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Résumé 

Un cercle vicieux par lequel la peur et la douleur se maintiennent explique le 

développement et maintient de troubles impliquant le conditionnement à la peur. Bien 

que les processus comportementaux et circuits neurobiologiques du conditionnement à la 

peur aient été étudiés extensivement, les effets de cet apprentissage sur la douleur sont 

peu connus. L’objectif de cette thèse était d’étudier les effets du conditionnement à la 

peur sur la neuro-psychophysiologie de la douleur chez des sujets sains, ainsi que les 

facteurs modérant ces effets.  

Les effets de l’apprentissage de la peur sur la douleur ont été examinés dans 

l’Étude 1 (N=47) lors d’une tâche de conditionnement classique Pavlovien. Les stimuli 

conditionnés étaient des images abstraites appariées à une stimulation électrique 

douloureuse lors de 50% des essais. Les rapports de douleur et réflexes nociceptif de 

flexion ont été acquis à chaque stimulation, et les réponses électrodermales ont été 

mesurées à chaque présentation d’image. Nous avons estimé deux paramètres régissant 

les réponses anticipatoires (électrodermales) de peur pour chaque essai au moyen d’une 

approche de modélisation computationnelle: les attentes face à l’occurrence d’une 

stimulation, et l’associabilité des images à la stimulation. Les résultats ont démontré que 

chacun des paramètres liés à la peur prédisait positivement la douleur ainsi que les 

réponses nociceptive spinales. Ces effets opéraient en partie directement sur les réponses 

supraspinales à la douleur, et en partie indirectement par une facilitation de l’influx 

nociceptif au niveau spinal. Les résultats ont également démontré que la médiation des 

effets de la peur sur la douleur par l’input nociceptif spinal était plus forte chez les 

individus rapportant davantage de ‘vigilance au danger’, et plus faibles chez ceux 

rapportant plus de détachement émotionnel.   
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Dans l’Étude 2, nous avons examiné le rôle de l’expérience à long terme en 

méditation pleine conscience sur les effets de l’apprentissage de la peur sur la douleur. 

Onze méditants expérimentés ont été testés en utilisant le même protocole expérimental 

que celui de l’Étude 1. Comparés aux sujets contrôles de l’Étude 1 n’ayant pas 

d’expérience en méditation, le groupe de méditants a montré une réduction de la douleur 

rapportée en moyenne lors de la tâche de conditionnement, ainsi qu’une diminution des 

effets de la peur sur la douleur. Les méditants n’ont pas montré de modulation des 

processus de bas niveau défensifs ou des mécanismes d’apprentissage à la peur. 

Finalement, l’Étude 3 a examiné le rôle des différences inter-individuelles en 

réactivité de l’axe HPA, opérationnalisé par le niveau de cortisol sécrété pendant la tâche, 

sur les effets de la peur sur la douleur (N=23). Le protocole expérimental et d’analyses 

était similaire à celui des Études 1-2 avec l’inclusion d’un SC+ apparié à 100% avec le 

SI. Les individus ayant une plus grande réponse de cortisol pendant le conditionnement 

rapportaient en moyenne moins de douleur lors de la tâche, et présentaient une facilitation 

des réponses défensives spinales par le biais du conditionnement à la peur.  

Les résultats de cette thèse appuient le concept d’un cycle vicieux peur/douleur 

par des données neuropsychophysiologiques, et montrent que celui-ci est modéré par 

certains traits de personnalité, l’expérience à long-terme en méditation pleine conscience, 

et les différences individuelles en réactivité de l’axe HPA. Nos résultats appuient 

également le rôle bénéfique des techniques fondées sur l’acceptation et la pleine 

conscience pour briser le cycle peur-douleur et prévenir/traiter les manifestations 

pathologiques de l’exposition répétée à des évènements menaçants (ex: anxiété, douleur 

chronique).  
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Abstract 

A vicious cycle through which fear and pain maintain each other explains the 

development and maintenance of disorders involving fear conditioning. While the 

behavioral processes and neurobiological circuits of fear conditioning have been 

extensively studied, the effects of fear learning on pain remain poorly understood. The 

objectives of this thesis were to examine the effects of fear conditioning on the 

neuropsychophysiology of pain, and the factors that could moderate these effects.   

The effects of fear learning on pain were examined in Study 1 in 47 human 

participants during a delay Pavlovian classical fear conditioning task. Conditioned stimuli 

were abstract visual cues that co-terminated with a painful electric shock on 50% of 

trials. Pain ratings and the spinal nociceptive flexion reflex were recorded in response to 

each US, and anticipatory skin conductance responses were recorded to each CS. A 

computational model of reinforcement learning was fitted to anticipatory SCRs and used 

to estimate fear learning parameters of expected shock probabilities and associability 

(uncertainty) to each CS+ paired. Both fear learning parameters positively predicted pain 

responses. These effects operated in part directly on pain ratings, and in part indirectly by 

facilitating ascending spinal nociceptive activity. The results also showed that the 

mediation of the effects of fear learning on pain by spinal nociception was enhanced for 

individuals reporting more trait harm vigilance, and decreased for individuals reporting 

more emotional detachment.  

In Study 2, we investigated the role of long term mindfulness meditation 

experience on the effects of fear learning on pain. Eleven experienced meditators (>1000 

hours of experience) were tested using the same experimental and analysis protocol as in 

Study1, and were compared with the meditation-naïve participants from Study1. 
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Compared to controls, experienced meditators showed an overall reduction in pain ratings 

during fear learning, as well as reduced effects of learning parameters on pain. No effects 

of fear learning on lower-level spinal or anticipatory learning responses were observed.   

Finally, Study 3 examined how individual differences in HPA axis reactivity, 

operationalized by the level of cortisol secreted during the task, affected pain modulation 

induced by fear-learning (N=23). A similar experimental and analysis protocol as in 

Studies 1-2 was used with an additional visual CS paired with the US on 100% of trials. 

Individuals with greater cortisol output during fear conditioning reported a global 

decrease in pain during the task, and showed a facilitation of defensive spinal responses 

via fear learning mechanisms.  

 

The results of this thesis support the notion of a vicious fear-pain cycle with 

neuropsychophysiological evidence, and show that this cycle is moderated by certain 

personality traits, meditation experience, and individual differences in HPA reactivity. 

Our results also highlight the role of techniques based on acceptation and mindfulness 

meditation to break the fear-pain cycle and prevent/treat pathological manifestations of 

repeated threat exposure (eg. anxiety, chronic pain).  

 

Keywords: fear conditioning, reinforcement learning models, nociceptive flexion reflex, 

mindfulness meditation, cortisol, pain 
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General Introduction 

 

Nociception and pain have the adaptive function to teach the organism about potential 

danger via fear learning mechanisms (McNally, Johansen, & Blair, 2011). Theoretical 

models of clinical disorders related to fear and/or anxiety of threatening stimuli propose 

that fear and pain maintain and/or perpetuate each other through a vicious cycle 

(Crombez, Eccleston, Van Damme, Vlaeyen, & Karoly, 2012; Vlaeyen & Linton, 2000). 

The interactions underlying this cycle are defined by classical fear conditioning, for 

which the behavioral, physiological, and neural characteristics have been extensively 

studied by animal and human research since Pavlov’s discoveries in the 20th century 

(Pavlov & Anrep, 1927). Specifically, the behavioral, physiological, and neural aspects of 

fear learning have been thoroughly studied using computational approaches (Boll, 

Gamer, Gluth, Finsterbusch, & Buchel, 2013; LePelley & McLaren, 2004; Li, Schiller, 

Schoenbaum, Phelps, & Daw, 2011; McNally et al., 2011). These approaches purport that 

the organism performs neural computations to predict danger in the environment using 

quantifiable parameters, and updates these predictions at each trial in which relevant 

information is received. However, while the precise mechanisms through which classical 

conditioning operates have been established, the effects of fear learning on pain are much 

less well understood. At a fundamental level, the need to elucidate these effects is 

essential to contribute to the current state of knowledge in the fields of pain and affective 

neuroscience. From a clinical perspective, it is critical to understand the effects of fear 

learning on pain to validate or adjust current models of clinical disorders in order to 

improve treatment and prevention approaches. Finally, it is also important to understand 
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factors that moderate (attenuate/potentiate) the effects of fear learning on pain to improve 

clinical interventions targeting disorders involving fear of threatening stimuli. 

 

To approach these research problems, the studies conducted within this doctoral thesis 

pursued the following objectives: 1- to determine the effects of classical fear conditioning 

on the neuro-psychophysiology of pain using computational models of formal associative 

learning theories 2- to determine individual variables that could moderate 

(enhance/attenuate) the effects of fear learning on pain. Prior to presenting the 

experimental findings obtained in these studies, we will describe clinical models of 

chronic pain to emphasize the clinical significance of elucidating effects of fear learning 

on pain. We will then describe fear learning mechanisms and their neurobiological bases, 

as well as a brief overview of formal associative learning computational models used to 

depict learning processes. We will then summarize the neurophysiology of pain and its 

modulation. Next, an overview of the beneficial impact of mindfulness meditation 

experience on pain will be presented. We will also discuss the potential of this practice to 

reduce the effects of fear on pain and disrupt the fear – suffering cycle, with the intention 

to benefit clinical interventions to prevent pathological manifestations of fear-pain 

interactions. Finally, we will discuss the physiology of the stress system and its 

relationship with pain and pain modulation.  

 

Vicious Fear-Pain Cycle: Fear Avoidance Model of Chronic Pain 

To emphasize the clinical relevance of elucidating the modulating effects of fear learning 

on pain, this section will provide an overview of a behavioral model describing fear 

avoidance behaviors and their reinforcing role in chronic pain. 
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The primal emotion of fear is characterized as a response to a perceived threat, 

accompanied by the activation of the sympathetic so-called ‘fight-or-flight’ response. It is 

adaptive in the sense that it allows to escape, confront or cope with threat. Nonetheless, 

disregulation of the fear system can result in the triggering of fear in the absence of 

imminent danger, interfering with an individual’s general functioning abilities (LeDoux 

& Phelps, 2008).   

 

In chronic pain disorder, pain becomes the primary source of threatening stimuli. 

According to the International Association for the Study of Pain, chronic pain is defined 

as pain that persists beyond a ‘normative’ time of healing: (generally in clinical practice 

this corresponds to more than 6 months). It can vary from being perceived in different 

bodily regions (eg. back, head, viscera) and involving different systems (eg.: 

gastrointestinal system, nervous system), different temporal characteristics as well as 

etiologies. Chronic pain is often accompanied by depressive symptoms (feelings of 

helplessness towards pain, rumination about its potential meaning or consequences), as 

well as anxious symptoms (apprehension of next painful episode) and fear of 

encountering the next episode (Crombez et al., 2012; Sullivan & D'Eon, 1990; Vachon-

Presseau et al., 2013; Vlaeyen & Linton, 2000; Wall & Melzack, 2006). 

 

These repeated painful episodes become quite threatening to the individual’s functioning, 

daily activities, self-care, and capacity to work (Crombez et al., 2012; Vlaeyen & Linton, 

2000). Therefore, fear conditioning with cues associated with pain naturally takes place. 

Cues, contexts, or settings paired with pain episodes, allowing the individual to predict 
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pain episode onsets – eg. an individual experienced the onset of a migraine while at a 

restaurant, or while exercising – acquire aversive properties and trigger behavioral 

avoidance (Crombez et al., 2012; Vlaeyen & Linton, 2000).   

 

The fear-avoidance (FA) model of chronic pain illustrates the vicious cycle between pain, 

fear, disabling symptoms / avoidant coping, and suffering (Crombez et al., 2012). This 

model stipulates that pain triggers fear responses, which results in the instilment of 

avoidance behaviors towards stimuli associated with painful experiences (Crombez et al., 

2012; Vlaeyen & Linton, 2000). These behaviors are reinforced because they are 

rewarding on a short-term basis (the source of pain is avoided). On a long-term scale, 

however, they contribute to the maintenance of disability associated with chronic pain 

(Crombez et al., 2012; Vlaeyen & Linton, 2000). For example, an individual with low 

back pain could avoid any activity which may trigger or which has been associated with 

painful experiences, such as exercising or maintaining an active social life. While 

avoiding these behaviors could temporarily relieve low back pain experiences or prevent 

its exacerbation, on a longer term, a sedative lifestyle would be physically detrimental 

(e.g. deconditioning) and actually enhance the potential for experiencing low back pain 

and disabling symptoms (ex: work absenteeism, isolation, depression, etc) (Crombez et 

al., 2012; Vlaeyen & Linton, 2000).  
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Figure 1. Fear-avoidance model of chronic pain proposed by Vlaeyen and colleagues 

(2000), demonstrating that if pain is perceived as threatening, fear develops along with 

the adoption of avoidance behaviors towards activities thought to re-elicit pain. These 

avoidance tendencies are, in the long run, detrimental to recovery and enhance disabling 

symptoms.  
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While this model can account for behavioural consequences of fear and avoidance of pain 

for the chronicization of pain/suffering, it does not explain the functional consequences 

of fear learning processes on the actual experience of pain sensations (experientially, and 

at a neurophysiological level). For instance, if fear conditioning amplified the experience 

of pain, this could explain, from a neuropsychophysiological point of view, the 

reinforcing role of fear in the maintenance of pain. A similar reinforcing cycle between 

fear and suffering is used to explain the development and maintenance of anxiety 

disorders, such as dental phobia (Armfield, Stewart, & Spencer, 2007). For this reason, 

the central objective of this thesis is to understand the functional consequences of fear 

learning on the experience of pain, which would 1- help validate current models of 

clinical disorders involving classical conditioning, and 2- determine ways to disrupt the 

vicious cycle between fear and suffering.  

 

Basic affective neuroscience has largely contributed to the understanding of disorders 

involving associative fear learning. The underlying behavioural neurobiology of classical 

conditioning has been rigorously studied using paradigms developed in the early 20th 

century by the work of Pavlov (Pavlov & Anrep, 1927). The next sections will provide an 

overview of the neurobiology of fear learning, as well as contemporary computational 

approaches developed to model learning response trajectories.  
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Classical Fear Conditioning 

 

Construct Definitions  

Fear learning can be defined as the process through which an innocuous stimulus 

(conditioned stimulus ‘CS’) acquires aversive properties of a threatening stimulus 

(unconditioned stimulus ‘US’) after one or several pairings (Pavlov & Anrep, 1927). This 

association is neurobiologically underlied by a Hebbian learning process in the 

basolateral amygdala (Kim & Jung, 2006). In other words, ‘cells that fire together, wire 

together’ and “When an axon of cell A is near enough to excite B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change takes place 

in one or both cells such that A's efficiency, as one of the cells firing B, is increased” 

(Hebb, 1949). Thus, the synapse between the cells transmitting sensory information about 

the conditioned stimulus to basolateral amygdalar cells is strengthened from being active 

at the same time as the more efficient synapse between cells transmitting information 

related to the unconditioned stimulus to the basolateral amygdala (Hebb, 1949). The 

basolateral amygdala projects to the central nucleus of the amygdala, which elicits 

several responses to threat (neuroendocrine, autonomic, behavioral) by innervating 

hypothalamus and brainstem sites (LeDoux & Phelps, 2008). An example of a frequently 

used fear response in experimental paradigms as an index of autonomic arousal or 

conditioned fear is the skin conductance response (Boucsein, 2012). As such, autonomic 

arousal can evoke sudomotor nerve activity, which then activates peripheral sweat glands 

(Boucsein, 2012). This activation can be observed by measuring electrical current 

conductance at the level of the skin (the inverse of resistance, expressed in siemens): 
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when sweat glands are activated by sudomotor nerve activity, current resistance decreases 

between electrodes (and hence, conductance increases) (Boucsein, 2012).  

 

Information related to the CS is relayed from sensory neurons to the amygdala through 

two routes of transmission: 1- immediately conveyed to the amygdala from the thalamus 

via the so-called ‘direct’ thalamo-amygdala pathway (LeDoux & Phelps, 2008), 2- from 

the thalamus to cortical areas before synapsing onto the amygdala via the ‘indirect’ 

thalamo-cortico-amygdala route, presumably underlying response adjustment after an 

enhanced level of stimulus processing (LeDoux & Phelps, 2008). Figure 2 shows the 

convergence of CS and US-related information in the amygdala, as well as the response 

output from the central nucleus of the amygdala.  
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Figure2. Ledoux and Phelps’ model (2008) depicting the association of conditioned 

stimuli (CS) and unconditioned stimulus (US) within the lateral amygdala. The 

information for each stimulus is relayed through a ‘direct’ thalamo-amygdalar pathway, 

and a second ‘indirect’ thalamo-cortical-amygdala pathway. The lateral amygdala (LA) 

activates appropriate threat response signals to the central nucleus of the amygdala (CE), 

directly and by passing through the basal nucleus (B) or the intercalated masses (ITC). 

The CE activation triggers expressed fear responses, such as freezing (mediated by the 

central gray; CG), responses of the autonomic nervous system (ANS) from the lateral 

hypothalamus; LH), as well as hormonal output (mediated by the paraventricular nucleus 

of the hypothalamus; PVN).   
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After being relayed to the amygdala, threat-related information is sent to the medial 

prefrontal cortex (MPFC). Quirk and colleagues (2006) proposed a neuroanatomical 

model (Figure 3) underlying conditioned fear expression and extinction emphasizing the 

functional distinction between dorsal and ventral subdivisions of this region (prelimbic vs 

infralimbic cortex in the rat, anatomically analogous to the dorsal MPFC/rostral anterior 

cingulate vs ventral MPFC in humans) (Quirk & Beer, 2006). The model proposed by 

Quirk et al. (2006) posits that the dorsal MPFC is activated through feed-forward 

projections from the basolateral amygdala. In turn, through reciprocal efferent excitatory 

projections, the dorsal MPFC would maintain typically short-lived amygdala responses. 

This reverbatory activity underlies the maintenance of the mental representation of the 

CS and the expression of fear responses (Quirk & Beer, 2006).  
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Figure 3. Neuroanatomical model underlying interactions between the prefronal cortex 

(PFC) and the amygdala (AMYG) underlying fear expression and fear extinction based 

on the work of Quirk and Milad (source: http://www.md.rcm.upr.edu/quirk/Home.html). 

The prelimbic area (‘PL’,corresponding to dorsal medial prefronal cortex 

(MPFC)/anterior cingulate cortex in humans) has afferent/efferent projections with the 

basolateral amygdala (BA) and is involved in the maintenance of fear expression. The 

infralimbic cortex (‘IL’,ventral MPFC in humans) would be involved in the extinction of 

conditioned fear, by activating the intercalated cells of the amygdala (ITC) which send 

inhibitory projections to central nucleus of the amygdala (CeM) which regulates 

expressed fear behaviors.  
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By contrast, the more ventral subdivision of the MPFC would be more involved in the 

extinction of conditioned fear responses and the down-regulation of amygdalar response 

if the stimulus is no longer perceived as threatening. This mechanism is described as 

being ‘gated’ by the hippocampus, which would provide contextual/explicit information 

to the ventral MPFC concerning the ‘safety’ of the CS (if it has been presented several 

times in the absence of the US, for example), and accordingly inhibit amygdalar 

responses. This mechanism also explains why extinction is viewed as new learning as 

opposed to a passive degradation of information (Quirk & Beer, 2006).  

 

Furthermore, the brain is organized in such a way as to constantly generate and test 

predictions about underlying causes of sensory input at multiple levels of integration 

(Park & Friston, 2013). These predictions are updated in a feed-forward manner, i.e. 

higher-order areas form and test predictions from incoming input, and are also modulated 

by descending feedback from higher-order to lower-order areas of processing. From a 

computational framework of classical conditioning, neural computations are performed 

by the organism using precise quantifiable parameters and are updated at each trial of 

learning (McNally et al., 2011). These prediction error signals are particularly 

biologically relevant with respect to threatening information requiring rapid adaptation to 

environmental demands. The strength of US connections to the amygdala underlying CS-

US plasticity varies as a function of a predictive error signal, i.e. the extent to which the 

US violated expectations (McNally et al., 2011). Electrophysiological studies recording 

activity of neurons in the basolateral nucleus of the amygdala have shown that the firing 

rate in these neurons reflected the underlying prediction error signal calculated using 
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formal computational laws of associative learning (McNally et al., 2011). Studies in 

humans have shown that the variance in other behavioral outputs (eg. SCRs) as well as 

amygdala and/or striatal activity assessed using fMRI during classical conditioning, such 

as SCRs, have also been explained using computational approaches (Boll et al., 2013; Li, 

Schiller, et al., 2011).  

 

The next section will provide a brief overview of computational reinforcement learning 

models and the ways in which parameters such as prediction errors can be estimated from 

mathematical laws established since the work of Rescorla in the 1970’s (Rescorla & 

Wagner, 1972).  

 

Reinforcement Learning Models 

 

Formal models of classical conditioning are mathematical laws established to predict 

learning responses as a function of specific parameters (such as prediction errors) 

(LePelley & McLaren, 2004). The Rescorla-Wagner model (1972) (Equations 1-2) 

proposed that the strength of the association between a CS and US (V) can best be 

depicted as a function of the surprising nature of the US. For example, the presentation of 

a reinforced CS+ (i.e. CS+ followed by a US), may generate expectations that future 

CS+’s will also be followed by the US. In a context where the US is presented only in a 

proportion of the CS+ trials, this expectation will be confirmed and strengthened on 

reinforced trials. In the unreinforced CS+ trials, an error signal will be generated that will 

weaken the expectations on the following presentations of the CS+. Similarly, an 

unreinforced stimulus (CS-) will become a safety signal as the subject learns to expect the 
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absence of the US following this cue. 

 

In other words, an error signal representing the difference between the expected and 

actual outcome experienced (λ) would determine how much learning the US can convey 

to the CS (LePelley & McLaren, 2004). The model also includes a constant learning rate 

parameter (α). This learning rate parameter reflects individual differences (eg. depending 

on trait anxiety, etc) in updating predictions at each trial. Therefore, the strength of a 

CS’s association with a US, or its expected value (V), at a given trial (t+1), would 

correspond to the sum of its expected value from the preceding trial ‘t’ (Vt) and the 

prediction error signal from the preceding trial (δt) modulated by the individual learning 

rate.  

 

Vt+1 = Vt  + α *  δt _______________________________________________________________________(Equation1) 

δt = λt  - Vt_________________________________________________________________________________(Equation2) 

 

The Pearce and Hall (1980) (Pearce & Hall, 1980) learning rule later posited that learning 

was rather driven by aspects related to the processing of the CS (a variable termed 

‘associability’), such as the level of attention paid to a cue. For example, a cue followed 

by a US generates uncertainty relative to the CS’s threatening consequences. On the 

following trials, this CS would command more attention, and this cue would become 

more easily associable to the US. On future learning trials as the CS’s reinforcement 

becomes more easily predictable, the lessened surprise effect would lead to a decrease in 
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the CS’s associability. Under the Pearce Hall learning rule, learning is enhanced for trials 

in which the CS is a poor predictor of the US and whose consequences are uncertain.  

 

A hybrid Rescorla-Wagner/Pearce-Hall model combining both factors related to US 

processing (prediction error signals, or the extent to which a US violated expectations of 

occurrence) as well as those related to the CS (eg. cue associability) has been shown to 

capture more efficiently the variance in learning responses than standard models solely 

based on prediction errors (Boll et al., 2013; LePelley & McLaren, 2004; Li, Schiller, et 

al., 2011). In a hybrid reinforcement learning model (Equations 3-5), learning is driven 

by prediction errors, and is dynamically modulated at each trial by associability (a). 

Associability increases following trials with large prediction errors; in other words, there 

is more to learn when the US is uncertain, and has been suggested to reflect enhanced 

attentional allocation to the CS (LePelley & McLaren, 2004).  

 

For example, a CS+ newly paired with the US would generate large prediction error 

signals since the US was not expected following this cue. On the following trial, this 

CS+’s associability would also be elevated, given the enhanced uncertainty of the CS’s 

consequences conferred by the large preceding surprise signal. On subsequent trials in 

which the CS is paired with the US, prediction error signals would decrease, and ensuing 

associability values would also decrease.  

 

In circumstances in which a stable acquisition has been learned between a CS+ and a US, 

and between a CS- and the absence of a US, a sudden reversal in contingencies between 

both cues (the CS+ would become CS- and the CS- would become CS+) would lead to 
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very large PEs and increased allocation of attention to the following CS±’s presentations 

(i.e. increased associability). 

 

As in the standard RW model, the RW/Pearce-Hall hybrid model describes that the 

expected value of a CS (V) on trial ‘t+1’ is conferred by the sum of the preceding 

expected value and error signal generated on the preceding trial (modulated by the 

individual learning rate ‘α’). However, in the RW/Pearce-Hall hybrid model, the surprise 

signal is modulated at each trial by the cue’s associability: error signals would have larger 

impact on learning on a trial in which associability is also high (eg. on a trial in which a 

CS is paid a large amount of attention, a surprise signal would have a greater impact on 

learning than on a trial in which a CS’s consequences are certain and little attention is 

paid to the CS). A constant parameter reflecting individual differences in the rate at 

which associability is updated (γ) is also included in this model.  

