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Résumé 

Tac1p et Mrr1p sont des régulateurs transcriptionnels importants impliqués dans la résistance 

aux azoles chez la levure Candida albicans. Des mutations gain de fonction dans ces 

régulateurs sont responsables de la surexpression constitutive des gènes impliqués dans la 

résistance aux azoles chez plusieurs isolats cliniques de C. albicans. Ces deux régulateurs 

peuvent également être activés de façon transitoire par certains composés chimiques. En se 

basant sur des résultats qui suggèrent que ces deux voies pourraient interagir, nous avons 

étudié si Mrr1p est impliqué dans la voie transcriptionnelle médiée par Tac1p. Tout d'abord, 

nous avons étudié si Mrr1p fonctionne dans la régulation positive transitoire de CDR1 et TAC1 

induite par la fluphénazine, ces deux gènes étant des cibles de Tac1p et codant pour des 

effecteurs importants dans la résistance aux azoles. Les résultats suggèrent que Mrr1p joue un 

rôle complexe dans ce processus et pourrait supprimer l'induction transitoire de TAC1. 

Deuxièmement, nous avons étudié le rôle de Mrr1p dans la régulation positive constitutive de 

CDR1 et TAC1 médiée par une forme hyper-active de Tac1p dans un isolat clinique résistant 

aux azoles bien caractérisé, appelé 5674. Nous avons constaté que Mrr1p contribue à la 

résistance de 5674 au fluconazole, mais la délétion de MRR1 dans cette souche n'a aucun 

impact sur les niveaux d'ARNm de CDR1 et TAC1. De plus, nous avons également montré que 

les transcrits de TAC1 dans la souche 5674 ont une longue région 5' non-traduite, mais que 

Mrr1p n'est pas impliquée dans la production de l'ARNm TAC1 longue. Étant donné que 
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certains de ces résultats sont préliminaires, d'autres expériences seront nécessaires pour 

confirmer ces résultats et pour aborder les questions restantes. 

 

Mots clés: Candida albicans, résistance aux azoles, recombinaison homologue, le facteur de 

transcription, TAC1, MRR1, fluphénazine, régulation positive 
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Abstract 

Tac1p and Mrr1p are both important transcriptional regulators of azole resistance in the yeast 

Candida albicans. Gain-of-function mutations in these factors are responsible for the 

constitutive upregulation of azole resistance genes in several C. albicans clinical isolates. Both 

factors can also be transiently activated by specific chemical compounds. Based on the results 

suggesting that these two pathways may interact, we studied whether Mrr1p is involved in the 

Tac1p-mediated transcriptional pathway. First, we investigated whether Mrr1p functions in 

fluphenazine-induced transient upregulation of CDR1 and TAC1, both of which are Tac1p 

target genes and encode important effectors of azole resistance. The results suggest that Mrr1p 

plays a complicated role in this process and might suppress the transient induction of TAC1. 

Second, we studied the role of Mrr1p in hyperactive Tac1p-mediated constitutive upregulation 

of CDR1 and TAC1 as well as the resulting azole resistance in a well-characterized 

azole-resistant clinical isolate 5674. We found that Mrr1p contributes to the resistance of 

isolate 5674 to fluconazole, but that the deletion of MRR1 in isolate 5674 had no impact on the 

mRNA levels of CDR1 and TAC1. Moreover, we have also shown that the TAC1 transcripts in 

isolate 5674 have a long 5’ untranslated region and that Mrr1p is not implicated in producing 

this long TAC1 mRNA. Since some of the results are preliminary, further experiments will be 

needed to confirm these results and address remaining questions. 
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1. Introduction 

1.1. Candida albicans 

Candida albicans is one of the major human fungal pathogens. It is usually a commensal yeast, 

which can be found on the skin and mucosal surfaces of most healthy individuals. However, it 

can sometimes cause superficial mucosal infections, including vaginal and oral thrush [1]. 

Besides, it is also capable of leading to severe systemic infections, especially in 

immunocompromised individuals, such as HIV-infected patients and patients undergoing 

intensive chemotherapy treatment [2]. 

C. albicans is polymorphic and able to grow in three different forms: yeast, 

pseudohyphae and true hyphae [3]. The morphological changes between different forms occur 

when favoring environmental cues exist. The yeast-to-hyphae transition, which is a critical 

determinant of virulence of C. albicans, has been widely studied [4, 5]. C. albicans undergoes 

hyphal formation in response to many environmental signals, including, but not limited to, 

neutral pH, the presence of serum, 5% CO2, the presence of GlcNAc and lack of nitrogen 

source [6]. 

C. albicans is predominantly diploid and has eight pairs of chromosomes. It is distantly 

related to Saccharomyces cerevisiae, the well-studied budding yeast. Although the genome of 

C. albicans was sequenced more than ten years ago, there are still a large number of 

uncharacterized genes. Thus people tend to do comparative analyses with S. cerevisiae as well 
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as other relevant fungal species to speculate on the possible function of a C. albicans gene 

before performing specific verification experiments. The C. albicans genome shows a large 

extent of plasticity, including loss of heterozygosity, aneuploidy and gross chromosomal 

rearrangements, which are associated with the cellular responses of C. albicans to many 

different kinds of environmental stresses and may lead to adaptive changes (e.g. antifungal 

resistance) that are critical for its survival under distinct unfavorable conditions [7-10]. 

 

1.2. Antifungal drugs to treat C. albicans infections 

Several antifungal drugs are currently available for the treatment of C. albicans infections, 

among which four classes of drugs are predominantly used: polyenes, pyrimidine analogues, 

echinocandins and azoles. They are distinct from each other in terms of formulations, 

modes-of-action, toxicities, pharmacokinetics and bioavailabilities [11].  

The polyenes are natural amphipathic antimycotics, which were the first applicable 

antifungals for clinical use [12]. The polyenes bind to ergosterol, the major sterol of fungal 

cell membranes, causing expansion of the lipid bilayer and thereby forming pores in the cell 

membrane [13]. The change in the cell membrane structure facilitates the diffusion of many 

small molecules across the cell membrane, which in turn results in fungal death [13]. The three 

main polyenes are nystatin, natamycin and amphotericin B, among which amphotericin B and 

its lipid formulations are used to treat severe systemic fungal infections [11, 12]. 
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The only representative of the pyrimidine analogues is 5-fluorocytosine (5-FC), which is 

soluble in water and thus exhibits good oral bioavailability [11]. In C. albicans cells, 5-FC is 

deaminated by cytosine deaminase to produce 5-fluorouracil, which is capable of inhibiting 

the biosynthesis of DNA and RNA and thereby exerts antifungal activities [14]. 5-FC is 

mainly used in combination with amphotericin B to treat systemic candidiasis and rarely used 

as monotherapy due to the high frequency of the formation of resistance [14, 15].  

The echinocandins are the most recent antifungal agents. They are semisynthetic 

lipopeptide molecules, which inhibit β-1,3-D-glucan synthase and thereby block the 

biosynthesis of β-1,3-D-glucan, an essential component of the fungal cell wall [16, 17]. As a 

result, fungal cells undergo cell wall damage and eventually cell death [11]. Micafungin, 

caspofungin and anidulafungin are the three major echinocandins. They need to be 

administered intravenously as they show very limited oral bioavailability [11]. Besides, the 

echinocandins are primarily used to treat invasive Candida infections and have good efficacy 

and safety profiles [18]. Although cases of echinocandin resistance have been increasingly 

documented, the frequency of resistance is still relatively low among most Candida species 

[19]. 

Azoles were first developed several decades ago and are nowadays the most widely used 

antifungal drugs all over the world. They are synthetic five-membered heterocyclic 

compounds, which are capable of inhibiting the cytochrome P450 lanosterol 14α-demethylase 

that is essential for the biosynthesis of ergosterol and thereby block the production of 



4 
 

ergosterol and lead to the accumulation of the toxic sterol intermediate 14α-methylergosta-8, 

24(28)-dien-3β,6α-diol, which is able to cause fungal cell growth arrest [20-22]. The azole 

drugs are categorized into two groups: the triazoles and the imidazoles. The triazole group 

comprises of itraconazole, fluconazole, posaconazole and voriconazole, which are used for the 

treatment of both superficial and systemic candidiasis; the imidazole group includes 

miconazole, ketoconazole and clotrimazole, which are predominantly used to treat skin and 

mucosal Candida infections [11, 23].  

 

1.3. Azole resistance in C. albicans 

Due to the extensive clinical application as well as the fungistatic nature of the azole drugs and 

the fast adaptation capability of C. albicans, azole resistance in C. albicans has become a 

growing issue in many countries. Hence, researchers have been trying to uncover the 

mechanisms by which C. albicans becomes resistant to azoles.  

 

1.3.1. Azole resistance effectors in C. albicans 

1.3.1.1. Cdr1p, Cdr2p and Mdr1p 

There are a number of efflux pumps in C. albicans, but only three of them have so far been 

found to be involved in azole resistance: Cdr1p, Cdr2p and Mdr1p.  
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Cdr1p and Cdr2p belong to the ATP-binding cassette (ABC) transporter family and 

share high sequence homology [24]. In the wild-type C. albicans cells that are susceptible to 

azoles, the CDR1 gene is usually expressed at a low basal level conferring a certain level of 

tolerance to azoles, but the CDR2 gene is not detectably expressed [23, 25, 26]. The 

concomitant overexpression of CDR1 and CDR2 has been observed in many azole-resistant 

clinical isolates of C. albicans, in which the deletion of CDR1 and CDR2 leads to azole 

hypersusceptibility [27, 28]. In addition, it has been shown that Cdr1p plays a more important 

role than Cdr2p in conferring azole resistance [27, 29]. Finally, the expression of CDR1 and 

CDR2 can be transiently upregulated in the presence of specific inducing compounds, 

including steroids, rhodamine and fluphenazine [30]. 

