. By the assumption of
consistent split, i ∼b j and �′π=�π. Hence, the quasi-cycle of the tie i ∼′b j
with student i is also a quasi-cycle of the tie i ∼b j with student i. By Claim
1, student i can manipulate FM τ to obtain a seat at school b, showing that
school b is also strategically accessible by student i via FM τ .

Appendix 20. Proof of Corollary 7

Let τ = (�, π) be given and τ ′ = (�CI ,�π). Then BM τ = FM τ ′ . First,
for each school a and each student i, we have �πa |Ei�a= πa|Ei�a , that is,
the restriction of the tiebreaker �πa and πa to the indifference class contai-
ning student i coincide. Therefore, FM (�,�π) = FM τ . Second, (�,�π) is
a consistent split of (�CI ,�π). Therefore, by Theorem 6, FM τ ′ = BM τ is
as strategically accessible as FM τ . For any strict basic priority, the French
mechanism is strategy-proof and thus not strategically accessible whereas for
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some strict basic priorities, the Boston mechanism is strategically accessible.

Appendix 21. Proof of Theorem 7

Let τ 0 = (�, π) be a priority profile and suppose that school a is strate-
gically accessible by student i via FM τ0 . Let �′a be a πa-consistent minimal
isolation of student i in �a. Let �′= (�′a,�−a) and τ 1 = (�′, π). By Lemma
6, school a is not strategically accessible by student i via FM τ1 . Together
with Proposition 7, FM τ1 is less strategically accessible than FM τ0 . If FM τ1

is not strategically accessible, let T = 1 and τ 1 =�π. Otherwise, choose a
school which is strategically accessible and proceed as before. It is easy now
to follow this procedure and construct the desired sequence.

Appendix 22. Proof of Proposition 9

Let R and R′i be as specified in the proposition. We say that R′i is a
reshuffling of the last m − k choices of Ri. Let a be a school ranked in the
first k choices under Ri. Let π be (arbitrary) given and τ = (�, π). Let
� = f(R,�, π) and �′ = f(R′,�, π). By definition, FM τ (R) = DA�(R)

and FM τ (R′) = DA�
′
(R′). To prove the proposition, it is enough to show

that, DA�i (R) = a if and only if DA�
′

i (R′i, R−i) = a.
Case 1 : DA�i (R) = a.

First, observe that for each school b ranked in the first k choices of Ri, we
have �b = �′b and for each school b ranked in the last m−k choices of Ri, we
have �b|−i= �

′
b|−i. Second, because Ri and R′i agree in the first k ranking,

the steps of the algorithms that leads to DA�(R) and DA�
′
(R′) are the

same. This is because schools that have different priorities are ranked below
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a under both Ri and R′i and the relative orderings of students other than i
at those schools are the same. Therefore, DA�(R) = DA�

′
(R′).

Case 2 : DA�i (R) 6= a.
If DA�i (R) = b for some school b ranked in the first k choices of Ri, then
DA�

′

i (R′) = b 6= a. If DA�i (R) is some school b ranked in the last m − k

choices of Ri or ∅, then DA�
′

i (R′) 6= a. Otherwise, Case 1 and DA�
′

i (R′) = a

would imply that DA�i (R) = a because Ri is also a reshuffling of the last
m− k choices and a is ranked in the first k choices of R′i.

Appendix 23. Proof of Lemma 8

Let k = t`.
Proof of (a). Let Ri be such that some school in {ak+1, . . . , am} is ranked
above some school in {a1, . . . , ak} under Ri. We now construct a strategy for
student i which stochastically dominates Ri with respect to R∗.

Construction of the strategy.

Step 1 :
(a). Starting from the bottom of Ri and moving to the top, let b be
the first school in {ak+1, . . . , am} which is ranked above a school in
{a1, . . . , ak}. Let a be the most preferred school under R∗ in the set of
schools that are ranked below b under Ri, that is, a = maxR∗{a′|b Pi
a′}.
(b). Let Ra↔b

i be the preference relation obtained from Ri by swap-
ping (the positions of) school a and b. Let R(1)

i := Ra↔b
i .

More generally, for t ≥ 2,

Step k :
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(a). If under R(t−1)
i some school in {ak+1, . . . , am} is ranked above

some school in {a1, . . . , ak}, then starting from the bottom of R(k−1)
i

and moving to the top, let b be the first school in {ak+1, . . . , am} that
is ranked above a school in {a1, . . . , ak}. Let a be the most preferred
school under R∗ in the set of schools that are ranked below b under
R

(t−1)
i .

(b). Let R(t−1)a↔b
i be the preference relation obtained from R

(t−1)
i by

swapping (the positions of) school a and b. Let R(t)
i := R

(t−1)a↔b
i .

At each step of this procedure, some school in {ak+1, . . . , am} is switched
to a lower position. More precisely, if school b is such a school, then b will
be switched to a lower position at subsequent steps provided that it is still
ranked above some school in {a1, . . . , ak}. Then, school b is eventually ranked
below those schools. Thus, the procedure terminates at a finite number of
steps. Let R̂i be the preference relation obtained at the end of this procedure.
We provide an example of this construction.

