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RESUME

Nous proposons ici un modéle simple d'information incompléte en théorie de Ia
localisation. Deux entreprises s'affrontent dans un contexte & deux étapes : une Stape de
localisation séquentielie et une étape de concurrence en prix. Lafirme 1 connait sa technologie
& colt marginal constant et celle de la firme 2, mais cette derniére n'a qu'une information
imparfaite de la technologie ds sa concurrente. La concurrence de premigre étape s'avére étre
un jeu de signal monotone et l'équilibre D1 Unigue est un équilibre séparateur en stratégies
pures si l'avantage de coit de la firme 1 est relativement faible et, sinon, un équilibre

équilibre semi-mélangeant si cette probabilité est faible. Ce résultat surprenant est di au fait
que l'écart de localisation entre les firmes est naturellement borng, ce qui peut empécher la
séparation des types. Ainsi, les localisations d'équilibre d'information incompléte diffarent

significativement des localisations d'équilibre d'information compléte.

Mots—clés : localisation, information incompléte, équilibre bayesien parfait, raffinement D1,

ABSTRACT

We consider a simple model of incomplete information in location theory. Two' firms
compete in a two-stage framework: a sequential location stage and a price competition stage.
Firm 1 knows both its own constant marginal cost technology and that of Firm 2, whereas the
latter has incomplete information about Firm 1's technology. The location stage turns out to be
@ monotonic signaling game and the unique D1 equilibrium is a pure strategy separating
equilibrium if Firm 1's cost advantage is below some bound and, otherwise, a pooling equilibrium
it the prior probability that Firm 1 is of the low-cost type is high or a semi-pooling equilibrium,
if it is low. This surprising result is due to the fact that the location gap between the two types
of Firm 1 is bounded because of natural economic reasons, which may prevent the separation
of the two types. Hence, incomplete information matters: the equilibrium locations differ quite
significantly from the full information equilibrium locations.

Key words: location theory, incomplete information, perfact Bayesian equilibrium, D1 criterion.






1. INTRODUCTION

-One important aspect of spatial competition has been neglected so far by location theorists, namely the
incompleteness of the information structures. It is our objective in this paper, developing an analysis only
sketched ia [1}, to fully characterize the set of perfect Bayesian equilibria when the source of incomplete
information pertains to ose entrepreneur's production conditions, namely cost, which are unobserved by
the competitor.

We consider a spatial competition model fairly simple and standard but capable of addressing such a
complex issue as incomplete information in location theory. Two firms compete in a two stage framework:

superior information structure in the following sense. It knows both its own technology and that of Firm
2, whereas the latter knows jts own technology and has incomplete information about what the first mover
firm's technology is. The Jocation space is represented by an interval over which there is a continuum of
consumers uniformly distributed. This way of modeling spatial competition under incomplete information
may be justified as follows. First, location choices are typically long run decisions, while pricing decisions
are typically short run decisions. It is therefore reasonable to model competition over both locations and
prices as a two stage competition, the second stage or short run stage coming into play once the long run
decisions have been made and observed by both firms. Modeling the space of locations as a linear segment
stems {rom the fact that in the alternative basic space used in location theory, that s, a circular market with
2 uniform density of identical consumers and transportation costs depending only on the distance between
the consumer and the firm, the choice of location by the informed firm cannot provide useful information
to0 the uninformed firm, since any location is a perfect replication of any other one (see '(5], {9]. and [10}
for recent surveys). To make the circular model amenable to signaling possibilities, one could make the
distribution of consumers non-gniform. But for analytical purposes, it would then become isomorphic to
the line segment. Hence, the segment with a uniform density of identical consumers is the simplest spatial
structure allowing signaling. We model the short run pricing competition as a Bertrand competition on
delivered price schedules for two reasons. First, it allows us to avoid the problem of existence of equilibrium
encounterad in the case of mil pricing {see [4]) and to concentrate our efforts on the incomplete information
in the long run stage and second, it is a non-negligible aspect of many empirical situations. Lederer and
Hurter {11] refer to such price schedules as discriminatory pricing through the absorption of transportation
costs; they claim it is typical, in oligopolistic markets, aof goods with low value relative to the transportation
costs and low price elasticity of demand such as cement, plywood, fertilizer, sugar, etc. On competition in

delivered price schedules, see also {2}, 181, {7, and [13].



The one-sided information structure we consider, namely a better informed first mover who may or
may not have a cost advantage on the second mover, represents one of many possible incomplete infor-
mation structures, other possibilities being, for instance, a better informed second mover and a two-sided
incomplete information. Making the second maver batter informed would rule out the possibility of sig-
naling. The information structure we consider here has the advantage of simplicity, a desirable property
for an introduction of incomplete information in location theory, and corresponds also to many practical

situations.

The main results of this paper are as follows. The first stage location game turns out to be a monotonic
signaling game as defined by Cho and Sobel 3] for which equilibrium refinement D1 selects a unique perfect
Bayesian equilibrium. We will be able to characterize the type of D1 equilibrium arising under all possible
values of the parameters of the model, namely the cost advantage of the first mover and the priors. We
will show that when the cost differential is below some bound, the only D1 equilibrium is a pure strategy
separating equilibrivm. But for values of the cost discrepancy above this bound, the D1 equilibrium will
not be a separating equilibrium. This might seem surprising at first sight because one might have expected
that for large cost differences, it would be easier for the low cost first mover to differentiate itself from its
high cost twin. But in a spatial context such as the present one, the location gap between the twa types
of Firm 1 is bounded because of natural economic reasons, preventing the separation of the two types.
Hence, the équilibria robust to D1 may be either pooling equilibria or semi-pooling equilibria according
to whether the prior probability, that Firm | is of the low cost type, is high or low. Hence, incomplete
information matters: the equilibrium locations so predicted may be quite different from the full information
equilibrium locations. In (1}, we examined, using the same model, the case in which the firms plays only
pure strategie:{, thus excluding those equilibria which are intrinsically mixed strategy eq’uilibria such as
the semi-separating equilibria. We worked with Cho and Kreps' intuitive criterion in order to discriminate
among the equilibria. This criterion, weaker than D1, fails to eliminate all the pooling equilibria but one.

It can be shown also that it is not very efficient in the selection of semi-separating equilibria.

The paper is arganized as follows. Section 2 introduces the model. In Section 3, we give the definitions
of the perfect Bayesian equilibrium (PBE). Section 4 presents the DI equilibrium refinement concept,
the limit posterior probability function and the review of the basic results of Cho and Sobel on strategic
stability in m(l)noton'xc signaling games. We characterize in section B the whole set of PBE and identify

those which are robust to refinement D1. We briefly conclude in section 6.

2. THE MODEL

Let us denote by i = 1,2 the two competing firms: Firm 1 being the first mover and Firm 2, the



follower. Each firm can produce at some constant average (hence marginal) cost the same basic product,
whatever its location. The average production cost of Firm ] s commonly known to be either ¢ - a with
probability r or ¢ with the complementary probability 1~ x, where ¢ > handae (0, %4). As for Firm 2
its constant average cost is ¢. Firm 1 knows before choosing its gwn location which production cost {which
type) 8 € {c - a,c} it will have at the production stage. The transportation costs are the same for both
firms: each firm must support a cost dg to deliver ¢ units to customers located at a distance d from jts
own plant. Both firms compete in delivered prices. :

the type ¢ of Firm 1, when both are charging delivered prices equal to their full unit costs, production plus
transportation costs. We will also assume as in [11] that if a consumer is charged the same price by both
firms, he will then buy from the supplier who makes the highest profit on his demand. Remember that at
the production or market stage of the game the true cost of Firm 1 is known. If both firms are making the

At the first stage of the game, Firm | knowing its proper cost @ chooses some location on the segment
line [0, 1], which will be denoted by z;, the distance between the 0-end of the segment and the plant
location. Observing the location of Firm 1 but unaware of the true cost of its competitor, Firm 2 then
chooses its own location 2, again the distance between the 0-end of the segment and jts plant. After that,
the true cost of Firm 1 js unveiled, a fairly standard modeling feature since Milgrom and Roberts [12} and
a short cut for a whole revelation process of the trye type of Firm 1.

At the second stage of the game, the two firms move simultaneously, competing in delivered prices.
This second stage is a complete information game. The strategy of Firm i in this game is denoted by
2l meaning that for Jocations z1 and 73 and for Firm 1's type 4, Firm i will charge a delivered
price pi(zi21,22,6) to a consumer located at z. Under the above assumptions, it js shown in Hurter and
Lederer [11] that the equilibrium of this game is given by:

Pi(=iz1,22,8) = p(x:2),25,6) = max{l+lz —zif, 4 jr - zof)i= 1,0, (1)

that is, the equilibrium strategies are the same for the two firms. Without loss of generality, we can suppose
that Firm 1 is located on [0, 2] and Firm 2 on [z1,1]. Hence at equilibrium the market s split into two
areas: Firm 1 sells to those customers located in [0, (z14+c-0+ Z3)), Firm 2 to the consumers located

3



in (Yalzi + - 0+ 72), 1], the consumers located precisely at Ya{zitc—8+ z7) being distributed between
the two firms, the percentage that each one gets haviog no impact on its own profits.

