Université de Monteéal

ru_‘ Faculté des arts et des sciences
Dépariement de sciences économiques

CAHIER 9710

COOPERATIVE OR NONCOOPERATIVE BEHAVIOR?

Yves SPRUMONT'

' Département de sciences économiques and Centre de recherche et développement

en économique (C.R.D.E.), Université de Montréal.

June 1997

nds pour la formation de chercheurs et faide & 1a recherche (FCAR) of Québec
Canada is gratefully acknowledged.

Financial support from the Fol
Humanities Research Council (SSHRC) of

and the Social Sciences and

Teélécopieur (FAX} : (814} 3437221

C.p. 6128, succursale Centre-ville
Courrier électronique (E-mail) © econo@ ere.umontigal.ca

Montréat (Québec) HIC 337



Ce cahier a également étg publié au Centre de recherche et développement en
économique (C.R.D.E.) (publication no 1197,

Dépét 1égal - 1997
Bibliothéque nationae du Québec
Bibliothéque nationale du Canada ISSN 0709-9231



RESUME

toute fonction de choix compatible avec

Dans un modéle abstrait & deux agents,
e est aussi compatible avec

Ihypothése que les agents agissent de fagon non coopérativ

I'hypothése d’un comportement coopératif. Linverse est faux.

Mots clés © rationalisation, équilibre de Nash, optimalité parétienne

ABSTRACT

t model, we show that every deterministic joint choice function

In an abstract two-agen
ompatible with

compatible with the hypothesis that agents act noncooperatively is also ¢

the hypothesis that they act cooperatively. The converse is false.
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1. Introduction

The empirical restrictions imposed on individual behavior by the assumption of
preference maximization have been thoroughly analyzed, both in the context of
abstract choice (this is the literature on choice functions with key contributions
by Chernoff (1954), Arrow (1959), and Sen (1971) to mention only a few) and
in the context of consumer choice (this is the theory of revealed preference, a
sample of which is contained in the book edited by Chipman, Hurwicz, Richter,
and Sonnenschein (1971)).

When several individuals interact, choices are harder to explain. Cooperative
theories (based on Pareto efficiency) and noncooperative theories (based on Nash
equilibrium) both provide valuable insights. Comparing the empirical restrictions
imposed by such competing theories on collective behavior is a complex problem
that has been widely overlooked. This paper shows — in an admittedly rudi-
mentary framework — that any deterministic collective behavior compatible with
the hypothesis that individuals act noncooperatively is also compatible with the
hypothesis that they act cooperatively. The converse is false.

9. A model, and a theorem

Let A, = {1,..,m}, A2 = {1,...,mg} be two nonempty finite sets of integers
representing the conceivable actions of two agents, 1 and 2. We refer to elements of
A= A, X Ay as joint actions. A row (of A) isaset of the form {(a1,a2) | a2 € A}
where a, is some fixed action in A;. Columns are similarly defined. Suppose
we observe the joint actions taken by our agents as the sets of actions actually
available to them vary. These joint choices can be described by a joint choice
function.

Definition 1. Let A= {B = B1 X By | 0 # B C A} be the set of nonempty
Cartesian product sets included in A. A joint choice function f assigns to each
B € A a nonempty set f (Byc B. If f (B) is a singleton for each B, we call f
deterministic.

We do not know the agents’ preferences and wonder whether they behave
noncooperatively or cooperatively.

Definition 2. The joint choice function f is noncooperatively rationalizable if
there exist two complete and transitive preference relations %1, =2 on A such that
f(B) coincides with the set of Nash equilibria of the game (B, %1, %2) for every




B e A. We then say that >, %=y rationalize f noncooperatively. The function f
is cooperatively rationalizable if there exist two complete and transitive preference
relations %), %=, such that f(B) coincides with the set of (Pareto) efficient joint
actions in (B, 3, 2) for every B. In that case, =1, =2 rationalize f cooperatively.

In the above definition, Nash equilibrium and Pareto efficiency are given their
usual meaning. A Nash equilibrium of (B, =1, *2) is a joint action b* € B such
that b* 5, (b1,83) for all by € B, and b* =2 (b3,by) for all by € B,. Letting ~;
denote the indifference relation associated with i, b* € B is efficient in (B, =,
y =2) if for every b € B, b =, b* and b #2 b* imply that b ~1 6% and b ~y B*. We
are now ready to state our maijn result.

Theorem 1. If a deterministic Joint choice function is noncooperatively ratio-
nalizable, then it is also cooperatively rationalizable.

