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RESUME

On considére I'estimateur des moindres carrés normalisé du paramétre dans un modéle
autorégressit quasi-intégré avec erreurs dépendantes. Dans un premier temps, on analyse sa
distribution asymptotique ainsi que son expansion asymptotique jusqu'a un ordre de O (T™).
La fonction génératrice de moment limite est dérivée, ce qui nous permet de calculer différentes
quantités de la distribution par intégration numérique. Des simulations sont utilisées pour vérifier
la fiabilité de Ia distribution asymptotique lorsque les erreurs sont correlées. On s'attarde a deux
cas particuliers : erreurs MA(1) et erreurs AR(1). Les approximations asymptotiques s’avérent
étre inadéquates lersque la racine MA s'approche de moins un et lorsque la racine AR
s'approche de moins un et de un. Cette analyse théorique permet d'expliquer et de comprendre
les résultats de simulations de Schwert (1989) et de DeJong, Nankervis, Savin et Whiteman
(1992) concernant le niveau et ia puissance du test de Phillips et Perron (1988). Un anicle
associé, Nabeya et Perron (1994), présente des structures asymptotiques alternatives dans les
cas ou la distribution asymptotique habituelle ne donne pas une approximation adéquate de ia
distribution en échantilion fini.
Mots-clés : modéle Quasi-intégré, convergence fonctionnelie, expérience de simulations,

processus de racine unitaire, modéles autorégressifs & moyenne mobile.

ABSTRACT
We consider the normalized least squares estimator of the parameter in a nearly

integrated first-order autoregressive model with dependent errors. in a first step, we consider
its asymptotic distribution as well as asymptotic expansion up to order OT™). We derive a

limiting moment generating function which enables us to calculate various distributional quantities
by numerical integration. A simulation study is performed to assess the adequacy of the
asymptotic distribution when the errors are correlated. We focus our attention on two leading
cases: MA(1) errors and AR(1) errors. The asymptotic approximations are shown to be
inadequate as the MA root gets close to minus one and as the AR root approaches either minus
one or one. Our theoretical analysis helps to explain and understand the simulation results of
Schwert (1989) and DeJong, Nankervis, Savin and Whiteman (1992) concerning the size and
power of Phillips and Perron’s (1988) unit root test. A companion paper, Nabeya and Perron
(1994), presents alternative asymptotic frameworks in the cases where the usual asymptotic
distribution fails to provide an adequate approximation {g the finite sample distribution.

Key words: near-integrated model, functional weak convergence, simulation experiment, unit

root process, autoregressive moving-average models.






L. INTRODUCTION

In an attempt to cover more general time series structures, it has become popular in
econometrics to consider models which permit both the regressors and the errors to have
substantial heterogeneity and dependence over time. On a theoretical level, this advance
has become possible due 10 a new class of functional central limit theorems which provide
the required asymptotic results. An integrated treatment can be found in White (1984) and
Gallant and White (1988). This approach made possible the analysis of a wide class of
models with substantial relaxation of the standard conditions. Examples include time series
models with unit roots (e.g. Phillips (1987a)), testing for structural change in a general
nonlinear framework (e.g., Andrews and Fair (1988)), and cointegration (e.g., Phillips and
Ouliaris (1990)). However, little is known about the adequacy of the Limiting distributions
as an approximation to the finite sample distribution in such a general {ramework. This
paper is a step in a systematic examination of this issue. We consider the leading case of a
dynamic first-order autoregressive model when the errors are allowed to be dependent and )
provide a detailed analysis of the behavior of the associated ordinary least squares
estimator. To be more precise, we consider the first~order stochastic difference equation:

Yo=ay g+, (t=1,..T), (1.1)

with ¥g Oxed. The least—squares estimator of a based on the sequence (yt}g is:

B=I{_ vy LN (1.2)
The distribution of & has been extensively studied, especially in the case where the
er7o1§ {u‘} are uncorrelated. Mann and Wald (1943) and Rubin (1950) showed that TI/Q(&
~a)l - 02)"1/2 has a limiting N(0,1) distribution when |a| < 1. White {1958) showed
that when |a| > 1, the limiting distribution of |0|T(02 - 1)'_1 {@~ o) is Cauchy provided
that y, = 0 and {u,} is normal. White also considered the cased le| =1 and showed that

the limiting distribution of T(a - 1) can be expressed in terms of the ratio of two
functionals of a Wiener process (see also Phillips (1987a)). The case of the unit root (a =

1) has attracted a great deal of attention. The asymptotic distribution of T{& - 1) has been
tabulated by Dickey (1976) via simulation methods (see also Fuller (1976) and Dickey and
Fuller (1979)) and by Evans and Savin (1981a) using numerical integration. Evans and
Savin {1981b) showed how the standard limiting distributions fail to provide adequate
approximations to the exact distribution when a is close to but not equal 1o one.
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Recently, a class of models which specifically deal with the presence of a oot close to,
but not necessarily equal to one, has been studied. These specify 2 near—integrated process
where the autoregressive parameter is defined by a = exp(c/T). The constant ¢ being a
measure of the deviation {rom the unil root case, the model may also be described as
having a root local to unity: as the sample size increases, the autoregressive parameter
converges to unity. When ¢ < 0, the process {r,} is said to be (locally) stationary and
when ¢ > 0, it is said to be (locally) explosive. An expression for the limiting distribution

of T(& - o) has been derived by Bobkoski (1983), Cavanagh (1986), Chan and Wei (1987)
and Phillips (1987b) L In the near-integrated context, with errors that are weakly
dependent, Phillips (1887b) showed that (under some conditions to be made precise later) :

T(a- )= { [Lanawa) + 6} {fg Jc(r)2dx}_l , (1.3)

: 2 2 2 ; ~1e2 t 2 .
vith § = (o8 = aD)ji2dD), oF = limp QE(TTSTh Sy = Topup 0y = BT

T'lE(E'{ﬂu%), Jc(r) = f6 exp((t - s)c)dW{r) with W(r) the unit Wiener process.

Tabulations of the limiting distribution {1.3) with § = 0 have been obtained by
Cavanagh (1986), Chan (1988), Nabeya and Tanaka (1990) and Perron (1989) using
different procedures. These studies also assess its adequacy 3s an approximation to the
finite sample distribution when a is near 1. They show the approximation to be quite good
in the case where ¥g = 0. Person {1991a,b) also considers 2 continuous time approximation
which performs well even in the case where yg # 0. These asymptotic distributions provide
substantial improvements over the traditional asymptotic framework when o is in the
vicinity of one because they are continuous with respect to the autoregressive parameter a.

