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RESUME

innovational outlier” {10) qui modélise une Tupture se produisant lentement & travers le temps,
contrairement 2 I'approche “additive outlier” (AO) ol Ja mupture est supposéé soudaine. Les
distributions limites sont dérivées pour plusieurs modéles issus de Fapproche AQ et les valeurs
critiques asymptotiques sont tabuldes, Une aitention particuliére est accordée au choix de la
date de rupture, Contrairement ceriaines études précédentes, ol la rupture dans la fonction
de tendance est considérée uniqusment sous I'hypothése alternative da stationnarité, les
comportements limites des statistiques dans les cas 10 8t AO sont aussi dérivés lorsque le
changement dans la fonction de tendance est permis sous 'hypothése nulle d'une racine
unitaire. Il est démontré que les distributions limites sont invariantes asymptotiquement a un
déplacement dela moyenne, mais ne le sont pas & un changement de pente. Enfin, on expose
les résultats de simuiations approfondies. Elles sont utilisées pour déterminer les propriétés de
niveau et de puissance des statistiques dans le cas d'échantillons finis en s'attardant & I'effet
des choix de !a date de fupture et du nombre de retards dans I'autorégression.

Mots—clés : rupture de tendance, hypothése de racine unitaire, tendance stochastique,
tendance déierministe, changement structurel.

ABSTRACT

This paper adds to the current literature on unit root tests that allow for a shift in the trend
function of a time series where the location of the break point is unknown. Previous results in
the literature focused mainly on the “innovational outiier™ {I0) approach which models the break
as occurring slowly over time as opposed te the “additive outlier (AQ) approach which models
the change as sudden. Limiting distributions are derived for several models in the AQO
framework and asymptolic critical values are tabulated. Particular attention is given to the ways
in which the break date is chosen. Unlike some previous studies where the break in the trend
function is considered only under the alternative hypothesis of trend stationarity, the limiting
behavior of statistics in both the 10 and AQ frameworks are also derived in the case where a
shift in the trend function is permitted undsr the null hypothesis of a unit root. It is shown that
the limiting distributions are asymptotically invariant to a mean shift but are not asymptotically
invariant to a slope change. Finally, the results of extensive Monte Carlo simulations are
reported. These simulations are used to assess the size and power properties of the statistics

the autoregressive lag length,

Key words: breaking trend, unit root hypothesis, stochastic trend, deterministic trend, structural
change.






1. INTRODUCTION

During the past decade there has been an on—going debate as to whether shocks to
macroeconomic times series should be regarded as permanent or temporary. The debate
was sparked by the important findings of Nelson and Plosser (1982). By using the
statistical technigues of Dickey and Feller (1879} they concluded that most macroeconomic
time series are best characterized by unit root processes implying that shocks to these
series are permanent. This view was challenged in Perron {1989,1990) where it was shown
that a rejection of the unit root hypothesis is possible for many macroeconomic times series
once allowance is made for a one-time shift in the trend function.  Thus, many

of shocks 1o the €conomy are temporary while the breaks jn the intercept or slope can be
viewed as permanent shocks which are rare or occur infrequently. Two methods of
modeling the changes were proposed in Perron (1989,1990). The first, called the "additive
outlier” (AO), views the break as occurring suddenly while the second, called the
"innovational outlier" (10), views the break as evolving more slowly over time. The choice
of AO versus 10 depends on the view one is taking as to the dynamics of the transition

argument that break dates are often chosen after looking at the data leaving room for "data
mining". This criticism was first pointed out by Christiano (1992). Severai recent studies
bave proposed procedures which address the choice of break date issue. These include
Banerjee, Lumsdaine and Stock (1992) (henceforth BLS (1992)), Perron ( 1994}, Perron and
Vogelsang (1992), and Zivot and Andrews (1992),

The strategy used in all four studies was to endogenize the choice of the break date
by making it data dependent (i.e. totally correlated with the data). Two approaches in
endogenizing the choice of the break point have been considered. Both approaches require
estimation of a Dickey—Fuller type regression at all possible (allowable) break dates. The
first procedure is to choose the break date which minimizes the Dickey~Fuller t—statistic
across all possible regressions. The second procedure is to choose the break date which
maximizes (or minimizes, depending on the context) a statistic which tests the significance
of one or more of the coefficients on the trend break dummy variables.

Within the four studies, asymptotic results are available for many combinations of .
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trend breaks, choice of break year, and choice of AO or 10 models. For non—trending data
results are provided in Perron and Vogelsang {1992) for both the AO and 10 models where
the break date is chosen both by minimizing the D—F t-—statistics and by the significance of
the coefficient on a mean—break dummy variable. For trending data, Zivot and Andrews
(1992) provide results for the 10 models where the break date is chosen by minimizing the
D-F i—statistic. These include a model with 2 mean—break only (crash model), a model
with a mean~break and a slope change (crash/changing growth model} and a model with a
smooth change in slope only (changing growth model). BLS {(1992) give results in the 10
framework for the crash model and the changing growth model where the break date is
chosen both by the D-F t—statistics and by the significance of a trend break dummy
parameter. BLS (1992) do not provide results for the crash/changing growth model.

With the exception of Perron and Vogelsang (1992}, in all of the above studies the
assumption is made that no break has occurred under the null hypothesis of unit root when
deriving the asymptotic results. 1t is shown in Perron and Vogelsang (1992) that for
non—trending datd, the unit root statistics will be asymptotically invariant to a mean shift
under the null hypothesis, but this invariance does not hold in finite samples. Mean and
slope changes are nuisance parameters as far as a unit root test is concerned. Clearly it is
important to have results determining how mean and slope changes affect the limiting
distributions in the models that allow trending data.

This paper has several goals. First, asymptotic distributions are derived for
statistics in the crash model and the crash/changing growth model parameterized in the
AO framework. Statistics are considered whereby the break date is chosen by minimizing
the D—F t-statistic and using the significance of trend-break dummy parameters.
Asymptotic resuits are also provided for the crash/changing growth model parameterized in
the IO framework with the break date being chosen via the significance of trend-break
dummy parameters. These results are obtained under the assumption that no break has
occurred under the null hypothesis. Second, asymptotic results are derived under the
assumption that a break has occurred under the null hypothesis of a unit root. Results are
given for all three of the models that permit trending data. It is shown that the limiting
distributions of the statistics are invariant to a mean change, but are not invariani to a
change in slope. When a change in slope is present, asymptotic results aze obtained which
differ from the no-slope—change asymptotic results. It is shown, however, that for slope
changes typically encountered in practice, the slope—change asymptolics are a poor
approximation to the finite sample distributions. 1t is only for very large slope changes
that the slope—change asymptotics adequately approximate the finite sample distributions.
Finally, results of extensive finite sample simulations are reported to illustrate, i) how well



the asymptotic distributions approximate the finite sample distributions, i) how finite
sample size is affected by shifts in the mean and slope, and iii) how finite sample size and
power vary between the AO and 10 frameworks including how size and power depend on
the choice of the break year. In particular, it is found that mean breaks and slope changes
can cause size distortions in finite samples. However, the magnitudes of mean breaks and
slope changes necessary to cause size distortion are much larger than those frequentl ¥ seen
in actual economic data.

The rest of the paper is organized as follows. In the next section the models and
statistics are defined and described. In Section 3 limiting null distributions are derived for
both the case where no break has occurred as well as the case where a break has occurred,
In Section 4 the finite sample distributions obtained by simulation are presented. Section 5
contains the results of finite sample size and power simulations. Section 6 has concluding
remarks, and proofs are relegated to a mathematical appendix.

2. THE MODELS AND STATISTICS

This section lays out the models and statistical procedures that can be used to test
for a unit root ina trending series when allowance is made for a break in the trend function
at an unknown date. The discussion is brief, and the reader is referred to Perron (1989,
1994), Zivot and Andrews (1992), and BLS (1992) for further details. To be consistent
with the existing literature, it is assumed that at most one break has occurred in the trend

function. The date of the break (should it occur) is denoted by T§ with 1 < TE < T, where
T is the sample size. (The superscript "c" is used to denote the "correct” or true break
date). Since the break date is assumed to be unknown, it will be necessary to run
regressions allowing break dates that are different from the true break date. Therefore, Ty,
is used to denote the break date used in a particular regression. The models are labeled as
follows. The first, labeled Model 1, allows a shift in the intercept of a trending series. The
second, labeled Model 2, allows both a change in intercept and slope. The third, labeled
Model 3, allows a "smooth" change in the slope by requiring the end points of the two
segments of the broken trend to be joined.

2.1 The Additive Outlier Model

The AQ model applies 10 cases where the break is assumed 10 occur instantly and is
not affected by the dynamics of the series. This terminology is taken from the literature on



time series with outliers (e.g. Tiao (1985)). The AQ models can be parameterized,
respectively, for (t =1, ..., T) as:

(11)  yy=p+p+ 0DUT+32, (Model 1)
(1.2)  y,=p+ B+ 0DUS + DT + 2, (Model 2)
(1.3) yy=p+b+ DT +2, (Model 3)

where DUS = 1{t > Tf), DT{® = 1{t > T)(t — T§) and 1{-) is the indicator function. The
error z, is specified to be an ARMA(p+1,q) process defined as A(L)z, = B(L)e,, where g, is

i.i.d. (0,0%) with finite fourth moment. A(L) and B(L} are polynomials in L of order p+1
and ¢, respectively, where A(L} can be factored as A{L) = (1 ~ aL)A*(L), and A*(L}) is a
p** order polynomial in L. 1t is assumed that A+(L) and B{L) have all roots outside the
unit circle. The initial condition, y,, is assumed 10 be a fixed constant. Under the null
hypothesis of a unit root @ = 1, g = y,, and 2, can be expressed as z, =z, + y*(L)e,

where y#(L) = A*(L)"B(L). Under the alternative hypothesis ja] < 1, and 2, is a

stationary process that can be expressed as z, = (L)e,, where ¥L) = A(L)'B(L). Note
that #(L) = {1 — aL)¥(L) and that $(0} = y~(0) = 1. The parameters # and 7 measure
the magnitudes of the possible trend break. For example, when there is a unit root, the

intercept of {y,} is y, up to time T{ and y, + ¢ afterwards. When the series is siationary,

the intercept is y up to time T§ and p + ¢ afterwards.

Testing for a unit root in the AO framework consists of a two—step procedure. The
first step involves detrending the series using the following regressions estimated by OLS,
(t=1,..,T):

(21) y,=p+pt+ 0DV +7] (Model 1)
(22) y,=u+ Pt + 0DV, + DT} + 5}, (Model 2)
(23) y =p+ 0 +DT+ 75} (Model 3)

where DU, = 1{t > Ty) and DTy = 1(t > Tp){t — Tp). Note that regressions (2.1)—(2.3)
are estimated using the break date Ty which may or may not be the same as the true break
date (should it occur). The second step then tests the unit root hypothesis 'using the
t—statistic for testing @ = 1 in the regressions {(t = k+ 1, .., T):



(31) jl= E‘il=o"’iD(Tb)x~i +of, + S%:;C;AS’{.; +u,, (i=12)
(32) 7= a§l,+ B A5+,

where §{ are the residuals from regression (2.§) (j = 1,2,3) and D{Ts), = 1{t=Ty+1). The
inclusion of the k+1 dummy variables D{To)y g (i=0, ., k) in(3.1)is necessary to ensure
that the limiting distributions of the t—statistics from (3.1) are invariant to the correlation
structure of the errors. See Perron and Vogelsang {1993a) for details. Additionally, the
inclusion of these dummy variables ensures that the limiting distributions of the
t—statistics from (3.1) are the same as in the IO model below. The one—time dummies are
not needed in Model 3 as the t-statistic on a is invariant to the correlation structure of the
data with the appropriate choice of & However, the limiting distribution of the t—statistic
will be different from the 10 model as argued by Perron and Vogelsang (1993a). The
t-statistics for tesling a = 1 using regressions (3.1} and (3.2) are denoted by
2 (AAO, Ty k), where jindicates the model (§=1,2,3), Ty indicates the break date used and

k indicates the lag length of the autoregression. Since T§ is assumed unknown, and the
appropriate order of the autoregression is usually unknown, procedures which select T, and
k are necessary. These issues are discussed after outlining the 10 approach.

2.2 The Innovational Qutlier Model

The 10 model is applicable to cases where it is more reasonable to view the break in
the trend as occurring more slowly over time. In practice, the dynamic path of adjustment
of the shift could take any form. However, a natural and convenient way to model the '
dynamics is to assume that the series reacts to shocks to the trend function in the same
way that it responds to shocks to the innovation process. This assumption car be captured
using the following specification. Under the null hypothesis of a unit root {v,} is
determined by (t =1, ..., T):

(4.12)  y, =y, + B+ p(LYOD(TY), + e,) (Model 1),
(422) 3, =y, + B+ $(LY(D(TS), + 1DUS + ¢) (Model 2),
(432) y =y, ,+0+ P(L)(1DUS + &) (Model 3).

