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RESUME

Cet article considére une régression non paramétrique de la forme Y = g(X) + &, ol
ElelX] » 0. On s'intéresse & une procédure en deux étapes (2SNP) qui utilise un ensemble
d'instruments, Z, et une régression non paramétrique auxiliaire de la forme X = M2Z) +n. Une
régression polynomiale de Y sur X et 1} est ensuite utilisée pour obtenir un estimé consistant
de g. Il est démontré que l'estimateur donne des estimés de g dont l'erreur quadratique
moyenne échantilionnale converge en probabilité vers zéro. L'estimateur peut étre utilisé dans
un contexte de régressions non paramétriques lorsque 'hypothése d'indépendance entre les
régresseurs et les résidus n'est pas respectée.

Mots clés : régressions non paramétriques, variables instrumentales, doubles moindres carrés,
biais de simultanéité

ABSTRACT

This paper considers nonparametric regressions of the form Y= g(X) + &, when
E [e]X] # 0. We consider a two-step procedure (2SNP) which makes use of a set of instruments,
Z, and an auxiliary nonparametric regression of the form X = h{2) + 1. A polynomial of Y on X
and 1 is then used to obtain a consistent estimate of g, which is shown to have sample mean
square error that converges in probability to zero. The estimate can be used in nonparametric
regressions when independence between the regressors and the regression error fails.

Key words : nonparametric regressions, instrumental variables, twao-stage least squares,
simuitaneity bias






1. Introduction

Consider the linear regression model (e.g. a consumption function):
Yo=Xlfo+e t=1,..,n &~I1ID0,0%]), (1

where X, is a k-vector of explanatory variables and n is the sample size. Hereafter we
denote the n x k matrix of regressors by X, and Y and ¢ are n-vectors. Assuming the
model is correctly specified, least squares estimation yields (8 — Bo) = (XTX) ' XTe.
Hence, 3 is consistent for fo if n™1 XTe = 0,(1), and is unbiased if E(¢}X) = 0. However,
there are at least two cases when the independence assumption between X and ¢ is
violated!. The first is errors-in-variables. When the X,’s are measured with error, the
observed X,’s will no longer be independent of the disturbances. The second arises as a
result of endogeneity of the regressors. An example is the simultaneous determination of
price and quantity in a classical supply-demand model.

In classical linear regression analysis, Instrumental Variables (IV) and Two Stage
Least Squares (25LS) are often used in place of ordinary least squares when the regressors
are not independent of the regression error, In the IV approach, one searches for a set of
instruments Z that is correlated with X but is orthogonal to the error term. The columns
of X are projected onto the space spanned by the columns of Z. The IV criterion function
is(Y—-X ﬂ)TPz(Y — X ), where Py is the projection matrix. ldentification requires that
there are at least as many instruments as regressors. If this condition is satisfied, it can
be shown that the IV estimate is y/n—consistent and asymptotically normal, although
not unbiased under regularity conditions.

The 2SLS approach resolves the problem in two steps. In the first stage, all the
variables susceptible to violating the independence condition are regressed on a set of
exogenous and predetermined variables. In the second stage, the fitted values from the
first stage are used in place of the endogenous variables. Two stage least squares is more
suitable for estimating the parameters of a structural model. However, it also applies in
cases of “generated regressors” [cf. Pagan (1984)].

A different solution to the problem of endogeneity was used in Stock and Watson
(1993), albeit in a time series context with non-stationary variables. There, the DGP is

!We use the term independence very freely here, sometimes in the sense of uncorrelatedness, some-
times as the conditional mean condition.



assumed to be Y; = X, f+¢€14, with Xy = Xy + €2 where €1, and €2, can be mutually and
serially correlated. Evidently, least squares regression of ¥; on X, will suffer from bias
* arising from correlation in the two error terms. Stock and Watson suggest augmenting
the regression of Y on X by leads and lags of e3:. This has the effect of orthogonalizing
€11, 50 that the error term of the augmented regression is essentially &3~ Ee1]e2], which
is by construction orthogonal to X,.

The independence assumption can also be violated in non-linear models. Consider

the parametric non-linear regression model

Yt = g(Xtals)+€ts (2)

where E[e]X] # 0. Suppose that in addition to the conditional mean of Y, one is also
interested in the parameter 8. When g(X, 8) has a known parametric form, a possible
solution is Amemiya’s {1974) non-linear two-stage least squares estimate (N2SLS). The
NL2SLS is really a non-linear IV estimate since it minimizes the objective function
(Y — g(X, B))T Pz(Y — (X, B)), in analogy to the linear IV case. The estimate is \/n-
consistent and asymptotically normal under standard conditions. It is noteworthy that
a two-step procedure which first forms a projection of X onto Z and then uses the fitted
values in place of X in g(X, 8), will in general not be consistent. This is because the
projection only ensures that Pz X is orthogonal to €, but not that g(Pz X, B) is orthogonal
to £ [See e.g. Davidson and Mackinnon (1993), Section 7.6).