 

Vt+1 = Vt  +  at * α * δt __________________________________________________________________(Equation 3) 

δt = λ t  - Vt_______________________________________________________________________________(Equation 4) 

at+1  = γ * |  δt |  + (1 - γ) * at ___________________________________________________________(Equation 5) 

 

These two fundamental variables driving learning, expected shock probabilities (or the 

counterpart of prediction errors) and associability, likely influence the processing of the 

US: expectations, attention, and uncertainty are all factors shown to modulate pain 

(Tracey et al., 2002; Wager et al., 2004). However, the dynamic modulation of pain on a 
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trial-by-trial basis by expected shock probabilities /associability as they spontaneously 

develop during learning, remains unknown. Applying mathematical laws which govern 

learning behaviour to depict fluctuations in pain provides a dynamic trial-level and novel 

approach to the methods by which pain responses can be modelled and studied. 

Interestingly, several animal studies showed that a critical pain modulatory region, the 

periaqueductal gray (PAG), would initially compute error signals from a US and would 

then relay it to the amygdala (McNally et al., 2011). Indeed, Figure 4 shows that 

ascending US-related information would, from the PAG, convey error signals to the 

amygdala and determine the extent to which the US can strengthen learning (McNally et 

al., 2011). The prediction error-related signal would then be conveyed to the dorsal 

MPFC, which, through efferent connections to the amygdala, would adjust plasticity 

depending on other factors (eg.: contextual information).  

 

Importantly, previous work has examined the relationship between latent variables 

estimated from computational models and neuronal activity/behavior during learning 

tasks or other paradigms involving painful stimuli (Roy et al., 2014; Seymour et al., 

2004; Seymour et al., 2005; Zhang, Mano, Ganesh, Robbins, & Seymour, 2016). As such, 

previous studies had examined variables estimated using computational modeling to 

predict neural responses to conditioned cues to painful stimuli or to pain relief (Seymour 

et al., 2005) during learning. Pain-related predictions have also been shown to reflect 

BOLD-signal changes in the striatum derived from temporal difference models (Seymour 

et al., 2004). Other tasks involving instrumental learning with painful stimuli found 

prediction-error – related signals encoded in the periaqueductal gray (Roy et al., 2014), 
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consistent with previous literature (for review see McNally et al., 2011). While these 

studies examined pain-related learning signals in terms of brain function using 

computational modeling, they did not examine the relationship between modeling of 

learned anticipatory processes on behavioral/psychophysiological pain outcomes 

themselves.  

 

Few studies have examined the relationship between parameters estimated from 

computational modeling and subjective behavioral measures, though previous studies 

have examined the link between modeled expectations and subjective happiness during 

tasks with monetary rewards (Ruttledge, Skandali, Dayan, & Dolan, 2015a, 2015b). 

Examining correspondence between computationally modeled processes and self-

reported behavior is a critical step in bridging the gap between computational methods 

and behavior. As previous studies had not addressed the direct link between anticipatory 

processes modeled using formal associative learning theory and pain, these dynamic 

interactions remain to be examined, which constitutes the main scope of this thesis. 
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Figure 4. Neuroanatomical model for ascending and descending pathways involved in 

error signal encoding during fear conditioning. During fear learning, the weaker synapses 

between CS-related information (eg. auditory) and the amygdala (dashed black arrow) 

would be strengthened (ΔV) when co-occurring with stronger ascending US input to 

these neurons. Periaqueductal gray neurons would convey prediction error signals to the 
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amygdala. In turn, descending paths from the cortex and the amygdala having encoded 

prediction error signals during fear conditioning would modulate behavioral responses 

(eg. freezing) and nociceptive signals at the spinal cord. Unconditioned stimulus: US, 

vlPAG: ventrolateral periaqueductal gray, BA: basolateral amygdala, LA: lateral 

amygdala, CeA: central nucleus of the amygdala, dMPFC: dorso-medial prefrontal 

cortex. From McNally and collaborators (2011).  
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The advances in neurosciences over the last two decades now allow to start examining 

how brain circuits underlying expectations and associability affect the nociceptive system 

dynamically, leading to ongoing pain modulation during fear-learning in humans. The 

next section will describe the underlying neurophysiological mechanisms of pain and 

pain modulation.    

 

Neurophysiology of Pain and Pain Modulation 

 

The International Association Society for Pain describes pain as an “An unpleasant 

sensory and emotional experience associated with actual or potential tissue damage, or 

described in terms of such damage”, while nociception refers to the neural encoding of 

stimuli that are noxious, i.e. that have the potential to cause tissue damage. Pain is 

therefore a conscious experience resulting from several neural processing stages: 

transduction, transmission, modulation, and perception (Beaulieu, 2013).  

 

At the periphery, noxious stimuli of different modalities (eg. thermal, mechanical, and 

chemical) are transduced by nociceptors, which can be specific to a modality of stimuli or 

polymodal (Beaulieu, 2013). The nociceptive signal is then relayed to the central nervous 

systems (CNS) through nociceptive fibers, of which two categories exist. A-delta fibers 

are lightly myelinated, and are generally associated with brief and well-localized pain 

sensation. In contrast, C-fibers (80% of pain fibers) are unmyelinated, have slower 

conduction velocity, and are associated with slower and more diffuse pain sensation 

(Beaulieu, 2013).  
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Nociceptive information is first transmitted the dorsal horn of the spinal cord. Modulation 

(facilitation or inhibition) of the nociceptive signal can occur in the CNS at different 

levels of transmission, including at the level of the spinal cord, and at a higher-order 

cerebral level (Beaulieu, 2013). A major descending pain control pathway involves the 

periaqueductal gray area (PAG), which integrates input from the hypothalamus and the 

amygdala, and other higher-order sources (Fields & Basbaum, 2006). Neurons from the 

PAG project to brainstem sites (rostro-ventral medulla or dorsolateral pontine tegmental 

area) to control (up or down-regulate) nociceptive transmission at the dorsal horn of the 

spinal cord (Fields & Basbaum, 2006).  

 

Pain perception occurs from the relay of nociceptive information to cortical areas through 

the spinothalamic tract (Beaulieu, 2013). Through this tract, the noxious signal ascends to 

the thalamus and is relayed onto the anterior cingulate cortex (ACC) and the insula, 

thought to reflect the affective/unpleasant dimension of pain (Price, 2000). The 

nociceptive signal is also relayed from thalamic nuclei to primary and secondary sensory 

cortices, described as underlying the perception of sensory/discriminant aspects of pain 

(Price, 2000). From sensory cortices, projections exist to parietal, insular, amygdala and 

hippocampal formation areas, indicating an integration between several cerebral regions 

in contributing to pain affect (Price, 2000). There also exist pathways transmitting 

noxious information from the spinal cord to brainstem/limbic sites including a 

spinohypothalamic and a spinopontoamygdaloid which may reflect raw or primary 

affective (eg. autonomic, arousal, homeostatic) responses to noxious stimuli (Price, 

2000). 
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Another dimension of pain has been described as ‘secondary pain affect’, and is distinct 

from pain unpleasantness. Secondary pain affect rather refers to the cognitive elaboration 

of pain concerning its meaning in terms of consequences for the future, for functioning, 

etc. (Price, 2000). “Secondary pain affect is sustained by pain unpleasantness and may 

depend on ACC-prefrontal cortical interactions that add further cognitive evaluation to 

emotions associated with pain” (Price, 2000). Figure 5 illustrates the transmission of the 

nociceptive signal from the periphery to the cortex and different stages of processing. 
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Figure 5. Spinothalamic transmission of the nociceptive signal. The nociceptive signal 

triggered by the nociceptive stimulus (1) and integrated at the dorsal horn of the spinal 

cord from which defensive motor reflex responses can be observed (2). Information is 

integrated at brainstem (parabrachial nucleus: PB) and limbic sites (amygdala: AMYG, 

hypoathalamus: HT) from which autonomic and endocrine responses are generated (2’). 

The signal is then relayed to the thalamus and cortical areas (insula, anterior cingulate 

cortex: ACC, primary and secondary sensory cortices: S1 and S2) resulting in the 

conscious perception of pain (3). Information is also relayed to the prefrontal cortex (PF), 

involved in monitoring and regulating pain responses (4). Prefrontal and other cortical 

sites can activate descending pain controls (5) originating from the periaqueductal gray 

(PAG) to modulate the signal at the spinal cord. M1: primary motor cortex, SMA: 

supplementary motor area, OFC: orbito-frontal cortex, VMpo: ventromedial part of the 
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posterior nuclear complex of the thalamus, MDVo: ventrocaudal part of the medial dorsal 

nucleus, VPL: ventro-posterior lateral nucleus of the thalamus, PCC: posterior cingulate 

cortex, PPC: posterior parietal cortex. Adapted from Price (2000).  

 

In addition, as illustrated in Figure 6, different pain and nociception-related responses 

reflect activity at various levels of integration as the nociceptive signal ascends to the 

cortex (Rainville, 2013). Different responses and modulatory processes can be observed 

as the nociceptive signal ascends from the spinal cord to different levels of integration, 

such as at the brainstem (eg. autonomic arousal), the diencephalon (eg. associative 

aversive learning), and the telencephalon (pain ratings) (Rainville, 2011, 2013). At the 

spinal level, the lower limb flexion reflex or withdrawal reflex is a protective response 

from noxious stimuli (Sandrini et al., 2005). This response is also called the nociceptive 

flexion reflex, and is often used as a neurophysiological tool to index spinal responding 

to nociceptive stimuli. It can be elicited by electrical stimulation of the sural nerve and 

assessed from electromyograhic recordings of the lower limb of the biceps femoris, for 

example. The threshold intensity at which it is elicited also generally correlates with that 

eliciting pain thresholds (Sandrini et al., 2005).  
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Figure 6. Organization of the nociceptive system as a hierarchy. Nociceptors at the 

periphery activate neurons relaying the nociceptive signal to the spinal cord. The signal is 

further relayed through multiple ascending pathways reaching several target sites at 

different levels (brainstem, diencephalon, and telencephalon). Integration processes 

occurring at each level are reflected in different responses or modulatory processes.  

Inter-level interactions can occur via feedback and feedforward connections between 

levels. From Rainville (2013). MPFC: medial prefrontal cortex; PAG: periaqueductal 

gray; LC: locus coeruleus; Gi: gigantocellular reticular nucleus; SRD: subnucleus 

reticularis dorsalis in the caudal medulla. 
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Combining spinal responses to nociceptive stimuli with pain ratings reflecting higher-

order perceptual processing of pain allows to determine the specific levels (spinal, 

supraspinal, or a combination of both) at which pain is modulated. The selective pain 

modulation at a higher-order level of perceptual processing would indicate modulation at 

a supraspinal level that may reflect interactions between cerebral targets of pain 

transmission pathways. An observed modulation at the level of spinal responses to 

noxious stimuli would implicate the recruitment of descending pain controls. Of course, 

‘supraspinal’ processes could also be a direct reflection of afferent spinal input, which 

could be determined using a mediation analysis framework to examine the proportion of 

variance in higher-order level responses explained by afferent bottom-up (spinal) 

facilitation.  

 

Pain provides necessary information to adaptively respond to environmental harm. In the 

same way, fear is a vital emotion that adaptively allows the organism to learn, adapt, and 

survive in the environment filled with challenges, threat, and constant change. Therefore, 

to reduce dysfunctional cyclic interactions between fear and pain, the objectives should 

not be aimed at eliminating either of these vital teaching signals, but rather to break the 

maladaptive relationship between fear and pain. Mindfulness meditation is an excellent 

candidate tool to achieve this effect, because its focus is to welcome states of aversion 

rather than to suppress or change them. 

 

The next section will provide an overview of this practice and its potential role in 

disrupting the fear – pain cycle.  
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Mindfulness Meditation: Role In Breaking the Fear-Pain Cycle 

 

Increasingly integrated in modern medical practice, mindfulness meditation is a form of 

mental cognitive/affective training that has been demonstrated for its efficacy to improve 

psychological well-being, and attenuate pathological symptoms of chronic pain and 

stress/affect-related disorders (anxiety, major depression) (Baer, 2003; Brown & Ryan, 

2003; Grossman, Tiefenthaler-Gilmer, Raysz, & Kesper, 2007; Keng, Smoski, & Robins, 

2011; Morone, Greco, & Weiner, 2008; Weber, Jermann, Lutz, Bizzini, & Bondolfi, 

2012). Mindfulness involves paying attention purposefully to the present-moment 

(Bodhi, 2005). An important aspect of mindfulness meditation is the welcoming of any 

event (thoughts, sensations, perceptions) entering the field of awareness, without 

judgement or attempt to eliminate/suppress these events (Bishop, 2004). The method 

emphasizes that distractions/ruminations/cognitive elaborations be acknowledged and 

observed, while returning to an initial object of focus (eg.: the posture or the breath).  

 

Mindfulness is a core aspect of acceptance-based forms of clinical therapies. Exposure-

based therapies aimed at cultivating attitudes of acceptance towards pain have proven 

efficacious in reducing detrimental effects of pain on physical and psychological health 

(Crombez et al., 2012; McCracken & Eccleston, 2005; Viane et al., 2003). Indeed, the 

notion of acceptance has been defined as “halting the dominant search for a definitive 

cure for pain and reorienting one’s attention toward positive everyday activities and other 

rewarding aspects of life” (Crombez et al., 2012).  
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Acceptance stances towards pain could potentially reduce its negative impact by 

attenuating the so-called 2nd dart of pain. As such, pain has been described in 

phenomenological terms as consisting in a ‘1st’ and a ‘2nd dart’ of suffering (Bodhi, 2005). 

The ‘1st dart of suffering would correspond to the raw emotional and sensory aspects of 

pain experience, i.e. pain unpleasantness and sensory-discriminant pain dimension, 

mainly reflected by the activation of spinothalamic tract targets (ACC, insula, S1 and S2). 

The 2nd dart of suffering would correspond to the ruminations generated by the painful 

experience about potential meanings/consequences of pain and its causes. This aspect of 

pain could be compared to the secondary pain affect dimension described by Price 

(2000), which is supported by prefrontal cortical activation. The repeated practice of 

mindfulness would foster the elimination/attenuation of the ‘second dart’ of suffering by 

training the mind to pay attention to pain objectively and in the present-moment, 

detached from any form of cognitive elaboration or rumination about the meaning of pain 

in terms of past events and consequences for the future (Bodhi, 2005).  

 

Mindfulness was first implemented as part of an 8-week stress-reduction program 

(MBSR) in clinical settings by Jon Kabat-Zinn for patients suffering from chronic pain 

(Kabat-Zinn, Lipworth, & Burney, 1985). Effects of such interventions were shown to 

produce clinical improvements in disabling symptomatology associated with chronic pain 

(McCracken, Gauntlett-Gilbert, & Vowles, 2007). The precise mechanisms, however, 

through which mindfulness attains these beneficial effects remain unclear. Since 

mindfulness meditation cultivates acceptance and the welcoming of aversive states/pain 

as opposed to maladaptive strategies such as avoidance, it is quite possible that 
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mindfulness benefits chronic pain management symptomatology by breaking the cycle 

between fear and pain.  

 

In addition, the pain attenuating impact of long-term (Grant, Courtemanche, & Rainville, 

2011; Grant & Rainville, 2009; Perlman, Salomons, Davidson, & Lutz, 2010) and short-

term (Zeidan, Gordon, Merchant, & Goolkasian, 2010; Zeidan et al., 2011) practice of 

mindfulness meditation has been scientifically proven in experimental settings. However, 

the mechanisms underlying the hypoalgesic effects of meditation practice on pain still 

remain undetermined. The hypotheses are that mindfulness reduces pain affect due to its 

present-moment focused awareness qualities, thus eliminating any influence from mental 

events preceding pain (fear and anticipatory processes) and those following it (cognitive 

elaboration, fear of the meaning of pain in terms of potential consequences for the 

organism).  

 

In line with these hypotheses, neuroimaging studies have shown that hypoalgesia 

resulting from meditation are associated with changes in brain activity during the 

anticipation of pain in long-term meditators (Brown & Jones, 2010; Gard et al., 2012; 

Lutz, McFarlin, Perlman, Salomons, & Davidson, 2013). However, it cannot be 

determined from these studies whether meditation attenuates pain by dampening 

anticipatory behaviors per se, or by diminishing the impact of anticipation and fear on 

pain. There is evidence that mindfulness meditation practice does not dampen fear 

conditioned SCR acquisition (Holzel et al., 2016), and is not associated with reduced 

amygdala responses to emotionally aversive pictures (Taylor et al., 2011). It is therefore 
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more likely that mindfulness meditation influences the impact of fear on pain, rather than 

fear learning processes per se.  

 

Brain imaging results also show that long-term meditators exhibit reductions in prefrontal 

areas and enhanced activity in cerebral target sites of the spinothalamic tract during pain, 

as well as reduced prefrontal-ACC connections (Gard et al., 2012; Grant et al., 2011; 

Lutz et al., 2013). These results suggest that hypoalgesia related to contemplative practice 

occurs from reduced cognitive elaboration of pain affect, thereby reducing the 2nd ‘dart’ 

of suffering (secondary pain affect) which sustains the aversive experience. The result of 

these studies suggest that mindfulness attenuates pain solely by reducing higher-order 

cortico-cortical interactions between areas related to cognitive elaboration of pain and 

targets of spinothalamic pain transmission, and does not engage descending inhibitory 

pain controls (Gard et al., 2012; Grant et al., 2011; Lutz et al., 2013). This hypothesis has 

not formally been tested to date using subjective ratings in conjunction with assessments 

of spinal nociceptive processing (nociceptive flexion reflex). Thus this thesis was also 

aimed at elucidating the level(s) at which pain modulating effects of this practice take 

place: 1-uniquely at a higher –order perceptual level of pain processing, 2- by engaging 

descending pain controls inhibiting transmission at the spinal cord, 3- or a combination of 

both mechanisms.  

 

By reducing the impact of fear on pain, the propensity of fear to be reinforced in this 

cycle would also be reduced, as well as the risk for developing pathological avoidance to 

threat. This is why interventions such as mindfulness meditation, exposing individuals to 

painful or threatening experiences and training to dissociate these with any fear-related 
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thoughts about interpretations or meaning of pain, may aid in breaking the fear-pain cycle 

and contribute to the treatment of chronic pain and pain-related anxiety.  

 

Thus, known for its stress-reducing benefits (Baer, 2003), individual factors such as 

mindfulness meditation experience are hypothesized to decrease the effects of fear on 

pain. By contrast, it is possible that individual factors underlying the regulation of stress-

related responses, at the neurohormonal level, also moderate the relationship between 

fear conditioning and pain.  

 

Stress Hormones and Pain Modulation 

 

When a threat is perceived by the organism, attempts to achieve homeostasis are made 

and a cascade of neuronal and neuroendocrine events is triggered, involving sympathetic 

nervous system and hypothalamic-pituitary-adrenal (HPA) axis activation (Cacioppo, 

Tassinary, & Berntson, 2007). The stress response is characterized by a so-called first and 

second wave response (Sapolsky, Romero, & Munck, 2000). The first-wave response is 

rapid acting (within seconds) and is characterized by sympathetic nervous system 

activation inducing catecholamine release (adrenaline and noradrenaline) (Sapolsky et al., 

2000). The first-wave response also involves the release of corticotropin-releasing factor 

from the hypothalamus and adrenocorticotropic hormone from the pituitary gland 

(Sapolsky et al., 2000). The slower and longer-lasting second-wave response involves the 

peripheral release of the glucocorticoid hormone cortisol (within minutes) from the 

adrenal cortex (Sapolsky et al., 2000). The ‘stress hormone’ cortisol is the end-product of 

HPA-axis activation. This steroid hormone has anti-inflammatory properties and is 
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implicated in the breakdown of glucose and mobilization of energy stores to effectively 

cope with sources of threat (Cacioppo et al., 2007). The stress response activation is 

adaptive on an acute basis to cope with threat, but excessive prolongation, dysregulation, 

or inability to shut off the stress response from central negative feedback mechanisms can 

result in poor health outcomes and psychiatric conditions (Cacioppo et al., 2007). 

 

The neurocircuitry of the stress system shares several regions with the circuitry of fear 

learning and pain systems. For instance, “The LC-NA (locus coeruleus – noradrenergic) 

system activates and is activated by the amygdala, which, acting in conjunction with the 

hippocampus and the anterior cingulate and prefrontal cortices, mediate focused attention 

of a perceived threat, define the affective state of the individual and regulate fear- related 

behaviors “ (p.305) (Cacioppo et al., 2007). In addition, cortisol crosses the blood brain 

barrier and binds to two main types of glucocorticoid receptors (mineralocorticoid and 

glucocorticoid receptors) in several brain areas such as the hippocampus and amydgala, 

as well as the prefrontal cortex (Lupien & McEwen, 1997). It is therefore not surprising 

that glucocorticoids influence cognition, learning, memory and affective processes 

(Lupien & McEwen, 1997).  

 

Recent evidence also shows that pain responses in the brain and pain unpleasantness 

reports are lower in individuals showing stronger stress-reactivity as measured by cortisol 

(Vachon-Presseau et al., 2013). This is consistent with stress-induced analgesia 

(Fanselow, 1986) and may be mediated by various processes including, but not restricted 

to, NA and/or HPA-axis activity. However, whether individual differences in HPA-axis 
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activity only induced pain modulation at a higher-order level of processing, or whether 

descending pain inhibitory controls were also engaged remains undetermined. In 

addition, given the shared neurocircuitry between the stress system, stress hormone 

receptor distribution, fear learning, and pain systems (LeDoux & Phelps, 2008; Lupien & 

McEwen, 1997; Price, 2000), it is also possible that pain modulating influences of stress 

hormones operate by targeting fear learning mechanisms and their effects on pain. In 

other words, it is possible that effects of fear conditioning on pain varies from individual 

to individual depending on the underlying activity of the HPA-axis.  

 

Previous studies examining the relationship between cortisol and anticipatory conditioned 

responses found a positive relationship in men, but not in women (Jackson, Payne, Nadel, 

& Jacobs, 2006; Zorawski, Blanding, Kuhn, & LaBar, 2006; Zorawski, Cook, Kuhn, & 

LaBar, 2005). The same results were found following psychosocial stress (Jackson, 

Payne, Nadel, & Jacobs, 2006; Zorawski, Blanding, Kuhn, & LaBar, 2006), which has 

been explained by interactions with sex hormones (Merz & Wolf, 2017). No study to 

date, however, has examined the relationship between HPA-axis activation, and the 

effects of fear learning on pain. 

 

Presentation of empirical articles of this thesis 

 

Three experimental studies were conducted within this doctoral thesis in an attempt to 

shed light on the effects of fear learning on pain, as well as predisposing factors of 

vulnerability and resilience to the maintenance of fear-pain interactions. In the first 



	

	 35	

article, the objectives were to determine effects of fear learning on the dynamic 

modulation of pain at different levels of nociceptive processing using computational 

reinforcement learning modeling. Individual personality traits were also examined as 

moderators of the effects of fear on pain. In the second article of this thesis, the aim was 

to examine the role of long-term mindfulness meditation experience on fear learning, 

pain modulation, and as a moderator in the effects of fear conditioning on pain at 

different levels of nociceptive processing (spinal and supraspinal). Finally, in the third 

article of this thesis, the role of HPA-axis activation during fear learning, as measured by 

salivary cortisol, was examined as a modulator of pain and as a moderator of the impact 

of fear learning on pain and spinal nociception.  

 

In all three studies, classical delay fear conditioning paradigms were used to assess fear 

learning with visual cues as conditioned stimuli and noxious electrical shocks to the right 

sural nerve as the unconditioned stimulus. Computation reinforcement learning models 

were used in all three studies, to determine fear learning parameters 

(expectations/associability) at each CS+ trial paired with a shock. These parameters were 

then used as predictors of pain responses to the US using multi-level regressions. 

Measures of pain responses included subjective ratings, reflecting higher-order perceptual 

processes, and the nociceptive flexion reflex (NFR), reflecting spinal nociceptive activity. 

Individual trait factors relevant to affective processes (self-reported personality variables, 

meditation experience, HPA-axis activation) were entered as moderators of the 

relationship between fear learning parameters and pain outcomes. 
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Article 1: Learned Expectations and Uncertainty Facilitate Pain during Classical 

Conditioning 

 

 

Taylor, V., Chang, L., Rainville, P., Roy, M. Learned Expectations and Uncertainty 

Facilitate Pain during Classical Conditioning. Pain (accepted, In Press).  