Example 13. Construction of the strategy
Let S = {a, b, c, d, e, f} and suppose that student i belongs to the first

indifference class and that the marginal school for this indifference class is
school c. In the left hand table below, R∗ is the common ranking and Ri is a
preference relation reported by student i.

R∗ Ri

a c

b e

c f

d b

e a

f d

Ri R1
i R2

i R3
i = R̂i

c c c c

e e a a

f → a → e → b

b b b e

a f f f

d d d d

The schools in bold face are the ones whose positions have been swapped to
obtain the next preference ordering.

Then, we have :



107

Claim 4. The strategy R̂i weakly dominates the strategy Ri.

Proof. Let a and b be the two schools identified in Step 1 (a) as denoted there.
Let S1 be the set of schools in {a1, . . . , ak} different than a that are ranked
below school b under Ri. Let S2 be the set of schools that are ranked above
b under Ri and S3 the set of schools in {ak+1, . . . , am} that are ranked below
b. Note that, by construction, there is no school in {ak+1, . . . , am} which is
ranked in between two schools in S1 under Ri otherwise, b would not be the
first school in {ak+1, . . . , am} which is ranked above a school in {a1, . . . , ak}.
In the following tables, we clarify these notations.

Example 14. Consider an example in which school a4 is the marginal school
for the first indifference class and student i belongs to that class. Suppose that
student i reports the preference relation Ri. Then the sets S1, S2 and S3 and
schools a and b are represented in the right hand table.

R∗

a1

a2

a3

a4

a5

a6

a7

Ri

S2

{
a7

a1

b = a5

S1

{
a4

a3

a = a2

S3

{
a6

Let Ra↔b = (Ra↔b
i , R−i), p′ = rFM�(Ra↔b) and p = rFM�(R). We show

that p′ Rsd
∗ p.

By swapping a and b in Ri there is (possibly not) a reallocation of proba-
bility shares between schools in the lotteries assigned to student i. We need
to track the flow of these shares. We use the following representation of the
allocation for student i under rFM�(R) and rFM�(Ra↔b).
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Ri Ra↔b
i

a1 a2 a3 . . . am ∅ a1 a2 a3 . . . am ∅

π1
1

(n!)m
1

(n!)m

π2
1

(n!)m
1

(n!)m
...

π|Ω|
1

(n!)m
1

(n!)m

We say that there is a flow of probability shares from school a′ to a
school b′ if there is a profile of tiebreakers π such that FM (�,π)

i (R) = a′

and FM
(�,π)
i (Ra↔b) = b′. In the above representation, there is a flow of

probability shares from school a2 to school a3, from school a1 to school am
and from school am to school a1.

The idea of the proof is to show that the only flows that are possible are
the ones in which shares of probability are shifted from school b to schools
in S1, which is an improvement for student i, and the ones in which shares
of probability are shifted from schools in S1 to school a, which is also an
improvement for student i. The rest of the proof consists of showing that any
other flow is not possible. In any of the following steps, we let �= f(R,�, π)

and �′= f(Ra↔b,�, π) (if there is no confusion).
Step 1 : There is no flow of probability shares from a school in S2 to a

school in S2 nor from a school in S \ S2 to a school in S2.
This follows from Proposition 9 in which for each a′ ∈ S2, pia′ = p′ia′ .

Step 2 : There is no flow of probability shares from a school in S1 to a dis-
tinct school in S1. Suppose, to the contrary, that there are two distinct schools
c, d ∈ S1 and a tiebreaker profile π such that FM (�,π)

i (R) = DA�i (R) = c

and FM (�,π)
i (Ra↔b) = DA�

′

i (Ra↔b) = d. From Ri to Ra↔b
i only the positions

of a and b changed. Therefore, for each school a′ other than a and b, we have
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�a′=�′a′ and

�a|−i=�′a|−i and �b|−i=�′b|−i. (29)

Let R′i be a preference relation for student i obtained from Ri by moving
school a and b to the last and next to last positions. Since i is not matched
to a or to b under DA�(R), a successive application of Lemma 14 (d) implies
that DA�i (R′i, R−i) = c. The same argument leads to the conclusion that
DA�

′

i (R′i, R−i) = d. Because school a and b are ranked below school c under

R′i, by Equation (29) and Lemma 14 (a), we have DA
(�′{a,b},�−{a,b})
i (R′i, R−i) =

c. Note now that (�′{a,b},�−{a,b}) =�′. Therefore, we haveDA�
′

i (R′i, R−i) = c,
which contradicts the conclusion that DA�

′

i (R′i, R−i) = d.
Step 3 : There is no flow of probability shares from a school in S1 to school

b. Suppose, to the contrary, that for some c ∈ S1, a tiebreaker profile π, we
have FM (�,π)

i (R) = DA�i (R) = c and FM
(�,π)
i (Ra↔b) = DA�

′

i (Ra↔b) = b.
Let R′i be a preference relation for student i obtained from Ri by moving
school a to the last position. By Equation (29) and Lemma 14 (d), we have
DA�i (R′i, R−i) = c and DA�

′

i (R′i, R−i) = b. By Equation (29) and Lemma
14 (a), we have DA(�a,�′−a)

i (R′i, R−i) = b. Next, we have �b |−i=�′b |−i and
student i is ordered higher at �b than �′b. Therefore, by Lemma 14 (c),

DA
(�a,�′−a)

i (R′i, R−i) = b implies that DA
(�{a,b},�′−{a,b})
i (R′i, R−i) = b. Finally,

observe that (�{a,b},�′−{a,b}) = �. Hence, DA�i (R′i, R−i) = b, which contra-
dicts the conclusion that DA�i (R′i, R−i) = c.