Mdr1p belongs to a different class of efflux pumps, the major facilitator superfamily 

(MFS) transporters, which transport their substrates by using the electrochemical gradient of 

protons across the cell membrane [31]. Unlike Cdr1p and Cdr2p that are capable of 

transporting many different types of azole drugs, Mdr1p appears to specifically transport 

fluconazole out of C. albicans cells [23]. The MDR1 gene is not expressed at a detectable level 

in wild-type fluconazole-susceptible C. albicans strains, but is overexpressed in many 

fluconazole-resistant clinical isolates [32-35]. When C. albicans cells are treated with benomyl 

or hydrogen peroxide, MDR1 gets transiently overexpressed [36].  
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1.3.1.2. Erg11p 

In C. albicans, the ERG11 gene encodes the enzyme lanosterol 14α-demethylase, which is the 

direct target of azoles. Mutations in ERG11 can sometimes lead to alterations in the structure 

of this enzyme, thereby preventing the binding of azoles while not affecting its normal 

enzymatic activity [32, 37-40]. In some azole-resistant C. albicans clinical isolates, the 

contribution of specific ERG11 mutations to azole resistance has been confirmed by different 

methods [38, 39, 41-44]. Besides, it has been reported in many azole-resistant clinical isolates 

of C. albicans that elevated expression of ERG11 is responsible for the resistance to azoles, as 

higher amounts of azoles are thus required to inhibit Erg11p sufficiently [32, 45].  

 

1.3.1.3. Erg3p 

The ERG3 gene encodes a sterol ∆5, 6-desaturase, which is also an essential component of the 

ergosterol biosynthetic pathway in C. albicans [46]. When Erg11p is inhibited by azoles, the 

non-toxic 14α-methylated sterol intermediate begins to accumulate in the cell and is 

subsequently converted by Erg3p to 14α-methylergosta-8,24(28)-dien-3β,6α-diol [21]. 

Inactivation of ERG3 can block the accumulation of this toxic sterol intermediate and 

therefore leads to azole resistance, which has already been recorded in several azole-resistant 

clinical isolates of C. albicans [46-51]. 
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1.3.1.4. Pdr16p 

PDR16 encodes a phosphatidylinositol transfer protein in C. albicans. PDR16 overexpression 

renders an azole-susceptible C. albicans strain less sensitive to azoles [52]. In an 

azole-resistant clinical isolate of C. albicans where PDR16, along with CDR1 and CDR2, is 

constitutively upregulated, the deletion of PDR16 reduces its resistance to azoles while 

introducing a copy of PDR16 back into the pdr16∆/∆ mutant resumes the azole resistance 

level [52].  

 

1.3.1.5. Rta3p 

RTA3, which encodes a putative lipid translocase, is also involved in azole resistance in C. 

albicans: the deletion of RTA3 decreases the resistance of an azole-resistant C. albicans 

clinical isolate to fluconazole and RTA3 overexpression in the azole-susceptible wild-type 

strain SC5314 renders it less susceptible to fluconazole [53].  

 

1.3.2. Transcriptional regulation of azole resistance in C. albicans 

The expression of the above azole resistance effectors is controlled by specific transcription 

factors. In this section, I will elaborate on the major transcriptional pathways involved in azole 

resistance in C. albicans and how they interact. 
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1.3.2.1. Zinc cluster transcription factors regulating azole resistance 

Zinc cluster transcription factors are the class III zinc finger proteins containing a unique 

Zn(II)2 Cys6 motif in their DNA-binding domains and are fungal-specific proteins [54]. They 

typically bind as monomers, homodimers or heterodimers to CGG triplets that are positioned 

as direct, inverted or everted repeats in the target promoters [54-56]. Besides, zinc cluster 

transcription factors often positively regulate their own expression [54]. Figure 1 shows the 

structure of a canonical zinc cluster transcription factor.  

 

 

 
Figure 1. Structure of a typical zinc cluster transcription factor. 
The zinc cluster DNA-binding domain (DBD) is commonly located at the N-terminus and the 
activation domain (AD) is at the C-terminus. This figure was taken from [57].  

 

In C. albicans, four zinc cluster transcription factors have been shown to cause azole 

resistance when activated by gain-of-function (GOF) mutations that have been selected in 

response to azole treatment: Tac1p, Mrr1p, Upc2p and Mrr2p. Figure 2 shows the known 

inducing stimuli and the representative target genes of these zinc cluster transcription factors 
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as well as the cross-talk between different transcriptional pathways.  

Although these zinc cluster transcription factors can be activated by specific inducing 

stimuli (transient activation) or GOF mutations (constitutive activation) and thereby 

upregulate their target genes, the exact underlying molecular mechanisms are still poorly 

understood. It is believed that inducing compounds and GOF mutations are both able to alter 

the conformation of zinc cluster transcription factors, thereby enabling them to actively recruit 

specific transcription co-activators and the transcription machinery to the target genes. This is 

supported by a previous discovery that Pdr1p orthologues, which are also zinc cluster 

transcription factors controlling the expression of many drug resistance genes in S. cerevisiae 

and Candida glabrata, are directly bound by specific xenobiotics, leading to the interaction of 

their C-terminal activation domains with the Gal11p/MED15 subunit of the Mediator complex, 

which helps to recruit the transcription machinery to the target promoters, and as a result, the 

target genes of Pdr1p orthologues get upregulated [58].  
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Figure 2. Major zinc cluster transcription factors mediating azole resistance in C. 
albicans. 
Mrr2p, Tac1p, Mrr1p and Upc2p are the main identified zinc cluster transcription factors 
controlling azole resistance in C. albicans. In the green boxes are the major azole resistance 
effectors regulated by these zinc cluster transcription factors. In the blue boxes are some 
known inducing stimuli that can transiently activate these zinc cluster transcription factors, 
mimicking gain-of-function mutations in these factors, as denoted by the red stars. The 
circular arrows represent the known positive autoregulation of these factors. This figure is 
based on the information provided in [23] [59]. 

 

Tac1p plays a major role in fluphenazine-induced transient upregulation of CDR1 and 

CDR2 in C. albicans [25]. GOF mutations in TAC1 lead to constitutive overexpression of 

CDR1 and CDR2 and many hyperactive TAC1 alleles have been identified in a number of 

clinical isolates of C. albicans [7, 23, 25, 60]. As a typical zinc cluster transcription factor, 

Tac1p binds to the cis-acting drug-responsive element (DRE) located in the promoter regions 

of CDR1 and CDR2 which contains the CGG triplets [25]. Tac1p also binds to its own 

promoter and the binding is enriched in the region between the positions -1100 and -985 with 
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respect to the start codon, where multiple CGG triplets are present [61]. In addition, Tac1p 

binds to the promoters of PDR16 and RTA3 and regulates their expression [53, 62, 63]. 

Mrr1p is another important zinc cluster transcription factor contributing to azole 

resistance in C. albicans. When having a GOF mutation, Mrr1p significantly elevates the 

expression level of MDR1, resulting in fluconazole resistance; several GOF mutations in 

MRR1 have been identified in fluconazole-resistant C. albicans strains [64, 65]. Besides, the 

binding of Mrr1p to the MDR1 promoter has been confirmed by chromatin 

immunoprecipitation (ChIP) experiments, indicating that Mrr1p directly regulates MDR1 [66].  

The expression of ERG11 is regulated largely by the zinc cluster transcription factor 

Upc2p, which also plays a part in the transcriptional regulation of the expression of many 

other genes required for ergosterol biosynthesis [67, 68]. Upc2p can also be constitutively 

activated by GOF mutations, leading to the overexpression of ERG11 and the consequent 

azole resistance [60, 69-72]. The genome-wide location analysis of Upc2p has shown that 

Upc2p binds not only to the promoters of many ergosterol biosynthesis genes, but also to the 

CDR1 and MDR1 promoters [61]. Further experiments have showed that, under hypoxic or 

lovastatin-treatment conditions that activate Upc2p, Upc2p regulates the expression of CDR1 

and MDR1 in a complex manner [61]. However, a GOF mutation in UPC2 causes only a mild 

upregulation of MDR1 and no detectable change in CDR1 expression in an azole-resistant C. 

albicans clinical isolate [69].  

Recently, a study on the artificial activation of the predicted zinc cluster transcription 
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factors in C. albicans has revealed that Mrr2p is a novel transcriptional regulator of CDR1, but 

not CDR2, and that the artificially activated Mrr2p is able to upregulate CDR1 and give rise to 

fluconazole resistance independently of Tac1p [73]. Naturally occurring mutations in MRR2 

were identified in a series of fluconazole-resistant clinical isolates of C. albicans and some of 

them contribute to clinical azole resistance, as introducing the mutated MRR2 allele into an 

azole-susceptible strain in which MRR2 is deleted causes constitutive overexpression of CDR1 

as well as significantly decreased fluconazole susceptibility [74].  