Note that the immediate impact of a change in slope, say, for Model 3 is given by 7, while
the long—run impact is given by ¥*(1}7. Under the alternative hypothesis of stationary



errors, the models are {for t = 1, ..., T):

(4.1b)  yo=p+ Bt + YLYODUS + &}, {Model 1)
(4.2b)  y,= s+ A+ YLYIDU + DT + e,), (Model 2)
(4.3b) y,=p+f+ WL DT + e,). {Model 3)

Here, like in the unit 100t case, the immediate impact of a slope change in Model 3 is given
by 7, however, the long—tun impact is now given by $(1)7. Models (4.2) and (4.55)
(7=1,2) can be nested, and the unit root hypothesis tested in the following Dickey—Fuller
(1979) type regressions (t = k + 1, ..., T) estimated by OLS: -

(5.1)  y.=p+ B+ dD(To), + DU, + ay, + Ay + Uy,
(52) y,=p#+ P+ dD(Ty), + DU, + DT} + oy, + LAy + Uy

For Model 3, a nesting of {4.3a) and (4.3b) is not considered. Instead, the regression
considered by Zivot and Andrews (1992) and BLS (1992) is used, :

(53) yo=p+ O+ DT+ ay,y + by + 0

Under the null hypothesis of a unit root, @ = 1 and § = 0 in (5.1) and (5.2) and 7= 0in
(5.2) and (5.3). Note that (5.3) does not permit 2 break in the trend under the null
hypothesis. The null hypothesis can be tested using the t—statistics for testing a = 1 in
regressions (5.1)—(5.3). These t—statistics, for given values of Tp and k, are denoted by

‘&(Jvlor'rb,k) (F1,2,3)-
2.3 Procedures for Selecting Ty, and k

To implement the above tests, some choice of Tp and &k must be made. Two data
dependent methods for choosing Ty, are considered in this paper. The first, used by Zivot
and Andrews (1992), Perron (1994), Perron and Vogelsang (1992) and BLS (1992) involves
choosing Ty, such that t a(j,m,’l‘b,k) (7=1,2,3 and m = AQ,I0) is minimized', This choice
of T, corresponds to the break date which is most likely to reject the unit root hypothesis.
Let Tb("{,) denote the value of Ty chosen by this procedure and let t &(j,m,’l‘b(ta),k) =

¥This approach is in the spirit of the supremum statistic used widely in the literature on tests for
structural change with an unknown break point (e.g. Andrews (1993)).
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infTbEnta(j,m,Tb,k) denote the resulting t—statistic. 0 denotes the setl of possible break
points. Following Zivol and Andrews (1592), Perron (1994) and Perron and Vogelsang
(1992) let O = (k + 2, .., T-2) be the set of all possible breaks. Other authors, including
BLS (1992) suggest trimming (ignoring) 15% of the breaks at each end point, but 15%
trimming is not considered here. Some trimming is necessary for the asymptotic results to
g0 through based on arguments in Zivol and Andrews (1992). However, using results from
Perron (1994), limiting distributions can be obtained without requiring any trimming.

The second method of choosing T, corresponds 1o the methods used by BLS (1992),
Christiano (1992), Perron (1994) and Perron and Vogelsang (1992). This approach
involves choosing Ty, to maximize some statistic (usually ator F statistic) which tests the
significance of one or more of the break paramelers (0,7). The following statistics are used.
For Model 1, Ty is chosen using the maxima of tp and ltbl from regressions (2.1) and
{5.1). The resulting value of T}, from these procedures are denoted by Ty(ty) and
Tu(1ty]). The maximum of [t5l is used when the direction of the break is unknown while
the maximum oﬂbis used when the direction of the break is known a priori to be positive.
If the direction of the break is known to be negative, then the minimum of 1 §is used. This
mild assumption that the direction of the break is known can lead to more powerful tests
(see Perron (1994) and Perron and Vogelsang (1992)). For Model 2, three methods of
choosing Ty, are considered. They are the maxima of t. Jt.] and Fb,' (the minimum of
t’y if the break is negative) from regressions (2.2} and (5.2). F“g,* is the F-statistic for
testing the joint hypothesis that § = 7= 0. Again, the resulting values of T}, are denoted
by Tu(-) using the appropriate argument. For Model 3, Ty is chosen using the maxima of
t,r and [t (the minimum of ¢ if the break is negative) from regressions (2.3) and (5.3).
Tb(t,r) and Tb(!t,-rl) denote the respective values of Ty resulting from these
maximizations. Finally, the value of L., corresponding to one of these choices of T, is
denoted by ta(j,m,Tb( -),k). Note that some amount of trimming is required to obtain
limiting distributions in these cases. (The results of Perron (1994) only apply to the
statistics whereby T), is chosen to minimize t&).

Two procedures for choosing the truncation lag parameter k are considered. The

first procedure is to simply choose a fixed value for k = E  The resulting t—statistic is

denoted by t-(imi¥) (7=12,3; m=A0,0; E=Ty(+)). The second procedure follows
Perron (1989,1990,1994) and Perron and Vogelsang (1992) by choosing k using a data
dependent method. For a given value of Ty, k is chosen in the following way. Given a
maximal value of k, say kmaz, the significance of the coefficient on the last included lagged
first difference is tested using a t—statistic at some pre-specified significance level. If the



coefficient is insignificant, the model is estimated using kmaz-1 lags. Again, the
significance of the coefficient on the last included lagged Grst difference is tested. The
procedure continues uniil significance is found for the coefficient of the last included lagged
first difference. Significance is tested using asymplotic normality of the i—stalistics on the
coefficients of the lagged first differences. In the pure AR({p) case, this procedure selecis 2
value for k which is greater tham or equal 10 p with probabilily that approaches one
asymptotically as long a8 kmaz is chosen greater than p. This guaraniees thal the limiting
distributions are the same as in the case where the true value of p is knowsn (see Hall
(1990)). 1In the more general case where the errors possibly have an MA component, resuiis
in Ng and Perron {1984) show that Hmiting distributions will also be the same as in the
case where kis some function of T as long as kmez is increased al an appropriale rate as
the sample size grows. The resuliing statistics from this procedure are denoted by

ta(j,m,l,i(tﬁig)}.
3. THE LIMITING DISTRIBUTIONS OF THE STATISTICS

The discussion of the asymptotic distributions is divided into two cases. The first
case is where no break has occurred (4 = 7= 0). For completeness, asymptotic resulis are
stated for all of the models outlined in Section 2. New results pertain to AO Models 1, 2
and 2 for all choices of Tp and for 10 Model 2 where Ty, is chosen using the t—statistic and
F-statistic associated with the trend break parameters. The second case is where a break
has occurred under the null hypothesis of a unit root (¢ # 0 andjor 7 ¢ 0). This case has
not been considered elsewhere in the literature. Results are given for all the models
outlined in Section 2. Where needed, asymptotic critical values are provided via
simulation methods. For simplicity, the results are presenied and proven for the case
where the the errors are uncorrelated and no lagged first differences are included in
regressions (3.1), (3.2) and (5.1)—{5.3). Thus (L) is set equal to 1 and kis set equal to 0.
It will be argued in Section 3.2 that the results obtained in this special case remain valid
under more general error structures and when k is chosen using the data dependent
procedure described above. Since all the statistics are invariant to the values of y, and f
under the null hypothesis, they are set eﬁual to zero.

3.1 Limiting Distributions When No Break Has Occurred

The results in this section are valid for § = 7= 0. Imposing y, = f=0 and using
the mmphﬁcatxon that ${L) = 1, the DGP is the same in all models and can be writien as:



(6) yi=y.+ €

Consider first the limiting behavior of t&(j,m,Tb(t&),b:O) (7=1,2,3; m=A0,10). Let
Wi(r,2) denote the residuals from the projection of a standard Wiener process W(r) onto
the subspace generated by the functions {1,r,du(r,2)} (5=1), {l,x,dn(r,/\),dt‘(r,A)} (=2)
and {1,r,dt+(r,2)} (5=3), where du(r,A) = 1{r > ), dt=(r,A) = I{r > A){(r = A) on (0,1) and
A= Ty/T. Under the null hypothesis {6), Zivot and Andrews (1992) prove that:

(M U0 (1540 = inl(R()  (=123)

where Ry()) = f;Wj(r,/\)dW(r)[f;Wj(r,A)’dr] M2, Ais a closed subset of the interval

(0,1), and = denotes weak convergence in distribution. Perron (1994) has shown that this
result also holds for A = [0,1]. Results for the AO models are obtained by combining
results in Perron and Vogelsang (1993b) and Zivot and Andrews (1992). Under the null
hypothesis (6),

(8) t&(j,AO,Th(ta),hO) =3 :\21{{}21();)} (i=1,2),

() t5(3,A0,Ty(t;),=0) = ig{nmo(,\)},

where Ry , () = [f;w,(r,)«)’dr] -1
x {f:wz(r,,\)dW(r) - a,”;f;(x - A)W‘(r)drfjws(r,)\)dr],

with 25, = 21 — 1)*/3 and W=(r) the residuals from a projection of W(r) onto the
subspace generated by {1,r}. Perron (1994) has shown that (8) and (9) also hold for A =
[0,1] s0 that trimming is not required in practice.

Notice that the Limiting distributions are identical in the AO and 10 cases for
Models 1 and 2 (the crash models). Without the one-time dummies, D(Ty), ; (i=0, ..., &),
in regression (3.1) this equivalence will no longer hold. See Perron and Vogelsang (1993a)
for details. For Model 3 (the changing growth model) the limiting distribution is different
in the AO case from that in the 10 case. Critical values for (7) (and (8)) can be found in
Zivot and Andrews (1992) and are reproduced for Models 1 and 2 in Tables 1.A and 2.A on
the lines marked T = w. Critical values for (9) can be found in Perron and Vogelsang



(1993a).

Now consider the limiting distributions of 1é{j,m,Tb,k={i) {=1,2,3, m=A0,10}
where Ty, is chosen using the maximal statistics based on the coellicients of the trend break
dummy variables. Note that in the AQ models, L7 i;y, and F??f; will diverge as T ~ o.

Non—degenerate limiting distributions are obtained by considering T, T 31,? and

T“Fb,;’. Thus, choosing Ty to maximize these rescaled statistics will yield valid
asympiotic testing procedures. Of course, in finite samples it makes no difference wheibher
one maximizes the scaled or unscaled statistics. Limiting distributions for Model 1 are as
follows. 1t is shown in BLS (1992) that, under (6),

(10) ta,(l:IO:Tb(tb)tk:O) =’ R,(A‘;),

(1) (110, Ty(11p))k=0) = Ry(X3),

where A= ar§r§ix QI,IO('\)' Ay = axiséxix ‘QI,IO(’\” and,
Q 10N = B K (A)V2,  with
() = B3~ [ yWe(r)dr [ :W'(r)dW(r)/ L weeyar,
K(A) =12, —(f;W'(r)dx)’/f;W’(r)’dr, and
B(A) = M4 —3W(1) - W) = 6A(1 = A) [ :rdW(r),
a, = M1-A)3AT-32+1)

Critical values for {(10) and (11) can be found in Perron (1994). In the case of the AO
model, it is shown in the appendix that under (6),

(12) t&(l,AO,Tb(tb),k:O) = R{M),

(13) ta(lvAO:Tb( ltbl ),k=0) =3 Rl(li)!

where At = argmax Q ()ﬁ), A = argmax lQ (A)‘ and
P=agmax Qpaotth = HRERT FLA0
Q) a0 = b f AWe(r)dr, with
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LA) = f:W-(x)’dr = sWee)dr]Ya,,

errors with 1,000 steps to approximate the Wiener processes using 10,000 replications.
They are given in Tables (1.B) and (1.C) on the lines T = o,

Limiting distributions for Model 2 are as follows.  All proofs of these tesults are
given in the appendix. For the 10 model under (6),

(14) ta(2)iO»Tb(t:y):k=0) =3 R’(A;)l
(18) 5210, Ty(]t5])k=0) = Ry,

(16) ta(z,IO,Tb(Fb’:,),k‘:O) =3 Rz('\i).
' A A
where As = argmax Q (), M =argmax |Q M,
! ie/\ 2,10 b A §eA 2’]0( )
Ay = arimax Qg 10(), and
€A ’

QQ,IO(J\) = [Hy(A) = K, (3) 'K, (A)H,(A)<[K () - K{(A)'K, (2)7/2,
Q3 10N = [B,)%K,(3) - 28 (A)K,(0)H,(A) + Hy(1)K (1))
* (KK LX) ~Ky()F,  with,
)= B0 - f )(r - Wete)ar [ ‘we(e)awgey/ [ We(r)ar,
Kel) = 2y = f 36 = WWeea?/ f 'weteya,
Ky(0) =2~ [ \We(e)ar f A(£ = \We(r)dr/ f :W'(r)’dr and
Bal0) = M1=2PW() + f {1~ )aW(r) - (1 - a1 + 22 J W),

3= AN1-2) 21 -1)/2.

Critical values for (14) — (16) were calculated via simulations. Critical values for (14) and
(15) are tabulated in Table 2F. Critical values for (16) are tabulated in Table 2E on the
line T = w. Inthe AO model, under (6), it is shown in the appendix that,



(1) 13(2A0,Ty1:) b=0) = R (23),
(18) ‘;,(2:"\0;1‘5(1‘:,”,"‘:3) = R?()‘i}»

(19) ta(tl,AO,Tb(F‘o’;y),iml}) =3 Ry{A3},

A A
where Ay = argmax Q (}), Ay=agmaz|Q {A),
p=argmax Qy pold) A3=argmix 1) A0 )
B
Ay = argroax Q {)), and
IEMEEA V2,40

A .
Q3 ,AO(')‘) = [(ay — alafa)L(A) - Ly(A) 1 7L4(A)
B. -
Q2’A0(A) = [L{A)(2,2 — 215 - a,by(A)7
1 1 1 1
« [a,,( [ Wendi) - 23, S Wen)dr J 3= NWe(n)dr + 2, IS A)W’(r)dr)’],
. 1 1
with Ly(3) = [ (1 = AW(r)dr — (ap/a,)) [ AWer)dr.
Critical values for (17) — {19) were calculated via simulations and are tabulated in Tables
(2B) — (2D) on thelines T = w.
Limiting distributions for Model 3 are as follows. Results for Model (3,10) are

proven in BLS {1992). Under (6},

(20) "&(3110:1‘&)(‘;});};:0) =3 ﬂ!(*‘;):

(21) (310, Ty(ltz}),6=0) = Ry(A3),
_ where At = argmax Q, ;n(}), A3 =argmax [Q, yo(A}|, and
= argmax Qg o(d). A= argmi 19310

Qg 100 = KN /).