However, most of the evidence about the adequacy of the approximation pertains to
the case § = 0, i.e with no correlation in the residuals 2. The purpose of this paper is to
investigate this adequacy when the errors are dependent. Section 2 discusses the limiting

distribution of T(& - o) and extends Phillips’ (1987c) Op(T") expaixsion to the
near-integrated setting. The results of Perron (1991a) are used to derive appropriate
limiting moment-generating functions. These permit the calculation of the cumulative
distribution functions and the moments of the asymptotic distributions. In Section 3, we
present simulation experiments to compare the asymptotic tesults with their finite sample
counterparts. We concentrate on two leading cases, namely:

MA(1) errors : u, =¢ + be, y+ (1.4)
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AR(1) errors : u = puy te, (1.5)

with e, ~ iid. N({0, az) random variables. The results show the asymptotic distribution to
be a very poor guide to the finite sampie distribution, even for large sample sizes, when 4
{in the MA case) or p (in the AR case] are close to — 1. When g is close 1o 1, the
approximation is not as bad but the approach to the limiting distribution is slow. Section 4
presents results for the Op(x) asymptotic approximation in the cases where a constant or a
constant and a trend are included in regression (1.1). Section 5 provides some concluding
comments and an appendix contains mathematical derivations.

2. THE LIMITING DISTRIBUTION OF T(a - a)

This section considers the limiting distribution of the pormalized least-squares

estimator T(a - a) in the near-integrated model with dependent errors. We also consider
its asymptotic expansion up to order Op(T"). As a matter of notation , we denote wezk

convergence in distribution by '==’ and equality in distributicn by ’g’. The asymptotic
analyses below can be obtained under various conditions upon the error structure. We
consider those of Berrndorf (1984) involving the concept of strong mixing.

ASSUMPTION 1: (a) E(ut) = 0; (b) sup, E| ut[ﬂﬂ < o0 for some § > 2 and ¢ > 0 (c) o?
= I’ImT-‘oo T_IE(S‘;) ezists and o > 0, where S, = Ejuj s {d) {uz}ojo is strong mizing with

mizing numbers a that satisfy: Eof arf‘—g/ﬁ < o0,

When the sequence {u‘} Is strictly stationary condition (c) is implied by (a), (b) and

(d) and o* = 2nf (0) , where f,(0} is the non-normalized spectral density function of {8}
evaluated at frequency zero. When considering the asymptotic expansion of order Op(T‘l)
the following additional restriction will be imposed on the sequence of errors {u,}.

ASSUMPTION 2: {14!}010 is @ Gaussian weakly stationary sequence.

Consider the construction of random elements defined by: Xp(n) = T_l/za“ls(.rx] =
'.P"/%“sj_l {(i- 1)/T ¢t < i/T; (j = 1,..,T)). From Berrndorf (1984), the following
functional central limit theorem holds under Assumption 1:

XT(I);‘: Wi(r). (2.1)
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Phillips (1987b) proved (1.3) under the conditions of Assumption 1 using the result (2.1).
We consider bere an extension of his {1987¢) resuit concerning the asymptotic expansion up

to order OP(T") of T(& - o). The following Theorem is proved in the Appendix.

THEOREM 1: Let Jc(T) = f; exp((r-s)c)dW(r), & = (02 - ai)/(?.ae} with ai =limyp,
T—JE(ET____luf) and 02 as defined Assumption 1; 7 = yo/(aT1/2 , 02 = Qxfu,({]}, with
fuz(O) the non—normalized spectral density function of{uf - E(uf)} at frequency 0; 715 8
N(0,1) variable independent of the Wiener process W(r). Under Assumptions 1 and 2:

T(a - o) & B(el/K(en) + Op(T ).
where Hiey) = fé]c{r)dW{r) +6+ 'yf éezp(cr}dW(r} - (v/(?aQTI/Q))r; ,

and Klc,n) = fé]c{r)gdr + 2’7f éezp(cr)]c(r)dr.

With the normalization oz = 1, the following specifications of the various parameters
apply. For the MA(1) case: ai =1+ 02, 0% = (1+ 9)2. bence & = 8/{1 + 0)2 and 7= ¥,
/[T1/2(1 + §)]. Also, A =21+ 4P+ 6’4) In the AR(1) case we have: 0‘2} = {1~ pg)’l,

2 = (1- )% hence 6= p/(1 + p), 7= Yo(l - T ana b2 = 201 + A0 - 6
We now characierize the joint moment-generating function of {B(c,7), K(&,1}, which we
denote by MGF(v,u) = Elexp{vH(c,7) + uK(e, M}

THEOREM 2: Let g = u/(?aeTl/zj, d= '72(32;3(21:) - 1)/%and A = {c2 + Scv - 2u)1/2
the joint moment— generating function of {H(c,7), K(c )} is given by:

MGF(uv,u) = ezp(vé — vd + v292/2) M, v(v,u),
where M, _y(v,u) = ﬁ:c(v,u)wp{- (12/2)(0 +c-A)1 - exp(v+c+ A)g:f(v,u})} s

and wc(v,u} = {2)\::;7(— (v+ )/ +v+ Jezp(-A)+{A - v - c)erp{k)]}}/g.

Theorem 2 allows direct computation, by numerical integration, of the cumulative
distribution function and the moments of the asymptotic distribution. Let the joint
characteristic function of {B(c,7): K{c,7)} be CF(v,u) = MGF(iv,iu) = Elexp{ivB(c,7) +

iuK{c,7)}}. From Gurland (1948), the limiting distribution function of T(a - a)is:



Fz) = (1/2) - (1/7) [ TIMICF(v,-v2)/v]dv, (2.2)

with IM(-] the imaginary part of the complex number. The moments of the asymptotic
distribution can be obtained using Mehta and Swamy's (1978) result, such that:

y=p du - (2.3)

E[B(e,7)/K(e, )] = (07! [ u‘“l{a’ MGF(v,—-u)/avr}

These results allow computation of distributional quantities for a variety of processes.
The usual asymptotic distribution (1.3) can be obtained by letting g = v = 0, then:

MGF(v,u) = exp(v&)wc(v,u) , . (2.4)

where wc(v,u) is defined in Theorem 2. The next section makes extensive use of Theorem 2,

(2.2) and especially (2.4), to calculate the asymptotic distribution of T(& ~ a) when the
errors are MA(1) or AR(1) processes. The numerical integrations were performed using the

subroutine QDAG of the IMSL library. The bounds of integration are (¢, V) where V is set

such that the square of the integrand evaluated at V is less than ¢ The error criterion for
the numerical integration was also set at ¢. For most experiments we used ¢ = 1.0E-07 3.