The zinc cluster transcription factor Fcr1p may also play a part in azole resistance in C. 

albicans. The deletion of FCR1 in an azole-susceptible C. albicans strain decreases its 

sensitivity to several azole drugs, including fluconazole, ketoconazole and itraconazole, and 

the reintroduction of one copy of FCR1 results in the phenotypic reversion, suggesting that 

Fcr1p negatively regulates azole resistance in C. albicans [75]. However, the contribution of 

Fcr1p to clinical azole resistance, if any, is still unknown.  

 

1.3.2.2. Other transcription factors involved in the regulation of azole resistance  

The bZIP transcription factor Cap1p is an important regulator of oxidative stress tolerance in C. 

albicans and it binds to the MDR1 promoter [76-78]. A C-terminally truncated Cap1p, which 

is constitutively hyperactive, causes the constitutive overexpression of MDR1 as well as 

increased fluconazole resistance partly independently of Mrr1p [66, 76]. Unlike the zinc 
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cluster transcription factors that are involved in azole resistance, no GOF mutations in CAP1 

have been documented to date in azole-resistant clinical isolates. 

     The transcription factor Ndt80p binds to the CDR1 promoter and plays a positive role in 

miconazole-induced CDR1 upregulation [79, 80]. The deletion of NDT80 in a wild-type strain 

of C. albicans results in decreased azole tolerance [79]. Moreover, Ndt80p also regulates 

fluconazole-induced upregulation of ERG11 and binds to the promoters of CDR2, MDR1 and 

ERG11, suggesting that it may be involved in azole resistance in C. albicans [81]. However, 

Ndt80p is not essential for the fluconazole resistance mediated by hyperactive Tac1p, Mrr1p or 

Upc2p [82]. Although no hyperactive NDT80 alleles have been discovered until now, it is 

possible that Ndt80p carrying a GOF mutation may upregulate the expression of some of the 

azole resistance effectors, thereby leading to azole resistance in C. albicans. 

 

1.4. Rationale for this study  

1.4.1. TAC1 autoregulation 

Our lab recently studied TAC1 autoregulation in C. albicans and made some discoveries 

(Louhichi F, unpublished data). First, using luciferase reporter assays, our lab found that both 

the constitutive induction and the fluphenazine (50 μM) -induced transient activation of the 

TAC1 promoter were abolished upon TAC1 deletion, indicating that Tac1p regulates its own 

expression in a positive manner. Second, the binding of Tac1p to the TAC1 promoter has been 
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demonstrated and mutating the 7 CGG triplets upstream in the TAC1 promoter was shown to 

abrogate this binding as well as TAC1 upregulation in response to fluphenazine treatment or 

mediated by a constitutively hyperactive Tac1p. The location and sequence of the Tac1p 

binding sites in the TAC1 promoter are shown in Figure 3. Third, it was shown that the 

abrogation of TAC1 autoregulation by mutating the CGG triplets of the TAC1 promoter in an 

azole-resistant strain harboring a GOF mutation in TAC1 rendered this strain less resistant to 

fluconazole, indicating that TAC1 autoregulation contributes to fluconazole resistance. These 

results clearly demonstrate that the TAC1 promoter is a direct target of Tac1p. 

 

 
 

Figure 3. Schematic illustration of the structure of the TAC1 gene. 
The binding of Tac1p in the TAC1 promoter is enriched in the region between the positions 
-1100 and -985 with respect to the ATG start codon. The sequence of this region is shown in 
the rectangle and the multiple CGG triplets (CCG for the complementary strand) are indicated 
in red letters. The black arrow denotes the open reading frame (ORF) of TAC1 and the location 
of a putative upstream ORF (uORF) is also indicated. The red and green arrows indicate the 
locations of two known transcription start sites of TAC1.  
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1.4.2. Involvement of Mrr1p in fluphenazine-induced upregulation of TAC1 and CDR1 in 

strain SC5314 

Over ten years ago, our lab found that two Tac1p target genes, CDR1 and PDR16, could still 

be slightly induced by 100 μM of fluphenazine in the absence of Tac1p in strain SC5314 

(Figure 4, lanes 3-6). This was surprising because Tac1p was believed to be the sole mediator 

of fluphenazine-induced transient CDR1 upregulation in strain SC5314, as evidenced by the 

loss of CDR1 induction by fluphenazine upon TAC1 deletion [25]. However, in that article, the 

authors only used a relatively low concentration of fluphenazine (about 20 μM) to treat C. 

albicans cells for 20 min, which may explain why they did not discover the residual induction 

of CDR1 by fluphenazine at higher concentrations in the absence of Tac1p. This finding by our 

lab suggested that another factor may be transiently activated by relatively high concentrations 

of fluphenazine, thereby causing the induction of CDR1, PDR16 and potentially other Tac1p 

target genes independently of Tac1p. Using luciferase reporter assays, our lab found that the 

TAC1 promoter could be induced by 150 μM of fluphenazine in the absence of Tac1p in strain 

SC5314, and that mutating all the 7 CGG triplets upstream in the TAC1 promoter leads to the 

loss of TAC1 induction by 150 μM of fluphenazine in the SC5314-derived tac1∆/∆ mutant 

(Figure 5). These data suggested that this additional factor involved in the induction of several 

Tac1p target genes by fluphenazine is likely a zinc cluster transcription factor. 
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Figure 4. CDR1 and PDR16 can be residually induced by a relatively high concentration 
of fluphenazine in the absence of Tac1p in strain SC5314. 
Strain SC5314 and two independent SC5314-derived tac1∆/∆ mutants SZY33 and SZY35 
were treated or not with 50 μg/ml (about 100 μM) of fluphenazine for 20 min. Total RNA 
extracts were then prepared and analyzed by Northern blotting with TAC1, PDR16, CDR1 and 
CDR2 probes, respectively. ACT1 was used as a loading control. This figure was modified 
from [63].  
 
 



17 
 

 

 
Figure 5. CGG triplets are important for the fluphenazine induction of the TAC1 
promoter in strain SC5314 and the SC5314-derived tac1∆/∆ mutant. 
Strain SC5314 and the SC5314-derived tac1∆/∆ mutant carrying either the wild-type TAC1 
promoter-luciferase construct (pTAC1) or a mutated TAC1 promoter-luciferase construct 
(pTAC1-AM with all the upstream 7 CGG triplets mutated) were treated or not with 150 μM of 
fluphenazine for 4 h. Protein extracts were prepared and luciferase assays were then conducted. 
The results represent the means ± standard deviations from three independent experiments, 
each performed in duplicate. These experiments and this figure were made by Louhichi F, a 
former PhD student in our lab (unpublished data). 

 

Using ChIP-chip assays, our lab has found that Mrr1p binds to the promoters of TAC1 

and CDR1 at the same location as Tac1p does, implying that Mrr1p may work together with 

Tac1p to regulate the expression of TAC1 and CDR1 [62, 66]. Our lab therefore sought to test 

whether Mrr1p is involved in the induction of TAC1 and CDR1 by fluphenazine in strain 

SC5314. Since relatively low and high concentrations of fluphenazine may transiently activate 

different transcriptional regulators, our lab therefore used 50 μM and 150 μM of fluphenazine 

to treat the cells before studying TAC1 and CDR1 induction by fluphenazine. Luciferase 
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reporter assays were used to study the activation of the TAC1 and CDR1 promoters. Figure 6 

shows the results previously obtained by our lab. First, in the absence of Tac1p, the TAC1 

promoter is hardly induced by 50 μM of fluphenazine (top panel, lane 7 and lane 9), but well 

induced by 150 μM of fluphenazine (top panel, lane 8 and lane 10) although the induction 

level is lower than that in strain SC5314. Second, upon MRR1 deletion in strain SC5314, the 

induction of TAC1 by 50 μM of fluphenazine is almost not affected (top panel, lane 17 and 

lane 19), but TAC1 induction by 150 μM of fluphenazine is abolished (top panel, lane 18 and 

lane 20). As for CDR1, similar results were obtained (bottom panel) although they are less 

clear than the results for TAC1, as the induction levels of CDR1 in response to fluphenazine 

treatment are lower than those for TAC1. Taken together, these data indicate that MRR1 is 

involved in the transient induction of TAC1 and CDR1 by relatively high concentrations of 

fluphenazine. Moreover, they suggest that Tac1p may only be well activated by relatively low 

concentrations of fluphenazine and Mrr1p only by relatively high concentrations of 

fluphenazine. 
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Figure 6. Activation of the TAC1 and CDR1 promoters by fluphenazine in strain SC5314 
and the SC5314-derived tac1∆/∆ and mrr1∆/∆ mutants. 
Strain SC5314 and the SC5314-derived tac1∆/∆ and mrr1∆/∆ mutants carrying either the 
TAC1 promoter-luciferase construct or the CDR1 promoter-luciferase construct were treated or 
not with either 50 μM or 150 μM of fluphenazine for 2 h and 4 h respectively. Protein extracts 
were prepared and luciferase assays were next performed. The results represent the means ± 
standard deviations from three independent experiments, each performed in duplicate. These 
experiments and this figure were made by Louhichi F, a former PhD student in our lab 
(unpublished data). 
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1.5. Hypothesis and objectives of this study 

First, in order to further verify the hypothesis that Mrr1p is positively involved in 

fluphenazine-induced transient upregulation of TAC1 and CDR1, we specifically aimed to 

construct a SC5314-derived tac1∆/∆ mrr1∆/∆ mutant and compare it with the SC5314-derived 

tac1∆/∆ mutant in terms of TAC1 and CDR1 induction levels in response to fluphenazine 

treatment. 

