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Résumé 

Les nouvelles technologies de séquençage d’ADN ont accélérées la vitesse à laquelle les 

données génomiques sont générées. Par contre, une fois séquencées et assemblées, un défi 

continu est l'annotation structurelle précise de ces nouvelles séquences génomiques. Par le 

séquençage et l'assemblage du transcriptome (RNA-Seq) du même organisme, la précision de 

l'annotation génomique peut être améliorée, car les lectures de RNA-Seq et les transcrits 

assemblés fournissent des informations précises sur la structure des gènes. Plusieurs pipelines 

bio-informatiques actuelles incorporent des informations provenant du RNA-Seq ainsi que des 

données de similarité des séquences protéiques, pour automatiser l'annotation structurelle d’un 

génome de manière que la qualité se rapproche à celle de l'annotation par des experts. Les 

pipelines suivent généralement un flux de travail similaire. D'abord, les régions répétitives sont 

identifiées afin d'éviter de fausser les alignements de séquences et les prédictions de gènes. 

Deuxièmement, une base de données est construite contenant les données expérimentales telles 

que l’alignement des lectures de séquences, des transcrits et des protéines, ce qui informe les 

prédictions de gènes basées sur les Modèles de Markov Cachés généralisés. La dernière étape 

est de consolider les alignements de séquences et les prédictions de gènes dans un consensus de 

haute qualité. Or, les pipelines existants sont complexes et donc susceptibles aux biais et aux 

erreurs, ce qui peut empoisonner les prédictions de gènes et la construction de modèles 

consensus. Nous avons développé une approche améliorée pour l'annotation des génomes 

eucaryotes microbiens. Notre approche comprend deux aspects principaux. Le premier est axé 

sur la création d'un ensemble d'évidences extrinsèques le plus complet et diversifié afin de mieux 

informer les prédictions de gènes. Le deuxième porte sur la construction du consensus du modèle 

de gènes en utilisant les évidences extrinsèques et les prédictions par MMC, tel que l'influence 

de leurs biais potentiel soit réduite. La comparaison de notre nouvel outil avec trois pipelines 

populaires démontre des gains significatifs de sensibilité et de spécificité des modèles de gènes, 

de transcrits, d'exons et d'introns dans l’annotation structural de génomes d’eucaryotes 

microbiens. 

Mots-clés : génome nucléaire, annotation structurale, eucaryote microbien, protistes, 

champignons, Saccharomyces, Neurospora, Ustilago, Plasmodium  
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Abstract 

New sequencing technologies have considerably accelerated the rate at which genomic data is 

being generated. One ongoing challenge is the accurate structural annotation of those novel 

genomes once sequenced and assembled, in particular if the organism does not have close 

relatives with well-annotated genomes. Whole-transcriptome sequencing (RNA-Seq) and 

assembly—both of which share similarities to whole-genome sequencing and assembly, 

respectively—have been shown to dramatically increase the accuracy of gene annotation. Read 

coverage, inferred splice junctions and assembled transcripts can provide valuable information 

about gene structure. Several annotation pipelines have been developed to automate structural 

annotation by incorporating information from RNA-Seq, as well as protein sequence similarity 

data, with the goal of reaching the accuracy of an expert curator. Annotation pipelines follow a 

similar workflow. The first step is to identify repetitive regions to prevent misinformed sequence 

alignments and gene predictions. The next step is to construct a database of evidence from 

experimental data such as RNA-Seq mapping and assembly, and protein sequence alignments, 

which are used to inform the generalised Hidden Markov Models of gene prediction software. 

The final step is to consolidate sequence alignments and gene predictions into a high-confidence 

consensus set. Thus, automated pipelines are complex, and therefore susceptible to incomplete 

and erroneous use of information, which can poison gene predictions and consensus model 

building. Here, we present an improved approach to microbial eukaryotic genome annotation. 

Its conception was based on identifying and mitigating potential sources of error and bias that 

are present in available pipelines. Our approach has two main aspects. The first is to create a 

more complete and diverse set of extrinsic evidence to better inform gene predictions. The 

second is to use extrinsic evidence in tandem with predictions such that the influence of their 

respective biases in the consensus gene models is reduced. We benchmarked our new tool 

against three known pipelines, showing significant gains in gene, transcript, exon and intron 

sensitivity and specificity in the genome annotation of microbial eukaryotes.  

Keywords : nuclear genome, structural annotation, microbial eukaryote, protists, fungi, 

Saccharomyces, Neurospora, Ustilago, Plasmodium 
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1. Introduction 

I. Genomes across the tree of life 

The genome is an organism’s hereditary basis. It is the genetic material contained in 

chromosomal DNA, the DNA of mitochondria and various plastids, and plasmid DNA. Viruses, 

albeit neither free-living nor cells, also contain genomes either in the form of DNA or RNA. As 

of December 5th, 2017, genomes of over 33,000 species have been deposited at the National 

Center for Biotechnology Information (NCBI) (ftp.ncbi.nlm.nih.gov/genomes)–not to mention 

the many more that are about to become publicly available. Of the 33,000 genome sequences, a 

quarter are from viruses, 60% from bacteria, 4% from archaea, and 8% (i.e., 2,589) from the 

eukaryotic nucleus. In addition, nearly 10,000 organelle genomes are available, of which 75% 

are mitochondrial and 25% plastidal. Though NCBI's repository of genomic information 

represents only a small fraction of the tree of life, the currently available data provide a glimpse 

into the striking diversity in genome architecture and content. 

a. Genome architecture 

The spectrum of genome sizes ranges from the 2 kilobase (kb) circovirus genomes, to 

purportedly hundreds of Gbp of some eukaryotic nuclear genomes (Pellicer, Fay et al. 2010). 

Genome sizes cluster into roughly three groups (Koonin 2011). Viruses tend to have the smallest 

genomes on average but can reach sizes greater than those of the second group, bacteria and 

archaea (prokaryotes) (Philippe, Legendre et al. 2013). In turn, certain bacteria, e.g. the 

myxobacterium Sorangium cellulosum, possess genomes that exceeds 13 Mbp, which is larger 

than the nuclear genome of Saccharomyces cerevisiae for example (Belyi, Levine et al. 2010). 

Thus, there is considerable overlap between genome-size clusters such that sharp boundaries 

cannot be drawn between the three groups. However, a distinctive feature of the respective 

groups is the arrangement of functional and non-functional genome regions (referred to as 

genome architecture), as specified in the following sections (b-e). 

b. Viruses 

Viral genomes consist of either DNA or RNA, are linear or circular, single- or double-stranded, 

and may be made up of multiple discrete fragments (Dimmock, Easton et al. 2016). Among the 

smallest known virus genomes are those of single-stranded DNA circoviruses, which contain 
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two protein-coding genes in roughly 2 kb-long molecule (Belyi, Levine et al. 2010). On the 

other hand, the largest virus genomes are those of double-stranded DNA pandoraviruses, at 

around 2.5 Mb containing about 2,500 genes (Philippe, Legendre et al. 2013). Viruses with 

genomes made of RNA are more abundant than DNA viruses. Their genome sizes average 

around 10 kb and are often multipartite (Dimmock, Easton et al. 2016). Despite a significant 

diversity in genome layout, a common feature to all known viral genomes is the extremely high 

gene density such that genes often overlap (Firth and Brown 2006). 

c. Prokaryotes 

Although bacteria and archaea are fundamentally different from each other, they have genome 

features in common that distinguish them from eukaryotes. Hence, bacteria and archaea are 

often referred to as 'prokaryotes'. Prokaryotic genomes are composed of double-stranded DNA, 

typically in circular conformation, yet cases of linear chromosomes exist. Additional circular 

and linear, self-replicating, double-stranded DNA molecules, known as a plasmid, are most 

often encountered in bacteria. These extrachromosomal elements carry genes that can impart a 

survival advantage under specific conditions, such as synthesis of an antibiotic or protection 

against an antibiotic. Prokaryotes have generally a high gene density—albeit not as high as 

viruses—with short intergenic regions and mostly uninterrupted genes ((Rogozin, Makarova et 

al. 2002); but see (Lambowitz and Belfort 1993) and references therein). That being said, the 

defining architectural feature of prokaryotes is the operon. Operons are modules of spatially 

close and functionally-linked genes that are co-regulated and co-transcribed (Jacob and Monod 

1961). Such co-localisation usually includes two to four genes (Salgado, Moreno-Hagelsieb et 

al. 2000), and sometimes dozens more, as for example genes encoding subunits of the ribosomal 

supercomplex (Wolf, Rogozin et al. 2001). The composition of operons is more likely to be 

conserved than their synteny (Tatusov, Mushegian et al. 1996). 

d. Eukaryotes 

The range in eukaryotic nuclear genome sizes spans several orders of magnitude. One of the 

smallest genomes has been observed in the unicellular parasitic eukaryote Encephalitozoon at 

around 2.4 Mb (Katinka, Duprat et al. 2001), whereas  the largest genomes have been 

documented in plants. For example, the nuclear genome size of the Japanese Canopy plant Paris 

japonica exceeds 120 Gb (Pellicer, Fay et al. 2010), i.e. it is more than 40 times as large as that 

of humans. The ~2,500 eukaryotic genome sequences currently available at NCBI are mostly of 
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fungi (~1,800), animals (~400) and plants (~200). The remaining ~200 nuclear genomes come 

from a taxonomically broad range of less well-known and less well-studied eukaryotic groups 

such as Archaeplastida, Stramenopiles, Alveolata, Rhizaria, Discoba, Amoebozoa, Hacrobia, 

Apusozoa and Opisthokonta (Adl, Simpson et al. 2005, Hampl, Hug et al. 2009, Okamoto, 

Chantangsi et al. 2009). These supergroups are often referred to collectively by the catch-all 

term ‘protists’, referring to any eukaryotic organism that neither belongs to plants, animals nor 

fungi (Adl, Leander et al. 2007). 

Certain trends have been observed in nuclear genome organisation, but they are not 

universal. The majority of nuclear genes are apparently not organised as in prokaryotes. Clusters 

of co-transcribed genes have been documented in nematodes (Krause and Hirsh 1987), 

trypanosomes (Sutton and Boothroyd 1986), euglenozoans (Tessier, Keller et al. 1991), and 

others (Bitar, Boroni et al. 2013), though they do not function like operons. Non-random 

arrangement of functionally linked genes has been found to be correlated with tandem 

duplications, like the ANTP-like homeobox genes in animals (Ferrier and Holland 2001). Co-

expression has also been correlated with co-localisation of genes. More than 25% of yeast genes 

co-expressed during the mitotic cell cycle are clustered on the same chromosome (Cho, 

Campbell et al. 1998). In animals, however, clustering of co-expressed genes only accounts for 

<5% of all coding genes (Sémon and Duret 2006).  

The predominant architectural genome features that set eukaryotes apart from 

prokaryotes is the composition, abundance and location of non-coding DNA. One particular 

type almost uniquely found in eukaryotes are the non-coding segments (introns) that interrupt 

coding segments (exons). Other forms of non-coding DNA tend to be more abundant in 

eukaryotes compared to prokaryotes, including repetitive regions (simple and tandem, 

transposable elements, duplications, pseudogenes), non-coding genes (discussed later), and 

other intergenic DNA. The general trend is that genomes distended with numerous long introns 

and other types of non-coding DNA tend to be observed in higher eukaryotes such as humans 

(Mattick 2001). 

The number, length and composition of introns varies substantially between taxa, and 

even within the same genus. Some nuclear genomes can contain relatively few (<200 total) 

introns that are often short (<100 bp median length) as seen, for example, in S. cerevisiae 
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(Spingola, Grate et al. 1999), the diplomonad G. lamblia (Nixon, Wang et al. 2002) and 

kinetoplastids in general (e.g. T. brucei) (Muhich and Boothroyd 1988). On the opposite end of 

the spectrum, protein-coding genes (averaging 2 kb in length, and some exceeding 10 kb) in 

vertebrates have between five to eight introns (Gibbs, Weinstock et al. 2004). Despite the 

variability in number and length, intron positions in coding genes tend to be conserved even 

across large evolutionary distances. For instance, as many as 30% of introns are inserted at the 

same positions in orthologous genes from vertebrates and plants (Fedorov, Merican et al. 2002). 

The total amount of non-coding DNA, and the proportion of repetitive regions, non-

coding genes or other types of intergenic DNA, also vary considerably. For example, around 

52% of the E. cuniculi genome (Katinka, Duprat et al. 2001), and around 41% of the 

Trypanosoma cruzi genome (El-Sayed, Myler et al. 2005), is non-coding DNA. Higher 

eukaryotes are on the other end of the non-coding DNA abundance spectrum, where as much as 

99% of the genome is non-coding DNA in humans (Lander, Linton et al. 2001) and plants 

(Bennetzen and Kellogg 1997). The nuclear genome of E. cuniculi contains as few as 2,000 

densely packed genes, with short intergenic regions (~130bp) and with most of the non-coding 

DNA (~53%) found in telomeric and sub-telomeric regions (Katinka, Duprat et al. 2001). In 

contrast, the mean length of intergenic regions in T. cruzi is ~1,000, and a substantial amount 

of the repetitive regions are composed of pseudogenes (El-Sayed, Myler et al. 2005). 

Transposable elements make up 45% of the human genome, and even more than 50% of some 

plant genomes like maize ((Bennetzen and Kellogg 1997) and references therein). 

e. Mitochondria and plastids 

In addition to the nuclear genome, eukaryotes can also house organellar genomes. It is now 

widely accepted that mitochondria and plastids were once free-living bacteria (alpha-

proteobacterial and cyanobacterial origins, respectively) that formed an endosymbiotic 

relationship with ancestral eukaryotes. The transition of the endosymbiont to an integral part of 

the eukaryotic cell has had a profound effect on the architecture of both the host’s and the 

symbiont’s genome—the latter having undergone massive genome reduction and 

rearrangement, even between closely related species ((Gray, Burger et al. 1999, Green 2011), 

and references therein). Genome conformations can be linear or circular, either in a single 

contiguous chromosome or spread between dozens of fragments (Gray, Burger et al. 1999, 

Stoebe and Kowallik 1999). 
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Mitochondria DNAs (mtDNAs) range from 5 kbp (Hikosaka, Watanabe et al. 2009) to 

100 kbp (Burger, Gray et al. 2013) in size, with introns and intergenic regions representing 

anywhere from 1% to 99% of the genome ((Smith and Keeling 2015) and references therein). 