The proof is presented in the next section. It should be clear that if two
preferences & 1, 72 rationalize a deterministic joint choice function cooperatively,
they cannot be too different. Clearly, they cannot conflict within a given row or
column: if, say, (a1, ay) >, (@1, b;) and (ar,ay) <, (a1,b,), then ({a1} x {a202}, 5,
,#2) admits two efficient joint actions, contradicting our assumption that f is
deterministic, While 71, #2 need not be identical, there is in fact no loss in
assuming that they are. To be more precise, call a joint choice function f team-

proved in the next section.

Lemma 1. 4 deterministic Joint choice function is cooperatively rationalizable if
and only if it is team-rationalizable.

An equivalent expression of Theorem 1 follows at once:

Theorem 1bis. If a deterministic Jjoint choice function is noncooperatively ra-
tionalizable, then it is also team-rationalizable.

atively rationalizable, even if it s deterministic. An archetypal example is as fol-
lows: 4; = 4, = {1,2}, f({a}) = {a} foreacha € 4, fai}x{1,2}) = {(ay,2)}
for a; = 1,2, F{1,2} x {ay}) = {(2,a,)} for ay = 1,2, and f(4) = {(1, 1)}

(2) A noncooperatively rationalizable Joint choice function f need not be team-
rationalizable if it is not deterministic. In that case, there still exists a complete
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preference relation whose set of maximal elements in B coincides with f{B) for
each B but its strict component might cycle. Such cycles do not contradict the
existence of maximal elements because f is not defined on all subsets of A but
only on the Cartesian products. Here is an example. Let A} = Az = {1,2,3}.
Define the complete and transitive preference = by

(1,3) ~ (2,2) ~ (3, 1) ™ (1,1) =1 (2,1) ~1 (3,2) =1 (1,2) ~1 (2,3) =1 (3,3)
and define 2 by exchanging (1,1) and (3,3) in the above chain, i.e.,
(1,3) ~2 (2,2) ~2 (3,1) ~2 (3,3) =2 (2,1) ~2 (3,2) =2 (1,2) ™2 (2,3) =2 (1, 1).

Define f by letting f(B) be the set of Nash equilibria of (B, ¥1,%2) for each
B ¢ A. Check that f is nonempty-valued but not deterministic. By its very
construction, it is noncooperatively rationalizable. But observe that any single
preference = that would team-rationalize it would have to satisfy

(1,1) > (2,1) > (2,3) = (3,3) > (3,2) = (1,2) >~ 1,1)

and therefore lack transitivity.

(3) If f(B) is interpreted as the actual joint choice from B (and not as a
set of recommended or plausible joint actions) and if the actions available to an
agent are mutually exclusive (as can be assumed without loss of generality), the
assumption that f is deterministic is almost tautological. One might argue that
the notions of rationalizability given in Definition 2 are improperly strong. To be
sure, weak versions could be defined by requiring that f(B ) be included in, rather
than equal to, the set of Nash equilibria or the Pareto set of (B, =1, %) for every
B. But every joint choice function would be noncooperatively and cooperatively
weakly rationalizable in this sense since we may always assume that the agents
are completely indifferent between all joint actions.

3. Proofs

Let us begin with the straightforward proof of Lemma 1.

Proof of Lemma 1. The “if” part is obvious. Conversely, suppose that the com-
plete and transitive preferences =1, 72 rationalize the deterministic joint choice
function f cooperatively. Let =12 be the Pareto relation associated with these
two preferences:

a?lgb@a;—lbanda>ﬂb.
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Though incomplete, =y, is transitive, We can therefore construct a complete
transitive relation 3=}, which is fully compatible with it in the sense that a =7, b
whenever a 5 b and ¢ >12 b whenever a 1, b.

It is easily seen that =1, team-rationalizes f. Fix B € Aand let f(B) = {6},
Then b* is the unique efficient joint action in (B,>;1,>;2). This implies that
b* =y bforallbe B, hence b* is a maximal element of =1 in B. Conversely, it is

Jjust equally clear that any maximal element of %}, in B must belong to f(B). m

Theorem 1bis will follow easily from Lemma 2 below. Fix two complete and
transitive preference relations 71,72 on A. Define the binary relation = on A as
follows:

a>bs[ag =byand a 3, b or [a; = b, and a 3, b]. (3.1)

This relation is incomplete: it only compares joint actions belonging to a same
row or a same column. Define the strict component = of %= in the usual way and
say that a threatens b if a > b. The relation > is acyelic if for every integer t and
every sequence a',a?,....at in A,

[a' = a? > .~ a'] = [not a* = a'].