Critical values for (21) can be found in BLS (1992). Finally, it is shown in the appendix
for Model (3,A0) that under (6),

(22)  t4(3,A0,Ty(tz)k=0) = Ry 2o(A1),

12



T osons e

(28)  t(3A0,Ty(1:1)k=0) = Ry 5o (),

where Ay = arﬁrgzx QS,AO(A)’ Ay = arixéxxx 1Q3,AO(A” and,

Qg A0(A) = laply M2 {(r ~ \)W-(r)dr.
with L,(1) = f:W'(r)’d: ~a§§lf;(x ~ A)We(r)dr]%

Critical values for (22) and (23) were calculated via simulations and are tabulated in
Table 2F.

3.2 Lixixiting Distributions Under More General Error Processes

The previous asymptotic results were obtained assuming i.i.d. errors and using k= 0
in the various regressions. The results of Section 3.1 remain valid for more general error
processes. In the case where the errors follow an AR(p) process, it is straightforward to
extend the results of Dickey and Fuller (1979) to show that the above distributions remain
valid provided % > p. This is formally proved for Model (3,A0) when the break date is
known by Vogelsang (1993). Similarly, the distributions remain valid when the errors
follow an ARMA(p,q) process provided that k increases at an appropriate rate as the
sample size grows as in Said and Dickey {1984). For the case where k is chosen using the
significance of the coefficient on the last included lag (the tsig procedure), the limiting
distributions remain valid in the AR(p) case provided kmaz > p. This follows from results
in Hall (1990). Likewise, in the ARMA(p,g) case, the limiting distributions remain valid as
long as kmaz increases at an appropriate rate as the sample size grows. This result is
proven by Ng and Perron (1994).

3.3 Limiting Distributions When a Break Occurs

This sub-section describes the limiting behavior of t&(j,m,Tb,kzo) (7=1,2,3

‘ m=A0,I0) when the values of § and - are different from zero. Throughout this section,

"true break date" and "incorrect break date" refer to Ac and A (X # A) respectively and
note that A and ) remained fixed as T increases. In finite samples, we adopt the

conventions that Tf = [A.T] and T\, = [AT] where [z] denotes the integer part of z When
regressions (2.1) ~ (2.3), (5.1) and (5.2) ase estimated using the true break date , 1, will be

13



exactly invariant to the value of § under the null hypothesis. Similarly, when regressions
(2.2}, (2.3) and (5.2) are estimated using the true break date , L, will be exactly invariant
to the value of 7 under the null hypothesis. On the oiher hand, when regression (5.3} is
estimated at the true break date, i will not be invariant 1o 7. Moreover, when any of the
above regressions are estimated at the incorrect break date, o will not be invariani to 0,7
in finite samples. In fact, i will no longer be invariant to 7 asymptotically. Because the
testing procedures involve estimation ai incorreci break dates, the limiting results in
Section 3.1 will no longer be valid when 74 0.

Asymptotically, the dependence upon § and 7can be made precise. It can be shown
that all of the statistics are asymptotically invariant to the magnitude of the intercept
change, §. Perron and Vogelsang {1982) prove asymptotic invariance with respect to 0 in
models that do not permit trending data. Proving invariance with respect io # of the
statistics considered in this paper involves simple extensions to the results in Perron and
Vogelsang (1992) and a formal proof is omitted. When 740, results are given for Models 2
and 3 as these are the models that permit a change in slope. As before, results are derived
assuming i.i.d. errors so that ¥{L) = 1. The values of y, and B are again set equal o zer0
as the statistics remain invatiant to y, and § under the null hypothesis. Finally, since the
statistics are asymptotically invariant to 4, the value of ¢ is set equal to zero for simplicity.

The DGP can be writien as,

(24) y, =0T +3, 2, =z, + €

The {oﬁowing limiting results are proven in the appendix. Results are given both when the
model is estimated at the true break date as well as when the model is estimated at the
incorrect break date. Consider estimating the model using the true break date (A = o) It
is shown in Perron (1989) and Person and Vogelsang (1993b) that under (24),

(25) t&(z,m,[AcT],k:O) =5 Ry(Ac) (m=10,A0),

(26) t &(3'A0'[’\°T]'h0) = Rz, AO(A")‘

Things are different for Model (3,10). It is shown in the appendix that under (24),

(21)  TV%4(3,10,[AT].k=0) = O,(1).

It is easy to establish that T/ 2ta(:i,l(),[)t.{l‘],lr—:()) converges to a random variable which
has support over the entire real line. Thus, ta(3.10,[/\cT],k=U) will diverge to minus
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infinity with non—zero probability. Therefore, even when the date of the break is known,

the asymptotic size of a unit root test using t&(3,IO,T§,l::0) will be distorted if 74 0.
When Models (2,10), (2,A0), (3,10) and (3,A0) are estimated at the incorrect
break date (A # Ac), it is shown in the appendix that under (24),

(28) T-’/’t&(;;m,pvr],b:o) = 0,(1) (7=2,3 m=A0,10).

It can be shown that the limits of T"/’ta(j,m,[AT),k:O) (7=2,3; m=A0,10) are
nonrandom functions of 7, A and Ac and that the sign of these limits will depend on A and
A. 1t is tedious but straightforward to show that given X, there exists A such that the

limit of T"/’ta(j,m,[).T],k::O) (2,3; m=A0,10) is negative. Thus, t.(j,m,[AT},k=0)
(=2,3; m=A0,10) diverges to —w for some values of ). The implication of this result is
that when 74 0:

(29) ta(j,m,Tb(tb),k:O) = -» (#23; m=A0,10).

The consequences of (29) is that the size of unit root tests using t &( j,m,Tb(t&),lm()) (j=2,3;
m=A0,10) will approach one as the sample size grows when + # 0. What is not evident
from (29) is how large T must be, given 7, before size distortions become problematic. The
simulation results in Section 5 will provide some insight to the size distortions caused by v
in finite samples.

Another way of explaining the distortions caused by 7# 0is to examine the values
of A that are chosen by minimizing ty If Acis chosen for A asymptotically, then size
distortions would disappear as T grows. However, by looking at the behavior of

anT-*/’ta(J;m,[,\T],rzo) (7=2,3; m=AO]I0) it is easy to establish that
argmin{t.(jm[AT],k=0)} # Ac. As an illustration, lim,  T/%(2,A0,[AT),k=0) was
computed for A € (0,1) using Ac = 0.2, 7= 5 and o = 1and is plotted in Figure 1. As can

be seen in the figure, limT_‘oT"/’ta(j,m,[/\T],A:O) attains a global minimum at A » 0.1,
not at A = 0.2. Since t:(5,m [ AT}, k=0) diverges to ~w at A = argmin{t;(5,m,[AT],k=0)},
the asymptotic size of the test will be one. In order to give some sense of how the break
dates are chosen in finite samples, the break dates that were chosen in the simulations for

Table 3 were recorded. For example, when v = 5 and o? = 1, HmeT"/’ta(j,m,[AT},l;:O)
altains minima at A x 0.1, 0.43 and 0.73 for A; = 0.2, 0.5 and 0.8 respectively. With T =
100 the mode of the chosen break dates were ) = 0.12, 0.44 and 0.75 respectively, which
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are quite close to the asymptotic values. With T = 250 the mode of the chosen break dates
were 0.13, 0.45 and 0.75 respectively, and with T = 500 the modes were 0.13, 0.45 and
0.76, which are again close to the asymptotic values. So, one can view the size distortions
of these statistics resulting from the wrong break date being chosen,

Clearly then, given 7, if T is large enough, size distortions from using the
t&(j,m,Tb(ta),le) (7=2,3; m=A0,10) siatistics could lead to false inference. One way
around this problem is to find procedures which tend to pick the true break date as the
sample size grows. Such a procedure will lead to asymptotically valid tests in Models
(2,A0), (2,10) and (3,A0) as L, is invariani to 7 at the true break date under the null
hypothesis. In Mode!l (3,]0) however, choosing the true break date will not yield a valid
testas iy is not invariant Lo 7 even ai the true break date.

_In the AO models, the true break date will be chosen as the sample size grows using

' the procedures whereby Ty, is chosen using t,y and Fﬂ’y This can be established by

examining the behavior of t, and Fy e in the presence of a slope change in Models (2,A0)
and (3,A0). Under (24) the followmg results are proven in the appendix. For Model
(2,A0),if A # A,

(30) T”/’t,—r = 0,(1) T'Fp. = 0,01),
if A=A,

—w <0
(31) TVA, =
7 o 1>0,
-1,
(32) T Fg’;r = .
For Model (3,A0),if A # A,

(3) T4, = 0,1)

if A=A,
o 7<0
(34) TVA, =
U @ 7>0.
These results have the following implications. In Model {2,A0) because. T/ ’t;' and

T'Fy 5 diverge at the true break date but are O,(1) at the incorrect break date, as the



sample size grows the argmax of T"/’l;’ and T''F 5 will be A, provided A_ ¢ A. Similarly
in Model (3,A0), T"*“t;y diverges at the true break date but is O,(1) at incorrect break

dates. Thus, as the sample size grows, the argmax of T/ will be Ao provided A ¢ A.
For Model (2,10) the behavior of t;’ and Fp 5 are much different. Under (24) it s
shown in the appendix that, ’

i A= A,

(35) 12 =0,1) F,
A4 A

(36) ty = 0,(T'/?) F5=0y(T),

Notice that t. is bounded at the true break date but diverges at wrong break dates. On
the other hand, F?) 5 diverges at the same rate regardless of the break date. Clearly, the
true break date will not be chosen using t,-’. It is possible that the true break date might be

chosen using Fb,’y‘ For this to happen, T"Fb,' would have 10 attain a global maximum at
Ac. Such a proof is not available at this time. Moreover, finite sample results given in
Section 5 cast doubt as to whether such a con jecture holds.

Using (30) through (34), the following limiting results are easily obtained (7 ¢ 0):

(37) t&(2,AO,m,k=0) =3 R,{(Ac) (m= Ty,(t,y), Tb(lt,—yl), T"(F@,"y))'

(38)  15(3,A0,mb=0) = Ry (k) (m = Tu(ts), Tolt:])).

The limiting distributions given by (37) and (38) are equivalent to the case ‘where the
break date is known as in Perron (1989). Critical values for (37) can be found in Perron
(1989), and critical values for (38) can be found in Perron and Vogelsang (1993b). An
obvious point to notice is that the limiting distributions given by (37) and (38) are
different from the case when 7 = 0 and have larger (smaller in absolute value) critical
values. For example, the 5% critical value for ta(2,A0,Tb(Fg,:y),’(=0) is ~4.61 when 7= 0
and is ~4.24 when 74 0. In practice, one could always just use the critical values for the
7 = 0 case as all the tests will have an asymptotic size no larger than the given nominal
size. A drawback, though, is a lJoss of power should 7 be different from zero. A simple way
to avoid some of the potential power loss would be to first perform a pretest for a change in

. slope that js valid for both unit root and stationary errors. Perron (1991) and Vogelsang
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(1992) provide such tests. Of course, any time a pretest is conducted, the sime of the
ultimate test may, in principle, be distorted in finite samples. An investigation of the
properties of a such a two step testing procedure is left as a future research.

4. SIMULATION OF THE FINITE SAMPLE CRITICAL VALUES

In this section, finite sample critical values are presented for the statistics
L(LAOmA) (m = Tyltz), To(tph Tulltyh) t52A0mE) (m = Tyt), Thts),
Tb(]l 1), To(Fy ,’)), and t4(2,10 Tb(Fo =)k under the null hypothesis of a unit root
using two ptocedurs for selecting the truncanon lag parameter k. The purpose is to assess
the adequacy of the asymptotic approximations and {0 provide a range of finite sample
critical values. The latter are reported for the models that have not been explored

' elsewhere in the literature. Finite sample critical values are available for the other
statistics in Zivot and Andrews (1992), Perron {1994), and BLS (1992).
The following data—generating process was used for all of the simulations,

(38) y,=y4+ DUl +e, Yo =0.

The initial condition, y,, and f are set equal to zero since the statistics are invariant to
their values under the null hypothesis. The magnitude of the mean break, g, is also set
equal to zero since the statistics are asymptotically invariant to the value of . For most of
the simulations, 7 was set equal to zero, however, for the t&(Z,AO,Tb(ta),k) statistic,
simulations are also reported for several sample sizes and several values of 9. The error
process, e,, was specified to beiid. N(0,1). Even though the finite sample distributions of
the statistics depend on the correlation structure of the errors, they are asymptotically
invariant to the correlation in the errors under the iegulaxity conditions described in
Section 3.2 with the appropriate addition of lagged first differences of the data. By using
i.i.d. errors for the simulations, it is possible to clearly determine the effects of the choice of
k on the finite sample distributions. The use of i.i.d. errors will also help to delineate the
affects that 7 has on the finite sample distributions. The effects of more general error
processes are given in Section 5.