3. APPROXIMATING THE EXACT DISTRIBUTION OF T(a - a)

This section considers the adequacy of the asymptotic distribution as an
approximation to the finite sample distribution. The asymptotic values are obtained using
the results of Section 2 and the finite sample values are obtained via simulations. As
discussed in the introduction, we consider two leading cases where the error sequence is
either an MA(1) or an AR(1) process. As we will see, these cases are sufficient to provide a
rich characterization of the relationship between the finite sample results and their
asymptotic counterparts. Given that our aim is mainly oriented towards studying the effect
of correlation in the errors we consider only the case where yg=0.

The experiment is as follows. For each of the MA and AR cases we consider three
values of ¢, namely ¢ = 0 (unit root), - 5 {locally stationary) and 2 (locally explosive). For
each we consider the following specifications for the errors % 2) MA(1) case, 6 = - .9, -7,
=5, -3 and .§; for the AR(1) case, p = ~.9, -5, .5, .8 and .95. We consider sample sizes of
length T = 25, 50, 100, 500, 1000 and 5000 (though we do not report results for every
sample sizes in each cases). The finite sample results are obtained using 10,000 replications
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(5,000 when T = 5,000). The asymptotic results for the cumulative distribution function
are obtained using {2.4) for the Op(l) asymptotic framework .

3.A. The MA(1) Case.

Consider first the percentage points of the distribution of T(& — a) in the MA(1) case
presented in Tables 1 for ¢ = 0. With § = .5, the asymptotic approximation is excellent,
even for small sample sizes. Further experiments {not reported) confirm this adequacy for
any process with positively autocorrelated MA(1) errors.

When # is negative the picture is rather different. Here the adequacy of the
approximation depends very much upon the magnitude of 8 and deteriorates quite rapidly
as @ approaches —1. For different values of # the asymptotic distribution adequately
approimates the finite sample distribution for the following sample sizes: § = -3, T 2 500,
§=-5,T>1000;8=-T7, T » 5000; and when § = -9 the asymptotic distribution is
still quite far away from the exact distribution when T = 5000. The differences are
substantial. For example, the 1% point of the exact distribution when § = -9 and T = 50
corresponds approximately 10 the 95% point of the asymptotic distribution.

The same qualitative results hold when ¢ is — 5 or 2. Figures 1 and 2 present results for
the case & = —.9. The main difference is that the approximation is marginally better with
an explosive process (¢ = 2) and marginally worse when it is stationary (¢ = -5) &.

3.B. The AR(1) Case.

Consider now the case where the errors are AR(1). The results for ¢ = 0 are presented
in Table 2. The picture is quite different from the MA(1) case. For p < 0, the
approximation is again inadequate and worsens as p approaches - 1. However, for
comparable values of ¢ and § the approach of the fnite sample distribution to the
asymptotic distribution is faster in the AR(1) case than it is in the MA(1) case. For p =
.5, the asymptotic approximation is adequate for T 2 500, and for p = -9 when T 2 1000.
For smaller sample sizes there are important discrepancies especially when p = -8
However, the discrepancies are not as severe as in the MA(1) case. For example, when T=
50 and g = ~.9, the 1% point of the exact distribution corresponds roughly to the 30%
point of the asymptotic distribution {in the MA(1) case the first percentage point of the
exact distribution with § = -8and T = 50 corresponds to the 90% point of the asymptiotic
distribution). Similar qualitative results hold in the stationary (¢ = ~5) and explosive (¢ =
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2) cases. When ¢ = -5, the adequacy is marginally inferior and when ¢ = 2, it is marginally
supenor. These results are illustrated in Figures 3 (¢ = -5) and 4 (¢ = 2).

The AR(1) case with positive autocorrelation offers vet a different picture. First,
unlike ail the cases considered so far the approach of the finite sample distribution to its
asymptotic counterpart is from a density with a larger spread to one with a smaller spread.
Secondly, the differences between the finite sample and asymptotic percentage points are
not subsiantial. For example when p = S and T = 25, the tenth percentage point of the
exact distribution corresponds roughly to the fifth percentage point of the asymptotic
distribution. Nevertheless, what is interesting, and different from the MA(1) case with
positive coefficient, is the fact that the approach to the asymptotic value is quite slow. The
tail of the exact distribution is not well approximated until T = 500.

When ¢ = - 5 and ¢ = 2, the same qualitative behavior remains as in the case where ¢
= 0. The case p = .9 is illustrated in Figures 5 (¢ = ~3) and 6 (¢ = 2). The approximation
is again marginally better with ¢ = 2 and marginally worse with ¢ = ~ 5. However, some
differences emerge. When ¢ = - § we notice a difference from the cases where p > 0 and ¢
= 0 or 2. The right tail is better approximated by the asymptotic distribution even for
quite small sample sizes {eg.p=9and T = 25). Secondly, when compared to the positive
MA case, there is much more movement in the percentage points as ¢ varies.

The results above suggest that the quality of the asymptotic approximation is heavily
dependent on the nature and extent of the correlation in the residuals. With negative
autocorrelation, the approximation becomes rapidly useless as the magnitude of this
correlation increases, both in the MA(1) and AR(1) cases. In the AR(1) case with positive
autocorrelation, the discrepancies are not as severe but the approach to the asymptotic
distribution remains quite siow. Only in the MA(1) case with positive autocorrelation is
the approximation adequate, indeed as good as in the case without correlation.

3.C. The Moments of the Distributions.

We also performed an extensive analysis of the bebavior of the mean and variance of
the exact and asymptotic distributions. For reason of space constraint, we report only the
figures for values of ¢ and § ot p presented in Tables 1 and 2. The asymptotic results were
obtained using numerical integration of the function in (2.3) 1.

Consider first the mean of the distribution when ¢ = 0. For the MA case and 42 0, the
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the asymptotic value is basically equal to the exact value when T » 100. When T < 100,
the discrepancies are minor. When ¢ < 0, the picture is different. As f# approaches minus
one, it takes an increasingly larger sample size for the mean of the exact distribution to
correspond to its asymptotic value. When § = - .1, a sample of size 100 still appears
enough but there are larger discrepancies with smaller sample sizes compared to the case
where 82 0. When 4 is between ~ .2 and - .5, a sample of size 500 is pneeded to ensure a
satisfactory approximation. When g = - .6, a sample of size 1000 is needed and when § = ~
7 or - 8, the corresponding figure is T = 5000. Finally, when § = — .9 or - .95 even 3
sample size as large as 5,000 is not sufficient to provide an adequate approxmation. Of
particular interest is the fact that when § ¢ — .5, the mean of the finite sample distribution
changes very rapidly as T increases. Hence, for this part of the parameter space, the
asymptotic distribution provides a very bad approximation to the mean of the exact
distribution when the sample size is not very large.