Step 4 : There is no flow of probability shares from school a to a school
in S1. This follows from an argument similar to that of Step 3.

Step 5 : There is no flow of probability shares from any school in S3 to
any school in S \S3 nor from any school in S3 to a distinct school in S3. More
precisely, for each a′ ∈ S3, pia′ = p′ia′ = 0. Because school b is the first school
which is ranked above a school in {a1, . . . , ak} under Ri, any school in S3

is ranked below any school in {a1, . . . , ak} under Ri. The conclusion follows
from the fact that

∑k
j=1 qaj ≥ n.
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We now show that p′ Rsd
∗ p, by showing that for each ` ≤ m,

p′ia1 + . . .+ p′ia` ≥ pia1 + . . .+ pia` . (30)

According to Step 1 and Step 5, only for each school a′ ∈ S2 ∪ S3 = S \
({a, b} ∪S1), p′ia′ = pia′ . Therefore, we only need to show that Equation (30)
holds at the positions ` of the schools in {a, b} ∪ S1. Let t be the position of
school a in R∗, that is, a = at. Note that school a has the lower index and
school b has the greatest index. Further, all schools with an index less than
t are ranked above b under Ri ; that is, if t ≥ 2, then {a1 . . . , at−1} ⊂ S2. If
t ≥ 2, then the total probability shares of schools in {a1 . . . , at−1} under p
and p′ are equal. Let α be this common probability shares.

Case 1 : Position ` = t.
Because there is no flow of probability share from a to any other school,

we have p′ia ≥ pia. Therefore, we have

α + p′iat ≥ α + piat ,

which shows that Equation (30) holds for position `.
Case 2 : Position ` of some school in S1.
Let S+

1 (`) be the set of schools a′ in S1 whose positions are less than or
equal to ` and such that p′ia′ − pia′ ≥ 0. Let S−1 (`) be the set of schools a′ in
S1 whose positions are less than or equal to ` and such that p′ia′−pia′ < 0. By
Step 2 through Step 4, for each a′ ∈ S−1 (`), the gap pia′ − p′ia′ of probability
shares flowed to school a. Therefore, we have

p′ia − pia ≥
∑

a′∈S−1 (`)

(pia′ − p′ia′).

A rearrangement of this relation leads to

p′ia +
∑

a′∈S−1 (`)

p′ia′ ≥ pia +
∑

a′∈S−1 (`)

pia′ .

Because for each a′ ∈ S+
1 (`), p′ia′ ≥ pia′ , we have

α + p′ia +
∑

a′∈S−1 (`)

p′ia′ +
∑

a′∈S+
1 (`)

p′ia′ ≥ pia +
∑

a′∈S−1 (`)

pia′ +
∑

a′∈S+
1 (`)

pia′ + α,
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which shows that Equation (30) holds for position `.
Case 3 : Position ` of school b.
By Step 1 and Step 5, probability shares of school b (possibly) flowed to

schools in {a} ∪ S1 and no probability shares of a school in {a} ∪ S1 flowed
to a school not in {a} ∪ S1. Therefore, pib ≥ p′ib and

pib − p′ib =
∑

a′∈S1∪{a}

p′ia′ −
∑

a′∈S1∪{a}

pia′ .

By simple rearrangement, we obtain the following relation

α + p′ib +
∑

a′∈S1∪{a}

p′ia′ = pib +
∑

a′∈S1∪{a}

pia′ + α.

which shows that Equation (30) holds for position `.
All cases being considered, we have p′ Rsd

∗ p. Since the stochastic domi-
nance relation is transitive (Bogomolnaia and Moulin, 2001), rFM�(R̂i, R−i) R

sd
∗

rFM�(R).
We finally give and example in which rFM�(R̂i, R−i) P

sd
∗ rFM�(R). To

this end, let p′ = rFM�(R̂i, R−i) and p = rFM�(R). Let a be the school
in {ak+1, . . . , am} which is ranked higher under Ri and S ′ the set of schools
which are ranked above a under Ri. Note that S ′ ⊂ {a1, . . . , ak}. Let R′ be
a preference profile in which R′i = Ri, each student j 6= i ranks schools in S ′

first as in Ri and all schools in {a1, . . . , ak} are ranked first under Rj. Because
all students rank schools in S ′ first and the same and S ′ ⊂ {a1, . . . , ak}, we
have

∑
a′∈S′ pia′ < 1. Because i ranks school a higher than any other student,

we have pia = 1−
∑

a′∈S′ . By successive application of Step 1, for each a′ ∈ S ′,
pia′ = p′ia′ . 6 Because each student ranks all schools in {a1, . . . , ak} in the first
k positions under (R̂i, R−i) and

∑
j=1 qaj ≥ n, we have

∑k
j=1 p

′
iaj

= 1. Thus,
all probability shares of school a flowed to schools in {a1, . . . , ak}, which
proves that p′ P sd

∗ p.