 

Contribution of authors: VT, PR and MR designed the study; VT acquired the data; VT 

and MR analyzed the data and applied computational models with the help of LC; VT 

drafted the manuscript and all authors revised and approved the article. 
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Abstract 

Pain spontaneously activates adaptive and dynamic learning processes affecting the 

anticipation of, and the responses to, future pain. Computational models of associative 

learning effectively capture the production and ongoing changes in conditioned 

anticipatory responses (e.g. skin conductance response, SCR), but the impact of this 

dynamic process on unconditional pain responses remains poorly understood. Here, we 

investigated the dynamic modulation of pain and the nociceptive flexion reflex by fear 

learning in healthy human adult participants undergoing a classical conditioning 

procedure involving an acquisition, reversal and extinction phase. Conditioned visual 

stimuli (CS+) co-terminated with a noxious transcutaneous stimulation applied to the 

sural nerve on 50% of trials (unconditioned stimuli; US). Expected pain probabilities and 

cue associability were estimated using computational modeling by fitting a hybrid 

learning-model to SCR elicited by the CS+. Multi-level linear regression analyses 

confirmed that trial-by-trial changes in expected pain and associability positively predict 

ongoing fluctuations in pain outcomes. Mediation analysis further demonstrated that both 

expected probability and associability affect pain perception through a direct effect and 

an indirect effect mediated by descending modulatory mechanisms affecting spinal 

nociceptive activity. Moderation analyses further showed that hyperalgesic effects of 

associability were larger in individuals reporting more harm vigilance and less emotional 

detachment. Higher harm vigilance was also associated with a stronger mediation of 

hyperalgesic effects by spinal processes. These results demonstrate how dynamic changes 

in pain can be explained by associative learning theory and that resilient attitudes towards 
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fear/pain can attenuate the adverse impact of adaptive aversive learning processes on 

pain. 

 

Keywords: Fear conditioning, reinforcement learning models, pain, nociceptive flexion  

reflex  

 

 

 

Significance Statement: Pain has an important function in teaching the organism to 

escape potential sources of harm, yet the dynamics of pain modulation as a function of 

associative learning remains unknown. Here we used computational modeling to predict 

pain during classical conditioning in healthy human participants. Our results show that 

pain is markedly enhanced when it is either highly probable or uncertain, and that inter-

individual traits related to harm vigilance and emotional detachment can influence the 

strength of learning effects on pain. These findings demonstrate that pain is constantly 

under the influence of learning and suggest an experimental model explaining how 

associative learning could contribute to the central maintenance of pain observed in 

several chronic pain syndromes.  

 

 

 



	

	 39	

Introduction 

Pain has an important teaching function: past pain episodes shape our current reactions to 

pain, which in turn influences our future responses to painful events. The influence of 

learning on pain perception may be particularly important when individuals are subjected 

to successive episodes of acute pain, as observed in many chronic pain syndromes 

(Baliki, Geha, Fields, & Apkarian, 2010; Borsook, Maleki, Becerra, & McEwen, 2012; 

Flor & Turk, 1999). Unfortunately, we still know very little of the dynamic influence that 

learning continuously exerts on pain perception during repeated exposure to painful 

stimuli. 

  

Prior studies using conditioned cues to manipulate expectations about pain (Jensen, 

Kirsch, Odmalm, Kaptchuk, & Ingvar, 2015; Montgomery & Kirsch, 1997) have shown 

that pain perception generally increases following cues that predict the occurrence of 

noxious stimuli or signal more intense stimulation (i.e. “conditioned hyperalgesia”). 

However, these studies examined averaged pain responses following an initial 

conditioning phase during which participants are assumed to have acquired stable cue-

pain associations, thereby treating learning as a static process. Here, by contrast, we 

opted to examine the dynamic influence of learning over pain as associations are formed 

and updated at every trial. More specifically, we employed computational methods to 

extract trial-by-trial values of latent variables reflecting core associative learning 

processes. We predicted that these latent learning variables would explain trial-by-trial 

fluctuations in pain ratings and spinal nociceptive flexion reflexes induced by noxious 

electrical stimulations during classical conditioning. 
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In their simplest form, computational models posit that associative learning is driven 

entirely by prediction errors, i.e. the difference between expected and experienced 

outcomes. In typical conditioning paradigms, expectations about outcomes, or the 

valuation processes underlying the assessment of upcoming reward/punishment 

magnitude and probability (LePelley & McLaren, 2004), can be inferred from indirect 

measures (e.g. anticipatory skin conductance responses (SCRs)). By fitting the model to 

the data, the values of the latent variable (e.g. expectations) that best predict the indirect 

indexes of learning (e.g. anticipatory SCRs), can be estimated for each trial. However, in 

many conditions, simple models based solely on prediction errors provide an incomplete 

account of associative learning. Recent studies have shown that hybrid models 

comprising an associability term provide a better account of anticipatory SCRs (Li, 

Schiller, et al., 2011) and self-reported pain expectations (Boll et al., 2013) than standard 

learning models relying only on prediction errors/expectations. Hybrid models posit that 

the rate at which expectations are updated following outcomes (i.e. the “learning rate”) 

varies as a function of each trial’s informational value. This additional variable, called 

“associability”, increases when predictions are unreliable (i.e. there is more to learn when 

outcomes are difficult to predict), and has been suggested to involve increased attentional 

demands associated with uncertainty about the outcomes (LePelley & McLaren, 2004). 

Recent brain imaging studies have shown that these two fundamental learning variables – 

associability and expectations – are associated with activity in different brain networks, 

confirming that they may reflect at least partly distinct neural processes (Boll et al., 2013; 

Li, Schiller, et al., 2011). Here, we predicted that the dynamic influence of associability 
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and expectations would provide a more comprehensive account of ongoing effects of 

aversive learning on pain responses.  

 

In this study, participants underwent a classical delay-conditioning task during which one 

of the two predictive cues (CS+) was associated with a 50% probability of being 

followed by a painful electric shock (US). Anticipatory SCRs to the predictive cues were 

used to extract trial-by-trial estimates of associability and expected shock probability 

(henceforth referred to as EShock). Because associability normally decreases as 

participants gradually learn the fixed probability of pain during acquisition, cue-outcome 

associations were reversed during the experiment to transiently decouple pain predictions 

and associability. Moreover, to examine how learning exerts its effects at various levels 

of nociceptive processing, we recorded spinal nociceptive flexion reflexes (NFRs) in 

addition to pain ratings in response to the painful electric shocks (Rhudy, Williams, 

McCabe, Rambo, & Russell, 2006; Roy, Piche, Chen, Peretz, & Rainville, 2009; Sandrini 

et al., 2005). We then examined the relationship between learning variables derived from 

SCRs to predictive cues, and pain ratings and NFRs in response to subsequent electric 

shocks. Finally, we explored the influence of several relevant personality traits on the 

relationship between learning variables and pain responses to identify individual factors 

affecting the magnitude of conditioned hyperalgesia.  
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Methods 

 

Participants  

 

The sample consisted of 47 healthy young adults between 19 and 32 years of age (25 

male, 22 female;) recruited from advertisements in local University settings (Université 

de Montréal as well as McGill and Concordia Universities). Ethical approval for the 

study was obtained by the ethics research committee of the Centre de Recherche de 

l’Institut Universitaire de Gériatrie de Montréal (CRIUGM).  

 

Potential participants were considered eligible to take part in the study upon meeting the 

following criteria: no pregnancy, no psychological/psychiatric condition (such as major 

depressive disorder and substance abuse), no medication intake (except for oral 

contraceptives), no pain-related diseases (such as chronic pain or neuropathic pain), and 

no regular use of anti-inflammatory or analgesic medications. Potential participants were 

invited to visit the Laboratory of the Neuropsychophysiology of Pain (UdeM, Canada) 

for a screening and familiarization session to assess their pain thresholds and 

physiological signals (skin conductance and NFR) and for a second visit to complete the 

experimental paradigm. Nine participants were not retained following the familiarization 

session for one of the following reasons: extreme pain thresholds, excessive use of 

alcohol, drugs, or analgesic medication, discomfort with the nature of the noxious stimuli 

(electrical stimulations), or absent/unstable skin conductance or NFRs to the painful 

stimuli. Fifty participants participated in the experimental session, but three subjects were 
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excluded from data analysis due to poor electrodermal signal or very inconsistent NFRs.  

Finally, computational learning model fits were extremely deviant for 2 participants (with 

predicted SCR values below or over 10 SDs from the mean), yielding a remaining total of 

47 participants included in the analyses.     

Stimuli 

 

Visual stimuli were presented on a computer screen monitor with E-Prime2 Professional 

(Psychology Software Tools, Sharpsburg, PA). The CSs (cue1 and cue2) consisted in 

coloured fractal images (circles filled with computerized random colors and shape 

patterns) presented for 2s on a black background. The unconditioned stimuli (US) co-

terminated with CS presentation, and consisted of a 30 ms transcutaneous electrical 

stimulation (trains of ten 1-millisecond pulses at 333 Hz) delivered with an isolated 

DS7A constant current stimulator (Digitimer Ltd, Welwyn Garden City, United 

Kingdom) triggered by a train generator (Grass Medical Instruments, Quincy, MA) and 

controlled by a computer running E-Prime2 Professional. Stimulation electrodes were 

positioned on degreased skin on the retromalleolar path of the right sural nerve. NFR 

thresholds were assessed based on the NFR staircase thresholding method previously 

described (Willer, 1977). The value corresponding to 135% of the threshold intensity was 

calculated to be administered as the US intensity in the fear conditioning paradigm.  

 

Measures and Dependent Variables 

Physiological measures were recorded using BIOPAC Systems Inc. and Acqknowledge 

data acquisition software (version 4.2). 



	

	 44	

Pain Ratings  

A visual analog scale (VAS) was used to indicate the level of pain elicited by each 

electrical stimulation (0: no pain to 100: extremely painful). The VAS consisted in a 

graduated horizontal bar shown on the computer screen with a cursor moved using a 

computer keyboard response pad. Pain ratings were normalized across trials for each 

participant before data analysis. 

Electromyographic (EMG) Recording 

 EMG was recorded using two pre-gelled electrodes on degreased (and shaved if 

necessary) skin at the level of the right biceps femoris. A ground electrode was placed on 

the right tibial bone. The EMG signal was amplified 1000 times, sampled at 1000 Hz, and 

band-passed filtered (100 -500 Hz). The EMG signal was transformed online using the 

root mean square transform (computed over 20 consecutive samples). Finally, the RMS 

was integrated offline over 90- 180ms post-shock onset, and was defined as the raw NFR 

scores. Raw NFR scores were then normalized into z-scores across all trials of the 

conditioning task for each participant.  

Electrodermal Recording 

Electrodermal activity was recorded using two electrodes placed on the palmar surface of 

the left hand. The signal was amplified (5 µs/volt) and bandpass filtered (1-5 Hz). The 

signal was temporally smoothed offline at 500 ms. Using SCRalyze (Bach, Flandin, 

Friston, & Dolan, 2010), the skin conductance response (SCR) was assessed to CS- and 

CS+ unpaired. SCRs were determined using a general-linear model-based approach, by 
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convolving a standard canonical SCR basis function to event onsets. This function was 

then regressed onto the acquired data, and beta values estimating the goodness of fit of 

the model onto the data were computed. In order to obtain an SCR estimate for each CS 

trial, one model per trial was conducted, a procedure shown to be effective in estimating 

trial-by-trial responses in timeseries data (Mumford, Turner, Ashby, & Poldrack, 2012). 

For each model, a regressor was entered with the event onset for the trial of interest, and 

another regressor with all other CSs onsets was included. Shock onsets and pain rating 

periods were also entered as regressors of non-interest to account for residual variance in 

the data. Thus, these analyses yielded an estimate of SCR amplitude for each trial 

(henceforth referred to simply as ‘SCR’ for the sake of conciseness). 

 

Testing procedure 

For their initial screening session, participants provided informed consent and were asked 

a series of questions concerning demographic variables. They were then prepared for 

electrophysiological recordings after which they were submitted to the NFR thresholding 

procedure. Finally, they were given a battery of self-report questionnaires to fill out. Trait 

anxiety was assessed using the State-Trait Anxiety Inventory (STAI) (Spielberger, 

Gorsuch, Lushene, Vagg, & Jacobs, 1983). Dispositional mindfulness was assessed using 

the Five Factor Mindfulness Questionnaire (Baer, Smith, Hopkins, Krietemeyer, & 

Toney, 2006) due to its inverse relationship with pain catastrophizing (Schutze, Rees, 

Preece, & Schutze, 2010), and due to the role of mindfulness meditation in attenuating 

pain perception and developing resilience in the management of chronic pain (Grant & 
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Rainville, 2009; Kabat-Zinn et al., 1985; Zeidan et al., 2010). This 39-item questionnaire 

is composed of five sub-scales assessing different dimensions of dispositional 

mindfulness: ‘Observe’ (ability to observe inner experiences), ‘Describe’ (ability to 

describe inner experiences), ‘Aware’ (acting with awareness), ‘Non-judgment’ of and 

‘Non-reactivity’ to experiences. Dispositional mindfulness was also assessed using the 

15-item Mindful Attention Awareness Scale (MAAS) “designed to assess a core 

characteristic of dispositional mindfulness, namely, open or receptive awareness of and 

attention to what is taking place in the present.” (Brown & Ryan, 2003). In addition, the 

Pain Catastrophizing Scale (PCS) (Sullivan, Bishop, & Pivik, 1995) was administered, 

which is a 13-item questionnaire assessing the degree to which individuals catastrophize 

about their pain with three subscales: pain magnification, pain rumination, and 

helplessness towards pain. Depressive symptoms were assessed using the Beck 

Depression Inventory (Beck, Ward, Mendelson, Mock, & Erbaugh, 1961), and 

punishment sensitivity was assessed using the Behavioral Inhibition/Activation Scale 

(Carver & White, 1994). Finally, the Temperament and Character Inventory (Cloninger, 

1994) was administered to assess several different personality facets, and our focus was 

on its following subscales due to their relevance to fear/pain processing and trait 

mindfulness: harm avoidance (sum of scores on the subscales of ‘Anticipatory worry & 

Pessimism vs Uninhibited optimism’, ‘Fear of Uncertainty’, ‘Shyness with strangers’, 

and ‘Fatigability & asthenia’), self-transcendence (sum of scores on ‘Self-forgetful vs 

Self-Conscious Experience’, ‘Transpersonal Identification vs Self-Differentiation’, and 

‘Spiritual Acceptance vs Rational Materialism’), and self-directedness (sum of scores on 

‘Responsibility vs blaming’, ‘Purposefulness vs lack of goal-direction’, 
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‘Resourcefulness’, ‘Self-acceptance vs Self-striving’, and ‘Enlightened Second Nature’).  

Participants were invited to return a few days later for a second visit to complete the 

experiment. After being prepped for electrophysiological recordings, the procedure for 

NFR thresholding was conducted to determine the intensity of electrocutaneous 

stimulation administered during the task. Before the start of the task, 2 trials of each CS 

(without any shocks) were presented, as well as a ‘baseline’ block of 10 stimulations at 

the individually determined intensity. Participants then underwent the fear conditioning 

paradigm (Figure 1), which was adapted from previous work (Schiller, Levy, Niv, 

LeDoux, & Phelps, 2008). Prior to completing the learning task, participants were 

instructed to observe and pay attention to the stimuli presented on the computer screen, 

and that they may or may not receive electrical stimulations (following which they would 

provide a pain rating). Thus, no explicit instructions were given as to the cue-shock 

contingencies or reversal of these contingencies. 

 

The fear conditioning paradigm included phases of acquisition (Blocks1 and 2), reversal 

(Blocks1 and 2, in which stimuli assigned as CS+/CS- in the acquisition phase were 

reversed), and extinction (presentation of CSs alone). In the acquisition and reversal 

blocks, one image was paired and co-terminated with the shock at a contingency rate of 

50% (CS+), and the other was never paired with the shock (CS-). Each US was followed 

with an interval (jittered between 4 and 8 seconds; to allow the recording of a SCR to the 

US) and the VAS. The inter-trial intervals consisted of a white cross centered on a black 

background (duration jittered between 9, 10, 11, and 12 seconds) 
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Figure 1. Experimental paradigm. A) In the initial acquisition stage (trials 1- 40), one cue 

was associated with a 50% chance of being followed by an electric shock (CS+), while 

the other cue was associated with a 0% chance of shock (CS-). In the reversal stage, the 

reinforcement contingencies between the two cues were reversed, such that the previous 

CS+ became the new CS- and the previous CS- became the new CS+. In the extinction 

phase, both cues were associated with a 0% chance of shock. B) Example of each type of 

trial (CS-, CS+, and CS+paired). Each trial began with the presentation of one of the two 

cues. On reinforced (CS+paired) trials, the presentation of the cue co-terminated with an 
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electric shock (30 ms) to the right sural nerve and participants were asked to rate their 

pain after a jittered interval of 4-8s. Then, after another jittered inter-trial interval (ITI) of 

9-12s, the following cue was presented. During unreinforced (CS- or CS+unpaired) trials, 

there were no pain ratings, and fear conditioned responses to visual cues were assessed 

by examining skin conductance responses (SCR; with a typical latency between 0.5 and 

2s) from electrodermal activity recordings. C) Electromyographic (EMG) activity was 

recorded using electrodes placed on the biceps femoris. The NFR was observable at a 

latency of 90-180 ms post-stimulation onset.  
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Acquisition and reversal blocks consisted of 40 trials (20 CS-, 10 CS+ unpaired, 10 CS+ 

paired) and lasted 13 minutes each. Trials were presented in a pseudo-random order, with 

the constraint that there were no more than 2 consecutive presentations of the same trial 

type. Also, the first trial of each block always consisted of a paired CS+, and the second 

always consisted of a CS- to instantiate learning contingencies at the onset of the block. 

The assignment of the CS+ in the acquisition phase (stimulus A or B) was counter-

balanced across subjects. The extinction block lasted 10 minutes and consisted of 40 

trials of unreinforced CSs (20 trials for each image). The assignment of the CS+ in the 

acquisition phase (stimulus A or B) was counter-balanced across subjects. A final block 

of 10 stimulations without any CS was then administered in order to account for non-

specific changes in the NFR as a function of time. At the end of the experiment, 

electrodes were removed and participants completed a post-experimental interview 

assessing their awareness of CS-US pairings adapted from previous studies (Bechara et 

al., 1995; LaBar, LeDoux, Spencer, & Phelps, 1995). They were then debriefed and 

remunerated 15$/hour for their time.  

 

Data Analyses 

Self-Report Questionnaire Analyses  

In order to reduce the number of individual trait dimensions, a principal component 

analysis using an oblique rotation method was conducted on the different self-report 

questionnaire data scales using SPSS Version 21.0. Data included in the analyses were 

BDI scores (square root transformed to correct for a positively skewed distribution), 
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Mindful Awareness Attention Scale (MAAS) scores, Pain Catastrophizing Scale (PCS) 

scores (sum of scores on the magnification, rumination, and helplessness towards pain), 

Behavioural Inhibition Scale scores (BIS), scores on each Five-Factor Mindfulness 

Questionnaire subscale, trait anxiety scale were scores, as well as the TCI subscales of 

harm avoidance, self-transcendence, and self-directedness. 

The first three components extracted explaining a total of 62% of the variance in the data 

were retained in order to use as moderators of the fear-conditioning-induced modulation 

of pain. Factor loadings onto the questionnaire dimensions are illustrated in Table 1. The 

first factor loaded positively onto pain catastrophizing, trait anxiety, harm avoidance, 

punishment sensitivity (BIS), depressive symptoms, and negatively onto ‘Non-reactivity 

to inner experiences’. This factor was labeled as ‘Harm vigilance’, since it combines 

attributes specific to catastrophizing pain attitudes, avoidance behaviors, anxiety and 

emotional volatility. The second factor loaded positively onto FFMQ ‘Describing 

experiences’, ‘Observing experiences’, self-transcendence, and negatively onto ‘Non-

judgment of experiences’). This factor was labeled as ‘Emotional Detachment’, since it 

combined the dimensions of trait mindfulness oriented towards cultivating separation 

between the self and emotional experiences, distinct from adopting an accepting attitude 

towards inner experiences. The last factor loaded positively onto ‘Acting with 

Awareness’, ‘Non-judgment of experiences’, self-directedness, present-moment 

awareness, and negatively onto depressive symptoms, harm avoidance, and trait anxiety. 

This factor was labeled as ‘Acceptance/positive affect’, since it combined aspects related 

to trait mindfulness involved in emotional acceptance and living in the present moment, 

low anxiety/negative affect and tendencies to avoid harm.  
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Table 1 Individual Trait Dimensions and their Loadings onto Factors 
obtained from the Principal Component Analysis 
  Principal Component Analysis Factors 
   Harm 

Vigilance Emotional 
Detachment 

Acceptance/ 
Positive 
Affect 

Individual Trait Dimensions     
Pain Catastrophizing  (PCS) 0.64    
Describing Experience (FFMQ)  0.66  
Observing 
Experience 

  0.77  

Acting with 
Awareness 

   0.78 

Non-judgmental  (FFMQ)  -0.44 0.68 
Non-reactivity 
(FFMQ) 

 -0.64   

Trait Anxiety 
(STAI) 

 0.70  -0.56 

Self-Transcendence (TCI)  0.73  
Self-Directedness (TCI)   0.68 
Harm Avoidance (TCI) 0.90  -0.42 
Present Moment Awareness 
(MAAS) 

  0.74 

Depressive Symptoms (BDI)   -0.68 
Punishment Sensitivity (BIS) 0.89   
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Computational Modeling 

Different computational learning models (Rescorla-Wagner and Pearce-Hall hybrid) were 

(LePelley & McLaren, 2004) fitted to trial-by-trial SCR data to unreinforced cues (CS- 

and CS+ unpaired), from which fear learning parameters to CS+paired trials were 

estimated. The following models were tested: a Rescorla-Wagner model (RW model; 

driven by prediction errors), and a RW/Pearce-Hall hybrid model (RW/PH hybrid), in 

which the expected value or probability of shock at each trial is computed as a function of 

prediction errors AND in which the learning rate is dynamically modulated by 

associability at each trial. Finally, an inter-cue dependent RW/PH hybrid model was 

conducted, which was a variant of the RW/PH hybrid model in which EShock and 

associability were updated for the cue presented at each trial, as well as for the 

unpresented cue. For example, if cue1 were presented at a given trial with the US, the 

assumption could be made that cue2 would not be associated with the US; thus, at this 

trial, EShock and associability were updated for cue2 using the opposite outcome as for 

cue1 (i.e. no shock).  

 

Learning Model Selection. Model fit indices to SCR data were extracted for each 

subject: Akaike Information Criteria (AIC), and Bayesian Information Criteria (BIC). 

Non-parametric paired samples comparisons (Wilcoxon test) were conducted on AIC and 

BIC to compare model fit indices between the RW/PH hybrid, the inter-cue dependent 

RW/PH hybrid, and the RW models. Model fits were superior for the inter-cue dependent 

RW/PH hybrid model compared to the other two models (ps < .05, AIC and BIC indices 
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were smaller for the RW/PH hybrid model vs the RW model, and AIC/BIC indices were 

significantly or marginally significantly smaller for the inter-cue dependent RW/PH 

hybrid vs the RW/PH hybrid models, see Table 2). The use of the AIC to evaluate model 

fits to the data allowed to compare the fit of different models while taking into account 

differing levels of model complexity, or the number of free parameters estimated in a 

given model. The fact that the RW/PH hybrid models had a superior fit to our data than 

the RW model indicates that learning was better modeled as a function of both 

associability and prediction error, and that learning was accelerated following enhanced 

prediction errors and decelerated following smaller errors. In addition, the superior fit to 

our data of an inter-cue dependent RW/PH hybrid model compared to a RW/PH hybrid 

model indicates that participants’ learning was dependent on the structure of our task, and 

that learning about the cue that was not presented on a given trial occurred based on 

information obtained from the cue that was present on that trial.  
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Table 2 Wilcoxon Signed Rank Test Statistics for Comparison of Computational Model 

AIC/BIC fit Indices  

 RW Model RW/ (PH) Hybrid 

  AIC BIC  AIC BIC  

RW/Pearce-Hall (PH) Hybrid Z= -4.61** Z= -5.97** - - 

Inter-cue dependent RW/PH 

Hybrid Z= -2.30*   Z=-5.78** 

 

Z=-1.76#  Z=-5.78** 

Notes. Significant effects of predictors are indicated on the graph with asterisks  

*p < .05 **p < .001, #p = 0.079 

RW: Rescorla-Wagner; PH: Pearce-Hall. 
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Model Descriptions. For the Rescorla-Wagner model (Equations 1-2), expected 

shock probabilities (denoted as V in the following equations) on a given trial (t) were 

updated as a function of the prediction error (δ) obtained on the preceding trial. The 

prediction error  - discrepancy between the actual outcome (λ) administered on a given 

trial and the expected outcome - was modulated by a constant learning rate (α). Pain 

administration was coded as 1 and absence of pain as 0.  

