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RÉSUMÉ

Cette thèse par articles réfute une position largement répandue en physique selon la-

quelle la mécanique quantique est une théorie qui ne peut pas être simultanément locale

et réaliste. Pour ceci, nous démontrons l’équivalence entre le local-réalisme et l’impos-

sibilité de communiquer instantanément.

Le premier article concerne la boîte de Popescu-Rorhlich. Celle-ci est une théorie

jouet violant maximalement une inégalité de Bell. Une interprétation locale-réaliste de la

boîte de Popescu-Rorhlich est présentée. Cette interprétation est basée sur la théorie des

mondes multiples d’Everett. Il s’agit de la preuve la plus simple possible qu’une théorie

peut ne pas être décrite par des variables cachées locales et peut pourtant être locale-

réaliste. Une réponse à l’argument Einstein-Podolsky-Rosen est également fournie.

Dans le second article, une définition formelle de la notion de théorie locale-réaliste

est présentée, ainsi que de théorie opérationnelle non-signalante. La thèse philosophique

selon laquelle la version formelle de local-réalisme et de théorie non-signalante corres-

pondent aux notions intuitives est avancée. On prouve que toute théorie locale-réaliste

est une théorie non-signalante. Sous l’hypothèse d’une dynamique réversible, on prouve

également que toute théorie non-signalante possède un modèle local-réaliste. Un corro-

laire est l’existence d’un modèle local-réaliste pour la mécanique quantique unitaire.

Finalement, dans le troisième article, on prouve que la fonction d’onde universelle

de la mécanique quantique ne peut pas être une description complète d’une réalité lo-

cale. Ceci amène à la nécessité de compléter la mécanique quantique, ainsi qu’en rêvait

Einstein. Pour ce faire, un modèle local-réaliste pour la mécanique quantique basé sur le

calcul matriciel est présenté.

Mots clés : Argument Einstein-Podolsky-Rosen, Localité, Mécanique quantique,

Non-signalement, Réalisme, Théorème de Bell, Théorie d’Everett.



ABSTRACT

This thesis by articles refutes the largely held belief among physicists that quantum

physics cannot be local-realistic. We do this by showing the equivalence between local

realism and the impossibility of communicating instantaneously.

The first article concerns the Popescu-Rorhlich box. This box is a toy model maxi-

mally breaking a Bell inequality. A local-realistic interpretation of the Popescu-Rorhlich

box is presented. This interpretation is based on Everett’s many-world interpretation of

quantum mechanics. It is the simplest possible proof that a theory can be local-realistic,

and yet impossible to describe by local hidden variables. A response to the Einstein-

Podolsky-Rosen argument is also given.

In the second article, a formal definition of local realism is given, as well as a for-

mal definition of a no-signalling operational theory. The philosophical thesis that these

formal definitions correspond to the intuitive notions is presented. We prove that every

local-realistic theory is no-signalling. Under the hypothesis of reversible dynamics, we

also prove that every no-signalling theory has a local-realistic model. A corollary is the

existence of a local-realistic model for quantum mechanics.

Lastly, in the third article, we prove that the universal wavefunction of quantum

theory cannot be a complete description of local reality. This leads to the necessity of

completing quantum theory, which Einstein dreamt of. To do this, we develop a local-

realistic model for quantum mechanics built around matrix calculus.

Keywords: Bell’s theorem, Einstein-Podolsky-Rosen argument, Everett’s the-

ory, Locality, No-signalling, Quantum theory, Realism.
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CHAPITRE 1

INTRODUCTION

La physique quantique est la théorie des systèmes à l’échelle atomique. Le forma-

lisme a été développé par Niels Bohr, Max Born, Werner Heisenberg et Erwin Schrödin-

ger dans les années 1920. Les postulats de la mécanique quantique défient la conception

classique de la physique. Un aspect parmi les plus frappants de l’interprétation ortho-

doxe de l’époque, celle de Copenhague, est que l’observation d’un système a un effet

aléatoire, discontinu et irréversible, alors que tant qu’un système n’est pas observé, il a

une évolution déterministe, continue et réversible. Dans cette vision standard de la mé-

canique quantique, le caractère d’une observation est inhéremment et irréductiblement

stochastique.

En 1935, peu de temps après le développement des postulats de la mécanique quan-

tique, Albert Einstein, Boris Podolsky et Nathan Rosen s’attaquent à l’interprétation de

Copenhague de la mécanique quantique et déclarent que le hasard d’un système n’est

pas inhérent, que certaines des quantités physiques qui semblent stochastiques sont en

réalité prédéterminées. Leur conclusion est que la mécanique quantique est une théorie

incomplète : un système quantique ne serait pas complètement décrit par sa fonction

d’onde.

L’argumentation d’Einstein, Podolsky et Rosen est basée sur deux principes :

Principe du Réalisme : Il existe un monde extérieur à nos observations et celui-ci dé-

termine nos observations.

Principe de Localité : Aucune action effectuée à un point A ne peut avoir un effet à un

point B à une vitesse plus rapide que celle de la lumière.



Une théorie qui obéit à ces deux principes est dite locale-réaliste. Une façon locale-

réaliste de compléter la mécanique quantique serait de rajouter des variables cachées lo-

cales qui dictent de quelle façon un système quantique se comporte lorsqu’il est observé.

Une telle façon d’interpréter la mécanique quantique nous ramènerait à une physique

plus classique, et mettrait fin à cette hérésie Copenhaguienne du monde dans laquelle

Dieu joue aux dés avec l’univers.

En 1960, John Bell démontre qu’aucune théorie à variables cachées locales ne peut

décrire la mécanique quantique. Nombreux sont ceux qui concluent que la mécanique

quantique ne peut pas avoir d’interprétation locale-réaliste. Depuis ce temps, ces mêmes

personnes proclament qu’Einstein avait tort dans son désir d’obtenir une théorie plus

complète.

Par contre, cette conclusion est basée sur l’interprétation Copenhaguienne de la mé-

canique quantique, dans laquelle un observateur n’est pas considéré comme un système

quantique ordinaire obéissant aux lois de la mécanique quantique. Bell ne tient aucune-

ment compte du fait que dès 1950, Hugh Everett III complétait sa thèse doctorale sur

la théorie de la fonction d’onde universelle, dans laquelle il généralise la théorie quan-

tique et permet aux systèmes observateurs d’être des systèmes quantiques. Il élimine la

distinction artificielle et floue entre le macroscopique et le microscopique, entre l’ob-

servateur et l’observé, le classique et le quantique. Selon Everett, l’acte d’observer un

système n’est rien d’autre qu’une interaction ordinaire entre le système qui observe et

le système observé. Avec cette synthèse vient une conséquence qui peut sembler aussi

contre-intuitive que le modèle héliocentrique du système solaire : Un système observa-

teur peut être en superposition de plusieurs états distints. On vivrait dans un multivers

dans lequel des myriades de copies de nous existent. À chaque observation, un observa-

teur se sépare en plusieurs copies.

En 2000, David Deutsch et Patrick Hayden, en se servant des idées d’Everett, dé-

montrent que la mécanique quantique possède malgré tout une interprétation locale-

réaliste en présentant un formalisme mathématique dans lequel les systèmes quantiques
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sont décrits de façon parfaitement locale. Par contre, leur modèle n’est pas très rigou-

reux, les arguments sont surtout intuitifs. Aucune définition mathématique claire de la

notion de réalisme local n’est donnée. Et bien qu’ils aient ultimement réussi à prouver

la localité de la mécanique quantique, on pourrait encore se poser la question : “Pour

quelle raison la mécanique quantique est-elle une théorie locale ?”

Ceci nous amène à cette thèse. Son objectif est de répondre à cette question à ca-

ractère métaphysique par une réponse métaphysique, plutôt que par un formalisme ma-

thématique. Pour cela, deux tâches sont accomplies. D’abord une définition rigoureuse

et formelle du réalisme local est donnée. Puis, une preuve que toute théorie physique

dont la dynamique est réversible et qui ne permet pas de signaler de l’information à une

vitesse plus rapide que celle de la lumière possède une interprétation locale-réaliste. La

réponse profonde pour laquelle la mécanique quantique est une théorie dans laquelle au-

cune action sur un système A n’a un effet (observable ou non) plus rapide que la vitesse

de la lumière sur un système B est qu’aucune action n’a un effet observable à une vitesse

supérieure à celle de la lumière.

Ceci est une thèse par articles, ces articles demandent très peu de préalables pour être

lus. Le premier et le second n’en demandent aucun, alors que le troisième demande de

connaître les postulats de la mécanique quantique.

Eppur si muove.

1.1 Les articles

1.1.1 Une interprétation locale-réaliste des boîtes “nonlocales”

Dans le premier article, nous visiterons un monde imaginaire, celui de la boîte “non-

locale” de Sandu Popescu et Daniel Rorhlich. Il s’agit d’une théorie jouet qui contient

les mêmes problèmes conceptuels et métaphysiques que la mécanique quantique, tout

en étant d’une immense simplicité mathématique. Nous nous servirons d’abord de ce
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monde imaginaire pour introduire l’argument Einstein-Podolsky-Rosen. Ensuite, nous

verrons le théorème de Bell, ce qu’est une théorie à variables cachées locales, et nous

apprendrons pourquoi ni la mécanique quantique, ni la boîte non-locale ne peuvent être

décrites par une théorie de ce type. Néanmoins, nous découvrirons que la boîte nonlocale

possède une interprétation parfaitement locale ! Ceci permet de prouver que la notion de

réalisme local n’est pas restreinte par la notion de théorie à variables cachées locales.

Ce premier article a d’abord été présenté sous la forme d’une affiche illustrée, qui est

disponible en annexe.

1.1.2 L’équivalence du réalisme local et du principe de non-signalement

Ensuite, dans cet article qui constitue le cœur de cette thèse, notre premier but est

de développer une notion formelle de théorie locale-réaliste et de théorie opérationelle

non-signalante qui correspondent aux notions intuitives. En tant que tel, une réponse

à une telle question aura un aspect formel, qui peut être traitée par les mathématiques

pures avec rigueur, et également un aspect nécessairement informel, qui sera développé

dans un language naturel, et qui héritera et de sa richesse et de son ambiguïté. Il s’agit

d’une thèse philosophique, au même titre que la thèse de Church-Turing selon laquelle

les notions formelles de calculabilité présentées par Alonzo Church et Alan Turing cor-

respondent à la notion de calculabilité intuitive.

Une définition claire de théorie locale-réaliste et de théorie opérationnelle non-signalante

permet de prouver le théorème principal de cette thèse, qui dit que toute théorie non-

signalante dont la dynamique est réversible possède une interprétation locale-réaliste.

Ceci inclut comme cas particuler la mécanique quantique unitaire, et généralise le résul-

tat déjà prouvé par Deutsch et Hayden.
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1.1.3 Un formalisme local-réaliste pour la mécanique quantique

Finalement, dans le dernier article, nous introduisons un formalisme matriciel local-

réaliste pour la mécanique quantique. Celui-ci diffère du formalisme présenté dans le

second article. Notons que Deutsch et Hayden ont déjà prouvé la même chose, mais sans

être aussi rigoureux ou encore aller dans les détails. Également, une preuve est donnée

que la fonction d’onde universelle telle qu’introduite par Everett ne peut pas être une

description complète de la réalité, et qu’il faut donc compléter la mécanique quantique

si l’on veut rétablir une vision locale-réaliste de la mécanique quantique. En conclusion,

Einstein avait raison une fois de plus !
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CHAPITRE 2

PARALLEL LIVES : A LOCAL-REALISTIC INTERPRETATION OF

“NONLOCAL” BOXES

By Gilles Brassard and Paul Raymond-Robichaud

ABSTRACT

We carry out a thought experiment in an imaginary world. Our world is both lo-

cal and realistic, yet it violates a Bell inequality more than does quantum theory. This

serves to debunk the myth that equates local realism with local hidden variables in the

simplest possible manner. Along the way, we reinterpret the celebrated 1935 argument

of Einstein, Podolsky and Rosen, and come to the conclusion that they were right in

their questioning the completeness of quantum theory, provided one believes in a local-

realistic universe. Throughout our journey, we strive to explain our views from first

principles, without expecting mathematical sophistication nor specialized prior knowl-

edge from the reader.

2.1 Introduction

Quantum theory is often claimed to be nonlocal, or more precisely that it cannot

satisfy simultaneously the principles of locality and realism. These principles can be

informally stated as follows.

Principle of realism: There is a real world and observations are determined by the state

of the real world.



Principle of locality: No action taken at some point can have any effect at some remote

point at a speed faster than light.

We give a formal definition of local realism in a companion paper [8]; here we

strive to remain at the intuitive level and explain all our concepts, results and reasonings

without expecting mathematical sophistication nor specialized prior knowledge from the

reader.

The belief that quantum theory is nonlocal stems from the correct fact proved by

John Bell [2] that it cannot be described by a local hidden variable theory, as we shall

explain later. However, the claim of nonlocality for quantum theory is also based on the

incorrect equivocation of local hidden variable theories with local realism, leading to the

following fallacious argument:

1. Any local-realistic world must be described by local hidden variables.

2. Quantum theory cannot be described by local hidden variables.

3. Ergo, quantum theory cannot be both local and realistic.

The first statement is false, as we explain at length in this paper; the second is true; the

third is a legitimate application of modus tollens,1 but the argument is unsound since it

is based on an incorrect premise. As such, our reasoning does not imply that quantum

theory can be both local and realistic, but it establishes decisively that the usual reasoning

against the local realism of quantum theory is fundamentally flawed.

In a companion paper, we go further and explicitly derive a full and complete local-

realistic interpretation for finite-dimensional unitary quantum theory [7], which had al-

ready been discovered by Patrick Hayden and David Deutsch [16]. See also Ref. [36].

Going further, we show in another companion paper [8] that the local realism of quantum

1 According to modus tollens, if p implies q but q is false, then p must be false as well.
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theory is but a particular case of the following more general statement: Any reversible-

dynamics theory that does not allow instantaneous signalling admits a local-realistic

interpretation.

In order to invalidate statement (1) above, we exhibit an imaginary world that is

both local and realistic, yet that cannot be described by local hidden variables. Our

world is based on the so-called nonlocal box, introduced by Sandu Popescu and Daniel

Rorhlich [32], which is already known to violate a Bell inequality even more than quan-

tum theory (more on this later), which indeed implies that it cannot be explained by local

hidden variables (more on this later also). Nevertheless, we provide a full local-realistic

explanation for our imaginary world. Even though this world is not the one in which

we live, its mathematical consistency suffices to debunk the myth that equates local real-

ism with local hidden variables. In conclusion, the correct implication of Bell’s theorem

is that quantum theory cannot be described by local hidden variables, not that it is not

local-realistic. That’s different!

Given that quantum theory has a local-realistic interpretation, why bother with non-

local boxes, which only exist in a fantasy world? The main virtue of the current paper,

compared to Refs. [7, 8, 16, 36], is to invalidate the fallacious, yet ubiquitous, argu-

ment sketched above in the simplest and easiest possible way, with no needs to resort to

sophisticated mathematics. The benefit of working with nonlocal boxes, rather than deal-

ing with all the intricacies of quantum theory, was best said by Jeffrey Bub in his book

on Quantum Mechanics for Primates: “The conceptual puzzles of quantum correlations

arise without the distractions of the mathematical formalism of quantum mechanics, and

you can see what is at stake—where the clash lies with the usual presuppositions about

the physical world” [9].

The current paper is an expansion of an informal self-contained 2012 poster repro-

duced in the Appendix, which explains our key ideas in the style of a graphic novel,

as well as of a brief account in a subsequent paper [5]. A very similar concept had

already been formulated by Colin Bruce in his popular science book on Schrödinger’s
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Rabbits [10, pp. 130–132]. To the best of our knowledge, that was the first local-realistic

description of an imaginary world that cannot be described by local hidden variables.

After this introduction, we describe the Popescu-Rorhlich nonlocal boxes, perfect as

well as imperfect, in Section 2.2. We elaborate on no-signalling and local-realistic the-

ories in Section 2.3, as well as introducing the notion of local hidden variables, which

is illustrated with an application of the Einstein-Podolsky-Rosen argument [17]. Bell’s

Theorem is reviewed in Section 2.4 in the context of nonlocal boxes, and we explain

why they cannot be described by local hidden variables. The paper culminates with Sec-

tion 2.5, in which we expound our theory of parallel lives and how it allows us to show

that “nonlocal” boxes are perfectly compatible with both locality and realism. Hav-

ing provided a solution to our conundrum, we revisit Bell’s Theorem and the Einstein-

Podolsky-Rosen argument in Section 2.6 in order to understand how they relate to our

imaginary world. There, we argue that our theory of parallel lives is an unavoidable

consequence of postulating that the so-called nonlocal boxes are in fact local and realis-

tic. We conclude with a discussion of our results in Section 2.7. Finally, we reproduce

in the Appendix our 2012 graphic-novel-like poster that illustrates our main concepts.

Throughout our journey, we strive to illustrate how the arguments formulated in terms

of nonlocal boxes and the more complex quantum theory are interlinked.

2.2 The imaginary world

We now proceed to describe how our imaginary world is perceived by its two inhab-

itants, Alice and Bob. We postpone to Section 2.5 a description of what is really going

on in that world. The main ingredient that makes our world interesting is the presence

of perfect nonlocal boxes, a theoretical idea invented by Sandu Popescu and Daniel

Rorhlich [32].

9



Popescu-Rohrlich Boxes

a, b 2 {green, red}

x, y 2 {0, 1}

a 6= b , x = y = 1

Alice’s 
Box

x

a

Bob’s 
Box

y

b

Figure 2.1: Nonlocal boxes.

2.2.1 The nonlocal box

Nonlocal boxes always come in pairs, one box is given to Alice and the other to

Bob. 2 One can think of a nonlocal box as an ordinary-looking box with two buttons

labelled 0 and 1. Whenever a button is pushed, the box instantaneously flashes either a

red or a green light, both outcomes being equally likely. This concept is illustrated in

Figure 2.1.

If Alice and Bob meet to compare their results after they have pushed buttons, they

will find that each pair of boxes has produced outputs that are correlated in the follow-

ing way: Whenever they have both pushed the 1 input button, their boxes have flashed

different colours, but if at least one of them has pushed the 0 input button, their boxes

have flashed the same colour. See Table 2.I.