6. This is because the set of schools in S′ are ranked above school a and remain so
at each step of the construction of R̂i. Thus, they are ranked above the first school in
{ak+1, . . . , am} which is ranked above a school in {a1, . . . , ak} under R(t)

i from the bottom
up.
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Proof of (b). Regarding part (a) of the lemma, it is enough to show that
the strategy R̂i would be dominated if ak is not ranked kth. Suppose that
ak is not ranked kth under R̂i. Then, letting R

(1)
i = R̂i and at each step t

swapping ak and the most preferred school which is ranked below ak under
R

(t)
i , we can follow the proof argument of part (a) and show that the strategy

obtained weakly dominates R̂i.

Appendix 24. Proof of Theorem 8

Let (R,�) be a correlated economy. The proof involves computing DA’s
assignment first and second proving that at any symmetric equilibrium of
the French mechanism rFM�, each agent has a deviation that secures him
an expected utility at least as greater than that of DA’s assignment. We first
compute DA’s assignment in the following.

Assignment under DA : It is a weakly dominant strategy for each student
to report his preferences truthfully. We are interested in the assignment of
DA under truth telling. Note that students have a common ordinal preference
a1 . . . am and schools have the same priorities. For each ` ∈ {1, . . . , T}, let

t` := min{t|
t∑

k=1

qak ≥ n1 + . . .+ n`}

be the index of the marginal school for students in I`. Under DA’s assign-
ment, no student in I` is assigned a seat of a school with an index less than t`.

Assignment of students in I1 : The probability that each student in I1 is
assigned to the school with index t is

PDA
1at =


min{qat , n1 −

∑t1−1
t′=1 qat′}

n1

if t ≤ t1

0 if t > t1.
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Assignment of students in I` with ` > 1 :

(a) if t` = t`−1, then the probability that each student in I` is assigned
to the school with index t is

PDA
`at =

{
1 if t = t`

0 otherwise.

(b) if t` > t`−1, then the probability that a student in I` is assigned
to a school with index t is

PDA
`at =

q̂at
n`
,

where

q̂at =


∑t`−1

t′=1 qat′ − (n1 + . . .+ n`−1) if t = t`−1

qat if t`−1 < t < t`

n1 + . . .+ n` −
∑t`−1

t′=1 qat′ if t = t`

0 otherwise.

Given DA’s assignment for R, we compare the distribution of school seats of
students in indifference classes under both DA and any undominated strategy
of the French mechanism.

Claim 5. The same number of seats of each school is allocated to each in-
difference class under bother rDA� and any undominated strategy of rFM�.

Proof. Let R′ be an undominated strategy under rFM�, ` ≥ 1 and I` an
indifference class. Because schools have the same priorities and they are res-
pect under the French mechanism, the outcome students in I ′ =

⋃`
k=1 Ik is

simply given by

rFM�
I′ (R

′) = rFM�|I′ (R′I′),

where rFM�|I′ is the extension of rFM� to problems where the set of stu-
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dents is I ′. 7

Indifference class I1. By Lemma 8, each student in I1 ranks any school in
{a1, . . . , at1} in his top t1 rankings under R and school at1 at t1’th ranking.
Therefore, all seats of each school of index in {1, . . . , t1− 1} are allocated to
only students in I1 and the following number of seats of the school of index
t1 is allocated to students in I1

n1 −
t1−1∑
t′=1

qat′ .

This proves the claim for the first indifference class.

Let ` > 1 and suppose the claim holds up to the indifference class I`−1.

Indifference class I`. By the induction assumption, all seats of schools of
index t < t`−1 (if any) are allocated to indifference classes 1 through ` − 1

as under DA. Therefore, only seats of school of index t1 or lower remain.
Further, the following number of seats of the school of index t`−1 remains

t`−1∑
t′=1

qat′ − (n1 + . . .+ n`−1). (31)

(a) t` = t`−1. Then, the number in Equation (31) is greater than n` ; hence,
n` number of seats of the school of index t` is allocated to the indifference
class I`.

(b) t`−1 < t`. Then the number in Equation (31) is less than n`. Hence, this
number of the seats of school of index t`−1 is allocated to the indifference class
I`. In addition, By Lemma 8, each student in I` ranks schools in {a1, . . . , at`}
in the top t` under R and the school of index t` at t`’th ranking. Therefore,
all seats of each school of index t with t`−1 < t < t` are allocated to the

7. The extension is defined as follows : letM′ be the set of matchings µ : I ′ → I ′ ∪ S.
Then, for each profile π of orderings of I ′, defining τ := (� |I′ , π), FMτ : RI′ → M′
such that for each R ∈ RI′ , FMτ (R) is the assignment selected by FMτ for R. Then, the
associated random analogue rFM�|I′ is also defined.
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indifference class I`. Accordingly, a total of
t`−1∑
t′=1

qat′ − (n1 + . . .+ n`−1)

seats of schools of indexes t with t`−1 ≤ t < t` are allocated to I`. Therefore,
the following number (which is the gap needed to cover the indifference class
I`) of seats of the school of index t` are allocated to the indifference class I` :

n1 + . . .+ n` −
t`−1∑
t′=1

qat′ .