In this paper, we are concerned with cases in which Ele]X] # 0 and, in which in
addition, g(X) takes an unknown form and is to be estimated non-parametrically. Non-
parametric regressions are becoming increasingly popular in economic analysis as they
are very powerful at identifying interesting economic relationships without imposing dis-
tributional and functional assumptions a priori. However, problems of simultaneity bias
and errors-in-variables frequently arise in economic applications. There is a need to
deal with these problems in non-parametric regressions just like in parametric models.
For example, if one is interested in a possibly non-linear Engle curve, the consumption
function cannot be estimated non-parametrically without imposing the seemingly false
assumption that innovations in consumption and income are independent. A consistent,
non-parametric estimate of the function g is important because from it, we can derive A
quantities of economic interest such as the marginal propensity to consume. As well,



measurement errors pose an insurmountable problem for practitioners who work with
panel data. The methodology provided here is a step towards resolving these problems
in a non-parametric framework.

The estimate we propose is in the spirit of but not identical to the 25LS estimate of
the linear regression framework, and it also differs from the IV approach in ways to be
made precise. It can also be seen as a non-parametric extension of the DOLS estimate
outlined earlier. Section 2 presents the proposed estimate and discusses related work in
the literature. The statistical properties of the estimate are given in Section 3, and the
empirical properties of the estimate are shown in Section 4. The proofs of the results are

provided in a technical appendix.

2 A Two Stage Non—parametric Estimate (2SNP)

Consider non-parametric estimation of the following model.
),t =9(Xt)+€h (3)

where g is an unknown continuous function and {e,} is a sequence of random variables.
Under the standard condition that E[¢]X] = 0, a consistent estimate of g can be ob-
tained under fairly general conditions [cf. e.g. Andrews (1991a) or Robinson (1983)].
Now suppose E[e|X] # 0. Our objective is to devise a2 method to estimate g consistently.

Suppose X can be expressed as the sum of a predetermined and an unpredictable

component .
Xe = h(Z,) + m, (4)

where h js an unknown continuous function, Z,; a vector of predetermined or exogenous
variables, and {7,} a sequence of random variables satisfying E[n|Z:] = 0. In addition
we assume that E{é,[Zg,m} = Elei|m], which is implied by Z; and ¢, being independent.
It follows from this last assumption that Ele,|X,] # 0 arises when E[es|n,} # 0. We wish
to exploit (4) to obtain a consistent estimate of g. We focus on the simple case in which
Y, is one~-dimensional, )

The function h relates the regressor X to the variable Z. The latter can be viewed as
an “instrument” in a classical sense. Step one of our approach is to obtain a consistent,

non--parametric estimate of h, say iz, and a set of residuals {%,} that converge to their

3



corresponding elements in {n,}. This can be accomplished by nonparametric estimation
of (4). For kernel estimates, the rate of convergence of k is n?/5. For series estimates,
- the rate of convergence depends on additional conditions such as the smoothness of &
and the order of truncation of the series [see Robinson (1983) for conditions for kernel
regressions and Andrews (1991a) for conditions on series regressions.).
To motivate step two of our estimation procedure, define

m{ X, ) = E[}’Hxn nd = g(Xe) + Eleidn] = 9(X:) + win), (5)

where w(n) = Ele.|n;]. Suppose for the time being that 1 is known, and consider a series
expansion of the functionals g{z) and w(y) in terms of their orthonormal basis functions
{ex:} and {ey,}. We have

g(z) = iuxrem(z),
=0
w(n) = lionlenl(ﬂ)a
m(z,n) = iaxtexl(f)*’iﬂntenz(’l) ‘ (6)
=0 =0 .