Let Ti(zy,22,6), i = 1,2, be the profit of Firm i at the equilibrium of the second stage subgame:

M{zi22,0) = Yelm—2)Bn+ ;) + §(O)(holzy + 22) + Yaa®) (2)
Hy(z1.22,8) = (z2-z)(1 - Yalm £322)) + 80 haln +32) ~at 1sa?) 3

where .
ww = {05 626 @

From (2) and (3), we may determine the complete information subgame perfect equilibrium of the whole
game. From Ha(z1,22,8) we get z9(zy,6), the best reply location function of Firm 2, if at the first stage,

the proper cost of Firm 1 is common knowledge:

zo(1.8) = 162+ 01t 5(8)a) (5)

Substituting z2(z1.8) for 22 in [1;(-) gives Il; as a concave function of z1, and maximizing 11, on the
interval {0, 1/2] gives the complete information equilibrium Jocation of Firm 1 as a function of the cost
discrepancy a

2} = z,(6) = min{¥s + () Ys 12} (6)

hence, after substitution in z2(z1,8) " . 1

3= 12(z},0) = min{%s + 5(9)(3/5&).5/6 + &6(8) 1za)} (M

As the cost advantage of Firm 1 increases, it moves nearer to the center of the market where it stays for
a> s Alsoas increases, Firm 2 moves to the right, being pushed at the extreme 1-end of the market
when o approaches 1. Should o be greater than 1/, thea Firm 2 would be driven out of the market.
Note, however, that the distance between the two firms first decreases when a < /g and then increases
when a > }a. But the market area of Firm 1 is always increasing. The border delimiting the two areas is
given by:

zp(a) = max{3/5(1+2a),7/3(1+a)) (8)

The equilibrium profits are:



Bi(zi,23.60) = (1-8(0))(1%)

+ &B)nla)( s (1+26)%) 4 (1 - He))(Yss(7 + 320 + 16a%))] (9)
Mo(2},23,0) = (1= H0)(3hs)
+ O )%s (1~ 30)) + (1 = na))(1a(1 - 2a)%)] (10)
where n(a) is defined as:
1 if agyy
n(a) = { 0 :nh:rWis: (1

3. THE PERFECT BAYESIAN EQUILIBRIA: DEFINITIONS

Since at the end of the first stage the true cost of Firm | js unveiled and the second stage subgame is
solved according to (1), we may consider the sofe first stage which appears as a signaling game. The signal

game. Depending upon the parameters of the problem, thatis, the prior v and the cost discrepancy o, there
may be separating equilibria in which Firm 1's location reveals its type, pooling equilibria in which the
location of Firm 1 is the same for both types and therefore reveals nothing regarding its production cost,
and finally, semi-separating equilibria in which at least one type of Firm 1 chooses its location a: random,
sometimes revealing its type and sometimes choosing the same location as the other tvpe. However, in
this last case, contrary to the pooling case, Firm 2 gets additional information from observing the location

common to both types.

A mixed strategy of Firm 1 is a mapping ¥;(-): @ — M,, where © = {¢~a,c} is the set of types of
Firm 1 and M, the set of probability measures defined on [0, 2], We will denote by Mi(-) a cumulative
distribution for the location z; of Firm 1 and by M;(;8) the cumulative selected by @1} for 8. In the
case of pure strategies, we simply denote the location decision function of Firm 1 by 2;(:): © — X, where
Xy = [0,14]. We proceed similarly for Firm 2. From (5) we know that with complete information the
most distant location from the l-end of the segment, which would be chosen by Firm 2, is z2 = 3. The
incomplete information will not alter this bound, as shown by equation (12) below. Hence, we may restrict
the support of M to the subsegment [/, 1] without loss of generality. A mixed strategy of Firm 2 is a

.mapping ¥,(-): X; ~ Mz, where M, is the set of probability measures defined on X2.= (33, 1], We will
denote by M3(-) a cumulative distribution for the location z2 of Firm 2 and by My(;z,) the cumulative

)



distribution selected by ¥3(-) for z1. In the case of pure strategies, we simply denote the location decision
function of Firm 2 by z2{-) 1 X1 — X,. Finally, we need conditional distributions giving for each location
in X the posterior probability on O that Firm 2 will use in deciding its location. Let p(zy) be the
posterior probability on ©, given that 7y has been observed. For any probability measure M, we denote
by Supp M the support of M, and for any function f, we denote by Rf the range of /.

A PBE is a triplet {970), #30), p7C1)) such that:

() Vo0 : ¥j(6) € argmax / / i(z1,22,6) M5 (z2i 21 ML (=1 )i
ik x

(i) Vzi€ Xy : Y3(z,) € argmax / E [l.(BlIl)nz(Il,I;,a)sz(l'ziI;);
Mill ¢ see

(i) VY= € UseoSupp ¥i(0). u°(- |z1) is obtained by applying Bayes’ rule to the prior distribution
(x,1 - x), given that 7, has been observed, otherwise p*(- |z1) is arbitrary.

For pure strategy equilibria IEHONEON ()}, we have:

(@) V00 :zi(f) € arg max (=1, z3(e1), 0}
£1€Xy
() VYo € Xy z3(mi) € arg may b w8z ) (21, 72,8);
r1€X2 Prr:y
(i) vzp € Rzi(h u(|z1) is obtained by applying Bayes' rule, otherwise u*(-z1) is arbitrary.

Any function u"(+") satisfying (iii) or equivalently (iii") will be referred to as a Bayesian posterior belief
function. In order to simplify the notation, we will often simply denote by 4 the probability with which
Firm 2 believes that Firm 1 s of the low cost type.

Now, maximizing Elly(zy,22,0) = plly(z1, 22,6 ~ e} 4 (1~ wlz(z1,22,¢), we obtain Zp{zy.#), the
best reply of Firm 2 to the location z) of Firm 1 under the posterior i taken here as 2 parameter:

£a(z1 ) = 14(2+ 71+ pa)- (12)

Since the best reply is unique given 71 and g, Firm 2 always uses only pure strategies in equilibrium. Note

that Z,(:,-) is an increasing function of z;, g, and a.

Let My(z1,4.0) = ﬂ,(z,,i;(zl,u),O) be the profit function of Firm 1 of type 0 located at Zu, given
that Firm 2 chooses its location optimally, believing with probability p that Firm 1if of the low cost type.
ﬁ\(z;.u.v) is a strictly concave function of z; and an increasing function of u for both values of 8, 23
shown in Appendix A. Denoting as (1, 9) the optimal location of Firm 1 of type 6 if it is believed by

[



Firm 2 to be of the low cost type with piobabiljty B, we obtain by maximizing fh(:;,u,ﬂ) in the interval
[0,1]:
zi{u,8) = (1 - SN2 + pa)) + §(8) min{15(2 + pa + 3a), 12} (13)

We may rephrase the definition of a PBE in terms of W), ("), and #(-) functions. The pair
{9700, 4°()} is & mixed strategy PBE if;
(a)vee o ¥z € Supp ¥7(6): zi € arg,mea}: fh(z,,p'(n— alzy), )
165,

(b) p*(:|') is a Bayesian posterior belief function.
Similarly, {zi() ()} is a pure strategy PBE if:

(@')veeo : zi(8) € argzr‘nea(}l fll(:;,u'(c - alzy),8);

and (b)

Itis rather self-evident from the proofs of Propositions 3, 4,2nd 5 that even if the use of mixed strategies
with a continuous support were allowed, in equilibrium only mixed strategies with finite supports would
be used. Hence, although the set of pure strategies is a continuum in the present model, we will limit
ourselves to mixed strategies whose support is finite, and we will denote by X, the set of locations over
which Firm 1 of type & randomizes and by v1(z,16), 6 ¢ O, the probability with which it chooses z;.

As usual in the incomplete information context, for a given situation (7, @), there exists a continuum of
equilibria, and sometimes simultaneously a whole range of separating, pooling, and semi-pooling equilibria,
hence the need for a selection device.

4. THE D1 EQUILIBRIUM REFINEMENT IN MONOTONIC GAMES

Among the numerous refinements that have been proposed, the DI criterion is quite powerful for a
special class of signaling games, namely the monotonic signaling games. For such games one and only one
equilibrium is robust to the D1 criterion. In this section, we rephrase the definition of the D1 refinement

4.1 Tue D1 EqQuiLiariuum RerINEMENT



Let Xy = Usee Xy be the set of equilibrium locations or signals and ¥ = [0, 12 ]\X] the set of off-
the-equilibrium signals, the latter locations being chosen with probability 0 in equilibrium. As we saw in
the definition of a PBE, the posterior #(8lz;) is arbitrary for such locations z; € X,. Refinements serve
as reasonable restrictions on p(f]z1). Criterion D1is a way to define reasonable beliefs.