The critical values were simulated for three sample sizes, T = 50, 100 and 150,
except for Model(2,A0), 7 # 0, where T = 100, 250 and 500 were used. In the case where &
is fixed, results are given for k= 0, 2, and 5. The results for k = 2, 5 measure the effects of
overparameterization on the finite sample critical values. In the case where k is chosen
using the significance of the t—statistic of the coefficient on the last included lagged first



difference, the size of the t—test was set at 10%. In addition, kmaz was set equal to 5.
Larger values of kmaz were not considered due to the excessive computational time. Each
simulation involved 2,000 replications, and the N(0,1) random deviates were obtained from
the routine RAN1 of Press, e al (1986) written in the C language. To minimize sampling
variability across simulations, the same set of generated data was used across simulations
using identical sample sizes, T. The initial seed used for the random number generator was
=T in all simulations.

Results for Model (1,AQ) are given in Tables 1A — 1C. Table 1A presents the
finite-sample critical values for the statistic t a(l,AO,Tb(ta),k), Table 1B for
t&(I,AO,Tb(tb),k) and Table 1C for t&(l,AO,Tb(lt;,]),k). Looking at the tables, the first
thing to notice is that for all three statistics, the asymptotic distributions are good
approximations to the finite sample distributions when k = 0. Second, as k becomes larger,
the critical values become larger (smaller in absolute value) at a given sample size. Thus
overparameterizing the truncation lag will lead to undersized tests in practice. Third,
when Ty, is chosen using the t—statistic on the coefficient of the last included lagged first
difference (the k{1—sig) lines), the critical values are much smaller than the asymptotic and
fixed k critical values. This is due to correlation, in finite samples, between the t—statistic
on the coefficient of the last included lag and the t-statistic for testing a= 1. As noted
earlier, this correlation disappears asymptotically. The simulations show that it vanishes
slowly. Finally, note that the critical values are larger for t4(1,A0,Ty(t i))'k) as compared
to t&(l,AO,Tb(lt;yl),k). For example, the 5% asymptotic critical value for
t&(l,AO,Tb(tb),k) is —4.01 while the 5% critical value for t&(l,AO,Tb(ltbl),k) is —4.17. 1If
both procedures tend to pick the same break date, then using t a(I,AO,T.,(t ?))’k) may result
in higher power. Thus, imposing the mild assumption that the direction of the break is
known a priori can lead to 2 more powerful test. Further evidence on power is given in the
next section.

Tables 2A through 2D present finite-sample critical values for Model (2,A0).
Similar observations can be made as in Model 1. In all cases, the asymptotic distribution is
a good approximation 1o the exact distributions for T = 150. In all cases, when kis chosen
using the Kt-sig) procedure, critical values are substantially smaller compared to the fixed
k and asymptotic distributions. For the statistics where Ty is chosen using t;y and lt;yl,
the critical values are larger when the direction of the break is assumed known. For
example the 5% critical values for t&(2,AO,Tb(|t,y| ),k) and t5(2A0,Ty(t:), k) are —4.50
and —4.28 respectively. In the case where Ty is chosen using F@,;/’ the critical values are
smaller than when T}, is chosen using t,-y.

In Table 2E results are reported for Model (2,JO) where Ty, is chosen using FE’,’Y'

19



The asymptotic distribution of ta(Z,}O,Tb(Fbﬁ),k) is not as good an approximation to the
finite—sample distribution as compared to the same sialistic in the AQ model. Finite
sample critical values for the other Model (2,10} statisiics can be found in Perron {1994).

Up to this point, all the finite sample critical values were reported for the case
where no break had occurred under the unit root null hypothesis. The results in Section
3.3 showed that the asymptotic distributions are not invariant to the value of the slope
change parameter 7. To determine the effects of 7 on the finite sample distributions in
Model (2,A0), simulations were run for v = 0.5, 1.0, 2.0 and 5.0. Three sample sizes were
used, T = 100, 250, 500 and three breaks dates were considered corresponding to A¢ = 0.2,
0.5, 0.8. The value of k was set equal to zero in all simulations to avoid any effects caused
by the choice of the truncation lag parameter. The results are given in Table 3.

Panel (a) reports the critical values for T = 100, Panel (b} for T = 250 and Panel
(c) for T = 500. What is evident from the table is that for a given 7, the critical values
become more and more negative as the T increases although the divergence is slow for
small 7. For example, with Ac = 0.5 and 7= 2.0 the 5% critical values range from -6.12
al T = 100 to -9.19 at T = 500. To give some intuition behind these results,

lim,r_mT"/’t 4(2A0,Ty(t),k=0) was computed for 7 = 0.5, 1.0, 2.0, 5.0 with A = 0.5 and

o? = 1 yielding —0.0832 (7=0.5), -0.165 (1=1.0), ~0.321 (1=2.0) and ~0.689 {7=5.0).
Consider for illustration 7 = 05. For a given T, the asymptotics imply that

15(2,A0,Ty(t ) .6=0) = T1/2,(—0.0832). When T = 500, ta(2,AO,Tb(ta),k=0) & —1.86
according to the asymptotics. Compare this to —4.23, the median of the finite sample
distribution (see Table 3 Panel (c)). Even with a relatively large sample of 500
observations, { &(2,AO,Tb(t&),Ic=0) is little affected by 7 = 0.5. Suppose T = 5,000; the
asymptotics imply that ta(2,AO,Tb(t&),k=0) = —5.88. So, for small 7,
ta(Z,AO,Tb(t a),k:z()) diverges quite slowly. Now suppose that 7= 5.0. With T = 500 the
asymptotics imply that t&(z,AO,Tb(t a),l:::()) » —15.41. This is close to the median value
of —14.13 from Table 3 Panel (¢). For T = 250, t &(2,AO,Tb(t&),k=0) = —10.89 compared
to the median value of —10.43 from Table 3 Panel (b). So, for large 7, ta(z,AO,Tb(t &),k)
diverges quite fast. In practice, il a very large slope change is suspected, the
ta(2,AO,Tb(ta),k) statistic should not be used. On the other hand, since the statistics
that pick T, based on the trend break parameters tend 1o pick the true break date as T
grows, they will suffer less from distortion due to large 7 and should be more reliable tests

in practice.
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5. FINITE-SAMPLE SIZE AND POWER SIMULATIONS

This section presents finite-sample size and power simulation results. The purpose
of these simulations is to determine the following, a) how size and power are affected by
the choice of k in the presence of more general error i)rocesses, b) how size and power are
affected by 0 and +, and ¢) how power varies across procedures for choosing Ty, The focus
of the simulations is placed on Model (1,A0), and Models (2,A0) and (2,10). Similar
simulation results can be found in Perron (1994) for Models (1,10), (3,A0) and (3,10).

The DGP used for all simulations is of the form,

(40)  yy=0DU,+ DT +2,, 5= oz, + Bl p(i)As, , + e + e,

where e, - i.id. N(0,1). Note that (40) has an ARMA(5,1) error specification and is the
same DGP used in Perron (1994). This will allow easy comparison of results in Perron
(1994) and provide similar finite—sample size/power results for all of the models outlined in
Section 2. For the size simulations, & was set equal to 1. For the power simulations a
was gel equal to 0.8. The sample size for all simulations was T = 100, with 1,000
replications. Regressions were run for fixed k = 0, 1, ..., 5 and for Kt-sig) with kmaz = 5.

For the simulations where 0,7 # 0, the true break date was T§ = 50 (Ac = 0.5). Several
values of # and 7 were considered. In Model (1,A0) the values of # were 0, 2, 5, and 10. In
Models (2,A0) and (2,10} the values were § = 0, 5,10 and 7 = 0, 1, 2. Seven different
error specifications were used. They include,

(1) (i) =0 (i = 1,2,3,4) and ¢ = 0,
(2) A1) =086, i) =0 (i = 2,3,4) and yp = 0,

(3) (1) = 0.6, (i) = 0 (i = 2,3,4) and ¢y = 0,

(4) #(1) = 0.4, (2) = 0.2 and (3) = p{4) = p = 0,

(5) ¢(1) = 0.3, Y(2) = 0.3, 9(3) = 0.24, p(4) = 0.14 and ¢ = o,
(8) (i) =0(i=1,23,4) and ¢ = 0.5

(7) (i) =0 (i = 1,2,3,4) and ¢ = -0.5.

Experiment (1) has i.i.d. errors. This specification will be used to isolate the effects of
choosing k too large. Experiment (2) has positive correlation in the errors and is quite
common in empirical data. Experiment (3) has negative correlation in the errors.
Experiments (4) and (5) have higher order correlation in the errors. These experiments
will be useful in isolating the effects on size of picking k too small. Finally, experiments (6)
and (7) have MA(1) errors to determine how well the K1t—sig) procedure performs in the
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presence of MA errors. For fixed k, the 5% asymptotic critical values were used, and for
K1—sig) the appropriate 5% finite sample critical values for T = 100 were used.

The simulation results are presented in Tables 4 and 5. These tables report results
for Models (2,A0) and (2,10) only and for k chosen using the Kt—sig) procedure. Resuits
are not reporled for Model 1 as they are qualitatively the same as Model 2. Results for
fixed k are not reported as they are very similar to the results reported by Perron and
Vogelsang (1992) and Perron {1994). Tables of additional results are available from the
authors.

We begin by summarizing the results pertaining to the choice of & When k is
chosen less than the true order of the process substantial size distortion often occurs. In
most cases the exacl size will be much greater than the nominal size. If kis chosen at least
as big as the true order of the process, the exact size is rarely greater than the nominal size.

" However, power will be lost if the lag structure is over parameterized. When the Kt—sig)
procedure is used to pick k, the exact size is close to the nominal size in all cases except
when there is negative MA component as in experiment (7). In this case the exact size is
substantially inflated above the nominal sise. Power using Kt—sig) is generally quite good.
1t is greater than when k is larger than the true order of the process and is nearly as high as
when k is set equal Lo p in the case of an autoregressive process. Overall, the Hi—sig)
procedure has good size and power properties and clearly dominates using a fixed k. _

Consider now how a change in mean or slope affects the exact size of the tests. For
the procedures where Ty is chosen to minimize t. the tests become oversized as # and 7
grow. For example, consider l&(2,AO,Tb(ta),k(t-sig)) in Table 4. In experiment (1)

. where the true process is a random walk, the exact size is 0.040 when 0 = 0. The exact size
is 0.108 for § = 5.0 and 0.597 for # = 10. When 7 = 2.0 the exact size is 0.076. Similar
results occur for Models (1,]0), {1,A0) and (2,]10) In particular, for
ta(2,10,’1‘b(t&),ln(t«sig)) the exact size is 0.065 and 0.314 for 7 = 1.0 and 2.0 respectively
as shown in Table 5. Perron (1994) also found the same size distortions in Models (3,10)
and (3,A0). In general when Ty is chosen by minimizing t,, the exact size will tend to
grow as the magnitude of either § or 7 grows, but the size distortions do depend on the
parameters of the noise process. For example, when there is positive correlation in the first
differences of the errors as in experiment (2), the tests have exact sizes that are no larger
than the nominal sizes. If the first differences of the errors are negatively correlated as in
experiment (3), the exact size is much greater than the nominal size. Thus, size distortions
depend on the magnitudes of § and 7 as well as the correlation structure of the errors.

The effects of § and 7 on exact size when Ty is chosen using the trend break
parameters in the 10 models are very similar to the procedures where Ty is chosen to
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minimize t&. Again, as 0 or 7 grow, Lhe exact size increases for a given sample size. For
example, in Table 5, the exact size for t&(Z,IO,T;,(Fbﬁ),k(tﬁig)) in experiment (1) is
0.189 and 0:707 for 0 = 5.0 and 10.0 respectively and is 0.106 and 0.233 for 7 = 1.0 and 2.0
respectively. Similar results for Models {1,10) and (3,10) are reported in Perron (1994).
These results occur because the statistics on the dummy variables are not choosing the true
break date enough of the time.

Things are much different in the AQ models as the t. and Fb,’y statistics do a much
better job picking the true break date. Results in Tables 4 and 5 clearly show that the
exacl size does not tend to grow as # or 7y increase in Model (2,A0). Similar results hold
for Model (1,A0). Perron (1994) also shows this to be the case for Model (3,A0). In fact,
as the magnitude of the break grows, the exact size tends o be below the nominal size.
This occurs because as the magnitude of the break grows, the correct break date is chosen
more often, and the finite sample distributions will be better approximated by the limiting
distributions in the known break date case. In practice, if a very large break is suspected
in the data, tests carried out using the AO model where Ty is chosen using the significance
of the break dummy parameters will have the best overall size properties.

1t is important to note here, though, that the magnitudes of § and - where size
distortion becomes a problem are on the order of 5 Lo 10 times the standard deviation of
the innovation errors for # and at least 1 to 2 times the standard deviation of the
innovation errors for v unless the first differences of the errors are positively correlated in
which case there are little size distortions. For many macroeconomic time series, intercept
shifts are often less than 5 standard deviations, slope changes are often less than 0.5
standard deviations and the first differences of the errors are often positively correlated.
Therefore, size distortions are not necessarily a problem in practice, but care must be used
if a series is suspected of having large trend shifts or negative correlation in the first
differences of the errors. To illustrate these isgues, § and 7 were estimated (imposing a
unit root) for the long historical GNP series considered by Perron (1992) who applied the

statistics from Model (2,]J0). Without going into the details, it was found that 8 and ¥
were generally no larger (in magnitude) than —8 and 0.7 respectively relative to the
standard deviation of the errors. In addition, most of the series exhibited positive
correlation in their first differences. Thus, experiment (2) most closely mimics the data
considered by Perron (1992). From Table 5 one can see that size distortions are minimal
for 0= 10 and 7 = 1.0. Therefore, the size of the tests used by Perron (1992) are not
adversely affected by 0 and 1.