The series expansion representation of m(z,n) given by (6) implies that an estimate of
m can be obtained if we can estimate the unknown a’s. Step two of our approach is there-
fore to obtain the &'s by series regression. For the series expansions to be approximations
of the respective functionals, it is important that {ex;} and {e,;} indeed form a basis for
the support of the densities of X; and 7;. A popular choice is the Fourier expansion, in
which ex;{z) = (2r)~F cos{(j + 1)z/2} for j odd, and ex;(z) = (2n)~4 sin{jz/2}) for j
even, with exo(z) = (27)~7. This gives an orthonormal basis for the class of continuous
functions on [~=n, 7). Alternatively, we could use Legendre polynomials which constitute
an orthogonal system of functions on [-1,1]. The j** term of the expansion around z can
be constructed from the recursion

(j+ Dexjailz) = (25 +1) -z -exj(z) — j - exj-1{z) (7)

with exo(z) = l/\/§ and ex;(z) = z/,/2/3.
Once the orthogonal polynomials are formed, we have the regressors for the series .

regression (since we have assumed 7 is known). It is obviously impossible to estimate
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an infinite number of unknown parameters on the basis of a finite sample. Hence, the
number of terms to be estimated is limited to L,, a practitioner~chosen number that
should increase with the sample size. We consider predetermined values of L, here,
but the analysis could be extended, at the cost of lenghtier proofs, to data-dependent
methods for selecting L, [cf. e.g. Andrews (1991b)].

Since the series expansions in X and 7 each contains a constant term, we could only
identify and estimate aneqo(-) + axoexo(-), but not a,e and axo separately. However,
note that Elw(n,)] = E{Eledm]} = Ele = 0 by the law of iterated expectations.
Hence agoeq0 + Li2; antEleq(n:)] = 0. Since e,0(-) and exo(-) are (known and) assumed
constant, aye and axo can be estimated using the following relationships.

drmoeqo(-)

Ln 13

=2 &= eq(n), (8
=1 n t=1

Gxoexol) = &g~ b, 9)

where & is the estimate of ag = anoeqo(-) + axoexol-).
We have thus far discussed how an estimate of m(z,n) can be obtained. Of interest
is not the estimate m(z,7) per sé, but g(z). However, once the o’s are estimated, §(z)

can be determined according to

Ly
9(z) = 3_ axiexi(z), (10)

I=0
at all y. If estimation of w is of economic interest, it could be similarly evaluated as
w(n) = Zﬁ.:"o &nlffﬂl('])a at all 9.

We have so far pretended that we could observe the 5’s. This is rarely going to be
the case in practice and this fact is precisely the motivation for step 1. It allows us
to substitute 7, for ;. Because the 7’s are not observed, the estimation of m is non-
standard. The 7)’s in the second step regression are “generated regressors” in the sense
of Pagan (1984). In practice, the second step regression takes the form

Ln Ln
Yi= a0+ 3 axiexi(X)+ Y aneqli) + ;. (11)
=1 =1

As we shall state in Theorem 1 , the sample mean square error of 7 converges in prob-

ability to zero in spite of using 74 instead of 5. Accordingly, the sample mean square



error of § also converges in probability to zero. Given consistent estimates of the &’s,
derivatives of §(X) can also be derived.

Like in linear models, there are situations in which g cannot identified in our model.
One example is when h is constant, in which case, (3) reduces to Y; = g(n) + €, where
we have assumed (without loss of generality) that A(z) = 0 for all z. Unless additional
instruments, say {W,}, can be found such that E[Y,[W,] = Elg(n.)|W:], g cannot be
identified. Generally, if h straddles a continuum of function values across the support of
the density of Z,, identification is generally not an issue.

2.1 Comparison with an IV estimate

It is of interest to compare the two-stage approach here with an IV estimate in a non-
parametric regression context. The latter was considered by Newey and Powell (1990),
who considered estimating the unknown regression function g defined as in (3) given a
set of instruments Z, where Ele|Z] = 0. Their identification problem is to obtain g(z)
from an estimate of II(Z) = E|g(X)|Z] = [ g(z)f(y|Z)dy and f(y|Z), where f(y|Z) is
the conditional density of X given Z at y, and noting that f(y|Z) and II(Z) are both
functions to be estimated. A related deconvolution problem was considered by Horowitz
and Markatou (1995) in the context of errors-in-variables.

Existence of the solution in Newey and Powell’s problem requires that f(y|Z) is
complete, which can be seen as a generalization of the rank condition in parametric
analysis. Assuming this condition holds, Newey and Powell propose a two-stage estimate.
As in our analysis, they also use a series expansion g(z) = Y.F% aye(x), where the ¢
are the basis functions. The first stage of their procedure is to estimate the conditional
expectations Ee/(X)|Z]. In the second stage, a series regression of Y on Ele/(X)|Z] gives
&. The function g is then estimated by Z,L__:'o&;cl(X ). As in our analysis, consistency of
the estimate requires that L, — oc, as n — o0.