Consider a given PBE, {‘X’;(‘),\I’;(-),p'ﬂb)}, and let TI}(8) be the profit of Firm 1 of type 8 in that
equilibrium. Recall that in the case of mixed strategies, all the lacations in X[, give the same profits to
type 8, that is: for 27, and 27y in Xy, T(8) = (235, Zolzie ") 0) = (235 E2(zip, ™), 6), where
u° = pt(e ~ alzi,) and = (e - aleip) Also recall that for any location zy and any posterior belief
&, there is a unique location #2(zy,p) which is the best response to T, given p. Let us define BR(zy, )
as {zalz2 = £5(zy,0)} 2nd BR(z\) as U,epa) BR(zy u) = {2230 1 22 = Ey{zy, 1)} The set BR(z1,2)
contains only one element, namely the best response location of Firm 2 to z, given p. As for BR{z1), it
is the set containing all the “possible” best response locations to z, that is, each location 2 which is 2

best response to z; for some posterior probability p € {0,1]. Let us now define:

D@iz)) = {z2 € BRE)IHE) < Mz, z2.0))

DOBlzy) = {z2 € BR(=)ING(O) = Mi(z1,22,0)}-
The set D{8lz:1) is the subset of BR(z1) containing those locations 7z which, if chosen by Firm 2, would
justify a switch by Firm 1 of type @ from either one of its equilibrium locations to the off-the-equilibrium
location . Its profits are higher at (z1,72), 22 € D(#lz,), than at (x;,,i;(r;e,u')), ut = pt{e - alzig)
whatever z7; € X[y Similarly, the set D°(8)z;) is the set of z; € BR(x,) which make a switch to zy 2

no gain / no loss proposition.
- . <
Since £2(z1.p) and therefore BR(x;, ) increase in g, and since Mz, 22,9) increases in 77, we can

express the sets D(-) and D) in terms of g rather than I3, a substitution simplifying the use of criterion

D1, as follows:

{u115(6) < Wiz, O} (14)
{ul13(8) = Mz, 80} (15)

D(8lz1)
D%(fln:)

#

i)

Clearly, since (. 4,8) increases in g, the set D(fiz1), if nonempty, will include all the values of g
above some critical value for which II7{8) = fli(z1, 2, 6), value which is indeed the only element of the set
D%(8|z;) if nopempty. Before characterizing this critical probability value, let us state criterion D1, Again,
consider a given PBE, {¥7(-) ¥3(), ()} and an off-the-equilibrium signal z;. Then:

(36,0, 048 : DElz)u D) C D1z} = #(flzy) =0 (16)



In other words, if Firm 1 of type ¢’ has an incentjve to deviate when Firm 1 of type § has a weak incentive
to deviate, then Firm 2 should not assign a positive probability that z; has been chosen by Firm 1 of
type 8. Phrased diflerently, criterion D1 stipulates that it js reasonable to suppose with probability 1 that
the off-the-equilibrium location z; has been chosen by the type which has the most to gain from it, in the

kinds of equilibria and to the application of refinement D1, Let us consider the set of locations of Firm 1
of type § pot strictly dominated by some given (21,4), that is, the set of locations Z; such that there exist
beliefs 1 with fll(n,p,a) > ﬂ,(i;.;’c,@)‘ As I-I(~) is strictly concave in z1 and increasing in A, this set is
an interval [r,,,.'n(il,[;,9),1.,\,,,(:'1,;1,0)] where z,.:.(-) is the smallest root of the second order equation
fl.(zl,l,ﬁ) = fl;(:‘:l,ﬁ,ﬂ), which is always positive, and Tmaz(:) is the largest root if Jess than 1/ and
equal to 13 otherwise.

Consider a focation Ty € [Zmin(i‘x,ﬂﬁ),Imu(z'l,ll,G')]. Let u(z),34,1,9) be either the solution of
fh(z;,p,&) = fl;(il,ﬂ,g) if such a solution exists, or 0 if not. For example, suppose z1{0,8) < p
and consider #) = 7,(0,8)+¢ < 2,¢> 0, and 4 = 0; since r‘x,(z,(o,a),o.e) > f1y(2,(0,8)+¢,0. #) and
ﬁ(',u,ﬂ) is increasing in g, the equation fll(2|(0,9),u,0) = I-L(Il((),e)«}s, 0,6} has no solution. As far
as n(rl,z'x.ﬁ,ﬁ) > 0, it is the highest value of # for which Firm 1 of type 8 will prefer to stay at z;
and face a Firm 2 with posterior £ rather than to switch to z: and face a Firm 2 with posterior p. For
€ [O,zmg,.(f:,,;l,ﬂ))U(z,,,,,,(z'l,/j,ﬁ), 4], let ,u(r;,z‘;,/l,ﬁ) be equal to 1; then for any z; € [0, %], a
switch from (£1,4) to (z1,4) is undesirable for Firm 1 of type ¢ ifu< ,z(z.,z',,,z,oy :

Note that if (z{,4') and (z{,1") give the same profits to Firm 1 of type 4, that is, if fl;(z',.u',ﬂ) =
fh(z;’,;ﬂ’»,&), then for any 7, : w(zy,z,0,0) = #{z1,2{,4",8). Since in equilibrium ﬂl(z;,,y'.ﬂ) =
ﬁ;(:,’;,u",ﬂ} whenever {27,215} ¢ Ay " = p{c— alziy) and g = p(c alz7}), using the Limit
probability function, we may redefine criterion D) as follows: it is reasonable for Firm 2, observing z,, to
assign probability 0 to type 8 and probability 1 to the other type ¢’ if #(zy, g6, 0) > #(Zy, 250, u", 8'),
where 4™ = p*(c - alzi,) and p* = u°(c ~ alziy). Indeed, we can rewrite {14) and (15) as follows:

Vi e 0, Vzi; € Al ¢

{6l > plz1, 275,07, 8)), an
{8lp = p(zy, 23,07, 0)). (18)

D{éjz1)
D°(8lzy)

#



What makes the use of the limit posterior probability functions an easy and efficient device to determine
the locations robust to D1 in the present location model are the following single crossing properties of the

wlzy, 2,41, 8) functions.

Proposition 1: Let two pairs of locations and posterior beliefs (z{, 4"} and (2%, 1" be such that:

- zy € (z,,.;,.(z,(O,c),O.c),zm,(xl(o,c),o,c)}. (19)
g2 #zhm(0,6).0,¢h (20)
" € [Emis(n1(0ic—)0c— @), Tmaz{z1{0,¢ ~ @), 0, = o), (21)
W2 HEhn(0e-a)0c-a). @)

If there exists a third pair (Z1,/4) such that:

g< 1 and p(dnzyphe)=R= pdr, 2y, e~ ah
then this last pair is unique. ||
Proof: See Appendix B.

Proposition 2: Let (£1,4) be such that:

either g < 1, and u(inzhuie) =g = w2y, 4" ¢ — a) for some pairs (z},4') and (=4, 1)

satisfying respectively (19), (20), and (21), (22) (23)
eorp=1,%; = Zmin(F1.,8),8 € Q,and £; 2 Zmin(21{0,¢ - @),0,¢ = a) : (24)
sorp=1, H1 = Zmaz($1,4,0),0 € ©,and 51 £ Tmaz(z1{0:),0,€) (23)

then:

for any 71 € (Zmin(E12 €0 E1 )

plzna ity i) < plen Frine - a) (26)
o for any 71 € (21, Tmaz{Zriftic — a)):
a(zn i, i) > gz duie = o) | (27)

10



Proof: See Appendix B.

The warking of propositions 1 and 2 is illustrated on Figure 2 (Appendix C) and Figures 3 and 4
(Appendix E). The fundamental property underlying these propositions is that, for any given (z,, z,, 1),
such that p(zl,z'h;},&) <1, §€0, we have:

(21,1, 4,¢) o _ Blly(zy,p,e)/0z, S5 6ﬁ1(z|,p,c-—a)/621 = Oz 140 - o)
9z, AMy(z1, 1, ¢) /0 OMy(zs,pc— o)/ 9z
In other terms, the absolute valye of the ratio of marginal profits with respect to location and posterior
beliefs (to be identified 2s a low cost type} is always higher for the high cost type than for the low cost
type. Since at z; = £y we have w(zy, 21, p,0) = fo=p(zy,d), e - @), then the above inequality implies
both proposition 1 and proposition 2,

4.3 Monoronic Games AND THE UNIQUENESS oF D1 EQuiLiBRIUM

The sequential spatial model we consider in this paper is a mopotonic signaling game, as defiped by Cho
and Sobel [3]. They show that in such games, the equilibrium refinement criteria D1, universal divinjty
(UD), and never a weak best response (NWBR) are all equivalent, hence lending additional support for
using D1 in the present context, Cho and Sobel’s definition of a monotonic signaling game, expressed in
terms of our model, s as follows: the location game is monotonic if ¥z, € [0, 14], Vz; and T4 € BR(z)),
whenever one type of Firm 1 prefers (z1,72) to (z1,2%), the other type of Firm 1 does so as well. Since
6‘H1(1:1,x2,c)/812 > 0 and 8ly(z;,z5,¢ ~ a)/3z3 > 0, we have for al] locations z; and z3 € [14.1], and
a fortiori for those in BR(z,): .