Next, consider the effects that # and 7 have on the power of the tests. Meaningful
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conclusions are most easily drawn for Model (2,A0) as size distortions are minimal.
Consider the power of ta(2,AO,m,)c(g—sig)) (m= Tb(lt;’}), Tb(t:’), Tb(F'g‘,'))‘ As fory
rise, power tends to fall. For example, the power of 1t b(Z,AO,Tb(F@.,Y),Kt—-sig)) in
experiment (1) is 0.339 when 0= 7= 0.0 but falls to 0.194, 0.163 for 8 = 5, 10 and 0.193,
0.184 for v = 1.0, 2.0. Part of the reason for this fall in power is that the true break date is
chosen more often as 0§ and 7 rise, and the critical values for the known break date case
would be more appropriate. Hence, the critical values from the unknown break date case
are too negative for a given nominal size and power suffers.

Finally, when making the mild o priori assumption that the direction of the break is
known, power is higher. For example, a comparison of the power of
t&(z,AO,T;,(]t,yl),k(tﬂig)) and t&(z,AO,Tb(t:y),lu(ks?g)) from Table 4 reveals the
 following.  Regardless of the true error process, power is generally higher using
ta(2,A0,T;,(l,r),k(t~sig)) as compared {0 ta(z,AO,Tb(lt,y[),k(t—sig))‘ This makes sense
for the following reason. Since both procedures tend to pick the same break date, and if
the direction of the break is known, the values of the statistics will be equal. Then, since
t a(2,AO,Tb(l,y),h(t—-sig)) has larger (smaller in absolute value) critical values than
t&(2,AO,Tb(|t,yi),l(t—sig)), the former will be a more powerful statistic. This general
result holds across all three models in both the AQ and 10 frameworks.

The practical implications of the size and power simulations can be summarized as
follows. The k{t—sig) procedure should be used to choose k as this procedure has good size
and power properties. Choosing 2 fixed k is not recommended as substantial size
distortions and/or low power could result. H a very large break is suspected, even under
the unit root hypothesis, the AO model with Ty chosen using the significance of the trend
break dummy parameters provides tests that have good finite sample size properties. 1f the
magnitudes of the possible shift in the trend function are not too large then all of the
procedures will have good finite sample size. Finally, higher power will result if the mild a
priori assumption is made that the direction of the break is known.

6. CONCLUSIONS

This paper adds to the current literature on unit root tests that allow for a shift in
the trend function when the location of the break point is unknown. Previous results in the
literature focused mainly on the 10 approach where the break is modeled as occurring
slowly over time as opposed 1o the AO approach where the break is sudden. Limiting
distributions were derived for several models in the AO framework and asymptotic critical
values tabulated. The limiting distributions of the statistics in both the 10 and AO
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frameworks were also derived in the case where the shift in the trend function occurred
under the null hypothesis of 2 unit root. 1t was shown that the limiting distributions are
asymptotically invariant to a shift in intercept but are not asymptotically invariant to 3
shift in slope. In fact, many of the tests currently proposed in the literature are no longer
asymptotically valid testing procedures when a slope shift occurs under the null hypothesis.
However, these asymptolic results were shown to provide poor approximations to finite
sample distributions for trend breaks of the magnitudes typically encountered in practice.
Indeed, for typical changes in slope under the null hypothesis, the usual no—break
asymptotic results remain a good approximation.

Several methods for choosing the break date, Ty, and the truncation lag parameter,
k, were investigated. A simulation to assess the finite sample size and power of the tests
suggested the following guidelines. First, the choice of k should be made using a data
dependent method rather than using a fixed k£ due to better size and power properties.
Second, the mild ¢ priori assumption that the direction of the break is known will result in
more powerful tests. Finally, except for the procedures in the AO framework where Ty, is
chosen using the significance of the trend break parameters, size tends to grow as the
magnitude of the shifis grow. Therefore, if the magnitude of the shift is suspected to be
very large, the AO framework is preferred since it permits tests with less size distortion. In
practice, though, the magnitudes of trend shifts that are commonly seen in macroeconomic
data are not large enough to cause substantial size distortion. Hence, the choice between
the AO and 10 models should be based on the dynamics of the shift.
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MATHEMATICAL APPENDIX

The proofs of the limiting distributions stated in the text are given in this appendix.
Weak convergence for a fixed ) is established for the various statistics. The results of
Zivot and Andrews (1992) can then be applied to give the limiting results for the minimal
and maximal statistics via the continuous mapping theorem. Recall that Zivot ang
Andrews (1892) require A € A where A is a closed subset of (6,1). In the case of the
statistics whereby the break is chosen to minimize t;s tesults from Perron (1994} permit
this condition to be relaxed so that A = [0,1].

The following notation is used throughout the appendix. The symbol = is used to
denote weak convergence in distribution and W+(r) denotes the residuals from a projection
of W(r), a standard Wiener process, onto the space spanned by {1,r} defined on (0,1). A
'~? is used 1o denote the residuals from a projection of a variable onto the space spanned by
{1,t}). A ’~'is used to denote the residuals from a projection of a variable onto the space

spanned by {1, t, DU,}. Let £ be short for !}'le, and let %’ be short for Eszb.r

Finally, given a matrix X, MX is used 1o denote the matrix I — X(X X)X,

The data—generaling process (DGP) can be written in matrix form as,
(A.1a) Y =D§y+ 2, Z=7,+e,

where Y = {y,}, 2= {2,}, 2, = {2,..}, e = {e}, D§ = {DT;}. The small ¢’ superscript on
the 'D’ variables means that these dummy variables are defined using the true break date
T§- A 'D’ variable without a superscript '¢’ (e.g- DyD,) is used to denote dummy
variables defined using the break date used in the estimation {Tv). In addition, define the

following matrices: Y, = {y,_}, Di={DU}, D = [D, D, D° = [DS DY, N = {1,t}, n, =
diag(T™'/%, T2/%), 1, = diag(T"/%, T"'). Note that 6 is set equal to zero as all the
statistics are asymptotically invariant to 0 under the null hypothesis. It is useful to rewrite
(A.1a) in several ways:

(A.1b) Y=Y, +Dr+e,
(A.1c) Y. =(D§-D)y+ 2,
(A.1d) Df=(Y.,~2.)/7+D;

Detrending both sides of (A.1a) — (A.1d) by {1, 1) yields,
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(A.2a) Y =Dr+ 2, =2+

(A.2b) Y=Y,+D%r+8
(A2c) - VY, =(D§-D9v+ 2,
(A.2d) D§= (V.- Z.)/7+ D
Likewise, detrending both sides of (A.1a) — (A.1d) by {1, t, DU,} yields,
{A.3a) Y =074 2, i=%,+8
(A.3b) Y=Y,+D57+¢8
(A.3¢) V., =(D§-D9r+ 2,
(A3d)  D§=(Y,-Z.)/7+ D5

The next three lemmas establish the convergence of various sample moments that

are used in the proofs.

Lemma Al Set v= 0. Under(A.1a) these limiting results hold:

i) 7D Dr, = T-‘l:)l'l?x Tvzl:)t']:)z = | 3 B
TD,’D, TD,’D, 3, 24

i) T"I'),'M;."é =3 oB,(}),

i) ‘ T*/’D,'MYﬂé =5 oH,(}),

i) T-'f),'M?_‘f), = K (X),

%) T"ﬁ:'M?_,ﬁ?‘—" K, (3),

) T"I’),'M‘;."'f), =3 K4(}),

vii) T”?’MI-)‘? =3 02L,()),

viid) T"?'Mf)z\? =3 02L,{A),

iz) T"’/’fJ,Mﬁ‘? = gL,(}A),

1) T"f),’MDxf), = a,,~ak,fa,,

Proof: Since 7= 0, Y = Z. Convergence of sample moments follow from arguments in
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Ouliaris, Park and Phillips (1989) and Perron (1989). Asa preliminary,

consider the limits
of T/2D, & and T-3/7D, ¢

T/ &= TV e~ T2 N7 (r,N'N7 ) e Nee

-2 - 172
=TV %+ [1-A, T2 )| 1 T7B ) [1i/2ge,
TIB TR | | 7o/

= o{ W(1) =~ W(A) + [ (1-4), (1-49)/2 ]-[1;2 ;;ﬂl[f\évf;v)v(r)]
= ol AU=3NW(1) - W(3) - 62(1-2) [ ;mwm} = aB,()).
T3/2D, & = T3/, e - T3/2Dy'Nr(7,N* N7 ) lr N'e
= T3/ (1T Je,
+[ T8 (1=T}), T8 4(1-T,) ]-[ T ]{ /75, }

T25 TR2 | | T3/%5e,
= o W(1) - W())

+ [ (1-2)%/2, (1-2)4(2+ 1) /6 ]‘{ 1;2 :;:} -I.[ fv'vf(:v)v(r)]

= o f \u=NAW(r) + M1-2)W(1) - (1-3)(24 ) S irdW(s)] = 0B,(3).

P - 2507 g
i) 7, D'Dr, = 7,D'Dr, ~ 7D’ Nr(r,N'Nr )y N'Dr, = (1-2) T (=T }
T% (4-T,) T5 {t~Ty)

_ (1-3) T2t o1 1im }'lx{(l—/\) T"E'(t—'r,,)]
{ T8 (1-T,) T3E4(¢-Ty) | [ T8 T332 T?L't T8 4(1—T,)

a[ (1-2) (1-))'/2]

(1-2)/2 (1-2)¥/3
_ [ (=) {1-A2) /2 Jx[ 1 1/2}"‘{ (1-2) (1-2)2/2 J
[(1—,\)’/2 (1=2) (2+x)/8) 112173 (1=3%)/2 (1-2)(2+2)/6

- [A(]~A)(3A’-—3A+l) ,\’(1-)\)’(2,\—1)/2} s {a“ a,,]‘

A (1-2)2(22-1) /2 A¥1-2)3/3 a,, a,,
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i) T"/’I'),'M?_té = TV, &~ T3, ¥ (T2 V)"V 8
= ofB,(A) - [ yWe{r)dr [ :W'(r)dW(r)/ f :W‘(r)’dx] = ol ()
i) T"/’x'),'m?da = T3, e = T, Y (T Y )TV 8
= olBy(N) — [ Ja-NWH(e)de [ W)W ()] [ W (x)?dr] = oH,(3)
i) T“l'),’Mi,_‘I'), =T ,/D,~ (T30 T (T, V)"
= 2y = {f WA [ Wee)dr = K ().
v) T"f),’M?_‘f), = T30, Dy~ (T¥/Dy Y )(T*Y Y.
= 2y = {f NN W)} f WH(x)dr = K(A).
) T"ﬁ,'M?_'f), = T, D, - T3/, ¥ T2V ¥ )T/ D,
=y [ yWe(narf AE=NWe@)ds/ f :W'(r)’dr = K(A).
vif) T"?'Mﬁ'\'( = T ¥ - (T¥/?%'D YT, D)
= o[ We(e)ar - {f WH(e)n)Yay) = L),
viid) T"?'MI-),? =T ¥ — (T3/29'D,)(TD,' D,)"
= o[ Wedr = { [ SE-NWe()) /) = 0Lo2).
iz) T-°/*1'),M5'\'( =T, ¥ - 12D, D(TD, DY T/D, Y

= of f J(r=NW(r)dr - (ap/2,0) [ JWe(r)dr] = oLy(2).

z) T2D Mgz D, = T2D,’ D, - (T*D DITD D) = 2y —aly/3y
2 D‘ H B | 21 1



Lemma A2. Lety$ 0 and suppose that ) = Ae. Under (A.1a) these limiting results hold:
i) T"/"\"’M? 1’)1, =0,(1),

#) 7,5‘MY Dr, = 0,(1),
-t

T"/’?_,Ml—)’(? ~-¥.)=0,),

<

) T"‘?_,Mf},?_l =0,(1).

Proof: Note that D, = DS and D, = D§ since T, = T¢.

i) Using (A.2b) and (A.2d) write (noting that Mg ¥.,=0),
-t

SV . T
TV My B,]

_ _ T YD, y+8)’ My f)
T41Y ' My Dr, = _ X !
1 T3/ *Y'M‘-{_lx), (

T2 /%D y48) My

D,~Z./7]
Using (A.2c) write,
T"(I’),'y«}-é)'M?' D, = T(D,y+8)'D, - T-’(f),7+é)' (DD + 2.
ATDD )7+ 2.J (DD )y + 2.0} T (DD )y + 2.)'D,
= T"D,"Dyy - [T, D,7 + 0,(1)]
* [Ty Dy7” + 0, (NI HT Dy D7+ 0(1)] + 0,(1) = 0,(1).