The highly reduced apicomplexan mitochondria (~5 kbp genomes) contain as few as three genes 

(cox1, cox3, cob) (Feagin, Mericle et al. 1997), whereas the mitochondria of Andalucia, the 

most alpha-proteobacterial-like, contains 100 genes. Of those 100 genes, at least two have been 

found to encode proteins (large subunit mitoribosomal protein, and a protein related to 

cytochrome oxidase assembly) that have, so far, only been detected in the nuclear genome of 

other eukaryotes (Burger, Gray et al. 2013). Gene fragmentation, manifesting in lineage-specific 

ways, is a peculiar feature documented in the mitochondria of green algae (Boer and Gray 1988), 

euglenozoans (Lukeš, Guilbride et al. 2002, Marande, Lukeš et al. 2005) and alveolates (Waller 

and Jackson 2009). Essentially, genes are present in multiple discrete pieces distributed across 

different DNA molecules. In Chlamydomonas mitochondria, for example, eight discrete 

fragments that encode the large subunit ribosomal RNA are present in different  DNA 

molecules, and are post-transcriptionally spliced together (Boer and Gray 1988).  

In contrast to mtDNAs, plastid DNAs (ptDNAs) can be as large as 1 Mbp in certain 

plants (Sloan, Alverson et al. 2012). The non-coding DNA content of ptDNAs ranges from 5-

80%  (Smith, Lee et al. 2010). On average, ptDNAs contain more genes than mitochondria 

(Barbrook, Howe et al. 2010), ranging from as few as ~20 genes in some dinoflagellates 

(Barbrook, Voolstra et al. 2014), up to ~250 in red algae (Janouškovec, Liu et al. 2013). Plastids 

can have a substantially different gene complement compared to mitochondria; the most 

apparent being photosynthesis-related genes in chloroplasts. Other types of plastid genomes can 

contain genes related to pigment synthesis and storage (chromoplasts), or monoterpene 

synthesis (leucoplasts) ((Wise 2007) and references therein). 

II. From genome to transcriptome 

The transcriptome is defined as the full range of molecules transcribed from a subset of the 

genetic repertoire under specific conditions in either a single cell or a (possibly heterogeneous) 

population of cells. Changes in conditions can rapidly induce specific readjustments in the 

transcriptome. Thus, the flow of information is more complex than the rather simple view of 

‘from genome to transcriptome’.  
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a. Transcriptome composition 

The different types of RNA present in the transcriptome include messenger RNA (mRNA), 

transfer RNA (tRNA), ribosomal RNA (rRNA), a host of mostly small non-coding RNAs (small 

interfering RNA (siRNA), micro RNA (miRNA), piwi-interacting RNA (piRNA), small nuclear 

RNA (snRNA), small nucleolar RNA (snoRNA)), long non-coding RNAs (lncRNA), and likely 

a range of yet-to-be characterized RNA. The respective length and abundance varies 

significantly between RNA classes. Small RNAs such as 5S rRNA, siRNA, miRNA, piRNA, 

snoRNA and tRNA, are shorter than 200 nucleotides (nt), whereas long RNAs such as mRNA, 

small subunit (SSU) and large subunit (LSU) rRNA and lncRNA can be as long as 17 kb 

(Brown, Hendrich et al. 1992). The abundance of the different RNA molecules varies by several 

orders of magnitude (Lodish, Berk et al. 2000). Only a small fraction of the RNA population is 

mRNA (~1%), while rRNA (~80%), and tRNA (15%) represent the majority, with the remainder 

being the various other ncRNA (Lodish, Berk et al. 2000). 

b. Biological functions of transcripts 

Each class of RNA molecules is linked to a specific biological function (Lodish, Berk et al. 

2000). Protein synthesis involves the mRNA template to be translated, where tRNAs carry 

amino acids for the ribosome (composed of rRNAs and ribosomal proteins) to link together 

(Lodish, Berk et al. 2000). Ribosomal RNAs, in turn, are structural and enzymatically active 

components of ribosomes (ribozymes). Regulation in the cell can be mediated by siRNA which 

blocks gene expression (Hamilton and Baulcombe 1999), miRNA which blocks or accelerates 

degradation of mRNA (Lee, Feinbaum et al. 1993), or piRNA, which have been posited to be 

involved in retrotransposon silencing (Aravin, Gaidatzis et al. 2006, Girard, Sachidanandam et 

al. 2006). 

c. Transcript processing 

RNA molecules can also be modified post-transcriptionally through the processes of editing, or 

splicing in cis or in trans. The RNA editing machinery can substitute a nucleotide (e.g. A-to-I 

or C-to-U) for another, at a specific position (Benne, Van Den Burg et al. 1986). Another, but 

different, form of RNA processing commonly observed in eukaryotes is splicing (Lodish, Berk 

et al. 2000). Six snRNAs and hundreds of proteins form the small nuclear ribonucleoprotein 

(snRNP) complex known as the spliceosome that coordinates removal of introns from pre-

mRNA (and pre-rRNA), and to join respective coding exons into a contiguous transcript. While 
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some interrupted protein-coding genes give rise to a single mRNA, some genes can give rise to 

multiple different mRNAs through the process of alternative splicing. Multiple different mRNA 

may be the result of exon skipping, intron retention, alternative splicing sites, alternative 

promoters, or a combination of any of the above (Lodish, Berk et al. 2000). The sequence of an 

mRNA can thus be different from an alternative mRNA originating from the same gene, which 

can confer an alternative function, or can change its localisation. While the most commonly 

observed form of splicing takes place on the same RNA molecule (in cis), trans splicing takes 

place between two discrete molecules. 

III. Next-generation sequencing 

DNA sequencing technologies have seen rapid advances along with falling costs since their 

inception 40 years ago—especially true for the last 15 years with the advent of next generation 

sequencing (NGS) (Mardis 2008, Shendure and Ji 2008, Mardis 2017). NGS offers several 

fundamental upgrades over previous sequencing technologies. The first major difference is in 

the way the library is prepared for NGS; input DNA (after  fragmentation and  adapter ligation) 

is amplified by polymerase chain reaction (PCR). Second, NGS technologies couple the 

sequencing and conversion of position-defined fragments to digital molecular information 

(Mardis 2017). The coupling of those two steps is colloquially described as “massively parallel”. 

The advent of NGS has opened the door to genome-wide analyses (Mardis 2017) of methylation 

patterns (Cokus, Feng et al. 2008), transcription factor binding sites (Sanger, Air et al. 1977, 

Mikkelsen, Ku et al. 2007, Cokus, Feng et al. 2008, Mardis 2017) and variants (Korbel, Urban 

et al. 2007). The same technology has equally been applied to deep sequencing whole 

transcriptomes (Mortazavi, Williams et al. 2008, Wang, Gerstein et al. 2009). 

IV. Genome assembly 

The genome must be reassembled from the millions of reads that are generated from widely 

used platforms such as Illumina (<=300 bp reads) or PacBio (<=40 kb reads). Genome assembly 

is a complicated procedure that is constantly evolving in response to new technologies, 

particularly as novel chemistries are used to increase the length of reads (Baker 2012). 

Effectively, the bottleneck has shifted from biochemistry to bioinformatics (Yandell and Ence 

2012). 
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The first genomes to be assembled (Haemophilus influenzae (Fleischmann, Adams et al. 

1995), baker’s yeast (Goffeau, Barrell et al. 1996) and human (Lander, Linton et al. 2001)) were 

done using the overlap layout consensus (OLC) method. Briefly, it can be likened to solving a 

jigsaw puzzle by exploiting overlap between pieces (Pop 2009). OLC assemblers (reviewed in 

(Miller, Koren et al. 2010)) first determine read overlaps in an all-against-all, pairwise 

alignment. The alignment algorithm is a heuristic search of read subsequences of length k (k-

mer), otherwise known as a seed search. Next, a graph is constructed from the reads that fully 

or partially overlap (the jigsaw pieces that fit together) that approximates the read layout (Myers 

1995). Finally, a multiple sequence alignment of the reads is computed to determine the precise 

layout and to resolve the consensus. An alternative was proposed by Pevzner et al. in 2001 

(Pevzner, Tang et al. 2001) that can simplify assembly (particularly in repeat regions) to some 

extent using a De Bruijn graph. It starts by breaking reads into k-meres and building a graph of 

overlapping k-mers (by exactly k-1 nucleotides) and traversing the graph to reconstruct contigs, 

similarly to the OLC method. In both approaches, parameters are inferred from sequencing depth 

to help resolve repetitive regions that typically have much higher coverage than the global 

average (Treangen and Salzberg 2011). 

a. Difficulties in genome assembly 

The quality of a genome assembly is often difficult to measure given the lack of a gold standard 

to compare with (Salzberg, Phillippy et al. 2012). Even in long-standing assemblies such as that 

of the mouse nuclear genome, a number of segments are still unresolved. As much as 140 Mb 

(mostly from duplications) have recently been reintegrated in the mouse assembly (Church, 

Goodstadt et al. 2009). Issues with long repetitive regions and scaffold arrangement remain at 

the forefront of genome assembly, especially for libraries of shorter (20-400 bp) reads (Henson, 

Tischler et al. 2012, Schlebusch and Illing 2012). Difficulties can be exacerbated for certain 

protist genomes given that bacterial contamination—the source of food for some (Haas and 

Webb 1979)—is nearly impossible to avoid. No studies, to our knowledge, have yet been 

conducted to evaluate the extent of contamination in known protist genomes, nor to evaluate 

methods for removing bacterial contamination. 



25 

V. Whole transcriptome sequencing 

RNA-Seq is a revolutionary procedure that, in a nutshell, provides a snapshot of all the genes 

expressed at a given time and condition (Mortazavi, Williams et al. 2008). It has a number of 

advantages over previous technologies like serial analysis of gene expression (Velculescu, 

Zhang et al. 1995) and tiling microarrays (Stoughton 2005). For instance, molecular information 

can be directly obtained from very lowly to highly expressed genes (i.e. higher dynamic range) 

without the need for specific restriction sites or a priori knowledge of transcripts (Parkhomchuk, 

Borodina et al. 2009). Thus, the full spectrum of RNAs and their absolute expression level—

from mRNAs to the various non-coding RNAs (ncRNAs)—are readily available at the 

molecular level (Margulies, Egholm et al. 2005, Mortazavi, Williams et al. 2008, Parkhomchuk, 

Borodina et al. 2009). RNA-Seq has seen widespread adoption for characterising novel 

transcripts and quantifying expression in a population of cells (Cloonan, Forrest et al. 2008, 

Nagalakshmi, Wang et al. 2008, Wang, Baskerville et al. 2008, Marguerat and Bähler 2010) or, 

more recently, at the level of a single cell (Tang, Barbacioru et al. 2009, Islam, Kjallquist et al. 

2011). Of course, depending on the type of study it is desirable to target a specific group of 

RNA. For example, the presence of highly expressed ribosomal RNAs could hinder signal from 

mRNA. Protocols have been developed to target poly-A enriched transcripts (since mRNAs 

typically carry an A-tail; (Cloonan, Forrest et al. 2008, Mortazavi, Williams et al. 2008), 

depletion kits for removing rRNA (He, Wurtzel et al. 2010), or size selection for enrichment of 
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small ncRNAs (reviewed in (Jacquier 2009)). Among the various experimental protocols, three 

are used most commonly (Figure 1). 

All methods start with total RNA extraction and selection of the target class of RNA. 

Branches A and B of the flowchart in Figure 1 follow similar steps to generate fragments suited 

for sequencing. Double-stranded cDNAs are first synthesized by reverse transcription initiated 

by random priming, followed by technology-specific adapter ligation for PCR amplification 

(van Dijk, Jaszczyszyn et al. 2014). The difference is that dUTP tagging in method B prevents 

sequencing of the second strand, and thus preserving the orientation of the RNA template 

(Parkhomchuk, Borodina et al. 2009). Preserving strand information (strand-specificity) is 

useful in teasing apart overlapping genes encoded on opposite strands as well as sense transcripts 

and (regulatory) antisense transcripts of a given gene (Normark, Bergstrom et al. 1983, Guida, 

Figure 1: Overview of three commonly used protocols to prepare an RNA-Seq library. RNAs are selected and 

fragmented, then either synthesized to cDNAs by random priming and reverse transcription (either untagged (A) 

or dUTP tagged (B)), or (C) adapters are sequentially ligated followed by reverse transcription. In all cases, the 

final step is fragment amplification. Adapted from van Dijk et al (van Dijk, Jaszczyszyn et al. 2014). 
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Lindstädt et al. 2011, Wang, Jiang et al. 2014). Branch C of the flowchart describes the 

sequential ligation approach. It is typically employed in small RNA analyses (van Dijk, 

Jaszczyszyn et al. 2014). 

 

VI. Whole-transcriptome assembly 

In transcriptome assembly, similarly to genome assembly, either an OLC graph or De Bruijn 

graph can be applied (Florea and Salzberg 2013), but with certain adapted parametrisation. One 

major difference to genome assembly is that read count per gene is proportional to gene 

expression (Mortazavi, Williams et al. 2008). Therefore, genome assembly parametrisation is 

not applied to transcriptome assembly since it could lead to a loss of sensitivity in resolving 

transcripts whose coverage differs significantly from the average (Martin and Wang 2011). 