As Tac1p and Mrr1p are both important transcription factors mediating azole resistance 

in C. albicans, it is therefore of great value to study the role of Mrr1p in Tac1p-mediated azole 

resistance. Based on the previous findings, I hypothesized that Mrr1p may positively regulate 

the azole resistance mediated by constitutively hyperactive Tac1p in clinical isolates of C. 

albicans. Thus my second objective was to investigate the involvement of Mrr1p in the 

constitutive overexpression of TAC1 and CDR1 and the consequent azole resistance caused by 

a GOF mutation in TAC1. The specific objective was to delete MRR1 in a well-characterized 

azole-resistant clinical isolate of C. albicans harboring a GOF mutation (N972D) in TAC1 and 

study the resulting mutant in terms of TAC1 and CDR1 mRNA levels and azole susceptibility.  
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2. Materials and methods 

2.1. Yeast strains and growth media 

The C. albicans strains used in this study are listed in Table I. All the strains were routinely 

grown in YPD media (1% yeast extract, 2% peptone, 2% dextrose) at 30°C with agitation at 

250 rpm unless mentioned otherwise. To make solid YPD media, 2% agar was added to the 

liquid media.  

 

 

Table I. C. albicans strains used in this study 

Strain Genotype/description  Parental strain Reference 

SC5314 Azole-susceptible wild-type strain  [83] 

SZY35 tac1∆::FRT/tac1∆::FRT  [63] 

SCMRR1M4A mrr1∆::FRT/mrr1∆::FRT  [64] 

JLY7 tac1∆::FRT/tac1∆::FRT 

mrr1∆::FRT/mrr1∆::FRT 

MRR1HOM1 This study 

MRR1HET1 tac1∆::FRT/tac1∆::FRT 

MRR1/ mrr1∆::SAT1-FLIP 

SZY35 This study 

MRR1HET2 tac1∆::FRT/tac1∆::FRT 

MRR1/ mrr1∆::SAT1-FLIP 

SZY35 This study 
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MRR1HET3 tac1∆::FRT/tac1∆::FRT 

MRR1/ mrr1∆::FRT 

MRR1HET1 This study 

MRR1HOM1 tac1∆::FRT/tac1∆::FRT 

mrr1∆::SAT1-FLIP / mrr1∆::FRT 

MRR1HET3 This study 

SCTAC1LUC CDR4/cdr4∆::PTAC1-RLUC SC5314 Louhichi F, manuscript 

in preparation 

SZY35TAC1LUC tac1∆::FRT/tac1∆::FRT 

CDR4/cdr4∆::PTAC1-RLUC 

SZY35 Louhichi F, manuscript 

in preparation 

MRR1TAC1LUC mrr1∆::FRT/mrr1∆::FRT 

CDR4/cdr4∆::PTAC1-RLUC 

SCMRR1M4A Louhichi F, manuscript 

in preparation 

JLY7TAC1LUC tac1∆::FRT/tac1∆::FRT 

mrr1∆::FRT/mrr1∆::FRT 

CDR4/cdr4∆::PTAC1-RLUC 

JLY7 This study 

5457 Azole-susceptible clinical isolate  [52] 

5674 Azole-resistant clinical isolate 5457 [52] 

JLY1 MRR1/ mrr1∆::SAT1-FLIP 5674 This study 

JLY2 MRR1/ mrr1∆::SAT1-FLIP 5674 This study 

JLY3 MRR1/ mrr1∆::FRT JLY1 This study 

JLY4 MRR1/ mrr1∆::FRT JLY2 This study 

JLY5 mrr1∆::FRT/mrr1∆::SAT1-FLIP JLY3 This study 
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JLY6 mrr1∆::FRT/mrr1∆::SAT1-FLIP JLY4 This study 

SZY31 tac1∆::FRT/tac1∆::FRT  [63] 

Gu4 Azole-susceptible clinical isolate  [33] 

Gu5 Azole-resistant clinical isolate Gu4 [33] 

 

2.2. Plasmid construction and extraction 

The plasmid containing the SAT1 flipper cassette and the plasmid containing the MRR1 

deletion cassette were kindly provided by Dr. Joachim Morschhäuser [64, 84]. The MRR1 

deletion cassette of the latter plasmid contains the SAP2 promoter upstream of the FLP gene; 

the SAT1 flipper cassette of the former plasmid was used to construct a new MRR1 deletion 

cassette and contains the MAL2 promoter upstream of the FLP gene (see Figure 7 and Figure 

15). The luciferase reporter construct containing the TAC1 promoter region was previously 

prepared by our lab. Basically, the TAC1 promoter region from -1500 to -1 with respect to the 

ATG start codon was inserted into the plasmid pC4-Rluc-SAT1 which was also previously 

constructed by our lab and integrates at the CDR4 locus through homologous recombination. 

The Escherichia coli host strains containing the above plasmids were routinely grown at 37°C 

for 12 to 16 h in Luria-Bertani (LB) media supplemented with 100 μg/ml ampicillin (Sigma) 

before plasmid extraction. The plasmids were isolated with the use of the QIAprep Spin 

Miniprep Kit (Qiagen). The extracted plasmids containing the MRR1 deletion cassette were 
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next digested with the restriction enzymes ApaI and SacI in order to release the cassette. 

Similarly, using the restriction enzymes KpnI and SacI, the TAC1 promoter-containing 

luciferase reporter constructs were released from the plasmids.  

 

2.3. C. albicans transformation and verification of transformants 

The transformation of different C. albicans strains was carried out primarily following the 

lithium acetate (LiAc) method with minor modifications [85]. The overnight culture of C. 

albicans was diluted in 25 ml of YPD media to an OD600 of 0.05 and the diluted culture was 

incubated until its OD600 reached 0.3 to 0.4. The culture was then centrifuged at 3,000 rpm for 

5 min and the cell pellets were resuspended in 6.25 ml of LiAc solution and centrifuged again 

at 3,000 rpm for 5 min. The cell pellets were resuspended in 125 μl of LiAc solution and 100 

μl of the resuspended cell pellets were mixed with 5 μg of the purified MRR1 deletion cassette 

or the TAC1 promoter-containing luciferase reporter construct as well as 5 μl of pre-boiled 

salmon sperm DNA (20 μg/μl), in order to form the transformation mixture, which was 

incubated at 30°C for 30 min without shaking. 600 μl of PEG/LiAc solution was then added to 

the transformation mixture, which was then incubated overnight at 30°C on an overhead motor. 

On the next day, a 30 min heat shock at 44°C was applied to the cells. After that, the cells were 

resuspended in 2 ml of YPD media and incubated for 4 h with gentle agitation. Finally, the 

cells were harvested, resuspended in 100 μl of YPD media and spread on YPD agar plates 
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containing 200 μg/ml nourseothricin (WERNER BioAgents). The YPD plates were incubated 

at 30°C for 2 to 3 days before the transformants were obtained and analyzed by PCR.  

Specifically, the integration of the TAC1 promoter-containing luciferase reporter 

construct at the CDR4 locus was verified using two pairs of primers: for the first pair, the 

forward primer (MR2683) is located upstream from the ORF of CDR4 and the reverse primer 

(MR2005) in the luciferase reporter construct, and the expected fragment size is 5792 bp; for 

the second pair, the forward primer (MR1392) is located in the luciferase reporter construct 

and the reverse primer (MR2684) downstream from the ORF of CDR4, and the expected 

fragment size is 3726 bp. 

 

2.4. Luciferase assays  

The luciferase assay protocol was previously established by our lab and some adjustments 

were made for this study. Overnight cultures were diluted in 10 ml of YPD media to an OD600 

of 0.2 and the diluted cultures were incubated until their OD600 reached 0.7. Next the cells 

were treated or not with a certain concentration of fluphenazine (Sigma) for either 2 or 4 h at 

30°C with shaking. The cells were harvested at 4°C, washed with 1 ml of cold sterile water 

and then washed with 1 ml of cold luciferase buffer (0.5 M NaCl; 0.1 M K2HPO4, pH 6.7; 1 

mM EDTA, pH 8.0; 1 mM PMSF, freshly added to the buffer and 0.6 mM sodium azide). The 

washed cell pellets were resuspended in 200 μl of cold luciferase buffer and transferred to a 



26 
 

screw-cap tube. 200 μl of acid-washed glass beads (Sigma) were added to the tube and the 

cells were disrupted at 4°C for 2 to 3 min with the use of a minibead beater (BioSpec 

Products). The tube was then centrifuged at 4°C and 13,000 rpm for 20 min and the 

supernatant was taken out. The protein extracts were quantified using the Bradford assays and 

the quality was tested by SDS-PAGE followed by Coomassie staining. 15 μg of each protein 

extract was added in duplicate to a 96-well microtiter plate and 150 μl of luciferase buffer 

containing 0.5 μM of the Renilla luciferase substrate coelenterazine H (Sigma) was then added 

to each well. After 5 to 10 min, the plate was read using the Synergy Neo microplate reader 

(BioTek Instruments). 