TYD y+8) My (D =Z.f7) = T3/YD,y+8)" (0,-Z.,/7

= THD7+8) [(Dy-D )7+ ZHT (DD )1 + 2.)((Dy-D,)y + 2.}
* T3Y(DD )y + 2.J' (D, - Z.Jm)
= =T/ 2, + [TD,D,7 + o,(1))

= [TD, D, 4+ op(l)]"[T"/’ﬁ,’Z,, +0,(1)] + 0,(1) = O (1).
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i ) T-D, Mg D, T°3/?D'My D
“) 7QD’MY DT:: 3/2—i Yq‘l 2{)! Y’l-:
-t T3P My D T-D,’My D, l.
T She 7 My P
Using (A.2c) write,
'r-*f),’M?_‘f), =T, D, - {TD/[(D-D)y+ 2. )}
« {T(DyD)7 + 2.J (DD )71+ 2.0}
= T"Dl’bl - (T'7D1'527 + Op(l)lﬁrr':ﬁ:'f)ﬂ’ + op(l)]-l = Op(l)
Using (A.2c) and (A.2d) write,
T"/"‘f),’M\-,"I'), = T"/’ﬁ,’M?_I(ﬁ, -Z.07
=-T3D % /1+ [TD,"Dyy + Op(l)}
« [T73D,' D7 + op(l)]“[T"‘/’f),’Z_,/'y +o,(1)] + o (1) = 0,(1).
T-’l'),'My_xf), = THD, - 2_,/7):M?4(I’), 2.0 = T-:Z_{M\—,.li-l/'y’ +0,(1)
= [T"Z_!'Z_I - [T‘5/2D2IZ.‘/7 + op(l)]le.af)ﬁlﬁﬂ’yz + Op(l)]-‘}/?! + op(l) = Op(l)
i)  Using (A.3D), {(A.3c) and (A.3d) write
D, M?-‘Y =TD, - 2_,/’7]’M?'l[f){y + 8
= —-T“i_,'M;I_lé/'y (since D, = 0 when T, = Tf)
(1~ T Dy + Z)T By + 2Dy + )

« THDyy + 2.) &)/ 7=0,(1)-
iv) Using (A.3c) and {A.3d) write,

'I""'I‘),'M?‘ll‘)2 = T"i,t'My_li_‘/')r’
= [T‘zz-lli'-l— [T'”?f)a'z—nh + op(l)]’[T"f),'f){y’ + Op(l))-']/'fz +o,(1)= Op(l)~

v) Using (A.1b}) and (A.1c) write,
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Ta/z?_,mﬁ;(? =Y.)=T¥D,- D)+ 3»J'M1‘),(ﬁ:7 + &)
= T"lf(i,, - 5,7)’Mﬁ,(13,7+ &) (by Mﬁ’f), = 0)
= '_["3/?1.‘: szﬁ‘.’ + Gp(l) = Op(l)

) Using (A.2¢) write,

T'K{,IMI-)’?,1 = T'zl(ﬁ, - 1')1)1 + z.J’Mﬁzl(ﬁ, - 51)7 + Z,J

=THL, - ﬁ,y)fmﬁz(i-, ~Dy) = T”Z,,’MﬁQZ_, +o,(1) = 0,(1),

Lemma AS. Set v¢ 0 and suppose that A # A.. Under (A.1a) these limiting results hold:

i) T"/’Y'M\-,_‘f)r, =0,(1),
i) rlﬁ’M?_ll')r, =0,(1),
i) TD, My Y = 0,(1),
iv) 'I‘"D ‘My Dy= Op(l),

© ) T"?_,MI-) (? L 0,(1),
v) T, Mp Y. = 0,1},
vig) T-’Y_,MD(Y -YJ)=0 o),

viil) T Mp¥., = 0(1).
Proof:

i) Using (A.2b) write,

T"”’?’M? f)r, =

-1

{ T”‘?'M?.If),} ~ { T‘?(l’)§7+é)'M‘;,_!1'),
T"?'M?'lf), T"(I')f'y+é)’Ml~,_lf),
Using (A.2c) write,

THDSy + &) My D = T(D§7+ &)'D+ TYDSy + &) [(D§- D)y + 2.

- {T"I(D§ = D97+ ZJ' (D - DSy + 2.} T7(DS - %)y + Z.)'D,
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= TD5 D7 + o,(1)
A —[T2D5 DS + 09(1)3('1'4135'1‘)37’ + op(l)]"{'l‘""f)g'l')n +o,(1)] = 0,(1)
THDSy + ‘é)’M,-{_‘f), = THDSy + &) Dyt THDSy + &) (D5 - DD+ Z.)
« {(T(D§ - DSy + £.J°[(D§— D + 2} *T(D5 - D7 + 2.)'D,
= T2D§'D,7 + 0,(1)
~ [TD$ D$7? + 0, (DT D5 D572 + o, (] (T *D§ Doy + 0,(1)] = Of1)

~ _[TD,Mg D, T?D, Mg )]
i) 7,0'Mg_Br,= VUYL Y T o o),

T"f),’M?_‘f), T-’ﬁ,'M?_‘f),
using arguments similar to (i).
iii) Using (A3.b) write,
T’ Mg, ¥ =T,/ My (D§r+2
T My 2 Y-:( {7+ 8)
= T"l’),’M? DS + o0,(1) = 0,(1), using arguments similar to (1).
-1
i) Follows from arguments similar to ().
1) Using (A.2b) and (A.2c) write,
T"?,,Mf)'(? -¥.) = TYD§-DYHr + Z_J'Mﬁz(f)gv +8)
= TB§ Mp, Dir -+ 05(1) = 0,(1).
vi) Using (A.2c) write,
T"\-{_le)zY_, = TI(D§ - DSy + 2_,]'Ml-)=[(l')§ ~-DSr+ 2.y
= T"f)ng)’f)gv’ +0,(1) = 0,(1)-
vii) Using (A.2b) and (A.2¢) write,

T’a?-fo)(? -Y.)= T|(D§ - D§)r + z) M]')(ﬁ‘h +8)



gﬁ
!
|
i
!
?

= 'r*f)g'MDE‘;v +0,(1) = 0,(1).
viid) U;ing {A.2c) write
T3 MY, = T(D§ - D) + 2. Mp((B5 — D)y + 2.
= T"I')‘;Mr)ﬁg'y’ +0,(1) = 0,(1).
Using the results from the Lemmas, the proofs of the limiting distributions will

follow easily. Proofs are not given in the order as presented in the text but are given by
model 50 a5 {0 minimize the details.

Proofs for Modd (1,AQ):
To prove (12) and (13) all that needs to be shown is that the limiting distribution of

T"/’t‘o i5 Q) Ao(})- Using regression (2.1) and (A.2a) with 7 = 0, write
T"/’t& = T3/ D [T5*T DD J1/? = T"“Z’I'),{T”Z’MI-)!iT"I")" D2
1
= f/\W'(r)dr/(a,,L,(/\))ll": QI,AO()‘)’
by Lemma A1 (i) and (wvii).

Proofs for Model (2,10):

Proofs are first given for the case where 7 = 0 followed by proofs when 7 # 0. Since
the limiting results do not depend on the D(Ty), variable in regression (5.2), it is ignored
when writing dowa the statistics. To prove (14) through (16) all that needs to be shown is

that t. and Fp 5 couverge to Qg‘ 1o{*) and Qg 10(*) respectively. Using regression (5.2)
with & = 0 (o’mitting the D(TJ, term) and (A.2b) and {A.2c) with ¢ = 0, t,y can be
written as,

t,= [T"/’ﬁ,'MZ’!’é =Ty Mg D(TD,'My D) D, My
. [s’{Tﬂﬁ,'MZ_‘f), = T4Dy' Mg DJA(TD, My, D))

= 11,00 ~ KOO )/K (/1,00 = KoK (0] = @4 |,
by Lemma Al (#) — (vi) and the result 5? - ¢ from Perron (1989).
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Similarly, Fp 5 can be written as,
]"b 5= é’M;{.lf)f‘(f,f)’M?“f)vl)"r,ﬁM?_lé/s’
= [H(A)’K,(2) — 20 (A)K f{AJHLA) + Hy(A)’K (M)
o [K(K(3) ~ Ky = Q5 100,

by Lemma A1 (if) — (vi). Suppose that 7# 0. Results for L are established first. When
A=A ty is invariant to 7 under the null hypothesis, and its hmltmg distribution is given
by (25). Suppose that A # Ac. Three steps are used to establish (28) (=2, m=10).

Step 1: Using (5.2) (ignoring D(T}),) write
T(a—1) =TV /MY~ YT MY ) = 0,(1),
by Lemma A3 (vii) and (vidi).

Step 2:
= TV =¥, - (a- D) Mpl(¥ - ¥ = (@- DY
=THY =¥ ) Mp(Y -V, ) -2T(a~ DT Mp(Y - Y.}
+ THa— 1TV ' MpY,
= TYDSy + &)’ MD(D‘i'y + &) + 0,(1) (using Step 1 aod Lemma A3)
= 0,{1).
Step 3: Again using (5.2) write,
T/%,(2,]0,(AT),b=0) = T, Mp(Y - T/ T3Y MY )12 = 0,(1),
which follows from Steps 1, 2. Consider t,ny and Fi) 5 when 74 0. Suppose that A = Ac.
1
ey M- VHITD. M D)=
(A4) =T D, MY_'Y/(s T-2D, My_ln,) 2= 0,(1),

which follows from Lemma A2 (i) and (iv) and s* - o2,

(AS5) T*F»M = T"/’?’M‘-[_‘I-)r,('r,l-)'M\-['ll')'r,)"'r,l-)M\-,“YT"/’/S’ = 0,(1),

which follows from Lemma A2 (i) & (ii). (A4) and (A5) establish (35). Suppose A ¢ Ac,




(A8) T‘*/?u = TP, My Y/( 3D, My D ) =01),
which fol]ows from Lemma A3 (i) and {(iv) and s? = 0,(1).
(A7) TPy = T/ My Drirprmy Dr)nbmy Jyrirgst <o),

which follows from Lemma A3 (7) and (4)). {A6) and (A7) establish (36).

Proofs for Model (2,A0):
As presented for Mecdel (2,10), proofs are first given for the case where 5 = 0
followed by proofs when 7 # 0. Consider results (17) — (19). ANl that needs to be

established are the limiting distributions of T“/’t;r and T“'Fb 5 Using regression (2.2) the
statistics can be written as,

T, = (T'V"f),'Mﬁl\")(T"s’T"f),'MI-)‘I.),)“/’,
’I"‘I“b’:y = T"?'ﬁr,(r;ﬁ'f)n)"f,f)’\"T"/(T“s"'),
where
(A8) T%?= T2y Mj, Y T‘/"‘Y’M D,(T"“D "My D 7T82D ’MDY
= oL, (3) - Ls*/(a31a1/a,)] by Lemma A1 (vi), (i) and ().
Using (A8) and Lemma A1 it directly follows that,
T"/’z,7==> Li(Ml(ay-aty/a, )L ) ~ L) = Q2 AO(’\)
5= [(eutm b)) ~ 40077
x {a,,(fiw'(r)dr)"’-— 2a,,f;W'(r)drf;(r~,\)W‘(r)dr + a”(f;(r-v\)W'(r)dr)’]

= Qg AO()«), as required.

Now consider the case where 7 # 0. Using (A2.a) and regression (2.2), the statistics can be
written as,

(A.9) T’/’t—=T’/‘D ‘Mg {D'y+'ﬂ}( D, My, D)'/’
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(A.10) T'*Fm = TYDSy + 2} D(D’ D)D" {D§y + Z}/5%.
Consider the limiting behavior of (A.9) and {A.10) when (2.2) is estimated at the true
break date (A = Ac). In this case 57 is invariant to yand T"'s? = O,(1). Using this fact:
(A1) TR = T[1Dg M Dy + 2)(T"s”1‘"f)§’Mmf)§)"/’]

= yT/%0 (1),
(A.12) T“Fb’;y = T[T"/’(f)g'y + 2y Dr (7,0 Dr)'r D’ (D§y + i)’l‘"/’] J(T%%)

= 7*TO(1).

Results (31) and (32) immediately follow from (A.11) and {A.12). Next consider the
behavior of the statistics when the wrong break date is used in regression (22) (A #A) It

is no longer true that s is invariant to 7 as,

(A13) T2 =THDSy+ ) Mp(D§r + 2) = PT2D§ MgD§ + 0,(1) = 7°0,(1).
Now, rewrite (A.11) and (A.12) as,

(A.14) T"/’t,y = T"D,’Mﬁl{ﬁg + ZNT- s"I‘"I'),'M]-)tl—),)"/’ =0,(1),

(A.15) T“F‘o,:y = T*DSy + 2)'1-)7‘(7,1.)’ﬁr‘)“'r,ﬁ'(f)g'y + ZyT3/YT %) = 0,(1),

This proves {30). Al that remains to show for Model (2,A0) is (28) (j = 2, m = AO)
(that ta(2,AO,Tb(t&),L=O) diverges when 7 # 0 and A # Ac). Using results in Perron and
"Vogelsang (19932), the proof is analogous to the proof for Model (2,]0) and is omitted.

Proofs for Model (3,10}):

The only results that need to be shown are (27) and (28) (= 3, m = 10) in which
case 7# 0. Suppose that A = Ac. Three steps are used to establish (27).
Step 1; Using (5.3) write,

TVa - 1) = T/ M (¥ = )TV Mp ¥ . = 0,1),

by Lemma A2 (1) and (v1).
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%

Siep 2:
§7=TY - ?_,)’Mﬁz(‘? ~-Y.,) -2 a- 1)'1‘"/??45/1,32(? -v.,)
+ T{&~ l)’T"?_{MI-)z‘-{,,

= TYDSy+ é)’Mﬁz(f)ﬁ'y—f &)+ 0,(1) (by Step 1 and Lemma A2)
= 0,(1).

Step 3; Again using (5.3) write,

T/%,(3]10, Ty, k=0) = T"/’?,,’Mﬁz(? =Y. )Is*T MI-)??,,}‘/? =0,(1)

which follows from Steps 1 and 2. This proves (27). Suppose now that A # A. To

establish (28) (=3, m=10} three steps are again needed.
Step 1: Using (5.3) write,

T(a—-1) = T"?_,’Mﬁi(? - ?_1)/(T'3?,,’M52§',,] =0,(1),
by Lemma A3 (v) and (vi).
Step 2:
s?=TYY - i’-l)’Mﬁ’(\.’ ~-¥. ) -2T(a~ I)T'z‘-],l’Mf)z(? -Y.)
+ TY& 1)"1'-3?_;1&41—)’?_'
=TYDSy + é)'Mﬁz(ﬁﬁ'y + &)+ O,(1) (using Step 1 and Lemma A3)
= 0,(1).