Secondly, graph parsing differs in that all transcript variants (e.g. arising from processing or 

alternative splicing) must be enumerated (Garber, Grabherr et al. 2011). A final consideration 

is whether the genome sequence is available or not; transcriptome assembly can be guided by 
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RNA-Seq reads mapped to the genome sequence, otherwise it is done de novo (Figure 2; (Martin 

and Wang 2011).  

 
Figure 2: Overview of the genome-guided (left) and genome-independent (right) approaches to transcriptome 

assembly. Reads are mapped in the genome-guided approach. Reads are then clustered per genomic loci to infer 

feature boundaries, which are used to construct transcript graphs. Graphs are parsed to infer possible unique paths 

representing putative isoforms. On the other hand, the de novo approach builds De Bruijn k-mer graphs and 

traverses them to infer putative transcripts. Adapted from (Garber, Grabherr et al. 2011). 

There are advantages and disadvantages to both methods. The genome-guided (reference-

based) approach requires, evidently, a high quality genome assembly. By first mapping the 

RNA-Seq reads to the genome, it is possible to filter out lower-quality or erroneous reads, which 

can reduce the complexity of assembly, and also reduce the risk of artefactual fusions (Trapnell, 

Williams et al. 2010). The procedure involves clustering of mapped reads at their respective 

genomic loci to be incorporated into a transcript graph, which is parsed to reconstruct a maximal 
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set of transcripts that best explain each cluster of reads (Guttman, Garber et al. 2010). The 

approach can have a higher sensitivity in resolving transcripts since an assembler can fill in 

gaps using the genomic sequence where low coverage could make reconstructing a whole 

transcript difficult (Guttman, Garber et al. 2010, Trapnell, Williams et al. 2010). The obvious 

limitation is the requirement of a genome sequence on which to map reads. The second potential 

drawback is that the quality of the transcriptome assembly is dependent on the quality of the 

genome assembly. Insertions, deletions (indels), and un-joined contigs in the genome (Salzberg 

and Yorke 2005), as well as extensive contaminating contigs from other organisms in the 

genome assembly can reduce the effectiveness of RNA-Seq read mapping, thus reducing the 

completeness and accuracy of the transcript assembly (Martin and Wang 2011). 
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In the reference-free, or de novo approach (Figure 3),  a k-mer library is generated from 

the reads to build the transcript graph, similar to the De Bruijn-graph based genome assembly 

(Grabherr, Haas et al. 2011). A unique k-mer, irrespective of coverage, represents a single node. 

The node is connected to another node if it overlaps by exactly k-1 nucleotides (Pevzner, Tang 

et al. 2001). Cases where k-mers overlap by k-2 nucleotides could indicate a single nucleotide 

Figure 3: Breakdown of the De Bruijn graph approach to de novo transcriptome assembly. a) k-mers are 

enumerated from sequence reads; b) De Bruijn graph is constructed from k-mers; c) paths collapsed into plausible 

variants; d) the graph is traversed to enumerate all variants; e) transcripts are assembled from all plausible variants. 

Adapted from (Martin and Wang 2011). 
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polymorphism (SNP), sequencing error, an exon-exon (or exon-intron) junction from a variant, 

at which point a new branch (of length k) is created on the graph (Pevzner, Tang et al. 2001, 

Zerbino and Birney 2008, Martin and Wang 2011). The process is repeated on every branch, 

creating downstream branches if there is a k-2 overlap, until all k-mers have been accounted for. 

The graph is either simplified and parsed (Trapnell, Williams et al. 2010), similarly to the 

genome-guided approach, or the graph is directly traversed to reconstruct transcripts (Grabherr, 

Haas et al. 2011). An advantage is that the assembler draws from the entire pool of reads (since 

none have been prefiltered by mapping), which allows discovery of novel transcripts 

(Mortazavi, Williams et al. 2008). Uneven or missing coverage can complicate the assembly 

process by leading to multiple contigs although their reads were originally derived from a single 

transcript (Martin, Bruno et al. 2010). Increasing sequencing depth may help resolve the issue 

but at the same time, very high coverage (>>1,000) tends to increase the number of false positive 

transcripts due to base-calling errors or chimeric reads (Tarazona, Garcia-Alcalde et al. 2011). 

As discussed above, both the reference-based and de novo methods each have 

complementary strengths and weaknesses, and are each situation-dependent. Nonetheless, if a 

genome assembly is available, it is advised to adopt both approaches and combine their results 

into a non-redundant, comprehensive assembly (Haas and Zody 2010). 

VII. Annotation 

The ultimate goal of genome and transcriptome assembly is to establish the genetic repertoire 

of an organism, through a process known as genome annotation. Genome annotation can be 

broken down into two major steps: 1) structural annotation, followed by 2) functional annotation 

(Yandell and Ence 2012). Structural annotation involves modeling various genomic features and 

their precise locations, namely genes, regulatory and non-coding regions. The next step is to 

assign to each model a biological function based on sequence similarity to known genes  

(Yandell and Ence 2012). Structural annotation typically consists of a suite of steps glued 

together into a "pipeline”. Several different pipelines exist, yet they all follow a similar 

workflow, which is described in the following sections. 

a. Repeat masking 

Generally, the first step aims at identifying repetitive regions, both tandem and dispersed repeats 

(Bao and Eddy 2002), and transposable elements such as long and short interspersed elements 
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(Bedell, Korf et al. 2000, Kapitonov and Jurka 2008). This is an important initial step since 

repeat regions left unmasked can misdirect Blast-like sequence alignment heuristics by 

anchoring seed searches in regions that yield sub-optimal alignments (Korf, Yandell et al. 2003). 

Unmasked repeats can also misinform gene prediction algorithms about exon-intron structure 

(Korf, Yandell et al. 2003, Yandell and Ence 2012). 

b. Sequence alignment to generate evidence of coding gene structure 

After repeat masking, it is common practice to construct a set of extrinsic evidence of gene 

locations and structure. Extrinsic evidence usually consists of organism-specific information 

(transcript assemblies) and of information from close neighbours (protein sequences), both of 

which can be aligned to the target organism’s genome sequence (Haas 2003, Haas, Zeng et al. 

2011, Yandell and Ence 2012). A widely used heuristic tool for sequence alignment is Blast 

(Altschul, Gish et al. 1990), which identifies potential coding regions by exact matches of small 

subsequences (seed searches) and expands on matched regions using a local alignment 

algorithm. One considerable disadvantage in the context of structural annotation is that Blast is 

not capable of precisely modelling exon-intron junctions (Korf, Yandell et al. 2003). An 

alternative is to use spliced-sequence alignment tools, such as Exonerate or Gmap, that apply 

similar seed search approach as Blast but employ a computationally demanding dynamic 

programming algorithm around alignment gaps to identify splice junctions (Slater and Birney 

2005, Wu and Watanabe 2005). Some pipelines leverage both methods: Blast is used to quickly 

identify putative coding regions and then intervals are "polished" with a spliced alignment tool 

(e.g. exonerate (Slater and Birney 2005)) to more accurately resolve start and stop codons, and 

splice junctions (Cantarel, Korf et al. 2008). 
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c. Gene prediction 

Gene prediction algorithms are based on Hidden Markov Models (HMMs), but they have been 

generalised to include statistical properties of the genome such as G+C content, codon usage 

preferences and intron structure (Korf 2004). Extrinsic information extracted from RNA-Seq 

and sequence alignments are being used to inform both the HMMs and their generalised 

statistical models (Stanke, Diekhans et al. 2008). HMMs are an entirely probabilistic framework 

to model the most likely state (e.g. constituting an exon, intron, or intergenic region) of a given 

interval of a primary sequence (Rabiner 1989). The state is the "hidden" part in the Hidden 

Markov Model, since we do not know the underlying state a priori. The HMM consists of a 

transition probability (from one state to another) and an emission probability that models the 

composition of a state (Durbin 1998). In the context of gene prediction, a simplified HMM 

(Figure 4) can consist of three states: exons, splice junctions and introns, each with their own 

probabilities of remaining in the same state or transitioning to another (Eddy 2004). Each state 

contains its own emission probabilities that could model, for example, a high chance of 

observing a G at an exon-intron junction, a higher chance of observing As and Ts than Gs and 

Cs within an intronic sequence, and  a similar chance of observing any of the four nucleotides 

within an exon. The algorithm walks along the sequence, inferring the underlying states at each 

position given the previously observed sequence (a Markov chain). Many different state paths 

Figure 4: Cartoon of a HMM with three states with their respective transition and emission probabilities. For 

example, a simple HMM could model exons, splice junctions and introns. Adapted from (Eddy 2004). 
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potentially exist in such a probabilistic framework. For instance, referring to Figure 4, it is 

assumed that the first state is an exon, and the task is to determine at which locations of the 

sequence switches the state. The splice junction is assumed to have 95% chance of being a G, 

so the most likely locations of that state can be reasonably reduced to six out of twenty 

nucleotide positions. The algorithm explores each of those state paths in a process known as 

posterior decoding (Durbin 1998). The Viterbi algorithm, commonly employed in gene 

predictors (Lukashin and Borodovsky 1998, Stanke and Waack 2003), chooses the state with 

the highest log-likelihood by dynamic programming (Durbin 1998), which turns out to be 

position 19 in Figure 4. The inclusion of splice junctions inferred from RNA-Seq, for example, 

extrinsically supports a particular state path, thus increasing the accuracy of a prediction. 

Coverage of RNA-Seq reads can also be included to inform transitions from intergenic to initial 

exon states, while aligned protein sequences could support a transition to an open reading-frame 

state. 

 

d. Gene model consensus 

With a wealth of information from sequence alignments and HMM-based predictions about 

functional regions, the final step is to choose a representative model (Yandell and Ence 2012). 

Transcript alignments (either organism specific or from a close relative) can provide information 

about untranslated regions (UTRs) and coding exons, but the open reading frames (ORFs) need 

to be inferred (Adamidi, Wang et al. 2011). Protein sequence alignments (typically from other 

organisms) can fill in the gap to resolving ORFs. However, protein sequences may sometimes 

be insufficient. Gene predictors can give a rough look at a genome's coding content, but are 

strongly dependent on a high-confidence and representative training set (Burset and Guigo 

1996). Therefore, pipelines have been developed to automate the process of synthesizing gene-

model creation from multiple different sources to reduce the amount of manual effort required 

(Cantarel, Korf et al. 2008, Reid, Nicholas et al. 2014, Hoff, Lange et al. 2016, Min, Grigoriev 

et al. 2017). They 'combine' evidence to create a consensus using either a supervised algorithm 

guided by a training set (Allen and Salzberg 2005), an unsupervised algorithm using a Dynamic 

Bayes Network (DBN) (Liu, Mackey et al. 2008) or an algorithm based on user-defined weights 

per evidence source (Haas, Salzberg et al. 2008). Essentially, these pipelines each attempt to 

choose a model that best represents the evidence while also reducing the different types of 
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possible errors, such as in-frame stop codons, incorrect splice junctions, or frame shifts (Yandell 

and Ence 2012).  

The weighted consensus process followed by EVidenceModeler  (Haas, Salzberg et al. 

2008) will serve as an example (Figure 5).  

 

Figure 5: Overview of the weighted consensus algorithm implemented in EVM. The top window represents transcript 

alignments (Nap-nr_minus_ri, AlignAssembly-r), protein alignments (Gap2-plant_gene) and gene predictions (Genewise-

nr_min, Genemark, Fgenesh, GlimmerHMM) used to build consensus gene models (EVM). The Coding, Intron and 

Intergenic vectors (middle window) are computed to evaluate the highest scoring path through candidate exons (bottom 

window). See text for a more detailed description. Adapted from (Haas, Salzberg et al. 2008). 

The top box is a snapshot of a 7-kb window in the rice genome with putative protein-coding 

regions, and several different sources of evidence to suggest its structure. Tracks labelled 

'Fgenesh', 'Genemark' and 'GlimmerHMM' contain intervals inferred by the corresponding gene 

predictors. The Genewise and 'Nap2' tracks come from rice and non-rice protein sequence 
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alignments, respectively, whereas the 'AlignAssembly' and 'Nap' tracks are derived from rice 

and rice neighbour EST alignments, respectively. The orientation of the intervals are separated 

by the genomic loci axis. Position-specific score vectors are calculated for genomic features, 

such as coding, intron and intergenic regions, based on the evidence intervals as seen in the 

middle graphs of Figure 5. All possible exonic and intronic regions in the six reading frames are 

computed from the feature vectors, as enumerated in the bottom part of Figure 5, where green 

and red ticks represent start and stop codons, respectively. The vertices connecting candidate 

exons trace the highest scoring path computed by a dynamic programming, yielding two distinct 

regions in the 'EVM' track. The two regions correspond to known genes encoding the 

peroxisomal membrane carrier protein and 50S ribosomal protein L4, chloroplast precursor, 

respectively (Haas, Salzberg et al. 2008). 

In contrast to the manual assignment of weights as mentioned above, the supervised 

training approach taken by Jigsaw infers weights from a subset of curated models, and employs 

a dynamic programming algorithm to resolve the highest scoring path (Allen and Salzberg 

2005). Conversely, instead of relying on a training set, the DBN algorithm (employed in the 

Evigan pipeline) learns the parameters that best explain the evidence and then generates a 

consensus by computing the maximum likelihood using the Viterbi algorithm (Liu, Mackey et 

al. 2008), similarly to posterior decoding computed by the generalised HMMs of gene 

predictors. Despite the differences between the three combiners, the nematode genome 

assessment project (nGASP) found their performance to be similar (Coghlan, Fiedler et al. 

2008). Nevertheless, the quality of consensus models may differ significantly between 

organisms, depending on a plethora of factors such as the available experimental data, evidence 

quality, evolutionary distance, among others (Yandell and Ence 2012). 

e. Functional annotation 

Once a complete set of organism-specific gene models have been built, the interest shifts to 

inferring functional information for each model. Various levels of functional information can 

be assigned, including secretion signals, domain content and product name, as well as broader 

biological implications such as pathways and processes (Frishman 2007). Pairwise similarity 

searches and HMM-based searches are common methods employed to elucidate function (Haas, 
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Zeng et al. 2011), among other specialised methods for specific tasks (e.g. localisation 

prediction) (Horton, Park et al. 2006). 