This proves that the claim holds for the indifference class I`. Therefore, the
claim holds for each indifference class.

We are now ready to finish the proof of Theorem 8. Let (σ∗` )`∈T be a
symmetric equilibrium of the French mechanism rFM�. Let P FM

`a (σ) be the
probability that a student in the indifference class ` be assigned to school
a when he plays according to σ` while the other students play according to
σ∗. The probability that a given student in I` be assigned to a school a in
equilibrium is

∑
v∈V P`a(σ

∗(v))f`(v). Therefore, the total seats assigned to
students in I` in equilibrium of rFM� is

n`
∑
v∈V

P`a(σ
∗(v))f`(v).

By Claim 5, the same number of seats of each school is allocated to the
indifference class I` under both rDA�(R) and any symmetric equilibrium of
rFM�. Therefore, we have

n`
∑
v∈V

P`a(σ
∗(v))f`(v) = n`P

DA
`a

from which we derive that∑
v∈V

P`a(σ
∗(v))f`(v) = PDA

`a .

Consider the following strategy σ̂` of a student in the indifference class I`.
For each type v̂, play σ∗(v) with probability f`(v). Therefore, the probability
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that such student be assigned to school a is

P FM
`a (σ̂) :=

∑
v∈V

P`a(σ
∗(v))f`(v) = PDA

`a .

This student is able to replicate the assignment of rDA� for R via the stra-
tegy σ̂`. The equilibrium strategy must be associated with an expected utility
for this student at least as greater than that of rDA�.

Proofs from Chapter 3

Appendix 25. Proof of Theorem 9 and Theorem 10

A choice rule is a function ϕ : RN → A. A choice rule ϕ is strategy-proof
if for each R ∈ RN , each i ∈ N and each R′i ∈ R, ϕ(R) Ri ϕ(R′i, R−i).
A choice rule ϕ is onto if ϕ(RN) = A. In our proofs we need the following
result.

Result. (Gibbard, 1973; Satterthwaite, 1975) Suppose that there are at least
three alternatives. A choice rule is strategy-proof and onto if and only if it is
a dictatorial rule.

Part 1 : Proof of Theorem 10

« If part ». It can be easily verified that every augmented sequential rule
is strategy-proof under lexicographic extension and onto.

« Only if part ». Suppose that a rule f is strategy-proof under lexico-
graphic extension and onto. We show that f is an augmented sequential rule.
If m = 2, then by Lemma 9 f is a simple game and is trivially an augmented
sequential rule. Therefore, we assume that m ≥ 3 for the rest of the proof.
For each R ∈ RN and each t ≤ m, let ft(R) denote the alternative ranked at
the tth position of f(R). We consider two cases :



117

Step 1 : Consider the following conjecture : Let k ∈ {1, . . . ,m− 2}. The
ranking over the first k positions of f are determined as follows : there is a
function Γ :

⋃k−1
t=0 Ht → N such that for each R ∈ RN , there is a sequence

of consecutive histories (ht)k−1
t=0 starting from h0 ∈ H0 such that f1(R) is

the alternative ranked first by RΓ(h0) in A(h0). The history h1 is reached
following the selection of f1(R). Iteratively, for each t ≤ k − 1, ft+1(R) is
the alternative ranked first by Γ(ht) in A(ht). The history ht+1 is reached
following the selection of the alternative ft+1(R).

We prove the above conjecture by induction. Let ϕ : RN → A be a choice
rule defined as follows : for each R ∈ RN , ϕ(R) = f1(R).

Lemma 15. ϕ is strategy-proof and onto.

First, suppose to the contrary that there is i ∈ N , R and R′i such that

ϕ(R′i, R−i) Pi ϕ(R). (32)

By definition, ϕ(R′i, R−i) and ϕ(R) are the alternatives ranked first in f(R′i, R−i)

and f(R) respectively. By lexicographic extension, Equation 32 implies that
f(R′i, R−i) P

lex
i f(R) which contradicts the assumption that f is strategy-

proof under lexicographic extension. Second, let a ∈ A. Let R0 be a collective
ordering in which a is ranked first. Because f is onto, there is R ∈ RN such
that f(R) = R0. Therefore, ϕ(R) = f1(R) = a. Because m ≥ 3, we draw the
following result :

Result (Gibbard-Satterthwaite theorem). ϕ is a dictatorial rule.

Let i be the dictator for ϕ. Let Γ0 : H0 → N such that Γ(h0) = i. This is
the induction base.

Induction base : For each R ∈ RN , f1(R) is the alternative ranked first
by RΓ(h0) in A(h0). By this induction base, ifm = 3 then the conjecture holds
trivially.