Vt+1 = Vt  +  α *  δt _______________________________________________________________________(Equation1) 

δt = λt  - Vt_________________________________________________________________________________(Equation2) 

For the RW/PH hybrid model (Equations 3-5), expected shock probabilities were 

modeled in the same way as in the RW model, but the learning rates were dynamically 

modulated by an associability term (a). The associability term was updated as a function 

of the prediction error’s absolute value (the surprising quality of the outcome, whether it 

be unexpected pain or unexpected pain omissions), and modulated by a constant term (γ).  

Vt+1 = Vt  +  at * α * δt __________________________________________________________________(Equation 3) 

δt = λ t  - Vt_______________________________________________________________________________(Equation 4) 

at+1  = γ * |  δt |  + (1 - γ) * at ___________________________________________________________(Equation 5) 

More specifically, the RW/PH hybrid inter-cue dependent model depicted the nature of 

our fear conditioning paradigm involving 2 distinct CSs, i.e. the CS+ paired with the US 

while the other cue (CS-) predicted the absence of pain in a given learning phase. Thus, 

fear learning parameters were not necessarily updated independently from one another. 
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For example, on the presentation of a cue paired with a US, an assumption could easily 

be made that the other cue was systematically not associated with the US. In other words, 

the unpresented cue at each trial would be updated according to a prediction error 

computed by attributing the ‘opposite’ outcome. Therefore, the RW/PH hybrid inter-cue 

dependent model consisted of a variant of the RW/PH hybrid model by attributing 

specific parameters to the cue presented on each trial (c_pres) and the cue that was not 

presented on that trial (c_unpres). 

Vc_prest+1 = Vc_prest + ac_prest * αc_pres * δc_prest __________________________(Equation 6) 

δc_prest = λ t   – Vc_prest____________________________________________________________(Equation 7) 

ac_pres t+1  = γc_pres * |   δc_prest |  + (1- γc_pres) * ac_prest__________________(Equation 8) 

In the same way, associability and expected pain on each trial were updated for the cue 

that had not been presented (c_unpres) by attributing it the opposite outcome, denoted by 

|  1- λ t  |  .     

Vc_unprest+1 = Vc_unprest + ac_prest * αc_unpres * δc_unprest_____________(Equation 9) 

δc_unprest = |  1- λ t  |    – Vc_unprest_______________________________________________(Equation 10) 

ac_unprest+1 = γc_unpres*|δc_unprest|+(1- γc_unpres)*ac_unprest ________(Equation 11) 

Following previous recommendations (Daw, 2011), expected shock probabilities and 

associability values at each trial for each subject were computed from the following fixed 

parameters (corresponding to the model’s free parameters averaged across subjects): 

αc_pres = 0.19, αc_unpres = 0.22, γc_pres = 0.21, γc_unpres = 0.33, V0=  0.35, a0=  0.49.  
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Figure 2B illustrates Trial-by-trial SCRs to unreinforced cues (CS- and CS+ unpaired) 

and predicted SCR estimations to reinforced and unreinforced cues from the inter-cue 

dependent RW/PH hybrid model. Expected shock probabilities (C) as well as 

associability (D) related to each cue are also shown in Figure 2.  
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Figure 2. Anticipatory skin conductance responses (SCR) and associability and expected 

probability of shock (expected p(shock)) estimates throughout the acquisition, reversal, 

and extinction phases of the experiment. A) Anticipatory skin conductance responses 

(SCR) for all unreinforced (CS- and CS+unpaired) trials of the experiment, averaged (+ 

SEM) across the whole group for the early (first half) and late (second half) phases of 

acquisition, reversal, and extinction (*p < .05, **p < .01, paired t-tests). B) SCRs 

predicted from the computational learning model (lines) and observed SCRs (dots). Note 

that while anticipatory SCRs cannot be measured for reinforced trials (CS+paired) due to 

the temporal contiguity between the CS and the US, computational estimates can be 

derived from these trials, and used to predict pain responses (see Figure 3 C and D)         

C and D) Trial-by-trial expected p(shock) (C) and associability (D) estimates, averaged 

over the whole group.  

*	
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Results 
 

 
Effects of conditioning on anticipatory SCRs  

 

In order to demonstrate the efficacy of our paradigm to elicit conditioned fear responses, 

we first examined anticipatory SCRs in response to the two predictive cues, averaged 

within the first (early) and second (late) halves of the acquisition, reversal and extinction 

phases of the experiment (Schiller et al., 2008). As expected, results of a 2 (cue 1, cue 2) 

x 6 (acquisition-early/late, reversal-early/late, extinction-early/late) ANOVA revealed a 

significant Cue X Phase interaction (F(1.47, 71.86) =11.36, p<.0001 with Greenhouse-Geisser 

Correction; Figure 2A). Follow-up paired t-tests revealed that SCRs to the CS+ were 

higher than SCRs to CS- during conditioning (acquisition-early, t(46)= 3.15, p=.003; 

acquisition-late, t(46)= 3.41, p=.001; reversal-early, t(46)= 2.46, p=.018; reversal-late, t(46)= 

2.97, p=.005 ). Moreover, conditioned SCRs decreased significantly at reversal and 

extinction when cues stopped to be paired with shocks (cue 1 acquisition-late vs. 

reversal-early: t(46)= 3.07, p=.004; cue 2 reversal-late vs. extinction-early: t(46)= 3.55, 

p=.001). SCRs were also significantly higher for cue 1 than cue 2 during early-extinction 

(t(46)= 3.42, p=.001), suggesting that participants may have expected another reversal at 

the onset of the extinction phase.     

 

The conventional demonstration of the conditioned fear-responses shown in Figure 2A 

was further expanded to a trial-by-trial analysis, allowing for the estimation of EShock 

and Associability, the two key parameters of the hybrid learning-model. Estimates of 

each parameter were optimized using computational modeling. The global pattern of 
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CS+/CS- discriminative learning was clearly captured by the model in the acquisition and 

reversal phases as shown by the time-course of the predicted SCR (Figure 2B). Learning 

parameters were then extracted from the optimized model for each trial and each subject 

according to the individual time-series of CS+/CS- and US (see group averages in Figure 

2C-D). EShock and Associability for the reinforced trials (i.e. paired CS+), reproduced in 

Fig.3A, provided learning-related predictors of responses to the noxious electrical 

stimulation. 

 

Effects of conditioning on responses to electric shocks 

The time-course of mean shock-evoked pain and NFR responses displayed in Figure 3B 

did not reveal a global pattern of modulation across the early vs late parts of the 

acquisition and reversal phases using a conventional analysis based on trial and group 

averaging (ANOVA, p’s > .05). However, both responses appeared to be consistently 

lowest on the first trials of the acquisition and reversal phases, as compared to their 

immediate neighboring trials (first vs. second acquisition trial: F(1, 46) = 6.72, p=.013; last 

acquisition trial vs. first reversal trial: F(1, 46) =12.97, p=.001; and first vs. second reversal 

trial: F(1, 46) =18.74, p<.001). Not surprisingly, computational modeling also indicates that 

these key learning trials show very large shifts in EShock Probability and  

Associability (Figure 3A). Notably, these shifts are visible in the group averages because 

learning starts or contingencies change consistently in all subjects in those specific trials. 

This implies that trial and group averaging may mask dynamic effects and that the 

individual pattern of trial-by-trial fluctuations in pain responses may relate to immediate 

adjustments in the ongoing learning processes. 
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Figure 3. Relationship between expected shock probabilities (expected p(shock)), 

associability, pain ratings and nociceptive flexion reflexes (NFR) for reinforced 

(CS+paired) trials. A) Average associability and expected p(shock)) estimates. B) 

Average pain ratings and NFR amplitudes (lines), with shaded areas representing 

standard errors of the mean. C and D) Relationship between pain ratings, NFR 

amplitudes and associability/expected p(shock)) estimates for two individual subjects. 

Trial-by-trial associability and expected p(shock) estimates were weighted by their 

regression coefficients in order to illustrate the multi-level regressions effects reported in 

Table 3. For parcimony, the intercepts of the regression models predicting pain ratings 

and NFRs from expected p(shock) and associability estimates (see Table 3) were 

removed from observed pain ratings and NFRs. Pain responses were consistently lowest 

on the first trials of the acquisition and reversal phases, as compared to their immediate 

neighboring trials (first vs. second acquisition trial; last acquisition trial vs first reversal 

trial; first reversal trial vs second reversal trial). ***p<0.001, *p<0.05  
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The effects of EShock and Associability on pain responses were examined using 

multilevel regression analyses in which fear learning parameters at each trial were 

entered at the first level and subjects at the second level. Specifically, we predicted self-

reported pain and NFR scores at each trial from EShock and Associability to shock-

predicting cue (CS+paired) using multi-level regressions as implemented in Hierarchical 

Linear Modelling (HLM) software. Results are shown in Table 3 and confirmed that both 

EShock (Beta = 0.68, t = 4.16, SE = 0.16, R2 = 0.28, p < .001) and Associability (Beta = 

1.18, t = 4.23, SE = 0.28, R2 = 0.29, p < .001) positively predicted pain ratings and NFRs 

(Beta = 0.82, t = 4.52, SE = 0.18, R2 = 0.32, p < .001; Beta = 1.60, t = 4.75, SE = 0.34, R2 

= 0.34, p < .001 for effects of EShock and Associability respectively). As can be 

observed in Figure 3, the combined contribution of EShock and Associability derived 

from the learning model allows making a prediction that explains a significant amount of 

the trial-by-trial variance in pain and the NFR (Figures 3C and D, respectively).  
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Table 3  Multi-level regression analysis on pain ratings and NFR scores 
predicted by fear learning parameters    

Dependent Variable: Pain Ratings to US 
   Beta SE t R2 p 

LEVEL-1 Predictors          

Intercept -1.09 0.24 -4.66 
- <.001 

*** 
Expected Shock(US) 
Probabilities  0.68 0.16 4.16 

0.28 <.001 
*** 

Associability   1.18 0.28 4.23 
0.29 <.001 

*** 
       

Dependent Variable: NFR scores to US 
LEVEL-1 Predictors          

Intercept -1.19 0.21 -5.64 
- <.001 

*** 
Expected Shock(US) 
Probabilities 0.82 0.18 4.52 

0.32 <.001 
*** 

Associability 1.60 0.34 4.75 
0.34 <.001 

*** 
            

Notes. Significant effects of predictors are indicated on the graph with asterisks  
(***p<.001) 
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Moreover, while EShock was relatively low in the first few trials of the acquisition and 

reversal phases, associability rapidly peaked after the surprising first cue-shock pairings 

of both phases. The combined influence of EShock and associability therefore paints a 

very dynamic and complex portrait of learning effects on pain. Indeed, pain appears to be 

increased when shocks are either expected with a high probability or when uncertainty is 

high. In contrast, participants experienced less pain when they were most certain that they 

would not receive an electric shock; i.e. at the first reinforced trials of the reversal phases 

(see dip at reversal in Figure 3B). Average effects of expected p(shock) (A) and 

Associability (B) on pain ratings and NFRs are illustrated in Figure 4.   
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Figure 4. Average effect of expected p(shock) (A) and Associability (B) on pain ratings 

and NFRs. The shaded gray area shows the 95% confidence interval for the regression 

slopes.  Variability in the intercept values across participants has been removed for 

display purposes. ***p<0.001, *p<0.05 
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Figure 5. Multi-level mediation models of the effects of expected probability of shock 

(expected p(shock)) and associability on pain ratings. Path coefficients are shown for 

each path (a, b, c, c’) and mediation effects (a x b) with standard errors in parentheses. A) 

NFRs partially mediated the effect of expected probability of shock (expected p(shock)) 

on pain ratings. Harm vigilance increased NFRs mediating effects (mediation term a x b). 

B) NFRs partially mediated the effect of associability on pain ratings. Harm vigilance 

increased the effects of associability on NFRs (path a), as well as NFRs mediating effects 
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(mediation term a x b). Emotional detachment decreased the effects of associability on 

NFRs (path a). Average effect of expected p(shock)/Associability on pain ratings and 

NFRs are shown in Figure 4. ***p<0.001, *p<0.05 
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Learning processes affected both pain perception and the spinal nociceptive response and 

the possible relation between those modulatory effects was further assessed in multi-level 

mediation analyses. Given that the modulation of pain perception is often assumed to 

reflect at least in part the involvement of cerebro-spinal mechanisms affecting spinal 

nociception (Tracey & Mantyh, 2007), we tested the hypothesis that pain modulation by 

learning variables (EShock or associability) was mediated by the corresponding changes 

in the NFR (implemented with custom code written in Matlab, 

http://wagerlab.colorado.edu/tools, see Figure 5). Moreover, in order to account for the 

significant negative relationship between EShock and associability (Beta = -1.05, SE = 

0.02, t = -61.72, p < .001), each variable was regressed onto the other and the residuals 

(i.e. EShock controlling for associability and vice-versa) were entered as predictors in the 

two mediation models tested. Results showed that the NFR was a significant mediator of 

the effects of both learning variables on pain ratings (c = 1.44, SE = 0.28, p < .001, ab = 

0.11, SE = 0.04, p = .012, for the effect of EShock on ratings and its mediation by NFRs; 

c = 2.34, SE = 0.43, p < .001, ab = 0.28, SE = 0.08, p = .001 for the effect of associability 

on ratings and its mediation by NFRs). However, the c path remained significant after 

accounting for the NFR mediation (c’ in Figure 5) indicating that effects of both learning 

processes on pain perception could be explained in part, but not entirely, by the 

descending modulation of spinal nociception.  

 

Finally, in order to examine the influence of personality traits on learning-induced pain 

modulation, we first performed a PCA on scores of several psychological questionnaires 

(listed in Table 1). This allowed reducing the dimensionality of the data to three 
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personality components: harm vigilance, emotional detachment, and acceptance (see 

methods). These three variables were then tested as second-level moderators in our 

mediation models. Results showed that harm vigilance significantly increased 1 - the 

effects of associability on NFRs (path a, Figure 5), as well as 2 - the NFR mediation 

between associability and pain ratings (path ab, Figure 5), and 3 - the NFR mediation 

between EShock and pain ratings (path ab, Figure 5). Moreover, emotional detachment 

also decreased the strength of the relation between associability and NFRs (path a, Figure 

5).  None of the personality components were significantly correlated with the fixed 

parameters of the learning model (all ps > 0.05) suggesting that the effects of personality 

factors on pain processing could not be explained simply by underlying inter-individual 

differences in associative learning. This indicates that personality traits influence how 

learning affects pain processing.  
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Discussion 

Pain plays an important role in teaching us about potential sources of harm in our 

environment. Pain-evoking stimuli further trigger associative learning mechanisms that 

constantly refine our predictions about what is most likely to cause us pain. Here, we 

employed computational modeling to demonstrate that associative learning produces 

transient states of conditioned hyperalgesia that are paradoxically induced by both pain 

predictability and uncertainty. Indeed, the only moment when participants did not appear 

to suffer from hyperalgesic effects is when they were the most certain that they would not 

receive a painful electric shock. Effect sizes were large (Tabachnick & Fidell, 2007), 

suggesting that the influence of learning on pain processing is considerable and may 

potentially have an important impact on pain perception in our day-to-day lives.  

 

When only considering the averaged effects of trial number on pain processing, the 

hyperalgesic effects of conditioning could only be observed as the difference between the 

relatively low pain ratings and NFRs in response to the first shocks of the acquisition and 

reversal phases of the experiment, and the higher pain indexes observed throughout the 

rest of the experiment. However, results from computational modeling revealed that the 

apparent lack of learning effects after the first cue-pain pairings was in fact caused by 

opposing effects of expected pain (EShock) - which steadily rises as participants are 

exposed to repeated cue-pain associations - and associability - which tends to decrease as 

predictions become more accurate. Because these two parameters were estimated by 

fitting the learning models to anticipatory SCRs, and not to unconditioned responses to 

electric shocks, the opponency between EShock and associability effects cannot be due to 
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over-fitting of the learning model, and therefore likely reflects the workings of learning 

mechanisms that are affecting both anticipatory SCRs and responses to electric shocks. 

For the same reason, the strong and significant relationship between our computational 

estimates of associability/EShock and both measures of pain processing provide a 

convincing additional validation of the selected hybrid learning model.  

According to reinforcement learning theories, EShock and associability reflect 

qualitatively different learning processes. Expected probability of shock simply refers 

here to the subjective probability of receiving an electric shock and therefore broadly 

reflects the learning process that is generally implied in most fear conditioning studies 

(Jensen et al., 2015). However, in contrast with more traditional analyses splitting 

acquisition and reversal phases in early and late phases (see Figure 2A), EShock is 

estimated on a trial-by-trial basis. Thus, rather than considering the overall reinforcement 

rate (e.g. 50%) across blocks of pseudo-random trials, modern implementations of 

learning models consider the effective and unique sequence of reinforcement experienced 

by the subject on a trial-by-trial basis. Computational modeling therefore provides 

EShock estimates that are better tailored to the unique sequence of reinforcement that is 

experienced by each subject.  

 

In contrast with EShock, the associability term used in our learning model reflects the 

informational value of the outcome with respect to reinforcement contingencies. 

Associability is therefore expected to go down as predictions become more and more 

accurate (i.e. reduced prediction error), and to rise when participants have recently been 

surprised by an unexpected outcome (i.e. on trials that follow a large prediction error). 
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Indeed, after having been surprised, attention towards the outcome of the following trial 

is increased because it may confirm or disconfirm a potential change in contingencies. 

Recent brain imaging studies have reported that different brain regions may encode 

EShock (ventral striatum) and associability (amygdala and basolateral amygdala) (Boll et 

al., 2013; Li, Schiller, et al., 2011) during the presentation of the outcome during aversive 

conditioning. Our data suggest that the output of these two systems may ultimately 

converge onto a single effector system responsible for allocating attentional resources to 

the processing of the unconditioned stimulus (US).  

 

Finally, the present study demonstrated that learning effects on pain were partly mediated 

by spinal nociceptive processes, indicating that conditioned hyperalgesia at least partly 

relies on descending cerebro-spinal modulatory pathways that gate the transmission of 

ascending nociceptive signals at the spinal level. Still, a significant part of learning 

effects on pain was not mediated by spinal nociceptive processes, and could therefore 

reflect higher-order (i.e. supra-spinal) processes affecting pain perception as a function of 

its predictability. Interestingly, inter-individual differences in harm vigilance and 

emotional detachment specifically affected the portion of learning effects that was 

mediated by spinal nociceptive processes. Indeed, participants that were more harm 

vigilant and/or less emotionally detached displayed stronger spinal facilitation, which in 

turn contributed more to the hyperalgesic effects observed in pain perception. Thus, the 

parsing of learning effects into EShock/associability and spinally mediated/unmediated 

effects allowed us to reveal the precise mechanisms by which predisposing personality 

traits may influence conditioned hyperalgesia.  
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By contrast, the facilitatory effects of associability on pain responses was reduced in 

individuals with elevated dispositions to adopt detached and non-reactive attitudes 

towards their inner and emotional experiences. However, here the moderating effect was 

only found on the NFR, suggesting that in the context of learning, emotional detachment 

may reduce the reactivity to the noxious stimulus without having indirect consequences 

on pain perception. Previous studies have suggested that trait mindfulness is inversely 

related to pain catastrophizing in a chronic pain patient sample and that it moderates the 

relationship between catastrophizing and reported pain intensity (Schutze et al., 2010). 

The present findings should motivate further investigation of the impact of emotional 

regulation training on aversive learning processes to unravel potential benefits in 

preventing learning-induced pain facilitation (Crombez et al., 2012).  

 

It is important to highlight that, although it would also have been possible to directly 

model pain outcomes using computational modeling, this approach would address a 

different question and viewpoint as to that of modeling anticipatory SCRs and using 

model estimates to predict pain outcomes. In the latter approach, model estimates are 

derived from anticipatory processes to the occurrence/absence of pain, and are then used 

to predict pain outcomes. Variation in pain outcomes therefore reflects dynamics 

underlying anticipation of the occurrence of pain. The former approach would constitute 

a different question, i.e. to examine whether expectations and prediction signals would 

adequately fit pain outcomes using a specific model over another. Examining this 

question however, would not take into account the entire reinforcement learning history 

at all trials, or would have limited data to do so given that signals would only be fitted to 



	

	 76	

pain-predicting cues. This question is qualitatively different as examining the relationship 

between dynamic processes underlying learned anticipatory SCRs and pain outcomes, but 

would nonetheless provide invaluable information in understanding dynamic pain 

modulation during learning and should be addressed in future studies.  

 

In conclusion, the present study is the first to demonstrate that pain perception is under 

the constant influence of learning processes that dynamically control the sensory gating 

of painful stimuli as a function of each individual’s unique reinforcement history. This 

suggests that when an individual is submitted to repeated episodes of pain, a significant 

proportion of the pain perceived may become rapidly facilitated by learning and 

attentional factors. A better understanding of the psychological and neural mechanisms 

underlying learning effects on pain could therefore provide important insights into the 

sequence of psychological and neural events that lead to pain chronicity, and hopefully 

indicate novel ways of breaking the vicious circle by which expected and/or uncertain 

pain causes more pain.   
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Abstract 

 

Mindfulness-based practice is a form of cognitive/affective training that may help reduce 

suffering by attenuating maladaptive anticipatory processes. The hyperalgesic effects of 

pain expectation and uncertainty was assessed outside formal meditation in 11 

experienced meditators (>1000h) compared to meditation-naïve controls during a fear-

conditioning paradigm involving two visual stimuli (CS+/CS-), one of which (CS+) co-

terminated with a noxious electrical stimulus (US) on 50% of trials. A Rescorla-

Wagner/Pearce-Hall hybrid model was fitted onto the conditioned skin conductance 

responses (SCRs) using computational modelling to estimate two learning parameters – 

expected shock probability and associability (i.e. uncertainty). Meditators reported less 

pain but had comparable spinal motor responses (nociceptive flexion reflex; NFR) to the 

US. Importantly, meditators also displayed comparable discriminative SCRs to the CS+ 

vs CS-. However, multilevel mediation analyses revealed that meditators exhibited 

reduced hyperalgesic effects of fear learning on higher-order pain responses but 

comparable effects on the NFR. These results suggest that mindfulness affects higher-

order perceptual processes independent from descending inhibitory controls. 

Furthermore, mindfulness reduced hyperalgesic effects of fear-conditioning without 

affecting conditioned learning as evidenced by normal discriminative anticipatory 

responses. These results provide evidence that mindfulness may help reduce the 

maladaptive reinforcing cycle between fear and pain reported in some chronic pain 

patients. 

Keywords: mindfulness meditation, pain, nociceptive flexion reflex, fear conditioning 



	

	 84	

Introduction 

 

Cultivated through the practice of meditation, mindfulness has gained worldwide 

scientific interest for its accessibility and proven effectiveness in attenuating symptoms 

of pathologies related to chronic pain as well as affect, anxiety and stress (Baer, 2003; 

Brown & Ryan, 2003; Kabat-Zinn et al., 1985; Keng et al., 2011; Morone et al., 2008). 

This state of awareness involves intentionally paying attention to the present-moment and 

monitoring mental/physical events in a detached and accepting manner (Bodhi, 2005). 

Findings from neuroimaging studies suggest that the hypoalgesic influence of the 

cognitive/affective training of mindfulness meditation is particular because it selectively 

affects higher-order brain centers linked to cognitive/affective elaboration of pain and not 

primary sensory aspects of nociceptive pain (Gard et al., 2012; Grant et al., 2011). More 

specifically, one of the premises underlying mindfulness is that relief from suffering 

occurs by detaching oneself from past events and future scenarios (Bodhi, 2005), which 

is accurately in line with the anticipation-mediated hypoalgesic effects of meditation 

(Brown & Jones, 2010; Gard et al., 2012; Lutz et al., 2013).  

 

Indeed, the mechanisms of action of the pain-attenuating effects of mindfulness has been 

suggested to operate by reducing neural activity during pain anticipation (Brown & 

Jones, 2010; Lutz et al., 2013). Electrophysiological and functional imaging studies using 

MRI have reported changes in anticipatory brain activity that may contribute to the 

reduced pain sensitivity of experienced meditators (Lutz et al., 2013). It remains unclear, 

however, whether meditation-related pain modulation is due to diminished anticipatory 
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processes per se or reduced impact of anticipation on pain. In addition, due to a lack of 

low-level (spinal) assessments of nociceptive transmission in previous studies examining 

pain modulation by meditation, it remains unknown whether anticipation-mediated or 

general effects of mindfulness on pain target uniquely higher-order perceptual centers, 

descending inhibitory control mechanisms, or both.   