A basic routine is to run Blast to align a query database to the target gene models 

whereby information associated with sequences in the query database are transferred to their 

respective “best hit” (i.e. best score) target sequences. Swissprot is a widely used query 

database, which contains many sequences with known product names, gene ontology 

information (molecular function, cellular localisation, biological process (Ashburner, Ball et al. 

2000)), and other types of information (Boeckmann, Bairoch et al. 2003). The main advantage 

with Blast is that it allows for rapid transfer of information from those databases to the target 

sequences. In contrast to similarity algorithms, profile HMMs are an inherently probabilistic 

framework to detect sequence relationships with higher sensitivity. Profile HMMs are position-

specific statistical models to describe the consensus of a multiple sequence alignment (i.e. the 

profile). The model contains information, at every given positon, to compute the true frequency 

of a residue relative to the observed frequency (Durbin 1998). Commonly used profile HMM 

databases include Pfam to search for protein domains (Bateman, Birney et al. 2002), and 

TIGRfam to search for protein families (Haft, Selengut et al. 2003). 

VIII.  Pitfalls of automated annotation 

Two important challenges in every automated (structural and functional) annotation pipeline 

are, depending on the information they accept, (i) the introduction of systematic error due to 

incomplete or misleading data, (ii) errors perpetuated from incorrect comparative data and (iii) 

the presence of inherent biases. 

a. Pitfalls in automated structural annotation 

Firstly, errors can be introduced from incomplete forms of evidence. For instance, lacking RNA-

Seq coverage can reduce the number of detected introns and underrepresent expressed regions 

as well as limit the number of successfully assembled full-length transcripts (Sims, Sudbery et 

al. 2014). Such errors can increase the false negative rate of gene prediction algorithms and 

consensus model-building tools (Yandell and Ence 2012).  

Systematic biases can be introduced when inferring putative coding regions from protein 

sequence alignments and from gene prediction training. Since protein sequence alignment 
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algorithms are based on similarity searches, evolutionary distance can have varying negative 

effects on the diversity and completeness of information that can be leveraged. The further the 

distance the less useful protein sequence alignments become, which can be problematic for 

organisms with few characterised neighbours (Slater and Birney 2005), as is the case for most 

protists.  

Gene prediction algorithms are also dependent on the diversity and completeness of 

information. A preliminary set of gene models are used to parameterise and tune generalised 

HMMs. Thus, a lack of preliminary models that adequately and accurately represent the full 

gene repertoire can bias predictions towards a particular gene structure. In turn, biased training 

models decrease the likelihood of detecting coding intervals (Burset and Guigo 1996). 

b. Pitfalls in automated functional annotation 

Systematic errors can be subtly introduced in functional annotation procedures that make use of 

Blast. The reason is that Blast ultimately computes a similarity score that is difficult to tie with 

biological relevance, especially for distantly-related sequences. As such, judging an adequate 

cutoff score to transfer functional information is more or less arbitrary and error prone (Galperin 

and Koonin 1998). 

A continual challenge for databases such as Swissprot is curating data to maintain a high 

level of accuracy. The increasing amount of genomic data becoming available is increasingly 

being annotated automatically. Those models might then be used to infer functions in future 

projects, which could perpetuate erroneous information (Bork and Bairoch 1996). Conversely, 

inherent biases introduced in the structural annotation itself can have a similar effect of missing 

relevant information. 

IX. Goals 

Automated structural annotation pipelines have seen widespread adoption, yet they still cannot 

attain the level of accuracy of a dedicated human curator. Thus, the first goal of this project was 

to assess the state of current annotation pipelines by benchmarking them with “gold standard” 

structural genome annotations (i.e. those with considerable manual curation). The second goal 

was to propose a method of structural annotation to improve gene model confidence/quality, 

thereby reducing expert intervention. 
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X. Objectives 

This Master research project had two objectives. The first was to identify the plausible sources 

of error and bias in three freely distributed, and commonly used annotation pipelines. The 

second objective was to develop an approach—borrowing from the same (and partially 

modernised) tool set of current pipelines—to specifically mitigate, if not prevent, the 

propagation of biases and errors. The work performed is described in the following manuscript 

that will be submitted for publication to Genome Biology. 

  



40 

2. Manuscript:  

An approach to improved microbial eukaryotic genome annotation 

Matthew Sarrasin, Gertraud Burger and B. Franz Lang 

Target journal: Genome Biology 

Contribution of authors 

BFL and GB contributed to conceptual design of the approach, orchestrating the project, and 

writing the manuscript. MS contributed to conceptual design, implementation and validation of 

the study, and manuscript writing. 

Keywords 

Annotation, genome, eukaryote, protist, fungi, Saccharomyces, Neurospora, Ustilago, 

Plasmodium 

I. Abstract 

Challenges in automating structural annotation of eukaryotic genomes are ever-present, 

particularly for eukaryote nuclear genomes without a well-annotated, closely neighbouring 

species. The main shortcoming of freely distributed pipelines for structural annotation come 

from (1) errors in incomplete input data, (2) biases in gene prediction training, and (3) inaccurate 

gene model consensus construction procedures. Here, we propose an improved approach that 

mitigates the impact of those three shortcomings. Our approach capitalizes on two main aspects; 

first, it leverages a more complete and diverse set of extrinsic evidence, derived from RNA-Seq 

and homology data, to better inform gene predictions. Second, gene models are constructed 

from the extrinsic evidence and gene predictions using a weighted consensus approach such that 

the impact of potential errors and biases is reduced. Comparative benchmarking against three 

widely-used pipelines shows that our approach has higher sensitivity and specificity in detecting 

genes, transcripts, exons and introns. 
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II. Background 

Recent development in high-throughput whole-genome and whole-transcriptome sequencing 

(RNA-Seq) technology is both a boon and a burden to novel eukaryotic genome projects 

(Shendure and Ji 2008, Ozsolak, Platt et al. 2009, Wang, Gerstein et al. 2009, Marguerat and 

Bähler 2010). Although the cost of sequencing has substantially decreased, the process of 

finding genes and determining their exon-intron structure in a genome assembly (structural 

genome annotation) continues to be a challenge (Yandell and Ence 2012). Structural genome 

annotation is a complex multi-step process, referred to as a pipeline, to build gene models by 

leveraging experimental data (RNA-Seq, homology data) and predictive modeling algorithms 

(generalised Hidden Markov Model (HMM) gene predictions) (Yandell and Ence 2012). 

Several different automated pipelines have been developed to facilitate structural genome 

annotation by modelling the decision-making process an expert curator would follow to 

consolidate multiple sources of information. Among the most commonly used are Snowyowl 

(Reid, Nicholas et al. 2014), Maker (Cantarel, Korf et al. 2008), and Braker (Hoff, Lange et al. 

2016). Snowyowl, which was specifically developed for fungal genome annotation, builds 

consensus gene models from concordance between gene predictions, RNA-Seq coverage and 

protein sequence similarity (Reid, Nicholas et al. 2014). Likewise, Maker, a generic eukaryotic 

annotation pipeline, extracts information about gene structure from transcript and protein 

sequence alignments to inform predictions and consensus gene models (Cantarel, Korf et al. 

2008). In contrast, Braker was developed to only use splice junctions inferred from RNA-Seq 

read mapping. Though the above pipelines greatly facilitate the annotation process, some 

important considerations remain that can affect the quality of gene models.  

One consideration is that lacking or incomplete experimental evidence can hinder gene 

predictions (Mathé, Sagot et al. 2002). Further, such systematic errors propagate and bias the 

construction of consensus gene models informed by those gene predictions and experimental 

evidence. Genome annotation becomes increasingly difficult for eukaryotes where relatively 

few of its neighbours have been characterised, and even more so for isolated, divergent taxa, as 

the usefulness of inferences based on sequence similarity quickly degrades (Korf 2004). Such 

issues can be exacerbated in genome assemblies inconspicuously contaminated with DNA from 

other species, e.g. bacteria being the food source of numerous unicellular eukaryotes. It becomes 

difficult to discern between a truly eukaryotic gene with no introns, a laterally transferred or 
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mitochondrial gene, or a contaminant—particularly in intron-poor eukaryotes. Leveraging 

RNA-Seq data can alleviate the difficulty, to an extent, by providing organism-specific 

information about genes (expressed under a given condition) and their structure (Denoeud, Aury 

et al. 2008, Ozsolak, Platt et al. 2009). Even then, building complete and reliable gene models 

for such organisms remains an important bottleneck. 

Protist genomes continue to be largely uncharacterised due to the above-mentioned issues. 

In addition, protists are biologically more diverse than, for instance, animals or fungi. Therefore, 

it is not surprising that the nuclear genomes of certain protist groups is even more gene-dense 

than yeast (Goffeau, Barrell et al. 1996, Galagan, Calvo et al. 2003), while others are as inflated 

as in plants (Hou and Lin 2009). In line with this variability, some protists have a genome that 

is intron-poor with a total count below 100 (e.g., Giardia (Morrison, McArthur et al. 2007), 

Trypanosoma (Hall 2003)), whereas others possess close to four per gene on average, as seen 

in the ciliate Tetrahymena (Coyne, Hannick et al. 2011). Further, some protists add a canonical 

5’UTR to pre-mRNAs by trans-spicing, such as trypanosomes (Sutton and Boothroyd 1986), 

euglenids (Tessier, Keller et al. 1991), rotifers (Pouchkina-Stantcheva and Tunnacliffe 2005) 

and dinoflagellates (Lidie and Van Dolah 2007)—a phenomenon also observed in cnidarians 

(Stover and Steele 2001), certain chordates (Vandenberghe, Meedel et al. 2001), nematodes 

(Krause and Hirsh 1987), and Platyhelminthes ((Rajkovic, Davis et al. 1990)(reviewed in (Bitar, 

Boroni et al. 2013)). Such features can severely hinder the genome annotation process where 

less abundant similarity-based data exists, and where RNA data is not fully exploited. 

Given the above considerations, current generic pipelines may not equally generate high-

confidence gene models for all eukaryotic genomes (or all fungal genomes, in the case of 

Snowyowl). Such factors may exacerbate the shortcomings related to gene model creation, such 

as incorrect start or stop sites, splitting of models into multiple discrete pieces, artificial fusions 

between close neighbours (Mathé, Sagot et al. 2002), or simply missing models where one 

should exist (Burset and Guigo 1996). Thus, in this study, the three pipelines mentioned above 

were examined regarding their performance in creating gene models for four model genomes: 

Neurospora crassa, Saccharomyces cerevisiae, Ustilago maydis and Plasmodium falciparum. 

On this basis, we formulated a new annotation approach that specifically aimed at mitigating, if 

not rectifying, the shortcomings of those pipelines.  
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III. Results & Discussion 

i. Defining the major steps of each pipeline 

Each pipeline leverages different forms of experimental evidence, tools and methods in a suite 

of steps to generate a consensus gene model set. Each step that outputs gene models is 

considered a major step. 

Maker employs Blast and Exonerate (Slater and Birney 2005) for transcript (from an RNA-

Seq reads assembly) and protein sequence alignments (supplied by the user), and has the 

capacity to internally run the output from the semi-HMM-based gene predictor Snap (Korf 

2004), the generalised HMM-based Augustus (Stanke, Diekhans et al. 2008), and the self-

training predictor Genemark (Ter-Hovhannisyan, Lomsadze et al. 2008). Maker employs a 

novel algorithm to generate gene models depending on the step and the input data. First, Maker 

employs Blast (Altschul, Madden et al. 1997) to rapidly align transcript sequences and protein 

sequences to the genome. Sequences with hits are passed to Exonerate to better resolve their 

exon-intron structure. Maker extracts the exon-intron boundaries from those alignments 

(extrinsic evidence) for the user to train (outside of the pipeline) the gene predictors Snap (step 

S1) and Augustus (step A1). The output from those gene predictors, along with Genemark 

output (step G; done outside of the pipeline), are passed to Maker to run its consensus building 

algorithm. Those consolidated models serve as a basis to retrain (bootstrap training) Snap (step 

S2) and Augustus (step A2). Their output is given to Maker so that a final consensus set can be 

built (step F). The final models are based on concordance between transcript alignments, protein 

alignments and gene predictions.  

Snowyowl, on the other hand, differs from Maker in several ways. In the first step, 

Genemark is run (step G) to generate preliminary gene models. Next, Augustus is trained with 

the transcriptome assembly as input to generate an independent set of initial gene models (step 

A). Models common between those of Genemark and Augustus are selected to retrain Augustus 

(step GA). The next phase, termed by the authors as the ‘proliferation stage’, which runs three 

independent rounds of Augustus with relaxed parameters to infer multiple plausible models at 

a given genomic region. The first round of Augustus predictions are made without any hints 

(step AN) after retraining in step GA. The second round leverages the locations of RNA-Seq 

reads mapped to the genome (step AC) using Blat (Kent 2002), whereas the last round leverages 
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both mapped reads (mapped using Blat) and splice junctions inferred from the mapping (step 

AS). Finally, common gene models between the three rounds of prediction in the proliferation 

stage are pooled together (stage P). The last two steps involve a model-scoring algorithm (step 

R), followed by model selection based on a defined threshold (step F). Each model is scored 

based on similarity search results against the user-defined sequence database, concordance with 

splice junctions, and level of RNA-Seq coverage (Reid, Nicholas et al. 2014). The selection 

algorithm finds models that have similarity hits above a defined score, completely agree with 

inferred splice junctions and have coverage above a defined amount, and labels them as high-

confidence models. Models that meet all the same criteria but fall below the defined RNA-Seq 

coverage threshold are also accepted, but flagged as ‘lowly expressed’. All others are labelled 

as ‘imperfect’ and not accepted in the final consensus set. 