 

2.5. Total RNA extraction 

Overnight cultures were diluted in 50 ml of YPD media to an OD600 of 0.1 and the diluted 

cultures were incubated until their OD600 reached 1.0. The cells were harvested and washed 

with sterile water and the total RNA was prepared using the hot phenol method [86]. For 

fluphenazine treatment, when the OD600 of the diluted cultures reached 1.0, 10 ml of each 

culture was incubated with a certain concentration of fluphenazine for a certain period of time 

before the harvesting and washing of the cells for total RNA extraction. The concentration of 

the isolated total RNA was measured by spectrophotometry. 
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2.6. Northern blot analysis 

Northern blotting was performed as described previously [52]. 25 μg of each RNA sample was 

tested. The CDR1 and TAC1 probes for Northern blotting were prepared as previously 

published [52, 63]. 

 

2.7. RT-PCR and RT-qPCR 

2 μg of the total RNA was firstly treated with the TURBO DNase (Thermo Fisher Scientific) 

to eliminate DNA contamination. Next, first-strand cDNA for each RNA sample was 

synthesized using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). 

For the RT-PCR experiments, specific primers were used for the amplification of the obtained 

cDNA. The SYBR® Green method was used for the RT- qPCR experiments as previously 

described by our lab [61]. In this study, a 10 μl reaction mixture was employed, containing the 

Fast SYBR® Green Master Mix (Applied Biosystems), first-strand cDNA and the specific 

forward and reverse primers. The PCR program was set as follows: 95°C for 10 min, followed 

by 40 cycles of denaturation at 95°C for 5 sec and annealing & extension at 60°C for 20 sec. 

All the RT-qPCR experiments were conducted using the ABI PRISM 7900HT (Applied 

Biosystems). At the end of each test, a dissociation curve was generated to exclude the 

possibility of unspecific amplifications. The 18S rRNA gene was used as the endogenous 

control for normalization. The relative quantification of the target genes was performed by 
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using the most common comparative CT method (2-ΔΔCT method) [87]. All the primers used are 

listed in Table II. 

 

Table II. Primers used in this study 

Primer Sequence (5’-3’) 

Verification of MRR1 deletion  

MR2700 GGGTTGTCAAATTTCCTGTCGG 

MR2699 CCCCAATACACCGTGAAATAGG 

Verification of the integration 

of the luciferase reporter 

construct at the CDR4 locus 

 

MR2683 CATTACCCATTCACAACGTGCTTC 

MR2005 TCTCATATGAAAATTTCGGTGATCCCTGAG 

MR1392 CGTTTGTGTCTCTAATCGTATGC 

MR2684 GTTGGGGATCTGATTTGACCG 

Construction of the MRR1 

deletion cassette  

 

MR2780 TCAGATATCGAATTATTAATCTAATTTATTAAAAATGTCAAT

TGCCACCACCCCTATAGAGAGCTCCACCGCGGTGGCGGC

CGCT 
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MR2781 TACATCTATACATATAGAACATATAATTAACATAAGAGCTG

CCAATTCACCAGAATCAATGGTACCGGGCCCCCCCTCGA

GGAA 

MR2782 TATTCCAAAAATTGTTTTTGTTTATGCCCTTCTTTTTTTTTC

TTGACGGATAAATCAGTATCAGATATCGAATTATTAAT 

MR2783 GCGCAATTTCTTAAATTGAAAAGAATGAAAATGGAAAAA

ACCGTTAAACGATATACTACATACATCTATACATATAGAAC 

RT-PCR   

MR2869 TTTGATTGTGACAATAGTGT 

MR2870 CAATGGACTAAAACCAGAGG 

RT-qPCR  

CDR1_Forward ATTCTAAGATGTCGTCGCAAGATG 

CDR1_Reverse AGTTCTGGCTAAATTCTGAATGTTTTC 

TAC1_Forward TGGCAATGTATTTAGCAGATGAGG 

TAC1_Reverse TGCTTGAACTGAGGTGAATTTTG 

TAC1_long_Forward CATGTGTGATTTATCCAGTCCAAGT 

TAC1_long_Reverse GCTAAGAGAAGGTAGAACCGTCAT 

18S rRNA_Forward CACGACGGAGTTTCACAAGA 

18S rRNA_Reverse CGATGGAAGTTTGAGGCAAT 
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2.8. Fluconazole susceptibility tests 

Liquid microtiter plate assays were performed as previously published [63]. Fluconazole 

(Sigma) was dissolved in water for the preparation of stock solutions (5 mg/ml). In this study, 

the fluconazole concentrations tested were 200, 100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78, 0.39 

and 0.20 μg/ml in Figure 17 and 25, 12.5, 6.25, 3.13, 1.56, 0.78, 0.39, 0.20, 0.1, 0.05, 0.025 

μg/ml in Figure 21. Cell growth was measured by spectrophotometry at OD620 after 

incubation at 30°C for 48 h. 

 

2.9. Genomic DNA isolation 

C. albicans strains were grown overnight in 10 ml of YPD media with shaking. The cells were 

harvested at room temperature and washed with sterile water. Genomic DNA was extracted 

using the glass beads method as described previously [88]. During the isolation process, 

RNase A was used to eliminate RNA contamination in the genomic DNA extracts. The amount 

of the extracted genomic DNA was measured by spectrophotometry. 
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3. Results 

3.1. Determination of the role of Mrr1p in fluphenazine-induced transient upregulation of 

TAC1 and CDR1  

3.1.1. Construction of the SC5314-derived tac1∆/∆ mrr1∆/∆ mutant  

As explained in the Introduction section, our lab recently studied the change in the induction 

levels of TAC1 and CDR1 upon the deletion of either TAC1 or MRR1 in strain SC5314. In 

order to further verify the role of Mrr1p in the transient induction of TAC1 and CDR1 by 

fluphenazine, we sought to study how the residual induction levels of TAC1 and CDR1 would 

change in the absence of both Tac1p and Mrr1p in strain SC5314 (i.e. whether the residual 

induction in the SC5314-derived tac1∆/∆ mutant would disappear upon MRR1 deletion). To 

construct the SC5314-derived tac1∆/∆ mrr1∆/∆ mutant, I deleted MRR1 in the 

SC5314-derived tac1∆/∆ mutant SZY35. The SAT1-flipping strategy was used for MRR1 

deletion as it allows the recycling of the selection marker [84]. The structure of the MRR1 

deletion cassette is shown in Figure 7, and Figure 8 shows how the SAT1-flipping strategy 

should work. Basically, the SC5314-derived tac1∆/∆ mutant was transformed with the MRR1 

deletion cassette, which then replaced one MRR1 allele through homologous recombination. 

Next the SAT1 flipper cassette was excised by its FLP-FRT system to recycle the selection 

marker [34]. With the use of this method, the other MRR1 allele was also deleted. In this way, 

both MRR1 alleles in the SC5314-derived tac1∆/∆ mutant were replaced by the FRT sequence. 
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To verify the deletion of MRR1, the genomic DNA was prepared from the transformants and 

analyzed by PCR using the primers flanking the coding sequence of MRR1. Figure 9A shows 

the PCR result for some critical intermediate mrr1∆ mutants: two heterozygous mutants in 

which the first MRR1 allele was replaced by the SAT1 flipper cassette (lane 2 and lane 3) and 

one homozygous mutant in which the second MRR1 allele was also replaced (lane 4). Finally, 

six tac1∆/∆ mrr1∆/∆ mutants were obtained (Figure 9B, lanes 2-7), one of which was named 

JLY7 (Figure 9B, lane 4) and used for subsequent experiments. 

 

 

  
Figure 7. Structure of the MRR1 deletion cassette.  
The MRR1 deletion cassette contains the upstream and downstream homology regions of 
MRR1 (5’MRR1 and 3’MRR1) and the complete SAT1 flipper cassette. The SAT1 flipper 
cassette is mainly composed of the selection marker SAT1 conferring resistance to 
nourseothricin and the FLP gene encoding a site-specific recombinase, which can recognize 
the FRT sequence at both ends of the cassette and thereby excise the cassette. SAP2p and 
MAL2p denote the SAP2 promoter and the MAL2 promoter, respectively, which are used to 
control the expression of FLP. ACT1t denotes the terminator of ACT1. The locations of the 
restriction enzymes ApaI and SacI that are used to release the deletion cassette from the 
plasmid are also indicated. 
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Figure 8. Schematic illustration of the deletion of MRR1 using the SAT1-flipping strategy. 
SAT1-FLIP denotes the SAT1 flipper cassette. Red arrows indicate the locations and directions 
of the primers MR2700 (forward primer) and MR2699 (reverse primer) used to analyze the 
transformants by PCR. The amplicon size for the intact MRR1 allele is 4039 bp. For the FRT 
sequence, the amplicon size is 852 bp. The amplicon size for the SAT1 flipper cassette is either 
5547 bp or 4955 bp, depending on the MRR1 deletion cassette used (see Figures 9, 15 and 16).     
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Figure 9. PCR verification of the deletion of MRR1 in the SC5314-derived tac1∆/∆ 
mutant.  
Genomic DNA of the strains was used as PCR templates and the primers MR2700 and 
MR2699 were used for DNA amplification. The expected fragment sizes for SAT1-FLIP, 
MRR1 and FRT are 5547 bp, 4039 bp and 852 bp, respectively. NC denotes the negative 
control, for which water was used as the PCR template. 
(A) Two heterozygous mrr1∆ mutants MRR1HET1 (lane 2) and MRR1HET2 (lane 3) were 
first obtained. A homozygous mrr1∆ mutant MRR1HOM1 (lane 4) was next constructed from 
strain MRR1HET1. Strain SC5314 (lane 1) was used as a positive control. 
(B) The SAT1 flipper cassette was excised from the homozygous mrr1∆ mutant MRR1HOM1 
and six tac1∆/∆ mrr1∆/∆ mutants (lanes 2-7) were finally obtained, in which both MRR1 
alleles had been replaced by the FRT sequence. One of these mutants was named JLY7 (lane 4) 
and tested subsequently. A heterozygous mrr1∆ mutant MRR1HET3 (lane 1) was used as a 
positive control.  