 

In a previous independent report, we showed that learned expectations and uncertainty 

during the anticipation of pain facilitate pain during classical conditioning (Taylor, 

Chang, Rainville, & Roy, In Press). We demonstrated that pain facilitation during fear 

conditioning can be explained by specific parameters (expectations and uncertainty) 

estimated from computational modeling of anticipatory responses (skin conductance 

responses; SCRs) to fear conditioned cues (CS+). Computational models of 

reinforcement learning are thought to best depict trial-by-trial variations in anticipatory 

behavior as a function of predictions, or expectations, formed about the occurrence of 

pain, as well as the associability of conditioned cues (LePelley & McLaren, 2004). The 

latter factor, ‘associability’, is highest when predictions are unreliable, i.e. when the 

absolute magnitude of prediction errors experienced in previous trials is elevated. In other 

words, there is more to learn when contingencies are uncertain; therefore, associability is 

thought to reflect enhanced attention allocation to cues most informative about uncertain 

environmental contingencies (LePelley & McLaren, 2004). We showed that both learned 

expectations and uncertainty (associability) positively predicted trial-by-trial fluctuations 

in pain perception and spinal nociceptive flexion reflex (NFR) responses to noxious 

electrical US (Taylor et al., In Press). In addition, we showed that resilient attitudes 
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towards fear/pain (i.e. such as low pain catastrophizing and elevated dispositional 

mindfulness) attenuated the hyperalgesic impact of adaptive aversive learning processes 

on pain.   

 

Here, we examined the impact of extensive mindfulness meditation experience on the 

dynamic (trial-by-trial) pain modulating effects of fear learning at the spinal and 

supraspinal levels of pain processing. The main objective of the present study was to 

determine whether effects of mindfulness meditation practice are due to an absence of 

learned anticipatory responses or an absence of impact of pain anticipation on pain-

evoked responses. The secondary aim of this study was to investigate whether general 

hypoalgesic effects of mindfulness meditation occur selectively by targeting pain 

responses at a higher order level of processing (i.e. perceptual), by influencing 

descending inhibitory control systems, or both.  

 

Given evidence that mindfulness meditation training does not eliminate fear conditioned 

anticipatory SCRs (Holzel et al., 2016) or emotional amygdala responses to negative 

affective pictures (Taylor et al., 2011), we hypothesized that mindfulness meditation 

experience would not affect anticipatory SCRs to conditioned cues but would reduce the 

impact of fear learning parameters (EShock and associability) on pain (Taylor et al., In 

Press). Finally, since mindfulness meditation practice is associated with reduced brain 

function in regions related to cognitive/affective elaboration of pain and enhanced 

activation of regions related to sensory aspects of pain (Gard et al., 2012; Grant et al., 

2011), we hypothesized that mindfulness meditation training would reduce the 
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hyperalgesic impact of fear learning only at a higher-order perceptual level of nociceptive 

processing (Grant & Rainville, 2009). 
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Methods 

 

Participants 

Meditators were recruited from Zen and Boddhicita meditation centers in Montreal. The 

group consisted of 11 experienced meditators with a minimum of 1000 hours of practice 

involving the cultivation of mindfulness (ranging between 1050 and 9500 hours; 7 male, 

4 females, aged between 28 and 68 years). Eight meditators practiced traditional Zen 

meditation, which involves open-monitoring meditation (Lutz, Slagter, Dunne, & 

Davidson, 2008) practiced by concentrating on the breath and monitoring 

thoughts/feelings/sensations without attempting to follow or grasp them. Two other 

meditators practiced meditation from the ‘Boddhicita’ tradition, and one from the 

‘Kadampa’ tradition, which also involve open-monitoring meditation performed by 

concentrating on mantras and the breath, and monitoring thoughts/feelings/sensations in a 

detached manner. The control group (N = 51, 24 males, 27 females, aged between 19 and 

61 years) had no prior meditation training/experience and was recruited from 

advertisements in local University settings (Université de Montréal, McGill and 

Concordia Universities). The control group consisted of 47 participant described in a 

previous report to which we added four participants matching the age of the older 

meditators. Due to participant number inequality between groups, all of the analyses 

described in the present report were also conducted by comparing the group of 

experienced meditators with a subsample of 11 subjects taken from the large control 

group and selected to match the meditators for age, sex and number of years of education. 

The present study used the same methods and experimental protocol developed and 
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described in detail in our recent study. Here, we reproduce the description of the main 

aspects of the experimental and analytical procedures and refer the reader to this previous 

report for additional details. 

 

Potential participants were considered eligible to take part in the study upon meeting the 

following criteria: no pregnancy, no psychological/psychiatric condition (such as major 

depressive disorder and substance abuse), no medication intake (except for oral 

contraceptives), no pain-related diseases (such as chronic pain or neuropathic pain), and 

no regular use of anti-inflammatory or analgesic medications. Potential participants were 

invited to visit the Laboratory of the Neuropsychophysiology of Pain (UdeM, Canada) 

for a screening and familiarization session to assess their pain thresholds and 

physiological responsivity (skin conductance and NFR) and for a second visit to complete 

the experimental paradigm. Twelve participants (nine meditation-naïve controls and three 

experienced meditators) were not retained following the familiarization session for one of 

the following reasons: extremely low/high pain thresholds, excessive use of alcohol, 

drugs, or analgesic medication, discomfort with the nature of the noxious stimuli 

(electrical stimulations) or oversensitivity of skin at the site of electrical stimulation, or 

absent/unstable skin conductance or NFRs to the painful stimuli. Sixty-five participants 

participated in the experimental session, but three meditation-naïve control subjects were 

excluded from data analysis due to poor electrodermal signal or very inconsistent NFRs.   

 

Stimuli 

The conditioned stimuli (cue1 and cue2) consisted of visual stimuli, i.e. colored fractal 
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images (randomly colored and patterned circles). Cues were presented in the center of a 

black screen for a duration of 2 s on a computer monitor with E-Prime2 Professional 

(Psychology Software Tools, Sharpsburg, PA). Transcutaneous electrical stimulation 

were used as unconditioned stimuli (US), and each consisted of a train of ten 1-

millisecond pulses (at 333 Hz). US were administered using an isolated DS7A constant 

current stimulator (Digitimer Ltd, Welwyn Garden City, United Kingdom) and were 

triggered by a train generator (Grass Medical Instruments, Quincy, MA). US 

administration was controlled by the computer delivering the visual CSs.  

The US was administered via two stimulation electrodes placed on the participants’ 

cleaned skin, at the level of the right sural nerve’s retromalleolar path. The thresholding 

procedure for the was assessed as previously described, using the staircase thresholding 

method (Willer, 1977). As in our previous work (Taylor et al., In Press), the stimulus 

intensity corresponding to 135% of the NFR threshold was used as the US intensity 

delivered during the fear conditioning paradigm. Ten stimulations were administered at 

this intensity before the conditioning experiment in order to ensure that the NFR was 

consistently elicited and to account for any habituation effects.  

 

Measures and Dependent Variables 

BIOPAC Systems Inc. and Acqknowledge data acquisition software (version 4.2) were 

used to acquire physiological measures. Pain ratings were recorded using E-Prime2. 
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Pain Ratings. A visual analog scale (VAS) was used to assess the pain level 

elicited by each US. Anchors were set as 0: no pain to 100: extremely painful. Shown on 

the computer screen following each US, this scale consisted of a graduated horizontal bar 

with a moving cursor (using response keys on a computer keyboard).  

 

Electromyographic (EMG) Recording. Two pre-gelled electrodes on exfoliated 

and shaved (if necessary) skin on the right biceps femoris, and a ground electrode on the 

right tibial bone were used to record EMG activity. The EMG signal was sampled at 1000 

Hz, was amplified 1000 times was filtered online (bandpass filtering: 100 -500 Hz). In 

addition, the EMG signal was transformed online to its root mean square (RMS) value 

over bins of 20 consecutive samples. Finally, the integral of the EMG RMS signal was 

computed offline over 90-180ms following shock administration, and consisted in the 

metric used as raw NFR scores.  

 

Electrodermal Recording. Two electrodes placed on the on the left palm of the 

hand were used to record electrodermal activity. The electrodermal signal was amplified 

(5 µS/volt) and filtered online (bandpass filtering: 1-5 Hz). The signal was smoothed 

temporally offline using the mean value over a 500 ms moving window.  

 

Self-report Questionnaires. The State-Trait Anxiety Inventory (STAI) 

(Spielberger et al., 1983) was used to assess trait and state anxiety. The Five Factor 
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Mindfulness Questionnaire was used to assess participants’ dispositional levels of 

mindfulness (Baer et al., 2006). This questionnaire is composed of 39 items and five sub-

scales, which assess different facets of trait mindfulness: ‘Observe’ (tendency to observe 

experiences), ‘Describing’ (aptitude of describing experiences), ‘Acting with awareness’, 

as well as acting with ‘Non-reactivity’ and ‘Non-judgment’ to experiences. The Mindful 

Attention Awareness Scale (MAAS) was also used to assess trait mindfulness 

dispositions, which is a 15-item scale “designed to assess a core characteristic of 

dispositional mindfulness, namely, open or receptive awareness of, and attention to, what 

is taking place in the present.” (Brown & Ryan, 2003). The Pain Catastrophizing Scale 

(PCS) was administered (Sullivan et al., 1995), which is a 13-item questionnaire with 

three different subscales accessing different aspects of attitudes towards pain: pain 

magnification, pain rumination, and helplessness towards pain. The Beck Depression 

Inventory was used to assess depressive symptomatology (Beck et al., 1961), and the 

Behavioral Inhibition/Activation Scale was used to assess punishment sensitivity (Carver 

& White, 1994).  

 

Finally, participants completed the Temperament and Character Inventory (Cloninger, 

1994) which assesses different dimensions of personality from 7 subscales: 

Cooperativeness, Persistence, Reward Dependence, Novelty Seeking, harm avoidance, 

self-transcendence, self-directedness.  
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Testing procedure 

 

Participants provided informed consent for their initial screening session and were 

prepared for electrophysiological recordings. They were then submitted to the NFR 

thresholding procedure and completed the self-report questionnaire battery. 

 

Participants returned a few days following their first visit for a second session to 

complete the experiment. They were first prepared for electrophysiological recordings, 

and were submitted to the procedure for NFR thresholding to determine the intensity of 

electrocutaneous stimulation administered during the task. A block of 10 stimulations 

was administered as a baseline measure of pain processing at the determined intensity, 

and a CS habituation block was administered which consisted of 2 trials of each CS 

shown without any shock delivery.  

 

The fear conditioning paradigm (Figure 1), which was adapted from previous work 

(Schiller et al., 2008), was then administered. Prior to completing the task and as in our 

previous work (Taylor et al., In Press), participants were instructed to observe and pay 

attention to stimuli that would appear on the screen. They were also told that they may or 

may not receive electrical stimulations (following which they would need to provide a 

pain rating). Thus, no explicit instructions with respect to the task structure (cue-shock 

contingencies or reversals) had been given. 
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The fear conditioning task included an acquisition phase (composed of 2 blocks), a 

reversal phase (composed of 2 blocks) in which cue-shock pairings were reversed (the 

cue previously assigned as the CS+ became the CS-, whereas the cue previously assigned 

as the CS- became the CS+) and an extinction phase (1 block) in which CSs were 

presented alone. In reversal and acquisition blocks, one cue co-terminated with the US 

for 50% of trials (CS+), while the other cue was presented alone (CS-). A random time 

interval of 4-8 sec followed each US, to allow the recording of a SCR to the US, 

following which participants provided their pain rating on the VAS (of a variable 

duration period until the participant had finished responding, approximately 10 s). The 9-

12 sec inter-trial intervals were signaled with a white cross centered on a black 

background. 
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Figure 1. Experimental paradigm. A) In the acquisition phase (trials 1- 40), one cue had a 

50% chance of co-terminating with an electric shock (CS+), while the other cue was 

never presented (0% chance) with the shock (CS-). In the reversal phase, cue-shock 

contingencies between the two cues were reversed: the cue previously assigned as the 

CS+ became the CS-, while the cue previously assigned as the CS- became the CS+. In 

the extinction phase, both cues had a 0% chance of being presented with the shock. B) An 

example of each type of trial (CS-, CS+, and CS+paired) is shown: each trial started with 
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the presentation of one of the two cues for a 2s duration. On trials involving shock 

administration (‘CS+paired’ trials), the cue co-terminated with an electric shock (30 ms) 

to the right sural nerve and participants rated their pain after a time interval (randomized 

between 4-8s). The next trial began following a random inter-trial interval (ITI) of 9-12s. 

No pain ratings were assessed for unreinforced trials (CS+unpaired and CS-), and skin 

conductance responses (SCR; with a typical latency between 0.5 and 2s) to visual cues 

were obtained from electrodermal activity recordings. C) The electromyographic (EMG) 

signal was recorded with electrodes at the level of the right biceps femoris (above the 

sural nerve stimulated) in order to assess the nociceptive flexion reflex (NFR), observable 

at a 90-180 ms latency following electrical stimulation onset.  
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Each acquisition and reversal block (about 13 minutes each) was composed of 40 trials: 

20 CS-, 10 CS+ unpaired, 10 CS+ paired. Trials were pseudo-randomly presented across 

participants, but no more than 2 identical consecutive trial types were presented. To 

emphasize cue-shock contingencies at the onset of each block, each block’s first trial 

always consisted of a paired CS+, and the second always consisted of a CS-. The cue 

assigned as the CS+ in the acquisition phase was counter-balanced across subjects. The 

extinction block (approximately 10 minutes) consisted of 40 trials (20 trials per cue) 

presented without any shocks. Lastly, a 10 electrical stimulation block (without any cue) 

was administered in order to ensure that habituation or sensitization of the NFR did not 

occur. All subjects showed clear NFR responses in this post-experimental block of US 

trials (this is not reported further). 

 

Electrodes were removed at the end of experimental procedure. A post-experimental 

interview adapted from previous studies (50, 51) was conducted to evaluate participants’ 

awareness of CS-US pairings, after which they were debriefed and compensated with the 

equivalent of 15$/hour.  

 

Data Analyses 

Sample Description  

To examine characteristics of control and meditator participants, independent-samples t-

tests were conducted on several demographic and personality trait variables: pain 
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catastrophizing subscales, TCI subscales, FFMQ subscales, trait and state anxiety, 

depressive symptoms, and punishment sensitivity (BIS). Pain and NFR threshold 

intensity were also examined using independent samples t-tests. Pain sensitivity and NFR 

activity at baseline (10 baseline trials at 135% of NFR threshold intensity) were also 

compared between groups using TRIAL x GROUP ANOVAs.  

 

Effects of Meditation on Pain and the NFR  

Effects of meditation group were examined on pain responses (pain ratings and NFRs) to 

the US during the fear conditioning task using a TRIAL x GROUP ANOVAs. One 

meditator subject was missing pain ratings for one block of the fear conditioning task; 

thus, his pain ratings were replaced with the group mean value at each trial of the task.   

 

Analyses of Fear Conditioned Skin Conductance Responses 

Using SCRalyze (Bach et al., 2010), the skin conductance response (SCR) was assessed 

to CS- and CS+. Since the painful shocks (US) also produced strong unconditioned SCRs 

overlapping with the response to the CS+ in reinforced trials (i.e. CS+ paired with US), 

the conditioned SCR was assessed using only the unreinforced CS+ trials (50%; see 

procedure below). Trial-by-trial SCR amplitude estimates (henceforth denoted as SCRs 

for the sake of clarity) were determined using a general-linear model-based approach 

using the same analytical software and procedure as in our previous independent report 

(Taylor, Chang, Rainville, & Roy, submitted). Finally, beta values for each unreinforced 
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trial (CS+ unpaired and CS-) were entered into multi-level regressions analyses 

(implemented with custom code written in Matlab, http://wagerlab.colorado.edu/tools), 

by entering CS-type as the first-level predictor, and meditation group as the second-level 

predictor, to test potential group differences in conditioned responses.  

 

Computational Modeling of Fear-Conditioning 

After confirming the global pattern of discriminative learning from the SCR data, 

different computational learning models were fitted to individual trial-by-trial SCR data 

to the unreinforced cues (CS- and CS+ unpaired). This allowed estimating the fear 

learning parameters to the CS+ paired trials and, in the second part of the analysis, to 

assess how these parameters predicted ongoing fluctuations in the shock-evoked pain 

responses. The following models were tested: Rescorla-Wagner (RW model; in which 

learning is driven as a function of prediction errors), a RW/Pearce-Hall hybrid model 

(RW/PH hybrid; learning is driven by prediction errors and associability dynamically 

modulates the learning rate trial-by-trial). Last, an inter-cue dependent RW/PH hybrid 

model was tested. This model is a variant of the RW/PH hybrid model in which the 

expected shock probability and associability are updated both for the cue that was 

presented at trial t, as well as for the cue that was not presented on this trial. The RW/PH 

hybrid inter-cue dependent model, which was the best-fitted model to the data as in our 

previous report (Taylor et al., In Press), is described in the equations below (equations (1-

6)). A thorough description of model equations used for the RW and RW/PH models is 

provided in our previous report.  
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Model Description. Expected shock probabilities (‘V’ in equations 1-6) on trial ‘t’ 

were updated from the prediction error (δ) computed on the preceding trial. The 

prediction error, or the difference between the outcome experienced (λ) on a given trial 

and the outcome expected from prior trials, was modulated by a constant term (learning 

rate ‘α’). Administration of shock was coded as 1, whereas the absence of US was coded 

as 0. An associability term (a) dynamically modulated learning rates. The associability 

term, also specific to each cue, was updated as a function of the absolute value of the 

prediction error, which refers to the surprising nature of the outcome (unexpected US or 

unexpected US omissions). The associability term was also weighted by a constant term 

(γ).  

Furthermore, the RW/PH hybrid model applied took into account the inter-cue 

dependency. Because our fear conditioning paradigm involved 2 distinct CSs, i.e. the 

CS+ paired with the US while the other cue (CS-) predicted the absence of pain in a 

given learning phase, fear learning parameters may not have been necessarily updated 

independently for each CS. For example, when presented with a cue paired with a US 

(reinforced CS+), an implicit inference could be made that the second cue was not paired 

with the US. As such, expectations regarding the unpresented cue could be updated at 

each trial as a function of a prediction error computed using the ‘opposite’ outcome as 

that obtained with the presented cue. Thus, the RW/PH hybrid inter-cue dependent model 

was a variant of the RW/PH hybrid model using specific parameters with respect to the 

cue presented at a given trial (c_pres) as well as to the cue that was not presented on this 

trial (c_unpres). The model is formally described with the following equations: 
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Vc_prest+1 = Vc_prest + ac_prest * αc_pres * δc_prest __________________________(Equation 1) 

δc_prest = λ t   – Vc_prest____________________________________________________________(Equation 2) 

ac_pres t+1  = γc_pres * |  δc_prest |  + (1- γc_pres) * ac_prest__________________(Equation 3) 

The cue that had not been presented (c_unpres) on a given trial was attributed the 

opposite outcome as to the cue that was presented: |  1- λ t  |  .     

Vc_unprest+1 = Vc_unprest + ac_prest * αc_unpres * δc_unprest_____________(Equation 4) 

δc_unprest = |  1- λ t  |    – Vc_unprest_______________________________________________(Equation 5) 

ac_unprest+1 = γc_unpres*|δc_unprest|+(1- γc_unpres)*ac_unprest _________(Equation 6) 

As previously recommended (Daw, 2011), learning parameters (expected shock 

probabilities and associability values) at each trial for each subject were computed using 

fixed parameters, i.e. the model’s free parameters averaged across subjects, in order to 

minimize noise levels from subject-level free parameter estimation: αc_pres = 0.15, 

αc_unpres = 0.34, γc_pres = 0.17, γc_unpres = 0.35, V0 =  0.31, a0 =  0.56. 

 

Predicting Pain Responses from Expected shock probability and Associability 

 

To predict pain responses from fear learning parameters, EShock and associability 

values for each CS+ paired trial were extracted and used as first-level predictors in multi-

level mediation analyses (implemented with custom code written in Matlab, 
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http://wagerlab.colorado.edu/tools). Meditation group was entered as a second-level 

moderator variable for each path of the mediation model. Furthermore, to account for the 

significant negative relationship between associability and EShock (Beta = -1.10, SE = 

0.02, t = -63.36, p = .0005), each predictor variable was regressed onto the other in order 

to use the residuals (i.e. EShock controlling for associability and vice-versa) as predictors 

in the two multi-level models tested. Finally, since pain modulation is often presumed to 

reflect an involvement (at least partly) of cerebro-spinal mechanisms influencing spinal 

nociception (Tracey & Mantyh, 2007), we tested the hypothesis that pain modulation by 

learning parameters (EShock or associability) was mediated by changes in the NFR. Pain 

ratings and raw NFR scores were normalized (Rhudy & France, 2007) across all trials of 

the conditioning task for each participant to conduct these analyses. Thus, two mediation 

models were tested: 1- including EShock as the first-level predictor, (normalized) pain 

ratings as the dependent variable, (normalized) NFRs as the mediator, and impact of 

meditation group as the second-level moderator, and 2- idem as 1) but using Associability 

as the first-level predictor. In a case in which a 2nd level group difference was marginally 

significant on the direct effects of Associability on pain ratings, Bayesian analyses were 

conducted to obtain the Bayes factor representing the odds for and against the null 

hypothesis (Gallistel, 2009). In addition, follow-up simple multi-level regression analysis 

on the direct effects of Associability on pain ratings was also conducted using the 

residuals of pain ratings after having regressed out NFRs as the dependent variable, 

Associability as the first-level predictor, and meditation group as the 2nd level moderator.  
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Results 

 

The group comparisons below are presented between experienced meditators and the 

large control cohort of participants. Due to size inequality of groups and a difference in 

age (t(57) = -4.53, p < 0.001) between the large control cohort and experienced meditators, 

all of the analyses were validated and conducted additionally in comparison to the 

matched control subsample. All results are reported for the large control group and 

statistical conclusions were corroborated with the matched subsample. The only instance 

in which this was not the case is with respect to the effects of meditation experience on 

pain modulation by fear learning, described and discussed below. 

 

Sample Description and Group differences in Personality Traits 

Table 1 illustrates demographic and questionnaire variables for the experienced 

meditators and the control groups. The group of meditators scored higher on Describing 

inner experiences, acting with Non-reactivity (ps<0.05), and on the TCI scale assessing 

Self-Transcendence (p<0.0001).  
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Table1.  
Characteristics of the Experienced Meditators, Control Group and Age-Matched Control 
Subsample 
                        Group 

  Meditators 
(n=11) 

Controls 
(n=51) 

Age-Matched 
Control 

Subsample 
(n=11) 

Sex 7M; 4F 24M; 27F 7M; 4F 
Age  45 (13) 28 (11) 41 (16) 
Pain threshold intensity (mA)  4.19 (2.3) 3.86 (2.8) 3.67 (2.2) 
NFR threshold intensity (mA)  8.6 (2.8) 7.7 (2.7) 7.9 (2.2) 
135% NFR threshold (mA) 11.4 (3.6) 10.7 (3.8) 10.9 (2.6) 
Baseline pain ratings at 135% of 
NFR threshold 18.7 (9.6) 36.7 (19.8)** 37.5 (15.4)** 

Baseline NFR (EMG RMS integral)  0.002 (0.002) 0.003 (0.004) 0.002 (0.002) 
Hours of meditation experience  4056 (2574) NA NA 
Magnification of Pain (PCS) 1.9 (1.6) 4 (2.6)* 2.6 (2.8) 
Helplessness towards Pain (PCS) 4.9 (4.4) 7 (5.0) 3.5 (3.1) 
Rumination About Pain (PCS) 5.2 (3.0) 7.8 (3.9)* 5.9 (3.4) 
Describing Experience (FFMQ) 31.8 (4.9) 28.1 (5.9)* 26.5 (6.8)* 
Observing Experience (FFMQ) 31.4 (3.1) 26.6 (6.3)* 26.9 (7.5) 
Acting with Awareness (FFMQ) 27 (3.1) 26.1 (4.6) 27.4 (5.1) 
Non-judgmental  (FFMQ) 29.1 (4.5) 28.6 (5.8) 29.5 (4.5) 
Non-reactivity (FFMQ) 25.2 (2.7) 22.4 (3.9)* 22.5 (3.5)* 
Present Moment Awareness (MAAS) 4.4 (0.4) 4.2 (0.6) 4.2 (0.8) 
Self-Transcendence (TCI) 95.2 (10.8) 73.5 (16.6)*** 70.9 (14.1)*** 
Self-Directedness (TCI) 110.1 (14.8) 106.6 (16.9) 113.1 (16.4) 
Harm Avoidance (TCI) 79.1 (13.5) 83.6 (17.8) 78.1 (11.7) 
Cooperativeness (TCI) 146.1 (14.7) 134.9 (15.9)* 138.7 (10.8) 
Persistence (TCI) 130.7 (17.8) 124.2 (20.9) 129.1 (24.1) 
Novelty Seeking (TCI) 98.8 (12.29) 105.5 (13.9) 95.3 (11.9) 
Reward Dependence (TCI) 102.6 (15.2) 100.1 (14.5) 94.3 (13.3) 
State anxiety (STAI) 29.9 (10.4) 35.4 (7.7) 26 (4.8) 
Trait Anxiety (STAI) 34.9 (4.6) 35.4 (7.7) 31.5 (5.6) 
Depressive Symptoms (BDI) 1.8 (2.0) 5.2 (5.5)* 3.1 (3.7) 
Punishment Sensitivity (BIS) 17.7 (2.9) 19.1 (3.7) 18.5 (4.4) 

Significant Group effect (T-Test) compared to Experienced Meditators: *p<0.05, **p<0.01, 
***p<0.0001. Means are shown with standard deviations in parentheses, except for the variable 
sex for which number of males (M) and females (F) are presented.   
NFR: nociceptive flexion reflex. EMG RMS: root mean square of the electromyographic 
signal. PCS: pain catastrophizing scale, FFMQ: five factor mindfulness questionnaire. 
MAAS: mindful awareness attention scale. TCI: temperament and character inventory. 
STAI: state-trait anxiety inventory. BDI: beck depression inventory. BIS: behavioral 
inhibition scale.   
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Effects of Meditation Experience on Pain-Evoked Responses 

Effects of Meditation Experience on Baseline Pain Assessments and NFR 

Threshold 

Independent samples t-tests indicated that meditators did not exhibit any difference 

compared to their control counterparts with respect to the electrical stimulation intensity 

corresponding to the NFR threshold (t(60)=-0.98, p=.33) or pain threshold (t(60)=-0.20, 

p=.84). Meditators and controls also received similar stimulus intensity levels (135% of 

the NFR threshold) during the fear conditioning task (t(60)=-0.425, p=.675). One-way 

ANOVAs revealed that baseline NFR responses to the US assessed before fear 

conditioning were similar between meditators and controls (F(60)=0.90, p=.35). However, 

for comparable US intensities and NFR responses, meditators reported lower levels of 

perceived pain at baseline (F(60)=10.82, p=.002; see Means and standard deviations in 

Table 1).   