Consider now the AR(1) case. Whea o ¢ 0, the picture is similar to that of the MA
case, except that the discrepancies between ihe mean of the asymptotic and exact
distributions are not as severe. When p is between -1 and -.5, the exact mean attains s
asymptotic value when T reaches somewhere between T = 100 and T = 500. When p is
between —.§ and .85, the correspondence is achieved with a sample size somewhere
between T = 500 and T = 1000. When p > 0, the picture is different. With p between .1
and .5, a sample size as small as 50 is enough to provide an adequate approximation. When
p = .7, a sample of size 100 is needed, and with p = .9 or .95, the corresponding fgureis T
= 500. Also of interest is the fact that when p is between .5 and .95, the mean is positive
{unlike all the other cases considered). Note that, in all cases considered, the exact mean
approaches its asymptotic counterpart in a monotonically decreasing way ®.

With ¢ = ~ 5, a locally stationary process, the asymptotic approximation is, in
general, less good than with ¢ = 0 for both the MA and AR cases. That is, for a given for .
p and sample size T, the discrepancy between the exact mean and its asymptotic
counterpart is greater. A feature that is different, however, is the fact that when § or p are
greater than .3, the approach to the asymptotic value is achieved in a mosotonically
increasing way. When ¢ = 2, the locally explosive case, the general features are similar but
the discrepancies between the exact and asymptotic results are not as severe, compared to
both cases where ¢ = 0 or - 5. As was the case with ¢ = 0, the approach to the asymptotic
value is monotonically increasing with T. A small difference from earlier cases is that,
snless T is small and p = .9 or .85, the mean of the distribution is negative.
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Tables 1 and 2 also present results for the variance of the distribution. For the case of
2 unit root process, ¢ = 0 with MA(1) errors (Table 1), the general features are similar to
the ones for the mean of the distribution. Aa interesting difference is that when £ < 0 the
approach to the asymptotic value appears to be slower. For example, when § = -7 and T
= 1000, the mean of the exact distribution is quite close to the mean of the asymptotic
distribution, but the variance is still quite far away. Of particular interest is the fact that,
for a given 6, the exact variance approaches its asymptotic value in a mopotonically
increasing way. However, for a given sample size, the varance does not inCrease
monotonicaily as @ approaches - 1. For example, with T = 50 the variance of the

distribution of T(a ~ a) is 66.38 (4 = -5), 14237 (§ = -.7) and 119.64 {§ = ~9)9

Much of the same features apply in the AR case (Table 2); in particular the
discrepancies between the exact and asymptotic values are not as severe as for the MA(1)
case. Some interesting features are, however, different from the MA(1) case. First, for a
given sample size, the variance is mounotonically increasing as p approaches — 1. More
importantly, when g > .3 the exact variance approaches its asymptotic value in a
monotonically decreasing way unlike the case with negatively correlated MA(1) or AR(1)
errors. This feature will prove of interest whes considering the asymptotic expansions. The
behavior of the variance when ¢ = - 5 or 2 is similar to that when ¢ = 0. As was the case
for the mean, the discrepancies are more severe with ¢ = ~ § and less so with ¢ = 2. Apart
from this, 2 notable difference is that in the MA(1) case with 6> .1 and ¢ = 2, the exact
variance now decreases monotonically towards its asymptotic value.

3. D. The Op(T'l) Expansion.

Note first that the use of the O (T-1) asymptotic expansion does not provide any
improvement over the usual O (1) asymptotic distribution when considering the mean of
the distribution. Indeed both of them yield the same mean since the Op(T") expansion
does not provide any location adjustment given that the extra term n has mean zero and is
independent of the Wiener process W(r) present in the other components.

The Op(T'!} asymptotic expansion -provides, in contrast, an adjustment to the
variance of the asymptotic distribution. However, given the independence of 7 and the
Wiener process W(r), the O_(T+!) expassion vields a higher variance than the O_(1)
asymptotic distribution. As we saw, for most cases, the exact variance is smaller than the
asymptotic variance. In these cases, the asymptotic expansion should provide a less
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accurate approximation to the exact variance than does the O_{1) asymptotic distribution.
Since the asymptotic expansion does not provide, in most cases, an ad justment to the mesn
of the asymptotic distribution, it follows that it should provide a poorer approximation to
the exact distribution as 3 whole. An instance where it could yield 2 better approximation
to the exact variance is when the variance approaches its asymptotic value in a decreasing
way. This occurs with AR({1) errors and p 2 0.3. Even in those cases, the expansion would
provide a better approximation overall only if the mean is fairly stable as T increases. In
our experimental setting, 1his is the case only when p is near 05andc=00r2

We performed many calculations related to the distribution of this asymptotic
expansion. As an illustration of the gualitative results, we present in Tables 1 and 2
pumerical values for T = 50 {other results are available upon request). Overall, the
O _(T-) expansion provides a worse approximation than the standard O?(l) asymptotic
distribution. There are, however, several interesting features that emerge.

Consider the case of MA(1) errors. The first striking feature is that the asymptotic
distribution provides an improvement in the right tail of the distribution but a worse
approximation in the left 1ail. This asymmetric feature is interesting because it is indeed in
the left tail that the asymptotic distribution is so inaccurate for negative moving-average
coefficients. The expansion can therefore be viewed, in a sense, as providing a useful
correction where it is easy t0 do so, i.e. where the discrepancies between the exact and
standard asymptotic distributions are least severe. Other noticeable features include the
fact that the improvement is better as we move further in the right tail and worsens a3 the
moving-average coefficient varies from positive to negative.

Consider now the case of AR(1) errors. When p = -5, we observe the same pattern as
with negative MA(1) errors; the expansion provides a worse approximation in the left tail
but is surprisingly accurate in the right tail. When p = ~.9, the approximation is worse in
the left tail and better for the median. However, we now observe a substantial
overcorrection in the right tail such that the expansion is again a worse approximation
than the standard asymptotic distribution.

As discussed above, the expansion i§ Likely to provide 3 better approximation 10 the
overall distribution in the case of AR(1) errors with positive coefficient. We now discuss
this case in more details. With p = .5, the asymptotic expansion provides 3 substantial
improvement in the left tail of the distribution. For example, the first percentage point
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with T = 50 has an exact yalue of - 4.47; the Op(}) asymptotic value is —4.23 while the
Op(T‘l) value is —4.53. When p is closer to 1, the asymptotic expansion still provides an
improvement in the left tail of the distribution but not as significant. This is due to the
fact that the Op(T'.‘) expansion provides no adjustment to the mean of the distribution
and as p approaches 1 the mean of the distribution decreases substantially as T increases.
These observations are consistent with the fact that the O_(T-) expansion also provides an
adequate adjustment to the variance of the distribution when p = 0.5, but that it
deteriorates rapidly as g approaches 1. The results concerning the right tail of the
distribution are quite different. Here, the O (T~1) expansion provides no significant
improvement over the usyal Op(l) asymptotic distribution for any value of p considered.