A 

B 
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3.1.2. Measurement of the CDR1 mRNA levels in the tac1∆/∆ mrr1∆/∆ mutant upon 

fluphenazine treatment 

To determine the optimal conditions of fluphenazine treatment for the residual induction of 

CDR1 in the SC5314-derived tac1∆/∆ mutant, a time-course study was carried out using 100 

μM and 150 μM of fluphenazine based on the previous studies by our lab. Northern blot 

analysis was performed using the CDR1 probe. For the 100 μM fluphenazine group, 20 min 

treatment leads to the highest expression level of CDR1; as for the 150 μM fluphenazine group, 

CDR1 is the best expressed after treatment for 5 or 10 min (Figure 10). Although the untreated 

control was not tested and the residual induction of CDR1 was therefore not shown in the 

experiments, these fluphenazine conditions were still selected to study the induction of CDR1 

in the tac1∆/∆ mrr1∆/∆ mutant and other relevant strains in consideration of the highest 

expression levels of CDR1 under these conditions. Northern blotting experiments were 

performed to determine the CDR1 mRNA levels under these selected fluphenazine conditions. 

As can be seen in Figure 11, under both fluphenazine conditions, no residual induction of 

CDR1 could be clearly observed in the SC5314-derived tac1∆/∆ mutant (or in the tac1∆/∆ 

mrr1∆/∆ mutant) although the fluphenazine treatment had functioned properly as judged by 

the induction of CDR1 in strain SC5314. This result seems to be inconsistent with our 

previous finding that CDR1 can still be induced by 100 μM of fluphenazine in the absence of 

Tac1p in strain SC5314 [63]. Since the residual induction of CDR1 by relatively high 

concentrations of fluphenazine was not observed in the SC5314-derived tac1∆/∆ mutant or 
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tac1∆/∆ mrr1∆/∆ mutant, it was therefore impossible to evaluate the role of Mrr1p in 

fluphenazine-induced CDR1 upregulation in the SC5314-derived tac1∆/∆ mutant. To address 

the question by using another approach, a luciferase reporter assay was subsequently used. 

  

       
 

Figure 10. Determination of the optimum fluphenazine conditions for the induction of 
CDR1 in the SC5314-derived tac1∆/∆ mutant. 
The SC5314-derived tac1∆/∆ mutant SZY35 was exposed to either 100 μM or 150 μM of 
fluphenazine for the period of time shown at the top and total RNA extracts were then 
prepared and analyzed by Northern blotting with the CDR1 probe. The 18S and 25S rRNAs 
were used as loading controls. 
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Figure 11. Northern blot analysis of the CDR1 expression in strain SC5314 and the 
SC5314-derived mutants. 
Strains SC5314, SCMRR1M4A, SZY35 and JLY7 were treated or not with either 100 μM of 
fluphenazine for 20 min or 150 μM of fluphenazine for 10 min. Total RNA extracts were then 
prepared and analyzed by Northern blotting. The 18S and 25S rRNAs were used as loading 
controls. 

 

3.1.3. Comparison of the TAC1 promoter activities in the tac1∆/∆ mrr1∆/∆ mutant and 

the related strains upon fluphenazine treatment 

As explained in the Introduction section, our previous luciferase assay results (Figure 6) 

clearly show that the induction of TAC1 by fluphenazine is more significant than that of CDR1 

in strain SC5314, the tac1∆/∆ mutant and the mrr1∆/∆ mutant. Also, the residual induction of 

CDR1 by fluphenazine in the tac1∆/∆ mutant was not clearly shown through our most recent 

Northern blotting experiments, complicating our study of CDR1 induction. Therefore, we 

decided to first study the induction of TAC1 by fluphenazine in the tac1∆/∆ mrr1∆/∆ mutant. 
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To this end, a luciferase reporter construct that contains the TAC1 promoter region was 

introduced into the genome of the mutant, and the integration of the luciferase reporter 

construct was verified by PCR (see Materials and Methods section for further information). 

The luciferase activities therefore represent the activation levels of the TAC1 promoter.  

The TAC1 promoter activity in the tac1∆/∆ mrr1∆/∆ mutant was tested upon 

fluphenazine treatment. In order to compare with other related stains carrying the TAC1 

promoter-luciferase construct and reproduce our previous results, I used the same fluphenazine 

conditions as our lab had previously used (Figure 6). The preliminary data from one 

experiment performed in duplicate are shown in Figure 12. First, the TAC1 promoter appears 

to be induced by 50 μM of fluphenazine in the SC5314-derived tac1∆/∆ mutant, but the 

seeming induction is not significant and needs to be further confirmed. Second, the TAC1 

promoter activity is higher in the SC5314-derived tac1∆/∆ mrr1∆/∆ mutant than in the 

SC5314-derived tac1∆/∆ mutant under both fluphenazine conditions. Third, the deletion of 

MRR1 in strain SC5314 does not seem to impair the transient upregulation of TAC1 by 150 

μM of fluphenazine. Although it appears that some of these preliminary results are not in line 

with our previous results (see Figure 6), the residual induction of TAC1 by 150 μM of 

fluphenazine in the tac1∆/∆ mutant has been confirmed. Moreover, since it was not clear 

whether Mrr1p is positively involved in the residual induction of TAC1 by fluphenazine, 

further experiments were therefore to be performed subsequently. 
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Figure 12. Activation of the TAC1 promoter by fluphenazine in different strains. 
Strains SCTAC1LUC, SZY35TAC1LUC, MRR1TAC1LUC and JLY7TAC1LUC were treated 
or not with either 50 μM of fluphenazine for 2 h or 150 μM of fluphenazine for 4 h. Protein 
extracts were prepared and luciferase assays were next performed. The luciferase activity 
values represent the means from one experiment performed in duplicate. 

 

Although the above data are very preliminary, the difference between my result and our 

previous result was still surprising. One possibility was the variation within the fluphenazine 

quality or purity. Hence, many different concentrations of fluphenazine were used to treat the 

strains and study the induction of TAC1. A range of fluphenazine concentrations lower than 

150 μM were first tested and the preliminary data from one experiment performed in duplicate 

are shown in Figure 13. For the SC5314-derived tac1∆/∆ mutant, the TAC1 promoter is 

residually activated only by relatively high concentrations (≥100 μM) of fluphenazine, which 

is in accord with our previous findings; for the SC5314-derived mrr1∆/∆ mutant, the TAC1 
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promoter is activated by different concentrations of fluphenazine and the activation level 

increases steadily as the fluphenazine concentration is increased, but it should be noted that for 

the 2 h treatment group, the activation level seems to begin to decrease at 150 μM of 

fluphenazine, suggesting that higher concentrations of fluphenazine may impair the optimal 

activation of the TAC1 promoter. Besides, for the 4 h treatment group, the TAC1 promoter in 

the mrr1∆/∆ mutant seems to be less induced by ≤125 μM of fluphenazine than for the 2 h 

treatment group, suggesting that prolonged fluphenazine treatment may not be beneficial to the 

induction of TAC1, at least in the mrr1∆/∆ mutant. Therefore, 2 h treatment with relatively 

high concentrations of fluphenazine was used in subsequent experiments.  

Strain SC5314, the SC5314-derived tac1∆/∆ mutant, mrr1∆/∆ mutant and tac1∆/∆ 

mrr1∆/∆ mutant carrying the TAC1 promoter-luciferase construct were simultaneously studied 

and the fluphenazine concentrations used range from 100 μM to 250 μM. Figure 14 shows 

that for the SC5314-derived tac1∆/∆ mutant, the residual activation of the TAC1 promoter 

appears to be observed only at ≤175 μM of fluphenazine; for the SC5314-derived mrr1∆/∆ 

mutant, the TAC1 promoter is still induced by all these concentrations of fluphenazine 

although the induction levels vary; in the tac1∆/∆ mrr1∆/∆ mutant, the TAC1 promoter 

activity is always higher than that in the SC5314-derived tac1∆/∆ mutant, which further raises 

the possibility that Mrr1p may suppress fluphenazine-induced upregulation of TAC1 in the 

SC5314-derived tac1∆/∆ mutant. Interestingly, all the four strains exhibit a very similar trend 

in the activation of the TAC1 promoter, suggesting that the induction of TAC1 by relatively 



41 
 

high concentrations of fluphenazine may be at least partially independent of Mrr1p and Tac1p. 