Induction hypothesis : Suppose that m > 4 and that the conjecture
holds for some k ∈ {1, . . . ,m − 3}. Let Γk :

⋃k−1
t=0 Ht → N be the function

identified in the conjecture.
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Induction step : Let Γk+1 :
⋃k
t=0Ht → N be a function such that for

each h ∈
⋃k−1
t=0 Ht, Γk+1(h) = Γk(h). Let h ∈ Hk and a1 . . . ak the sequence of

selection up to the history h. LetR(A(h)) be the set of orderings of A(h). For
each i and each Ri ∈ R(A(h)), let R̂i ∈ R be an ordering of A that coincides
with Ri in A(h) and which coincides with a1 . . . ak in the first k positions.
By the induction hypothesis, for each R ∈ R(A(h))N , f(R̂) : a1 . . . ak . . ..
Therefore, fk+1(R̂) ∈ A(h). Let ϕ : R(A(h))N → A(h) be a choice rule such
that for each R ∈ R(A(h))N , ϕ(R) = fk+1(R̂).

Lemma 16. The choice rule ϕ is strategy-proof and onto.

Démonstration. The proof follows a similar argument as that of Lemma 15.

Because k ≤ m− 3, |A(h)|≥ 3 and thus, by Result 3.4 there is a dictator
i for ϕ. Let Γk+1(h) = i. Therefore, the conjecture holds for k + 1 with the
function Γk+1.

Step 2 : There is a function Γ :
⋃m−2
t=0 Ht → N∪(A×Ĉ) such that for each

h /∈ Hm−2, Γ(h) ∈ N and such that for each h ∈ Hm−2, Γ(h) ∈ (A(h) × Ĉ)
and f = fΓ. Let Γ :

⋃m−2
t=0 Ht → N ∪ (A×Ĉ) be a function such that for each

h /∈ Hm−2, Γ(h) = Γm−3(h). Let h ∈ Hm−2, {a, b} = A(h) and a1 . . . am−2 the
sequence of selection up to the history h. LetR({a, b}) be the set of orderings
of {a, b}. For each i ∈ N and each Ri ∈ R({a, b}), let R̂i ∈ R be an ordering
of A in which the alternatives ranked in the first m− 2 positions are ranked
as a1 . . . am−2. By Step 1, for each R ∈ R({a, b})N , f(R̂) : a1 . . . am−2 . . ..
Therefore, fm−1(R̂) ∈ {a, b}. Let ϕ : R({a, b})N → R({a, b}) be a rule such
that for each R ∈ R({a, b})N , ϕ(R) : a b where fm−1(R̂) = a and fm(R̂) = b.

Lemma 17. The choice rule ϕ is strategy-proof and onto.

Démonstration. The proof follows a similar argument as that of Lemma 15.

Because |A(h)|= 2, by Lemma 9 there is a simple game Ŝxω̂ with x ∈ {a, b}
such that Ŝxω̂ = ϕ. Let Γ(h) = (x, ω̂). Having constructed the function Γ :⋃k−2
t=0 Ht → N ∪ (A× Ĉ) then, it is now clear that :
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Conclusion : f = fΓ.

Part 2 : Proof of Theorem 9

Suppose that m ≥ 3 and let f be a rule that is strategy-proof under every
refinement and neutral. By Theorem 11, f is an augmented serial rule.

A dictatorial rule is clearly strategy-proof under every refinement and
neutral. We verify that any other augmented serial rule is not strategy-proof
under inverse lexicographic extension. Let f (σ,ω̂) be an augmented serial rule
and suppose that it is not a dictatorial rule. Let N̂ =

⋃
T∈ω̂ T . We consider

two cases :
Case 1 : |N̂ |> 1. Let i := σ(m − 2). Let R ∈ RN be such that Ri :

d1 . . . dm−3 a b c and for each j ∈ N \ {i}, Rj : d1 . . . dm−3 a c b. Let R′i :

d1 . . . dm−3 b c a. There is T ∈ ω̂ such that T ⊂ N \ {i} ; otherwise, ω̂ =

{{i}}. 8 This equality contradicts the assumption that |N̂ |> 1. Consequently,
f(R) : d1 . . . dm−3 a c b and f(R′i, R−i) : d1 . . . dm−3 b a c. Because b Pi c, then
fΓ(R′i, R−i) P

ilex
i fΓ(R).

Case 2 : |N̂ |= 1. Let j := σ(m − 1). Let t be the first position,
from m − 2 to the top where j is no longer a dictator for that position.
Such position exists because fΓ is not a dictatorial rule. Let i := σ(t).
Let R ∈ RN be such that Ri : b1 . . . bt . . . bm and for each i′ ∈ N \ {i},
Ri′ : b1 . . . bt bt+2 . . . bm bt+1. If t > 1 let R′i : b1 . . . bt−1 bt+1 bt bt+2 . . . bm. 9

Then, fΓ(R) = Rj and f (σ,ω̂)(R′i, R−i) = R′i. Because bt+1 Pi bm, we have
fΓ(R′i, R−i) P

ilex
i fΓ(R).

Appendix 26. Proof of Theorem 11
8. This result is the implication of the following result (Moulin, 1983, P. 64) : if for

some T ⊂ N for each T ′ ∈ ω̂, T ∩T ′ 6= ∅, then there is T ′′ ∈ ω̂ such that T ′′ ⊂ T . If instead
i ∈ T , for each T ∈ ω̂, then {i} ∈ ω̂. Since ω̂ consists of minimal coalitions, ω̂ = {{i}}.