{Iy(z21,22,¢) > My(zy,25,¢)} iff {M(z1,22,c - a) > Mi(z1,25,¢ - a)}.
Each inequality implies z; > £} thch, in turn, implies the other inequality,

Let us redefine the types of Firm 1 from 8 ¢ © = {ce~a,cltore {0,a} so that the high cost type
appears as the lower type, which js the one trying to imitate the higher type. This will be useful in [A8]
below. Cho and Sobel’s sufficient conditions to obtain the existence and uniqueness of a D1-equilibrium are
the following: [A1] the set of signals, that is, the set of possible locations of Firm 1, is a compact interval,
and the set of actions by the receiver, that is the set of possible locations of Firm 2, is also a compact
interval; {A2] Ii(zy,22,7) is continuous in{z,z;)forall r ¢ {0,e}; [A3] monotonicity as defined above;
{A4) Ma(z1,22,7) is a continuous function of (z1,73) for all  and a strictly quasi-concave differentiable
function of z,; [As] a1, (z1,22,7)/8z3 is a strictly increasing function of ri[A6]if r < ' and z; < i,
then {Hy(zy,25,7) < M(#h,25, 1)} = {My(zr,22.7) < (=32, 7)) (A7) vr, Li(z1,22(21,7),7) is 2

strictly quasi-concave function of z;.
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It is clear that Al and A2 hold in the present game and we just showed that A3 is also satisfied. It
is straightforward to verify that Ad holds, and ooting that 7 increases from g, for the high cost type, to
a, for the low cost type, it is easy to check that A5 is satisfied too. Condition A6 states that if the high
cost Firm 1 makes at least as much profit in situation (z},2%) as in situation (21.22) with £} > zy, then
the low cost Firm 1 does strictly better in (z},7}) than in (ry,z2)- This condition is indeed implied by
a single crossing property: —(3“,/6:;)/(6[1;/3:;) is decreasing with 7. This expression is equal here to
(3zy =3 =Mz + 22 + r), r € {0.a}. Hence, condition AB is satisfied. Finally, My{zi, z2{z1 7))
is strictly concave in z; for both values of . Hence, Al to A7 are verified. For each situation in the

(7, a)-space, there exists a unique D1 equilibrium in the present location model.
5. THE PERFECT BAYESIAN D1 EQUILIBRIA

For each type of equilibrium, we describe the set of equilibria and identify those which are robust to
D1. This will allow us to draw a map in the (7,2)-space, giving the unique equilibrium predicted in each

possible situation defined by (x,) for x £(0,1) and a £ {0, Y2).
5.1 THE SEPARATING EQUILIBRIA

Whan they exist, such equilibria are pure strategy 2quilibria, the high cost Firm 1 locating at £,{0.¢) and
the low cost type locating within [Zmae{11(0, ¢).0,c). zm,(n(O,c-o),O‘c-o)], provided that this interval
not be degenerate. This will be the case if the cost discrepancy is aot too high, at most equal to some limit
we will denote by &.. As shown in Appendix C.for a < B¢ Tmarl21(0,€).0,6) < Zmas{£1(0,c~0).0.c~a):
for o 2 de: Zmar(T1{0,€).0,¢) = Imar(21(0.¢ - a),0,¢ ~a) = Y2 and u( 1y £,{0,¢).0,¢) € 1. w~ith the
equality if o = & and the strict inequality if @ > ;. The value of & is 9//5-4< 2. Fora< &, there
exists a whole continuum of pure strategy equilibria, whose measure first increases from 0 at z = 0 and
then dacreases and goes back to 0 at a = &.. For o = G, there exists a unique separaling equilibrium,
and for o > G, ho separating equilibrigm exusts. When there exists a continuum of equilibria, the only 01
equilibrium is the least distorting equilibrium, as measured with respect to the full information equilibrium.
More precisely, we have:

Proposition 3: All the separating equilibria are pure strategy equilibria. Such equilibria exist if the
cost discrepancy is not too high, namely if a € 0,6}, whatever the priors. If o € (0.4c), there exists a

continuum of separating equilibria: rj. = 1, (0.c)and 27._, € {lm,,(I;(O,C),O.C).lma:(:x(ﬂ,c -a)0,c~



a)], each one supported by any posterior beljefs function u*{c - alz;) such that:
=0 i ozy= z1.,
#c-ajz)) { =1 if oz =27,
< min {p(r;,r;,,ﬂ,c),u(z,,z;c_a, l,c—a)} otherwise.
If o = &, there exists only one separating equilibrium: zi. = 2(0,¢) and Tic-a = /2, supported by the

same kind of posterior beliefs, For o € (0,4, the unique D1 equilibrium among the separating equilibria
is the following: z3, = z3(0c) and z3,_, = Zmaz(21(0,¢),0,¢). ||

Proof: See Appendix C.

Since from (13), Zmaz(21(0,¢),0,¢) > z{l,c~a) when & X (e, then the D1 separating equilibria involve
a distortion in the locatjon of Firm 1. Although Firm 1 of the high cost type locates at jts full information
location, Firm 1 of the low cost type generally locates to the right of its full information location, closer
to the center of the market. But the distortion is the smallest possible, given the incomplete information
structure, compatible with a separating equilibrium,
5.2 THe Pooling EquiLisria

As for the case of separating equilibria, pooling equilibria are always pure strategy equilibria. Now, we
must distinguish both according to the values of @ and the value of the prior belief 7. For any cost advantage
a, there is a whole range of pooling equilibria, whose measure increases with a, generally sustained by a
continuum of prior beliefs and Bayesian posterior beljef functions. However, the unique pooling equilibria
surviving the application of criterion DI is the one in which both types of Firm 1 locate at the center of
the market, provided that the prior probability that Firm I is of the low cost type is higher than a strictly
positive bound. We have:

Proposition 4: All the pooling equilibria are pure strategy equilibria. For any cost discrepancy a €
(0, 142), each location 2} € (Tminlz1(0,c - a),0,c~ a),z,,.u(x,(o,c),o,c)) may be a pooling equilibrium
location, provided that:
~ the prior x be sufficiently high:
* 2 max {u(z},2:(0,6),0,0), 6 ¢ 0);

~ the posterior belief function #°(c - alz,) satisfy:

ke~ alzy) {

=r, ifz =g

< min{p(zy,27,7,8), 6 ¢ 9}, otherwise.
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D1 pooling equilibria exist it © 2 u( !/z,:‘(o,c),o,c) and a € (&, Y2), in which case the surviving
equilibrium is the center of the market: zy = . ||

Proof: See Appendix D.

The incomplete information pooling equilibrium, given &, selected by criterion D1 is always quite
different from the full information equilibrium for the high cost Firm 1, now locating at the center of
the market instead of £;(0,¢) < }/2. For the low cost type, we must distinguish according to the values
of o. Remember that under full information, the low cost type locates at zi(l,c-a) < il a < by
and 7y(l,ce—a) =l fora 2 5. Since &, = (9/V5) — 4 < Vs, the location will be distorted only if
a € (&, 1/s)- Note, however, that even when the Jocation of the low cost type is not distorted, the doubt
subsisting about its true type is prejudicial: Firm 2 will locate nearer the market center than under full
information. On the contrary, the high cost Firm 1 will always be better off at the D1 pooling equilibrium.

5.3 THE SEMI-SEPARATING EQUILIBRIA

In all the semi-separating equilibria, each type of Firm 1 plays at most two different locations and there
may be only one location common to the both types, so that we have only two kinds of such equilibria:
those in which each type 8 randomizes over two locations, a location z7, specific to its type and a location
zj common to both types, and those in which one of the types, say #, randomizes over {z}4.71) and the

other type, §' # 0, plays 7}, a pure strategy.

The only kind of semi-separating equilibria existing for all the values of the cost discrepancy « is the one
in which only the high cost type randomizes, provided that the prior ¥ be sufficiently low. For the other
kinds, in which either the two types randomize or only the low cost type plays a mixed strategy, the cost
advantage of the low cost type must not be too high, whatever the prior 7 in the first case, for sufficiently
high values of = only in the second case. In all the equilibria where the high cost type plays a specific
location zj,, it is thea perfectly identified; hence, this location must be 21{0,¢), the location maximizing
its profits when clearly perceived as the high cost type. The other locations are less constrained and there

generally exists a whole range of possible equilibrium positions,

The equilibrium selected by D1 is for the low cost Firm 1 to locate at the center of the market and
for the high cost Firm 1 to randomize over its full information location z3(0,c) and the center of the
market, if @ € (&, Y2)and ¥ < u(‘/z,zl(ﬂ,c),().c). Hence, the low cost Firm 1 locates to the right of its
full information location, while the high cost Firm 1 locates with some probability at its full information

jocation and with the complementary probability at the market center.
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In order to characterize the whole set of semi-separating equilibria, we introduce the following notewor.
thy locations, We denote by £; the location for which y(z,,z,(o,c),o,c) = u{z),2,(0,c ~ a),0,c-a) < 1.
that is:

;o= ) Ys(a? 4 6o+ 4)172 ifaelo, 1)
te { (792002 — 240a + 1731800, atherwise,
Clearly,ﬂz.(ﬂ,c) <i<zl,c~a) Foroe (0, éc) and I € (Zmaz(z1(0, c),0,¢), Zmar(21(0, ¢ - a),0,¢ -
a)}, we define £1(x}) as the location for which y(zl,zl(o,c),(),c) = plzy,z}, 1,6 - a) < 1. This location
is also depending on o and 1(0,¢) < Z(z}) < zi(l,e ~ a). Finally, let us denote by G..o the upper
bound of the valyes of o for which ZTmaz(z1(0,¢ - a),0,¢~a) < V2t Geng = 26~ 15V3 < &.. For any
@ € (Gema, &), we define 1 as the location at which ﬁ;(zl,u(zg,z,(O,c),O,z:),c ~-a)= fh(‘/z, lLie—a),
a location depending on o. We have:

Proposition 5: In ajl the semi-separating equilibria, there exists one and only one location chosen in
equilibrium by both types of Firm 1, and each type chooses two different locations at most.