For example, if Alice pushes 1 and sees green, whereas Bob pushes 0, she will dis-

cover when she meets Bob that he has also seen green. However, if Alice pushes 1 and

sees green (as before), whereas Bob pushes 1 instead, she will discover when they meet

that he has seen red.
2 Some people prefer to think of the nonlocal box as consisting of both boxes, so that the pair of boxes

that we describe here constitutes a single nonlocal box. It’s a matter of taste.
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Table 2.I: Behaviour of nonlocal boxes.

Alice’s Input Bob’s Input Output colours
0 0 Identical
0 1 Identical
1 0 Identical
1 1 Different

A nonlocal box is one-time use: once a button has been pushed and a colour has

flashed, the box will forever flash that colour and is no longer responsive to new inputs.

However, Alice and Bob have an unlimited supply of such pairs of disposable nonlocal

boxes.

2.2.2 Testing the boxes

Our two inhabitants, Alice and Bob, would like to verify that their nonlocal boxes

behave according to Table 2.I indeed. Here is how they proceed.

1. Alice and Bob travel far apart from each other with a large supply of numbered

unused boxes, so that Alice’s box number i is the one that is paired with Bob’s box

number i.

2. They flip independent unbiased coins labelled 0 and 1 and push the correspond-

ing input buttons on their nonlocal boxes. They record for each box number the

randomly-chosen input and the observed resulting colour. Because they are suffi-

ciently far apart, the experiment can be performed with sufficient simultaneity that

Alice’s box cannot know the result of Bob’s coin flip (hence the input to Bob’s

box) before it has to flash its own light, and vice versa.

3. After many trials, Alice and Bob come back together and verify that the boxes

work perfectly: no matter how far they were from each other and how simulta-
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neously the experiment is conducted, the correlations promised in Table 2.I are

realized for each and every pair of boxes.

Note that Alice or Bob cannot confirm that the promised correlations are established

until they have met, or at least sent a signal to each other. In other words, data collected

locally at Alice’s and at Bob’s need to be brought together before any conclusion can

be drawn. This detail may seem insignificant at first, but it will turn out to be crucial in

order to give a local-realistic explanation for “nonlocal” boxes.

2.2.3 Imperfect nonlocal boxes

So far, we have talked about perfect nonlocal boxes, but we could consider nonlocal

boxes that are sometimes allowed to give incorrectly correlated outputs. We say that a

nonlocal box works with probability p if it behaves according to Table 2.I with probabil-

ity p. With complementary probability 1− p, the opposite correlation is obtained.

2.2.3.1 Quantum theory and nonlocal boxes

Although we shall concentrate on perfect nonlocal boxes in this paper, quantum the-

ory makes it possible to implement nonlocal boxes that work with probability

pquant = cos2(π

8

)
= 2+

√
2

4 ≈ 85%

but no better according to Cirel’son’s theorem [12]. It follows that our imaginary world

is distinct from the world in which we live since perfect nonlocal boxes cannot exist

according to quantum theory.

For our purposes, The precise mathematics and physics that is needed to under-

stand how it is possible for quantum theory to implement nonlocal boxes with proba-

bility pquant does not matter. Let us simply say that it is made possible by harnessing
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entanglement in a clever way. Entanglement, which is the most nonclassical of all quan-

tum resources, is at the heart of quantum information science. It was discovered by

Einstein, Podolsky and Rosen in 1935 in Einstein’s most cited paper [17], although there

is some evidence that Erwin Schrödinger had discovered it earlier. It is also because of

entanglement that the quantum world in which we live is often thought to be nonlocal.

2.3 The many faces of locality

Recall that the Principle of locality claims that no action taken at some point can

have any effect at some remote point at a speed faster than light. An apparently weaker

principle would allow such effects provided they cannot be observed at the remote point.

This is the Principle of no-signalling, which we now explain.

2.3.1 No-signalling

It is important to realize that nonlocal boxes do not enable instantaneous communica-

tion between Alice and Bob. Indeed, no matter which button Alice pushes (or if she does

not push a button at all), Bob has an equal chance of seeing red or green flashing from

his box whenever he pushes either of his buttons. Said otherwise, no action that Alice

can take has any effect whatsoever on the probabilities of events that Bob can observe.

It follows that our imaginary world shares an important property with the quantum

world: it obeys the principle of no-signalling.

Principle of no-signalling: No action taken at some point can have any observable ef-

fect at some remote point at a speed faster than light.

Among observable effects, we include anything that would affect the probability

distribution of outputs from any device. The principle of no-signalling implies in general
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that for any pair of devices shared by Alice and Bob (not only Popescu-Rorhlich nonlocal

boxes), Bob’s output distribution depends only on Bob’s input, and not on Alice’s input,

provided they are sufficiently far from each other and Alice does not provide her input

to her device too much before Bob’s device must produce its output.

2.3.2 Local realism implies no-signalling

The principle of no-signalling follows from the principles of locality and realism: any

local-realistic world is automatically no-signalling, as shown by the following informal

argument.

1. By the principle of locality, no action taken at point A can have any effect on the

state of the world at point B faster than at the speed of light.

2. By the principle of realism, anything observable at point B is a function of the state

of the world at that point.

3. It follows that no action at point A can have an observable effect at point B faster

than at the speed of light.

Here, we have relied on the tacit assumption that in a local-realistic world, what is a

observable at some point is a function of the state of the world at that same point. The

above argument is fully formalized, with all hypotheses made explicit, in Ref. [8].

2.3.3 Local hidden variable theories

The most usual type of local-realistic theories, which was studied in particular by

John Bell [2], is based on local hidden variables (explained below). The misconcep-

tion according to which all local-realistic theories have to be of that type has led to

the widespread incorrect belief that quantum theory cannot be local-realistic because it

cannot be based on local hidden variables according to Bell’s theorem.
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In the idealized context of nonlocal boxes, a local hidden variable theory would

consider arbitrarily sophisticated pairs of devices that are allowed to share randomness

for the purpose of explaining the observed behaviour. The individual boxes would also

be allowed independent sources of internal randomness. The initial shared randomness,

along with the internal randomness and the inputs provided by Alice and Bob would be

used to determine which colours to flash. However, what is not allowed is for the output

of one of Alice’s boxes to depend on the input of Bob’s corresponding box, or vice versa.

This can be enforced by the principle of locality provided both input buttons are pushed

with sufficient simultaneity to prevent a signal from one box to reach the other in time,

even at the speed of light, to allow “cheating”.

In any such theory (not just those pertaining to nonlocal boxes), it is always possible

to remove internal sources of randomness and replace them by parts of the initial source

of shared randomness that would be used by one side only (provided we allow a con-

tinuously infinite amount of shared randomness). However, the following section shows

that, in the case of perfect nonlocal boxes, internal randomness should never be used to

influence the behaviour of boxes.

2.3.4 The Einstein-Podolsky-Rosen argument

Even though they were obviously not talking about Popescu-Rorhlich nonlocal boxes,

the original 1935 argument of Einstein, Podolsky and Rosen applies mutatis mutandis to

prove that, in the context of local hidden variable theories, the output of Bob’s nonlocal

box should be completely determined by the initial randomness shared between Alice’s

and Bob’s boxes and by Bob’s input (and vice versa, with Alice and Bob interchanged).

1. Suppose Alice pushes her input button first.

2. When she pushes her button, this cannot have any instantaneous effect on Bob’s

box, by the principle of locality.
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3. After Alice has seen her output, she can know with certainty what colour Bob will

see as a function of his input (even though she does not know which input he will

choose). For example, if Alice has pushed 1 and has seen green, she knows that if

Bob chooses to push 0 he will also see green, whereas if he chooses to push 1 he

will see red.

4. Since it is possible for Alice to know with certainty what colour Bob will see when

he pushes either button, and she can obtain this knowledge without influencing his

system, it must be that his colour was predetermined as a function of which button

he would push. This predetermination can only come from the initial source of

shared randomness, and errors could occur if it were influenced by local random-

ness at Bob’s.

This argument was used in the original 1935 Einstein-Podolsky-Rosen paper [17] to

prove, under the implicit assumption of local hidden variables, that there are instances

in quantum theory in which both the position and momentum of a particle must be si-

multaneously defined. This clashed with the Copenhagen vision of quantum theory,

according to which Heisenberg’s uncertainty principle is not due merely to the fact that

measuring one of those properties necessarily disturbs the other, but that they can never

be fully defined simultaneously. The conclusion of Einstein, Podolsky and Rosen was

that (Copenhagen) quantum-mechanical description of physical reality cannot be con-

sidered complete. After Niels Bohr’s response [3], the physics community consensus

was largely in his favour, asserting that the EPR argument was unsound and that the

Copenhagen interpretation is indeed complete. In a companion paper [7], we prove that,

under the metaphysical principle of local realism, it is Einstein who was correct after all

in arguing that the usual description of quantum physics cannot be a complete descrip-

tion of reality, and furthermore we provide a completion of quantum theory that makes

it possible.

But let us come back to our imaginary world of nonlocal boxes. . .
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2.3.5 Local hidden variable theory for nonlocal boxes

In a local hidden variable theory for nonlocal boxes, we have seen that all correlations

should be explained by the initial shared randomness. Since each box implements a

simple one-bit to one-colour-out-of-two function, it needs to use only two bits of the

randomness shared with its twin box to do so. It is natural to call those bits A0 and A1

for Alice, and B0 and B1 for Bob. If we define function

c : {0,1}→ {green, red}

by c(0) = green and c(1) = red, then Alice’s box would flash colour a = c(Ax) when

input button x is pushed by Alice, whereas Bob’s box would flash colour b = c(By)

when input button y is pushed by Bob. See Figure 2.1 again.

In order to fulfil the requirements of nonlocal boxes given by Table 2.I, it is easy to

verify that the four local hidden variables must satisfy the condition

Ax⊕By = x · y (2.1)

for all x,y ∈ {0,1} simultaneously, where “⊕” and “·” denote the sum and the product

modulo 2, respectively. For example, if Alice selects x = 0 and Bob y = 1, their boxes

must flash the same colour a = c(A0) = c(B1) = b according to Table 2.I, and therefore

the hidden variables A0 and B1 must be equal since function c is one-to-one. In symbols,

A0 = B1, which is equivalent to A0⊕B1 = 0, which indeed is equal to x · y in this case.

Is this possible?
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2.4 Bell’s Theorem

Theorem 2.4.1 (Bell’s Theorem). No local hidden variable theory can explain a nonlocal

box that would work with a probability better than 75%. In particular, no local hidden

variable theory can explain perfect nonlocal boxes.

Proof. We have just seen that any local hidden variable theory that enables perfect non-

local boxes would have to satisfy Equation (2.1) for all x,y ∈ {0,1}. This gives rise to

the following four explicit equations.

A0⊕B0 = 0

A0⊕B1 = 0

A1⊕B0 = 0

A1⊕B1 = 1

If we sum modulo 2 the equations on both sides and rearrange the terms using the asso-

ciativity and commutativity of addition modulo 2, as well as the fact that any bit added

modulo 2 to itself gives 0, we get:

(A0⊕B0)⊕ (A0⊕B1)⊕ (A1⊕B0)⊕ (A1⊕B1) = 0⊕0⊕0⊕1

(A0⊕A0)⊕ (A1⊕A1)⊕ (B0⊕B0)⊕ (B1⊕B1) = 1

0⊕0⊕0⊕0 = 1

0 = 1,

which is a contradiction. Therefore, it is not possible for all four equations to hold

simultaneously. At least one of the four possible choices of buttons pushed by Alice and

Bob is bound to give incorrect results. It follows that any attempt at creating a nonlocal

box that works with probability better than 3/4 = 75% is doomed to fail in any theory

based on local hidden variables.
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The reader can easily verify from the proof of Theorem 2.4.1 that any three of the

four equations can be satisfied by a proper choice of local hidden variables. For example,

setting A0 = B0 = A1 = B1 = 0 results in the first three equations being satisfied, but not

the fourth. A more interesting strategy would be for Alice’s box to produce Ax = x and

for Bob’s box to produce By = 1− y. In this case, the last three equations are satisfied but

not the first. For each equation, there is a simple strategy that satisfies the other three but

not that one (more than one such strategy in fact). More generally, it is possible to create

a pair of nonlocal boxes that work with probability 75% regardless of the input provided

to them if they share three bits of randomness. The first two bits determine which one

of the four equations is jettisoned, thus defining an arbitrary pre-agreed strategy that

fulfils the other three. If the third random bit is 1, both boxes will in fact produce

the complement of the output specified in their strategy (which has no effect on which

equations are satisfied). The purpose of this third shared random bit is that a properly

functioning pair of Popescu-Rorhlich boxes should produce a random output on each

side if we only consider marginal probabilities.

We say of any world in which nonlocal boxes exist that work with a probability

better than 75% that it violates a Bell inequality in honour of John Bell, who established

the first result along the lines of Theorem 2.4.1, albeit not explicitly the one described

here [2].

2.4.1 Quantum theory and Bell’s theorem

The usual conclusion from Theorem 2.4.1 is that any world containing nonlocal

boxes that work with a probability better than 75% cannot be both local and realistic.

Since quantum theory enables boxes that work ≈ 85% of the time, as we have seen in

Section 2.2.3.1, it seems inescapable that the quantum world cannot be local-realistic.

Similarly, it is tempting to assert that the more a Bell inequality is violated by a

theory, the more nonlocal it is. In particular, our imaginary world would be more non-

local than quantum theory itself. As we shall now see—and this is the main point of
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this paper—all these conclusions are unsound because local realism and local hidden

variables should not be equated.

2.5 A local realistic solution—Parallel lives

Here is how the seemingly impossible is accomplished. Let us assume for simplicity

that Alice and Bob have a single pair of “nonlocal” boxes at their disposal, which is

sufficient to rule out local hidden variable explanations. When Alice pushes a button

on her box, she splits in two, together with her box. One Alice sees the red light flash

on her box, whereas the other sees the green light flash. Both Alices are equally real.

However, they are now living parallel lives: they will never be able to see each other

or interact with each other. In fact, neither Alice is aware of the existence of the other,

unless they infer it by pure thought as the only reasonable explanation for what they will

experience when they test their boxes according to Section 2.2.2. From now on, any

unsplit object (or person) touched by either Alice or her box splits. This does not have to

be physical touching: a message sent by Alice has the same splitting effect on any object

it encounters. Hence, Alice’s splitting ripples through space, but at a speed that cannot

exceed that of light. It is crucial to understand that it is not the entire universe that splits

instantaneously when Alice pushes her button, as this would be a highly nonlocal effect.

The same thing happens to Bob when he pushes a button on his box. He splits in two

and neither copy is aware of the other Bob. One sees a red light flash and the other sees

a green light flash. If both Alice and Bob push a button at about the same time, we have

two independent Alices and two independent Bobs, and for now the Alices and the Bobs

are also independent of one another.

It is only when Alice and Bob interact that correlations are established. Let us assume

for the moment that both Alice and Bob always push their buttons before interacting. The

magical rule is that an Alice is allowed to interact with a Bob if and only if they jointly

satisfy the conditions of the nonlocal box set out in Table 2.I.
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For example, if Alice pushes button 1, she splits. Consider the Alice who has seen

green. Her system can be imagined to carry the following rule: You are allowed to

interact with Bob if either he has pushed the 0 button on his box and seen green, or he

has pushed the 1 button and seen red. Should this Alice ever come in presence of a Bob

who has pushed the 1 button and seen green, she would simply not become aware of his

presence and could walk right through him without either one of them noticing anything.

Of course, the other Alice, the one who has seen red after having pushed her 1 button,

would be free to shake hands with that Bob.

If Bob has pushed button 0 and seen green, his system can likewise be imagined

to carry the following rule: You are allowed to interact with Alice if and only if she

has seen green, regardless of which button she has pushed. It is easy to generalize this

idea to all cases covered by Table 2.I because there will always be one green Alice and

one red Alice, one green Bob and one red Bob, and whenever green Alice is allowed to

interact with one Bob, red Alice is allowed to interact with the other Bob. From their

perspective, each Alice and each Bob will observe correlations that seem to come “from

outside space-time” [23]. However, this interpretation is but an illusion due to their

intrinsic inability to perceive some of the actors in the world in which they live.

Our imaginary world is fully local because Alice’s state is allowed to depend only on

her own input and output at the moment she pushes a button. It is true that the mysterious

correlations given in Table 2.I would be impossible for any local hidden variable theory.

However, Alice and Bob cannot experience those correlations before they actually meet

(or at least before they share their data), and these encounters cannot take place faster

than at the speed of light. When they meet, the correlations they experience are simply

due to the matching rule that determines which Alices are allowed to interact with which

Bobs, and not to a magical (because nonlocal) spukhafte Fernwirkungen (“Spooky action

at a distance”), which was so abhorrent to Einstein, and rightly so.

What if Alice pushes her button, but Bob does not? In the discussion above, we had

assumed for simplicity that both Alice and Bob had pushed buttons on their boxes before
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interacting. A full story should include various other scenarios. It could be that Alice

pushes a button on her box and travels to interact with a Bob who has not yet touched

his box. Or it could be that after pushing a button on her box, only the Alice who has

seen green travels to interact with Bob, whereas the Alice who has seen red stays where

she is.

For instance, consider the case in which Alice has pushed the 1 button on her box,

split, and only the Alice who has seen green travels to meet unsplit Bob. At the moment

they meet, Bob and his box will automatically split. One Bob will now own a box

programmed as follows: “if button 0 is pushed, flash green, but if button 1 is pushed,

flash red”; the other Bob will own a box containing the complementary program, with

“green” and “red” interchanged. As for our travelling Alice, she will see the first one of

those Bobs and be completely oblivious of the other, who will not even be aware that an

Alice has just made the trip to meet him.

It would be tedious, albeit elementary, to go through an exhaustive list of all possible

scenarios. We challenge the interested reader to figure out how to make our imaginary

world behaves according to Table 2.I in all cases. But rather than getting bored at this

exercise, why not contemplate the Appendix, which illustrates the concept of parallel

lives in the form of a graphic novel?

2.5.1 Quantum theory and parallel lives

We coined the term “parallel lives” for the idea that a system is allowed to be in a

superposition of several states, but that all splittings occur locally. This is distinct from

the concept known as “many world”, according to which the entire universe would split

whenever Alice pushes a button on her box (or makes a quantum measurement that has

more than one possible outcome according to standard theory). Nevertheless, our idea of

parallel lives was directly inspired by the many-world interpretation, whose pioneer was

Hugh Everett [18] more than six decades ago. Later, David Deutsch and Patrick Hayden

provided the first local interpretation of quantum mechanics [16]. Even though they
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did not use the term “parallel lives”, their approach was akin to ours. In their solution,

the evolution of the quantum world is fully local, and individual systems, including

observers, are allowed to be in superposition. In a companion paper [7], we offer our

own local formalism for quantum theory along the lines of this paper, complete with full

proofs of our assertions.