Comparing the two methods, Newey and Powell’s is an IV approach which works
directly with the equation Y = ¢g(X) + ¢, at the cost of imposing stronger conditions to
ensure the existence of Ele;(X)|Z]. By contrast, our’s is in the spirit of 2SLS in the sense
that we postulate an equation that relates X and Z. OQur analysis differs from 25LS
in that X and Z have a non-parametric relationship. More importantly, we do not use
the fitted values of X in estimating g. As mentioned earlier, doing so would not have



vielded consistent estimates of § in a parametric context, and a similar problem arises
in a non-parametric context. We make use of the auxiliary regression in the first step to
eliminate Efe|X] = Ele|n] so that g can be estimated consistently. Thus, although 2SLS
is a special case of the IV estimator in a classical linear setting, our 2SNP estimator is
not a special case of Newey and Powell’s non-parametric [V estimator in this non-linear,

non-parametric setting.
3 Properties of the Two-Step Non-Parametric Estimate

The foregoing discussion suggests that we can write (3) as
Y = 9(Xo) + wim) + v, ' (12)

where v, = ¢; — Ele)|,]. Applying the series expansions yields

Ln Ly
Y, = Z axiexi{Xe) + Z%:em(m) + v+ Ry, (13)
=0 =0

where B, = 72, {oxiexi(Xe) + ageq(n)}. Let U, = (X, 77 and U, = X, a7
Then, for implicitly defined Ay and ay,

Y = Avay +v+ R. (14)

When L, increases, terms are dropped from each of the R’s. As L, — oo, each of the
[R:|’s converges to zero. If {n} were known, the problem is standard and least squares

estimation of (14) gives:
by = (AL Ay) ALY, (15)

Under the conditions stated in Andrews (1991a), a non-parametric series estimate of m
based upon Gy, denoted by rhy, can be obtained.

The non-standard nature of our problem is that in general, we do not observe 5 and
have to replace it by 4, leading to &; = (AgAi,)“AgY, and 7ny. The properties of 7y
therefore depend on & instead of 4y .

We now state the assumptions leading to the main result.

Assumption A



1. {X:}, {Z:}, {m) and {€,} are sequences of continuous random variables; the €, ’s are
scalars, the others have densities with bounded support and the supports are identical
across i. Furthermore, h, g and w are continuous functions on the supports of Z;,
X, and n;, respectively. Finally, the range of h contains a dx ~dimensional interval
of positive volume, where dx is the dimension of X.

2. E[v|n, Xe] =0 for all t.
3. (a) Vivln, X] = Q, where  is a diagonal matriz with elements o? for which
sup, |o?} < oo, or
(b) Viv|X,n] = Q, where Q is a symmetric matriz whose rows are absolutely

summable, uniformly in X, 7, even in the limit.

4. All axi, ay’s are bounded, and there exists some number K such that for sufficiently
large 1, laxi| € K178% and jay} < K1, for some éx > 1, 6, > 2.

5. sup, ;.z{len(n) — en(M)] + lexi(z) — exi(E)} < Kllln - 4l| + Kl|jz - 2]].
6. For some w >0, T |1 — nel|? = Op(n?=2), as n — co.

7. Lofn— 0 and L, — 00 as n — oo.

Condition (1) assumes boundedness and continuity. The boundedness assumption is
imposed in order to allow the use of series estimation. If boundedness were unachievable,
one could apply a suitable transformation to reduce the support of the relevant densities
to0 a compact interval. The second part of Condition (1) is imposed to ensure identification
of g and w. It rules out cases when k is constant, since g and w would then both be
functions of 7 ruling out identification. Condition (2) validates Z; as an instrument.
Conditions {1) and (2) imply continuity of ¥;.

Condition (3a) applies when the errors are {conditionally) uncorrelated and with
sup, V||X.,m] < oo. Part (b) applies when the errors are correlated. It essentially
states that the covariance between elements in the v-vector, conditional upon X and 7,
should decline as these elements are farther apart in time and that this decline should
be suitably fast. It is a summability condition on the covariances that is weaker than
covariance stationarity. In effect, it is a “mixing” condition [cf. e.g. Rosenblatt (1956)
and Ibragimov and Linnik (1971)).

Condition (4) is standard in the literature, albeit often in a slightly different guise. It

is essentially a smoothness condition since the functionals with lower indices tend to be



smoother than those with higher indices [Andrews (1991a)]. It was for instance used by
Newey (1995).7 The smoothness conditions on w are stronger than those on g, because
- we need to solve the nuisance parameter problem in 7.

Condition (5) imposes a Lipschitz-condition on the functionals. For Fourier and
Legendre series, the condition is implied by differentiability of e, and ey, since the
lengths of the vector of first derivatives is bounded by K1/2 for sufficiently large K.

Condition (6) determines the rate of convergence of the estimate of h. If nonparamet-
ric estimation is used, w = 2/5 is a common rate for twice differentiable one-dimensional
functions.