(i) There exists a continuum of equilibria in which both types of Firm 1 randomize iff o € (0,4,
whatever 7. The equilibrium locations are the following:
zi. = 21(0,¢),
[ €l 2nan(n1(0.0,0,6) ifae (0,4,
II{ €[50 2nas(1(0,6),0,6)) it a € (6o, ),
Tiema = Tmas(2i,47(¢ ~ alzi)yc - a),

These equilibrium locations are supported by the posterior beliefs:

=0, ifzy =27,

2#(3;»31(0#"),0&)' ifzy =13,
K{c~alzy)

=1, ifzy=27__,

< min{u(z,, 27, p"(c ~ alz}),8),8 € 0}, otherwise,
and, given (r,a) and z{, by a whole range of randomizations (u,(zﬂc),ul(r;!c - a)}.
(ii) For any o ¢ 0,14}, there exists a continuum of equilibria in which only the high cost Firm 1
randomizes provided that = be sufficiently low, in which case the equilibrium locations are as follows:
27 = 21(0, c),
. €l zmecl2i(0,0),0,0)), ifeae (0, &,
o { €[, 1h), o€ (6, 1),



each one supported by:

=0, if 2y = 2.,
(e —~alzy) § = plzi,1(0,6),0,¢) ifzy =27,
< min{u(z1, 25,0°(c - alz}),8), 6 € O}, otherwise,
and, given (7,0} and zj, by only one mixed strategy vi{zile) of the high cost type; the condition on
xis: ® < p{c~ alz])
(iif) There exists a continuum of equilibria in which only the low cost type of Firm 1 randomizes iff
a € (0, Ys), provided that ¥ be sufficiently high. The equilibrium locations are as follows:
e €(mi(1,c= a), Zmas(mi(0¢ = @), 0,c = a)l,
€ (Zmin(2icear 16~ EhTiea):
if, for any & € (0, ), Ti.-q € (Ti(l,e @), Zmaz(21(0,€),0,0)];
€ (Tmin(Ziemar Lic = @) E1(Fico )l
if a € (0,&] and 2., € (Zmaz(#1(0,€),0,¢), Tmax(z1{0,c— @),0,c = a)l.
These equilibrium locations are supported by:
=1, ifz) = Zicear
w(e-alzi) { = ala] Tiemarhiem o) itz =i,
< min{p(zy, 27,87 (c - alz}),8},9 € ©}, otherwise, ¥

and, given (7,a) and 27, by only one mixed strategy vi(zijc - @) of the low cost type; the condition

on wist > pl{21, T cmar 1€~ a).

(iv) D1 semi-separating equilibria exist if 7 < p{12,21(0,¢),0,¢c) and a € (G, ). H {w,@) is in this
region, then the unique semi-separating equilibrium robust to D1 is this equilibrium in which only
the high cost Firm 1 randomizes over the locations: 2}, = z1(0,¢) and zi = 2. ||

Proof: See Appendix E.
5.4 Te MuTUALLY EXCLUSIVE DOMAINS

Recapitulating {rom the previous subsections, we have that:
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* for a € (0, Ge), 7 € (0, 1), that is, for region Lon Figure 1, the unique D1 equilibrium is the separating
equilibrium which involves the least cost of separation;

* fora € (&, %), v ¢ {1e( Ya,21(0,¢),0,¢), 1), that is, region If on Figure 1, the unique D1 equilibrium
is the pooling equilibrium at the market center;

* fora € (&, hre (O,u(‘/z,z;(o,c),ﬂ, c}), that is, region Il on Figure 1, the unique D1 equilibrium
is the semi-separating equilibrium where only the high cost Firm 1 randomizes over its ful] information
equilibrium and the market center, and the low cost firm 1 plays a pure strategy at the market center.

Figure 1 about here

What fundamentally happens is that for low cost discrepancies we get the classical result: the two types
choose different locations in equilibrium, the most efficient one incurring a separating cost, the less efficient
one staying at its complete information location, For the efficient type, the separation cost comes from the
fact that it must locate nearer the market center than jt would have chosen under complete information. As
the cost discrepancy increases, the most efficient type would have to go beyond 1/, say Y +6, with § > 0,
in order to separate from its less efficient twin, All this would work smoothly if Firm 2 were constrained
to stay within (1 + 4, 1]. The problem is that Firm 2 is free to choose the most convenient location for
itself and switches within [0, %2 + ) once Firm 1 goes beyond !f2. Hence, the separating power of 1 4 §
is not greater than the separating power of 1f; — § and the efficient type stays at 14, Doing so creates an
incentive for the less efficient type to imitate the more efficient one. But imitation may really succeed only
if the prior probability » that Firm 1 is of the low cost type is sufficiently high, because Firm 2 reaction
depends on this probability for a given location of Firm 1. If this probability is too low, the’pooling process
is blurred: the high cost Firm 1 will imitate its low cost twin only with a probability less than 1, hence

generating a mixed strategy equilibrium.
6. CONCLUSION

This paper has made use of Cho and Sobel {3] to exhibit the outcome of spatial competition, as pre-
dicted by the recent developments of the theory of incomplete information games. It provides an exhaustive
description and prediction of the variety of distortions in locations which can arise because of incomplete
information. Clearly, incomplete information appears to have a major influence on location choices. Al

some probability, in semi-separating equilibria, it will locate nearer to the center of the market, otherwise;
as for the most efficient type, for all the values of the cost advantage for which the full information location

is not at the market center, the incomplete information location is nearer to the market center than the
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complete information one. Hence, the incomplete information always results in a more aggressive price
competition.

From the point of view of signaling models, our model provides an economically meaningful example
of the usefulness of the D1 refinement to narrow down successfully and dramatically the set of equilibria.

There are not so many examples of such applications.



APPENDIX A: PROPERTIES OF THE ﬂ;(z;,p,ﬁ) FUNCTIONS

Substituting oz, 8) = Va(zy + 4z +2) for z; in the Firm 1% profit function (2): Hi(zy,1;,8) =
Ha(za ~ 20)(3z, + z2) + 8(0) 1 a(z) + z2) + Y507, where 8(8) = 0if 6 = ¢ and ) =1if0=c- a, we
get:

M2y, 0,8) = i [~202% + 8(2 + pa + 36(8)e)z, + (2 + po + 35(6)a)?) - (Ad)
with
Filil M
"67! = Y [8az) + 2a(2 + pa + 36(8)a)] > 0, T = Yhea? (1.2
6171 . 67I‘1‘ . 0f
5; = ’/9{—1011 + 2(2+ua+36(9)0)] s 32—12- =-105 <0 (A3)
oM v
oy il fozy > 0. (A.4)

The fh(‘) functions are strictly concave in z, so that the location 21(#,6) maximizing ﬂl(xl.u,ﬂ) is

unique and equal to:
£ 0) = (1~ §(O)[15(2 + ua)] + 8(8) min{s(2 + pa + 3a), 112 }. (A-5)
Note that for a given a, the two intervals (:;(0,0),:,(1,0)], ¢ € 0, do not intersect, Substituting
z1{(u,8) for z, in ﬂ;(:l,u,a), we get: .
fy(21(4,6),11,0) = min{%zy (1,01, Yas[3 + 4(4s + 3)ar + (2+ pa + 30)%)}. (A.6)
Hence, since the two intervals [11(0,0),:,(1,9)], 8 € O, do not intersect:

ﬁx(zl(l,c),l.c) < ﬁl(z;(D.c ~a),0,c~a), a € (0, 12). (A7)

APPENDIX B: THE LIMIT POSTERICR PROBABILITY FUNCTION

In this appendix, we give all the relevant characteristics of the limit probability functions
#{z1,4,,4,0), 6¢ 0.

19



(B.1) For the high cost Firm 1 correctly identified as such and located at its profit maximizing location,
thatis, for § = ¢, g =0, £, = ,(0,¢) (= % < /), we have:

Zmin(21(0,6),0,0) = {2+ -0, {8.1)
Ys(2 + o+ AV2), if s, = (/) - 4,
(2000 = { /(24 @+ AM?), i o < b =(9/V5) 4 52
- Y2, otherwise,

where & = 9(Vsa? + o). The limit probability function g{z1,z1(0,¢),0,¢) is continuous and equal
to 1 on [0, Zmin(21(0,¢),0,c)], decreasing from 1 to 0 on (Zmin(z1(0,¢),0,¢),21{0,c)}, increasing
from 0 to 1 on (z;(O,c),zm“(z;(0,:),0,«:)) if the upper bound of this interval is lower than V2,
and remaining equal to 1 on (Zmaz{21(0,¢),0,¢), 1/5], increasing from 0 to a value less than 1 on
(z1(0, ¢}, Zmax(21(0, ¢}, 0,€)] if Zmar(21(0,¢),0,¢) = 2.

(B.2) For the low cost Firm 1 wrongly identified as a high cost one and optimally located givén this
misperception, that is, for § = ¢ - &, f= 0,31 = 2,(0,c — a) (either equal to Ys(24+3a)ifa & Ve

or to 12 if a > /), we have:

(24 4a = QV?), ife <3,
Zmin{01{0,c - a),0,c—0a) = (B.3)

10(4 + 8a — T1/?), otherwise,

5(2 + 4a - QM?), ifa € oo = 26— 153,
Zmas(z1(0,c— )0, c-a) = (B.4)

th, otherwise,

where 2 = 9(7fac? +a)and I' = 9%a? + 24a + 1. The lLimit probability function plzy,2:(0,c ~
a),0,c~ a) is continuous and equal to 1 on {0, Zmin{z1(0, e~ @), 0,¢ - o)}, decreasing from 1 to 0on
(Im{n(IX(O,C“O),O,C*O)‘I](O,C-—Q)}, increasing from 0 to 1 on (:l(O,c-—a),xmu(z':x((),c~o),0, ¢
@)} if 21(0,¢ = @) < Zmaz(z1(0ye a),0,¢ - &) < /2 (note that the second inequality implies the
first) and remaining equal to 1 on (zmaz(z1{0,6 — ), 0,c ~ ), 1/2], increasing from 0 to a value less
than 1 on (z:(0, ¢ - 2), Tmas{x1(0: c = &), 0,c— @) if 2,0, ¢~ &) < Tmaz{21(0, ¢~ @), 0, o) = th.