Step 3: Again using (5.3) write,
T"/’ta(s,lo,'r,,,k:«)) = T"?.I’Mf)’(? - ?,,)/(sz'r*?_,'Mﬁz?_,]’/’ =0,(1)

which follows from Steps 1 and 2. This proves (28) (j=3, m=10).

Proofs for Model (3,A0):

As before, proofs are first given for the case where 7 = 0 followed by proofs when
7# 0. Consider results (22) and {23). Al that needs to be established is the limiting

distribution of ’I‘"/’t:’. Using regression (2.3) the t—statistic can be written as,
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T'llnl;y - (T'aﬁﬁa'?)(T"S’T"f),’f)z)"/’ - (T'slzﬁ,z?)(T-Q\’{Ml_)z?cr-zﬁa,f)z)q/g
== f;(rc-/\)w'(r)dr/(a,,L,(A))‘/’ = Q4 po(?), by Lemma Al (4) and {wii).

Now suppose that 7# 0. To prove (33) and (34) use (2.3) and {A.2a) Lo write,

T/ = TV, (D52 + B)(s%Dy )
where §? = T(D§y + 2)’M‘-)2(f)§'y + 7). When (2.3) is estimated at the true break date
(A= i), D§ = D, and Mp DS = 0 giving T's? = T"'Z’MI-) Z = O,(1) by Lemma Al

? 2

(vid). 1t immediately follows that,
(A16) 'r-‘/%% = VTIPS DSy + 2))(T 51Dy DY /* = 77?0 ,(1).
Result (34) is a direct consequence of (A.16). When (2.3) is estimated at the wrong break
date (A # Ag), Mﬁ:ﬁ‘,’ # 0 and it follows that,
(A17)  T%=T3D§r+ Z)‘Mf)’(f)gv +2)= 'I‘"f)g’Mﬁzf)ﬁ'y’ +0,(1) = 0,(1).
Using (A17) it is easily established that,

T"/"'t;’ = {TD,/(D§7 + Z)HT%T3D, D,) 17 = 10,(1).

This proves (33). All that is left to prove for Model (3,A0)is (28) (j= 3, m= AO). This
result can be proved analogously to the proof in Model (3,10) using results from Perron
and Vogelsang (1993a) and is therefore omitted.
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Figure 1: limMr.eT7#,(2,A0,IAT) k=0), ¥=5.0, A.=0.2, ¢2=1.0.







Table 1A : Modd {1,AO); Distribution of ta(l,AO,Tb{i&}};

Choosing Ty, Minimizing te

1.0% 25% 5.0% 19.0% 50.0% 90.0% 95.0% 97.5% 99.0%

T=50 k=0 D49 520 491 460 359 277 255 329 -2.02
k=2 DAl 498 466 431 337 258 239 51y -1.93
k=5 522 A2 448 411 316 -241 391 -2.03 -1.38
k=k(t-sig) 571 -5.44 -5156 —85 3387 -3.04 -2.78 267 -.38
T=100 k=0 230 515 495 464 372 997 7 _ps -2.32
k=2 330 500 465 543 354 280 256 _oan -2.17
k=5 H99 473 449 423 338 965 943 _597 -2.03
k=k(t-sig) -5.68 -5.36 -5.06 479 186 ~3.06 -2.85 -2.64 -7.43
T=150 k= 58T 511 484 456 371 993 947 oo -2.23
k= 32T 503 471 444 362 28) 250 5 -2.08
k=5 313 483 461 431 347 272 947 394 -1.97

k=k{t-sig) -5.61 527 503 473 381 304 -2.77 254 -2.98
T=a Al 502 480 458 375 209 277 955 _pam

Table 1B : Model (1,A0); Distcibution of Lo(1LAO, Tyt P
Choosing T, Maximizing { 7

1.0% 25% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

T=50 k=0 A80 454 425 303 283 184 157 134 111
k=2 560 434 400 370 2062 -172 144 191 089
k=5 543 406 371 339 242 158 133 130 093
k=k(t-sig) 515 478 450 414 302 199 _io -147 -1.18
T=100 k=0 05 456 424 390 287 200 -1.70 145 -1.99
k=2 ThT0 439 405 378 -273 182 155 133 111
k=5 TS5l 414 38T 353 260 -174 146 198 -1 00
k=k(t-sig) -5.08 466 441 408 203 20 -L76 -152 -1.31
T=150 k=0 6T 431 409 382 285 188 163 -136 -1
k=2 7459 430 400 370 -274 181 153 196 003
k=5 450 423 387 363 262 -174 147 _196 088
k=k(t-sig) 487 456 431 395 290 _194 -1.68 -1.36 -1.11
T=o AST A2 401 374 271 185 157 134 o102
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Table 1C : Model (1,A0); Distribution of .(1,A0,Tu(|t1)):
Choosing Ty, Maximizing |p].

1.0% 25% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

T=50 k=0 504 470 441 -4.14 -3.09 -2.14 -1.84 -164 -1.36
k=2 4906 -449 -4.18 -3.86 -2.87 -1.95 -1.69 -145 -1.3

k=5 452 -415 -388 -356 -2.57 -1.72 -1.48 -1.27 -1.03
k=k(t-sig) ~-5.38 491 -4.64 -4.20 -325 -224 -1.95 -1.72 -1.36

T=100 k=0 502 -4.70 —4.40 -4.11 -3.08 -217 -1.96 -1.70 -148
k=2 478 -447 -4.24 -3962 -293 -1.99 -L77 -152 -1.28

k=5 465 -435 -405 -3.71 -2.81 -1.87 -1.59 -141 -1.15
k=k(t-sig) -5.21 —4.84 —4.55 -4.26 -3.18 -223 -1.96 -1.71 -1.48

T=150 k=0 479 -450 -4.32 -4.03 -3.04 -2.11 -1.83 -162 -1.30
: k=2 470 -441 -4.18 -3.89 -294 -2.04 -1.74 -152 -1.28
k=5 . 465 -433 -4.13 -3.78 -2.82 -1.92 -1.69 -1.45 -1.16

k=k(t-sig) 500 473 -4.45 ~4.19 -3.11 -215 -1.88 -1.65 -1.36
T=0o 470 -440 —4.17 -390 -294 -205 -1.78 -1.52 -1.22
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Table 2A : Modd {2,A0); Distribution of (2A0,T(1,));

Choosing Ty, Minimizing ty

L0% 25% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

T=50 k=g -6.04 563 520 -5.01 -3.97 312 292 -2.7% ~2.58

k=2 562 524 498 .45 -3.66 -287 -272 2357 ~2.42

k=5 ~5.55 515 471 -4.38 -3.40 263 -245 -2.33 -2.22

k=k{t-sig) -6.16 585 -5.49 518 4.26 -3.48 -3.25 -3.06 -2.84

T=100 k=0 -5.82 553 -524 403 -4.00 -3.18 -300 -2.79 -2.62

k=2 ~5.56 ~5.21 ~4.97 -4.69 -3.80 -3.04 -282 -262 ~2.42

i k=5 -5.30 497 473 447 -3.60 -2.87 269 -2.54 ~2.34
§§ k=k(t-sig} 598 -5.63 -5.48 -5.11 -4.16 -3.37 -3.15 -292 -2.97
§ T=150 k=0 -5.76 -540 -5.13 -4.37 -3.98 -3.21 -303 -2.82 -2.60
% k=2 -5.53 526 -5.00 -4.72 -3.86 -3.06 -2.87 -2.70 ~2.50
| k=5 -5.38 506 -—4.81 -457 -3.71 296 -2.75 -261 ~2.40
' k=k(t-sig) -5.89 -5.66 ~5.35 -5.03 —4.12 -3.98 -3.06 -2.87 -2.65
T=o -5.57 -5.30 -5.08 -4.82 -3.98 -3.25 306 -2.9] -2.72

Table 2B : Model (2,A0); Distribution of ta(2,AO,Tb(t,r));
Choosing Ty, Maximizing t,,.

10% 25% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

T=50 k=0 -5.17 481 -449 416 -2.92 ~L72 139 -1.12 -0.78

k=2 : -4.85 467 422 -3.83 -2.69 -1.61 -1.29 -1.08 -0.82

k=5 -4.54 407 -3.75 -343 -242 -1.47 124 -1.04 -0.80

k=k(t-sig) -5.40 —4.95 -4.66 —4.32 -3.07 -1.86 -1.48 -123 -0.92

T=100 k= -5.09 -4.64 440 -4.06 -291 -1.73 -135 -1.07 ’ ~0.73

k=2 485 454 422 -387 -2.78 -1.62 -1.25 -1.03 -0.70

=§ ~4.59 -—4.26 -4.01 -3.72 -2.61 -1.54 -1.20 102 -0.74

k=k(t-sig) -5.08 -4.77 -4.51 419 -3.01 -1.75 -1.40 -1.13 .81

T=150 k=0 487 -456 432 400 -2.85 -1.61 -1.28 -0.98 -0.62

k=2 477 444 422 391 -2.79 -156 -1.23 —0.96 -0.61

k=5 ~4.68 435 408 -3.79 -2.66 -1.50 -1.19 -0.91 -0.53

k=k(t-sig) -5.13 -4.73 446 417 293 -1.68 -1.28 -1902 -0.62

T=o -4.86 -4.55 -4.28 ~3.95 -2.84 -158 -1.22 -0.88 -0.51
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Table 2C : Mode {2,A0); Distribution of ta(z,AO,’l‘b(h,-'i A
Choosing Ty, Maximizing |t:’] .

1.0% 25% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

T=50 k=0 546 -506 -A71 -4.40 -3.27 -2.32 -2.07 -1.88 -1.58
k=2 505 473 442 4.13 -3.08 -220 -200 -1.79 -1.57
k=5 474 437 404 371 -2.73 -1.99 -1.78 -1.63 -1.39
k—k(l-sig) -549 515 490 461 -3.50 -251 -2.24 -205 -1.T4
T=100 k=0 526 -490 —4.61 -430 -3.28 -2.32 -202 -173 -1.50
=2 7500 -470 443 -4.10 -3.12 -221 -193 -172 -141
k=5 478 446 -424 -3.93 -298 -2.11 -188 -1.64 -141
k—k(t-sig) -531 -5.07 481 448 -341 -240 -2.11 -185 -1.54
T=150 k=0 516 -4.80 -4.52 -4.26 -3.22 -2.20 -192 -173 -1.41
k=2 501 474 444 419 -314 -216 -189 -1.59 -1.33
k=5 491 458 —433 -403 -3.06 -215 -1.88 -1.65 -1.38
Kek(l-sig) -544 503 -476 443 -335 -231 -201 -L77 -141
T=o 504 473 450 —4.20 -3.20 -2.20 -190 -1.59 -1.32

Table 2D : Moddl (2,A0); Distribution of t(2,A0,To(Fj =));
?
Choosing Ty Maximizing Fj -
¥

1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

T=50 k=0 575 537 497 -462 -3.52 -2.60 -2.36 -2.18 -2.00
k=2 540 486 453 -426 -3.23 -2.35 -215 -1.92 -1.69

k=5 497 453 -420 -389 -2.85 -2.06 -1.87 -1.68 -1.44
k—k(t-sig) -5.89 -5.45 -5.11 —477 370 -271 -248 -2.15 -1.93

T=100 k=0 541 503 —4.82 -448 -350 -2.50 -2.33 -2.14 -1.90
' k=2 518 484 456 -425 -3.30 -—2.36 -2.15 -1.97 -1.69
k=5 470 456 434 -407 -312 -2.26 -2.00 -1.83 -1.51
k=k(t-sig) -553 519 —493 464 -362 -264 -2.37 -2.11 -1.80

T=150 k=0 590 4.96 -468 -440 -345 -2.54 -229 -2.04 -L.79
k=2 519 482 458 426 -3.36 -242 -218 -1.93 -167

k=5 498 472 446 418 -320 -232 -2.09 -1.89 -164
k=k(t-sig) -5.51 -5.14 -493 462 -358 -2.60 -2.29 -2.06 -1.719

T=w 515 486 -4.61 431 -335 -246 -220 -1.94 -1.63
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Table 2B : Model {2,10}; Distribution of tg{?,lﬂ,Tz,(F;? .7)};
Choosing Ty, Maximizing F- 5 ’

LO% 25% 5.0% 100% 50.0% 90.0% 95.0% 97.5% 93.0%

=50 k=0 SB5 539 505 471 -350 233 _jo7 -1.68 -1.29

k=2 DI 533 503 467 -339 207 ;s -1.28 -056
k=5 88 544 507 464 326 173 ;4 ~0.61 016
k=k(i-sig) 631 592 562 518 _3gs -2.15 -1.55 -101 -p.og
k

T=100 k=0 ~5.80 -526 -5.09 -4.63 -3.52 .2.43 ~2.12 -1.84 -1.48
: k=2 ~5.56 -523 -498 ~4.58 -346 -2.95 -1.82 -1.51 -0.8%
; k=5 ~5.48 522 -4.04 ~4.55 -3.37 -2.14 -1.73 -1.21 073
| k=k{t-sig) 585 -555 -5.25 495 367 ~2.39 -1.96 -1.53 -pgg
f T=150 k=0 -5.48 ~5.15 -4.92 ~-4.58 -3.49 -2.40 ~2.08 -1.84 147
! k=2 -5.54 525 493 461 -3.46 -231 -199 -1.70 -1.33
! k=5 ~5.52 -5.14 -488 ~4.59 -3.44 -2.91 -1.83 -1.46 -0.05
ka(l—sig} -5.84 -549 -5.14 ~4.86 -3.62 -2.33 ~1.98 -1.68 -1.11
T=n . =571 -541 -5.18 ~4.86 -3.91 -2.79 -2.44 -2.13 -1.67

Table 2F : Additional Asymptotic Distributions
Statistic 1.0% 25% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

LA2I0T(1)) 528 495 462 428 -2.94 -164 -1.33 098 -0.59
GHRI0OTo(|t:1)) 857 520 491 450 347 -2.15 -1.85 -1.59 -1.30
a(3A0TH(t:)) 467 436 408 377 _ngs ~1.57 -1.22 -0.90 -0.49
t&(B,AO,Tb{it,’l)j 8T A58 434 404 308 -214 -187 _1g -1.30
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Table 3 : Model (2,A0); Distribution of t&(2,A0,Tb(£&));
Choosing Ty Minimizing t ;.
Panel (a): T =100, k= 0,74 0.