The results are similar when ¢ = -5, namely an improvement in the left tail of the
distribution especially when p = 5. The approximation for the variance is better when p =
-5 but the improvement diminishes as p gets closer to one. With ¢ = 2 and p = .5 the
expansion provides a slight improvement for the 1% and 2.5 % points, but a worse
approximation for the 5% and 10% points. The improvements in the night tail of the
distribution and in the variance are marginal. When p = .9 or .95, there is very little
improvement; indeed there is little change in the Op(T'*) distribution as T changes.

3. E. A Possible Explanation Related to Further Research.

Some insights about the results described above can be gained by looking at the
behavior of the parameter § in the asymptotic distribution given in Theorem 1. In the MA

case § = 6/(1 + 0)2 which becomes unbounded when ¢ approaches - 1, and decreases to 0
as fincreases. In the AR(1) case § = /{1 + p) which diverges to - oo as p approaches -1
but at a smaller rate than in the MA(1) case. When # approaches 1, § approaches 1/2.

These considerations lead to the following conjectures. First, the asymptotic
distribution is a bad approximation when # approaches — 1 because the asymptotic

distribution of T{& - a) with § approaching - 1 is unbounded. However, when @ approaches
1 the asymptotic distribution is still valid. In the AR(1) case, the asymptotic distribution

of T(& ~ ) is again unbounded if p=~1 25 T = oo . However, the rate at which p may
approach - 1 1o obtain a non—degenerate Jocal asymptotic distribution is higher in the
AR{1) case than it is in the MA(1) case. This would explain the relatively smaller
discrepancies in the AR(1) case for a given equal value of 8 and #. On the other hand, when
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p apptoaches + 1 as T = oo, T(& ~ a) still has 2 non—degenerate asymptotic distribution
but different from that given by {1.3). These conjectures aze verified in 2 companion paper,
Nabeya and Ferron (1994), where the relevant Jocal asymptotic distributions are derived
and tabulated. It is shown that shese local asymptotic distributions provide very good
approximations to the finite sample distributions. Their characterization also helps in
further undersianding the reasons for the failures of the usval asymptotic distribution.

4. EXTENSIONS TO CASES WITH FITTED INTERCEPT AND TREND.

1n this section we consider extensions to cases where an intercept or an intercept and a
trend are included in the first-order autoregression. Given the patwre of the results
discussed for the leading case in the previous sections, we concentrate on the quality of the
standazd Op(l) approximation (the asymptotic expansions and the moments of the
distribution are noi covered). To be more specific consider the following regressions:

yo=pt oyt (4.1)
o=t fo+ oy + oy (4.2)
The least-squares estimator of ain (4.1) is denoted a2 and the one from (4.2) by 63,

We study the behavior of the statisties T(& - o) (i = 2, 3) when the series {yx} is
generated by (1.1) with a = exp(c/T) and yg = 0. The cumulative distribution functions of

the limiting distributions of T{&, - a) can be obtained from results in Nabeya and Tanaka
(1990) (see also Nabeya and Serensen {1993)) and are stated in the following Lemma.

LEMMA 1: Let Fi{z) = limT_mP[T(&i - )¢ 2] (i =2 3) where by and ag are the OLS

estimates of o in (4.1) and (4.2), respectively. Assume that {yt}g is generated by (1.1) with
o = ezp(c/T) and let § be defined as in Theorem 1. We have:

Fyf2) = (1/2) + (1/7) [ (1/01M(cffs, 2))dv (i=223
where cfifv, 2) = ezp(i(1 - 26)v - c/2){Di(2iv,z)]'1/2 with
Dy 2) = Eeoshiu) + (01 - cosh(w))/ut (et ~ der(z + ¢) - 0?)

+ (sinh(u)) (-5 + Ex - oz + ) - 2%
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Dy}, 2) = (coshiu)/u®{c® - 12053 + 2A(2ec)(-c* + 1265 - 12¢%) + 40022 - g +3))
+ (1 = cosh(u)/u ) ar(~c + 6c) + 163%cH = 55 - 9 4 150 - 18)
+ 8+ )~ 3t 4 AN - 0 sty
+ 16A2(z + c}g(’-cs + 32 - 6c + 6))
+ (sink()fu N =c7 4 AP 4 24eh) + 02=cd v 30~ 97e? 4 700 - 72)
‘ + 2A(z + c)(c‘s - Jc‘ -12¢7 & 1868 - A4 4)«2(c? -3¢+ 3))
+ 1632 + )2c? - 5c 4 3,
where u = (%~ oA(z + ¢))}/2

Lemma 1 allows us to obtain percentage points of the limiting distributions using

numerical integrations 1°. Results concerning the distribution of T(&, - o) where an
intercept is included are presented for the leading case ¢ = 0 in Table 3.a for MA(1) errors
and in Table 3.b for AR(1} errors. We consider only a subset of the cases discussed earlier,
namely 6 = -9, -7 and -.5 in the MA(1) case; and p = ~.9, ~.5 and .9 in the AR(1) case.

Consider first results pertaining to the MA(1) case in Table 3.a. The qualitative
picture is similar to the case where no intercept is included in the regression. The quality of
the asymptotic approximation deteriorates as the moving-average parameter § approaches
-1 and becomes inadequate even for very large sample sizes when #is -.9. An interesting
feature to note is that for small values of T (e.g. T = 50, 100) the differences in the exact
critical values are small with and without an intercept included. A shift of the distribution
to the left occurs as T increases and this shift is substantial for the asymptotic distribution.
The fact that the leftward movements of the distributions are greater than in the no-
intercept case as T increases implies larger discrepancies between the exact and asymptotic
distributions. For example, when T = 100 and 4 = -0.9, the 1% point of the exact
distribution corresponds roughly to the 99% point of the asymptotic distribution; when T
= 100 and § = -0.7 the 5% point of the exact distribution corresponds roughly to the 50%
point of the asymptotic distribution. When § = -.5, the leftward shifts in the distribution
are relatively important for both the finite sample and asymptotic distributions.
Nevertheless, the adequacy of the asymptotic approximation is worse compared to the case
where no intercept is included.
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The same qualitative results hold when ¢ = - 5 or 2. Figures 7 and 8 present resujts
for the case § = —.9. Compared to the case where ¢ = 0, the main difference is again that
the approximation is marginally better with an explosive process (¢ = 2) and marginally
worse when it is stationary (¢ = -5). Compared to the case with no intercept {see Figures 1
and 2), it is evident that for each T the adequacy of the asymptotic approximation is worse
when an intercept is included for both the explosive and statiopary cases.