These data, although obtained in a single experiment performed in duplicate, also suggest that 

other factor(s) may also mediate fluphenazine-induced transient activation of TAC1. 

 

    

 

Figure 13. Activation of the TAC1 promoter by fluphenazine in the SC5314-derived 
tac1∆/∆ and mrr1∆/∆ mutants. 
Strains SZY35TAC1LUC and MRR1TAC1LUC were treated or not with relatively low 
concentrations of fluphenazine for either 2 h (top) or 4 h (bottom); the concentrations used 
were 12.5, 25, 50, 75, 100, 125 and 150 μM. Protein extracts were prepared and luciferase 
assays were conducted. The luciferase activity values represent the means from a single 
experiment performed in duplicate. The black column for each group represents the 
no-fluphenazine control. 
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Figure 14. Activation of the TAC1 promoter by fluphenazine in strain SC5314 and the 
SC5314-derived tac1∆/∆, mrr1∆/∆ and tac1∆/∆ mrr1∆/∆ mutants. 
Strains SCTAC1LUC, SZY35TAC1LUC, MRR1TAC1LUC and JLY7TAC1LUC were 
exposed or not to relatively high concentrations of fluphenazine for 2 h; the concentrations 
tested were 100, 125, 150, 175, 200, 225 and 250 μM. Protein extracts were prepared and 
luciferase assays were performed. The luciferase activity values represent the means from one 
experiment performed in duplicate. For each group, the black column represents the 
no-fluphenazine control. 
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3.2. Mrr1p plays a role in azole resistance but is not involved in the constitutive 

upregulation of TAC1 and CDR1 in isolate 5674 

As demonstrated in the Introduction section, our previous luciferase assay results indicated 

that Mrr1p plays a positive role in the transient induction of TAC1 and CDR1 by fluphenazine, 

although my preliminary data do not support this finding. Since Mrr1p binds to the promoters 

of TAC1 and CDR1 at the same location as Tac1p does and the exact molecular mechanism by 

which fluphenazine transiently induces TAC1 and CDR1 expression is unknown, it was 

therefore interesting to study whether Mrr1p is involved in the constitutive overexpression of 

TAC1 and CDR1 as well as the resulting azole resistance mediated by constitutively 

hyperactive Tac1p. 

Previously, our lab identified a GOF mutation (N972D) in TAC1 in an azole-resistant C. 

albicans clinical isolate 5674, where Tac1p acts as the pivotal regulator of azole resistance and 

the deletion of TAC1 abolishes the constitutive upregulation of several important Tac1p target 

genes, including CDR1, CDR2, TAC1, PDR16 and RTA3, thereby abrogating azole resistance 

[52, 53, 63]. Besides, there is no mutation in MRR1 in isolate 5674, as indicated by whole 

genome sequencing of isolate 5674 (unpublished data). Since the clinical isolate 5674 had 

been well characterized, we therefore used this strain to study whether Mrr1p plays a part in 

Tac1p-mediated azole resistance.  

 



44 
 

3.2.1. Deletion of MRR1 in isolate 5674 by homologous recombination 

To investigate whether Mrr1p contributes to Tac1p-mediated azole resistance, we sought to 

delete MRR1 in isolate 5674. This time, instead of directly using the MRR1 deletion cassette 

from Dr. Joachim Morschhäuser, a PCR-based strategy to construct a new MRR1 deletion 

cassette was employed (Figure 15). Basically, the 120 bp upstream and downstream 

homology regions of MRR1 were added to the original SAT1 flipper cassette through two 

rounds of PCR. Again, the SAT1-flipping strategy was used for MRR1 deletion in isolate 5674 

(see Figure 8). Using this new cassette, the first MRR1 allele was deleted and two independent 

heterozygous mrr1∆ mutants JLY1 and JLY2 were obtained (Figure 16, lane 2 and lane 5). 

After the excision of the SAT1 flipper cassette, two independent heterozygous mrr1∆ mutants 

JLY3 and JLY4, in which one MRR1 allele had been replaced by the FRT sequence, were 

obtained (Figure 16, lane 3 and lane 6). The new MRR1 deletion cassette was then used to 

delete the second MRR1 allele. However, after several attempts, no homozygous mrr1∆ 

mutant was obtained. Subsequently, using the previous MRR1 deletion cassette provided by Dr. 

Joachim Morschhäuser, two independent mrr1∆/∆ mutants JLY5 and JLY6 were obtained 

(Figure 16, lane 4 and lane 7).  
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Figure 15. Schematic illustration of constructing the MRR1 deletion cassette. 
The upstream and downstream homology regions of MRR1 were added to the SAT1 flipper 
cassette after two rounds of PCR (the primers MR2780 and MR2781 used for the first round 
and MR2782 and MR2783 for the second round). The resulting MRR1 deletion cassette is 
4457 bp in length with a 120 bp left homology arm (5’MRR1) and a 120 bp right homology 
arm (3’MRR1), which are long enough for efficient homologous recombination. 

 

 
Figure 16. PCR verification of the deletion of MRR1 in isolate 5674. 
Genomic DNA of the strains was used as PCR templates and the primers MR2700 and 
MR2699 were used for DNA amplification. The expected fragment sizes for MRR1 and FRT 
are 4039 bp and 852 bp, respectively. For SAT1-FLIP, the expected fragment size is 4955 bp 
in strains JLY1 (lane 2) and JLY2 (lane 5), and 5547 bp in strains JLY5 (lane 4) and JLY6 
(lane 7). Isolate 5674 (lane 1) was used as a positive control. Note that the FRT sequence was 
detected in strains JLY1 (lane 2) and JLY2 (lane 5) because the MAL2 promoter in the SAT1 
flipper cassette is leaky and the FLP recombinase can therefore be weakly expressed in the 
absence of the inducer maltose. 
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3.2.2. MRR1 deletion in isolate 5674 leads to reduced fluconazole resistance  

To assess the impact of MRR1 deletion on azole sensitivity, a liquid microtiter plate assay with 

isolate 5674, two heterozygous mrr1∆ mutants JLY3 and JLY4 and the two mrr1∆/∆ mutants 

JLY5 and JLY6 was performed. As can be observed in Figure 17A, the two heterozygous 

mrr1∆ mutants are more sensitive to 100 μM of fluconazole than the parental strain 5674, and 

the deletion of the remaining MRR1 allele in the heterozygous mrr1∆ mutants causes a further 

increase in the susceptibility to 100 μM of fluconazole. The two mrr1∆/∆ mutants are about 

3-fold less resistant to 100 μM of fluconazole than isolate 5674, this difference being 

statistically significant (Figure 17B). These data demonstrate that Mrr1p contributes to the 

resistance of isolate 5674 to fluconazole. 
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Figure 17. The deletion of MRR1 in isolate 5674 results in decreased fluconazole 
resistance. 
(A) The fluconazole susceptibility of strains 5674, JLY3 (MRR1+/-), JLY4 (MRR1+/-), JLY5 
(MRR1-/-), JLY6 (MRR1-/-) and the negative control strain SZY31 (TAC1-/-) was determined 
using liquid microtiter plate assays. The data are presented as the relative growth of the cells in 
fluconazole-containing YPD media as compared with the growth of the same strain in 
fluconazole-free YPD media (100%). The results represent the means ± standard deviations 
from four independent experiments, each performed in duplicate.  
(B) The data at 100 μg/ml of fluconazole are shown. Statistical analysis was performed using 
one-tailed Student’s t-test. 
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3.2.3. Comparison of the mRNA levels of TAC1 and CDR1 in isolate 5674 and the 

5674-derived mrr1∆/∆ mutants 

To investigate whether the reduced azole resistance in isolate 5674 upon MRR1 deletion 

correlates with a decrease in the expression levels of the Tac1p target genes, the mRNA levels 

of TAC1 and CDR1 in isolate 5674 and the 5674-derived mrr1∆/∆ mutants were determined. 

These two Tac1p target genes both encode critical effectors of azole resistance in isolate 5674 

and their mRNA levels may be reflective of the expression of other Tac1p target genes that are 

also involved in azole resistance. Northern blotting experiments for isolate 5674 and the 

mrr1∆/∆ mutants using the TAC1 and CDR1 probes reveal no obvious difference between 

these strains (Figure 18). To validate these results, RT-qPCR experiments were subsequently 

conducted for isolate 5674 and the two mrr1∆/∆ mutants. Again, there was no significant 

difference between isolate 5674 and the two mrr1∆/∆ mutants (Figure 19). Taken together, 

these data indicate that Mrr1p is not involved in the Tac1p-dependent constitutive 

transcriptional upregulation of TAC1 or CDR1 in isolate 5674. They also suggest that Mrr1p 

does not take part in Tac1p-mediated azole resistance in isolate 5674. 
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Figure 18. Northern blot analysis of the expression of CDR1 and TAC1 in isolate 5674 
and the 5674-derived mrr1∆ mutants. 
Total RNA extracts for strains 5674, JLY3 (MRR1+/-), JLY4 (MRR1+/-), JLY5 (MRR1-/-), 
JLY6 (MRR1-/-) and the negative control strain SZY31 (TAC1-/-) were prepared. Northern 
blotting experiments were then performed using the CDR1 and TAC1 probes. The 18S and 25S 
rRNAs were used as loading controls. 
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Figure 19. Measurement of the mRNA levels of CDR1 and TAC1 in isolate 5674 and the 
5674-derived homozygous mrr1∆ mutants. 
Total RNA extracts for strains 5674, JLY5 (MRR1-/-) and JLY6 (MRR1-/-) were prepared and 
subsequently used for the RT-qPCR analysis of CDR1 and TAC1 mRNA levels. The data 
represent the means ± standard deviations from at least four independent experiments, each 
performed in triplicate. Statistical analyses were performed using two-tailed Student’s t-test. 