2.6 Revisiting Bell’s theorem and the Einstein-Podolsky-Rosen argument

Having provided a solution to our conundrum with the explicit construction of a

local-realistic imaginary world in which perfect Popescu-Rorhlich “nonlocal” boxes are

possible, we revisit the Einstein-Podolsky-Rosen argument in order to understand how it

relates to our imaginary world. This leads us to conclude that our theory of parallel lives

is an unavoidable consequence of postulating that those boxes are compatible with local

realism.

2.6.1 Parallel lives versus hidden variable theories

To understand the main difference between parallel lives and local hidden variable

theories, consider again the scenario according to which Alice has pushed the 1 button

and her box has flashed a green colour. According to local hidden variable theories, she

would know with certainty what colour Bob will see as a function of his choice of input:

he will also see green if he pushes the 0 button, but he will see red if he pushes the 1 but-

ton. This was at the heart of the Einstein-Podolsky-Rosen argument of Section 2.3.4 to

the effect that the colours flashed by Bob’s box had to be predetermined as a function of

which button he would push since Alice could know this information without interacting

with Bob’s box. To quote the original argument, “If, without in any way disturbing a

system, we can predict with certainty the value of a physical quantity, then there exists

an element of physical reality corresponding to this physical quantity” [17]. The “ele-
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ment of physical reality” in question is what we now call local hidden variables and the

“physical quantity” is the mapping between input buttons and output colours.

The parallel-lives interpretation is fundamentally different. Whenever Alice pushes

a button on her box, she cannot infer anything about Bob’s box. Instead, she can predict

how her various lives will interact with Bob’s in the future, when (and if) they meet.

Consider for example the case in which both Alice and Bob push their input buttons,

whose immediate effect is the creation of two Alices and two Bobs. Let us call them

Green-Alice, Red-Alice, Green-Bob and Red-Bob, depending on which colour they have

seen. If the original Alice had pushed her 1 button, Green-Alice may now infer that she

will interact with Red-Bob if he has also pushed his 1 button, whereas she will interact

with Green-Bob if he has pushed his 0 button. The opposite statement is true of Red-

Alice. As we can see, this is a purely local process since this instantaneous knowledge

of both Alices has no influence on whatever the faraway Bobs may observe, which is

both colours!

2.6.2 How an apparent contradiction leads to parallel lives

Consider the following argument concerning nonlocal boxes, and pretend that you

have never heard of parallel lives (nor many-world), yet you believe in locality.

1. Let us say that Alice pushes button 1 on her box. Without loss of generality, say

that her box flashes the green colour.

2. Now, we know that Bob will see green if he pushes his 0 button, whereas he will

see red if he pushes his 1 button, according to Table 2.I. By the principle of locality,

this conclusion holds regardless of Alice’s previous action since she was too far

for her choice of button to influence Bob’s box.

3. What would have happened had Alice pushed her 0 button instead at step 1? She

must see the same colour as Bob, regardless of Bob’s choice of button, since her
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pushing button 0 precludes the possibility that both Alice and Bob will press their

1 button, which is the only case yielding different colours, again according to

Table 2.I.

4. Statements (2) and (3) imply together that when Alice pushes her 0 button, she

must see both red and green!

Despite appearances, statement 4 is not a contradiction, and indeed it can be resolved.

Both results seen by Alice must be equally real by logical necessity. The only way for

her to see both colours, yet be convinced she saw only one, is that there are in fact

two Alices unaware of one another. In other words, the postulated locality of Popescu-

Rorhlich “nonlocal” boxes forces us into a parallel-lives theory, which, far from being a

postulate, is in fact an ineluctability.

If both Alices are indeed mathematically necessary to describe a local-realistic world,

then both Alices are real in that world, inasmuch as any mathematical quantity that is

necessary to describe reality corresponds to something that is real. Here, we accepted

as a philosophical axiom the claim that whenever a mathematical quantity is necessary

to describe reality, that quantity corresponds to something that is real, and is not a mere

artifact of the theory.

The same conclusion applies whenever any theory is shown to be inconsistent with all

possible local hidden variable theories. Indeed, such theories carry the rarely-mentioned

assumption that once concluded, any experiment has a single outcome. Other outcomes

that could have been possible simply did not occur. The obvious resolution of any such

inconsistency is to accept the fact that all possible outcomes occur within parallel lives

of the experimenter.
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2.7 Conclusions

We have exhibited a local-realistic imaginary world that violates a Bell inequality.

For this purpose, we introduced the concept of parallel lives, but argued subsequently

that this was an unavoidable consequence of postulating that the so-called nonlocal boxes

are in fact local and realistic. The main virtue of our work is to demonstrate in an

exceeding simple way that local reality can produce correlations that are impossible in

any theory based on local hidden variables. In particular, it is fallacious to conclude that

quantum theory is nonlocal simply because it violates Bell’s inequality.

In quantum theory, ideas analogous to ours can be traced back at least to Hugh Ev-

erett [18]. They were developed further by David Deutsch and Patrick Hayden [16], and

subsequently by Colin Bruce [10, pp. 130–132]. The latter gave the first local-realistic

explanation for a theory that is neither quantum nor classical. In companion papers, we

have proven that unitary quantum mechanics is local-realistic [7] (which had already

been shown by Deutsch and Hayden [16]) and, more generally, that this is true for any

reversible-dynamics no-signalling operational theory [8]. The latter paper provides a

host of suggestions in its final section for a reader eager to pursue this line of work in

yet unexplored directions.

Throughout our journey, we have revisited several times the 1935 Einstein-Podolsky-

Rosen argument and came to the conclusion that they were right in questioning the com-

pleteness of Bohr’s Copenhagen quantum theory. Perhaps Einstein was right in his belief

of a local-realistic universe after all and in wishing for quantum theory to be completed?

Perhaps we live parallel lives. . .
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CHAPITRE 3

THE EQUIVALENCE OF LOCAL-REALISTIC

AND NO-SIGNALLING THEORIES

By Gilles Brassard and Paul Raymond-Robichaud

ABSTRACT

We provide a framework to describe all local-realistic theories and all no-signalling op-

erational theories. We show that when the dynamics is reversible, these two concepts

are equivalent. In particular, this implies that unitary quantum theory can be given a

local-realistic model.

3.1 Introduction

On 21st October 2015, the New York Times touted “Sorry, Einstein. Quantum Study

Suggests ‘Spooky Action’ Is Real” [31]. Indeed, as the daily continued, “objects sep-

arated by great distance can instantaneously affect each other’s behavior”. This dra-

matic headline was prompted by the successful completion of an ambitious experiment

in Delft, the Netherlands, in which the world’s first so-called “loophole-free Bell test”

had been realized, whose objective was to verify that the predictions of quantum theory

continue to rule even when they could not be given a classical explanation by no-faster-

than-light signalling (locality loophole) nor by exploiting falsely inefficient detectors

(detection loophole) [24]. Based on the work of John Bell [2], the Dutch paper con-

cluded in its abstract that their “data hence imply statistically significant rejection of the

local-realist null hypothesis”.1

1 To be fair, the Dutch team admitted towards the end of their paper that their “observation of a statisti-
cally significant loophole-free Bell inequality violation thus indicates rejection of all local-realist theories



Has the Dutch experiment definitely established the nonlocality of our quantum uni-

verse, barring a statistical fluke? Obviously not since David Deutsch and Patrick Hayden

had already shown fifteen years earlier that quantum theory, with all its seemingly non-

local predictions, can be given a fully local-realistic interpretation [16]! Subsequently,

we had shown [4, 5] how easy it is to give a local-realistic interpretation for the Popescu-

Rohrlich so-called nonlocal boxes [32], even though they seem to violate locality even

more than quantum theory, thus establishing in the clearest and simplest possible way

the fact that a mere violation of Bell’s inequalities is no proof of nonlocality. The expla-

nation for this conundrum is that there are more general ways for a world to be local-

realistic than having to be ruled by local hidden variables, which was the only form of

local realism considered by Bell in his paper [2]. We expound on the local construction

of “nonlocal” boxes in a companion paper [6].

In the current paper, we give original formal definitions for the concepts of local-

realistic theories and no-signalling operational theories. We argue in favour of our the-

sis, according to which our definitions capture the intuitive notions in the most general

way possible. Those definitions are among our main contributions because they are re-

quired in order to give a complete and formal proof of our main result to the effect that

any reversible-dynamics physical theory according to which it is impossible to signal

information instantaneously can be given a local-realistic interpretation. As one specific

example, this applies to unitary quantum theory, which provides an alternative proof of

the Deutsch-Hayden result mentioned above [16]. Actually, the specific case of quantum

theory is of such importance that we devote an entire companion paper to it [7], in which

we prove in particular that the universal wavefunction cannot be the complete descrip-

tion of a local universe: it merely describes what can be observed from within. In other

words, the universal wavefunction is but a shadow of the real world. It follows that if we

believe in local realism—as Albert Einstein arguably did—the answer to the question

that accept that the number generators produce a free random bit in a timely manner and that the outputs
are final once recorded in the electronics” [24] (our emphasis). In other words, additional loopholes exist,
which their experiment admittedly did not take into account, including the possibility that measurements
have no definite outcomes.
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asked in the title of the celebrated 1935 Einstein-Podolsky-Rosen (EPR) paper [17] is

a resounding no: the (Copenhagen) quantum-mechanical description of physical reality

cannot be considered complete, and furthermore it can be completed, as shown in [7, 16].

Said otherwise, the New York Times headline notwithstanding, Einstein does not have to

be sorry: he was right!

This paper is organized as follows. After this introduction, we set the stage in Sec-

tion 3.2 by laying the conceptual foundations of realism in an informal and intuitive

manner. There, inspired by Immanuel Kant [19, 26], we introduce the essential notions

of noumenal and phenomenal worlds. This is followed in Section 3.3 by a formal math-

ematical definition of what we call the structure of realism, and then in Section 3.4 the

structure of local realism. Section 3.5 defines the notion of no-signalling operational the-

ories without recourse to probabilities, which is more general than the usual approach.

The paper culminates on a complete and formal proof in Section 3.6 of our main result

to the effect that all reversible-dynamics no-signalling operational theories can be ex-

plained by a local-realistic model. We conclude in Section 3.7 with a final discussion

and suggestions for further research.

3.2 Conceptual foundations of realism

Do you believe that when you place a delicious apple pie in your refrigerator and

close the door, the pie continues to exist even though you are no longer looking at it?

If so, congratulations, you are a realist, an adherent of the philosophical position called

realism! What is realism? It is the principle that posits the existence of a world exist-

ing outside of our immediate subjective experience and that this world determines our

subjective experience.
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3.2.1 Appearance vs reality

This outside world can be called the real world, the external world, the objective

world, or in Kantian terminology: the noumenal world [19, 26]. It describes the world

as it is rather than the world as it can observed, or known through sensory experience.

According to realism, our subjective experience, our perceptions, our sense-data,

are determined by the state of the external world. The portion of the real world that is

observable or perceptible is called the perceptive world, or alternatively the observable

world, or in Kantian terminology: the phenomenal world.2

To be perceptible does not mean to be perceived directly. If we scan a molecule with

an atomic force microscope, the properties thus observed are perceptible even though

we are not observing the molecule directly with our naked eyes. The only limit to what

kind of measurement device may be used to determine what is perceptible are the laws

of Nature, not merely the currently available technology. Also, to be perceptible does

not imply to be perceived right now by some observer. Even if no one is looking right

now at your delicious apple pie, it is still possible to look at it, inasmuch as no laws of

Nature prevent us from opening the fridge door. More to the point, the far side of the

Moon existed even before we had the technology that allowed us to observe it. Thus,

we include as part of the perceptible world, not what is perceived now, but rather all

potential perceptions, present and future.

After drawing this distinction between the noumenal world and the phenomenal

world, an astute reader might ask: “Why do you need the noumenal world at all?

Couldn’t you get rid of it? After all, if something cannot be observed, it cannot be

inferred as real!” Our first answer would be that the reader is not even able to infer the

existence of anything outside her own senses, and might as well be a solipsist whose

whole existence is constrained by her sense data, out of which nothing can be logically

inferred. Any model able to make predictions needs to include various concepts outside

2 For a good discussion on the relation between the observable world and the real world, see the work
of Bertrand Russell [33].
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of our immediate perceptions, in such a way that the consequences of these concepts

give rise to our immediate perceptions, present as well as future. Thus, any such model

needs at the very least to include the observable, rather than merely the observed.

Furthermore, we shall see that additional metaphysical principles, such as locality, in

a world that follows the laws of quantum theory at the phenomenal level, will force us to

make the noumenal world richer and deeper than its immediate phenomenal counterpart.

What is the relation between the noumenal world and the phenomenal world? What

is perceptible must follow a process parallel to what exists. As the noumenal world

evolves, so does the phenomenal world. Any property that exists in the phenomenal

world arises from a property in the noumenal world.

We can represent the relation between the noumenal world and the phenomenal world

with the following diagram.

Noumenal1 Noumenal2

Phenomenal1 Phenomenal2

ϕ

U

ϕ

Here, ϕ is a mapping that determines the state of the phenomenal world in function of

the state of the noumenal world. We refer to a state of the noumenal world as a noumenal

state and to a state of the phenomenal world as a phenomenal state. Any phenomenal

state arises from at least one noumenal state. Thus ϕ is surjective, as a mathematician

would say.

The left part of the picture illustrates the following idea: when the noumenal world

is in state Noumenal1, it has a corresponding phenomenal state Phenomenal1, which

is determined by applying ϕ to Noumenal1:

Phenomenal1 = ϕ(Noumenal1) .
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The Law of Nature that determines the evolution of the noumenal world is repre-

sented by U in this diagram. We can think of U as an operation that takes as input

a noumenal state and outputs a new noumenal state. If we were considering only an

isolated subsystem of the universe, the choice of operation would be determined by the

laws of Nature and also by the state of the environment, which is the part of the universe

external to the isolated system.

The upper part of the picture illustrates the following fact: if we apply an opera-

tion U to an isolated system that was in state Noumenal1, the new state of the system,

Noumenal2, is determined only by its previous state and the operation. This can be

summarized in the following equation:

Noumenal2 =U ·Noumenal1 .

Note that we wrote “U ·Noumenal” above, rather than the more familiar form “U(Noumenal)”,

because we should not think here of U as a function, but rather “·” is an action and U

acts on the noumenal state according to that action. This allows us to use the same

U to act differently on noumenal and phenomenal states by invoking different actions.

Nevertheless, for ease of notation, we shall revert to writing U(•) once the concepts are

rigorously established.

Finally, in the right part of the picture, we see that from the new noumenal state,

Noumenal2, corresponds a phenomenal state, Phenomenal2. Mathematically:

Phenomenal2 = ϕ(Noumenal2) .

3.2.2 Parallel process between noumenal and phenomenal worlds

A question arises naturally when considering an isolated system: is it possible to de-

scribe its phenomenal evolution without having recourse to the noumenal world? Could

we explain the evolution of phenomenal states only in terms of phenomenal states and
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operations applied on them? Could we explain the evolution of state Phenomenal1 to

state Phenomenal2 through operation U , without having recourse to the underling state

Noumenal1 giving rise to state Noumenal2?

Mathematically, can the following equation be verified:

Phenomenal2 =U ?Phenomenal1 ,

where we have used “?” to distinguish this action from the one on noumenal states,

which was denoted “·” above? We now argue that the answer is yes.

Given a state Phenomenal1, how can we determine its evolution according to op-

eration U? Certainly, if we knew the underlying state Noumenal1 that led to state

Phenomenal1, we could apply U on Noumenal1 and this would determine the new

evolved state Noumenal2, from which we could determine the corresponding state

Phenomenal2.

However, there is a potential difficulty with this reasoning: this works directly only

if to a phenomenal state corresponds a unique underlying noumenal state. Could there

be two distinct noumenal states underlying the same phenomenal state? If so, this would

run against a principle attributed to Gottfried Wilhelm Leibniz, which we shall discuss

in Section 3.2.3. For now, let us consider this possibility and see how it can be a problem

for our argument.

Suppose we have two distinct noumenal states, Noumenal1 and Noumenal∗1,

which correspond to the same phenomenal state Phenomenal1, meaning that

ϕ(Noumenal1) = ϕ(Noumenal∗1) = Phenomenal1. These noumenal states will

evolve according to operation U and give rise to states Noumenal2 and Noumenal∗2,

respectively. To these evolved noumenal states correspond phenomenal states

Phenomenal2 = ϕ(Noumenal2) and Phenomenal∗2 = ϕ(Noumenal∗2). In order to

be able to determine the evolution of state Phenomenal1 as a function of operation

U without needing any recourse to noumenal states, it must be that Phenomenal2 =
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Phenomenal∗2, so that it makes no difference which underlying noumenal state deter-

mined Phenomenal1. In this case, mathematicians would say that the phenomenal

evolution is well-defined.

To find out if the evolution of phenomenal states is indeed well-defined, all we have

to do is consider this auxiliary question: If we have two distinct underlying noumenal

states Noumenal1 and Noumenal∗1 giving rise to the same state Phenomenal1, do

they necessarily give rise to the same phenomenal state after evolution through some

operation U?

We now argue that the answer to this conundrum is yes. Suppose we have two states

Noumenal1 and Noumenal∗1 corresponding to the same state Phenomenal1. Remem-

ber that we include in our definition of the phenomenal world, not only the immediate

subjective reality, the phenomenal experience that exists now, but any potential subjec-

tive reality, any potential phenomenal experience. If there is no potential difference now

in the subjective reality between two noumenal states, there can be no difference in the

future.

Thus, a state Phenomenal1, on which we apply an operation U , will evolve to a

well-defined state Phenomenal2 . Hence, we can indeed write:

Phenomenal2 =U ?Phenomenal1 .

This allows us to update our picture:

Noumenal1 Noumenal2

Phenomenal1 Phenomenal2

ϕ

U

ϕ

U

This new diagram illustrates the fact that there are two ways in which the same state

Phenomenal2 can be determined from Noumenal1.
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• We can apply first operation U to Noumenal1 to obtain Noumenal2 and then

apply function ϕ to Noumenal2 and determine Phenomenal2;

• or we could apply first ϕ to Noumenal1 to determine Phenomenal1 and then we

apply U to Phenomenal1 to obtain Phenomenal2.