Finally, Condition (7) is standard and requires that the number of elements in the
series expansion increases as the number of observations increases ad infinitum, but at
a slower rate. This ensures that increasing the number of terms in the series expansion
does not induce excess variability in the estimate.

We now state the first of our main results.

Theorem 1 Under the assumption,
7t L Am(Xum) = m(Xem)} = Op(n™ 4 Li72mimlexd 4 n=1 L) = o,(1). (16)
=1

Our proof is based on a small number of simple projection results and is similar to
that of Andrews and Whang (1990) among others and is given in the Appendix. Theorem
1 says that the sample mean square error converges to zero as n — oo. This is not the
same as a uniform convergence result or indeed a pointwise convergence result. There
may be points at which 1h; does not converge to m, but the fraction of values (Xeyme) at
which convergence does not occur drops to zero as the sample size tends to infinity. This
result is similar to that obtained by Andrews and Whang (1990) and Newey (1995).

The optimal rate at which to let L, increase as n — oo is n}/(2min{éx.b1}=1) which gives
a sample mean square error of n~% 4 n!/(2min{6x.62}-1)~1 3 If {he first step were absent,

the rate would have been n'/(2min{éx:82}-1)-1 Hence the rate of convergence is essentially

?His a-parameter is min{éx,é,} — 1 in our’s.

3The optimal rate is determined in the following way. Consider the middle expression in {16). The
first term does not depend upon the rate at which L, increases, but the second and third rates do.
Indeed. the faster L, increases, the greater the second rate and the less the third rate. Hence, the
optimal rate is the rate at which the second and third rates are equal, giving the rate stated.



the slowest of that of k and that of standard series estimation of m. In Eastwood and
Gallant (1991), the parameters §x, 6, must exceed 2.5 for twice differentiable functions,
" resulting in a convergence rate of the (empirical) mean square error that is the same as
our’s. If both parameters are equal to 3, we would get a convergence rate of n™ + n=38
for the estimate 7 itself.* In a standard nonparametric setting where w = 2/5, the rate
of convergence of 7i is then not affected by the first step. The first step reduces the
convergence rate only if m is very smooth and h is not.

We now develop a uniform convergence result. In view of the argument above, uniform
convergence is likely to take place at a slower rate than the square root of the mean
square error and under stronger assumptions. Indeed, Newey (1995) also requires stronger
conditions to prove uniform convergence in his analysis. The following assumptions are

sufficient for uniform convergence of our two-step estimate.

Assumption B Let f;‘ = )\m,,(AgAD)“, where Amax denotes “the mazimum eigen-

value of ” satisfying
7 nLﬁ”zmi"(ﬁ"'JX}én—] = 0,(1),
2. L2077 = 0,(1),
3. =2 Lo70 = op(1).

The assumption is technical. In a standard linear regression framework where the number
of regressors is fixed, the equivalent of Anar{A5Au)™" is Op(n™'). Because the number
of regressors increases with the sample size when series regression is used, the maximum
eigenvalue may decline at a slower rate. It is therefore common practice to assume an
upper bound on Amax{AfAy)~!, or a lower bound on Amin(AfAy). Since we do not
observe 7, Assumption B imposes the condition on /\mu(AgAg) instead. This leads to

the following result.
Theorem 2 If Assumptions A and B hold, then
sup |7y (z,7) = m(z, )]

P 3 Cmind .
= 0,((THnILETmE8N) |y b pdy g [1mminaixdy = o (1), a7

*The convergence rate for the estimate itself is the square root of that of the mean square error.
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Although imposing a condition on the maximum eigenvalue of (AgAg)'l is the natural
adaptation to the current setting, a condition on (AgAg)" involves a restriction on the
#’s. Since the properties of the #j,’s depend in part upon the relationship between X,
and Z;, and in part on the estimation method used for &, it is thus more desirable to
obtain a result that only involves conditions on the ,’s. However, it is not immedi-
ately apparent that Theorem 2 also holds when the eigenvalue condition is imposed on
(AT Ar)~?. Obtaining such a result is problematic because we have not specified the na-
ture of the relationship between 7} and 5. However, the next theorem shows that the same
uniform convergence result obtains if we impose conditions on the maximum eigenvalue
of {Af Ay)™! instead.

Theorem 3 Jf, in addition lo the previous assumptions, n*~2*L3(7? = o(1), where (, =
Amax{ AT Av)™Y, then Theorem 2 still holds when (f,. is replaced by (,.