9. If t = 1, let R′i : b2 b1 b3 . . . bm.



120

« If part ». It is easily verified that every augmented serial rule is strategy-
proof under lexicographic extension and neutral.
« Only if part ». Let f be a rule that is strategy-proof under lexicographic
extension and neutral. It is a matter of verification to prove that a neutral
rule is onto. Therefore, by Theorem 10 f is an augmented sequential rule,
that is, there is a parameter Γ such that f = fΓ. We show that Γ satisfies
the following points :

i. for each k ∈ {0, . . . ,m− 2} and each h, h′ ∈ Hk, Γ(h) = Γ(h′) and
ii. for each h ∈ Hm−2, if (a, ω̂) = Γ(h) for some a ∈ A(h), then Ŝaω̂ is a

strong simple game.
Proof of (ii). Let h ∈ Hm−2, {a, b} = A(h) and (a, ω̂) = Γ(h). By Lemma 9,
Ŝaω̂ is a strong simple game.

Proof of (i). Suppose to the contrary that for some k ∈ {1, . . . ,m − 2}
and some h, h′ ∈ Hk, Γ(h) 6= Γ(h′). Without loss of generality, suppose that
h and h′ are close, that is, there is an history h′′ ∈ Hk−1 from which one can
reach h by the selection of an alternative a and from which one can reach h′

by the selection of an alternative b. By definition, Γ(h′′) ∈ N . Let j = Γ(h′′).
Let i = Γ(h) and ` = Γ(h′). Let a1, . . . , ak−1 be the sequence of selections
up to history h′′. Let π be a permutation such that π(a) = b and for each
x /∈ {a, b}, π(x) = x. Let R and πR be defined as follows :

Rj Ri R`

a1 a1 a1

...
...

...
ak−1 ak−1 ak−1

a a c

b b b

c c a
...

...
...

πRj πRi πR`

a1 a1 a1

...
...

...
ak−1 ak−1 ak−1

b b c

a a a

c c b
...

...
...

Then, fΓ(R) = a1, . . . , ak−1 a b c . . . and fΓ(πR) = a1, . . . , ak−1 b c a . . ..
Therefore, fΓ(πR) 6= πfΓ(R). This relation contradicts the fact that f = fΓ

and that f is neutral.
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Suppose now that for some h, h′ ∈ Hm−2, Γ(h) 6= Γ(h′). Without loss
of generality, suppose that h and h′ are close. Let h′′ be the history that
precedes h and h′. That is, the history h is reached from h′′ by the selection
of an alternative a and h′ is reached from h′′ by the selection of an alternative
b. Let c be the third alternative not yet selected at history h′′. Let j = Γ(h′′),
(ω̂, b) = Γ(h) and (ω̂′, a) = Γ(h′). Because ω̂ 6= ω̂′, either ω̂ \ ω̂′ 6= ∅ or
ω̂′ \ ω̂ 6= ∅. Without loss of generality let T ∈ ω̂ \ ω̂′. Let π be a permutation
of A such that π(a) = b and for each x /∈ {a, b}, π(x) = x. Let R and πR be
as follows.

R1′ R2′ R3′

...
...

...
a a c

b c b

c b a

πR1′ πR2′ πR3′

...
...

...
b b c

a c a

c a b

There are two cases to consider.
Case 1 : j ∈ T . Let R be a preference profile such that for each i ∈ T ,

Ri = R1′ and for each i /∈ T , Ri = R3′ . Because T ∈ ω̂, fΓ(R) : . . . a b c.
Because T /∈ ω̂′ and the fact that ω̂′ is a strong simple game, T c ∈ ω̂′. Thus
fΓ(πR) : . . . b c a. Next, πfΓ(R) : . . . b a c 6= fΓ(πR). This relation violates
the assumption that fΓ is neutral.

Case 2 : j /∈ T . Let R be a preference profile such that for each i ∈ T ,
Ri = R1′ , Rj = R2′ and for each i /∈ T ∪ {j}, Ri = R3′ . Then fΓ(R) : . . . a b c

and fΓ(πR) : . . . b c a. Thus, πfΓ(R) : . . . b a c 6= fΓ(πR). This relation again
violates the assumption that fΓ is neutral.

Appendix 27. Proof of Proposition 10

« If part » : Let f (σ,ω̂) be an augmented serial rule. If an agent is a dictator
for some position, then clearly he is not dummy for f (σ,ω̂). Let i ∈ N and
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suppose that for some T ∈ ω̂, i ∈ T . Let {a, b} ⊂ A and R ∈ RN be such that
for each j ∈ T , Rj : c1 . . . cm−2 a b and for each j ∈ N \ T , Rj : c1 . . . cm−2 b a.
Let R′i ∈ R be such that R′i : c1 . . . cm−2 b a and R′ = (R′i, R−i). Because
T ∈ ω̂, T \ {i} /∈ ω̂. Because {j|a P ′j b} = T \ {i}, we have {j|a P ′j b} /∈ ω̂.
Therefore, f (σ,ω̂)(R) : c1 . . . cm−2 a b and f (σ,ω̂)(R′) : c1 . . . cm−2 b a. Agent i is
not dummy for f (σ,ω̂).