A diagram with this property is called a commuting diagram. This diagram illustrates

the fact that that there is a parallel process between the evolution of the noumenal world

and the phenomenal world. It states that the evolution of the phenomenal consequences

of the noumenal world are the phenomenal consequences of the evolution of the noume-

nal world. This concept is reminiscent of a remarkable nineteenth-century principle due

to Heinrich Hertz.3

Mathematically:

Phenomenal2 = ϕ(U ·Noumenal1) =U ?ϕ(Noumenal1) .

A mathematical relation representing such a parallel process is called a homomorphism.

A philosopher would say that the evolution of the phenomenal world according to the

Laws of Nature is an epiphenomenon: Understanding how the noumenal world evolves

and the relation between the noumenal world and the phenomenal world is sufficient

to describe how the Laws of Nature lead to the evolution of the phenomenal world.

Causality should be understood strictly in terms of the evolution of the noumenal world.

3.2.3 Leibniz’s Principle

Our previous discussion was made necessary by the possibility of two different

noumenal states that can give rise to the same phenomenal state. This possibility runs
3 “We form for ourselves images or symbols of external objects; and the form which we give them

is such that the necessary consequents of the images in thought are always the images of the necessary
consequents in nature of the things pictured. In order that this requirement may be satisfied, there must be
a certain conformity between nature and our thought.” [25].
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against a principle attributed to Leibniz [27], which claims that if there is no possible

perceptible difference between two objects, then these objects are the same, not superfi-

cially, but fundamentally. A complete discussion of Leibniz’s principle is given by Peter

Forrest [20].

According to Leibniz’s principle, if two phenomenal states are equal, then they must

arise from the same noumenal state. Mathematically, Leibniz’s principle posits that ϕ is

injective. However, we prove in companion paper [7] that Leibniz’s principle is actually

false under additional metaphysical principles: locality and the phenomenal validity of

quantum theory inevitably lead to a deeper reality beyond what can be observed locally

in a system. This necessity for a noumenal world implies the falsification of Leibniz’s

principle. Let us note that were Leibniz’s principle correct, there would be a bijective

correspondence between the noumenal world and the phenomenal world since ϕ would

be both injective (by Leibniz’s principle) and surjective (by definition). It would follow

that to any noumenal state corresponds one and exactly one phenomenal state and vice

versa. Furthermore, homomorphism ϕ would in fact be an isomorphism. Knowing the

structure of the phenomenal world would be more than sufficient to know the structure

of the noumenal world. As such, postulating any reality beyond the observable, while

philosophically interesting, would be mathematically futile. It would lead to no supple-

mentary explanatory power. After all, any isomorphism is a mere rebranding of terms.

According to the Encycloædia Britannica, “Kant claimed that man’s speculative rea-

son can only know phenomena and can never penetrate to the noumenon” [19]. Never-

theless, we demonstrate here and in our companion article on quantum theory [7] that

the noumenal world in which we live can be apprehended by pure reason.

3.3 The structure of realism

From conceptual considerations, we are now moving towards developing a mathe-

matical framework. We want to formalize mathematically the notions introduced earlier.

37



Let us begin by defining the structure of realism. The structure of realism is the list

of mathematical axioms that characterize a realist theory. We shall call these axioms

“requirements”. This structure can be satisfied by many different theories. A concrete

theory that satisfies these axioms is called a realist model.

The words “structure” and “model” are borrowed from universal algebra. For in-

stance, the structure of a group is defined by the list of axioms that characterize an object

as being a group. However, a particular group is a model for the structure of a group. For

example, the integers with ordinary addition, (Z,+), provide a model of a group. There

can be non-isomorphic models that satisfy the same structure. For example, (R,+) is not

isomorphic to (Z,+) but is a group nevertheless. A more formal treatment of structures

and models is given in Ref. [22].

First, we introduce realism in a theory consisting of a single system. A system is a

part of the universe, or possibly the entire universe. Once we have built the machinery

for a theory composed of a single system, we shall investigate in Section 3.4 the structure

of local realism, in which there can be several systems that can evolve independently and

interact with each others.

We follow Kant’s terminology [19, 26], and as such we distinguish two kinds of

states in a system, as mentioned informally in Section 3.2.

Noumenal State: The noumenal state of a system is its complete description. It de-

scribes the system as it is, rather than what can be observed about it, or known

through sensory experience. It describes not only what can be observed from a

system, but also how the system can interact with other systems. It is a state of

being. It describes the system in itself, including parts that are not accessible lo-

cally or at all. Another term used in quantum foundations literature to describe the

noumenal state would be the ontic state [35].

Phenomenal State: The phenomenal state of a system is a complete description of what

is locally observable in that system. The phenomenal state is a complete descrip-
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tion of all the observable properties potentially accessible in a system. It is what

is observable in a system; not what is actually observed. The phenomenal state

contains everything that can be observed through arbitrarily powerful technology.

The only restriction on the technology is that it must abide by the laws of Nature.

Our terminology reflects the difference between appearance and reality. An alter-

native distinction, which is somewhat orthogonal, concerns the difference between ex-

istence and knowledge. The theories of existence and of knowledge are dealt with in

the respective branches of philosophy called ontology and epistemology. Following that

path would have led to the distinction between the ontic state of a system and its epis-

temic state [35]. The ontic state corresponds to what we have called the noumenal state.

However, the epistemic state corresponds to what is known about a system by some ob-

server [28], which might be subjective and vary from one observer to another [21, 29].

It should be emphasized that our phenomenal states are not states of knowledge, nei-

ther are they relative to an observer. Hence, epistemic and phenomenal states are two

fundamentally different notions.

Now that we have explained our choice of terms, we shall describe the mathematical

objects that are associated to a system.

Noumenal state space. Associated to a system is a noumenal state space, which is a

set of noumenal states.

Phenomenal state space. Associated to a system is a phenomenal state space, which

is a set of phenomenal states.

Operations. Associated to a system is a set of operations, which comes with a compo-

sition operator denoted “◦”. We require that:

1. If U and V are operations, U ◦V is an operation;

2. If U , V and W are operations, U ◦ (V ◦W ) = (U ◦V )◦W ;
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3. There exists an identity operation I such that, for all operations U ,

I ◦U =U ◦ I =U .

When there is no ambiguity, we shall omit the composition operator and write UV in-

stead of U ◦V. Mathematicians would refer to the structure defining these operations as

a monoid.

Reversibility of operations. An important natural principle is that the laws of physics

are reversible. This principle is not necessary to characterize either realism nor local

realism. However, the reversibility of the laws of physics can be easily expressed within

our framework. It means that to each operation U , there corresponds an operation U−1

such that U U−1 =U−1U = I. In other words, a reversible realistic structure is a realistic

structure in which the operations form a group, which is a particular type of monoid.

Definition 3.3.1 (Operation action). Let Operations be a set of operations and S be

a set. An operation action on set S is a binary operation ? : Operations×S→ S that

satisfies, for all operations U and V and for all element s of the set S,

1. U ? (V ? s) = (UV )? s ;

2. if I is the identity operation, then I ? s = s.

Mathematicians refer to the operation ? as a monoid action. A group action is the

special case of a monoid action when the monoid is a group. Sometimes, an action can

be characterized precisely in terms of how it acts on a given set. This leads to the concept

of a faithful action.

Definition 3.3.2 (Faithful action). Let ? be an operation action on a set S. The action is

faithful if whenever U ? s =V ? s for all s ∈ S, then U =V.

Associated to a system, we require the existence of a faithful operation action on the

noumenal state space, and an operation action on the phenomenal state space. Note that
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the phenomenal operation action is not required to be faithful. Thus, any operation is

fully characterized by how it acts on noumenal states. The faithfulness of the noumenal

action is not fundamental because any noumenal action can be made faithful by replacing

operations by equivalence classes of operations, in effect equating any two operations

that act identically on all possible noumenal states. However, it is algebraically very

useful and natural to impose noumenal faithfulness.

Definition 3.3.3 (Noumenal-phenomenal homomorphism). Let “·” be the action on noume-

nal states and “?” be the action on phenomenal states, and let φ be a mapping whose

domain is the noumenal state space and whose range is the phenomenal state space.

We say that φ is a noumenal-phenomenal homomorphism 4 if, for all operation U and all

noumenal state N,

φ(U ·N) =U ?φ(N) .

When no ambiguity can arise, we omit writing the operation action, and instead we

use the more familiar notation in which the object on which the operation acts is written

in parenthesis, as if the operation were a function. For example, the equation above can

be written equivalently as

φ(U(N)) =U(φ(N)) .

The noumenal-phenomenal epimorphism. Associated to a system, we require the ex-

istence of a specific noumenal-phenomenal homomorphism, which has to be surjective:

we call it the noumenal-phenomenal epimorphism 5 and denote it ϕ .

The operations act in a way that leads to the parallel evolution of the noumenal

world and the phenomenal world, as explained intuitively in Section 3.2.2. This is best

illustrated by the commuting diagram that we had seen previously:

4 A homomorphism is a function that preserves relations between operations.
5 An epimorphism is a surjective homomorphism.
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N1 N2

ρ1 ρ2

ϕ

U

ϕ

U

Even though we do not require the phenomenal action to be faithful in general, it

will be useful to know that any noumenal action is automatically faithful whenever the

corresponding phenomenal action is faithful (but not vice versa).

Theorem 3.3.1. Whenever the phenomenal action is faithful, the faithfulness require-

ment of the noumenal action is automatically verified.

Proof. Let “?” and “·” be the phenomenal and noumenal actions, respectively, and let

ϕ be the noumenal-phenomenal epimorphism. Consider any two operations U and V

for which U ·N = V ·N for all noumenal state N. Our task is to prove that U = V. For

this purpose, consider now any phenomenal state ρ and let N be any noumenal state

such that ρ = ϕ(N), whose existence is guaranteed by the surjectivity of the noumenal-

phenomenal epimorphism.

U ·N =V ·N =⇒ ϕ(U ·N) = ϕ(V ·N)

=⇒ U ?ϕ(N) =V ?ϕ(N)

=⇒ U ?ρ =V ?ρ

We have thus established that U ?ρ = V ?ρ for all phenomenal state ρ , which implies

that U = V by faithfulness of the phenomenal action. This proves that the noumenal

action is faithful as well.
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3.4 The structure of local realism

Now that we have defined the structure of realism, the idea of a world outside of

our perceptions and how it relates to our perceptions, we can introduce an additional

concept: locality.

3.4.1 Locality, informally

Informally, locality is a principle according to which the world is not an amorphous

and indivisible blob: it can be divided into separate smaller parts, called systems, which

interact with one another. Furthermore, if systems are disjoint and non-interacting, their

states cannot influence one another. More generally, systems can influence one another

provided they are sufficiently close. In contrast, they cannot influence one another when

they are sufficiently far apart.

Relativity theory as a special case of locality. In relativity theory, the speed of light

determines which systems are sufficiently far away that they cannot influence one an-

other. Relativity is a theory about causality: It tells us whether or not a system can

influence another. For our abstract purposes, any other theory that provides this sort of

information is just as legitimate as relativity theory. We do not wish to give a precise

meaning to “sufficiently close” and “sufficiently far”.

Relativity theory can be contrasted with quantum theory. While relativity describes

causality, and tells us which systems can and cannot interact with another, quantum

theory describes what are the (phenomenal) states of systems, what kind of operations

can be done on these states and what can be observed in a system.

If anything, the main lesson of the shift from Newtonian space-time to relativity is

this: events are not related through a total order, but through a partial order. There exist

events that are not causally related to one another in either order. In relativity, it does not

matter whether Alice measures before Bob or Bob measures before Alice when they are
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spacelike separated. This is true because in reality, neither is measuring before the other!

The idea of a total ordering between events occurring in spacelike separated systems is

a myth.

Example of locality in our framework. Provided systems A and B are sufficiently

far apart, it does not matter if we perform operation U first on system A and nothing

on system B, followed by nothing on system A and V on system B, or if first we do

nothing on system A and V on system B, followed by U on system A and nothing on

system B. In either case, this simply corresponds to performing U on A and V on B.

This is illustrated by the following three circuits, inspired by quantum computational

networks [13], whose effect is identical.

U

V

U

V

U

V

Simply put, it is not meaningful to say that U was done before V or vice versa.

3.4.2 Systems

What is a system? A system is a part of the universe. The rest of the universe is

called the environment of the system. The universe itself is a system. A system can be

in one out of several possible noumenal states.

The state of a system evolves over time, according to the laws of Nature, and so

does the state of the environment. However, a computer scientist would refer to this as

operations applied on a system by the laws of Nature and the environment. The precise

operation being applied, which is a function of the laws of Nature and the state of the

environment, does not concern us.

A system is open when it interacts with the rest of the universe, and closed, equiva-

lently called isolated, when it does not. When it is closed, nothing from the system can
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escape to the environment. Except for the universe itself, a closed system is a bit of an

idealization.

We want to investigate how various systems relate to each others. For example, if we

have a system A and a system B, we might be interested in the part of the universe that is

common to both; this is another system, denoted AuB. In order to formalize this notion,

we introduce a mathematical framework that describes all the parts of the universe we

wish to consider, i.e. all systems and how they relate to each others.

Definition 3.4.1 (Lattice of systems). A lattice of systems is a 6-tuple (S ,t,u, · ,S, /0),

where S is a set of elements called systems.

There are two special systems:

1. S, which is the whole system being considered, hereinafter called the global sys-

tem. It could be the entire universe. Alternatively, it could be something much

smaller, like a quantum computer or a single photon.

2. The empty system /0, which contains no parts at all.

Let A and B be systems, then:

1. There exists a system AtB, the union of A and B.

2. There exists a system AuB the intersection of A and B.

3. There exists a system A, the complement of A, which is defined so that AuA = /0

and AtA = S. Intuitively, it is composed of all the parts of S that are not in A.

The operations (t, u, · ) and distinguished elements (S, /0) behave like their usual

set-theoretic counterparts. We use the slightly different notation of t, u, rather than

∪, ∩, to emphasize the fact that the operations t and u are purely algebraic in nature.

A structure (S ,t,u, · ,S, /0) that respects the usual set theoretic identities is called a

boolean lattice.
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Note that a more general theory might be possible if we did not impose that AtB

and AuB be systems. We leave for future work this potential generalization in which

we would no longer be able to use the fact that systems form a boolean lattice.

Definition 3.4.2 (Subsystem). System A is a subsystem of a system B, written Av B, if

AuB = A.

Definition 3.4.3 (Disjoint systems). Systems A and B are disjoint if they have no parts

in common, i.e. AuB = /0.

Note that the empty system is a subsystem of all systems, including itself, and that it

is disjoint from all systems, again including itself.

Definition 3.4.4 (Composite system). Let A and B be disjoint. The system AtB is a

composite system, composed of systems A and B. For convenience, we denote it by AB,

rather than AtB.

Since t is commutative, we have that AB = AtB = BtA = BA. It follows that

NAB = NBA and ρAB = ρBA for any disjoint systems A and B.

Since t is also associative, we have A(BC) = (AB)C for any three mutually disjoint

systems A, B and C. Thus, we shall simply write ABC to denote the composite system

consisting of A, B and C.

Generalized union. In the most general study of local-realistic structures, we could be

interested in cases in which a given system X can be represented as the union of many

(possibly infinitely many, even possibly uncountably many) systems. Let J be a set of

systems. A system X is the union of all systems in J , denoted X =
⊔

A∈J
A, if

(∀A ∈J Av X) ∧ (∀B ∈S (∀A ∈J Av B) =⇒ X v B) .

Such an X may not exist in case J is infinite, in which case we are not allowed to write⊔
A∈J A, but it is unique if it exists. Note that in set theory

⊔
A∈J A is the usual

⋃
A∈J A.

46



Even though we shall not make use of the notion of generalized union to prove the main

result of this paper, we have defined it in order to lay the groundwork for future research

on local-realistic structures.

We now provide more details on the state spaces and operations on the various sys-

tems, in accordance with Section 3.3. Associated to each system A, we have:

Noumenal States: A noumenal state space denoted Noumenal-SpaceA; particular noume-

nal states of A are denoted NA, NA
i , NA

1 , etc.

Phenomenal States: A phenomenal state space denoted Phenomenal-SpaceA; par-

ticular phenomenal states of A are denoted ρA, ρA
i , ρA

1 , etc.

Operations: A set of operations denoted OperationsA; particular operations are de-

noted UA, V A, etc.; among them IA denotes the identity operation on system A.

When, there is no ambiguity, we drop the superscript and write simply U , V and I.

Noumenal-Phenomenal Epimorphism: A noumenal-phenomenal epimorphism on sys-

tem A, denoted ϕA. When there is no ambiguity, we write ϕ instead of ϕA. For

example, instead of writing ϕA
(
NA) = ρA we may write ϕ

(
NA) = ρA, and we

refer to ϕ as the noumenal-phenomenal epimorphism.

Now that we have established a notation for the various objects associated with sys-

tems, let us see how objects belonging to different systems relate with one another.

3.4.3 Splitting and merging

As we introduced informally in Section 3.4.1, the world can be decomposed into

several parts according to a local-realistic theory. These parts exist in such a way that

the state of the whole determines the state of the parts, and conversely the state of the

whole is fully determined by the state of the parts. Note that the latter is not the case

with standard quantum theory since entangled states cannot be recovered from the state
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of their subsystems. This is the reason why the usual formalism does not provide a

local-realistic model of quantum theory.

3.4.3.1 Splitting and merging, intuitively

Given a composite system AB, its noumenal state NAB can be decomposed in two

states: A noumenal state NA, in the state space of A, and a noumenal state NB, in the

state space of B. Informally, the state of the parts is determined by the state of the whole.

For this purpose, we shall introduce formally in Section 3.4.3.2 two projectors, πA and

πB, which split a system in the following way:

NA = πA

(
NAB

)
and NB = πB

(
NAB

)
.

Furthermore, the two noumenal states NA and NB determine completely the noume-

nal state NAB. Informally, the state of the whole is determined by the state of the parts.

For this purpose, we shall introduce formally in Section 3.4.3.7 a join product “�”,

which merges the noumenal states of systems A and B as follows:

NAB = NA�NB .

This is illustrated by the following diagram.