"4 Simulations

In this section, we examine the empirical properties of the two-step non—parametric
estimate. For the sake of comparison, the sample mean square error of G(X) obtained
from the 2SNP is compared to i) a non-parametric polynomial regression of ¥ on X, and
i) a two-step non-parametric polynomial regression of ¥ on X, where X are the fitted
values from a polynomial regression of X on Z. The former estimate (labelled NP1)
is inconsistent if the regression error is not independent of the regressors. The latter
(labelled NP2) is in the spirit of the two-stage least squares estimate because it uses the
fitted values from the first stage in the second step regression.
The DGP we consider is specified as follows.

X = éxp(Z,) + My N = dwy + 2vy,
i = g(X:)+e=-3+10log(X,) + ¢ & = 2w + .3vy,
Z, = 14 .6vg
vz ~i1.dU(0,1); vy, Uxe, we ~ 13.d.N(0, 1), (18)
To give some economic interpretation to the DGP, consider consumption, Y, as a func-
tion of earnings, X.* The latter can be predicted by years of education, Z, but has

®The choice of the parameters is arbitrary. Relating the DGP to the consumption function is an
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an idiosyncratic component which is correlated with innovations in Y through w. As
specified, g(X) is such that consumption is increasing in X, but at a decreasing rate.
- The sample means of X and g(X) are 3.3 and 2.8 respectively. The sample correlation
between X and ¢ is about .1, For this parametrization, the variations in exp(Z) account
for over 90% of the variation in X. Thus, Z is a good instrument judged in terms of its
predictability for X.

The results reported in Tables 1 and 2 are based on 1000 simulations using Gauss
3.21 running on a 66 mhz PC. We consider different sample sizes, and results for n = 200
and 500 are reported without loss of generality. The regressions are based on Legendre
polynomials, which seem to perform somewhat better than Fourier series. For the NP1
regressions based on X, the order of the polynomial expansion is denoted Ly;. The NP2
and 2SNP estimates are both two-step procedures. In theory, there is no constraint on
which non—parametric regression method to use in the first step provided it is consistent.
Here, we use orthogonal polynomial regressions for convenience. It is possible that under-
or over-smoothing is necessary in the first stage to obtain the minimum mean square error
in the second stage. We therefore allow the order of the polynomial in the first stage,
Lni, to differ from that in the second stage, Lny. For 2SNP, the mean square error is
based on the differences §(X,) — g(X:), with §(X¢) evaluated according to (10). For NP1
and NP2, the mean square error for § is based on Y, - g(Xy).

Table 1: Sample Mean Square Error for §{X) with n = 200

L2 2 4 6 8
NP1 |[0.00799 | 0.00404 | 0.00533 | 0.00658
L, | NP2
2 0.07551 | 0.07602 | 0.07658 | 0.07715
4 0.07819 | 0.07601 | 0.07663 | 0.07728
6 0.07747 | 0.07527 | 0.07651 | 0.07722
6 0.07677 | 0.07378 | 0.07499 | 0.07610
L,; | 2SNP
2 0.00717 | 0.00290 | 0.00486 | 0.01151
4 0.00714 | 0.00267 | 0.00455 | 0.01176
6 0.00714 | 0.00266 | 0.00451 | 0.01121
8 0.00713 | 0.00266 | 0.00445 | 0.01096

attempt to help readers relate the proposed estimate to relevant applications.
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Table 2: Sample Mean Square Error for §(X) with n = 500

Loz 2 4 6 8
NP1 | 0.00727 | 0.00253 | 0.00302 | 0.00352
L. | NP2 ‘
2 0.07569 | 0.07588 | 0.07607 | 0.07627
4 0.07884 | 0.07588 | 0.07610 | 0.07632
6 0.07853 | 0.07556 | 0.07605 | 0.07631
8 | |0.07822 | 0.07524 | 0.07574 | 0.07621
L. | 25NP
2 0.00645 | 0.00135 | 0.00201 | 0.00340
4 0.00645 | 0.00112 | 0.00174 | 0.00353
6 0.00645 | 0.00112 | 0.00175 | 0.00349
8 0.00645 | 0.00112 | 0.00174 | 0.00346

For benchmark purposes, the mean square error from OLS are .0079 and .00727 for
n=200 and 500 respectively. The results quite convincingly reveal that the 2SNP estimate
yields the smallest mean square error when Lyn; and Ly, are chosen appropriately. The
reason for this is intuitive if we note that n contains two terms, w and vy, but only one of
which violates the independence assumption between X and £. We refer to w as the bad
information. Accordingly, vx is the good information in X from a regression standpoint.