(B.3) There are important relationships between the limit posterior probability functions p(z1, 41, 44,¢) and
p(z1, 31, i€ — @), defined for a given (#1,2). By definition:

~ the two functions have the same value g at 7, = i
l‘(ihil.fhc)=#(ihil,ﬂ,c*a)=ﬂl (B.5)
— each function assumes a value less than 1 within the interval (zm;n(i,,ﬂ,8),zm,,,(i1,[x,9)):

21 € (Tmin(E1, 1, 8), Zmax(23.5,8)) = a(z,21,8) < L (B.6)
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- defining Ay as the following interval:

(:,,.,-,.(zx(o,9),0,0),zm,,(:;(0,&),0,0)), ifeither a < 6. and 6 = ¢
ora e, andf=¢—q.

Ag =
(zmin(zx(0,0),O,6),:,,."(:,(0,9),0,0)}, otherwise,
then:

€A = ;z(zl,zl(ﬂ,ﬁ),o,é‘) <1,
T ¢ Ay = #(z1,2,(0,0),0,0) = 1,

(B.4) Proofs of Propositions 1 and 2. Let (1,4, (z},1") and (21, 4) be such thar:

€ [2min(z1(0,¢),0,¢), Zmaz{21(0,¢),0,¢)), 12 w(z},21(0,¢),0,¢),

(B.7)

(B.8)
(B.9)

€ [Zmin{21(0, ¢ ~ a),0,¢~ a), Zmaz(21(0,c ~ @),0,¢ ~ a)l, ¢ > wlz{,z1(0,c - 6>, 0. ¢ - al,

£ < land u(ix.ri,#'.€)=ﬂ=u(iuz§’,u",c-—0)-

Note that: u(r;,r’l,y’,c) = (21,1, ¢) and ul(zy, =, 4" c ~ a) = u{zy, %y, 4.c - a}).
Forany z; ¢ (Im.'n(i‘l.ﬂ,9),$mz(i;,ﬂ.9)]. 0 €0, let u(zy,2y,2,0) be the relevant root of:

Mi(z1,1.8) = fidr, i,0)
Differentiating this equation we get:
Ou(zi,%1,4,6) - _ My (2, 1,6)/8z,
9z, OMy(zy,p,6)/8

that is, from (A.2) and (A.3):

Bu(zy,d4,4,¢)

—40zy + 8(2 + pa)

8z,

8azy +2a(2 + pa)’

=40z + 8(2 + pa + da)

Qulzy, 21, 8,¢ ~ a)

Bz, = 8azy +2a(2 + pa + 3a)”
Hence:
aﬂ(zlui‘lx[‘vc) all(xl-ihfl,C— a) 223321
8z, - Jz, (42 + 2+ pa){4z; + 2 + pa + 3a)’
Since
Ou(zy,21,4,¢c) u(zy i, e - a)
Oz, 8z, !

21
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then (#1,4) is the unique pair satisfying the two conditions 2 < 1 and plz1, i) =4 = u(z1, %1, 86— a)
for z = #;. (B.10) and the continuity of the functions u(z1,...,8), 8 € ©, imply Proposition 2.

APPENDIX C: PROOF OF PROPOSITION 3

The logic underlying the construction of a separating equilibrium is illustrated on Figure 2, where the
profit functions 11,(z1,4,8) are represented as functions of z;.
Figure 2 about here

The curves (1), (2), and (3) correspond respectively to ﬂ;(z;,l,c —a), to Mz, pe~a)for0<p<l,
and to [1;{z1,0,¢ — a), that is, respectively, to the profits of the low cost Firm 1 when rightly identified
by Firm 2 (g = 1), when some doubt subsists about its type (0 < 1 < 1) and when wrongly identified as
the high cost type (u = 0). Curves (1), (2'), and (3') correspond respectively to M{z1, 1,¢), y(zy, 0.0}
for 0 < p < 1, and to [iy(z1,0,¢), that is, respectively, to the profits of the high cost type Firm 1 when
" wrongly identified as the low cost type, when not clearly distinguished from its low cost twin and when
rightly identified as of the high cost type. Curve (4) is the locus of maxima of the functions [{z1. 2,8},
9 € ©. Remember that in a separating equilibrium the two types of Firm 1 choose different locations, that
is

X;yNXj = 0,8 # 8. Hence V8 € O, Vaj, € Xpp s w7~ alziy) = 5(8).

Consider first the high cost type and suppose that 7, # z4(0,¢) and z; € A}, Trivially, 1(z,,0,¢) <
Mi{z1(0,c),0,¢) < Mi(z1{0, ) p,c) i & > 0. Since at ) € A, Firm 1 of the high cost type must be
rightly identified as such, the above inequality implies that deviating from zy to z4(0, ¢} would be profitable,
whatever the posteriors of Firm 2 observing the deviation. Heace, the only possible equilibrium location
of the high cost type of Firm 1 is 7,(0, ¢), which implies that for this type mixed strategies are forbidden.
Is order that z;(0,c) be the equilibrium location of the high cost type, the posteriors induced by aay
off-the-equilibrium location 1 # 2{0,¢) (e - alzy), must be at most equal to u(z1,71(0,€),0,¢), that
is, strictly less than 1 on the interval A, (see (B.7) and (B.8)).

Consider the low cost type. Its equilibrium location may not be within [0, Zmin{z1(0.c~ a),0,c—- o)y
(zm“(:\((),c—a),(),c—a), if2], sincein this interval 1y(z1, 1,e~a) < ﬁ;(:;((},c—a),o,c—a) < [ (z1{0,e—
a)pc-a)0<p A deviation from any given z, in the above interval to 7,{0,¢ — o) would be profitable,
whatever the posteriors of Firm 2 observing the deviation. Note also that its equilibrium location may not
be within the interval A, since for any alleged equilibrium location z; in this interval, we would have: (1)
p*(c—alzy) < 1 (in order that the high cost type stays at z3(0,¢)) and (2) p*(c - alz;) = | (in order tha:
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the Jow cost type be rightly identified as such). Because Zmin(21(0,¢),0,¢) < Tmin(z1(0,2 -~ @),0,¢ - a)
and Zmaz(21(0,¢), 0, ¢} < Zmar{21(0,¢ ~ a),0,¢ ~ @), the whole interva) [0,:...5:(:1(0. €),0,¢)) is excluded,
Hence, we are left with the sole interval [Zmaz(1(0,¢),0, €} Zmaz{z,(0,c - @),0,¢ ~ a)]. This interval s
aonempty, provided that u(rm,(:l((),c},0,c),:;(0,c),0,c) = 1, which is the case if o < G In this case,
ﬁl(z;, Le-a)is decreasing on this interval so that the low cost type may not randomize over several
locations, that is to say, mixed strategies are also forbidden for the low cost type. Any location within this
last interval may be the equilibrium location of the low cost type, provided that for any off-the-equilibrium
location z;,pu*(c ~ alz;) < w(zy, 25, 10— a).

Let us now turn to the working of D1. We first show that any equilibrium Ticma > Tmaz(21(0, c~a},0,c-
a) is destroyed by DI. For such a location, consider any alternative locatjon i € (Zmaz(z,(0, ¢},0,¢),
Ziema)- First, we have e(z},21(0,¢),0,¢) = r(z],27,0,¢) = 1. Second, since fl,(:n, le—a}is decreasing
on (zm,(z,(ﬂ,c),O,c),z:;c_q), then p(zi,zy,_,,1,¢~ @) < 1. Therefore, observing z{, Firm 2 should
conclude, according to D1, that it is facing the low cost type. But Mi(z},1,c- a) > ﬂl(r;ﬁ,a, Le~a)=
Ii(c - @) implies that the deviation is profitable for the low cost type. Let us now show that Tleng =
zmq,(:,(O,c),O,c) is robust to D1. For this equilibrium location, the above kind of deviation is no more
allowed. Consider first deviations either in [O,zm;,.(zl(ﬂ,c),ﬂ,c)] orin (z{,_,, %] no tvpe would gain,
whatever the posterior beliefs of Firm 2. Consider now deviations z} within (Tmin{z1(0, c),O,c),z;c_Q):
from Proposition 2 (substitute 27, = Zmaz(21(0,¢),0,¢) for £, in (25), note that #(Z5eeq,2,(0,c),0, c) =
wle~olz],_ ) =1 = # and apply (26)), we get p(z;,z{c,ﬂ,c) < u(z;,z;c_a,l,c - a}, so that, ac.
cording to D1, Firm 2 should conclude that it js facing the high cost Firm 1. Since I‘I,(r.l"-a, Le-a)>
ﬂ,(z;c_a,u(:c;c,a,z,(O,c«a),O,c—a),c—-a) = ﬁ;(z;(ﬂ,u—o),ﬂ,c-a} > ﬂl(:;,o,c—a), such a deviation
would imply a loss for the low cost type. As for the high cost type we have I.Il(z’,,o,c) < fh(zl(o, c),0,¢),
with the strict inequality if 21 # 21(0,¢), so that the deviation is worthless.

APPENDIX D: PROOF OF PROPOSITION 4

Ina pooling equilibrium, the equilibrivm locations chosen by the two types of Firm 1 are the same,
A = &7, 6 € 0, and if mixed strategies are used, the probabilities with which the two types randomize
over AT are the same so that observing any z} € AT, the posterior beliefs of Firm 2 must be equal to the
priors: p*(c - afz]) = . Thus, the equilibrium profits of the high and Jow cost types amount respectively

to f];(z;,x,c) and fl;(z;,;r,c -~ a).