NAB

NA NB

NA�NB = NAB

πA πB
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Note that such a diagram would not be possible at the phenomenal level in quantum

theory, if we replaced N by ρ throughout, which is the main motivation for our introduc-

tion of the noumenal world. Nevertheless, even though the phenomenal state ρAB of joint

system AB cannot be determined from the phenomenal states ρA and ρB of subsystems

A and B, it can be determined (as well as ρA and ρB) from the noumenal states NA and

NB of A and B, as illustrated by the following diagram.

NA NB

NA�NB = NAB

ρA ρB

ρAB

ϕ ϕ

ϕ

Let us now proceed formally.

3.4.3.2 Noumenal projectors

For all systems A and B such that A is a subsystem of B, we require the existence

of a function denoted πB
A , which is called the noumenal projector from system B onto

system A. Projector πB
A is a surjective function from the noumenal space of system B to

the noumenal space of system A. The intuitive reason for which we require that πB
A be

surjective is that each state of system A must arise from at least one state of any of its

supersystems, such as B.

Furthermore, we require that if we have any noumenal state NC belonging to a system

C such that A is a subsystem of B, which is itself a subsystem of C, then the following

relation must hold between projectors:

(
π

B
A ◦π

C
B

)(
NC
)
= π

C
A

(
NC
)
.
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To say it more simply, if Av BvC, then

π
B
A ◦π

C
B = π

C
A .

Since there will be no ambiguity, we shall omit the superscript and we shall refer to

πA as the noumenal projector onto system A, regardless of the supersystem from which

we project. For example, the equation above becomes

πA ◦πB = πA .

This equation implies that projectors are idempotent,6 which is the usual definition of

projectors:

πA ◦πA = πA .

Theorem 3.4.1. For any noumenal state NA of system A,

πA

(
NA
)
= NA .

Proof. Our surjectivity requirement on πA
A imposes that there must exist a state NA

α in

the noumenal space of system A such that πA
(
NA

α

)
= NA. Therefore,

πA

(
NA
)
= πA ◦πA

(
NA

α

)
= πA

(
NA

α

)
= NA .

Of course, this NA
α is none other than the original NA since πA

(
NA

α

)
= NA by definition

of NA
α , but also πA

(
NA

α

)
= NA

α by the theorem itself.

3.4.3.3 Phenomenal projector

Moving now from noumenal to phenomenal states, we wish to express the following

idea: If A is a subsystem of B, anything that can be observed about system A is fully

6 By definition, x is idempotent under operation “·” when x · x = x.
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determined by what can be observed about system B because any observation of A is

also an observation of B. This leads to the following requirement. For all systems A, we

require the existence of a phenomenal projector. These phenomenal projectors follow

the same requirements as noumenal projectors, as stated in Section 3.4.3.2, mutatis mu-

tandis. As an abuse of notation, we also denote the phenomenal projector onto system A

by πA, since no ambiguity will be possible with the corresponding noumenal projector

πA.

3.4.3.4 Relation between noumenal and phenomenal projectors

We require that for all systems A and B such that A is a subsystem of B, and all

noumenal states NB of B, the noumenal and phenomenal projections onto the system A

are related by the following commutative relation:

πA
(
ϕ
(
NB))= ϕ

(
πA
(
NB)) .

Note that the πA on the left is a phenomenal projector, whereas the πA on the right is a

noumenal projector. Note also that the ϕ(·) on the left is shorthand for ϕB(·), whereas

the ϕ(·) on the right is shorthand for ϕA(·).

The relation between the noumenal and phenomenal projectors is best visualized by

the fact that the following diagram commutes.

NB NA

ρB ρA

ϕ

πA

ϕ

πA
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This relation leads to the following natural definition for a family 7 of homomor-

phisms.

Definition 3.4.5 (Consistent family of noumenal-phenomenal homomorphisms). Recall

that S is the set of all systems. For any system A, let φA be a noumenal-phenomenal

homomorphism for system A. We say that (φA)A∈S is a consistent family of noumenal-

phenomenal homomorphisms if, for all systems A and B such that A is a subsystem of B,

and for all noumenal states NB of system B, the following relation holds.

πA
(
φB
(
NB))= φA

(
πA
(
NB))

Let us now define a single function from noumenal to phenomenal states of all sys-

tems. In order to deal with the possibility that the same noumenal or phenomenal state

could belong to different systems,8 this function takes two arguments: a system and a

noumenal state of this system. For such a function to be useful for our purposes, it has

to satisfy two conditions, which are encapsulated in the following definition.

Definition 3.4.6 (Universal noumenal-phenomenal epi/homomorphism). Let φ be a func-

tion of two arguments. The first argument can be an arbitrary system A and the second

an arbitrary noumenal state of system A. For each system A, this function φ gives rise to a

function φA : Noumenal-SpaceA→ Phenomenal-SpaceA defined by φA(NA) = φ(A,NA).

We say that φ is a universal noumenal-phenomenal homomorphism if two conditions

hold:

1. function φA is a noumenal-phenomenal homomorphism for all systems A; and
7 The difference between family (φA)A∈S and the more familiar notation for what could be set {φA}A∈S

is that each family element φA retains its association with the corresponding index, in this case system A.
Formally, the notation for this family is shorthand for {(A,φA) : A ∈S }. Note that the more familiar
notation is ambiguous as it is used interchangeably to mean either a set or a family, which is why we
prefer to write {φA : A ∈S } for the former. For reasons of consistency, we shall sometimes write the
family index as a superscript rather than a subscript.

8 Without loss of generality, we could have imposed the condition that the set of states of any system A
has to be disjoint from the set of states of any other system B, but that would not have been natural when
it comes to the phenomenal states of quantum theory, for instance in the way that they will be defined in
Section 3.5.1.
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2. the family (φA)A∈S of noumenal-phenomenal homomorphisms is consistent, ac-

cording to Definition 3.4.5.

The same concept defines a universal noumenal-phenomenal epimorphism if we replace

“homomorphism” by “epimorphism” throughout. Note that it is not sufficient for a uni-

versal noumenal-phenomenal homomorphism ϕ to be surjective in order to be called a

universal noumenal-phenomenal epimorphism: it must be that ϕA is surjective for each

system A.

If we are given a consistent family (φA)A∈S of noumenal-phenomenal homomor-

phisms, there is a natural way to build a single universal noumenal-phenomenal homo-

morphism φ defined as

φ(A,NA)
def
= φA(NA) .

Since there will be no ambiguity on the system under consideration, we shall simply

write φ
(
NA) instead of φ

(
A,NA), or equivalently instead of φA

(
NA).

Similarly, if we are given a consistent family (ϕA)A∈S of noumenal-phenomenal epi-

morphisms, we can build a universal noumenal-phenomenal epimorphism ϕ . Note that

this is consistent with the notation ϕ introduced in Section 3.3.

In conclusion, our requirement that there be a noumenal-phenomenal epimorphism

ϕA associated to each system A, and that the family (ϕA)A∈S of all these epimorphisms

be consistent, is equivalent to the requirement of the existence of a single universal

noumenal-phenomenal epimorphism ϕ .

3.4.3.5 Abstract trace

Quantum theory often mentions tracing out other systems. More generally, we can

define an abstract trace from any projector. For all disjoint systems A and B, for all
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noumenal states NAB and all phenomenal states ρAB, we define

trB

(
NAB

)
def
= πA

(
NAB

)
and trB

(
ρ

AB
)

def
= πA

(
ρ

AB
)
.

Again, while both traces are different functions, we denote them with the same sym-

bols since no ambiguity can arise. Our choice of working with projectors rather than

traces stems from the fact that the notion of trace belongs to linear algebra only, whereas

projectors are universal mathematical objects.

3.4.3.6 Compatibility

Recall that S denotes the system that represents the entire universe under considera-

tion. Therefore, any noumenal state NA belonging to system A can be represented as the

projection of some noumenal state NS of the universe

NA = πA

(
NS
)

since Av S by definition of S and by surjectivity of πS
A, remembering that πA is shortcut

for πS
A. The following definitions formalize the notion that states are compatible if they

can exist simultaneously in the same universe.

Definition 3.4.7 (Compatible noumenal states). Consider two systems A and B. Noume-

nal states NA and NB are compatible if there exists a noumenal state NS of the global

system such that NA = πA
(
NS) and NB = πB

(
NS).

Definition 3.4.8 (Compatible family of states). Let I and J be possibly empty sets

of systems. Let NA be a noumenal state of system A for each A ∈ I and let ρA be a

phenomenal state of system A for each A ∈J . We say that the ordered pair of families(
NA)

A∈I and
(
ρA)

A∈J , denoted

F =

((
NA
)

A∈I
,
(

ρ
A
)

A∈J

)
,
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is a compatible family of states if there exists a noumenal state NS of the global system

such that NA = πA
(
NS) for each A ∈ I and ρA = πA

(
ϕ
(
NS)) for each A ∈J . Any

such NS is called an underlying global state for family F . Note that NS must belong to(
NA)

A∈I whenever S ∈I .

As an abuse of notation, we say that
(
NA)

A∈I or
(
ρA)

A∈J are compatible families

of states should they be so, according to the above definition, if coupled with the empty

family on the appropriate side.

Definition 3.4.9 (Compatible states). Two states are compatible if they form together

a compatible family of states. These two states could be either two noumenal states,

two phenomenal states or one noumenal state and one phenomenal state. This definition

subsumes Definition 3.4.7 in the case of two noumenal states.

The following theorems illustrate consequences of the notion of compatibility.

Theorem 3.4.2. Let A be a subsystem of B. Noumenal states NA and NB are compatible

if and only if NA = πA
(
NB).

Proof. We first prove⇒: Suppose NA and NB are compatible states. Let NS be such that

NA = πA
(
NS) and NB = πB

(
NS).

πA
(
NB)= πA

(
πB

(
NS
))

= (πA ◦πB)
(

NS
)

= πA

(
NS
)

= NA

Now we prove⇐: Suppose NA = πA
(
NB). By surjectivity of the noumenal projector πB

there exists NS such that NB = πB
(
NS).
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NA = πA
(
NB)

= πA

(
πB

(
NS
))

= (πA ◦πB)
(

NS
)

= πA

(
NS
)

Theorem 3.4.3. Let A be a subsystem of B. Phenomenal states ρA and ρB are compatible

if and only if ρA = πA
(
ρB).

Proof. We first prove⇒: Suppose ρA and ρB are compatible states. Let NS be such that

ρA = πA
(
ϕ
(
NS)) and ρB = πB

(
ϕ
(
NS)).

πA
(
ρ

B)= πA

(
πB

(
ϕ

(
NS
)))

= (πA ◦πB)
(

ϕ

(
NS
))

= πA

(
ϕ

(
NS
))

= ρ
A

Now we prove⇐: Suppose ρA = πA
(
ρB). By surjectivity of the phenomenal projector

πB and of the noumenal-phenomenal epimorphism ϕS, there exists NS such that ρB =

πB
(
ϕ
(
NS)).

ρ
A = πA

(
ρ

B)
= πA

(
πB

(
ϕ

(
NS
)))

= (πA ◦πB)
(

ϕ

(
NS
))

= πA

(
ϕ

(
NS
))

Theorem 3.4.4. Let A be a subsystem of B. Phenomenal state ρA and noumenal state

NB are compatible if and only if ρA = πA
(
ϕ
(
NB)).
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Proof. This proof is similar to the two previous ones and is left to the reader.

Corollary 3.4.1. Phenomenal state ρA and noumenal state NA are compatible if and only

if ρA = ϕ
(
NA).

Proof. Immediate since Av A and ρA = πA
(
ϕ
(
NA))= ϕ

(
NA).

3.4.3.7 The join product

For all disjoint systems A and B, we require the existence of an operation, the join

product, denoted “�”,9 such that for all noumenal states NAB, the following relation

holds:

NA�NB = NAB ,

where NA = πA
(
NAB) and NB = πB

(
NAB). It follows that an arbitrary composite state

NAB can be represented by its decomposition NA�NB, which is unique according to

Theorem 3.4.6 below.

Note that the join product is only defined on compatible states. Therefore, if noume-

nal states NA and NB are not both projections of some noumenal state NAB, their join

product is not defined. This implies that NA�NB = NAB if and only if NA, NB and NAB

are compatible.

As we can see, compatible states are states on which the operations of join product,

noumenal and phenomenal projectors, and the noumenal-phenomenal epimorphisms are

well-behaved.

Convention on compatibility. Hereinafter, we shall adopt the following convention:

states without indices, for example NA, ρB (rather than NA
α , ρB

i ), are always assumed to

be compatible and to have an underlying global state NS. Thus, we shall always assume

9 Technically, we should write�(A,B) to denote the fact that the join product depends on systems A and
B, but since there will be no confusion, as an abuse of notation, we shall not do so.
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that NA = πA
(
NS) and ρA = πA

(
ϕ
(
NS)) for all systems A. In particular, the following

propositions are implicitly assumed in the theorems below.

For all systems A,

ρ
A = ϕ

(
NA
)
.

For all systems A and B such that Av B,

ρ
A = πA

(
ρ

B)
NA = πA

(
NB) .

For all disjoint systems A and B,

NA�NB = NAB

πA

(
NAB

)
= NA

πA

(
ρ

AB
)
= ρ

A.

Theorem 3.4.5. πA
(
NA�NB)= NA and πB

(
NA�NB)= NB.

Proof. We prove only πA
(
NA�NB)= NA; the other statement is similar.

πA

(
NA�NB

)
= πA

(
NAB

)
= NA

Theorem 3.4.6 (Unique Decomposition). Let A and B be disjoint systems.

NA
1 �NB

1 = NA
2 �NB

2 =⇒ NA
1 = NA

2 and NB
1 = NB

2
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Proof. We prove NA
1 = NB

1 ; the other statement is similar

NA
1

= πA

(
NA

1 �NB
1

)
= πA

(
NA

2 �NB
2

)
= NA

2

Theorem 3.4.7 (Commutativity of the join product). For any disjoint systems A and B,

NA�NB = NB�NA .

To be technically more precise, NA�(A,B) NB = NB�(B,A) NA, according to footnote 9.

Proof.

(
NA�NB

)
= NAB

= NBA

=
(

NB�NA
)

Theorem 3.4.8 (Associativity of the join product). For any disjoint systems A, B and C,

(
NA�NB

)
�NC = NA�

(
NB�NC

)
.

It follows that we can omit the parentheses and simply write NA�NB�NC.
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Proof.

(
NA�NB

)
�NC

= NAB�NC

= NABC

= NA�NBC

= NA�
(

NB�NC
)

In the above, recall that NABC = N(AB)C = NA(BC).

Now, we generalize the join product to an arbitrary set J of mutually disjoint sys-

tems provided X =
⊔

A∈J A is a system. If X is in noumenal state NX and NA = πA
(
NX)

for each A ∈J , then we require that the generalized join product
⊙

, which is defined

only on compatible families of states, satisfies

⊙
A∈J

NA = NX .

It follows that an arbitrary state NX of system X can be represented by its unique decom-

position
⊙

A∈J
NA.

Theorem 3.4.9. Consider a set J of disjoint systems such that X =
⊔

A∈J A exists. Let

B be a subsystem of X that is not necessarily in the set.

πB

⊙
A∈J

NA

= NB

Proof.

πB

⊙
A∈J

NA

= πB
(
NX)= NB
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Theorem 3.4.10 (Generalized unique decomposition). Let J be a set of mutually dis-

joint systems. ⊙
A∈J

NA
1 =

⊙
A∈J

NA
2

 =⇒
(
∀A ∈J NA

1 = NA
2

)

Proof. Let A ∈J

NA
1

= πA

⊙
A∈J

NA
1


= πA

⊙
A∈J

NA
2


= NA

2

3.4.4 Separate evolution and product of operations

Suppose we have two disjoint systems, A and B, respectively in compatible states

NA and NB. If we apply some operation U on system A and V on system B, the new

state of systems A and B will be U
(
NA) and V

(
NB), respectively. Intuitively, we have

performed some operation W on joint system AB, which maps state NA�NB to U
(
NA)�

V
(
NB). However, for this to make sense, it must be not only that U

(
NA) and V

(
NB) are

compatible, but also that W itself belongs to the set of operations on system AB. We now

proceed to formalize this notion.

For all disjoint systems A and B, U ∈ OperationsA and V ∈ OperationsB, we

require the existence of W ∈ OperationsAB such that for all compatible states NA ∈
Noumenal-SpaceA and NB ∈ Noumenal-SpaceB,

W
(

NA�NB
)
=U

(
NA
)
�V

(
NB) .
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This requirement justifies the introduction of a direct product of operations, which we

denote “×”,10 such that for any operation U on system A, any operation V on system B,

and for any noumenal state NAB = NA�NB, we define U×V as the operation on system

AB that satisfies (
U×V

)(
NA�NB

)
=U

(
NA
)
�V

(
NB) . (3.1)

Note that this equation defines U ×V uniquely because we had required the noumenal

action to be faithful; see Definition 3.3.2. It follows that

πA

(
(U×V )

(
NAB

))
=U

(
NA
)

and πB

(
(U×V )

(
NAB

))
=V

(
NB) .

Thus, the new state of system A is simply U
(
NA), as it should. Crucially, we see that the

operation U performed on (possibly far-away) system A has had absolutely no effect on

the noumenal state of system B.

This concept is illustrated by the following commuting diagram.

NAB (U×V )
(
NAB)

NA U
(
NA)

πA

U×V

πA

U

More generally, consider a set J of disjoint systems such that X =
⊔

A∈J A exists

and is in noumenal state NX =
⊙

A∈J NA. Consider also an operation UA on each system

10 Technically, we should denote this product of operations as ×(A,B) but we shall consider the depen-
dence in A and B to be implicit. Note also that in quantum theory we would use “⊗”, called tensor product,
but the usual quantum-mechanical construct is not a direct product because U ⊗V = U ′⊗V ′ is possible
when U 6=U ′ and V 6=V ′, unless we define equality of unitary transformations up to phase, as we shall do
in Section 3.5.1. Here, it is an abstract algebraic construction that is defined by Eq (3.1), and indeed it is a
direct product by construction.
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A ∈J . Eq (3.1) generalizes to the following requirement.

(
∏

A∈J
UA

)⊙
A∈J

NA

=
⊙

A∈J
UA
(

NA
)

For any B ∈J , this implies that

πB

( ∏
A∈J

UA

)⊙
A∈J

NA

=UB(NB) .
Again, the operations performed on all the systems from J other than B have no effect

on the noumenal state of system B.