 

Effects of Meditation Experience on Pain during Fear Conditioning 

First, there were no significant group differences in the free individual parameters of the 

learning model (all p’s<0.05: αc_pres = 0.20 (SD = 0.34), αc_unpres = 0.23 (SD=0.36), 

γc_pres = 0.21 (SD=0.33), γc_unpres = 0.39 (SD = 0.42), V0 = 0.38 (SD=0.38), a0 = 0.50 

(SD=0.29) for controls; αc_pres = 0.30 (SD = 0.39), αc_unpres = 0.35 (SD=0.41), 

γc_pres = 0.28 (SD=0.42), γc_unpres = 0.36 (SD = 0.43), V0 = 0.39 (SD=0.38), a0 =0.50 

(SD=0.31) for meditators). This was replicated when comparing the group of meditators 

to the age-matched control subsample.   
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Follow-up analyses to conventional null hypothesis testing using Bayesian statistics to 

assess odds for and against the null hypothesis revealed enhanced odds for the null 

hypothesis relative to against the null hypothesis for all learning parameters. Bayes 

factors indicating the likelihood that results were observed under the null hypothesis 

ranged from 5.75:1 to 14.6:1, representing substantial to strong odds for the null 

hypothesis (Jeffreys, 1961). This pattern of results was confirmed when comparing the 

group of meditators to the age-matched controls. These results suggest that fear-learning 

processes were not affected by meditation experience, and indicates that meditation 

experience did not influence basic associative learning mechanisms. 

 

Pain outcome measures (pain ratings, NFR) to unconditioned stimuli through the entire 

fear learning paradigm were then compared between groups to determine the impact of 

meditation experience on pain sensitivity (Figure 2A-B). A mixed-measures TRIAL (40 

US trials) X GROUP (Meditators, Controls) ANOVA, performed on each dependent 

variable, revealed a significant GROUP effect on pain ratings (F(1, 60) =6.31, p=.015, 

partial eta squared = 0.10) such that experienced meditators rated the US as less painful 

compared to their control counterparts. The power estimated post-hoc for the group 

difference in pain ratings was of 0.70. In contrast, meditation experience (GROUP) had 

no significant effect on the NFRs (F(1, 60) =0.79, p=.377). This replicates effects reported 

above in the baseline measures before fear-conditioning.   
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Figure 2. Mean (SEM) pain responses (A) and NFRs by group for each CS+paired trial 

during the fear conditioning task. (* p<0.05).  
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In sum, our data indicate that meditation reduced the perceived pain induced by the US 

before and during fear conditioning, but had no significant impact on the NFR. In the 

following sections, we tested the effect of meditation on fear-learning processes and on 

the trial-by-trial modulation of pain and the NFR by the learning parameters Eshock and 

associability. 

 

Effects of Meditation Experience on Fear conditioning of the SCR.  

The results of multi-level regression analyses revealed significant increases in 

SCRs to the CS+ compared to the CS- (Beta = 0.22, SE = 0.06, p = 0.0004; see Figure 2). 

There was no significant group differences in discriminant SCRs (Beta = -0.13, SE = 

0.10, p = 0.13, Figure 3). These results indicate enhanced SCRs elicited by the CS+ (M = 

0.296, SE = 0.096) than the CS- (M = 0.140, SE = 0.054) across both groups of 

participants. These results indicate successful fear learning acquisition of fear 

conditioned responses across both groups of participants, and that meditation experience 

did not have a statistically significant impact on fear learning.  
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Figure 3. Mean (SEM) SCRs by CStype (CS+ and CS-) for meditators and control 

participants. Multi-level analyses revealed that no significant group differences were 

found in discriminatory SCRs, but that there was an overall effect of stimulus type on 

SCRs (CS+  >  CS-) (p<0.05).  

SCR: skin conductance response. CS: conditioned stimulus.  
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Effects of Meditation Experience on Pain Modulation by Learning Parameters  

The effects of both fear-learning parameters on pain and the NFR were examined at the 

trial level (first level) and then at the group level (second level) to assess the moderating 

effect of meditation on pain/NFR modulation by fear.  

 

At the first level, as reported in our recent study (Taylor et al., submitted), expected 

shock probability significantly predicted pain ratings (i) directly, i.e. after taking into 

account the mediating effects of NFRs (path c’: Beta = 0.79, SE = 0.25, t = 3.18, p = 

0.002) and (ii) indirectly via mediation effects of the NFR (path a x b: Beta = 0.09, SE = 

0.03, t = 3.07, p = 0.003). The same pattern of results was found in the model of 

Associability (path c’: Beta = 0.93, SE = 0.35, t = 2.63, p = 0.011; path a x b: Beta = 0.19, 

SE = 0.06, t = 3.02, p =0.004). In models conducted with the age-matched control 

subsample, first-level indirect effects of EShock on pain ratings were replicated (path a x 

b: Beta = 0.13, SE = 0.06, t = -2.19, p = 0.042) but not first-level direct effects of EShock 

on pain ratings (path c’: Beta = 0.33, SE = 0.48, t = 0.69, p = 0.50). Similarly, first-level 

direct (path c’: Beta = -0.06, SE = 0.54, t = -0.12, p = 0.91) and indirect (path a x b: Beta 

= 0.15, SE = 0.13, t = 1.17, p = 0.26) effects of Associability on pain ratings did not reach 

statistical significance using the age-matched control subsample.  

 

At the second-level, in the model of Expected shock probability, the significant group 

differences in the total effect (i.e. direct and indirect) of EShock on pain ratings, as well 
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in the path of the relationship between EShock and NFRs, were significant in the analysis 

performed with the large control group but did not reach significance using the matched 

control subsample. Hence, these differences are displayed and explained in Figure 4 but 

are not discussed further. However, meditators showed a reduction in the direct effect of 

EShock on pain ratings after accounting for the mediating effect of the NFR (moderator 

effect on path c’: Beta = -1.63, SE = 0.65, t = -2.51, p = 0.015, partial eta squared = 0.08).  

 

In the model of Associability, meditators showed significant reduction in the direct effect 

of associability on pain ratings (moderator effect on path c’: Beta = -2.36, SE = 0.93, t = -

2.54, p = 0.014, partial eta squared = 0.09, estimated power (post-hoc) = 0.65). This 

effect was replicated yet fell slightly short of statistical significance in the age-matched 

control subsample (moderator effect on path c’: Beta = -2.20, SE = 1.09, t = -2.02, p = 

0.057). Nonetheless, the Bayes Factor obtained for this group difference was of 3.56:1 

against the null hypothesis, representing substantial odds against the null hypothesis of no 

difference between groups (Jeffreys, 1961). Follow-up simple multi-level regression 

analyses on the direct effect of Eshock on pain ratings indicated that meditators showed a 

significant reduction in the direct effect of associability on pain ratings (2nd level 

moderator effect: Beta = -2.11, SE = 1.02, t = -2.01, p = 0.047). Table 2 shows 2nd level 

moderator effects of meditation group on each path of the mediation models.  
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Figure 4. Multi-level mediation models of the effects of (A) expected probability of 

shock (expected p(shock)) and (B) associability on pain ratings. Both models confirmed 

an overall direct effect on pain (path c’) and an indirect effect (mediation) through 

changes in spinal nociception (path ab). Coefficients are shown for each path and 

mediation effects with standard errors in parentheses. The negative moderating effects of 

meditation group are shown with blue lines. Bar graphs illustrate the moderating effect of 

the group on Beta values for the direct effects on the NFR and on pain. Meditators 

showed significant decreases in the direct effects of both (A) expected p(shock) and (B) 

associability on pain ratings.  

**p<0.001, *p<0.05, (*) p<0.05 not confirmed with an age-matched control subsample. 

NFRs: nociceptive flexion reflex. 
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Table 2     
Mediation Model of Expected Shock Probabilities as a predictor of Pain 
Ratings with NFRs as a Mediator and Meditation Group 
as the 2nd level  Moderator 
       Mediation Model of Expected Shock Probabilities 
  Beta SE t p 
2nd level Effects of Meditation Group on each path 
path a -1.40 0.53 -2.63 (*)0.011 
path b -0.01 0.07 -0.18 0.862 
path c -1.50 0.64 -2.36 (*)0.022 
path c' -1.63 0.65 -2.51 *0.015 
path ab 0.08 0.08 0.99 0.328 
       Mediation Model of Associability  
path a -0.21 0.81 -0.26 0.795 
path b -0.04 0.07 -0.64 0.528 
path c -2.01 0.89 -2.27 (*)0.027 
path c' -2.36 0.93 -2.54 *0.014 
path ab 0.09 0.16 0.59 0.557 
**p<0.001, p<0.05, (*) p<0.05 not confirmed with an age-matched 
control subsample 
NFR: nociceptive flexion reflex   
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Figure 5 shows mean fear learning parameters to CS+ paired trials averaged across both 

groups of subjects (A). As can be seen in an exemplar subject from each group of 

participants, fear learning parameters (weighted by regression coefficients) do not predict 

the pain rating trajectory during learning for the experienced meditator (B) but accurately 

depict the pain rating time-course of the control participant (C).   
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Figure 5. Relationship between expected shock probabilities (expected p(shock)), 

associability, and pain ratings for reinforced (CS+paired) trials in a meditator and a 

control participant. A-B) Average associability and expected p(shock)) estimates in 

experienced meditators and controls respectively. C) Relationship between pain ratings 

and associability/expected p(shock)) estimates for a control participants (C), and a 

meditator subject D). Trial-by-trial associability and expected p(shock) estimates were 

weighted by their regression coefficients in order to illustrate the multi-level regressions.  

NFR: nociceptive flexion reflex. CS: conditioned stimulus.  

  

A	 B	

C	 D	
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Discussion 

The results of the present study can be summarized as follow. First, an overall 

hypoalgesia (decreased pain ratings) to the noxious US was observed both before and 

during fear conditioning in meditators. Second, meditation experience did not dampen the 

discriminant anticipatory responses (SCR), indicating normal fear-learning processes. 

Rather, our data show that meditation experience reduced the hyperalgesic effects of 

anticipatory processes on pain. These effects are further detailed in the following 

paragraphs. 

 

First, as hypothesized, the overall hypoalgesia we observed during the fear conditioning 

task are directly in line with previous reports that meditation experience reduces pain 

perception and sensitivity (Gard et al., 2012; Grant & Rainville, 2009; Perlman et al., 

2010). The fact that we did not observe group differences in nocifensive spinal reflexes to 

nociceptive stimuli demonstrates that the general hypoalgesic effects of meditation do not 

operate by activating inhibitory descending control of pain. Rather, our results support 

the notion that the hypoalgesic effects of meditation selectively target cognitive/affective 

elaboration. This is consistent with neuroimaging studies on the pain-modulating effects 

of meditation showing reduced activity in brain regions associated with the mental 

elaboration/evaluation of pain but not in regions receiving nociceptive signals directly 

from the spino-thalamo-cortical pathways (Gard et al., 2012; Grant et al., 2011). These 

results are directly in line with premises taught in meditation: aversive experiences are 

welcomed and are not suppressed or changed, but they are not further elaborated upon 
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(Bodhi, 2005).  

 

Second, the fact that extensive mindfulness experience did not yield any detectable 

differences with respect to the production of anticipatory SCRs to the conditioned cues is 

consistent with previous results (Holzel et al., 2016). Specifically, Holzel and 

collaborators (2016) showed that short-term meditation experience, i.e. 8-week 

mindfulness-based stress-reduction (MBSR) program, did not affect fear conditioned 

SCRs assessed pre- and post-training (Holzel et al., 2016). The hypoalgesic impact of 

meditation experience we observed on pain perception did not lead to reduced 

anticipatory responses. Thus, the meditation-related reduced neural activity during the 

anticipation of pain observed by others (Brown & Jones, 2010; Lutz et al., 2013) does not 

reflect an absence of anticipatory processes at a psychophysiological level. Rather, our 

data show that previous findings of hypoalgesic effects of meditation via reduced 

neuronal anticipation (Brown & Jones, 2010; Lutz et al., 2013) may reflect a reduced 

effect of anticipation on pain rather than a reduced ability to learn about pain and to 

predict its occurrence. Our findings further show that individuals with extensive 

meditation experience exhibit preserved basic associative learning mechanisms. In other 

words, mindfulness training may attenuate the aversive quality of unconditioned stimuli, 

but does not interfere with the ‘teaching function’ provided by noxious events in terms of 

forming predictions about the occurrence of impending harm, or allocating attention to 

critical moments informative of CS-US contingencies (LePelley & McLaren, 2004). 

These results show that mindfulness meditation does not achieve its attenuating effects on 

pain by abolishing fear conditioned anticipatory behaviors altogether. This finding is also 
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in line with the premise that mindfulness promotes the acceptance of all (aversive, neutral 

or positive emotional) feelings/sensations as opposed to the suppression of low-level 

aversive emotional responses (Taylor et al., 2011).  

 

Finally, our results indicate that the reduction of anticipation-mediated hyperalgesia by 

mindfulness meditation operates by disrupting the influence of associative learning on 

pain responses mainly at a supraspinal level of processing. Our results suggest that 

mindfulness meditation experience does not abolish the critical ability to learn from 

associative cues in the environment to predict impending harm or to allocate more 

attention to associative cues when uncertainty is high. Specifically, meditation experience 

reduced expectations about the probability of occurrence of impending harm, on pain 

perception directly. The attenuation of the hyperalgesic influence of expectations at 

higher-order levels of pain processing possibly reflects a detached or non-reactive stance 

towards the probability of the upcoming aversive event. 

  

With respect to associability, meditation experience also reduced the effects of this 

parameter on higher order pain perception directly. Associability is encoded in the 

amygdala (Li, Schiller, et al., 2011) and is thought to reflect attention allocation, 

vigilance to cues informative of CS-US contingencies at moments critical to learning (i.e. 

following large prediction errors) (LePelley & McLaren, 2004). The hyperalgesic effects 

of associability on pain may provide an important ‘teaching function’ in the sense that 

pain perception is enhanced in trials critical to the association between environmental 
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predictive cues and sources of harm: the information may be better integrated if the US is 

more saliently/aversively experienced. Thus, meditation experience may preserve from 

such pain enhancement only at the beginning of a learning phase, when 

associability/uncertainty is highest.  

 

In control participants with no prior mindfulness meditation experience, the pain 

modulating effects we observed in our previous report (Taylor et al., In Press) of learned 

expectations and uncertainty (associability) during fear conditioning may explain the 

central maintenance of pain and pathological manifestations of repeated exposure to 

noxious stimuli. The results of the present study suggest that the extensive practice of 

mindfulness meditation may efficiently prevent repeated pain exposure from escalating 

into chronic and centrally maintained hypersensitivity to pain. Our findings provide 

further support for the integration of mindfulness meditation in clinical interventions 

targeted towards the treatment/management of chronic pain (Kabat-Zinn et al., 1985; 

Morone et al., 2008).  

 

Nonetheless, the present study is not without its limitations: the cross-sectional nature of 

the design does not allow us to draw causal inferences on the effects of the practice of 

meditation per se on pain or fear-conditioning effects on pain. Thus, future longitudinal 

studies should be conducted to examine the effects of meditation experience, pre and post 

a meditation training intervention, on pain and pain modulation by classical conditioning. 

In addition, the sample size for experienced meditators was limited. Nonetheless, the lack 
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of power induced by the low sample size would not have been problematic in detecting 

significant differences in the absence of real effects, but would have rather impaired the 

ability to detect significant group differences. Therefore, in cases in which non-

significant differences were obtained, follow-up Bayesian analyses to conventional null-

hypothesis testing were conducted, and determined enhanced odds in support of the null 

hypothesis of no group differences. Nevertheless, further studies examining the effects of 

fear conditioning on pain should be conducted in larger participant groups.   

 

In conclusion, our results show that meditation experience 1- achieves its hypoalgesic 

effects by selectively targeting higher-order perceptual mechanisms rather than by 

activating descending inhibitory controls, 2 – does not alter the anticipatory learning 

process but rather 3 – reduces the interaction between anticipatory processes and pain 

perception at higher-order levels of processing. Importantly, this is achieved without 

compromising the adaptive value of pain signal in aversive leaning. Our results may 

contribute to the validation of mindfulness-based interventions for the treatment of 

disorders related to affect, stress and pain, particularly with respect to the central 

maintenance of pain resulting from repeated exposure to noxious stimuli.   
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Abstract 

Stress involves increased activity of the hypothalamic-pituitary-adrenal (HPA) axis and 

has been associated with decreased pain processing, yet the literature on this topic in 

humans is scarce. For instance, HPA activity, assessed using salivary cortisol, may be 

associated with pain regulation at higher-order perceptual levels, with the recruitment of 

descending control systems affecting spinal nociception, or a combination of both 

processes. In addition, the stress system may affect pain indirectly by changing the gain 

of distinct pain modulatory mechanisms such as those involved in fear learning. This 

study examined the moderating impact of spontaneous HPA-axis activity on pain and 

spinal nociceptive flexion reflexes (NFR) during Pavlovian fear learning. The Pavlovian 

fear learning task included a visual cue (CS+) paired with a noxious electrical stimulation 

(unconditioned stimulus; US) on 50% of trials (CS50), a CS+ paired with the US on 

100% of trials (CS100), and one cue not paired with the US (CS-). Skin conductance 

responses to unreinforced cues were entered into a computational model of reinforcement 

learning, allowing the estimation of expected US probabilities and cue associability at 

each trial. These fear learning parameters were then entered in multi-level regression 

analyses with spontaneous HPA activity (assessed using salivary cortisol levels) as a 

between-subjects moderator of the relationship between fear parameters and pain. Results 

showed overall lower pain reports during Pavlovian learning in individuals with higher 

cortisol levels. However, pain also increased with higher expected US probability during 

learning, independent from cortisol levels. In contrast, the NFR decreased with higher US 

expectations but this modulatory effect was significantly reduced or reversed (i.e. 

facilitation) in participants with higher cortisol levels. The results of this study show 
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distinct effects of cortisol on higher vs lower order pain processes: whereas cortisol is 

related to a general higher order hypoalgesia, its effects on descending inhibitory controls 

appear to operate via fear learning mechanisms, more precisely, learned expectations of 

probabilities of receiving pain. These results demonstrate that HPA axis activity promotes 

nocifensive responses in the context of inescapable and repeated pain exposure, and may 

have implications for the vulnerability to developing pain/stress-related pathologies.   

 

 

Keywords: cortisol, pain, RIII-reflex, fear conditioning, computational modeling, 

classical conditioning, learning, expectation, uncertainty, reinforcement learning models 
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Introduction 

 

In the face of perceived threat, the hypothalamic-pituitary-adrenal (HPA) axis is 

activated, triggering a cascade of endocrine responses at the end of which cortisol is 

secreted by the adrenal cortex (LeDoux & Phelps, 2008). It has also recently been shown 

that activity in the HPA axis, as indexed by salivary levels of the stress hormone cortisol, 

has pain modulatory effects (Vachon-Presseau et al., 2013). Given the partly shared 

neuroanatomical circuits, behavioral and physiological processes between the stress, fear, 

and pain systems (LeDoux & Phelps, 2008; Lupien & McEwen, 1997; Price, 2000), it is 

possible that HPA axis activation, as indexed by salivary cortisol change during fear 

conditioning, moderates certain relationships involved in the pain modulating effects of 

fear conditioning at different levels of nociceptive signal processing.  

 

Following the premise of stress-induced analgesia (Fanselow, 1986), elevated 

endogenous salivary cortisol was related to reduced acute pain perception in healthy 

individuals and chronic pain patients (Vachon-Presseau et al., 2013). However, the level 

of nociceptive processing at which HPA-axis activity modulates pain could not be 

determined in the latter study. It is possible that attenuated HPA-axis activity modulates 

pain by uniquely targeting higher-order centers affecting pain perception, by recruiting 

descending pain controls, or a combination of both mechanisms. This question, however, 

remains to be tested, and is physiologically relevant to determining the role of individual 

differences in HPA axis activity on the relationship between fear and pain.  
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In addition, it is possible that HPA axis activity interacts with pain processing systems 

directly, or indirectly by targeting separate systems involved in fear learning and affect 

regulation. Indeed, the amygdala, hippocampus, and prefrontal cortex are rich in 

glucocorticoid receptors (Lupien & McEwen, 1997). Given the partly shared 

neurocircuitry between stress, fear learning and pain systems (Lupien & McEwen, 1997; 

Price, 2000; Quirk, Garcia, & Gonzalez-Lima, 2006), the stress response may modulate 

pain by moderating the impact that fear learning mechanisms have on pain. In our recent 

study (Taylor et al., In Press), we applied computational modeling of fear learning to 

show that uncertainty and a higher expected probability of receiving a painful US 

increase pain responses. However, the facilitation of spinal nociceptive responses by 

latent variables governing fear learning responses was enhanced in participants reporting 

higher levels of harm vigilance and lower levels of emotional detachment. This indicates 

that the modulation of pain by aversive learning processes depends on individual factors 

reflecting affective regulation. Therefore, it is possible that inter-individual differences in 

HPA-axis activity operate to alter pain by affecting the pain modulating influence of 

aversive learning mechanisms in a similar fashion.  

 

This psychophysiological study aimed to determine whether HPA activity in general and 

cortisol in particular are related to pain modulation at a higher-order perceptual level of 

pain processing, or whether they also recruit descending pain controls affecting spinal 

nociceptive responses. This study also aimed to determine the relation between cortisol 

levels and the effects of fear learning mechanisms on pain. To address these issues, we 

sampled salivary cortisol levels while assessing the effects of Pavlovian fear conditioning 
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on pain responses (subjective ratings and spinal nociceptive flexion reflex ‘NFR’, 

(Willer, 1977)) to noxious electrical stimulations (unconditioned stimulus ‘US’). 