For each type 8, the equilibrium profits must be at least equal to ﬂ,(z,(o,a),o, ) that type 8 would
obtain by choosing the location maximizing its profit when perceived, right or wrong, as the high cost type.
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If not, the type # in question would be sure to obtain higher profits by deviating from the alleged equilibrium
to 2(0,8) (the argument is the same 35 for separating equilibria, but as we shall see, the consequences
differ because we are looking for a different kind of equilibrium). Hence, for any prior ® £ (0,1), any

equilibriurm location must be within the following interval A:

A= ()4 (0.1
#c0 .
that is:
A= (zmin{z1(0,c — a), 0,6 - a),:m,,,(:‘((),c),(),c)), if o< ae (02
(Zmin(z:(0,€ = 0),0,¢ = ), 2]y otherwise. b2

In order that a location ] € A bean equilibrium location, it is necessary that 7 be at least equal
to max{p(z],7:(0,8),0,6),6 € ©) and that for any off-the-equilibrium location z}, the posterior beliefs
p*(c~ alz}) not be too high, namely (¢ - ajri) € min{p(z!,27,7,8),0 € 0}, If either one of these
conditions were to fail for some type g, this type would deviate profitably from zj to either (0, 4) or 7},
according to whether it is the first or the second condition which is not met. It is important to note that
max(p(z‘,:x((),ﬂ),(),ﬁ), 8 € ©} is strictly positive for any 21 € A, so that the lower bound of the range of
values of x for which pooling equilibria exist, is strictly positive. On the other hand, there is no restriction
on the range of values of the cost discrepancy a. If the play is in pure strategies, the above conditions are

also sufficient.

Let us remark that if both types of Firm 1 were playing mixed strategies, that is, randomizing over
locations zi',z1",. .-, the profits of each type would have to be the same at each one of these locations:

iz} =, 8) = ("m0 = 8e0, ’ (D.3)

given that z}',z{",... are all within the interval A and that satisfies the condition laid dowa in the
last paragraph for each one of these locations. Let us also remark that since ﬂl(z;,x‘g) is concave in Iy,
then equation {D3) can be verified for a type @ by at most two different locations. But if two locations
verify (D3) for some type g, then the same locations do not verify (D3) for the other type 8 # 6. It
is an immediate consequence from Proposition 2. Substitute in (23) zi’ for 1, ¥ for 1, ] for 2, 21
and 7 for g’ and p”. Then it follows from (26) and (27) that if 23" # 27’ and {z}",27} € A, then
u(zy", 2y, 7. c) # plzyzyme - @), so that 73" cannot be another equilibrium location. Hence, pooling

equilibria must be pure strategy equilibria.

Let us now show how the D1 refinement may be used in order to eliminate either all the pooling
equilibria, or all the pooling equilibria but one, depending on the values of * and . From Cho and So-

bel’s results, we know that in the present model there is for each situation (r,a) a unique PBE robust
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to DI. Hence, since we have already identified for each o € (0.6] and each x ¢ 0,1) a separating
equilibrium robust to D1, go pooling equilibrium survives D1 in this region. So let us concentrate on
the region where o > &c. In this region, we have Zmaz(2:{0,¢),0,¢) = Zmac(zi{c = 0),0,¢c - @) = 1,
Let us first show that if & location ] < 1 is an equilibrium location, implying that the prior # sat.
isfy # > max(p(x';.zx(ﬂ,!?).o. 8).8 € O}, this equilibrium does not survive Dl. Consider any alterna-
tive location 1€ (i;,zm,t(i;,#.c)l. From Proposition 2 we know that for such a deviation wa have
u(zy 3], #,c - a) < p{z}, £, %,¢). Hence observing z, Firm 2 should coaclude, according to DI, that
it is facing the low cost type of Firm 1. Then from < Zmaz(E],%,¢) < Zmas(3],%,¢ ~ a). we have
f‘ll(r". liec-a) > fll(:';,i{,c-a), so that Firm 1 of the low cost type will deviate. Last, let us show that any
equilibrivm z} = 1, with priors x > max{u( ‘2,21(0,0),0,6)0 ¢ O}, is robust to DI. For any deviation
i€ (0.zm.n(x;(0.c).0.c)]. we have I1,(z},,9) < (s, x.0),0c0.uc [0, 1], hence no type ill deviate.
For deviation 1} € (Zma(8.¢),0,¢), Y1), we get from Proposition 2: ulzy Vo, 7.¢) < u(zl, Vo s - a).
Therefore according to DI, Firm 2 should conclude that it is facing the high cost type of Firm . Then
,(2}.0,6) <fi(2,(0,¢),0,0) <(.r.6), 8¢ 9, 50 that no type will deviate.

APPENDIX E: PROOF OF PROPOSITION 3

Ina semi-separating equilibrium, the supports of the strategies chosen by the two tvpes intersect and
for one type at least, the support is larger than the intersection.

(E1) Characterization of the set of semi-separating equilibria.
As for separating and pooling equilibria, any location 1, played at equilibrium by the type 8 9 ¢ Q,
must be such that ﬁ,(z..u'(c - alz;),8) is at least equal to ﬂl(:x((},&).(},&). Hence, any one of
these locations must be within Ay the closure of A; defined in (B.7):

Ag = [:,,.(n(zl(O.@),O,9),:...“(:,(0.0),0.9)}; (E.1)

However, if z7 is a location chosen by both types, then T} must be within Ay since the Bayesian
posterior belief u*(c - alz}) is strictly less than 1:

Tui(zilc - a)

#ile-alzl) = rrl{xile = a) + (1 = mln{zile)

<l (E.2)

Suppose now that there exjst two locations ry’ and ;" both played by the two types of Firm 1 at
equilibrium. For these two locations we must have:

Mi(z] u(c ~ alz}).0) = Mz u(c - olzi").8), ¢ 0. (E3)

25



(Ela)

But from Proposition 1, it is cleariy impossible that this equality be verified for both types. Hence,

in any semi-separating equilibria one and only one location is played by both types.

Let us first examine the case where the high cost type is randomizing and the low cost type plays in

pure strategy the location z] also plaved by the other type.

Consider first the high cost type. Since for any location zj, specific to this type at equilibrium the
high cost Firm 1is perfectly identified, only one such location exists, the location maximizing the

high cost type profit when rightly identified:
zi. = 0:1{0,¢)- (E-4)

The Bayesian posterior belief of Firm 2 observing zj is equal to:

x

p(c-alz]) = m (E.5)

Whatever (¢ — ajzj) < 1, there exists a probability 1{zilc) € (0,1) satisfving (E.5) ifr <
4 (c - @)lz7). The high cost type must be indiffereat between zj and 73

i (z:(0,€),0,¢) = [a(zi, 7 (c - alzidiehs (E.6)

hence:
2% € A, and wi{c=alz}) = wlzi,m(0.). 0.0 (E.T)

Last, in order that the high cost type does not deviate to any off-the-equilibrium location 7, ¢

{z}..zi}, the posteriors must verify:
prle - afzy) € gz, 71(0,¢), 0, 0)- (E.8)
Consider now the low cost type. In order that it does not deviate from zj to z1(0, ¢}, we must have:
pe-alri) 2 ul{z3,21(0 e~ a),0,c~a) and z] € Acea- (E.9)
Any deviation to an off-the-equilibrium location z; # r} is prevented by posteriors satisfying:
arlc — alzy) € plzizipt(e - alzi) e - a). (E.10)

From Proposition 2 and the definition of %, as the location z, satisfving p(z,.z,(O,C).O,C) =
ulzy, 7,(0,¢-a),0,¢c-0a), the two conditions (E.7) and (E.9) can be met iff ] € {1, Imaz(Z1(0,¢),0,0))
In this case all other conditions are satisfied, provided that * < ue—olzy) = u{z5,2:(0, ¢).0,¢).
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(E1b) Let us examine now the equilibria where the low cost type randomizes and the high cost type playvs

2 pure strategy z;.

Consider first the low cost type. The common location z7 and all its specific locations Tiemor Tiene. ..
must be within A,_,:
I;,tfé_mtﬁ'-an-ue Aces. (Ean

The posterior of Firm 2 observing ] now takes the following form:

ry{zile ~ a)

< I (E2
Tz~ a)+ (1= 1) (12

(e -alz]) =

For any given pu*(c - alz]} < 1, there exists a randomization vi{zile ~ o) satisfying (E.12) if
7 > p"(c~ alz}). Since all the locations give to the type ¢ — a the same profit, then:

MG u(e - alz]) e~ a) = My(afi_y, 1, - o) = (el s lc-a)= ... (EA3

Hence, there may be at most two specific locations, the first one being z7¢_, < min{z],z;(1.c~ al}.
Note that if a > 14, Zmaz{21(0,¢ - @},0,¢ ~ a) = zi(l,c - &), so that for those values of o thers
exists only one specific location Tie-a < min{z],zi(1,c~ a)}. (E.11) and (E.13) imply that:

e -alal) = plzi 2l e - o) = p(zf, 20, 1,c - a) (E.140

7} € [Zman(T]ogy 1,0~ o) Zmar(2]ceg 1, ~ a)] (E.15

where 2] __, is either the unique specific location or any one of them if two such locations exjs-. Last,

for any off-the-equilibrium location 1, the following condition must hold:

#le~elz) S ulziai,a’(e - alzy),e - a) (E.16}

For the high cost type, we must first have:
i€ A and (e - alz]) 2 a(zi,2,(0,¢), 0,¢). (E17)