In contrast to both Maker and Snowyowl, Braker is considerably less complex. Braker 

accepts as input the mapped RNA-Seq reads. Splice junctions are extracted from the read 

mapping and serve as the only source of extrinsic evidence. In the first step, splice junction 

locations are passed to Genemark to help generate preliminary models (step G). Of the 

preliminary models, only those whose predicted introns are concordant with the inferred RNA-

Seq splice junctions are selected to train Augustus. After training, predictions from Augustus 

are generated with the help of the same inferred splice junction information used in Genemark 

(step F). Those models constitute the consensus set. 

ii. Sources of error and bias 

a. In RNA sequencing and transcriptome assembly 

Several considerations pertain to the use of RNA-Seq data that can affect the output of 

annotation pipelines that make use of it. Biases in library preparation and sequencing can cause 

uneven coverage (e.g. lower coverage over GC-rich regions) that makes it difficult to adequately 

resolve expressed regions ((Sims, Sudbery et al. 2014) and references therein). Increasing the 

sequencing depth can help resolve the issue to an extent, as well as increase the statistical power 

to differentiate between signal and noise (Haas and Zody 2010), but some genes are inherently 

lowly expressed that remain challenging to obtain sufficient coverage (Mortazavi, Williams et 

al. 2008). On the other hand, a higher number of errors may occur in highly expressed regions, 

owing to the fact that more reads are generated and that sequencing technologies can introduce 
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a number of errors in base-calling (~1-3% in Illumina sequencing (Nakamura, Oshima et al. 

2011), as much as 17% in PacBio sequencing (Chin, Sorenson et al. 2011)). 

The above issues can have a negative impact on 1) tools that exploit RNA-Seq read mapping, 

and 2) transcriptome assembly routines. Firstly, low or uneven coverage in a read mapping file 

may convince gene predictors (Augustus and Genemark) of an incorrect start/stop site, or the 

lack of an intron where one exists, or even that a single gene model should erroneously be split 

into multiple (Mathé, Sagot et al. 2002). Secondly, low or uneven coverage and errors in reads 

can negatively impact transcriptome assembly. Low and uneven coverage could lead to 

reconstruction of multiple discrete transcripts in place of a single, contiguous transcript, whereas 

errors in base-calling could lead to multiple spurious transcripts ((Martin and Wang 2011) and 

references therein). In turn, expressed genes that are closely located in the genome run the risk 

of having their transcripts artificially fused by the assembly algorithm (Grabherr, Haas et al. 

2011), particularly in cases where genes are co-transcribed (Hoffmann, Otto et al. 2014). 

b. In protein similarity searches 

The use of homology-based data comes with a few important drawbacks, namely, 1) the quality 

of protein sequences is not uniform in a given database and, 2) the level of sequence divergence 

strongly determines the quality of an alignment. 

 Publicly available protein sequence databases, such as Swissprot (Boeckmann, Bairoch 

et al. 2003), contain a wealth of both predicted and expertly-curated information for use in 

genome annotation. Assuring the quality of those protein sequences is, however, an ongoing 

challenge. Protein sequences that may be used to detect coding regions in an uncharacterized 

genome may be incomplete or contain defects, depending on the level of expert curation. 

Recently, as much as 60% of the cytochrome P450 genes in 47 different plant genomes were 

found to have some defect (Gotoh, Morita et al. 2014), which suggests that leveraging protein 

sequence information, particularly where few well-characterised neighbours exist, can 

potentially introduce biases. 

 Secondly, current protein-to-genome sequence alignment algorithms (as implemented 

in, e.g., Exonerate, Genewise (Birney, Clamp et al. 2004)) are based on similarity, which can be 

derailed by homologous proteins under different selective pressure such that their sequences 

sufficiently diverge (reviewed in (Batzoglou 2005)). Thus, an important caveat is that increasing 
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sequence divergence can yield partial models, or none at all (Korf, Yandell et al. 2003). In other 

cases, the algorithm can potentially introduce false introns to optimise the alignment (Wu and 

Watanabe 2005, Gotoh 2008). 

c. In gene prediction 

Ongoing challenges related to gene prediction include 1) creating adequate and accurate training 

sets (Burset and Guigo 1996, Guigo, Agarwal et al. 2000), and 2) inherent limitations in 

predictive algorithms (Mathé, Sagot et al. 2002, Ter-Hovhannisyan, Lomsadze et al. 2008). The 

quality of gene predictions is dependent on the quality and diversity of organism-specific gene 

models used to parameterize (train) HMM-based predictors, since universal parameters cannot 

be applied to all eukaryotes (Burset and Guigo 1996). Thus, parameters inferred from incorrect 

gene models reduces the predictive power, which can lead to a higher rate of incorrect or false 

models (Mathé, Sagot et al. 2002). On the other hand, a small number of highly accurate training 

models can fail to capture the full gene structure diversity, which can lead to fewer predicted 

models (Burset and Guigo 1996). 

 Aside from training sets, gene prediction algorithms have inherent limitations that can 

introduce errors. For instance, an ongoing challenge is the capacity to model very long introns 

(>10kb as in humans (Gibbs, Weinstock et al. 2004)) and very short exons (<25bp, see 

(Volfovsky, Haas et al. 2003)). A related pitfall to predicting short features such as exons is the 

potential failure to recognize short intergenic regions between two closely-neighbouring (or 

overlapping, as in, e.g., Arabidopsis (Quesada, Ponce et al. 1999)) genes on the same strand 

(Mathé, Sagot et al. 2002). Such small intergenic regions may be misinterpreted as an intron, 

which could lead to artificially fused models (Pavy, Rombauts et al. 1999). Conversely, genes 

can be falsely predicted inside long intergenic regions (Ter-Hovhannisyan, Lomsadze et al. 

2008). 

iii. Benchmarking the major steps to identify errors and biases 

The gene models output at the major steps (defined above) of Maker, Braker and Snowyowl 

(fungi only), as run on N. crassa, U. maydis and P. falciparum, were benchmarked against the 

gene models of the corresponding reference models. This was done to determine the steps at 

which models may have been affected by errors or biases for each pipeline. The benchmarking 

metrics employed for comparison were sensitivity and specificity. Sensitivity measures the 
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amount a given feature (e.g. transcript, exon) in the reference models overlaps with the same 

feature in the predicted models, whereas specificity is the amount a given feature in the predicted 

models overlaps with the same feature in the reference models (Burset and Guigo 1996)). 

Sensitivity and specificity were computed (in %) at the gene, transcript, exon and intron levels 

using the Eval package (Keibler and Brent 2003) (Figure 6). 

 

 

Figure 6: Specificity vs. sensitivity plots of the major steps of each pipeline at the level of genes, transcripts, exons 

and introns for N. crassa (Nc), U. maydis (Um) and P. falciparum (Pf). The major steps of Braker, shown in blue, 

include Genemark (G) and final models (F) for Maker are shown in orange. In green, the Snowyowl steps include 

(in order) initial Genemark predictions (G), the first round of Augustus (A), consensus predictions from Genemark 

and Augustus (GA), Augustus predictions with no hints (AN), coverage only (AC), coverage with splice junctions 

(AS), pooled models (P), representative models (R) and final models (F). 

a.  Maker 

The extrinsic evidence extracted from protein sequence alignments are not full gene models, 

however it is an important step done to train gene predictors. It is of interest to gauge how 
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representative the extrinsic evidence is of the reference models. Thus, the relative distance (RD) 

metric was used to measure how much the protein sequence alignments correspond with the 

reference gene (denoted as Maker-Ref), and vice versa (denoted as Ref-Maker, Table 1). Lower 

RD corresponds to a shorter distance between the alignments and the gene models (or vice 

versa), thus implying more congruence. 

Species Mapping Count Total Fraction (Count/Total, %) 

N crassa Ref-Maker 16044 28587 55.9 

N crassa Maker-Ref 96575 131110 73.6 

U maydis Ref-Maker 6241 9637 64.9 

U maydis Maker-Ref 28230 40077 70.6 

P falciparum Ref-Maker 2288 13067 17.6 

P falciparum Maker-Ref 46896 60210 77.9 

Table 1: Summary of the number (count) of protein sequence alignment falling within a relative distance of 0-0.10 

(out of 0.50) out of the total number of alignments. Relative distance was computed as a function of the reference 

models, relative to the protein alignments, and conversely as a function of protein alignments relative to the 

reference models. 

Protein sequence alignments tend to correspond with the reference gene models, and vice 

versa, for N. crassa and U. maydis. For P. falciparum, the percentage of alignment RDs with 

respect to the reference models was close to that seen in the fungi. However, there was a larger 

discrepancy in the RD between the reference models and the alignments. The low fraction of 

congruent gene models with respect to the alignments in conjunction with the high fraction of 

alignments congruent with the models suggests that most protein sequences aligned to a smaller 

number of genomic loci. This interpretation is corroborated by the fact that a benchmarking of 

single-copy orthologous genes (BUSCO, (Simão, Waterhouse et al. 2015)) on the protein 

alignments reflect the same trend (Supplemental Table 7). Fewer complete putative orthologous 

sequences were identified in the Maker alignments, and 80 out of the 94 hits were duplicates. It 

is likely that the proteomes given as input to Maker to annotate P. falciparum were more 

divergent compared to the proteomes used as input to annotate the two fungi.  

Transcriptome assemblies were also computed for N. crassa, S. cerevisiae, U. maydis 

and P. falciparum. Thus, we sought to measure potential errors in those assemblies. A lower 

sequencing depth would yield fewer full-length mRNAs. The number of full-length mRNAs 

was measured by: 1) running Blast was run on the reconstructed transcripts, for each species, 

against the Swiss-prot database (v2017-07-15), and 2) by running BUSCO on each of the 

transcriptome assemblies. 
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The best hit was chosen for each transcript (if present), and its alignment length (with 

respect to the best hit in the Swiss-prot sequences) was computed as a percentage of the total 

transcript length (Figure 7). The results indicate that there are significantly fewer full-length or 

near-full-length hits in P. falciparum relative to the fungi. 

 

 
Figure 7: The number of Blast hits as a function of alignment length coverage of protein sequences against the 

transcriptome for the four tested species. On average, the fungi have a higher number of Blast hits, whereas P. 

falciparum has significantly fewer full-length hits in comparison. 

The BUSCO results indicate a similar trend to the Blast results (Table 2). Over 200 

orthologous genes are missing in the P. falciparum transcriptome assembly, whereas less than 

10 are missing in the fungal transcriptomes. 

BUSCO predictions N. crassa S. cerevisiae U. maydis P. falciparum 
Complete 281 278 286 94 

Complete and single-copy 6 8 24 14 
Complete and duplicated 275 270 262 80 

Fragmented 1 3 3 7 
Missing 8 9 1 202 

Total 290 290 290 303 
Table 2: Breakdown of the BUSCO results. BUSCO’s fungal and protozoa databases were searched against the 

fungal and protist transcriptomes, respectively. More than 200 orthologous genes are missing in the P. falciparum 

transcriptome assembly, whereas relatively few are missing in the fungal transcriptomes. 

Despite the less complete protein sequence alignments and transcriptome assembly in P. 

falciparum, the gene models output by Augustus and Genemark are, on average, a few 

sensitivity and specificity percentage points lower than those of Braker. Snap, however, tended 

to underperform compared to Genemark and Augustus, despite being trained on the same data 

as Augustus. Nonetheless, a similar trend has been observed by the authors of Maker (Cantarel, 
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Korf et al. 2008). On the other hand, the bootstrap retraining method imparts an overall gain in 

sensitivity and specificity of the final models, at each level—particularly in the case of N. crassa. 

The final P. falciparum models, however, are significantly less sensitive and specific relative to 

the Augustus and Genemark models. Thus, the sensitivity and specificity of Maker’s final 

consensus model set can vary significantly depending on the completeness of transcript and 

protein sequence alignments, despite potentially high-confidence gene predictions. 

Here, we proposed a three-fold solution to improve gene model accuracy over Maker, 

particularly in the case of P. falciparum. First, the spliced aligner Spaln could replace Exonerate, 

given that Spaln has been shown to produce higher quality alignments compared to several 

competing aligners (Gotoh 2008). It does so in part by modelling organism-specific intron length 

distributions to better capture natural splice junctions (Iwata and Gotoh 2012). Second, a 

bootstrap retraining method, as implemented in Maker, need not be implemented. The sensitivity 

and specificity of models after retraining were either about the same for Augustus, or lower as 

for Snap. Lastly, the substantially lower sensitivity and specificity in the final models is likely 

due to the dependence Maker’s consensus-building algorithm has on transcript and protein 

sequence alignments. Thus, we propose implementing an alternative that can distribute the 

weight of extrinsic evidence and gene predictions (as in the tool Evidencemodeler (Haas, 

Salzberg et al. 2008)) such that any type of evidence has less impact on the consensus. 

b. Snowyowl 

The gene predictions by Augustus after the second round of training show an increase in 

sensitivity and specificity across all levels, but it is less clear that there is an advantage to the 

proliferation and scoring phases. The significantly lower specificity relative to the sensitivity, 

as seen in the pooled U. maydis and unhinted N. crassa predictions, is expected given that 

Snowyowl deliberately over-predicts at those stages to evaluate multiple models per locus 

posteriorly. In some cases there is an increase in sensitivity and specificity, as seen in the splice-

hinted models of U. maydis. However, in every case the final models suffer either a marginal or 

substantial degradation in sensitivity and specificity compared to the initial predictions. This 

suggests that there may yet be a benefit to exploring the multiple possible models at a given 

locus, but it would require a different scoring scheme to determine the most biologically relevant 

model. 
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The implication of Snowyowl's scoring scheme being primarily based on similarity 

searches is that plausible models can be falsely discarded. An additional consequence of the 

scoring scheme is that gene models with an uneven distribution of RNA-Seq coverage—despite 

having an average coverage (over the length of the model) above the defined threshold—are 

equally discarded. Such a cut-off may discard valid models, particularly since it is known that 

coverage across a transcript can vary, as described above. Despite the reported benefit in 

exploring alternatives and choosing models that best represent the evidence (Reid, Nicholas et 

al. 2014), the results shown in Figure 6 suggest that the second round of Augustus models could 

potentially yield a higher sensitivity and specificity consensus than Snowyowl's final models.  