Expectations and uncertainty (associability) were estimated by fitting a computational 

reinforcement Rescorla-Wagner/Pearce-Hall learning model to anticipatory SCRs. These 

fear-learning parameters were then used to predict pain outcomes at each US using multi-

level regression analyses. Finally, the impact of inter-individual differences in HPA axis 

activity (assessed using salivary cortisol levels) was examined on the relationship 

between fear learning parameters and pain. First, we expected to observe an overall 

cortisol increase during our fear conditioning protocol, as previously observed in an 

experiment administering painful stimuli (Vachon-Presseau et al., 2013). Finally, in 

addition to test the hypoalgesia previously associated with higher cortisol levels (Vachon-

Presseau et al., 2013), we expected that pain modulation by fear learning would depend 

on cortisol levels.  
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Methods 

 

Participants 

 

The sample consisted of a group of 24 healthy adult participants between the age of 18 

and 35 years (12 females, 12 males) recruited from poster advertisements in local 

University settings (Université de Montréal, Concordia, McGill). All experimental 

procedures conformed to the standards set by the latest revision of the Declaration of 

Helsinki and were approved by the Research Ethics Board of our institution (“Comité 

mixte d’éthique de la recherche du Regroupement Neuroimagerie Québec; CMER-RNQ 

#11-12-014). All participants gave written informed consent, acknowledging their right to 

withdraw from the experiment without prejudice, and received a monetary compensation 

equivalent to about 15$/hour for their transportation expenses, time, and commitment. 

 

Potential participants were considered eligible to take part in the study upon meeting the 

following criteria: no pregnancy, no psychological/psychiatric condition (such as major 

depressive disorder and substance abuse), no medication intake (including oral 

contraceptives), no pain-related diseases (such as chronic pain or neuropathic pain), and 

no regular use of anti-inflammatory or analgesic medications. Potential participants were 

invited to visit the Laboratory of the Neuropsychophysiology of Pain (Centre de 

recherche de l‘Institut universitaire de gériatrie de Montréal, Canada) for a screening and 

familiarization session involving the assessment of their pain thresholds and 

physiological responses (skin conductance and NFR). Selected participants were invited 
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to a second visit on a separate day to complete the experimental paradigm. Among the 29 

volunteers invited to the screening session, 5 participants were not retained for one of the 

following reasons: extreme (high or low) pain thresholds (n=1), use of medication not 

disclosed at the time of recruitment (n=1), discomfort with the electrical stimulations 

(n=1), or absent/unstable skin conductance or NFRs to the painful stimuli (n=3). Twenty-

four participants completed the experimental session, but one subject was excluded from 

data analysis due to poor electrodermal signal, yielding a remaining total of 23 

participants included in the analyses (13 females, 10 males).  

Testing procedure  

In the screening session, participants provided informed consent and were asked a series 

of questions concerning demographic information. The first salivary cortisol sample was 

administered (S1) upon their arrival at the laboratory. They were then prepared for 

electrophysiological recordings after which they were submitted to the NFR thresholding 

procedure. Finally, they were given a battery of self-report questionnaires to fill out to 

examine potential relationships between cortisol levels, and negative affect or mindful 

trait dispositions. 

Participants were invited to return for a second visit on a separate day within the 

following week to complete the experiment. The experimental session began after 12PM 

to minimize diurnal variations in endogenous cortisol levels. The first salivary cortisol 

(S1) sampled was collected upon participants’ arrival. After being prepared for 

electrophysiological recordings, the procedure for NFR thresholding was conducted to 

determine the intensity of electrocutaneous stimulation to be administered during the task 
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(i.e. 135% of NFR threshold; see below). The second salivary sample (S2) was then 

collected. Then, a ‘baseline’ block of 10 electrical stimulations (US alone) was 

administered at the individually determined intensity, with an inter-stimulus interval 

jittered between 6 and 10 sec. Immediately after this baseline block, the fear conditioning 

task (Figure 1) was administered. The third salivary cortisol sample (S3) was collected at 

the end of the fear conditioning task. A final block of 10 electrical stimulations without 

any CS was then administered in order to account for possible non-specific changes in the 

NFR as a function of time. At the end of the experiment, electrodes were removed and 

participants completed a post-experimental interview assessing their awareness of CS-US 

pairings adapted from previous studies (Bechara et al., 1995; LaBar et al., 1995). They 

were then debriefed and the last salivary cortisol sample (S4) was collected just before 

leaving the laboratory.  

 

Fear Conditioning Paradigm 

Prior to completing the task, participants were instructed that they would see images 

appear on the screen, following which they may or may not receive a painful shock. They 

were also told that they may notice a relationship between a cue and the presentation of a 

shock, and that this relationship should remain the same across trials but may or may not 

change throughout the task. The fear conditioning paradigm began with CS habituation, 

i.e. the presentation of 3 trials of each CS (without US). The task then followed with 

phases of acquisition, reversal1, reversal2, and extinction (presentations of each cue 

alone). In the acquisition and reversal blocks, one image was paired and co-terminated 

with the US at a contingency rate of 50% (CS+50), one image was paired and co-
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terminated with the US at a contingency rate of 100% (CS+100), and one image was 

never paired with the US (CS-). In the reversal phases, each cue was assigned to a 

different condition, such that the cue assigned as CS+100 became CS+50, the cue 

assigned as CS+50 became CS-, and the cue assigned as CS- became CS100. Each US 

was rated on a Visual Analog Scale of pain. The inter-trial intervals consisted of a white 

cross centered on a black background (duration jittered between 6, 7, 8, and 9 seconds). 

Acquisition and reversal blocks consisted of 48 trials (16 CS-, 8 CS+50 unpaired, 8 

CS+50 paired, 16 CS+100 paired). Trials were presented in a randomized order, with the 

constraint that the first trial of acquisition and reversal phases always consisted of a 

paired CS+ (either 100 or 50), to instantiate learning contingencies at the onset of a new 

phase. The extinction block consisted of 24 trials of unreinforced CSs (8 trials for each 

image). The assignment of the CS+ in the acquisition phase (cue 1, 2, or 3) was counter-

balanced across subjects. The entire task was subdivided into 4 runs of about 13 minutes 

separated by short breaks and including 43 trials in runs 1-3 and 48 trials in run 4. This 

distribution of trials insured that changes in CS-US contingencies did not occur at the 

beginning of a run. The fear conditioning protocol is illustrated in Figure1.  

  



	

	 136	

 

Figure 1. Experimental paradigm. A) In the initial acquisition stage (trials 1- 40), one cue 

was associated with a 100% chance of being followed by an electric shock (CS100), 

another cue was associated with a 50% chance of being followed by an electric shock 

(CS50), while the other cue was associated with a 0% chance of shock (CS-). In the 

reversal stages, the reinforcement contingencies between cues were changed, such that 

the previous CS100 became CS50, the previous CS- became the new CS100, and the 

previous CS50 became CS-. In the extinction phase, all cues were associated with a 0% 
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chance of shock. B) Example of each type of trial (CS-, CS50, and CS100). Each trial 

began with the presentation of one of the three cues. On reinforced trials, the presentation 

of the cue co-terminated with an electric shock (30 ms) to the right sural nerve and 

participants were asked to rate their pain after a jittered interval of 4-8s. Then, after 

another jittered inter-trial interval (ITI) of 9-12s, the following cue was presented. During 

unreinforced (CS- or CS50unpaired) trials, there were no pain ratings, and fear 

conditioned responses to visual cues were assessed by examining skin conductance 

responses (SCR; with a typical latency between 0.5 and 2s) from electrodermal activity 

recordings. C) Electromyographic (EMG) activity was recorded using electrodes placed 

on the biceps femoris. The NFR was observable at a latency of 90-180 ms post-

stimulation onset.  
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Stimuli 

Visual stimuli were shown on a computer screen using E-Prime2 Professional 

(Psychology Software Tools, Sharpsburg, PA). The CSs (cue1, cue2, and cue3) were 

shown for 4s on a black background colored circles (fractal images filled with randomly 

colored and shaped). The US consisted of transcutaneous electrical stimulation of 30 ms 

composed of a train of ten pulses (1ms) delivered at a 333 Hz frequency, and co-

terminated with the CS. US delivery was conducted using an isolated DS7A constant 

current stimulator (Digitimer Ltd, Welwyn Garden City, United Kingdom) and was 

initiated by a train generator (Grass Medical Instruments, Quincy, MA). US delivery was 

controlled by the computer on which E-Prime2 Professional was operated. US 

administration was performed by 1cm2 stimulation electrodes placed on cleaned skin at 

the level of the right sural nerve behind the ankle. In the initial familiarization session, 

NFR thresholds were evaluated as well as at the start of the second session, using  the 

NFR staircase thresholding method previously elaborated (Willer, 1977). The intensity 

determined for US administration during fear conditioning was set at 135% of the 

intensity of the NFR threshold.  

 

Measures and Dependent Variables 

AcqKnowledge data acquisition software (version 4.2; BIOPAC Systems Inc.; Goleta, 

CA, USA) was used to record physiological measurements.  
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Pain Ratings. Pain levels induced from electrical stimulations were evaluated 

using a visual analog scale (VAS) (0: no pain to 100: extremely painful). The scale was a 

horizontal bar shown on the screen, and participants moved a cursor using a response pad 

to indicate their pain rating. The position of the cursor was shown on the screen using 

visual numeric feedback.  

 

Electromyographic (EMG) Recording. Spinal nociceptive responses were 

assessed using the RIII-reflex. The EMG signal was recorded with two disposable pre-

gelled electrodes (EL508) on cleaned and shaved (if necessary) skin placed on the right 

biceps femoris. In addition, a ground electrode was positioned at the level of the right 

tibial bone. The EMG signal was sampled at 1000 Hz, amplified (1000 times), and 

filtered online (bandpass filtering: 100 -500 Hz). The root mean square transform 

(‘RMS’, over 20 consecutive samples) was applied to the EMG signal online. The 

integral (between 90-180 ms after shock administration) of the EMG RMS was computed 

offline, and consisted in raw NFR indices. NFR scores were normalized across trials of 

the fear learning task within each subject.  

 

Electrodermal Recording. Two disposable Ag-AgCl electrodes placed on the 

palm of the left hand were used to record electrodermal activity. The signal was 

amplified (5 µs/volt) and filtered online (bandpass: 1-5 Hz), and was temporally 

smoothed offline (at 500 ms). The magnitude of the skin conductance response (SCR) to 

CS-, CS+50 unpaired, and CS+50/100 paired was assessed using SCRalyze (Bach et al., 
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2010).  

 

Self-Report Questionnaires. The following self-report questionnaires were 

administered: the State-Trait Anxiety Inventory (STAI) (Spielberger et al., 1983), the 

Pain Catastrophizing Scale (PCS) (Sullivan et al., 1995), the Beck Depression Inventory 

(Beck et al., 1961), and the Behavioral Inhibition/Activation Scale (Carver & White, 

1994). In addition, the Five Factor Mindfulness Questionnaire (Baer et al., 2006) and the 

Mindful Attention Awareness Scale (MAAS) (Brown & Ryan, 2003) were administered 

due to the inverse relationship between mindfulness trait and pain catastrophizing 

(Schutze et al., 2010), and due to the role of mindfulness meditation in attenuating pain 

perception and developing resilience in the management of chronic pain (Grant & 

Rainville, 2009; Kabat-Zinn et al., 1985; Zeidan et al., 2010). These self-report 

questionnaires were administered to examine potential relationships between cortisol 

levels, and negative affect or mindful trait dispositions. 

 

Saliva Sampling. Participants were always tested after 12PM to limit variance in 

salivary cortisol due to circadian fluctuations. One h prior to their appointment, they were 

instructed to avoid eating, drinking (except for water), and exercising heavily, and to 

avoid consuming alcohol at least 12 hours before their testing appointment. Saliva was 

directly expressed with a straw into 10ml plastic vials. Samples were frozen at minus 

80◦C until assayed for cortisol using an Enzyme Immunoassay kit from Salimetrics at the 

Institut universitaire en santé mentale de Montréal. Saliva was sampled at the following 
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time points during the experiment: S1) immediately upon arrival (Mean time = 13.5h), 

S2) after pain thresholding procedure (Mean time = 14.25h), S3) at the end of the fear 

conditioning task (Mean time = 15.5h), S4) approximately 20 min after S3 upon 

departure from the laboratory (Mean time = 16h).  

 

Given that the experiment was conducted in the afternoon, we expected a general 

decrease in cortisol concentration from time 1 to 4. However, we expected that the 

experimental task and the exposure to painful electrical stimulation might induce a 

cortisol response, the amplitude of which would vary between subjects as a function of 

the reactivity of the HPA axis.  

 

To obtain reactive cortisol indices throughout the fear conditioning task, the area under 

the curve with respect to increase (AUCi) using S2-S3-S4 was computed using the 

following formula (Equations 1 and 2) previously described (Pruessner, Kirschbaum, 

Meinlschmid, & Hellhammer, 2003), in which m denotes the measurement for the 

cortisol concentration obtained at sample i, and n denotes the number of samples used to 

calculate the area under curve.  

 

                    n –1        

AUCi = (Σ  (mi+1 + mi )/2) – ( n - 1) * m1 _______________________Equation 1 

        i=1 
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Because our objective was to obtain a measure of cortisol changes during the fear 

conditioning paradigm, samples S2 (collected just before the task) S3 (immediately after 

the task), and S4 (approximately 20 minutes after the task), were used to calculate the 

AUCi index according to Equation 2.    

 

AUCi = (S3 + S2)/2 -2*S2 + (S4 + S3)/2 -2*S3 ___________________Equation 2 

 

The magnitude of the cortisol change in each subject was taken as a reflection of the 

magnitude of the cortisol reactivity to the conditioning experiment.  

 

Moreover, in order to ensure that relationships observed between cortisol, pain, and fear-

conditioned pain modulation were specific to individual differences in cortisol change 

during fear conditioning and were not due to individual differences in basal cortisol 

levels on the day participants were tested. To do this, the area under the curve with 

respect to ground (AUCg) using S1-S2-S3-S4, with t1-t2-t3 denoting the average time 

interval between the collection of samples, was computed using the following formula 

(Equation 3) (Pruessner et al., 2003): 

 

AUCg = (S2 + S1)*t1/2 + (S3 + S2)*t2/2 + (S4 + S3)*t3/2 _______________Equation 3 
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Data Analyses 

Skin Conductance Response Analyses 

The skin conductance response (SCR) was assessed to the conditioned stimuli using 

SCRalyze (Bach et al., 2010). A general linear model-based approach was used to 

determine trial-by-trial SCR amplitude estimates. This approach involves the convolution 

of a standard canonical SCR function onto each event onset. This function was then 

regressed onto the electrodermal activity data, yielding beta values estimated for each 

event of the task. One model per trial was computed to obtain an SCR for each CS trial, a 

recommended procedure shown to be effective to estimate trial-by-trial responses in 

timeseries data using event-related designs (Mumford et al., 2012). In each model, a 

regressor was entered representing the event onset for each trial of interest. Another 

regressor for all other CS onsets was entered, and regressors of non-interest were 

included for shock onsets and pain rating periods. An estimate, henceforth referred to as 

SCRs for conciseness, was obtained for each unreinforced CS trial. SCRs to reinforced 

CS+paired trials could not be appropriately estimated due to overlap between SCRs to CS 

and US. Thus, SCRs to unreinforced trials were used in the computational learning model 

analyses to estimate fear learning parameters of expected US probabilities and 

associability on the reinforced trials.  
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Computational Modeling 

As in our previous study (Taylor et al., submitted), different computational learning 

models (Rescorla-Wagner, Rescorla-Wagner/Pearce-Hall hybrid (LePelley & McLaren, 

2004)) were fitted to trial-by-trial SCR data to the different cues of the unreinforced trials 

(CS- and CS+50 unpaired). A Rescorla-Wagner model (RW model; in which learning 

occurs solely as a function of prediction errors), a RW/Pearce-Hall hybrid model 

(RW/PH hybrid), in which the expected probability of the US is estimated at each trial as 

a function of prediction errors with a learning rate that is dynamically modulated on a 

trial basis by an associability term. In this hybrid model, associability increases following 

trials with high prediction error and is therefore an index of uncertainty.  

 

Learning Model Selection. Model fit to SCR data was assessed for each subject 

using Akaike Information Criteria (AIC), and Bayesian Information Criteria (BIC). 

Paired samples comparisons (Wilcoxon test, non-parametric) were performed on AIC and 

BIC, in order to compare fit indices between models. Model fits were superior for the 

RW/PH hybrid model compared to the other (p’s < .05, AIC and BIC indices were 

smaller for the RW/PH hybrid model vs the RW model).  

 

Model Description. In the model selected - Rescorla-Wagner/Pearce Hall hybrid 

model (Equations 1-3) - expected shock probabilities (‘V’) at each trial ‘t’ were updated 

as a function of the prediction error (δ) estimated on the trial preceding it. A constant 
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learning rate (α) modulated the rate at which prediction errors – (difference between the 

administered outcome (λ) on a trial, i.e. shock or absence of shock, and the expected 

outcome) – updated expected shock probabilities. Shock administration was coded as 1 

and absence of US as 0. In addition, learning rates were dynamically modulated by an 

associability term (a). The associability term was modulated by a constant term (γ) and 

updated as a function of the prediction error’s absolute value, referring to the outcome’s 

surprising aspect (whether it be unexpected pain or unexpected pain omissions). 

 

Vt+1 = Vt  +  at * α * δt __________________________________________________________________(Equation 1) 

δt = λ t  - Vt_______________________________________________________________________________(Equation 2) 

at+1  = γ * |  δt |  + (1 - γ) * at ___________________________________________________________(Equation 3) 

 

Trial-by-trial expected shock probabilities/associability for each subject were computed 

from the following fixed parameters, i.e. the model’s free parameters averaged across 

subjects, as previously recommended (Daw, 2011): α = 0.19, γ = 0.21, V0=  0.35, a0=  

0.49. Expected shock probabilities and associability related to each cue are shown in 

Figure 2.  
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Prediction of Pain Responses by Fear Conditioning Parameters and 

Moderation by Cortisol  

The relation between AUCi and pain responses across all conditions was first assessed 

using a bivariate Pearson correlation. A one-tail p < .05 was used based on our previous 

observation of reduced pain in individuals with higher cortisol levels (Vachon-Presseau 

et al., 2013).  

 

Expected probability of receiving a shock-US and associability at each CS+paired trial 

were entered into multi-level regression analyses to predict the magnitude of the 

unconditioned pain responses to the shock-US. The AUCi of cortisol output during fear 

conditioning was entered as a between subjects moderator of the relationship between 

fear learning parameters and pain. Two separate regression models were tested to predict 

changes in pain ratings and in the NFRs. These exploratory models were thresholded at p 

< .05 two-tailed.   
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Results 

 

All of the analyses including the AUCi of the cortisol response were also conducted using 

the AUCg, to assess whether effects of cortisol on pain, fear conditioning, and fear-

conditioned pain modulation were related to cortisol change during the experiment as 

opposed to basal cortisol levels. All of the tests conducted using the AUCg yielded non-

significant results; thus, these are not discussed further and only results with respect to 

the AUCi are reported.  

 

Cortisol and Pain Responses during Fear Conditioning 

 

First, a one-way ANOVA on salivary cortisol levels sampled before and after the learning 

task (S2,S3,S4) did not reveal any significant increases in cortisol during the fear 

conditioning paradigm at the group level (F(2,42) = 1.01, p = 0.342). This suggests that the 

task did not constitute a significant inducer of a stress response in this group.  

 

Nevertheless, inter-individual variability was present among the salivary cortisol 

concentration sampled during the experiment. Thus, to index inter-individual differences 

in cortisol change during the experiment, the AUCi of the cortisol response was then 

computed as described in Equations 1-2, and was used to investigate interactions with 

anticipatory responses and pain during fear conditioning.  
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Pain ratings and NFRs measured across all trials during the task are shown in Figure 2. 

Mean pain ratings across trials were negatively correlated with cortisol AUCi during the 

fear conditioning task (r = -0.402, p = 0.003 Figure 3). No significant relation was found 

between cortisol and averaged RIII responses (r = 0.28, p = 0.206).   
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Figure 2. Expected probability of shock (expected p(shock)) and associability estimates 

obtained from the RW/Pearce-Hall hybrid computational reinforcement learning 

modeling throughout the acquisition, the two reversal, and extinction phases of the 

Pavlovian fear learning task. Cue1 (blue) corresponds to the CS50 in the acquisition 

phase, the CS- in reversal1, and CS100 in reversal2. Cue2 (orange) corresponds to the 

CS100 in the acquisition phase, the CS50 in reversal1, and the CS- in reversal2. Cue3 

(green) corresponds to the CS- in the acquisition phase, the CS100 in reversal1, and CS50 

in reversal2. Pain ratings (lower left panel) and NFRs (lower right panel) averaged across 

participants during the fear conditioning task.   
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Figure 3. Correlation between cortisol levels (AUCi) and averaged pain ratings during 

the entire fear conditioning task.  
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Cortisol and Fear Conditioning 
 
 
Multi-level analyses examining the difference in anticipatory SCRs between unreinforced 

CS50 and CS- revealed that SCRs to unreinforced CS50 were enhanced compared to CS- 

(Beta = 0.12, STE = 0.06, t = 2.14, p = 0.002). AUCi was entered as a between-subjects 

moderator, and did not reveal any significant relationship on the differential effects 

between CS50 and CS- (Beta = -0.11, STE = 0.31, t = -0.33, p = 0.789).  

 

 
Pain responses and Contingency Type during Fear Conditioning 
 
 
No main effect of cue contingency or interaction between learning phase and cue 

condition were found, as revealed by a repeated-measures Cue (CS50/CS100) X Learning 

phase (Acquisition Early/Acquisition Late/Reversal1 Early/Reversal1 Late/ Reversal2 

Early/Reversal2 Late) ANOVA: main effect of cue: F = 1.36, p = 0.26, F = 0.44, p = 0.52 

for pain ratings and NFRs respectively, cue x phase interaction: F = 0.84, p = 0.52, F = 

0.61, p = 0.69 for pain ratings and NFRs respectively). Therefore, effects of fear learning 

on pain outcomes were further analyzed irrespective of cue-shock contingency type.  

 
 
Effects of expected shock probabilities and associability on pain response 

 

Multi-level analyses revealed a significant positive effect of EShock and associability, on 

reported pain (see Table 1 and Figure 4). In contrast, a significant negative effect of 

EShock and associability was found on spinal responses during fear conditioning. 
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Moderation of fear-induced pain modulation by AUCi 

 

AUCi cortisol during fear conditioning was included as a 2nd-level moderator in the 

multi-level analyses conducted separately using pain ratings and NFRs as dependent 

variables (with expectations and associability as first-level predictors). These analyses 

revealed that higher cortisol AUCi was associated with a significant reduction in the 

inhibition of the NFR by EShock. Cortisol AUCi did not affect NFR modulation by 

associability and did not change effects of EShock or associability on pain ratings 

(Table1).  
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Table 1 Multi-level regression analysis on pain ratings and NFR scores 
predicted by fear learning parameters, and moderated by salivary cortisol 
levels (AUCi)    

Dependent Variable: Pain Ratings to US 
   Beta SE t p  

LEVEL-1 Predictors          
Expected Shock(US) Probabilities  0.89 0.17 4.30   <0.001*  
Associability   0.72 0.30 2.65     0.01*  

LEVEL-2 Predictors      
Cortisol (AUCi): Moderation of effect of EShock on Pain Ratings 
  -1.36 1.44 -0.92 0.40  
Cortisol (AUCi): Moderation of effect of Associability on Pain Ratings 
  1.12 2.07 0.55 0.58  

Dependent Variable: NFR scores to US 
LEVEL-1 Predictors          

Expected Shock(US) Probabilities -0.71 0.19 -3.91   <0.001*  
Associability -0.37 0.20 -1.57   0.04*  

LEVEL-2 Predictors      
Cortisol (AUCi): Moderation of effect of EShock on NFRs 
  3.80 1.58 2.84     0.01*  
Cortisol (AUCi): Moderation of effect of Associability on NFRs 
     0.57 1.70   -0.33      0.72   

Notes. Significant effects of predictors are indicated on the graph with asterisks  
(*p<.05) 
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Figure 4. Multi-level models of the effects of expected probability of shock (expected 

p(shock)) and associability on pain outcomes. Path coefficients are shown with standard 

errors in parentheses. A) Expected probability of shock (expected p(shock)) had a 

positive effect on pain ratings. B) Expected probability of shock (expected p(shock)) had 

a negative effect on NFRs. C) Individual differences in cortisol levels (AUCi) decreased 

the negative impact of expected p(shock) on NFRs. *p<0.05 

Expected	p(Shock)		 Pain	
Ra4ngs				0.72*	(0.30)*	

Posi&ve	effect	A	

B	

Spinal	
NFR			

			-0.71	(0.19)	***	

Nega&ve	effect	

																				CORTISOL	(AUCi)	
2nd-Level	Moderator													
								3.80(1.58)	*	
	
	

C	

Associability		

			0.89*	(0.20)**	

Expected	p(Shock)		

Associability		
			-0.37*	(0.20)*	

-3.5	

-3	

-2.5	

-2	

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

2	

-0.3	 -0.2	 -0.1	 0	 0.1	 0.2	 0.3	

Sl
op

e	
be

tw
ee
n	
ES
ho

ck
	a
nd

	N
FR

s		

AUCi	of	the	cor;sol	response	

r=0.49	



	

	 155	

Relationship between AUCi and Self-reported Questionnaire Data Variables 
 
Exploratory correlation analyses examining the relation between cortisol AUCi and 

personality traits were conducted. The only significant relationship found was a negative 

correlation with self-reported ‘Non-reactivity’ to experiences (r = -0.33, p = 0.01), a 

subscale of the FFMQ assessing dimensions of dispositional mindfulness. This finding 

indicates that individuals displaying higher HPA- axis reactivity during the experiment 

reported higher dispositional personality traits related to an emotionally reactive 

temperament.  
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Discussion 

The results of the present study demonstrate that individual differences in cortisol change 

during fear conditioning have dissociable effects on higher-order pain responses and 

lower order spinal responses to nociceptive stimuli. However, the present study did not 

demonstrate a significant reactive cortisol response on average during the task; thus 

exposure to a fear conditioning paradigm involving painful stimuli may not constitute a 

substantial stressor for a detectable stress-response at the group level. Nevertheless, 

individual variability in task-concurrent cortisol change during fear conditioning was 

related to pain modulation and moderation of fear conditioning effects on pain. Thus, 

more positive (and/or less negative) changes in individual cortisol change during the task 

was globally associated with lower pain ratings but did not affect spinal responses to 

nociceptive stimuli. In contrast, individual differences in HPA reactivity moderated the 

effects of fear-conditioning on the NFR but not on pain.  