Consider now results pertaining to ibe case where the errors are AR(1) presented in
Table 3.b. For negative values of p, the qualitative results are similar to those in the
MA(1) case. The adequacy of the asymptotic approximation is worse when an intercept is
included. For example, with g = .9 and T = 100, the 1% point of the exact distribution
corresponds roughly to the 10% point of the asymptotic distribution when no intercept is
included whereas if one is included the 1% point of the exact distribution corresponds
roughly to the 30% point of the asymptotic distribution. For p = -5, the asymptotic
distribution could be considered an adequate approximation 10 the exact distribution for T
greater than 100 in the no-intercept case. Now it is adequate only for T greater than 500.
When p = .9 ope first notes the leftward shift of both the exact and asymptotic
distributions compared to the case where no intercept is included. Again the asymptotic
distribution is a good approximation 10 the exact distribution when T = 500. It is,
however, less accurate than in the no-intercept case for smaller values of T (eg. T = 50}

Figures 9 and 10 present results for the case ¢ = =5 with f = -8 and .9. Compared t0
the case where ¢ = 0, the main difference is again that the approximation is marginally
worse. Compared 10 the case with o intercept (see Figures 3 and 5), it is evident that the
adequacy of the asymptotic approximation is worse when an intercept is included.

The results concerning the distribution of ’1‘(&3 - a) for the case where an intercept
and a trend are included are first presented for the leading case ¢ = 0 in Table 4.2 for
MA(1) errors and in Table 4.b for AR(1) errors. We consider the same subset of
specifications as in the intercept only case. :

The qualitative picture is again similar except that now the discrepancies between the
exact and asymptotic distributions are even bigger for any sample size. Consider the
following examples. First, when § = -9 and T = 1000, the 1% point of the exact
distribution corresponds roughly to the 90% point of the asymptotic distribution. Second,
even when T is as large as 5000 the differences are substantial, viz. the 1% point of the
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exact distribution corresponds roughly to the 20% point of the asymptotic distribution,
The inaccuracies are oot as severe when 8 = .7 or -5 but are nonetheles more important
than in the case where no intercept or only an intercept is included in the regression.

These dramatic differences between the exact and asymptotic distributions are well
captured in Figures 11 and 12 which present results for the case # = ~.9 with ¢ = -5 and 2.
respectively. Comparing with Figures 1 and 2 (no intercept case) and Figures 7 and 8
(intercept included), one clearly sees a gradual deterioration in the quality of the
approximation as the number of included deterministic IEgIessors increases.

Consider now results pertaining to the case of AR(1) errors presented in Table 4.b for
the leading case ¢ = 0. For negative values of p, the qualitative results are similar to the
those in the MA(1) case. The adequacy of the asymptotic approximation is worse when an
intercept and a trend are included. For example, when p = ~§ and T = 50, the 1% point of
the exact distribution corresponds roughly to the 50% point of the asymptotic distribution
in the no trend case whereas if a trend is included it corresponds roughly to the 90% point.
These discrepancies are well illustrated for the case ¢ = -5 in Figure 13 (compare to
Figures 3 and 9) which shows again the deterioration in the quality of the approximation as
the number of deterministic components included in the autoregression increases. For
positive values of the autoregressive coefficient (with results presented for p = .9), we
observe, as in earlier cases, that the asymptotic distribution is a good approximation to the
exact distribution for T = 500. However, we see that for smaller sample sizes, the quality
of the approximation deteriorates as the number of included deterministic components
increases, more so as T gets smaller. This feature is well illustrated in Figure 14 which
considers the case ¢ = -5 and p = .9 1o be compared to Figures 5 and 10.

5. CONCLUDING COMMENTS

We characterized and tabulated the asymptotic distribution of the normalized least —
squares estimator in a nearly integrated autoregressive process allowing dependence in the
errors with emphasis oo MA(1) and AR(1) processes. These were sufficient to provide a
rich array of cases. Special attention was given to the adequacy of the standard asymptotic
distribution as an approximation in finite samples. We showed that, in a substantial part
of the parameter space, the approximation is seriously inadequate. An implication of our
results is the inherent danger associated with an asymptotic framework that allows very
general conditions with respect to the type of dependence permitted. There appears to be a
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tradeoff between generality in the conditions and the sample size needed for the asymptotic
distribution to provide a reasonable guide to the finite sample distribution. While this
conclusion is drawn from a simple model, it should extend to more general models.

Our analysis can also be viewed as a step in 2 more complete analysis of the adequacy
of asymptotic distributions of tests allowing general dependence and heterogeneity.
Examples include the class of anit root tests proposed by Phillips {1987a) and Phillips and
Perron (1988) as well as those involving the Newey-West {1987) corzection in more general
structural models. In practice, the statistics are used with correction factors that eliminate
asymptotically the dependence of the asymptotic distributions upon nuisance parameters.
Our analysis has direct implications for the behavior of such transformed statistics.
Suppose that the correction factor adequately approximates the asymptotic correction
necessary to eliminate the dependence upon the puisance parameters. Our results would
stil imply an inadequate corrected statistic as the asymptotic distribution of the
uncorrected part is far from the finite sample distribution in an important range of the
parameter space. In a sense, the fnite sample distribution would bear an adequate
correspondence t0 the asymptotic distribution by fortuitous cancellation of approximation
errors for the distribution of the original statistic and the correction factor. Such a
situation is unlikely to occur as demounstrated in the case of unit root tests in the
simulations of Schwert (1989) and Dejong, Nankervis, Savin and Whiteman (1992) and the
analytical results of Paptula (1991). Their results about size distortions in finite samples
can be explained by the poor approximation provided by the asymptotic distribution of

T(& ~ 1) which forms the basis of the transformed statistics. These issues are analyzed
analytically for the Phillips—Perron (1988) test and related ones in Ng and Perron (1993)
using the local asymptotic framework laid out in Nabeya and Perron (1994).
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FOOTNOTES

This paper is a revised version of Sections 2, 3 and 4 of Perron (1590b). The other
parts of that earlier draft are now the object of a companion paper, Nabeya and Perron
(1994). Some material in the present paper were initially investigated as part of 3 joint
project with Peter C.B. Phillips in the spring of 1986; 1 which to thank him for his help
during this initial stage. 1 also wish 10 thank Seiji Nabeya for useful comments. This
research was supported by grants from the Social Sciences and Humanities Research
Council of Canada, the Natural and Engineering Council of Canada and the Fonds
pour la Formation de Chercheurs et I’Aide 4 la Recherche du Québec.