If not, the high cost type would deviate from zj to z1(0,¢). For any off-the-equilibrium =, the
posteriors must be such that:

#(e - alz1) < pler, 2], 1%(c - afz]),c - a). (E.18)

Finally, additional conditions must be satisfied in order that the high cost type does not mimic the

fow cost type:
M(ziale) < Mi(sut(c~ alzi),¢) (E.19)
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Mz o 1,e) & M(ziu(e - alzi) o). (E.20)

4

Therefore, the specific location zi,_g < z1(1,¢ ~ @) must satisfy:

Y]

2} s < Tminlz],p"(c = lzi)ie) (E.21)
implying that:

p(z,..;,.(r;,p'(c—-alz;)‘c),:;,p‘(c-a]z{),c—u) < u(rm;n(z;,p'(c—-o:|;:;),c),:;,u'(c-—»aiz;),c) =1

(E.22)
But from Proposition 2 (with #, = 2} = 2f =z", and g = u = p" = pt{e - alz}) < 1in (23) and
zy = zi'_ in (26)) the inequality (E.20) would have to be in the opposite sense. Hence, there may
exist only one specific location which we will denote by z},., and such that zj._, > zi(l.e - a),
implying that a must be less than 1/s. Now, let 23,4 € (z1(1, ¢ ~ @), Zmax(21(0,¢), 0, €)}. Then from
Proposition 2 (with g = 1= p"(c~ alzi._,) and 1 = 2], in (25) and 7, = z] in (26)), we get for

any 77 € {Zmin(Zicoar el Tiemo )
u(zi»zic-a..leC) < p(E]2iemm Lhe - @) (E.23)
Hence, if v1(zjje - a) and 7 are such that:
w{e - alzi) = w2}, Flemar Lo - 0 (E.24)
then:

- the high cost type does not mimic the low cost type (by (E.23)), and,

- since T],_q < Tmez(T1(0,¢),0,¢), then #{T7eme T1{0,0),0,¢) < Wz g Tiemar e} = 1,
implying that p(z},2:(0, €),0,¢) < 421, %icmar i) < w23, T emar lic—a) = u(c—alzih
so that (E.17) is also satisfied.

Last, suppose that a € (0,&], so that Zmaz(21(0,€),0,¢) £ Zmaz(z1(0, ¢~ a),0,c —a) (with the strict
inequality if z < a.) and consider a location zj._, € (rm,(:‘(o,c),O,c),zm,,(:x(O,c -a)0,¢c-
@). In (23), let &1 = £1(zic-a ) 7} = 23(0,¢), z{ = z1(0,c—0)and o = u(zy, 1(0,¢),0,¢) =
w(z], Tjemg e — a)lp! = 0, u" = 0. From Proposition 2, we get for any zj satisfying (E.11) and
(E.18):

PER IR R EY e CHENC N ey o) = p{3],T]emes Lie = 0) i 2} £ (3)E1(The-0):
(E.25)
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(Elc)

Hence, if 2} 2z} ,)and x> p(:;,a‘:l(r;t_n),ﬁ,c~a), then v1(zilc - a) may be chosen so that:
B (zile - @) = p(z}, 25,40 1,e ~ o). (E.26)

Thus, recapitulating:
#c~alz]) = wlzy, 5y {z] Y lLe—o= (21,275,241, ca) > #{(z1,2,{0,¢c),0,¢). (E.27)

Hence (E.17) is satisfied. Since Zima 2 Tmaz{21(0, ¢},0,¢), the high cost type does not mimic the
low cost type. Clearly, we may not choose z} in the interval (fl(:c;c_o),:m,.—(z;(o,c),o,c)), since
by (E.25) we would have u(z],21(0,¢),0,¢) > #(z7, 211, ¢ = a), so that both (E.14) and (E.17)
would not be satisfied.

Last, consider the equilibria when both types randomize.

For the high cost type there may only be one specific location:
zie = 1{0,¢) (E.28)
and the common location must satisfy:

27 € Ac and u™(c - afz]) = w(27,21(0.¢),0,¢). (E.29)

For the low cost type, there may be at most two specific locations, because at each location including

the common one, the profit must be the same:

Ziema = Zmin(#{ (e = alz])c ~ @) and 337, = Zman(z]ut(c - ajzi).c™ a) (E.30)

with:
23, Ziicas Tiloa € Aea. (E.31)
Note that in the present case p*(c ~ alz]) is given by:

rn(zile - a)

m(zile ~ a) + (1 = m)oy(zfc) (E.32)

#i(e-alz) =

so that whatever =, there exists a whole range of randomizations {ri{z])e ~ a},vi(zjle)} satisfying
(E.32).

Let us now examine the self-selection constraint for the high cost type. In order that the high cost
type does not deviate from either z;{0,¢) or zj to either T{i.a Or T{/_, these last two locations
must be: - outside (zm.-"(x,((),c),O,C),xmu,(zl(O,c),O,c)) if @ < &, since for such values of a,
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Zmaz(z1(0,¢),0,¢) < ;- outside {zmin{21(0,¢),0,¢), 1] if @ 2 G, since for such values of a,
Zmaz(21(0,¢),0,¢) = 1k

and p(1f2,21{0,¢),0,¢) £ 1 (the strict ineguality if @ > &.). Hence, from zi.., 2 Zemin(21(0,¢ =
a),0,¢c —a) > Zmin{21(0,¢),0,¢) (the first inequality form (E.31)), we conclude that the candi-
date specific location zi;., cannot meet the constraints, whatever a. We are thus left with only
one candidate specific location zi._o = Zmar(z] p"(c = ajzi)ic— a). However, if a > &c_o then
Zmax{z1{0,¢ ~ @),0,¢ ~ @) = 1, = Zmaz(21(0,¢),0,¢), so that the only remaining candidate is
also eliminated. Hence: — if & > &, there exists no semi-separating equilibrium where both types

randomize; ~ if o < &, the low cost type randomizes over two and only two locations:
z; and T o = Zmas{2] (€ — alzihic — ). (E.33)

Now, let us suppose that & < &c-a implying that Zma=(21(0,¢),0,¢) < Imaz(21{0,c—a),0,c=0) £ Y
(the inequality strict if @ < Ge-o) (see Figure 3). From Proposition 2, we deduce that in order that
(E.7) and (E.33) be satisfied, it is necessary that:

2} € [£1, Tmar(21(0,0),0,¢))- (E.34)

Figure 3 about here

”

Again, applying Proposition 2 (with &y = 2] = i = z{ and i = u(z;,21(0.¢),0.¢) = y=p
in (23)), we know that for 21 € (2] Tmaz{z1,87{c — alz}),c ~ ) then u(zy. 25,07 (e = elzi)ie) >
u(z‘,z;,p‘(c——a}:;),c——a). Hence, by continuity ,u(rm“(z{,u'(c—a\z;),c—a).x;,u'(c—-alz;}, )2
(T maz{z]p(c ~ alzi)rc - a), 3}, 1'e — elzi)e - a), so that the high cost type is not incited
to switch to the low cost specific location 23, _, = Zmaz{z],07(c — alzi) e — @) Also, since 7} €
[£1,Tmaz{z1(0,¢),0,¢)) then 3., = Zmaz(e] 27 (c-alz]) cma) € [2:,,‘”(:,(0:c),O,c),:l:,,,u(zl(O,c-
a),0,c¢— a)}. Last, suppose that & € (Ge-on &c) 50 that Zmaz(21(0,€),0,¢) £ Zmaz{z1(0,¢—@),0,¢ -
a) = Y (the first inequality strict if & < &.). See Figure 4.
Figure 4 about here

For any 2} € {i;,:m“(z;(ﬂ,c),o,c)) we have:

Emes(z (25, 21(0,0),8,¢) e —a) € [Zmar(21{0,€),0.¢), 12

and
u(rmu(r},u(ziyrx(olC),G.C).ZL#(ﬂ,Ix(D, )0, ¢)c-a)=1
and for any =} € [#1,51)

Tmaelz] (2, 21(0,¢),0,0) ¢ —a) < V2

30



f
!
1
]

(E2)

and
B2 21, 1(z3,24(0,¢),0, ¢), ¢ - a)< 1.

Hence in this last case, the high cost type would mimic the low cost type. We conclude that the
common location z] must be within [f.,:.,.,,(zx(o,c),o,c)).

The working of the D1 criterion.

. We know from Cho and Sobel’s results that no semi-separating equilibrium survives D1 in regions

where we have already shown that either a separating equilibrium or a pooling equilibrizm syr.
vives D1. Therefore, we may restrict the analysis to the region defined by o > G; and 7 <
u(’/z,z,(O,c),O,c)‘ Consider in this region the equilibria in which only the high cost Firm 1 ran.
domizes over the two locations zj, = z1(0,¢) and zi = 1. For any zi, € (Zmin(21(0,¢). 0. ¢), 12).
we get from Proposition 2:

(e = aa)e) < plz), Vo, (e - aflf2),c~ a).

Hence observing z{, Firm 2 should conclude, according to D1, that it is facing the high cos: type
of Firm 1. Therefore, neither the high cost type nor the low cost type would gain more than
its equilibrium profit. For deviations z} € [O,Im;n(z,(o,c),ﬂ,c)]. no type would benefit from the
deviation, whatever the posteriors of Firm 2 observing the deviation. We conclude tha: for the

region under consideration, we have identified the unique DI equilibrium.
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Figure | : The mapAof unique D1 location equilibria
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