 

 First, the fact that an overall cortisol increase during fear conditioning was not 

observed does not replicate previous findings that an experiment using noxious stimulus 

administration elicits a cortisol stress response (Vachon-Presseau et al., 2013). In the 

study by Vachon-Presseau and colleagues (2013), it is possible that the functional 

magnetic resonance imagery scanner environment, in combination with pain 

administration, have consisted in a significant source of stress for participants. Other 

psychophysiological studies also failed to observe significant cortisol increase during fear 

conditioning protocols (Corbo, 2011; Zorawski et al., 2005), albeit using non-noxious 

stimuli as the US. Nevertheless, the inter-individual variability in cortisol change during 
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fear learning present among the present study’s participants was related to pain 

modulation during fear conditioning.  

 

The fact that individuals with greater cortisol output during fear learning reported 

decreased pain during fear conditioning directly replicates that of a previous study from 

our laboratory using thermal nociceptive stimuli (Vachon-Presseau et al., 2013). 

Therefore, this effect is likely reflected by cortico-cortical interactions between higher-

order brain centres and cerebral targets of spino-thalamic pain transmission (Vachon-

Presseau et al., 2013). On the other hand, the effects of individual changes in cortisol 

concentration on descending pain modulation occurred by altering the relationship 

between learning processes and pain transmission signals at the spinal cord. Indeed, for 

individuals with enhanced HPA axis reactivity, the inhibiting effect of learned 

expectations on defensive responses was reduced. A potential neurobiological 

mechanism of this effect is through HPA-induced activation of the hypothalamus and/or 

amygdala, with descending projections to brainstem nuclei inhibiting pain transmission at 

the dorsal horn of the spinal cord (Vachon-Presseau et al., 2013). It is possible that, in a 

context in which numerous inescapable threatening stimuli are administered, the 

organism ‘conserves’ defensive resources. Under this perspective, participants with 

enhanced cortisol output exhibited enhanced defensive responses to threat despite its 

inescapable nature.  
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Moreover, the results of this study demonstrating that expected probabilities of 

receiving pain positively predict perceived pain and negatively predict NFRs during fear 

learning are precisely in line with those from Martins and collaborators (2015). In this 

study, predictable noxious stimuli were rated as more painful consistent with a previous 

independent study from our laboratory (Taylor et al., In Press), but elicited decreased 

nocifensive spinal responses, compared to unpredictable noxious stimuli (Quelhas 

Martins, McIntyre, & Ring, 2015). This result is and may reflect underlying affective 

processes, i.e. that pain is more aversive when it is predictable but cannot be escaped.  

 

By contrast, the gradual inhibition of defensive NFRs to US as stimuli became 

more predictable may reflect ‘conservation’ mechanisms of defensive resources in the 

face of inescapable pain. This latter effect of fear learning parameters on defensive NFRs 

is in the opposite direction as that previously reported: Taylor and collaborators (In Press) 

had found that fear learning parameters during Pavlovian fear learning predicted an 

enhancement of defensive NFRs. The discrepancy with the results observed here may 

reflect the different contexts between the two studies: approximately twice as many US 

were administered in the present task compared with that previously reported (Taylor et 

al., In Press). This is consistent with the notion of inverted-U shaped relationships 

between stress/glucocorticoids and several cognitive/affective functions (Lupien & 

McEwen, 1997). In other words, the Yerkes-Dodson law predicts that there is an 

inverted-U shaped function between arousal and performance on several cognitive 

functions:  poor performance is observed under low levels of arousal, while optimal 

performance occurs at moderate arousal levels, and poor performance is observed under 
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very high levels of arousal (Yerkes & Dodson, 1908). The effect of fear learning 

parameters on NFRs may also present a comparable inverted U-shape relationship with 

context ‘aversiveness’: fear learning would predict enhanced defensive responding under 

moderately aversive contexts, while under higher threat, expected probabilities of 

receiving pain and associability would diminish the recruitment of defensive processes to 

preserve these resources.  

 

In conclusion, the results of the present study demonstrate that inter-individual 

differences in HPA axis reactivity are related to an overall hypoalgesia at a higher-order 

level of pain processing. On the other hand, individual differences in HPA axis reactivity 

have a moderating influence over the impact of fear learning on spinal defensive 

responses to pain. These results contribute a novel piece of information to the 

understanding of the effects of fear learning on pain, and have clinically relevant 

implications concerning the moderating impact of individual predispositions to stress/fear 

related pathologies.  
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General Discussion 

 

In this section, we will integrate the findings obtained in the empirical studies of this 

thesis, and discuss their meaning in terms of the current state of knowledge on fear 

conditioning and pain modulation systems (at a behavioral and neuroanatomical level), as 

well as variables moderating these relationships. We will also discuss the relevance of 

these findings in terms of clinical implications with respect to the fear avoidance model 

of chronic pain.  

 

Modulation of Pain by fear learning parameters 

 

The results of these studies reveal that parameters governing fear conditioning processes 

at each trial of learning predict pain outcome measures. Indeed, the results of Study 1 

reveal that associability and expected shock probabilities positively predict pain ratings 

and defensive spinal responses to noxious electrical shocks. The effects of fear learning 

parameters on pain at a higher-order level of processing are in part direct, and in part 

mediated by facilitation at a spinal level. This reveals two important mechanisms 

involved in the modulation of pain by fear learning processes: 1- direct effects on pain 

perception likely reflect interactions between higher order centres and targets of the 

spinothalamic tract. These interactions are potentially reflected by signals encoding 

prediction errors coming from the amygdala to the dorsal MPFC (McNally et al., 2011), 

and then projected onto pain-processing areas, such as the ACC (Price, 2000). Second, 

the partial mediation of higher-order pain perceptual responses by spinal responses likely 
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reflects descending controls from the amygdala to brainstem sites, modulating 

nociceptive transmission at the spinal cord (Flor & Turk, 1999). These changes are then 

relayed through the ascending spinothalamic tract to brain centers involved in pain 

perception (Price, 2000).  

 

Importantly, the results of study 1 reveal that the modulation of pain by fear learning 

processes is an effect that can be observed at a very fine timescale, i.e. at the level of a 

single trial. These results, therefore, provide a novel approach to analyze pain outcomes 

for future studies investigating the modulatory effects of learning on pain.  

 

Evidence for fear-pain cycle involved in the central maintenance of pain 

 

The results of study1 also emphasize the fact that the modulation of pain by fear learning 

is a cyclic process that can contribute to the central maintenance of pain, and may explain 

pathological manifestations (eg. chronic pain, anxiety, depression) resulting from 

repeated pain exposure. Indeed, following the first trial of a learning phase, we observed 

a sharp increase in pain and spinal NFRs, likely due to the fact that both expected shock 

probabilities and associability were elevated. Indeed, the first cue-shock pairing likely 

causes the most ‘surprising’ effect that largely contributes to the learning process at the 

beginning of the acquisition phase. Following this sharp pain enhancement it is therefore 

quite difficult for pain ratings to return to a baseline level, and to break from the initial 

effects of fear on pain. The data from this study show that breaking the fear-pain cycle 

may constitute an effective way to prevent central ‘escalation’ and maintenance of pain 
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resulting from repeated exposure to noxious stimuli. These results support the efficacy of 

exposure therapies targeting the fear-pain cycle to achieve significant treatment 

improvement in pathologies related to fear and pain (anxiety disorders, chronic pain) 

(Bailey, Carleton, Vlaeyen, & Asmundson, 2010).  

 

Inter-individual variability in the effects of fear learning on pain 

 

The results of Study1 also reveal that there is inter-individual variability in the effects of 

fear learning on pain. Indeed, participants with greater anxious tendencies, such as those 

reporting more pain catastrophizing, trait anxiety, punishment sensitivity, harm 

avoidance, and less trait mindfulness (a principal component analysis factor which we 

named ‘harm vigilance’), showed an enhanced relationship between associability and 

defensive reflex responses to pain. This shows that, for these individuals, pain 

enhancement from vigilance to the CS (associability) is more strongly mediated by spinal 

responses. This effect may explain why certain individuals, i.e. those who tend to 

interpret pain as more threatening and who are less mindful of present-moment 

awareness, are more at risk for developing pathological manifestations from repeated 

pain exposure (Bailey et al., 2010).  

 

The predictive relationship between associability and cerebro-spinal processing of 

nociceptive input is stronger in these individuals, and the cycle may be more difficult to 

break. Indeed, participants with the opposite tendencies, i.e. emotional detachment, show 

the opposite effect, i.e. that of a reduced predictive effect of associability on NFRs. This 
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trait may therefore constitute a protective factor against the instilment of central pain 

maintenance from repeated exposure. This finding indicates that the development of this 

trait, notably from the practice of mindfulness meditation, could constitute a means of 

breaking the fear-pain cycle and prevent or attenuate pathological manifestations from 

fear learning effects on pain. Our finding validates and encourages clinical interventions 

integrating aspects of contemplative practices to improve mental health in the context of 

pain.  

 

The results of Study2 also support the notion that the practice of mindfulness meditation 

contributes to braking the fear-pain cycle. Indeed, experienced mindfulness meditators 

not only showed a general hypoalgesia at a higher-order level of processing (pain 

ratings), but showed that perceived pain was not under the influence of fear learning. 

Contrary to individuals reporting enhanced emotional detachment in study1, meditators 

did not show a decreased predictive relationship between associability and spinal NFRs. 

It is important to note that controls in Study 1 were meditation-naïve participants, and 

that the mere trait associated with states cultivated via mindfulness meditation could have 

distinct effects than the long-term practice of meditation.  

 

Figure 1 illustrates a hypothetical model through which mindfulness meditation practice 

influences pain perception through effects of fear learning systems. This figure shows 

that nociception leads to pain perception and fear learning. In turn, fear learning 

modulates pain directly and indirectly through facilitation of spinal nociception. 
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Mindfulness would have a moderating role in this fear-pain cycle by reducing the effects 

of fear learning on pain directly, at a higher-order level.   

 

 

Figure 1. Hypothetical model of interactions between fear learning and pain systems 

through which mindfulness meditation modulates pain perception. Our results show that 

mindfulness meditation experience is associated with reduced pain perception and 

reduced impact of fear learning on pain.  
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The effects we observed in Study 2 were specific to higher-order pain processing, and 

consistent with previous studies on the effects of long-term meditation experience on pain 

or emotionally aversive experiences (Grant et al., 2011; Grant & Rainville, 2009; Taylor 

et al., 2011). Indeed, and consistent with the philosophy of mindfulness meditation, brain 

imaging studies support the notion that long-term experience is not associated with a 

voluntary inhibition of aversive emotions. Rather, mindfulness would induce a 

disinhibition of control systems (eg. prefrontal cortex) regulating aversive experiences, 

supported by a decrease in prefrontal activity associated with executive control (Gard et 

al., 2012; Grant et al., 2011). During a mindful state of awareness, aversive experiences 

are voluntarily acknowledged as opposed to voluntarily changed, reflected by enhanced 

brain activity in sensory/affective pain processing (Grant et al., 2011; Grant & Rainville, 

2009; Taylor et al., 2011). Paradoxically, this stance of welcoming and openness to the 

experience results in dissipation or dampening of the aversive sensation along with any 

other event occupying the field of awareness (Schutze et al., 2010). This is potentially 

due to the reduction of catastrophizing cognitions/feelings about pain (Schutze et al., 

2010), in the sense that individuals higher in trait mindfulness interpret pain as less 

threatening, which in turn reduces their pain evaluations.   

 

In our study, we show that the practice of mindfulness meditation is quite adaptive in the 

processing of repeated pain: experienced meditators preserved fear learning mechanisms 

to detect threat signals from the environment and adaptive defense mechanisms to pain. 

However, the aversive quality and higher-order ‘suffering’ resulting from noxious events 
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was attenuated. This attenuation could have positive impacts in terms of ‘liberating’ 

cognitive/affective resources to deal with threat more effectively.  

 

The results of Study 2, therefore, provide scientific support for interventions using 

mindfulness meditation to treat clinical pathologies related to fear and pain. These results 

support the hypothesis that the effects of mindfulness alter the connections between 

higher-order brain centres and the amygdala, which would then activate descending pain 

controls at the spinal cord. Our results also suggest that meditation would reduce any 

supplementary cortico-cortical interactions between higher order brain centres involved 

in secondary pain affect (eg. fear of meaning of pain in terms of the future) and targets of 

spinothalamic pain transmission (eg.: ACC).  

 

Finally, the results of Study 3 indicate that HPA-axis activity modulates pain differently 

at higher-order vs lower-order levels of processing. At a higher-order level of processing, 

pain attenuation related to stress hormone output is directly in line with previous results 

(Vachon-Presseau et al., 2013) and does not depend or interact with fear learning 

processes. By contrast, modulation at a spinal level of nociceptive transmission is 

facilitatory and operates via fear learning systems. Individuals with enhanced cortisol 

output during fear learning showed a more positive relationship between learned 

expected pain and defensive responses.  

 

In terms of fear learning effects on pain, the results of Study 3 replicated the results of 

Study 1 in terms of learning effects on pain perception (positive predictive relationship 
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between fear learning parameters and pain ratings). By contrast with the results from 

Study 1, participants exhibited a negative relationship between fear learning parameters 

and NFRs. This contrasting result between studies may result from the different 

paradigms between the two studies, and in a context in which there is enhanced exposure 

to inescapable threat (approximately twice as many noxious stimuli were administered in 

Study 3), the organism preserves defensive response resources. This explanation could be 

akin to the Yerkes-Dodson theory which purports that several behaviors are optimally 

performed under moderate levels of arousal (Yerkes & Dodson, 1908). Levels of arousal 

under, or over this optimal level, would result in reduced behavioral performance (Yerkes 

& Dodson, 1908). Thus, the number of US presented in the context of Study1 may have 

induced moderate levels of arousal, and a positive relationship between fear learning and 

pain. In contrast, the enhanced number of US administrated in Study3 may have induced 

increased arousal for participants, and yielded a relationship in the opposite direction. 

This negative relationship between expected shock probabilities and associability in a 

context of high inescapable threat may reflect the organism’s attempt to preserve 

defensive resources. 

 

Thus, individuals with enhanced HPA-axis reactivity would show enhanced defensive 

responding in a context of inescapable threat. Pain modulation related to stress hormone 

output would therefore yield global reduced pain perception and an enhanced defensive 

response, potentially to more effectively cope with threat (Fanselow, 1986). Though 

beneficial on an ‘acute’ short-term basis - hypoalgesia and enhanced defensive 

responding - induced from stress systems could ‘deplete’ the organism’s defensive 
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resources in contexts in which fight/flight responses are not adaptive due to the 

inescapable nature of threat. Figure 2 shows a hypothetical functional model through 

which HPA-axis activation would be related to modulation of pain and nociception with 

the involvement of fear learning mechanisms. 

 

Nonetheless, in Study3 there was a lack of an overall cortisol stress response as was 

previously observed in a study from our laboratory (Vachon-Presseau et al., 2013). In this 

study we have noticed that the overall cortisol increase was not observed in all subjects, 

but the inter-individual variability in cortisol change during fear conditioning was related 

to pain and effects of fear on pain. Therefore, we cannot conclude that these effects are 

due to a reactive stress response, but conclusions can be drawn to the fact that there is an 

involvement of the HPA-axis in the effects of fear conditioning on pain. Future studies 

should therefore examine the role of stress hormones following an experimental stressor 

on the effects of fear learning pain. In addition, studies administering exogenous 

glucocorticoids should be conducted to delineate whether a causal relationship between 

HPA-axis activation exists with the effects of fear learning on pain.  

 

Due to the divergent effects of fear learning on spinal NFRs obtained between Studies 1 

and 3, it is important to note aspects differing between studies as well as rationales 

underlying the implementation of such differences. Indeed, a different experimental 

paradigm was used in Study 3 compared to Study 1: Study 3 included a stimulus 

conditioned with the US on 100% of trials, in addition to the cue paired with the shock on 

50% of trials. The task also involved two reversals as opposed to one reversal in Study 1. 
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The decision to apply these changes to the paradigm in Study 3 was taken to obtain an 

increased range of expected shock probabilities as that of Study 1 by including the CS100 

condition. In addition, since pain outcomes in Study 1 were importantly modulated at 

reversal onsets, a second reversal was included in Study 3’s paradigm.  

 

Finally, another discrepancy between Studies 1 and 3 were the instructions given to 

participants prior to completing the learning task: participants in Study1 had received no 

prior specific knowledge of task structure/contingencies (they were simply told that they 

would see images, and may or may not receive stimulations), while participants in Study3 

were told that they would see images (which may or may not be followed by a 

stimulation), and that they may notice a relationship between a cue and the presentation 

of a shock. They were also told that the relationship between images and the shock 

should remain the same across trials but may (or may not) be subject to change 

throughout the task. This change in the explicit nature of instructions between Studies 1 

and 3 was applied due to the fact that not all participants of Study 1 reported being aware 

of task contingencies (assessed using a post-experiment interview performed after the 

fear conditioning task). In order to maximize learning in Study3 to study its effects on 

pain modulation, and to ensure that subjects paid sufficient attention to conditioned cues, 

we opted to make instructions more explicit before the learning task in Study3.  

 

While previous reports have found that instructed learning enhances learning 

performance relative to uninstructed learning (Atlas, Doll, Li, Daw, & Phelps, 2016; Li, 

Delgado, & Phelps, 2011), discriminatory SCRs were found for both Study1 and Study3, 
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and the trial-by-trial changes in parameters confirmed robust learning processes in both 

experiments. Nonetheless, it remains a possibility that instructions have altered fear 

learning processes and parameter estimation, although previous work shows that this 

would have only optimized the learning process as well as the estimation of fear learning 

parameters (Atlas et al., 2016). It is also possible that the discrepant instructions have 

accounted for discrepant effects of fear on NFRs between studies. For instance, enhanced 

readiness or explicit knowledge about the task could explain the negative relationship 

between NFRs and learning parameters, consistent with evidence that fear rather than 

apprehensive anxiety decreases spinal nociception (Rhudy et al 2000). This hypothesis is 

speculative until the effects of instructions on fear learning effects on pain are compared 

between groups having received explicit instructions and those not having received 

explicit prior knowledge of task structure using identical fear conditioning tasks.  

 

 

Limitations and Future Directions  

 

The studies presented within this thesis are not without limitations. First, the cross-

sectional and quasi-experimental design used in Study 2 does not allow for inferences to 

be made as to causal effects of mindfulness meditation practice. Thus, other factors 

characteristic to the meditation practitioners may have played a role in the effects 

observed (eg. lifestyle, individual traits). Future prospective studies are needed using 

mindfulness meditation interventions to examine effects of fear conditioning on pain.  
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Another limitation is with respect to the computational analyses used in our studies. The 

computational models of behavior provide estimations of hidden states (expectations, 

associability) governing behavior. The advantage of these methods is that they permit an 

understanding of explaining behavior using quantifiable variables; nonetheless, these 

remain estimations from calculations using mathematical laws and the subject’s 

associative learning history at each trial (shock / absence of shock). Though these latent 

variables have been shown to reflect neural activity in key brain regions underlying 

reward and fear (Boll et al., 2013; Li, Schiller, et al., 2011; McNally et al., 2011), they 

still remain an indirect reflection of hidden cognitive and neural processes. Future studies 

should examine brain function underlying pain modulation during fear conditioning using 

brain imaging techniques such as functional magnetic resonance imaging (fMRI) or 

electroencephalography (EEG) to examine whether our fear learning parameters obtained 

in our studies would be associated with striatal and amygdala activity as preceding 

reports have found (Boll et al., 2013; Li, Schiller, et al., 2011; McNally et al., 2011; 

Zhang et al., 2016). It would also be interesting to examine whether the latent fear 

learning parameters obtained in our studies correlate with corresponding self-reported 

expectations (at each trial) and attention (eg. by incorporating a dot-probe attentional 

paradigm (Posner, 1980) during cue presentation of the conditioning task to assess 

attentional engagement). Although adding behavioral measurements to a classical task 

may alter the natural process of acquiring and updating fear learning parameters from 

classical conditioning, this would reflect the best compromise from available methods to 

investigate hidden underlying cognitive processes during learning.  
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Moreover, while computational models are informative of human behavior, the 

complexity and specificity of a model to explain variance in a given dataset may 

counteract its generalizability. Therefore, it is also necessary to replicate our results in 

other participant samples to assess the generalizability of the computational models used 

here in explaining the fear learning effects we observed on pain. The possibility also 

exists that other models than those used in the present studies explain fear learning effects 

on pain. Therefore, future studies should also examine different computational 

approaches, such as Bayesian models of decision-making (Daunizeau et al., 2010), to 

estimate latent variables acquired during classical conditioning and assess their effects on 

pain.  

 

Future studies should also investigate the effect of context aversiveness on pain 

modulation during fear conditioning. This would allow to test whether the different 

results obtained in Study 3 with respect to effects of expected shock probabilities on 

spinal nociception are due to context aversiveness. For example, testing pain modulation 

during fear conditioning in contexts of different aversive levels could consist in either 

administering both conditioning tasks (one task with CS- and CS50, another with 

CS100/CS50/CS-) to the same subjects.  

 

Study 2 was also limited with respect to the sample size for the group of experienced 

meditators. However, the reduced power due to the small number of meditator subjects 

would not have been problematic to accurately detect significant group differences in the 

absence of such effects, but would have rather impeded the ability to detect significant 
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group differences when real effects may have been present. Thus, in instances in which 

we observed non-significant group differences, Bayesian analyses were conducted to 

support the null hypothesis, yielding enhanced odds in support for the null hypothesis of 

no differences between groups. Our results should remain tentative, however, until 

replicated in larger sample sizes.    

 

Finally, our results put forth neuropsychophysiological evidence that latent variables 

governing fear learning dynamically modulate pain, and validate clinical models 

explaining maintenance of pain/suffering in disorders involving classical conditioning. 

Therefore, future studies should assess the effects of fear learning on pain in clinical 

populations (anxiety disorders, chronic pain) to examine whether effects of fear learning 

on pain are heightened in these individuals. In addition, studies examining fear learning 

effects on pain using mindfulness interventions are needed in such clinical populations to 

determine the efficacy of acceptance-based treatments in breaking the cycle between fear 

and pain/suffering.  

 

Conclusion 

In conclusion, the results presented in this doctoral thesis support the notion that fear 

learning has considerable modulatory effects on lower-order and higher-order pain 

processing. In addition, the present results also showed that fear learning modulatory 

effects on pain are observable at a trial-level timescale. These effects appear to operate in 

part directly on pain, thus potentially reflecting cortico-cortical interactions between 

higher-order brain centres and targets of spinothalamic pain transmission. The present 
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findings also show that fear learning effects also occur in part indirectly on pain by 

facilitating spinal nociceptive transmission. 

 

Moreover, the results of these studies put forth a potential model explaining the central 

chronicization of pain as a result of repeated exposure. We also showed that certain 

individual factors moderate the impact of fear learning on pain: personality traits related 

to harm vigilance and mindfulness meditation, enhanced HPA activation, and long-term 

mindfulness meditation experience. Thus, the results of this thesis contribute to the 

understanding of disorders involving classical conditioning. Moreover, the present 

studies provide scientific evidence for the therapeutic use of practices cultivating mindful 

dispositions/attitudes in breaking the fear-suffering cycle and preventing or treating 

maladaptive consequences (pain chronicization, anxiety) resulting from repeated threat 

exposure.  
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