In the statement and proof of Lemma 2, 3, #2, hence %=, are fixed. With a slight
abuse of language we call any B € A a subgame of A: it is understood that the
agents’ preferences are Fl, 20

Lemma 2. If every subgame of A has a unique Nash equilibrium, then the relation
> is acyclic.

Proof. Step 1. Preliminaries.

Let the assumption of Lemma, 2 be satisfied. Denote by >, >, the strict
components of 3=y, 3=, defined in the usual way and call 1, 72 essentially strict
if no two distinct joint actions in a row of A are indifferent to agent 2 and no
two distinct joint actions in a column are indifferent to agent 1: if a,b € A
and a) # by,ay # by, then 1) either a >, (b1,az) or a <, (b1,a2) and 2) either
a >3 (a1, b;) or a <, (ay, by). Since the assumption of a unique Nash equilibrium
applies to the subgames where two actions are available to an agent and one action
is available to the other, the preferences 1, »9 must be essentially strict.

Contrary to the claim, Suppose now that > is not acyclic. Let ¢ = {al, ..., a'}
be a cycle:

al'=a?> - ats gl

s ———



For future use we note that > obviously satisfies a restricted transitivity property:
if a, b, ¢ are three joint actions in a same row or column, a > b > c implies a > ¢.
It is then clear that the length t of the cycle C must be even. Moreover, to ensure
the existence of a Nash equilibrium in every 2 x 2 subgame, t > 4. We claim that
a shorter cycle bt = b? > ... > b7 >~ bl,q < t, necessarily exists. Once this fact
is established, repeated application of it eventually produces a cycle of length 4,
which is the desired contradiction.

To prove the fact, assume by way of contradiction that no cycle shorter than
C exists. We may then safely assume that all elements of C are distinct. We
may further assume that t < 2m, where m = min{m, ma}. Otherwise there must
exist three distinct joint actions in C belonging to a same row or column, say,
(@1,a2) > (a1,b9) =~ (a1,¢2), and C can obviously be shortened. There is no loss
in assuming that C has in fact mazimal length in A, Le, t = 2m : otherwise we
may replace A with some A’ € A in which C does have maximal length. Finally,
renumbering actions if needed, we may write the cycle C as follows:

(1,1) » (2,1)>—(2,3)>...>(m~1,m-—2)>(m—1,m)>(m,m)
- (m,m~l)>(m~2,m—1)>...>(3,2)>(1,2)>(1,1).

This is illustrated on Figure 1.! Define AL = Ay = {1,2, ...,m}. The rest of the
proof focuses on A’ := A x Ay

Two definitions will be useful. The four projections (on C) of a joint action
a = (a1,a2) € A\C are the four joint actions (e1,az), (o, a2), (a1, 02), (a),0h) €
C such that o7 < ¢f and a2 < oy The four conjugates of a are (cn,02), (o1, 0)s
(o}, @), (o}, ab). These definitions are illustrated on Figure 2. Note that a; =
of —2ifl <a; <m and o; = o, — 1 otherwise (for two distinct agents ,7)-
Observe also that one (but no more) of a’s conjugates might belong to C.

Step 2. Each joint action in ANC either threatens all its four projections (and we
call it dominant) or else is threatened by all of them (and we call it dominated).

To prove this claim, let a € ANC. We give a proof for the case when a lies
southwest of the cycle, i.e., ap > d2. The arguments are easily adapted to the
cases a; = ap and a; < az. Let us distinguish four cases corresponding to the four
positions for a numbered (1), (2), (3), (4) on Figure 3.

Case 1: (e}, a2) < {a1,as) and (a1, 02) < (a1, o).

10On all figures, joint actions correspond to vertices of the grid, not to cells.




Suppose a < (o}, a) (and therefore, by restricted transitivity of >, ¢ <
(e1,a2)). Then a < (a1, ap) for otherwise we could shorten the cycle C by replac-
ing the sequence

(a1,a2) < (a1,ah) < ... < (o, a3) < (a1, a,) (3.2)
contained in it with the shorter sequence
(a1, 09) < a < (a1, ap). (3.3)

Using restricted transitivity once more, we conclude that a is dominated.