Consider first the NP2 estimate. It uses the fitted values from a polynomial regression
of X on Z to form the basis functions in the second step. Since Z contains no information
on 7, this auxiliary regression ignores not just the bad information w, but also abandons
the good information, vx. The omission of information in vy in the first stage evidently
affects the performance of the IV estimate in the second étage. The NP1 estimate includes
the bad information, w, in X when fitting ¥. It can be seen that the properties of the
estimate are affected even when there is little correlation between X and ¢ (0.1 in this
example). The basis functions used for the 2SNP estimate is based upon X and therefore
contains -all available information. However, the estimate filters out bad information
through the inclusion of polynomials in 4 in the second step regression. It therefore
produces the smallest mean square error.

A good deal of attention has recently been paid to the result that the IV estimates
in classical linear models are biased towards the OLS estimates when the instruments
are weak [see Nelson and Startz (1990)]. Our simulations reveal a different problem with

the use of instrumental variables in a non-linear and non-parametric setting. As seen

13



from the results above, the NP2 (non-parametric IV} estimates have a large mean square
error. The problem is that we are estimating g(A(Z)), and nothing separates g from
per se. Thus, although the instrument Z has good explanatory power for X in the above
simulations, it is not desirable to estimate the unknown regression function by using Z
1o instrument out X. In the 2SNP estimation procedure, the instruments do not play a
direct role in the equation that determines g. This has the advantage that the estimates
will be less susceptible to the problem of weak instruments. In addition, identification of
g is immediate since it is g(X) itself that appears in the second step regression.

A comparison of the results in Tables 1 and 2 shows that the mean square error of §
from the 2SNP procedure falls rapidly as the sample size increases. For a given sample
size, the estimate also appears to require a higher level of smoothing in the first stage
than in the second stage. While the choice of L, in the two steps inevitably depends on
the DGP considered, we have not found a systematic method for choosing Ly and Ly
t0 minimize the mean square error in the second step. This remains an issue for future

research.

5 Conclusion

In this paper, we consider the non-parametric estimation of the function g in the model
Y, = g(X,) +e, when the assumption E[e|X] = 0 is violated. The method consists of two
steps. First, given an appropriate instrument Z, we estimate the relationship between
X and Z non-parametrically and save the residuals 7}. Second, we form an orthonormal
basis for the classes of continuous functions on the supports of the densities of X, and )
n, respectively and perform a series regression of ¥; on X, and 4. An estimate of g can
then be immediately determined from .

The 2SNP estimate discussed here extends naturally to partially linear models where

Y, is linear in all but one variable.
Y= g(X)+ W[ B+e, (19

where W is a n x k matrix, and 8 is a k—vector of parameters. As in Section 2, we first
obtain the residuals from Xy = h(Z;) + 1., and then determine the basis functions for
X, and 7. If E[¢|W]# 0, then one would need to instrument out W also. Once this is

accomplished, a series regression can be used to obtain a consisteni estimate of g. The
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only difference in the proof is that the matrix of regressors is now augmented by a matrix
W of dimension n x k which is independent of the sample size, n.

We have so far concentrated on the simple case where ¥ is one-dimensional. More
demanding is the case when the range of g is greater than one. On this issue, more work
needs to be done.
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A Technical Appendix

. We begin with a series of useful Lemmas.

Lemma 1 [|(Ap — Av)av]]? = Op(n*~%).

Proof: The left hand side is (A5 — A,)ay]|?, which is. 2,"‘,';‘“ Ty agogm{en(i]) —
ent(M)H€am (At) — €am(m)}. We can bound the last expression in absolute value by
Shn 1 Ty lomianm | K2 m|[ij—n||?, by assumption. Hence we get (K TE lagl) e llfie—
ml[2. The first factor is bounded, by assumption, and the second is Op(n'~?*), again by

assumption. Q.E.D.

Lemma 2 ||Pyvl)* = Op{Ls).

Proof:  The expectation of the left hand side condition upon Uis E[VTP&u[(}'} =
tr(Py E[wvT|0)) = tx(Py Ewv™|Z, 1)) = tr(PyQ) < Ly sup; 07 = Oy(Ly), by assumption.
Q.E.D.

To re-prove Lemma 2 under Assumption (3b), it suffices to establish that tr(PyV/[v| X, nlPy;) =
tr(P0Py) = Oy(Ln). Proof: Let the elements of the matrix Py be denoted by pi; = p;i

and those of ) by o;; = 0;. Then tr(PyQPp) = Y,t=1 PsiPtsOn, Which is bounded

by 377 u=1 lowl{p} + pi,}. Now, Lat= loulpy = Tom (T loul)ph < =1 ph =
$r 1 Pss = t1(Py) = Ly, where the inequality follows from the summability condition on

the covariances and the subsequent equality from the fact that Py = P(,Pg .