This framework has been quite useful in studying various problems such as the power
of tests of a unit root under local alternatives Phillips (1987b), Phillips and Perron

) §1988) and Perron (1990a)), the derivation of confidence intervals when a is near unity

Cavanagh (1986) and Stock (1991)) and the power of tests of a unit root with a
continuum of observations (Perron (1989)).

An exception is Nabeya and Tanaka {1990) which contains some results when the
errors are correlated.

In principle, the computation of the exact fnite sample distribution is possible using
Imhof's (1961) routine or a variant of it. However, given the sample sizes analyzed here
{up t0 5,000) such an approach becomes practically infeasible.

A much wider range of experiments were performed. For the sake of brevity we report
only a subset of the results. Some comments made in the text pertain to the full set of
results, however. These are available upon request.

Special care must be taken with the numerical integration since it involves the square
root of a complex valued quantity. The use of the principal value may not ensure the
continuity of the integrand. The numerical integration must be performed over
Reimann surfaces consisting here of two planes. The method is described in more detail
in Perron (1989).

The full set of results is available upon request. Tabulated critical values for an
extended range of values for 4 are available in the working paper version.

The specifications are basically the same as in the numerical integration of the
distribution function, except that here the integrand does not involve complex valued
quantities, so only straightforward numerical integration routines are needed.

Some slight exceptions to this rule occur for large values of T because of sampling
variability induced by the simulations.

These features are further discussed in Nabeya and Perron (1994). In particular, the
alternative asymptotic framework derived in that paper can explain them.

These were performed in double precision FORTRAN using the subroutine DCADRE
of the IMSL library. Again, the bounds are (¢, V) where V is such that the square of

the integrand evaluated at V is less than ¢. The error {or the numerical integration was
also set at ¢. For most experiments we used ¢ = 1.0E~07.
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MATHEMATICAL APPENDIX

Proof of Theorem 1: The proof relies on Theorem 3.1 of Phillips (1987¢) which shows that
under the conditions of Assumptions 1 and 2 we have:

Xple) € We) + Op(T'l). (2.1)

where d signifies equality in distribution. Using {A.1) we can prove the following Lemma
related to the sample moments of {yt}‘

LEMMA A.1: Let {yt} be generated by (1.1) with a = ezp(c/T) and let the inncvation
sequence {ut} satisfy the conditions of Assumpiions I and 2, then:

-1/2 - —~
o) 17y fad fr) + 7 Feperyy + 077
o) 75Ty S D tr)ar + 77 2y femp(c) - 1)/ + 0,(T™Y)

c) 7% ?: v

2d
e =

o*[ i) + oy [} ezp(er)J (r)dr + op{:r”; ;

- , - 1 y
QT ]E{=1yt_1ut [ agfi, Jc{r)aW(r) + (g2 - aﬁ,’ + T 2/20y0f0 ezp(er)dWir)

- 17202080 + op(:r").

Proof: The proof follows closely that of Phillips (1987c, Lemma 4.2). Using (1.1):
T2y = T2 e - o)) oy + T explie]e Ty,
= of%p() + ¢ § exp(r=s)0IXq5)ds) + T Zexp([Trle/ Ty,
Using (A.1), we deduce that :
T 200 2 o{ Wi + ¢ [ expl( - s1)W(s)as) + T 2exp(en)yy + 0, (T7)
= 03 (1) + T Zexp(ar)yy + 0, (175

using the fact that Jc(r) = W(r) + cfé exp{{r ~ s)c)W(s)ds. The proof of parts (b) and (c)
are analogous and omitted. To prove part (d) note that squaring (1.1), summing over t and
fearranging we obtain:
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(1/2)expl-2¢/THT 5% - Ty - Tlexp(2e/T) - D HRE IR SO H B

Note that :

T2 = T AT - o+ o 417204 a2+ 0 (1)
where ¢ » N(0,4?) (see Phillips (1987¢), Lemma 4.2). Hence using parts (a), (b) and (c):
1787 _ o, /)i 0) + T Pexplelyg?

c2e (o2} 30 + 217 2oy [ explen)] (s)e]
2ot -1 } + op("r“)
8 (P -2 g 3nar -1+ (% - ad)2

+ T'llz[oexp(c)yOJc(l) - 12<7cy0f(13 exp(cr)Jc(x)dx -{/2] + Op(’I‘"l) .

The result follows by noting that (1/2)[.1‘:(1)2 - 2cfé Jc(r)zdx -1} 4 fé Jc(r)dW(r) and
that e:cp(c).)c(l) - 2cf(1) exp(cx).lc(r)dx 4 f(l) exp{cr)dW(r) (see Perron (1991a)); and
using the fact that v9 4 ¢. Theorem 1 follows using (1.2) and {c-d) of Lemma A.1. 0

Proof of Theorem 2: We can write B(c,7) = A(c,7) + 6-87, and K{¢,7) = B(¢,7) - d,

where A(e,) = f(l) Jc(r)dW(r) + 7'”, exp(cr)dW(r),
and B(1,¢) = fé Jc(:)2dx + 27f (l)exp(cx)Jc(r)dx + 72(exp(2c) ~1)/2c.
We have:

MGF(v,u) = Elexp{v(A(c,7) + 6 - gn) + uw(B(c,7) = d)}]
= exp(v5 - ud)Elexp(-vgn)|Elexp{vA(c,7) + uB(c, 7},

since 1 is independent of the Wiener process W(r), § and d are fixed constants. With 78

N(0,1) random variable, Elexp(~ vgn)] = exp(v252/2) and the result follows using Theorem
2 of Perron (19912) who showed that Elexp{vA(c,7) + uB(c,M}] = M, 1(\',0). 0
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TABLE 3.a: The Distribution of T(a~ a}; Demeaned Case ;
a=1;MA Encrs,u‘zet«k&z

t-1
1.0% 5.0% 10.0% 50.0% 90.0% 95.0% 995.0%
§=-0.50
T=50 -65.20 -58.72 -57.18 -47.45 ~37.11 ~-33.90 -28.27
T=100 -116.51 -108.90 -104.50 -88.19 -68.54 ~62.53 ~50.82
T=500 -457.57 —425.06 -405.42  -306.70 -171.65 -135.99 ~84.14
T=1000 -820.46 -741.38 ~680.78  -444.78  -204.56  -160.61 -108.17
T=5000 -2279.55 -1784.56 ~1496.46  -673.53  -288.54  -236.37 -159.01
s T=00 -3978.96 -2506.52 -1878.06  -761.62  -260.23  -195.62 -118.40
= -{.70
T=50 -55.08 —48.22 —44.25 ~-29.68 ~15.22 ~12.26 -7.85
T=100 -89.32 ~-76.82 -69.41 -41.74 -18.74 -14.60 -8.49
T=500 ~205.89 -159.47 ~-135.26 ~63.86 -22.83 ~16.58 -8.08