3.4.4.1 Immediate consequences of the definition of product of operations

We now state and prove several properties of the product of operations. These proofs

hinge upon the fact that if two operations act identically on all noumenal states, then

they are the same operation, again by faithfulness of the noumenal action. Recall also

that any state NAB can be represented as a product state NAB = NA�NB and that the state

NABC can be represented as a product NABC = NA�
(
NB�NC)= (NA�NB)�NC.

Theorem 3.4.11.

(U2×V2)(U1×V1) = (U2U1)× (V2V1)

Proof. Consider arbitrary compatible noumenal states NA and NB for systems A and B.

(U2×V2)(U1×V1)
(

NA�NB
)

=(U2×V2)
(

U1

(
NA
)
�V1

(
NB))

=U2

(
U1

(
NA
))
�
(
V2
(
V1
(
NB)))

=(U2U1)
(

NA
)
� (V2V1)

(
NB)

=((U2U1)× (V2V1))
(

NA�NB
)
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Theorem 3.4.12.

IA× IB = IAB

Proof. Consider arbitrary compatible noumenal states NA and NB for systems A and B.

(
IA× IB

)(
NA�NB

)
= IA

(
NA
)
� IA(NB)

=NA�NB

= IAB
(

NA�NB
)

Theorem 3.4.13.

U×V =V ×U

To be technically more precise, U×(A,B)V =V ×(B,A)U , according to footnote 10.

Proof. Consider an arbitrary noumenal state NAB = NBA for system AB = BA.

(U×V )
(

NAB
)

=U
(

NA
)
�V

(
NB)

=V
(
NB)�U

(
NA
)

=(V ×U)
(

NBA
)

=(V ×U)
(

NAB
)

Theorem 3.4.14.

U× (V ×W ) = (U×V )×W
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Proof. Consider an arbitrary noumenal state NABC for system ABC.

(U× (V ×W ))
(

NABC
)

=U
(

NA
)
� (V ×W )

(
NBC

)
=U
(

NA
)
�
(

V
(
NB)�W

(
NC
))

=
(

U
(

NA
)
�V

(
NB))�W

(
NC
)

=(U×V )
(

NAB
)
�W

(
NC
)

=((U×V )×W )
(

NABC
)

Since both � and × are associative (Theorems 3.4.8 and 3.4.14), we can omit the

parentheses. For example,

(U×V ×W )
(

NA�NB�NC
)
=U

(
NA
)
�V

(
NB)�W

(
NB) .

Theorem 3.4.15. (
∏

A∈J
UA
)(

∏
A∈J

V A
)
= ∏

A∈J

(
UAV A

)
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Proof. Consider arbitrary compatible noumenal states NA for each system A ∈J .

((
∏

A∈J
UA
)(

∏
A∈J

V A
))⊙

A∈J
NA


=

(
∏

A∈J
UA
)( ∏

A∈J
V A
)⊙

A∈J
NA


=

(
∏

A∈J
UA
)⊙

A∈J
V A
(

NA
)

=
⊙

A∈J
UA
(

V A
(

NA
))

=
⊙

A∈J

(
UAV A

)(
NA
)

= ∏
A∈J

(
UAV A

)⊙
A∈J

NA



Theorem 3.4.16. Consider a set J of disjoint systems such that X =
⊔

A∈J A exists.

We have

∏
A∈J

IA = IX .

Proof. Consider arbitrary compatible noumenal states NA for each system A ∈J .

∏
A∈J

IA

(⊙
A

NA

)
=
⊙

A∈J
IA
(

NA
)

=
⊙

A∈J
NA

= IX

⊙
A∈J

NA


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The following two theorems hold provided the set of operations on any given system

forms a group.

Theorem 3.4.17. Let A and B be disjoint systems. For any operation U on system A and

V on system B,

(U×V )−1 =U−1×V−1 .

Proof.

(U×V )
(
U−1×V−1)(

UU−1)× (VV−1)(
IA× IB

)
= IAB

Theorem 3.4.18. Consider a set J of disjoint systems such that X =
⊔

A∈J A exists.

We have (
∏

A∈J
UA

)−1

= ∏
A∈J

(
UA
)−1

.

Proof.

∏
A∈J

UA
∏

A∈J

(
UA
)−1

= ∏
A∈J

(
UA
(

UA
)−1

)
= ∏

A∈J
IA

=IX

Note for the expert: Our definition gives a direct product in the usual algebraic sense;

see footnote 10 again. Had we not required the action to be faithful, we could have had

various pathologies. For instance, it could have happened that even though both IAB
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and IA× IB do nothing on any noumenal states, IA× IB is not the neutral element of the

monoid, only an element of the kernel of the action, contradicting Theorem 3.4.12.

3.4.5 No-signalling principle

One important, albeit obvious, consequence of a theory being local-realistic is that

it is not possible to send a signal from one system to another if there is no interaction

between the two.

Intuitively, no operation performed on some system A can have an instantaneous

effect of any kind on a remote system B. It follows that no operation performed on

system A can have an instantaneous observable effect on system B. More precisely, when

we perform an operation U on system A and an operation V on system B, operation V

has only affected the noumenal state of system B, without any influence on the noumenal

state of system A. It follows that the phenomenal state of system A, which is a function

of its noumenal state, is also unchanged. This is formalized in the following theorem.

Theorem 3.4.19 (No-Signalling Principle). Let ρAB be a phenomenal state of system AB.

For all operations U on system A and V on system B,

πA

(
(U×V )

(
ρ

AB
))

=U
(

ρ
A
)
.

We call the equation above the no-signalling principle because it means that no opera-

tion V applied on system B can have a phenomenal (i.e. observable) effect on a remote

system A.
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Proof. Let NAB be any noumenal state such that ρAB = ϕ
(
NAB). Its existence is guaran-

teed from the fact that ϕ is surjective.

πA
(
(U×V )

(
ρ

AB))
= πA

((
U×V

)(
ϕ
(
NAB)))

= πA

(
ϕ

(
(U×V )

(
NAB

)))
= ϕ

(
πA

(
(U×V )

(
NAB

)))
= ϕ

(
U
(

NA
))

= U
(

ϕ

(
NA
))

= U
(

ρ
A
)

In a local-realistic structure, no-signalling is a theorem, not a postulate! Any theory

that is local-realistic is automatically no-signalling. We shall later explore the converse

question, whether given a no-signalling theory, it is possible to construct a local-realistic

theory that gives rise to the same phenomenal observations.

Thus, a theory is no-signalling if the following diagram commutes.

ρAB (U×V )
(
ρAB)

ρA U
(
ρA)

πA

U×V

πA

U

The no-signalling principle can be extended to arbitrary products of operations.

Theorem 3.4.20. Consider a set J of disjoint systems such that X =
⊔

A∈J A exists,

and an operation UA on each system A ∈J . For any B ∈J , we have

πB

((
∏

A∈J
UA
)(

ρ
X))=UB(

πB
(
ρ

X)) .
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Proof. Let NX be any noumenal state such that ρX = ϕ
(
NX). It suffices to apply the

commuting relations.

πB

((
∏

A∈J
UA
)(

ρ
X))

= πB

((
∏

A∈J
UA
)(

ϕ
(
NX)))

= πB

(
ϕ

((
∏

A∈J
UA
)(

NX)))

= ϕ

(
πB

((
∏

A∈J
UA
)(

NX)))

= ϕ
(
UB(NB))

= UB(
ϕ
(
NB))

= UB(
ρ

B)
Our statement of the no-signalling principle in Theorem 3.4.19 is a generalization of

the usual notion, which is typically formulated in terms of the probability distribution of

observation outcomes (which would be called measurements in quantum theory) made in

two of more remote locations. In the simplest bipartite instance, consider two observers

Alice and Bob, who share some system AB. They dispose of sets of operations {Ui : i ∈
I} that Alice can apply on A and {Vj : j ∈ J} that Bob can apply on B. These operations

may include observations that can produce outcomes x and y, respectively. Denote by

Prob[Ui → x] the probability that operation Ui applied by Alice on system A produces

outcome x. Similarly, Prob[Ui→ x,Vj→ y] is the joint probability that Alice observes x

and Bob observes y if they perform operations Ui and Vj on systems A and B, respectively.

Assume now that Alice and Bob are sufficiently far apart that their systems can be

considered disjoint and non-interacting in the sense of Section 3.4.1 (possibly because

they are spacelike separated). The usual no-signalling principle [30] says that, for any
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i ∈ I and any possible outcome x when operation Ui is performed by Alice on system A,

Prob[Ui→ x] can be well-defined as

Prob[Ui→ x] = ∑
y

Prob[Ui→ x,Vj→ y] ,

regardless of the choice of j that Bob may make. In other words, the observable out-

come at Alice’s of performing some operation Ui on system A must not depend on which

operation Vj is performed by Bob on remote system B, including no operation at all.11

It follows that Bob cannot signal information to Alice by a clever choice of which oper-

ation to apply (or not) to his system.

3.4.6 Dropping the surjectivity requirement

The surjectivity requirement of the noumenal-phenomenal epimorphisms will be a

hindrance later, when we shall build a local-realistic model from any no-signalling the-

ory. For this reason, it is sometimes convenient to relax this requirement. Here, we show

that this can be done under the conditions established below, according to which a fam-

ily of not-necessarily-surjective universal homomorphisms can be collected into a single

universal epimorphism that respects all the conditions set above.

Consider again a lattice of systems (S ,t,u, · ,S, /0). Associated to each system A,

we still have a noumenal state space Noumenal-SpaceA, a phenomenal state space

Phenomenal-SpaceA, a set of operations OperationsA, as well as noumenal and phe-

nomenal projectors, both denoted πA; and associated to each disjoint pair of systems A

and B, we still have a join product �(A,B) and a product of operations ×(A,B), the lat-

ter two simply denoted � and × for convenience. However, instead of having a single

universal noumenal-phenomenal epimorphism, we have a family of universal noumenal-

phenomenal homomorphisms (φi)i∈I for some index set I. Suppose also that for each

11 Formally, we need the identity operation to be among Bob’s choices for “including no operation
at all” to hold.
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phenomenal state ρS of the global system, there exists at least one noumenal-phenomenal

homomorphism φi and a noumenal state NS of the global system such that ρS = φi
(
NS).

Now, we proceed to build a local-realistic model composed of the same lattice of

systems, the same phenomenal spaces, the same operations and phenomenal actions of

the operations on the phenomenal spaces and the same phenomenal projectors. However,

in order to obtain the desired universal noumenal-phenomenal epimorphism, we shall

need to define new noumenal state spaces, and therefore new noumenal states, noumenal

projectors denoted π ′, join product denoted�′, and actions on noumenal states. Consider

any two systems A and B.

New-Noumenal-SpaceA def
=
{(

NA, i
)

: NA ∈ Noumenal-SpaceA, i ∈ I
}

π ′A
(
NB, i

) def
=
(
πA
(
NB) , i) provided Av B(

NA, i
)
�′
(
NB, i

) def
=
(
NA�NB, i

)
provided NA�NB is defined

U
(
NA, i

) def
=
(
U
(
NA) , i)

As before, the new join product�′ is only defined on compatible states:
(
NA, i

)
�′
(
NB, j

)
is defined under conditions that i = j, NA and NB are compatible states in the origi-

nal noumenal spaces, and A and B are disjoint systems. The new universal noumenal-

phenomenal epimorphism ϕ ′ is defined as follows:

ϕ
′
(

NA, i
)

def
= φi

(
NA
)
.

It is easy to verify that the new noumenal spaces, join products, actions and universal

noumenal-phenomenal epimorphism give rise to a local-realistic model. Let us prove for

example that the new join product behaves properly, according to how it was defined at

the beginning of Section 3.4.3.7. The other requirements for a local-realistic structure

are proved similarly.
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Theorem 3.4.21.

π
′
A

(
NAB, i

)
�′ π ′B

(
NAB, i

)
=
(

NAB, i
)

Proof.

π
′
A

(
NAB, i

)
�′ π ′B

(
NAB, i

)
=
(

πA

(
NAB

)
, i
)
�′
(

πB

(
NAB

)
, i
)

=
(

πA

(
NAB

)
�πB

(
NAB

)
, i
)

=
(

NAB, i
)

Furthermore, ϕ ′ is indeed a universal noumenal-phenomenal epimorphism, which

was the purpose of the entire exercise. To prove this, it suffices to show that ϕ ′ is a

universal noumenal-phenomenal homomorphism (which is obvious) and that ϕ ′A, the

restriction of ϕ ′ to system A, is surjective for each system A, which is the purpose of the

next theorem.

Theorem 3.4.22. Consider an arbitrary system A and some phenomenal state ρA in

Phenomenal-SpaceA. There exists (NA, i) in New-Noumenal-SpaceA such that

ϕ ′A
(
NA, i

)
= ρA.

Proof. Let ρS be so that πA
(
ρS)= ρA. Let NS and i be so that ρS = φi

(
NS).

ϕ
′
A

(
πA

(
NS
)
, i
)
= φi

(
πA

(
NS
))

= πA

(
φi

(
NS
))

= πA

(
ρ

S
)

= ρ
A

It follows that the requirement that the universal noumenal-phenomenal homomorphism

be surjective on each system (hence an epimorphism) can be dropped, provided we have

a family of universal homomorphisms that has the property defined above.
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3.5 No-signalling operational theories

Until now, we have defined a framework for local-realistic theories. Let us now

consider theories for which there is a phenomenal world, but no explicit noumenal world,

or perhaps even no noumenal world at all. Such theories, which deal with the observable,

are called operational. More specifically, we are interested in no-signalling operational

theories, in which no operation performed on a system A has any observable effect on a

disjoint system B. In case there is a noumenal world, however, an operation performed

on system A is allowed to have have an instantaneous effect on the noumenal state of

remote system B, provided it has no effect on its phenomenal state, hence it does not

lead to any observable consequences.

The key difference between a no-signalling operational theory and a local-realistic

theory is the required existence of a join product in the latter, which allows us to describe

the state of a composite system as a function purely of its subsystems, whereas there is no

such requirement in the former. Furthermore, there is no requirement of an underlying

reality in an operational theory: it does not have to be the shadow of some unspecified

noumenal world.

The central purpose of this paper is to establish a link between no-signalling opera-

tional theories and local-realistic theories. We have already seen that all local-realistic

theories are no-signalling (Theorem 3.4.19), but could this statement be reversed? Could

it be that all no-signalling operational theories are local-realistic? The answer depends

of what we mean exactly by this statement. Obviously, any operational theory, whether

or not it is no-signalling, can be given a non-local interpretation (more on this in Sec-

tion 3.7). The interesting question is whether, given a no-signalling operational theory,

we can construct a corresponding local-realistic theory that makes the same operational

predictions. We shall prove the affirmative for a wide class of no-signalling theories,

including unitary quantum theory. But first, we introduce the explicit requirements that

define a structure of no-signalling operational theory.
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Definition 3.5.1 (No-signalling operational theory). A no-signalling operational theory

is composed of a lattice of systems (S ,t,u, · ,S, /0) such that, associated to each system

within the lattice, there is

1. a phenomenal state space;

2. a set of operations;

3. a faithful operation action of the operations on the phenomenal state space;

4. and a phenomenal projector onto the system.

In addition, to each disjoint pair of systems, there is

5. a product of operations.

The first four of these mathematical objects are defined exactly as in the case of local

realistic theories (Section 3.4). The product of operations, which is very different, is

formally defined below.

The faithfulness of the phenomenal action is not fundamental because any phenom-

enal action can be made faithful by replacing operations by equivalence classes of op-

erations, in effect equating any two operations that act identically on all possible phe-

nomenal states, as we shall do for instance in the specific case of quantum theory in

Section 3.5.1. However, it is algebraically very useful and natural to impose phenom-

enal faithfulness from the outset. The reason why we had not required fidelity of the

phenomenal action after Definition 3.3.2 is that such faithfulness could be incompatible

with the underlying noumenal world, even if the latter exhibits a faithful action. But

here, only the phenomenal world is given and we are free to build our own noumenal

world to explain it. This gives us latitude to make the phenomenal action faithful if

needed, before we proceed to building the noumenal world, whose action will then be

automatically faithful by virtue of Theorem 3.3.1.
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A no-signalling operational theory differs from a local-realistic theory in the fact

that it does not come with a noumenal state space. Therefore, there are no universal

noumenal-phenomenal epimorphism, noumenal projectors, nor join product of noume-

nal states. The latter is the essential missing ingredient in a local-realistic operational

theory: there is no phenomenal counterpart for the noumenal join product, which was

as the heart of local-realistic theories. Phenomenal states ρA and ρB of disjoint systems

A and B could admit several distinct phenomenal states ρAB such that ρA = πA
(
ρAB)

and ρB = πB
(
ρAB). In operational quantum theory, as we shall see in Section 3.5.1, the

usual density matrices play the role of phenomenal states, and indeed it is generally not

possible to recover ρAB from ρA and ρB when systems A and B are entangled. This is

why it is usually, albeit wrongly, asserted that quantum theory is a nonlocal theory since,

at the phenomenal level, the state of the whole is not determined by the state of its parts.

Product of operations. In local-realistic theories, the product of operations was com-

pletely determined at the noumenal level by Eq (3.1) in Section 3.4.4, which depended

crucially on the existence of the join product, a notion that does not exist at the phenome-

nal level. Nevertheless, this induced a phenomenal meaning to the product of operations

through the noumenal-phenomenal epimorphism. In sharp contrast, the product of oper-

ations is a primitive notion in no-signalling operational theories, which we now proceed

to characterize. For all disjoint systems A and B, we require the existence of a function

denoted “×”,12 the product of operations. Given operations U and V on disjoint systems

A and B, we denote by U ×V an operation on system AB that satisfies the following

conditions.

1. No-signalling principle. Given any operations U and V on disjoint systems A

and B, respectively, and given any phenomenal state ρAB of joint system AB, we

require that

πA

(
(U×V )

(
ρ

AB
))

=U
(

πA

(
ρ

AB
))

.

12 Technically, we should denote this product of operations as ×(A,B) but once again we shall consider
the dependence in A and B to be implicit.
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2. Associativity. Given any operations U , V and W on mutually disjoint systems, we

require that

U× (V ×W ) = (U×V )×W .

Since there is no ambiguity, we shall omit the parentheses and simply write U ×
V ×W .

3. Given any operations U1, U2 on system A and V1, V2 on disjoint system B,

(U2×V2)(U1×V1) =U2U1×V2V1 .