The solution we proposed here is centered on generating a more complete training set 

from a consensus between evidence types (transcriptome assembly alignments, protein sequence 

alignments and a high-confidence set of gene models), and to avoid the complexities of 

generating and selecting models as done in in the proliferation and scoring stages of Snowyowl. 

c. Braker 

The implication of building a training set from concordance between initial gene predictions and 

inferred splice junctions is that models with no introns—in other words, no evidence support—

are equally selected for the training set (since they are technically consistent with splice 

junctions). Interestingly, the exon sensitivity and exon specificity shown in Figure 6 suggest that 

the impact of this bias may not be detrimental to the consensus models. Nonetheless, we 

proposed to include information from transcript and protein sequence alignments, RNA-Seq 

read coverage and splice junction locations, since it would permit the selection of initial 

models—whose features are all fully congruent with at least two sources of evidence—to 

construct a more robust training set. More specifically, initial predictions from Genemark that 

match either a transcript or a protein sequence alignment are selected for the training set. In 

addtion, transcript alignments that match protein alignments are also selected. This procedure 

could resolve the problem of validating intronless models while enforcing a wider set of criteria 

for training model selection. Secondly, implementing a weighted consensus between multiple 

different sources of evidence could mitigate the biases and errors that may otherwise proliferate 

in a pipeline that only employs gene predictors (Mathé, Sagot et al. 2002). 
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iv. Assembling an improved pipeline 

Our approach combines aspects of each pipeline, and includes an additional aspect 

related to RNA-Seq read processing and extrinsic evidence creation (Figure 8). 

 

 

Figure 8: Proposed annotation approach. RNA-Seq reads a cleaned, corrected and mapped to the genome. 

Mapped reads are used to guide the transcriptome assembly and to build the de novo assembly, which are 

combined into a non-redundant assembly. Exon-intron and CDS hints are extracted from transcript and protein 

sequences, respectively. Preliminary models are constructed using Genemark-ES with splice junction hints. A 

subset of those predictions consistent with evidence are chosen as a training set for Augustus. Next, Augustus 

predictions are informed by all the extrinsic information from the assembly and alignment phase. Snap is trained 

on the output from Augustus, while Codingquarry is independently trained using the transcriptome assembly. 

Finally, a consensus set is built from the gene predictions, the transcriptome assembly and and protein 

alignments. 

Splice junction and coverage evidence from corrected (and spliced leader sequences 

removed, if present) RNA-Seq reads, exon boundary evidence extracted from a non-redundant, 

combined de novo and genome-guided transcriptome assembly, and CDS hints from protein 

sequence alignments (even if they are sparse) are collected for the gene prediction phase. 

Coverage and splice junctions provide direct sources of evidence for expressed regions and their 

introns (Mortazavi, Williams et al. 2008). The RNA-Seq reads (coverage) are assembled into a 

non-redundant transcriptome, using both a de novo and genome-guided approach, which 
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provides a mostly high-confidence set of reconstructed transcripts (Grabherr, Haas et al. 2011, 

Haas, Papanicolaou et al. 2013) (though the benefit to combining both approaches has not yet 

been definitively shown, to our knowledge). The transcripts are then aligned to the genome, 

using PASA (Haas, Salzberg et al. 2008), to extract exon-intron boundaries, while protein 

sequences are aligned using Spaln (Gotoh 2008) with organism-specific parameters (Iwata and 

Gotoh 2012) to extract hints about coding regions. Genemark (Lomsadze, Burns et al. 2014) is 

trained with splice junctions, Augustus (Stanke, Diekhans et al. 2008) is trained with all 

experimental evidence, Snap (Korf 2004) is trained on the Augustus models, and Codingquarry 

(Testa, Hane et al. 2015) is trained with the assembled transcripts. Though Codingquarry was 

developed for fungi, it can also be used to annotate protists given gene structure similarities, but 

the authors state that it cannot be extended to higher eukaryotes at the moment. A diversity of 

predictors were included given that they each implement generalised HMMs differently which 

could increase the robustness of the model pool compared to generating alternatives from the 

same predictor (as in Snowyowl). The output from each predictor, along with the aligned 

transcriptome assembly and protein sequences, are consolidated into a consensus set through 

the weighted framework implemented in Evidencemodeler (Haas, Salzberg et al. 2008). We 

followed the authors' guideline on assigning weights intuitively (transcript assembly > protein 

alignments >= gene predictions), and empirically derived a weight combination of 50%, 33% 

and 17%, respectively, that consistently generated high-confidence models for the tested 

organisms (data not shown). The 3-2-1 ratio is also more consistent with the goal of reducing 

the impact of any one source of evidence. 

v. Performance of the pipeline 

Improvements in annotation quality were partly achieved by leveraging a more diverse set of 

extrinsic evidence to train gene predictors and to inform the construction of gene models. For 

instance, error-corrected RNA-Seq reads were used as evidence of expressed genome regions 

and of splice junctions, as well as for reconstructing and aligning transcript sequences to infer 

exons. Protein sequences were aligned, using an improved tool that also models intron length 

distributions, to infer putative coding regions. Reducing biases was further achieved by 

including a diversity of gene prediction software, each trained on different sources of evidence. 

Finally, a consensus building step was introduced to distribute the weight of evidence and 

predictions in a way that can prevent one element from dictating the structure of a model. 
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However, organism-specific RNA data is slightly favoured over cross-species protein sequence 

alignments, which is slightly favoured over gene predictions. 

Table 3 indicates that the proposed approach can achieve better sensitivity and 

specificity with respect to the reference compared to other pipelines, with the largest gains 

observable in intron sensitivity and specificity (more than 2% in sensitivity and specificity in 

some cases, e.g. P. falciparum). These results demonstrate that reduction of errors and biases at 

the level of RNA-Seq reads, transcript reconstruction, protein sequence alignment, gene 

predictions, and consensus building yields improved gene models. 

Species Predictions Braker IH Maker Snowyowl 

N crassa gSn (%) 63.28 71.06 64.3 19.1 

N crassa gSp (%) 70.87 74.05 69.1 28.45 

N crassa tSn (%) 60.68 68.05 61.78 18.49 

N crassa tSp (%) 70.87 74.05 69.1 28.45 

N crassa eSn (%) 69.88 77.28 72.52 46.08 

N crassa eSp (%) 85.07 86.13 78.84 47.49 

N crassa iSp (%) 91.83 92.92 82.1 54.54 

N crassa iSn (%) 73.34 81.94 76.91 64.24 

U. maydis gSn (%) 79.67 80.95 73.75 62.51 

U. maydis gSp (%) 82.59 82.89 73.02 74.77 

U. maydis tSn (%) 79.46 80.73 73.55 62.35 

U. maydis tSp (%) 82.59 82.89 73.02 74.77 

U. maydis eSn (%) 79.42 80.08 74.87 63.38 

U. maydis eSp (%) 83.05 84.25 69.25 74.19 

U. maydis iSp (%) 80.84 85.33 59.18 72.12 

U. maydis iSn (%) 76.16 76.4 73.92 64.92 

P. falciparum gSn (%) 81.33 82.64 43.64 - 

P. falciparum gSp (%) 73.42 75.29 27.57 - 

P. falciparum tSn (%) 81.23 82.55 43.59 - 

P. falciparum tSp (%) 73.42 75.29 27.57 - 

P. falciparum eSn (%) 88.66 90.33 66.33 - 

P. falciparum eSp (%) 82.21 85.1 27.54 - 

P. falciparum iSp (%) 85.28 89.78 26.86 - 

P. falciparum iSn (%) 90.42 93.29 78.79 - 

Table 3: Gene (gSn, gSp), transcript (tSn, tSp), exon (eSn, eSp) and intron (iSn, iSp) sensitivity and specificity of 

Braker, Maker, Snowyowl, and our in-house approach (IH), with respect to the reference annotations of U. maydis, 

N. crassa, P. falciparum. Snowyowl was not run on P. falciparum, given that it is not a fungus (-). The highest 

sensitivity and specificity achieved between the pipelines, at each level, are highlighted in bold. 

We also performed pairwise comparisons between gene models predicted by each 

pipeline, and extracted only those models that are also in common with the reference 

(Supplemental Table 8, Table 9, Table 10, Table 11), providing  a direct comparison of True 

Positive accuracy. Most notable is the performance of our tool compared to Braker 

(Supplemental Table 10). Only 10% of the pairwise comparisons had Braker modelled a 

genomic feature either equally or better than our approach. For instance, the intron sensitivity 
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in U. maydis, and the gene and transcript specificity in P. falciparum. A similar trend was 

observed in the pairwise comparison of models from our approach to those of the other pipelines 

(Supplemental Table 11). The gene, transcript and exon specificity of Braker at the loci 

predicted by our approach was slightly higher in P. falciparum. Nonetheless, on average, the 

pairwise analysis further supports the suggestion that the proposed approach is an improvement 

on the known pipelines. 

vi. Annotation is less challenging for intron-poor eukaryotes 

Baker's yeast was chosen as a test for annotation performance on an extreme case where gene 

density is high, with few total introns (280 total) among genes that also have short exons (~117 

exons <25bp), and is well annotated. Table 4 indicates that sensitivity and specificity achieved 

across all the pipelines were similar. Snowyowl achieved the highest specificity, but also the 

lowest sensitivity, suggesting that it generated highly representative models of the reference at 

the cost of an increased False Negative rate—similarly to its models of U. maydis. On the other 

hand, our approach achieved the highest overlap with the reference at every level while still 

obtaining a relatively high Sp. This implies that there may still be a greater incentive to employ 

the proposed approach given its increased capacity to discover novel genes. 

Species Predictions Braker IH Maker Snowyowl 

S. cerevisiae gSn (%) 85.27 88.36 78.42 81.02 

S. cerevisiae gSp (%) 90.41 89.38 82.88 92.06 

S. cerevisiae tSn (%) 85.27 88.36 78.42 81.02 

S. cerevisiae tSp (%) 90.41 89.38 82.88  92.06 

S. cerevisiae eSn (%) 85.48 88.32 77.99 77.99 

S. cerevisiae eSp (%) 89.6 88.93 76.37 92.09 

S. cerevisiae iSp (%) 72.67 79.67 19.64 92.86 

S. cerevisiae iSn (%) 86.43 86.79 51.07 13.93 

Table 4: Gene, transcript and exon sensitivity and specificity of Braker, Maker, our in-house approach, and 

SnowyOwl (fungi-only) gene models with respect to the S. cerevisiae reference. The highest sensitivity and 

specificity achieved between the pipelines, at each level, are highlighted in bold. The pipelines perform similarly 

for an intron-poor organism such as baker’s yeast. 

i. Annotating organisms that are either evolutionarily divergent, or have few 

characterised neighbours, or both 

Arguably most challenging is the annotation of newly sequenced nuclear genomes that are 

divergent, i.e that have no close neighbours to extract meaningful information about coding 

regions. Obviously, Maker and Snowyowl are not optimal choices for such cases given their 

dependence on sequences from homologous proteins (protein-to-genome alignments in Maker, 

and similarity searches of predicted genes in Snowyowl). An alternative is to forgo such 

information, as in Braker. However, protein sequence alignments may still provide valuable 
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insight into gene structure, even if from phylogenetically distant relatives. In such cases, the 

question was, if the consensus building process can still exploit information from protein 

sequence alignments, even if incomplete, without reducing sensitivity and specificity.  

The same weighted consensus-building step applied to N. crassa, S. cerevisiae, P. 

falciparum and U. maydis was applied to annotating N. crassa using the Aspergillus nidulans 

proteome as sole protein sequence input to simulate a phylogenetically distant and/or derived 

organism. Surprisingly, a larger fraction of the reference gene models was relatively closer to 

the Maker protein sequence alignments (Ref-Maker, Maker-Ref) than the alignments in our 

approach (Ref-IH, IH-Ref, Table 5). 

Mapping Count Total Fraction 

Ref-IH 8531 28596 0.298 

Ref-Maker 10183 28550 0.358 

IH-Ref 3288 5163 0.637 

Maker-Ref 5578 7672 0.726 

Table 5: Summary of protein sequence alignment intervals falling within a relative distance of 00.10 (out of 0.50) 

for Maker and our approach tested in N. crassa with a single proteome. Relative distance was computed as a 

function of the reference relative to the protein alignments, and conversely as a function of protein alignments 

relative to the reference. 

Yet, Table 6 indicates that our proposed pipeline is still capable of generating higher 

accuracy models compared to Maker and Snowyowl, as well as compared to the RNA-Seq-only 

Braker (except in exon specificity and intron sensitivity).  

Predictions IH Maker Snowyowl 
gSn (%) 65.3* 63.76 13.53 
gSp (%) 72.19* 62.84 8.74 
tSn (%) 62.61* 61.28 13.12 
tSp (%) 72.19* 63.13 8.74 
eSn (%) 72.24* 69.11 44.05 
eSp (%) 85.23* 77.46 22.83 
iSp (%) 90.8 86.31 32.46 
iSn (%) 75.74* 71.87 71.83 

Table 6: Sensitivity and specificity of the IH, Maker and Snowyowl models with respect to the N. crassa reference 

annotation when the proteome of a single, evolutionarily distant relative is used as protein sequence input. The 

values marked with an asterisk indicate better performance with respect to Braker results of Table 3, values in bold 

indicate the highest specificity and sensitivity between the three listed pipelines. 