T=1000 ~280.21 -203.31 -168.13 ~68.48 ~22.86 ~17.33 -11.11

T=00 -337.30 -226.71  -180.03 ~69.65 ~-23.79 ~17.87 -10.89
§=-0.50

T=50 —42.04 -34.49 -29.95 ~-15.39 -5.98 -4.41 ~2.28

T=100 ~58.50 ~45.64 -38.48 -17.89 -6.48 -4.78 -2.72

T=500 ~85.99 ~61.82 -50.14 -21.19 ~7.04 —4.83 -2.33

T=1000 -104.93 -71.41 -57.51 -21.70 -6.88 -3.14 ~2.95

T=co -101.45 ~68.44 -54.41 ~21.12 -7.06 -5.20 ~2.82

TABLE 3.b: The Distdbution of T(a ~ a); Demeaned Case ;
a-.zl;ARExroxs,ut:pug__lé-et.

1.0% 5.0% 10.0% 50.0% 90.0% 95.0% 99.0%

p=-0.90
T=30 -83.87 ~73.53 -67.38 -38.29 ~-14.82 -11.11 ~5.89
T=100 -140.38 -117.86 -103.19 ~52.11 -19.45 -14.60 -8.51
T=500 -279.43  -209.68 ~172.48 ~74.80 ~25.20 ~18.29 -9.80

T=1000 -357.98 -25837 -204.48 -80.05 ~25.75 ~19.40 ~-12.86
T=00 -385.74  -260.19  -206.58 -79.93 ~27.32 -20.51 -12.54

p=-0.50
T=50 ~39.27 ~30.13 ~25.00 ~10.94 -3.70 ~2.54 -0.94
T=100 ~48.86 ~35.20 ~28.64 -11.83 -3.92 -2.64 ~1.22
T=500 ~56.08 ~39.84 ~31.68 ~13.05 -4.07 ~2.72 -0.97
T=1000 -56.18 ~44.94 ~35.63 ~13.20 —~4.10 ~2.83 ~1.37
0=900 ~51.08 ~41.12 ~32.70 ~12.68 -4.10 ~2.89 ~1.30
#2=10.90
T=25 -4.50 ~2.94 -2.26 G.01 2.43 3.18 4.76
T=50 -4.03 ~2.71 -2.16 ~3.18 2.24 3.10 4.64
T=100 -4.18 ~2.85 ~2.18 ~0.26 2.02 2.78 4.53
T=500 -4.52 -~3.00 ~2.28 -0.32 1.83 2.52 4.18
T=1000 -4.77 ~3.10 -2.31 ~03.31 1.71 2.46 4.09

T=c0 -4.78 -3.03 -2.25 -0.29 1.71 2.44 4.00




TABLE 4.a: The Distribution of T(2~ o) ; Detrended Case ;
a=1;MAEmors, o, = ¢+ kl»l'

1.0% 5.0% 10.0% 50.0% 90.0% 95.0% 99.0%

§=-0.90
T=50 -66.99 ~62.31 -59.65 -50.55 —41.35 ~38.81 -33.44
T=100 -120.76 ~-113.66 -110.15 -96.14 -81.92 ~77.88 -70.61
T=500 ~481.24 -457.07 -—442.54 ~382.56 -298.77 -271.18 -218.21
T=1000 -872.31 -812.90 ~180.05 -§31.57 —417.01 ~355.29 -263.08
T=5000 -2676.75 ~2324.64 -2076.49 -1196.41 -601.78 —493.03 -348.43
T=co -5377.20 -3883.05 -3252.54 -1629.49  -752.34  -600.56  —401.37

§=-0.70
T=50 -60.49 -54.52 -51.25 -39.76 -27.64 -24.12 -18.24
T=100 -59.63 -§9.58 -83.76 -62.40 -40.42 -~34.717 ~26.12
T=500 -252.88 -210.87 -188.78 -115.11 -60.87 -49.59 -33.62
T=1000 -347.75 -271.94 ~238.93 -135.45 -81.02 -48.07 -31.97
T=c0 492.19  -353.00  -296.95  -149.05 -69.37 -55.83 -35.77

#=-0.50
T=50 —49.92 —42.80 -39.34 -26.10 ~14.52 -12.10 ~7.85
T=100 ~72.44 -50.40 -53.90 -33.21 -17.54 -14.12 ~5.84
T=500 -114.36 -£9.39 ~76.93 -41.49 -20.00 -16.04 -10.41
T=1000 -137.48 -100.82 -86.42 —45.22 -18.17 ~15.00 -9.63
T=00 -145.08  -106.77 -89.74 -44.99 ~20.88 -16.74 ~-10.83

TABLE 4.b: The Distribution of T(2a~ a); Detrended Case ;
a=1; AR Errors, v, = gu,_,+ €,

1.0% 5.0% 10.0% 50.0% 90.0% 95.0% 99.0%

p = ~0.90
T=50 -89.14 -83.14 -78.70 ~57.28 -32.35 -26.03 -17.85
T=100 -156.14 ~-139.86 ~130.13 ~86.66 —46.90 -37.68 -24.95
T=500 -362.53 -289.82 -251.28 -141.50 —68.93 ~-35.71 ~36.29
T=1000 —461.75 -353.80 -303.10 -161.82 ~70.29 -55.09 -35.96
T=oo ~-551.84 ~406.08 -340.61 -171.05 -79.57 —64.12 —43.16

p=-0.50 )

T=50 -50.04 ~40.90 -36.30 -21.18 -10.28 -8.22 —4.98
T=100  -64.15 -50.79 ~43.89 -23.98 ~11.47 508 - -5.85
T=500 -77.87 -59.27 -50.21 ~25.95 -12.12 ~9.55 -5.88
T=1000 -89.14 ~63.74 -54.42 -27.85 ~11.51 -8.90 -5.46
T=00 -87.13 ~64.20 -53.92 -27.05 ~12.42 -9.88 -6.36

p= 0590
T=25 ~-8.92 -6.03 -4.94 -1.54 2.24 3.23 5.06
T=50 -6.60 -4.50 -3.64 -0.95 2.38 3.48 5.39
T=100 -5.72 -3.85 -3.01 ~0.77 2.21 3.12 5.18
T=500 -5.22 ~3.50 -2.63 -0.56 1.78 2.63 4.61
=1000  ~5.43 -3.56 ~2.69 -0.58 1.72 2.60 4.56

T=c0 ~5.54 -3.50 -2.62 ~0.54 1.56 2.48 4.41
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