Lemma 3 [|R||? = O,(nL3~?mirténdx}),

Proof: Theleft hand sideis T0; [T, .1 {aneq(n)+axiexi(X:)}?, which is bounded
by KT lon S il € K[, (I50Ho80)f = O(nL2-2mintinén)),
Q.E.D. ~

Proof of Theorem 1

Let m be the vector containing the m(U;)’s, with U, = [X‘,m]T, and 7y without
argument be the (vector) estimate of m. For the purpose of simplicity of notation
we eliminate the constant in the expansion of w but retain the constant in the ex-

pansion on g, rather than including a separate constant term. Then the model is
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Y =m+v = Avay + R+ v. Hence, g is the projection of Y onto the columns
of Ay, ie. i = PyY, with Py = Ag(AgAg)“AT, provided the inverse exists. If not,
- one should remove the offending rows columns until it does [cf. Andrews (1991a)]. Now,
g —m = My(Ap — Av)ay — MyR + Pyv, where My = I, — Ppy. Because My is
a projection matrix, [[Mpv|? < |lvl[? for all vectors v. In Lemma 1, we show that
I{(Ag — Av)au|l* = Op(n~?*), and in Lemma 2 that ||Pyv||? = O,(L,). Finally, Lemma
3 shows that | R[] = O,(nL2-?minlsséx}) Q.E.D.

Proof of Theorem 2

For any fixed z,7, let a and ap be vectors with functionals evaluated at (z,7): a con-
tains the functionals whose coefficients are estimated, and ag those that are not. Thus,
m(z,n) = a”a + akag. Note that gz, n) = aT(ATA,-,) ‘ATY for a suitable vector
a whose L, elements are uniformly bounded. Let Qy = (ATA[,) ‘AZ and note that
Y = Ayoy+ R4+ v = Agay + (Ay ~ Aplay + R+ v. Further, let ayg and ag be defined
such that m(z,5) = aTay + akayr, where the vector apr contains the coefficients to
the functionals beyond the L,-th. Thus, rhy(z,7) — m{z,n) = aTQu(Ay ~ Aplay +
a"Qur + aTQpR — akayn. Note that lekoun| = Op(LL-™™{624x}), uniformly in ap
(noting that its elements are uniformly bounded) which can be established in a way that
is similar to the way in which we proved Lemma 3. Now, since QUQU = (ATAL ),
laTQUR! < {QTaH’HRH? = O,,(L’_""“{s" 6")(.. m), uniformly in a, where the equal-
ity follows from {71 = Amas(ATAR)2, IRIP = Op(nL2-3miniéa: #x}) (Lemma 3), and
HelP < K L1 1" a similar way we can use Lemma 1 to show that IaTQU(Au - Apglay| =
Op(ni~=(y *L%). It thus remains to be shown that [aTQuv| = ,,((,. L,). Note that
Jlalf? € KL,. Consider uTAU(ATAU) 24Ty < VTPl = O,(La{1), in view of
Lemma 2. Hence {a7Qpu| = O,(L.(r° ). Q.E.D.

Proof of Theorem 3

It suffices to show that Amax(ATAL/C)™ = O,{1). Note that Amax(ALAp /€)™ =
{,\,,,;,.(AgAv/g,,)}-' Now, minzyo 2T AL Ay /((rzTz) 2 minggo 2T AL Apz/(CozT) —
max,z 2T (Af Ay — Au)z/((,,:c z). The first term on the right hand side is 1, because
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of the definition of {,. Note that AgA,;, — AL Ay = (Ap — Av) (Ag — Au) + Al(Ap —
Av)+(Ag— Av)T Ay. Because ||Ayz||*/||z]|* = Op(n), uniformly in z # 0 by the uniform
" boundedness of the elements of Ay, we only need to examine the behavior of [|(Ay —
Av)zi2/(C3liz?), uniformly in z # 0. The left hand side is T TniZom ney {eni(fie) —
ent(m)} {€nm (i) = €am(n)}/((21|z}{?), where z,, is the part of z corresponding to the ex-
pansion over 7. The expression of interest is bounded by K? 2{:3“:1 et |2 i@ gm |l —
2P/ lP) = Op(n'=2(;?) Tlmes lenizamIm]/|lz|?, uniformly in z # 0 by assump-
tion. Now, let ¢ = [1,2,...,L,]T, such that the afore double sum is zZu.7z,/||z|f?
Since ||z]|? > |lz4][?, the expression of interest is thus bounded by Amax(¢e”) = ||||* =
ke 12 = O(L2). Hence [[(Ag — Av)zlP/(ClzlP) = Op(n'™(:212) = ay(1), by as-
sumption. Q.E.D.
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