Next, suppose a > (a4, a;). Then a > (a1, o) for otherwise we could replace
the sequence ’
(a1, 04) = (a,a9) = ... = (a1,a9) > (), ap)

with the shorter

‘ (a1,05) > a = (o, ay).
By restricted transitivity, ¢ >~ (a,, @3). This in turn implies g > (o, ay) or else
we could again replace sequence (3.2) with sequence (3.3). Thus a is dominant.

Case 2: (a},ay) » (a1,as) and (a1, a0) > (ai,ab).

The argument of Case 1 remains valid word for word if we interchange the
symbols “~” and “<” and the words “dominated” and “dominant”.

Case 3: (), a5) = (ay,a;) and {ay, ap) < (a1, d).

Suppose a - (o), as) (hence, a > (@1,a7)). Then a > (a1,a}), otherwise we
could replace the sequence

(a1,05) > (a1,03) > ... > (a7, a9) > (o, a3) (3.4)
in C with the shorter sequence
(a1,03) = @ > (a, ay). (3.5)

It follows that a is dominant,.

Next, suppose a < (o}, a;). Then a < (a1, &), otherwise we could replace the
sequence

(o}, a3) = (ag,a0) = ... = (a1,05) > {ay, o)

with the shorter
(ef,a3) = a > (a1, aq).
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By restricted transitivity, it follows that a < (a1, o), which in turn implies a <
(11, a2) for otherwise we could again replace (3.4) with (3.5). Thus a is dominated.

Case 4: (ailsa@) = (01702) and (a'laal?) - (alvag)'
The argument of Case 3 carries over provided we interchange “- and “<”
and “dominated” and “dominant”. This completes Step 2.

Step 3. If a joint action a in A\C is dominant, then all its conjugates which
belong to A\C are dominated. If a is dominated, then all its conjugates in A\C
are dominant.

To prove the first part of the above claim, let @ be a dominant joint action
in A'\C. Suppose, contrary to the claim, that one of a’s conjugates in A\C, say
o = {a1, o), is not dominated. By Step 2, « is dominant. By definition, o) # a1
and as # az, so that the set

B*(a;0) = {an, a1} x {az, a2} = {a, (a1, 02), (en, a2), o}

is a 2 x 2 subgame of A’. Moreover, (a3, a0) and (a1, a7) are two projections on
C of both a and «. Since a and « are both dominant,

a> (aj,a9),a - (o1,az),0 (a1, 00),0 > (a1, 09).

This means that a and « are two Nash equilibria of B*(q; a), a contradiction.

To prove the second part of the claim, suppose now that a is 2 dominated joint
action in A’\C and, by way of contradiction, that o is not dominant. By Step 2
again, «a is dominated. Therefore,

a = {aj,o2),a < (a1,a2), 0 < (a1, 00), 0 < (01, a2),

which means that (a1, a2) and (1, az) are now two Nash equilibria of B*(a; ).
This contradiction completes the proof of Step 3.

Step 4. End of the proof.

By Step 2, (2,2) is either dominant or dominated. Suppose it is dominated.
By Step 3, its conjugates (1,3) and (3,1) are both dominant. But this contradicts
Step 3 because (1, 3) and (3, 1) are also conjugates of each other. Similarly, if (2,2)
is dominant, then (1,3) and (3,1) are both dominated, which again contradicts
Step 3. M

Proof of Theorem 1bis. Let f be a deterministic joint choice function and let
%1, 39 rationalize f noncooperatively. For each B e A, (B,=1,%2) has a unique
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Nash equilibrium: call it a* (B). Define = according to (3.1) and let > be its strict
component. By Lemma 2, > is acyclic. This guarantees that for each g € A there
is a sequence

a=a' <ad’ <. <4 = a*(A).

Moreover, at least one such sequence has maximal length. Call this maximal
length ¢(a) and define %" as follows: for any a,b ¢ A,

a %" be ta) < 4(b).

This is obviously a complete and transitive relation. We claim that its set of
maximal elements in B coincides with f(B) for every B € A. If b* ¢ f(B), then
b* is not a Nash equilibrium of (B, *1,%2): there exists, say, (by,b3) € B such
that (by,b5) >, b*, hence (b1,b3) = b*. But then £(6*) > t(by1,b3), and b* is not a
maximal element of »=* in B. Conversely, if b* € f (B), then b* is the unique Nash
equilibrium of (B, %, »,). For any b € B\{5*} there is a sequence b < ... < b in
B. This implies that t(b) > t(b*), hence b* is the unique maximal element of =t
inB.m

Theorem 1 follows from Theorem 1bis and Lemma 1.
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