This means that if we first do jointly operation U1 on A and V1 on B, and then

we do jointly operation U2 on A and V2 on B, then this is equivalent to having

done jointly the operation that consists of doing U1 followed by U2 on A and the

operation that consists of doing V1 followed by V2 on B.

4. Given any two disjoint systems A and B,

IA× IB = IAB .

This means that if we do nothing on system A and nothing on system B, then we

have done nothing on joint system AB.

5. Given operations U and V on disjoint systems A and B, respectively,

UA×V B =V B×UA .

To be technically more precise, UA×(A,B)V B =V B×(B,A)UA, according to foot-

note 12.

6. The last requirement is more technical, but nevertheless necessary. Consider three

mutually disjoint systems A, B and C, and operations UBC and V AC on joint sys-

tems BC and AC, respectively, such that IA×UBC = IB×V AC, then there exists an
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operation WC acting on system C alone such that

IA×UBC = IB×V AC = IAB×WC .

Intuitively, this says that if nothing is done to system A and nothing to system B,

then nothing is done to system AB.

The first five of the above requirements did not have to be imposed on the product of

operations when we considered local-realistic structures in Sections 3.4.4 and 3.4.5 be-

cause they were consequences of the join product and of Eq (3.1). Specifically, these

five requirements correspond to Theorems 3.4.19, 3.4.14, 3.4.11, 3.4.12 and 3.4.13,

respectively.

3.5.1 Unitary quantum theory is a no-signalling operational theory

Finite dimensional unitary quantum theory is a model of a no-signalling operational

theory. To see this, we must define the various components of a no-signalling operational

theory, as specified in Definition 3.5.1, in quantum-mechanical terms. The obvious ap-

proach outlined below does not quite work but it helps in order to gain intuition.

1. The phenomenal state of a quantum system is its density matrix.

2. The operations acting on those states are unitary transformation of the appropriate

dimension.

3. Operation U acts on phenomenal state ρ by producing Uρ U†.

4. The phenomenal projector πA on system A is the usual tracing out of the rest of

the universe (see Section 3.4.3.5).

5. The product of operations is the usual tensor product of unitary transformations.
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It is elementary to verify that the first five requirements for the product of operations are

satisfied. The last is slightly technical and is left as an exercise for the reader.

The only problem is that this operation action is not faithful. Indeed, consider any

unitary operation U and complex number η of unit norm, then if we define V = ηU ,

it is well-known that Uρ U† = V ρ V † for any density matrix ρ of matching dimension,

even though algebraically speaking, U 6= V whenever η 6= 1. In order to make the op-

eration action faithful, we need to equate those two operations, and more generally to

equate any two operations that differ only by a multiplicative complex constant factor

of unit norm, known in usual quantum theory as an irrelevant phase factor. The clean

mathematical way to do this is to define equivalence relation ∼ by U ∼V if and only if

V = ηU for some complex number η of unit norm. Then, the operations in the oper-

ational theory are no longer unitary transformations but equivalence classes of unitary

transformations, where class [U ] is defined as {ηU : η ∈ C and |η |= 1} and operation

[U ] acts on noumenal state ρ by producing Uρ U†. This is well defined because if

[U ] = [V ] then Uρ U† = V ρ V † by definition of the equivalence classes. We also leave

as an exercise for the reader to show that whenever [U ] 6= [V ], there exists a density

matrix ρ such that Uρ U† 6=V ρ V †, and therefore our new phenomenal action is indeed

faithful. Finally, instead of taking the tensor product on unitary operations, we must take

it on classes of operations. Consequently, we define the product of operations × by:

[U ]× [V ]
def
= [U⊗V ]. This product is well defined and has the required properties.

3.6 From no-signalling to local realism

As stated at the beginning of Section 3.5, our main objective is to give a local-realistic

interpretation to the broadest possible class of no-signalling operational theories, includ-

ing unitary quantum theory. For this purpose, we need to start from the description of

a no-signalling operational theory and construct a local-realistic model that gives rise to

the same phenomenal behaviour. Specifically, we are given a lattice of systems. For each

system in the lattice, we are given a phenomenal state space, a set of operations, and
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a faithful action of the operations on the phenomenal state space. We are also given

a phenomenal projector πB
A for each pair of systems Av B. Furthermore, for each pair

of disjoint systems A and B, we are given a product of operations ×(A,B) that respects

the six requirements for the product of operations in a no-signalling operational theory.

Our aim is to construct a noumenal state space and a faithful action of the operations

on the noumenal state space for each system, a noumenal projector πB
A for each pair of

systems Av B, a universal noumenal-phenomenal epimorphism ϕ from our noumenal

state spaces onto the imposed phenomenal state spaces, and a join product. Note that we

must keep the original sets of operations, from which we must define our actions on the

noumenal state spaces.

We need our construction to recover the original operational theory in the sense that

each product of operations induced by our join product by virtue of Eq (3.1) in Sec-

tion 3.4.4 must be precisely the corresponding product of operations that was prescribed

in the given no-signalling operational theory. This is Theorem 3.6.9 below. We must also

make sure that ϕ be indeed an epimorphism: it must be surjective and for all operations

U and all noumenal states N on which U can act, we must have

ϕ(U(N)) =U(ϕ(N)) .

Furthermore, for all systems A and B such that A is a subsystem of B and all noumenal

states NB, we must have

πA
(
ϕ
(
NB))= ϕ

(
πA
(
NB)) .

Our main result is that we can achieve this goal, but with a caveat. We need to

require that all operations be reversible: the set of operations on any given system must

be a group. It might be possible to achieve the same goal without a group structure,

which is the subject of current research, but this would most likely come at the cost of

significant loss in mathematical elegance. We now proceed with our construction of a

local-realistic model for any reversible no-signalling operational theory.
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Let us be given an operational no-signalling theory, which consists of a lattice of

systems (S ,t,u, ·,S, /0) so that, associated to each system, the operations are reversible.

Recall that for any system A, the set of operations that acts on A is denoted OperationsA.

Recall also that the global system is denoted S, so that Av S for any system A ∈S .

Definition 3.6.1 (Fundamental equivalence relation). For each system A, we define

equivalence relation “∼A ” on OperationsS as follows.

W ∼A W ′ def⇐⇒ ∃V ∈OperationsA such that W =
(

IA×V
)

W ′

Intuitively, W ∼A W ′ for operations W and W ′ that act on the global system when their

action on system A is phenomenally indistinguishable.

Theorem 3.6.1. ∼A is an equivalence relation on OperationsS.

The proof of this theorem, albeit easy, is crucial as it illustrates precisely where each

requirement of the product of operations is used. In particular, the proof that this relation

is symmetric is one of only two places in which the validity of our construction hinges

upon the assumption that the given no-signalling operational theory is reversible, the

other being to prove that the join product is well-defined in Theorem 3.6.8 below.

Proof. We need to show that ∼A is reflexive, symmetric and transitive.

∼A is reflexive: For all W in OperationsS,

W = ISW

=
(

IA× IA
)

W .

Thus W ∼A W .
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∼A is symmetric: Suppose W ∼A W ′. By definition, there exists V ∈OperationsA such

that: W =
(
IA×V

)
W ′. Therefore,

W ′ = ISW ′

=
(

IA× IA
)

W ′

=
(

IAIA×V−1V
)

W ′

=
(

IA×V−1
)(

IA×V
)

W ′

=
(

IA×V−1
)

W .

Since W ′ =
(
IA×V−1)W and V−1 ∈OperationsA, we have W ′ ∼A W .

∼A is transitive: Suppose that W ∼A W ′ and W ′ ∼A W ′′. By definition, there exist

V,V ′ ∈OperationsA such that W =
(
IA×V

)
W ′ and W ′ =

(
IA×V ′

)
W ′′. There-

fore,

W =
(

IA×V
)

W ′

=
(

IA×V
)(

IA×V ′
)

W ′′

=
(

IA×VV ′
)

W ′′ .

Since W =
(
IA×VV ′

)
W ′′ and VV ′ ∈OperationsA, we have W ∼A W ′′.

Any equivalence relation gives rise to equivalence classes. For any W ∈OperationsS,

we define the class of W with respect to A to be

[W ]A
def
=
{

W ′ ∈OperationsS : W ′ ∼A W
}
.

Noumenal states. Let A be a system. The noumenal space for system A is defined as

Noumenal-SpaceA def
=
{
[W ]A : W ∈OperationsS

}
.
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Noumenal projectors. Let A be a subsystem of B. The noumenal projector of a

noumenal state [W ]B onto system A is defined by

πA

(
[W ]B

)
def
= [W ]A .

For such a definition to make sense, we need to verify that it does not depend on the

choice of representative for the equivalence class. The following theorem establishes

that our noumenal projectors are well defined.

Theorem 3.6.2. Let A be a subsystem of B. For any W,W ′ ∈ OperationsS, we have

W ′ ∼B W =⇒ W ′ ∼A W .

Proof. By definition of ∼B, there exists a V ∈OperationsB such that

W ′ =
(
IB×V

)
W

=
(

IA×
(

IBuA×V
))

W .

Furthermore, our noumenal projectors verify the other requirements.

Theorem 3.6.3. If A is a subsystem of B, then [W ]A is the projection of a noumenal state

of the system B, namely [W ]B.

Proof. This follows directly from the definition of πA.

Theorem 3.6.4. If A is a subsystem of B and B is subsystem of C, we have

πA

(
[W ]C

)
=(πA ◦πB)

(
[W ]C

)
.
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Proof.

πA

(
[W ]C

)
= [W ]A

= πA

(
[W ]B

)
= πA

(
πB[W ]C

)
= (πA ◦πB)

(
[W ]C

)

Noumenal action. Let A be a system and let U be an operation that acts on system A.

We define the noumenal action of operation U on system A by

U
(
[W ]A

)
def
=
[(

U× IA
)

W
]A

.

Again, for such a definition to make sense, we need to verify that it does not depend on

the choice of representative for the equivalence class. The following theorem proves that

our noumenal actions are well defined.

Theorem 3.6.5. For any system A, operation U acting on A, and for any W,W ′ ∈
OperationsS, we have W ′ ∼A W =⇒

(
U× IA

)
W ′ ∼A

(
U× IA

)
W .

Proof. By definition of ∼A, there exists a V ∈OperationsA such that W ′ =
(
IA×V

)
W .

Therefore,

(
U× IA

)
W ′

=
(

U× IA
)(

IA×V
)

W

= (U×V )W

=
(

IA×V
)(

U× IA
)

W .

It remains to prove that this defines a proper operation action at the noumenal level.

This is the purpose of the following two theorems.
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Theorem 3.6.6. For all operations U and V on system A

(VU)
(
[W ]A

)
=V

(
U
(
[W ]A

))
Proof.

(VU)
(
[W ]A

)
=
[(

(VU)× IA
)

W
]A

=
[(

V × IA
)(

U× IA
)

W
]A

= V
([(

U× IA
)

W
]A
)

= V
(

U
(
[W ]A

))
Theorem 3.6.7.

IA
(
[W ]A

)
= [W ]A

Proof.

IA
(
[W ]A

)
=
[(

IA× IA
)

W
]A

=
[
ISW

]A

= [W ]A

Noumenal join product. We are now ready to define the join product in our local-

realistic model. First note that two noumenal states of disjoint systems A and B are

compatible if and only if there exists some W ∈OperationsS such that these states are

[W ]A and [W ]B.
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Definition 3.6.2 (Join product). Let [W ]A and [W ]B be noumenal states for disjoint sys-

tems A and B. Their join product is defined as follows.

[W ]A� [W ]B
def
= [W ]AB

Once again, for such a definition to make sense, we need to verify that it does not depend

on the choice of representatives for the equivalence classes. The following theorem

establishes that this is the case.

Theorem 3.6.8. For any operations W,W ′ ∈OperationsS, if W ∼A W ′ and W ∼B W ′,

then W ∼AB W ′.

Proof. Let W ′ be such that W ∼A W ′ and W ∼B W ′, and let C = AB. This means that

there exist V BC and V AC such that W =
(
IA×V BC)W ′ and W =

(
IB×V AC)W ′. Multi-

plying by the inverse of W ′, it follows that IA×V BC = IB×V AC. The last requirement

that defines the phenomenal product of operations imposes the existence of an operation

VC such that W =
(
IA× IB×VC)W ′. Hence we have W =

(
IAB×VC)W ′, and therefore

W ∼AB W ′.

Finally, we prove that the product of operations prescribed in the given no-signalling

operational theory satisfies the requirement given by Eq (3.1) to be the product of oper-

ations in the constructed local-realistic structure. This is established in Theorem 3.6.9

below, but first we need to prove that noumenal states evolve locally, in the sense that the

evolution of a noumenal state does not depend on how the rest of the universe evolves.

Lemma 3.6.1. For any system A, operation U acting on A, operation V acting on A, and

operation W acting on S,

U
(
[W ]A

)
= [(U×V )W ]A .
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Proof.

U
(
[W ]A

)
= U

([(
IA×V

)
W
]A
)

=
[(

U× IA
)(

IA×V
)

W
]A

= [(U×V )W ]A

Theorem 3.6.9. Let [W ]A and [W ]B be noumenal states for disjoint systems A and B, and

let U and V be operations that can act on these systems, respectively.

(U×V )
(
[W ]A� [W ]B

)
=U

(
[W ]A

)
� V

(
[W ]B

)
Proof.

(U×V )
(
[W ]A� [W ]B

)
=(U×V )

(
[W ]AB

)
=
[(

U×V × IAB
)

W
]AB

=
[(

U×V × IAB
)

W
]A
�
[(

U×V × IAB
)

W
]B

= U
(
[W ]A

)
� V

(
[W ]B

)

The noumenal-phenomenal epimorphism.

Instead of a universal noumenal-phenomenal epimorphism, we shall construct a fam-

ily of universal noumenal-phenomenal homomorphisms, which is sufficient according to

the technique developed in Section 3.4.6. For each phenomenal state ρ ∈Phenomenal-SpaceS

of the global system, we define a universal homomorphism φρ as follows:

φρ

(
[W ]A

)
def
= πA(W (ρ))

for any system A and noumenal state [W ]A.
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The following theorem establishes that this definition does not depend on the choice

of representative for equivalence class [W ]A.

Theorem 3.6.10. W ′ ∼A W =⇒ πA(W ′(ρ)) = πA(W (ρ)).

Proof. By definition of ∼A, let V ∈OperationsA be such that W ′ =
(
IA×V

)
W .

πA
(
W ′(ρ)

)
= πA

(((
IA×V

)
(W )

)
(ρ)
)

= IA(πA(W (ρ))) This is where we make use of the no-signalling principle

= πA(W (ρ))

Theorem 3.6.11. For each ρ ∈Phenomenal-SpaceS, function φρ is a homomorphism:

U
(

φρ

(
[W ]A

))
= φρ

(
U
(
[W ]A

))
and πB

(
φρ

(
[W ]A

))
= φρ

(
πB

(
[W ]A

))
for any systems A and B such that B v A, noumenal state [W ]A and operation U ∈
OperationsA.

Proof.

U
(

φρ

(
[W ]A

))
= U(πA(W (ρ)))

= πA

((
U× IA

)
(W (ρ))

)
= πA

(((
U× IA

)
W
)
(ρ)
)

= φρ

([(
U× IA

)
W
]A
)

= φρ

(
U
(
[W ]A

))
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and

πB

(
φρ

(
[W ]A

))
= πB(πA (W (ρ)))

= (πB ◦πA)(W (ρ))

= πB(W (ρ))

= φρ

(
[W ]B

)
= φρ

(
πB

(
[W ]A

))

To apply the technique of Section 3.4.6, it remains to verify that for each phenomenal

state ρ of the global system, there exists at least one universal noumenal-phenomenal

homomorphism φi and a noumenal state N of the global system such that ρ = φi(N).

This is achieved by the following theorem, with the appropriate choice of N and i.

Theorem 3.6.12. Consider any phenomenal state ρ of the global system.

ρ = φρ

(
[I]S
)

Proof.

φρ

(
[I]S
)
= πS(I(ρ)) = πS(ρ) = ρ

All the conditions required in Section 3.4.6 being satisfied, the existence of the re-

quired universal noumenal-phenomenal epimorphism is established, which concludes

our construction of a local-realistic noumenal model that corresponds to any reversible

no-signalling operational theory.
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3.7 Conclusions and open problems

The question of whether or not quantum theory has a local-realistic interpretation

should not be answered merely by providing a local-realistic formalism for it. In-

deed, such an answer, while mathematically valid, does not answer the deeper question:

“But why does quantum theory have a local-realistic interpretation?”. A metaphysical

question deserves an answer based on metaphysical principles rather than by the power

of mathematics alone. So, why does quantum theory have a local-realistic interpreta-

tion? Our answer is that deep down, it stems from the fact that it is a theory that follows

the no-signalling principle.

It is obvious that any local-realistic theory can be given a non-local interpretation,

simply by adding extraneous noumenal invisible entities that “talk” to each other in-

stantaneously across space just for the fun of it, without having any phenomenal effect

whatsoever. As pointed out to us by David Deutsch [15], it is not meaningful to claim

that a theory is nonlocal simply because it has some nonlocal interpretation. Otherwise,

all theories would be nonlocal! It follows that we may reasonably claim that any physi-

cal theory that can be given a local-realistic interpretation is in fact a local theory. To be

truly considered nonlocal, a theory must have no possible local interpretation. We illus-

trate this concept with the noncontroversial fact that any graph that can be drawn without

crossing edges is a planar graph regardless of how it’s presented at first, and that in order

to be declared nonplanar, a graph must be so that it cannot be drawn without crossing

edges in a plane. Seen this way, our main theorem is that all no-signalling operational

theories with a reversible dynamics, including finite-dimensional unitary quantum the-

ory, are local-realistic, not merely that they can be given a local-realistic interpretation.

It is not possible to prove formally that we have captured correctly the intuitive no-

tions of local realism and no-signalling theories. This would be like attempting to prove

the Church-Turing thesis! One cardinal reason for this impossibility is that any attempt

to bridge the intuitive with the formal necessarily carries aspects that are intuitive and

informal. The informal parts were written in English, and therefore are prone to the
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ambiguity of all natural languages. The parts that appeal to the intuition contain consid-

erations that perhaps cannot even be put into words. To establish our thesis, we sought a

collection of requirements, which would be called axioms in the context of mathematical

theories. From our perspective, each of them appeared necessary to describe the notions

of local realism and no-signalling theories. Each requirement was chosen for its intu-

itiveness, whose clear meaning is easily apprehended from its description using simple

words in a natural language. We also strived to have requirements that are mathemat-

ically natural. For example, we chose to impose the faithfulness of noumenal actions

to simplify subsequent mathematics, as explained in Section 3.3. The success of our

enterprise is conditioned not only on whether or not we have captured the intuitive no-

tions correctly, but also on whether or not the mathematical structure we have developed

reveals how and why our world is local realistic after all.