1.0% 25% 50% 100% 50.0% 90.0% 95.0% 97.5% 99.0%

TE=20 ~=05 -5.70 -538 -509 -48 -3.87 -3.09 -2.89 -2.75 -2.54
(Ae=02) =10 -58¢ -552 -5.22 -495 -3.97 -3.21 -302 -2.83 -261
1=20 -693 -664 -638 -610 512 -4.18 -3.93 -3.72 -3.53

=50 -9.82 -952 -9.19 -891 -7.¥4 -701 -6.76 -6.54 -6.29

TE=50 =05 -568 -538 -512 487 -3.96 314 -292 -2.68 -2.49
(Ae=0.5) y=10 -583 -558 -5.31. 503 -414 -3.24 -299 -2771 -247
=20 -670 -640 -612 -584 498 -4.08 -3.83 -357 -3.27

y=50 -9.13 -881 -856 -8.28 -7.33 -6.49 -6.22 -6.02 -5.78

TE=80 ~=05 -578 -530 -5.03 -470 -3.69 285 -2.63 -243 -2.18
(Ae=0.8) =10 -545 -517 487 450 -350 -2.58 -235 -2.18 -1.96
y=20 -5.85 -544 517 -4.83 -3.79 -2.80 -248 -2.24 -2.4

y=50 -1.34 -7.08 -6.72 -6.37 -5.33 427 -398 -3.69 -3.48

Panel (b) : T =250,k =0,740.

1.0% 25% 50% 100% 50.0% 90.0% 95.0% 97.5% 99.0%

TE=50 =05 ~-5.70 -538 512 481 392 -3.18 -3.00 -2.85 -2.64
{Ae=02) =10 651 -628 -5.99 572 -481 -3.86 -3.58 -337 -3.11
=20 -870 -839 -816 -7.89 -7.06 -6.16 -590 -5.62 -5.28

=50 -13.30 -13.03 -12.83 -12.83 -11.67 -10.76 -18.50 -10.27 -9.95

Tf=126 =05 -5.79 -537 -516 494 -4.02 -3.19 -292 -2.70 -2.48
(e=05) 7=10 -638 -6.03 -58I 553 -467 -3.73 -341 -322 -2.99
=20 -804 -7.70 -747 -721 -634 543 -5.16 -4.86 -4.72

=50 -12.20 -1L.78 -11.54 -11.33 -1043 -9.58 -9.34 -9.14 -891

TE=200 =05 -5.36 -5.09 -4.81 451 -3.51 -2.70 -2.48 -2.26 -2.08
(Ac=0.8) =10 -563 -528 -5.00 471 -364 -2.65 -2.39 -217 -184
=20 -650 -613 -590 -5.60 -4.54 -347 -3.15 -2.84 -247

7=50 -9.42 -9.06 -8.78 -847 -7.38 £.29 -597 -5.66 -5.28
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Table 3 : (Continued)
Panel (c):’l‘=500,k=0, 7#0.
1.0% 25% 5.0% 10.0% 50.0% 90.0% 85.0% 97.5% 99.0%

TE=100 7=05 .53 -5.64 545 518 417 =332 -3.09 .29s ~2.77
(Ae=0.2) 7=1.0 -1.60 -1.35 -7.13 -g84 ~5.91  4.93 460 —4.38 -4.03
7=2.0 ~1091 -10.63 -10.38 1014 8327 _g4p -8.12  -781 737
T=5.0 -17.60 -I7.30 -17.09 -16.89 -1598 -15.97 -14.83 -14.64 -14.98

Th=250 =05 599 -5.60 538 511 423 -335 -301 ~2.76 -2.31
(Ae=0.5) =190 -1l 878 651 -g31 542 449 430 -3.81 -3.54
7=2.0 -9.69 -940 -gi8 -895 -8.08 -7.90 690 667 -g.42
7=5.0 -15.76 -15.50 -15.24 -15.01 -14.13 -13.24 ~13.00 -12.80 -12.55

TE=400 =05 531 -5.01 481 453 3359 -2.60 -235 232 ~1.94
(z\c=0.8) 7=L0 595 -561 -5.4p -5.10 402 -297 -2.63  -2.30 -1.90
r=2.0 -7.46 =122 699 -664 ~5.56 445 411 -3.82 -3.50
7=5.0 -11.98 -11.66 -11.37 -11.09 -9.97 880 -g4g -8.11 -7.66

H
H
H
H
|
i
1
i
}
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Table 4 : Finite Sample Size and Power Simulations; Model (2,A0}, 1.(2,A0,- Kt-sig)). ”
DGP: y, = fDUS + DT{® + 2, 2, = oz, + T, li)Bz + (1 + dYl)e,
e, - iid. N(0,1); T = 100, T§ = 50; 1,000 replications; 5% nominal size; kmax = 5.

Size (o = 1) Power {a = 0.8)
6y 8(1=0) 7(6=0) 6y 0{r=0) 1(0=0)
T, 0.0 50 100 10 20 00 50 100 1.0 20

(1) i) = 0.0 (i=1,...4), $ = 0.0

Ty(t) 040 108 507 .044 .076 295 435 861 .236 .386
Ty(lt5]) 049 048 032 .036 .032 301 098 .042 .239 .230
Ty(ts) 050 050 .040 .072 .061 350 .133 055 .376 .37
Ty(Fy ) 052 050 .020 .027 .021 339 194 163 .193 .184
(2) 1) = 06, ¥ = ¢i) = 0.0 (i=2,3,4)

Tyt,) 033 .036 .072 .030 .029 832 .731 804 .696 .714
Ty It51) 036 .036 .023 .032 .031 738 473 118 726 .425
Ty(tz) 043 033 032 .061 .061 797 548 178 .821 815
Ty(Fp3) 038 .037 .030 .035 .024 740 657 .646 .650 .659
(3) @(1) = -0.6, ¥ = ¢(i) = 0.0 (i=2,3,4)

Tylty) 037 214 .802 .043 .10l 115 455 926 .128 .251
Ty(It5]) 039 037 032 .030 .030 114 042 027 .088 .089
Ty(ts 045 .046 .037 .057 .053 138 064 .004 .165 .164
Ty(Fp 3) 052 .028 .016 .023 .019 132 067 .061 .073 .065

E]

(4) @(1) = 0.4, p(2) =0.2, ¢ = ¢(3) = p(4) = 0.0

- Ty(ty) 023 028 .063 .019 .025 631 556 725 .493 .515
To(I151) 024 .028 019 .021 .022 584 328 081 .555 .532
Ty(tx 027 027 019 .050 .047 655 .400 .133 .700 .683
To(Fj 3) 019 028 .018 .021 .016 592 497 466 469 447
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DGP: y, = gDV + DTy + 2, % =

e, - iid N(0,1); T = 100, TS =

50; 1,000 replications; 5% nominal size; kmax = 5,

Table 4 : (Continued)
oz, + Bhei)dz,  + (1 + YL)e,

Size {a = 1) Power (a = 0.8)
b7 8(r=0) ~4(0=0) by 0(r=0) (6=0)
T, 0.6 50 100 10 20 00 50 100 10 290
(5) ¥{1) = 0.3, ¥(2) = 0.3, ¢{3) = 0.25, ¢{4) = 0.14, y = 0.0
Tb(l&) 011 008 .013 .013 .013 854 .788 783 769 .758
Ty(] 1;-7] ) 010 .003 .005 .010 .009 734 556 .240 806 .795
Ty(t:) 010 009 012 .015 .022 831 645 350 .870 .867
Tb(Fb ;y) 007 003 .001 .005 .006 708 626 .621 .677 .684
(6) ¥ = 0.5, ¢{i) = 0.0 (i=1,...,9)
Tb(i&) 053 .068 .193 .039 .047 304 302 612 211 .253
Ty(] i;rl ) 058 .047 .041 .035 .035 260 163 070 .221 .213
Tb(t;r) 061 057 .043 .067 .069 303 216 101 .332 325
Th(Fb ’3') 048 057 .030 .035 .029 295 .231 .164 .188 .173
(Ny= 0.5, ¢(i) = 0.0 (i=l,...,4)
Tb((a) 500 622 906 .408 .574 888 .911 .983 .786 .854
Ty} t;,l) 298 175 112 265 .242 685 .150 .013 .640 .626
Tb(l;y) 230 .143 072 .320 .302 701 .148 .010 ~ 715 (709
239 209 254 .230 723 591 591 613 .612

Tb(Fb,,y) .391
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Table 5 : Finite Sample Size and Power Simulations; Model (2,10), t&(2,10,-,k(t-aig)).
DGP: y, = 0DUS + /DT + 2, 2, = 0z + B Ai)Bz . + (1 + 9L
e, - i.i.d. N(0,1); T = 100, T§ = 50; 1,000 replications; 5% nominal size; kmax = 5.

Size {(a=1) Power (a = 0.8)
07 0(1=0) ~(6=0) 6y 0(1=0) ~(0=0)
Ty, 00 50 100 1.0 20 00 50 100 1.0 20

(1) (i) = 00 (i=1,...4), ¥ = 0.0

Tylty) 034 119 637 .065 .314 211 .442 976 .233 .688
Ty(lt51) 047 119 471 126 494 214 .158 .339 .418 851
Tyt 052 067 212 212 .640 221 .100 238 573 940
Ty(Fj 3) 067 .189 .707 .106 233 ° .309 .564 .989 .345 .447

(2) 1) =086, 9= i) =00 (i=2,3,4)

Tyt &) - 034 043 .115 .038 .006 756 639 .841 .623 .683
Ty(|t ;,[ ) 048 051 .104 .055 .116 651 .158 .382 .759 .843
Ty(t ’y) 049 048 061 .122 .193 677 .109 238 .874 .925
Th(F‘a, "y) 062 .074 .151 .061 .093 147 715 893 730 .773

(3) 1) = 0.6, ¥ = i) = 0.0 (i=2,34)

Tt &) .030 .328 .958 .159 .755 097 .619 998 .323 .938
Tu(} t;,l ) 038 .263 .650 .297 .879 089 260 .507 .507 .973
Tt ;Y) 040 .136 .328 .438 .950 103 159 .339 .662 .995
Tb(Fb,’y) 058 .407 977 .184 217 127 (706 999 .310 .298

(4) (1) = 04, 9(2) =02, ¥~ #3) = p(4) = 0.0

Tylty) 028 037 .127 .037 .065 549 507 .803 .438 .536
Tyllt51) 047 047 .120 056 .121 488 328 081 .599 .697
Tyfts) 045 041 060 .117 .211 525 284 .40 .729 818
Ty(F5) 054 067 .17T1 .058 .095 595 620 .862 .559 .595




Table 5 : {Continued)
DGP:y, = DUS + /DTy + %, % = 0z, + Eg,,go(i)AzM +(1 4+ Yl)e,

€, ~iid N(O1); T = 100, Tf = 50; 1,000 replications; 5% nominal 5iz¢; kmax = 5.

Size (a = 1) Power (o = 0.8)
by 0(y=0) q(0=g) by 0(r=0) 4(0=0)
Ty 6.0 350 100 1.0 2¢ 0.0 50 100 1.0 20

(3) (1) = 0.3, ¢(2) = 03, (3) = 0.25, Y(4) = 0.14, = 0.0

%

Tyft;) 067 083 .144 073 o8 823 758 154 118 g0
Ty((15)) 064 085 .154 081 112 760 613 339 803 .g15
Tyt 062 .058 .089 .094 .155 800 613 345 888 ggg
Ty(F) =) 063 .080 .128 079 g9 708 798 817 793 772
(6) $= 05, (i) = 0.0 (i=1,...4)

Ty(ty) 051 079 204 060 131 238 282 768 .196 .38
Tollt51) 066 .080 249 .103 240 202 178 265 328 591
Ty(t:) 072 067 116 .172 361 219 145 157 459 740
Ty(Fy =) 092 .124 363 .089 .169 306 385 .835 204 416

(1) ¥=-05, ofi) = 0.0 (i=1,...,4)

Tb(t&) 447 656 999 435 .896 -843 955 1.00 .857 994
Tb(lt,‘y” 373 457 679 561 .964 698 361 .375 514 .998
Tb(t:‘,) 235 258 .343 662 .988 646 262 317 963 1.00
Tb(F@,:‘)) -443 708 999 456 .469 750 .968 1.00 .849 .833
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