This suggests that, despite fewer protein sequence alignments, our approach is better 

capable of modelling the reference. The results further support the hypothesis that lacking 

protein sequence alignments can have a non-trivial impact on Maker's final models given that 

the sensitivity and specificity listed in Table 6 are even lower than those of Figure 6. More 

importantly, it supports the hypothesis that protein sequence data can still be leveraged without 

a significant impact on the consensus models. 
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I. Conclusion 

By evaluating the sensitivity and specificity of gene models at major steps Maker, Braker and 

Snowyowl, it was possible to determine the points where errors or biases could have potentially 

been introduced. By targeting those sources of error, we developed a novel pipeline that 

mitigates the impact those errors thereby improving the consensus gene models. Future 

improvements could be the development of a protein sequence alignment tool that employs a 

(perhaps probabilistic) model that better captures evolutionary signal. Advances in artificial 

intelligence algorithms could also provide alternatives to the popular generalised-HMM 

framework to, for example, also model the phylogenetic component. 

IV. Materials & Methods 

a. Data 

The data used in this study are all publicly available at https://www.ncbi.nlm.nih.gov/. 

Neurospora crassa GenBank assembly accession: GCA_000182925.2 (and corresponding 

annotations); RNA-Seq read accessions: SRR5000486, SRR5000484, SRR5000482. 

Saccharomyces cerevisiae GenBank assembly accession: GCA_000146045.2; RNA-Seq read 

accessions: SRR3396393, SRR3396392, SRR3396391, SRR3396389, SRR3396388, 

SRR3396387, SRR3396386, SRR3396385, SRR3396384, SRR3396382, SRR3396381. 

Ustilago maydis GenBank assembly accession: GCA_000328475.2; RNA-Seq read accessions: 

SRR5235721. Plasmodium falciparum GenBank assembly accession: 

GCA_000002765.1; RNA-Seq read accessions: SRR638980, SRR638979. 

b. RNA-Seq read cleaning 

The RNA-Seq read adapters are trimmed, followed by a Phred quality score trimming using the 

tool Trimmomatic v. 0.35 (Bolger, Lohse et al. 2014). A separate fasta file containing the known 

adapter sequences was passed to the software. Sequences were trimmed if they fell below the 

seed mismatch rate of 3bp and palindrome clipping threshold of 30bp. Secondly, the leading 

and trailing bp were trimmed if they fell below a Phred score of 3. A minimum score of 5 over 

a 4bp sliding window was kept for the internal bp calls. The resulting read pairs were kept if 

each of their sequences were greater than 20b. If one of the read pairs were dropped because it 

did not meet the minimum criteria, then its orphaned pair was labelled as a single-end read. If 

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5235721
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5235721
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neither of the reads in a pair met minimum criteria, then they were rejected. The tool Rcorrector 

(Song and Florea 2015), version 1.0.2, was run on the adapter- and quality-trimmed reads to 

correct both random sequencing error inherent to the sequencing technology as well as potential 

residues of adapters left over from the trimming process. A k-mer window of 32 with a 

maximum of one correction per window was used. Potential PhiX spike-ins were removed by 

mapping reads to the PhiX genome with bowtie2 (Langmead, Trapnell et al. 2009), then 

extracting hits with an in-house perl script (extract-reads). 

c. RNA-Seq read mapping 

The adapter- and quality-trimmed reads were mapped to the genome using STAR v. 2.5.2b 

(Dobin, Davis et al. 2013). A genome assembly fasta file index was built by running STAR in 

‘--genomeGenerate’ mode with ‘—runThreadN 8’ and ‘—limitGenomeGenerateRAM 31’. 

Next, the paired-end reads were locally mapped to the genome, with a minimum and maximum 

intron length of 20 and 1000, respectively. The ‘--outSJFilterIntronMaxVsReadN’ switch was 

invoked with parameters 100, 200, 500 and 1000 to limit the maximum splice junction size 

supported by 1, 2, 3 and >=4 reads, respectively. The output BAM file was sorted by coordinate 

with ‘--outSAMstrandField intronMotif’ to append a field containing the intron motif, as well 

as the formatting parameters ‘--outSAMattributes Standard’ and ‘--outSAMattrIHstart 0’ for 

downstream compatibility. Coverage information from the BAM file was extracted, using the 

bam2wig program packaged with the Augustus gene prediction software and converted to gff 

format. 

d. De novo and genome-guided transcriptome assembly 

The Trinity transcriptome assembly software version 2.1.0 (Grabherr, Haas et al. 2011) was run 

in both de novo mode and genome-guided mode. The resulting BAM file output from the STAR 

(Dobin, Davis et al. 2013) read mapping was passed to the genome-guided mode of Trinity, with 

the same maximum intron limit as STAR and a minimum contig length of 90 to potentially 

capture small proteins, and all other parameters set to default. The de novo procedure was run 

with the same default parameters, except that the cleaned paired-end reads in fastq format are 

used instead of the mapped reads. 
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e. Repeat region masking 

Repeat masking is done with RepeatMasker version 4.0.6 (Smit, Hubley et al.) using RepBase 

release 2015-08-07 (Jurka, Kapitonov et al. 2005), which is a library of known simple and 

complex eukaryotic repeats. Second, a de novo simple repeat library was constructed of 10-mers 

appearing >150 times in the genome was constructed using RepeatScout v. 1.0.5 (Price, Jones 

et al. 2005) and subsequently masked by running a second round of RepeatMasker. Third, 

transposable elements were identified using TransposonPSI v. 08222010 (unpublished, 

http://transposonpsi.sourceforge.net/) which employs a PSI-Blast (Altschul, Madden et al. 1997) 

identification of transposable element profiles shipped with the software. The output from the 

three repeat-finding tools was clustered and combined at >= 70% sequence identity using 

Usearch version 7.0.1090 (Edgar 2010), yielding an organism-specific repeat library. The final 

library served as input to RepeatMasker to convert upper case nucleotides in repetitive 

sequences to lower case (soft-masked) in the genome fasta file. 

f. Spliced alignment of transcript and/or protein sequences 

Transcripts, assembled from the genome-guided and de novo approaches, are first trimmed of 

poly-adenylated regions using seqclean (unpublished, 

https://sourceforge.net/projects/seqclean/) and aligned to the genome with the Program to 

Assemble Spliced Alignments (PASA, (Haas 2003). PASA uses Blat (Kent 2002) and Gmap 

(Wu and Watanabe 2005) to align transcripts, and then employs a dynamic programming 

algorithm to refine aligned intervals at exon/intron junctions. Only transcripts whose sequence 

identity to a genomic region was >=95% over >=95% of its sequence length were kept. A 

comprehensive transcriptome in gff format was created by clustering aligned transcripts from 

both assemblies that overlapped >=30% of their sequence. Protein sequences from the ten close 

neighbours were aligned to the genome with Spaln version 2.2.2e (Gotoh 2008) using the default 

parameters for aligning crossspecies proteins to an indexed genome file as described in the 

vignette (http://www.genome.ist.i.kyotou.ac.jp/~aln_user/spaln/index.html#Seq). 

g. Evidence-based gene prediction 

First, splice junctions inferred from the STAR mapping were supplied to GeneMark v. 4.32 

(Lomsadze, Burns et al. 2014) for intron-aware, organism-specific self-training. The GeneMark 

models whose coding regions are fully supported by either a predicted mRNA (using 

http://transposonpsi.sourceforge.net/
https://sourceforge.net/projects/seqclean/
http://www.genome.ist.i.kyoto-u.ac.jp/~aln_user/spaln/index.html
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TransDecoder https://github.com/TransDecoder/TransDecoder/wiki) or protein sequence 

alignment were selected to train Augustus v. 3.2.1 (Stanke, Diekhans et al. 2008). The splice 

junction gff from STAR, the gff containing coverage information and the spliced alignments of 

transcripts were used as evidence to guide Augustus predictions. The Augustus gene models 

were used to train the Snap (Korf 2004) gene predictor (release 2013-11-29), as outlined in the 

manual shipped with the software (http://korflab.ucdavis.edu/Software/snap-2013-11-

29.tar.gz). CodingQuarry v2.0 (Testa, Hane et al. 2015) was trained on the assembled and 

aligned transcripts, and run on the genome assembly. 

h. Gene model construction by consolidating evidence and predictions 

Evidencemodeler (Haas, Salzberg et al. 2008) was incorporated into the pipeline to consolidate 

the alignment information from transcripts, proteins and gene predictions into consensus gene 

models. The procedure for Evidencemodeler was performed as suggested by the developers 

(http://evidencemodeler.github.io/), except that a weighting scheme file was created that 

specified 2 for spliced protein alignments, 1 for all gene predictions and 3 for the transcriptome 

assembly. 

V. Supplemental data 

Species Pipeline Count Prediction 

N. crassa Maker 281 Complete BUSCOs 

N. crassa Maker 6 Complete and single-copy 

N. crassa Maker 275 Complete and duplicated 

N. crassa Maker 1 Fragmented BUSCOs 

N. crassa Maker 8 Missing BUSCOs 

N. crassa Maker 290 Total BUSCOs 

N. crassa IH 114 Complete BUSCOs 

N. crassa IH 19 Complete and single-copy 

N. crassa IH 95 Complete and duplicated 

N. crassa IH 121 Fragmented BUSCOs 

N. crassa IH 55 Missing BUSCOs 

N. crassa IH 290 Total BUSCOs 

S. cerevisiae Maker 278 Complete BUSCOs 

S. cerevisiae Maker 8 Complete and single-copy 

S. cerevisiae Maker 270 Complete and duplicated 

S. cerevisiae Maker 3 Fragmented BUSCOs 

S. cerevisiae Maker 9 Missing BUSCOs 

S. cerevisiae Maker 290 Total BUSCOs 

S. cerevisiae IH 265 Complete BUSCOs 

S. cerevisiae IH 28 Complete and single-copy 

S. cerevisiae IH 237 Complete and duplicated 

S. cerevisiae IH 5 Fragmented BUSCOs 

S. cerevisiae IH 20 Missing BUSCOs 

S. cerevisiae IH 290 Total BUSCOs 

http://korflab.ucdavis.edu/Software/snap-2013-11-29.tar.gz
http://korflab.ucdavis.edu/Software/snap-2013-11-29.tar.gz
http://evidencemodeler.github.io/
http://evidencemodeler.github.io/
http://evidencemodeler.github.io/
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U. maydis Maker 286 Complete BUSCOs 

U. maydis Maker 24 Complete and single-copy 

U. maydis Maker 262 Complete and duplicated 

U. maydis Maker 3 Fragmented BUSCOs 

U. maydis Maker 1 Missing BUSCOs 

U. maydis Maker 290 Total BUSCOs 

U. maydis IH 234 Complete BUSCOs 

U. maydis IH 38 Complete and single-copy 

U. maydis IH 196 Complete and duplicated 

U. maydis IH 35 Fragmented BUSCOs 

U. maydis IH 21 Missing BUSCOs 

U. maydis IH 290 Total BUSCOs 

P. falciparum Maker 94 Complete BUSCOs 

P. falciparum Maker 14 Complete and single-copy 

P. falciparum Maker 80 Complete and duplicated 

P. falciparum Maker 7 Fragmented BUSCOs 

P. falciparum Maker 202 Missing BUSCOs 

P. falciparum Maker 303 Total BUSCOs 

P. falciparum IH 218 Complete BUSCOs 

P. falciparum IH 4 Complete and single-copy 

P. falciparum IH 214 Complete and duplicated 

P. falciparum IH 10 Fragmented BUSCOs 

P. falciparum IH 75 Missing BUSCOs 

P. falciparum IH 303 Total BUSCOs 

Table 7: Summary of the BUSCO results on the protein sequence alignments of Maker and the proposed approach. 

Species Pipeline Predictions Braker IH Maker Snowyowl 

N crassa Maker gSn (%) 69.2 77.07 70.38 20.56 

N crassa Maker gSp (%) 71.45 76.54 71.11 32.82 

N crassa Maker tSn (%) 65.82 73.21 67.07 19.76 

N crassa Maker tSp (%) 71.45 76.54 71.11 32.82 

N crassa Maker eSn (%) 75.62 83.3 78.67 49.24 

N crassa Maker eSp (%) 85.47 88.05 81.36 51.72 

N crassa Maker iSp (%) 92.01 94.11 84.68 58.4 

N crassa Maker iSn (%) 79 88.02 82.92 68.51 

S. cerevisiae Maker gSn (%) 89.27 91.88 83.13 85.19 

S. cerevisiae Maker gSp (%) 91.82 92.43 87.08 93.06 

S. cerevisiae Maker tSn (%) 89.27 91.88 83.13 85.19 

S. cerevisiae Maker tSp (%) 91.82 92.43 87.08 93.06 

S. cerevisiae Maker eSn (%) 89.36 91.89 82.75 82.12 

S. cerevisiae Maker eSp (%) 91.06 92.21 81.59 93.27 

S. cerevisiae Maker iSp (%) 74.76 83.51 23.83 97.5 

S. cerevisiae Maker iSn (%) 87.97 87.59 53.76 14.66 

U. maydis Maker gSn (%) 82.41 83.67 76.39 64.41 

U. maydis Maker gSp (%) 84.03 84.75 79.41 80.14 

U. maydis Maker tSn (%) 82.18 83.44 76.18 64.23 

U. maydis Maker tSp (%) 84.03 84.75 79.41 80.14 

U. maydis Maker eSn (%) 82.63 83.29 78.07 65.7 

U. maydis Maker eSp (%) 84.68 86.14 76.57 81.66 

U. maydis Maker iSp (%) 82.9 87.09 67.44 84.18 

U. maydis Maker iSn (%) 80.37 80.48 78.19 68.23 

P. falciparum Maker gSn (%) 81.64 82.8 44.13 - 

P. falciparum Maker gSp (%) 81.69 81.65 41.27 - 

P. falciparum Maker tSn (%) 81.55 82.71 44.08 - 

P. falciparum Maker tSp (%) 81.69 81.65 41.27 - 

P. falciparum Maker eSn (%) 88.86 90.47 66.84 - 

P. falciparum Maker eSp (%) 90.28 89.76 47.18 - 

P. falciparum Maker iSp (%) 92.83 92.94 48.4 - 

P. falciparum Maker iSn (%) 90.54 93.36 79.2 - 

Table 8: Sensitivity and specificity of the Maker models that overlap with the reference, compared to the models 

of the other pipelines at the same genomic loci. The highest sensitivity and specificity achieved between the 

pipelines, at each level, are highlighted in bold. 
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Species Pipeline Predictions Braker IH Maker Snowyowl 