There are other topics, which we consider important, yet have not been addressed in

this article because they belong to companion papers. Specifically, why are local-hidden

variable theories not general enough to cover all local-realistic theories? How can a

theory violate a Bell inequality and still be local-realistic? How should we address the

Einstein-Podolsky-Rosen paradox? We answer these questions through the construction

of a local-realistic Popescu-Rohrlich box in Ref. [6]. Why is the existence of a larger

and richer noumenal world inevitable in a local quantum theory? How can we reconcile

locality with Bell measurements? Or a teleportation experiment? We answer these ques-

tions in Ref. [7], which also provides a more concrete local-realistic model for quantum

theory, built on linear algebra notions.

3.7.1 Further work

Our main result depended on one hypothesis that is conceptually essential neither

to describe a local-realistic nor a no-signalling theory, namely the assumption of a re-

versible dynamics. Can this requirement be lifted? In other words, do all no-signalling

theories still have an underlying local-realistic interpretation without this extraneous as-
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sumption? And even more importantly, can such a construction be achieved without the

sacrifice of elegance? Will such a proof give rise to the local-realistic model derived in

this paper whenever the dynamics is reversible? It is tempting to conjecture that it does,

since one might think that perhaps every system could carry all information of all inter-

actions it had with all systems in the past. However, this argument is fallacious because

systems are not allowed in our framework to do such a thing. For example, if we do

U followed by U−1 on a system, it has the same effect as simply doing I, on both the

noumenal and phenomenal states of the system. It is simply impossible to distinguish

between these two histories that a system might have experienced. Should it be the case

that the hypothesis of reversible dynamics cannot be removed, there would be two tasks

to undertake. The first would be to provide an example of a no-signalling theory without

reversible dynamics that cannot have a local-realistic interpretation. The second task

would be to find a minimal condition on no-signalling theories, such that this condition

is essential for the theory to have an underlying local-realistic interpretation. We know

that reversibility is not necessary in all cases since the PR-box has irreversible dynamics

and yet it has a local-realistic explanation nevertheless [6].

We have used the assumption that systems form a boolean lattice as this allowed us

to introduce various notions, such as subsystems and complementary systems. However,

this framework is perhaps too restrictive. Can we weaken this assumption? For example,

is it absolutely necessary that systems be closed under union or intersection?

We have shown that finite-dimensional unitary quantum theory is a model of a re-

versible no-signalling operational theory, which directly implies a local-realistic inter-

pretation. What about countably infinite unitary quantum theory? Or continuous unitary

quantum theory? Are these no-signalling operational theories as well? In the case of

countably infinite unitary quantum theory, we are quite confident that they are. Yet, to

give a hint of the potential difficulties, in any finite-dimensional vector space V, for all

linear operators A,B : V →V , we have that

AB = I ⇐⇒ BA = I.
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However, such a statement is false in infinite-dimensional vector spaces. This illustrates

the necessity to verify that every step of the proofs we have used apply for infinite-

dimensional spaces, and if not, how to modify the results (or the proofs) accordingly.

On a similar topic, we have developed an explicit local-realistic framework for quan-

tum theory in a companion paper [7], which is built around matrices and Hilbert spaces.

It remains to determine if this approach works for discrete infinite-dimensional quantum

theory. A more difficult research direction concerns the development of a local-realistic

framework for continuous degrees of freedom, such as the position and momentum of

particles. This framework could be used to derive the time evolution of noumenal states

based on the representations of space-time symmetry groups. The non-relativistic and

relativistic symmetry groups should be independently studied. We expect that the image

of the noumenal time evolution by the noumenal-phenomenal epimorphism will lead to

Schrödinger’s equation in the non-relativistic case and to Dirac’s equation for spin-1
2

relativistic particles. Charles Alexandre Bédard is currently working on these issues [1].

Even though we have argued that the conventional no-signalling principle formulated

in terms of probabilities is subsumed by the more general principle we have developed

for operational no-signalling theories in Section 3.5, we have not carried out the full

mathematical details. For instance, we should give a formal proof that no-signalling the-

ories with probabilities satisfy our axioms of no-signalling operational theories. Further-

more, in the event that we cannot find a general proof that all irreversible non-signalling

operational theories have a local-realistic interpretation, or if we can actually prove that

some don’t, we conjecture that all theories satisfying the probabilistic no-signalling prin-

ciple have a local-realistic interpretation. A proof of this conjecture is currently within

grasp, but details remain to be fleshed out.

Additionally, we intend to study limits of sequences of operations, continuity of op-

erations and topological properties of states. The framework we have developed in this

paper is inspired by universal algebra and structure theory. However, algebra does not

capture topological properties like continuity. In mathematics, there exist axiomatic sys-
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tems having both algebraic and topological properties, such as topological groups and

topological fields, on which there are algebraic requirements and topological require-

ments that a topological structure must satisfy, in such a way that the algebraic and

topological requirements are consistent with each other. For example, the axioms of a

topological group imply that the group operation is a continuous operation. An impor-

tant question is to determine the topological requirements that should be expected in

a local-realistic structure if we want the operations and states to have both topological

and algebraic properties. Such a framework might be necessary for continuous quantum

theory or for the investigation of topological local-realistic structures.

In recent years, category theory has been used to describe frameworks that include

theories more general than the quantum. For example, category theory has been used

successfully to derive quantum theory from axioms built on ideas of operations, infor-

mation and probabilities [11]. We think that many of the ideas we have expressed here

would benefit from being written categorically.

Given that our framework of local realism is extremely general, we wonder if

there are interesting examples of local-realistic models beyond quantum theory or the

Popescu-Rohrlich nonlocal box, or more generally probabilistic no-signalling theories?

An interesting candidate would be “Almost Quantum Theory” [34]. Furthermore, David

Deutsch has suggested that qubit field theory [14], which is based on non-commutative

observables, would be a purely local theory based on observables that nevertheless need

not commute at equal times [15].

Any time a system of axioms is developed, many questions arise. The foundational

questions include whether the axioms are independent from each others, or whether

there are alternative axioms giving rise to the same structure. Another set of important

questions is to determine the interesting theorems of local-realistic and no-signalling

theories. Each of these theorems would give us a consequence of living in a local-

realistic world or in a no-signalling world.
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John Archibald Wheeler famously said “it from bit” [37]. By coining this phrase,

he suggested that every physical quantity is postulated to explain our observations. As

realists, we postulate an external world to explain our observations. This is also why

we postulated the noumenal world: the goal is to understand the phenomenal world.

Wheeler argued that “the supreme goal” is to “deduce the quantum from an understand-

ing of existence” [37]. The question of deriving the quantum from existence has been

largely abandoned in recent years in favour of models that are not realistic, and do not

attempt to derive quantum theory from an independent objective world. How can we de-

rive the quantum from existence? A path towards the answer might be to find additional

metaphysical principles that go on top of a local-realistic structure and end up deriving

the quantum. One such principle is the reversibility of operations. But what else? At this

point, we do not know, but we would like to launch the question, and the quest for find-

ing metaphysical principles that lead from local-realistic reversible-dynamics theories to

quantum theory.
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CHAPITRE 4

A LOCAL-REALISTIC MODEL FOR QUANTUM THEORY

By Gilles Brassard and Paul Raymond-Robichaud

ABSTRACT

We show that the standard quantum mechanical description of physical reality cannot

be considered complete. We complete quantum mechanics by presenting a local-realistic

model for finite-dimensional unitary quantum theory.

4.1 Introduction

This article continues right where we left in the previous article. We first show that

the universal wavefunction cannot be a complete description of local reality. We then

provide a local-realistic formalism for finite dimensional unitary quantum theory.

4.2 The wavefunction cannot be a complete description of local reality

Could the state of the universe be described by the Everettian universal wavefunction,

which would be a unit vector in the system space of the universe, evolving according to

unitary evolution?

Certainly, the universal wavefunction describes everything that is observable in the

universe. As such, it is at the very least a description of the phenomenal state of the

universe. Should the universal wavefunction correspond also to the noumenal state of



the universe, it would be in bijective correspondence with its phenomenal state, and as

such the operations would act in the same way.

We shall do a simple proof by contradiction that the universal wavefunction cannot

be a description of local reality. Let us consider a very simple universe, one composed

of only two qubits. The proof would apply to any universe with at least two qubits.

For that purpose, suppose are given a local-realistic model of this universe. Among

other things, such a model contains noumenal traces, which might differ from their phe-

nomenal counterparts, and the model would also contain a noumenal join product.

According to our requirement, all noumenal states are separable. In particular the

Bell State |Ψ+〉= 1√
2

(
|01〉+ |10〉

)
can be written as a product state:

|Ψ+〉= [Ψ+]A� [Ψ+]B .

where [Ψ+]A = trA (|Ψ+〉) and [Ψ+]B = trB (|Ψ+〉). Here trA and trB are noumenal traces.

If we apply the negation gate, N =

(
0 1

1 0

)
, on both parts of the state, we get

(N⊗N) |Ψ+〉= N[Ψ+]A�N[Ψ+]B .

But since ∣∣Ψ+
〉
= (N⊗N) |Ψ+〉 ,

by tracing out B, we conclude

[Ψ+]A = N[Ψ+]A .

However,

∣∣Φ+
〉
= (N⊗ I )

∣∣Ψ+
〉
= N[Ψ+]A� [Ψ+]B = [Ψ+]A� [Ψ+]B =

∣∣Ψ+
〉
,
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where |Φ+〉= 1√
2

(
|00〉+ |11〉

)
6= |Ψ+〉. Thus, we have reached a contradiction! The

conclusion is that we cannot describe a simple Bell state as a product state, even less the

entire universe, by taking the usual formulation of quantum physics.

It follows that the universal wavefunction cannot be the complete description of a

local universe. It merely describes what can be observed, which is the phenomenal

state of the universe. Seen this way, if we believe in a local universe, the answer to

the question posed in the title of the EPR 1935 paper is: “NO, [the standard] quantum-

mechanical description of physical reality CANNOT be considered complete”. In other

words, the universal wavefunction is but a shadow of the real world, which can only be

fully described at its noumenal level!

4.3 A local-realistic model for quantum theory

Now that we have established the mathematical requirements for quantum theory to

have a local-realistic interpretation, we shall provide a mathematical model meeting all

the requirements.

We shall be interested in working within a global system S, which can be composed

of finitely many elementary subsystems. If A is a system, A denotes its complement,

which is the disjoint system such that AA = S.

4.3.1 Systems

Associated to any system A is a Hilbert Space of some dimension n.

4.3.2 Noumenal states

For a system A associated with a Hilbert Space of dimension n, its noumenal state NA

is formally defined by an evolution matrix [W ]A, which is an n× n matrix whose entry
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i, j, in the basis
{
|i〉A
}n

i=1 is the matrix

[W ]Ai j
def
= W †

(
| j〉〈i|⊗ IA

)
W

for some unitary W on the global state. Here IA refer to the identity unitary operation

applied to the rest of the global system.

Theorem 4.3.1. [
W
]A

=
[(

IA⊗V
)

W
]A

for any unitary V acting on A

Proof.

[
W
]A

i j = W †
(
| j〉〈i|⊗ IA

)
W

= W †
(
| j〉〈i|⊗

(
V †IAV

) )
W

= W †
(

IA⊗V †
)(
| j〉〈i|⊗ IA

)(
IA⊗V

)
W

=
((

IA⊗V
)

W
)†(
| j〉〈i|⊗ IA

)((
IA⊗V

)
W
)

=
[(

IA⊗V
)

W
]A

i j

(4.1)

Definition 4.3.1 (Evolution). If we have a system A in state
[
W
]A on which we apply

a unitary operation U , the system evolves to U
([

W
]A), which for simplicity we denote

U
[
W
]A, defined as (

U
[
W
]A)

i j

def
= ∑

m,n
Uim
[
W
]A

mnU†
n j

Theorem 4.3.2.

U
[
W
]A

=
[(

U⊗V
)
W
]A

for any unitary V acting on A.
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Proof. (
U
[
W
]A)

i j
= ∑

m,n
Uim
[
W
]A

mnU†
n j

= ∑
m,n
〈i|U |m〉

(
W † (|n〉〈m|⊗ IA )W

)
〈n|U†| j〉

= ∑
m,n

W †
((
|n〉〈n|U†| j〉〈i|U |m〉〈m|

)
⊗ IA

)
W

=W †
(

U†| j〉〈i|U ⊗ IA
)

W

=
(
(U⊗ I)W

)†(
| j〉〈i|⊗ IA )(U⊗ I

)
W

=
[(

U⊗ I
)
W
]A

i j

=
[(

U⊗V
)
W
]A

i j

The following two theorems prove that the law of evolution is an action.

Theorem 4.3.3.

(VU)
[
W
]A

=V
(

U
[
W
]A)

Proof. The proof is left to the reader.

Theorem 4.3.4.

IA[W ]A
=
[
W
]A

Proof. The proof is left to the reader.

Definition 4.3.2 (Trace). The evolution matrix of a system A can be obtained from the

evolution matrix of a system AB by a trace operation defined as

(
trB
[
W
]AB
)

i j

def
= ∑

k

[
W
]AB
(i,k)( j,k) .

Theorem 4.3.5.

trB
[
W
]AB

=
[
W
]A
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Proof. (
trB
[
W
]AB
)

i j
= ∑

k

[
W
]AB
(i,k)( j,k)

= ∑
k

W †
(
| j〉〈i|A⊗|k〉〈k|B⊗ IAB

)
W

=W †
(
| j〉〈i|A⊗ IB⊗ IAB

)
W

=
[
W
]A

i j

Theorem 4.3.6. Let ABC be a composite system

(trB ◦ trC)
[
W
]ABC

= trBC
[
W
]ABC

Proof. The proof is left to the reader.

Definition 4.3.3 (Join Product). The state of a composite system AB can be obtained

from the evolution matrices of systems A and B by the join product �, which is defined

as ([
W
]A
�
[
W
]B
)
(i,k)( j,`)

def
=
[
W
]A

i j

[
W
]B

k`
.

Theorem 4.3.7. [
W
]A� [W ]B

=
[
W
]AB

Proof. ([
W
]A� [W ]B)

(i,k)( j,`)

=
[
W
]A

i j

[
W
]B

k`

=

(
W †
(
| j〉〈i|A⊗ IB⊗ IAB

)
W
)(

W †
(

IA⊗|`〉〈k|B⊗ IAB
)

W
)

=W †
(
| j〉〈i|A⊗ IB⊗ IAB

)(
IA⊗|`〉〈k|B⊗ IAB

)
W

=W †
(
| j〉〈i|A⊗|`〉〈k|B⊗ IAB

)
W

=
[
W
]AB
(i,k)( j,`)
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Theorem 4.3.8.

U
[
W
]A�V

[
W
]B

= (U⊗V )
[
W
]AB

Proof.

U
[
W
]A�V

[
W
]B

=
[(

U⊗V ⊗ IAB )W]A
�
[(

U⊗V ⊗ IAB )W]B

=
[(

U⊗V ⊗ IAB )W]AB

=(U⊗V )
[
W
]AB

(4.2)

4.3.3 Recovering the density matrices

4.3.3.1 A noumenal-phenomenal homorphism

Let ρ be a density matrix belonging to the global state S.

Let (
ϕρ

(
[W ]A

))
i j

def
= tr

(
[W ]Ai, j ρ

)
.

For simplicity we shall write ϕρ

[
W
]A instead of ϕρ

([
W
]A).

Theorem 4.3.9.

ϕρ

[
W
]A

= trA (W (ρ))
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Proof. (
ϕρ

[
W
]A)

i j
= tr

([
W
]A

i j ρ

)
= tr

(
W †
(
| j〉〈i|⊗ IA

)
Wρ

)
= tr

(
W †
(
| j〉〈i|⊗∑

k
|k〉〈k|

)
Wρ

)
= tr

(
∑
k

(
| j〉〈i|⊗ |k〉〈k|

)
WρW †

)
= ∑

k
(〈i|⊗ 〈k|)WρW † (| j〉⊗ |k〉)

=
(

trA

(
WρW †

))
i j

=
(
trA (W (ρ))

)
i j

Theorem 4.3.10.

U
(
ϕρ

[
W
]A)

= ϕρ

(
U
[
W
]A)

Proof.

U
(

ϕρ

[
W
]A)

= U
(
trA (W (ρ))

)
= trA

(((
U⊗ IA

)
W
)
(ρ)
)

= ϕρ

((
U⊗ IA )W)

= ϕρ

(
U
[
W
]A)

Theorem 4.3.11.

trB

(
ϕρ

[
W
]AB
)
= ϕρ

(
trB
[
W
]AB
)
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Proof. Let C = AB, meaning that S = ABC.

trB

(
ϕρ

[
W
]AB
)

= trB
(
trAB (W (ρ))

)
= trB (trC (W (ρ)))

= (trB ◦ trC)(W (ρ))

= trBC (W (ρ))

= trA (W (ρ))

= ϕρ

[
W
]A

= ϕρ

(
trB
[
W
]AB
)

4.3.4 Change of basis

The operations can be defined independently of their basis. For every evolution

matrix
[
W
]A in basis {|i〉}n

i=1, we can define an evolution matrix
[
W
]A in basis {|φi〉}n

i=1.

Theorem 4.3.12. Let {|i〉}n
i=1 and {|φi〉}n

i=1 be two orthogonal bases of A. For all k

and `,

[
W
]

φkφ`
= ∑

i, j
〈φk|i〉

[
W
]A

i j〈 j|φ`〉 .
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Proof.

[
W
]A

φkφ`

= W †
(
|φ`〉〈φk|⊗ IA

)
W

= ∑
i, j

W †
(
| j〉〈 j|φ`〉〈φk|i〉〈i|⊗ IA

)
W

= ∑
i, j
〈φk|i〉W †

(
| j〉〈i|⊗ IA

)
W 〈 j|φ`〉

= ∑
i, j
〈φk|i〉 [W ]Ai j 〈 j|φ`〉

4.4 Conclusion

We have shown that the universal wavefunction cannot be a complete description of

local reality. Furthermore, we have provided a local-realistic model for quantum theory.
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