« Only if part ». Let f be a rule and suppose that it is strategy-proof
under lexicographic extension, neutral and no dummy. By Theorem 10, f =

f (σ,ω̂). Suppose that an agent i ∈ N is not a dictator for a position and
i /∈
⋃
T∈ω̂ T . Let R ∈ RN and R′i ∈ R. Then f (σ,ω̂)(R′i, R−i) = f (σ,ω̂)(R).

Finally, we show that there are augmented serial rules which are no
dummy. If n is odd let ω be the majority voting on N defined as follows :
T ∈ ω if and only if |T |> |T c|. If n is even, then let ω be the majority voting
on N \ {σ(1)}.

Appendix 28. Proof of Proposition 11

Let f (σ,ω̂) be an augmented serial rule.
« If part ». Suppose that there is id ∈ N such that for each t ∈ {1, . . . ,m−

2}, σ(t) = i. We claim that fΓ is strategy-proof under Kemeny extension.
Let R ∈ RN and Rid : a1 . . . am−2 a b. Then, either f(R) : a1 . . . am−2 a b or
f(R) : a1 . . . am−2 b a. Therefore, δ(Rid , f(R)) ≤ 1. Let i ∈ N and R′i ∈ R be
such that δ(Ri, f(R′i, R−i)) < δ(Ri, f(R)). Without loss of generality, suppose
that f(R′i, R−i) : a1 . . . am−2 a b and f(R) : a1 . . . am−2 b a. Therefore, a Pi b.
Thus, Ŝω̂((R′i, R−i)|{a,b}) Pi|{a,b} Ŝω̂(R|{a,b}). This contradicts the fact that
Ŝω̂ is strategy-proof under every refinement. If m = 3, then every augmented
serial rule trivially satisfies the condition that for each t ∈ {1, . . . ,m − 2},
σ(t) = σ(1).

«Only if part ». Suppose thatm > 3. Suppose that |σ({1, . . . ,m−2})|>
1. Let j := σ(m− 2). Then T = {t′|t′ < m− 2, σ(t′) 6= j} is not empty. Let



t := maxT and i := σ(t). Then, i is the dictator for position t and j is the
dictator for positions t+ 1 through m−2. Let R ∈ RN be a profile such that
Ri : a1 . . . at . . . am and for each i′ ∈ N \ {i}, Ri′ : a1 . . . at am am−1 . . . at+1. If
t > 1, let R′i : a1 . . . at−1 at+1 at at+2 . . . am. 10 We consider two cases :

Case 1 : Agent i is not a dictator for position m − 1. Then, f(R) :

a1 . . . at amam−1 . . . at+1, and f(R′i, R−i) : a1 . . . at−1at+1 at am . . . at+2. By rou-
tine computation, δ(Ri, f(R)) = (m−t−1)(m−t)

2
and δ(Ri, f(R′i, R−i) = (m−t−1)(m−t−2)

2
+

1. 11 Then, δ(Ri, f(R′i, R−i))−δ(Ri, f(R)) = t−(m−2). Recall that t < m−2.
Therefore, we have δ(Ri, f(R′i, R−i)) < δ(Ri, f(R)). This shows that fΓ is not
strategy-proof under Kemeny extension.

Case 2 :Agent i is a dictator for positionm−1. Then, f(R) : a1 . . . at am . . . at+3 at+1 at+2

and if t > m−3, then we have f(R′i, R−i) : a1 . . . at−1 at+1 at am . . . at+4 at+2 at+3. 12

Then, δ(Ri, f(R)) = (m−t−1)(m−t)
2

− 1 and δ(Ri, f(R′i, R−i)) = (m−t−1)(m−t−2)
2

.
Because δ(Ri, f(R′i, R−i))−δ(Ri, f(R)) = t− (m−2) and t < m−2, we have
δ(Ri, f(R′i, R−i)) < δ(Ri, f(R)). This shows that fΓ is not strategy-proof
under Kemeny extension.

10. If t = 1, let R′i : a2 a1 a3 . . . am.
11. To see this, note that f(R) is obtain from Ri by reversing the rank at+1 . . . am on

the button of Ri. Therefore, δ(Ri, f(R)) = δ(at+1 . . . am, am . . . at+1) = (m−t−1)(m−t)
2 (the

Kemeny distance between two reverse orderings of q elements is 1 + 2 . . . + (q − 1) =
(q−1)q

2 ). Next, let R0 : a1 . . . at at+1 am . . . at+2. Then, δ(Ri, f(R′i, R−i)) = δ(Ri, R
0) +

δ(R0, f(R′i, R−i)) = (m−t−1)(m−t−2)
2 + 1 because δ(Ri, R0) = 1 and δ(R0, f(R′i, R−i) =

(m− t− 1)(m− t− 2)

2
.

12. It t = m− 3, f(R′i, R−i) : a1 . . . at−1 at+1 at am−1 am.
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