N crassa Snowyowl gSn (%) 62.5 71.59 63.78 27.05 

N crassa Snowyowl gSp (%) 67.22 72.87 67.71 32.26 

N crassa Snowyowl tSn (%) 59.38 67.81 60.7 25.73 

N crassa Snowyowl tSp (%) 67.22 72.87 67.71 32.26 

N crassa Snowyowl eSn (%) 71.09 79.62 74.37 60.47 

N crassa Snowyowl eSp (%) 84.1 86.81 80.3 51.21 

N crassa Snowyowl iSp (%) 91.42 93.61 84.03 57.76 

N crassa Snowyowl iSn (%) 75.23 84.9 79.24 80.75 

S. cerevisiae Snowyowl gSn (%) 90.57 91.84 83.4 91.96 

S. cerevisiae Snowyowl gSp (%) 91.59 92.04 88.04 92.41 

S. cerevisiae Snowyowl tSn (%) 90.57 91.84 83.4 91.96 

S. cerevisiae Snowyowl tSp (%) 91.59 92.04 88.04 92.41 

S. cerevisiae Snowyowl eSn (%) 90.5 92.24 83.21 90.58 

S. cerevisiae Snowyowl eSp (%) 90.81 92.33 82.21 92.87 

S. cerevisiae Snowyowl iSp (%) 66.84 80.92 17.81 97.5 

S. cerevisiae Snowyowl iSn (%) 85.62 84.25 58.9 26.71 

U. maydis Snowyowl gSn (%) 85.17 85.68 78.07 79.96 

U. maydis Snowyowl gSp (%) 85.85 86.2 80.82 79.93 

U. maydis Snowyowl tSn (%) 84.97 85.48 77.89 79.78 

U. maydis Snowyowl tSp (%) 85.85 86.2 80.82 79.93 

U. maydis Snowyowl eSn (%) 85.22 85.34 79.71 80.38 

U. maydis Snowyowl eSp (%) 86.67 87.73 77.97 81.47 

U. maydis Snowyowl iSp (%) 85.98 89.33 69.42 83.93 

U. maydis Snowyowl iSn (%) 83.24 83.03 79.92 80.55 

Table 9: Sensitivity and specificity of the Snowyowl models that overlap with the reference, compared to the 

models of the other pipelines at the same genomic loci. The highest sensitivity and specificity achieved between 

the pipelines, at each level, are highlighted in bold. 

Species Pipeline Predictions Braker IH Maker Snowyowl 

N crassa Braker gSn (%) 71.84 78.66 71.31 21.01 

N crassa Braker gSp (%) 71.27 77.44 72.54 33.22 

N crassa Braker tSn (%) 68.21 74.59 67.87 20.17 

N crassa Braker tSp (%) 71.27 77.44 72.54 33.22 

N crassa Braker eSn (%) 78.57 84.86 79.52 49.95 

N crassa Braker eSp (%) 85.33 88.63 82.38 51.81 

N crassa Braker iSp (%) 91.96 94.53 85.59 58.37 

N crassa Braker iSn (%) 82.19 89.7 84.01 69.52 

S. cerevisiae Braker gSn (%) 90.56 90.89 81.81 85.06 

S. cerevisiae Braker gSp (%) 91.09 91.13 87.48 92.38 

S. cerevisiae Braker tSn (%) 90.56 90.89 81.81 85.06 

S. cerevisiae Braker tSp (%) 91.09 91.13 87.48 92.38 

S. cerevisiae Braker eSn (%) 90.71 91.64 81.39 82.17 

S. cerevisiae Braker eSp (%) 90.36 91.71 82.11 92.84 

S. cerevisiae Braker iSp (%) 74.69 84.23 24.78 97.5 

S. cerevisiae Braker iSn (%) 89.96 87.36 53.16 14.5 

U. maydis Braker gSn (%) 84.15 84.96 76.96 65.59 

U. maydis Braker gSp (%) 83.97 84.85 80.26 80.34 

U. maydis Braker tSn (%) 83.92 84.73 76.74 65.41 

U. maydis Braker tSp (%) 83.97 84.85 80.26 80.34 

U. maydis Braker eSn (%) 84.92 84.94 78.83 67.24 

U. maydis Braker eSp (%) 84.56 86.18 77.23 82.09 

U. maydis Braker iSp (%) 82.62 87.02 68.03 85.22 

U. maydis Braker iSn (%) 83.82 82.93 79.87 70.7 

P. falciparum Braker gSn (%) 82.02 82.95 43.91 - 

P. falciparum Braker gSp (%) 81.63 81.63 41.36 - 

P. falciparum Braker tSn (%) 81.92 82.85 43.86 - 

P. falciparum Braker tSp (%) 81.63 81.63 41.36 - 

P. falciparum Braker eSn (%) 89.29 90.6 66.55 - 

P. falciparum Braker eSp (%) 90.22 89.8 47.26 - 

P. falciparum Braker iSp (%) 92.79 93.05 48.54 - 

P. falciparum Braker iSn (%) 91 93.51 79.05 - 

Table 10: Sensitivity and specificity of the Braker models that overlap with the reference, compared to the models 

of the other pipelines at the same genomic loci. The highest Sensitivity and specificity achieved between the 

pipelines, at each level, are highlighted in bold. 
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Species Pipeline Predictions Braker IH Maker Snowyowl 

N crassa IH gSn (%) 68.93 77.29 69.5 20.44 

N crassa IH gSp (%) 71.35 75.86 70.76 32.74 

N crassa IH tSn (%) 65.61 73.45 66.31 19.67 

N crassa IH tSp (%) 71.35 75.86 70.76 32.74 

N crassa IH eSn (%) 75.46 83.55 77.96 49.15 

N crassa IH eSp (%) 85.38 87.63 80.9 51.66 

N crassa IH iSp (%) 91.99 93.94 84.26 58.27 

N crassa IH iSn (%) 78.93 88.27 84.44 68.44 

S. cerevisiae IH gSn (%) 88.4 90.76 81.1 83.55 

S. cerevisiae IH gSp (%) 91.12 90.91 86.93 92.4 

S. cerevisiae IH tSn (%) 88.4 90.76 81.1 83.55 

S. cerevisiae IH tSp (%) 90.42 90.91 86.93 92.4 

S. cerevisiae IH eSn (%) 75.08 91.5 80.66 80.68 

S. cerevisiae IH eSp (%) 86.69 91.42 81.45 92.86 

S. cerevisiae IH iSp (%) 83.86 83.22 23.83 97.5 

S. cerevisiae IH iSn (%) 84.28 87.41 51.44 14.03 

U. maydis IH gSn (%) 83.86 85.58 77.19 65.59 

U. maydis IH gSp (%) 84.28 84.68 78.6 80.46 

U. maydis IH tSn (%) 83.62 85.34 76.98 65.4 

U. maydis IH tSp (%) 84.28 84.68 78.6 80.46 

U. maydis IH eSn (%) 84.19 85.42 78.88 66.97 

U. maydis IH eSp (%) 84.81 86.07 75.62 82.25 

U. maydis IH iSp (%) 82.76 87 66.57 85.48 

U. maydis IH iSn (%) 82.18 83.06 79.34 69.81 

P. falciparum IH gSn (%) 81.72 83.1 43.86 - 

P. falciparum IH gSp (%) 81.69 81.62 41.36 - 

P. falciparum IH tSn (%) 81.63 83.01 43.81 - 

P. falciparum IH tSp (%) 81.69 81.62 41.36 - 

P. falciparum IH eSn (%) 88.95 90.7 66.53 - 

P. falciparum IH eSp (%) 90.3 89.71 47.33 - 

P. falciparum IH iSp (%) 92.88 92.9 48.59 - 

P. falciparum IH iSn (%) 90.65 93.55 78.95 - 

Table 11: Sensitivity and specificity of the IH models that overlap with the reference, compared to the models of 

the other pipelines at the same genomic loci. The highest sensitivity and specificity achieved between the pipelines, 

at each level, are highlighted in bold. 
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3. General discussion 

As outlined in the previous manuscript section, eukaryotic genome annotation continues to be a 

challenging task—exacerbated for species that are phylogenetically distant from model 

organisms. Despite the substantial improvements of our pipeline, which builds on three of the 

currently most popular published procedures, is has not completely reached the level of an 

experienced human curator (e.g., when comparing with the expert annotation by our collaborator 

Dr. M.W. Gray, of the set of mitochondrial genes in the jakobid nuclear genome, Andalucia 

godoyi (unpublished results; see also below)).  Possible improvements for our new procedure 

became evident from comparative benchmarking results of the three current pipelines, 

determining the stages at which respective shortcomings are introduced. Our new approach 

encompasses RNA-Seq data processing and pre-assembly, and its integration into a genome 

annotation pipeline that makes use of a similar toolset and workflow as the benchmarked 

pipelines, but instead introduces a weighting of the various sources of evidence. Novel 

approaches, such as gene-transcript alignment methods based on the more sensitive HMM-

method are still under development, i.e. the replacement of Exonerate that uses Blast-like 

methodology. The integration into our current pipeline is expected to increase the validity of 

gene models by a large margin. 

 Intron positions tend to be conserved over large evolutionary distances (Irimia and Roy 

2008), yet such information is underexploited in current annotation pipelines (Hoff and Stanke 

2015). Recently, a gene-structure-aware (GSA) multiple protein sequence alignment (MPSA) 

approach has been developed for post-annotation validation of gene models (Gotoh, Morita et 

al. 2014). A MPSA is computed from translated sequences of genes in the same family, and 

then supplemented with information on the genomic position and phase of introns of each 

translated sequence. Thus, a query gene model (belonging to the same family) can be assessed 

by including it in the GSA-MPSA and also computing its intron distribution and gap sizes 

relative to the other sequences. Assuming that long insertions and deletions are uncommon in 

closely related protein sequences (Rogozin, Carmel et al. 2012), and assuming the majority of 

intron positions are concordant in the MPSA, then the method can provide automated 

assessments and corrections of gene models. The method has been tested on the cytochrome 

P450 and ribosomal proteins from 47 plant genomes and has revealed that almost 50% of those 

gene models are either fragmented or present in unfinished areas of their respective genome 
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assemblies (Gotoh, Morita et al. 2014). In addition, any of the current intron prediction 

procedures have another major flaw – the use of a single intron splice site consensus (extended 

versions of the predominant GT – AG consensus), despite the recurrent presence of two distinct 

motifs (GT – AG plus a ‘minor’ AT – AC motif). This is currently handled by inferring a splice 

site consensus based on a mixture of both motifs, apparently biasing against recognition of 

introns with the less frequent minor motif. A software development that recognizes more than 

one set of consensus splice junctions would be highly desirable, although difficult to implement. 

An approach to further strengthening extrinsic evidence from generalised HMMs is to 

include protein signature information derived from MPSAs of protein families, as implemented 

in the protein profile extension (PPX) of Augustus (Keller, Kollmar et al. 2011). While the 

method relies on correct a priori annotations, similarly to above, it can provide a complementary 

source of evidence that can model conserved regions in protein sequences of neighbouring 

organisms. The PPX models protein families from ungapped and highly conserved sections of 

a MPSA in a position-specific frequency matrix. The PPX computes similarity scores of all gene 

models (emitted from a normal run of Augustus) to protein profiles. A bonus is applied to gene 

models that share similarity with the profile. The authors reported >20% improvement in 

annotating the dynein heavy chain family in six vertebrate genomes compared to predictions 

from the same software without the profiles (Keller, Kollmar et al. 2011). However, a substantial 

challenge is that such an approach would require genome-wide protein family profile 

construction and validation. 

Finally, a large-scale and rapid comparative approach to simultaneous structural genome 

annotation of multiple closely related organisms has recently been developed in light of the 

rapidly growing number of available genome sequences. The approach exploits negative 

selection and sequence conservation in multiple genome sequence alignments to construct gene 

models (using Augustus) (König, Romoth et al. 2016). Concordant gene structures among the 

input sequences tend to be preferred, but structures with missing introns or exons can also be 

accepted depending on the species tree. The authors report improved accuracy in gene models 

for 12 different species of Drosophila simultaneously compared to the gene models 

independently built for each genome (König, Romoth et al. 2016). Its use case may be somewhat 

limited given that it requires multiple closely related genomes. 
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4. Future directions 

The annotation pipeline developed in this project was based on mitigating errors in current 

pipelines. The benchmarking results suggest that some improvements have been achieved in 

gene, transcript, exon and intron modelling compared to the other three current pipelines. 

Nonetheless, the results also suggest that further (although more difficult to reach) 

improvements can still be made, as automatic procedures are not yet at the level of manual 

curation. One avenue lies in further exploiting the conservation of introns in multiple protein 

sequence alignments to assess and correct gene models. In combination with the above-

mentioned possible improvement by using more than one set of splice junction motifs, this may 

turn out to be a major step forward. A second avenue involves integrating protein profiles from 

multiple sequence alignments into generalised HMM prediction algorithms. Thirdly, a 

comparative gene-finding approach can be implemented from multiple genome alignments of 

closely neighbouring organisms whereby sequence conservation can be exploited. Ultimately, 

the improvements previously discussed all help build a more solid foundation for downstream 

analyses.
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