 

3.2.4. Detection of the long 5’ UTR of the TAC1 transcript in isolate 5674 and the 

5674-derived mrr1∆/∆ mutants 

As explained in the Introduction section, our lab previously investigated the binding sites of 

Tac1p in the TAC1 promoter and found that its binding is enriched between the positions -1100 
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and -985 with respect to the start codon; this region contains 7 CGG triplets whose mutation 

abolishes TAC1 binding and autoregulation in isolate 5674. In the wild-type strain SC5314, 

TAC1 is expressed at a basal level in the absence of fluphenazine exposure and the TAC1 

transcripts have a 5’ untranslated region (UTR) of 300 nt in length [63, 89, 90]. Interestingly, 

in the azole-resistant C. albicans clinical isolate Gu5 which also harbors a GOF mutation in 

TAC1, the TAC1 transcripts have a 1025 nt 5’ UTR, which is much longer than that in strains 

SC5314 and Gu4 which are both azole-susceptible [91]. The above data suggest that the 

binding of hyperactive Tac1p to the upstream CGG-rich motif of the TAC1 promoter may 

recruit the transcription machinery, thereby producing long TAC1 transcripts. The locations of 

these two transcription start sites in the TAC1 promoter are shown in Figure 3.  

Two questions were therefore raised: (1) Do the TAC1 transcripts in isolate 5674 also 

have a long 5’ UTR? (2) If it is the case, is Mrr1p involved in the production of the long TAC1 

mRNA mediated by hyperactive Tac1p in isolate 5674? It should be noted that, in the previous 

RT-qPCR experiments using isolate 5674 and the two homozygous mrr1∆ mutants, the TAC1 

primers were specific to the coding sequence of the TAC1 gene, so the TAC1 transcripts with 

different lengths of 5’ UTR were all detected at the same time, making it difficult to determine 

the levels of only the long 5’ UTR-containing TAC1 transcripts.  

To answer the above questions, total RNA of isolate 5674 and the two independent 

mrr1∆/∆ mutants was isolated and RT-PCR experiments using primers that are specific to the 

longer 5’ UTR of TAC1 were performed. As shown in Figure 20A, isolate 5674 and the two 
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independent mrr1∆/∆ mutants have the TAC1 transcripts with a long 5’ UTR; by contrast, the 

long TAC1 transcripts cannot be detected in isolate 5457, which is the azole-susceptible 

parental strain of isolate 5674. Moreover, the long TAC1 transcripts were also observed in 

isolate Gu5, which is consistent with the previous finding [91]. However, the amplification 

efficiency for isolate Gu5 is much lower than for isolate 5674 and the two mrr1∆/∆ mutants. 

This may be because the primers were designed according to the TAC1 promoter sequence in 

isolate 5674 and there may be polymorphism in the TAC1 promoter region among different C. 

albicans strains. Another possibility would be that the level of the long 5’ UTR-containing 

TAC1 mRNA in isolate Gu5 may be much lower than in isolate 5674, which could be tested by 

RT-qPCR experiments (see Chapter 3.2.5). The RT-PCR result reinforces the previous 

hypothesis that constitutively activated Tac1p may be associated with the production of the 

long 5’ UTR-containing TAC1 mRNA. 

 

3.2.5. Comparison of the long 5’ UTR-containing TAC1 mRNA levels in isolate 5674 and 

the 5674-derived mrr1∆/∆ mutants 

To investigate the role of Mrr1p in producing the long 5’ UTR-containing TAC1 mRNA in 

isolate 5674, the expression levels of the long TAC1 transcripts in isolate 5674 and the 

5674-derived mrr1∆/∆ mutants were determined by RT-qPCR. The primers used are specific 

to the longer 5’ UTR of TAC1 of isolate 5674. As can be seen in Figure 20B, there is no 

significant difference between isolate 5674 and the two independent mrr1∆/∆ mutants, 
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indicating that the proportion of the long 5’ UTR-containing TAC1 transcripts in total TAC1 

transcripts does not change upon MRR1 deletion in isolate 5674.  

 

           

 

                
Figure 20. Measurement of the long 5’ UTR-containing TAC1 transcript levels in isolate 
5674 and the 5674-derived homozygous mrr1∆ mutants. 
Total RNA extracts for strains 5674, 5457, JLY5 (MRR1-/-), JLY6 (MRR1-/-), Gu4, Gu5 and 
SC5314 were prepared for the RT-PCR (A) and RT-qPCR (B) analyses.  
(A) The primers MR2869 and MR2870 that are specific to the long 5’ UTR of TAC1 were 
used. The expected fragment size is 140 bp. Isolate Gu5 was used as a positive control. NC 
denotes the negative control, for which water was used as the PCR template. 
(B) The RT-qPCR results represent the means ± standard deviations from three independent 
experiments, each performed in duplicate. Statistical analyses were performed using two-tailed 
Student’s t-test. 

A 

B 
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3.3. Mrr1p may also be implicated in fluconazole tolerance in strain SC5314 

Some of the Mrr1p target genes encode putative oxidoreductases that might contribute to 

coping with the oxidative stress induced by the fluconazole exposure [64]. Since MRR1 

deletion in isolate 5674 causes only a slight decrease in fluconazole resistance and the 

expression levels of CDR1 and TAC1 do not change upon MRR1 deletion in isolate 5674, it is 

possible that the decreased resistance to fluconazole is due to the reduced expression of some 

Mrr1p target genes that are regulated by wild-type Mrr1p and associated with fluconazole 

resistance or tolerance. To test this possibility, we next sought to investigate whether Mrr1p 

also functions in fluconazole tolerance in strain SC5314, where there is no GOF mutation in 

TAC1 and CDR1 is expressed at a basal level [63].  

Again, liquid microtiter plate assays were performed for strain SC5314 and the 

SC5314-derived mrr1∆/∆ mutant. Although they were obtained in one experiment performed 

in duplicate, these data seem to indicate that the SC5314-derived mrr1∆/∆ mutant is slightly 

more susceptible to fluconazole than strain SC5314, suggesting that Mrr1p may play a part in 

the tolerance of strain SC5314 to fluconazole (Figure 21). It is therefore tempting to speculate 

that Mrr1p might function independently of Tac1p in the regulation of fluconazole resistance 

in isolate 5674.  
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Figure 21. Determination of the role of Mrr1p in fluconazole tolerance in strain SC5314. 
The fluconazole susceptibility of strain SC5314 and the SC5314-derived mrr1∆/∆ mutant was 
determined using liquid microtiter plate assays. The results are presented as the percent growth 
of the cells in fluconazole-containing YPD media as compared with the growth of the same 
strain in fluconazole-free YPD media (100%). The data represent the means from a single 
experiment performed in duplicate. 
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4. Discussion 

Azole resistance in C. albicans constitutes a serious clinical problem all over the world and 

many efforts have been made in recent years in order to reveal the underlying molecular 

mechanisms. Mrr1p- and Tac1p-mediated azole resistance is prevalent in many clinical 

isolates of C. albicans and has been extensively studied. However, little is known about 

whether these two transcriptional pathways interact in controlling azole resistance. Our lab 

recently got some preliminary evidence of a possible involvement of Mrr1p in 

fluphenazine-induced transient upregulation of TAC1 and CDR1, which encouraged us to 

further study the cross-talk between the Mrr1p- and Tac1p-regulated transcriptional pathways.  

In this study, we continued to investigate the role of Mrr1p in fluphenazine-induced 

transient upregulation of TAC1 and CDR1. I first sought to reproduce our previous data of the 

residual induction of CDR1 by fluphenazine in a SC5314-derived tac1∆/∆ mutant using 

Northern blotting analyses. However, I did not manage to do so, even though the optimum 

fluphenazine conditions for CDR1 induction in the tac1∆/∆ mutant were used. Although very 

unlikely, it is possible that the SC5314-derived tac1∆/∆ mutant that I used is genetically 

different from the original one due to an occurrence of certain mutations during cell passaging, 

so that it may get much less responsive to fluphenazine treatment, or the factor(s) responsible 

for the residual induction of CDR1 by fluphenazine may consequently become incapable of 

upregulating CDR1. Notably, we have also performed a luciferase assay to study 
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fluphenazine-induced transient activation of the CDR1 promoter in the SC5314-derived 

tac1∆/∆ mutant. It has been found that the CDR1 promoter is activated by 150 μM of 

fluphenazine in the absence of Tac1p in strain SC5314, although the induction level is low 

(data not shown). This is in line with our previous result shown in Figure 6 and these results 

confirm the existence of the residual induction of CDR1 by fluphenazine in the absence of 

Tac1p in strain SC5314, which I was not able to clearly show through Northern blotting 

analyses, possibly because Northern blotting is much less sensitive and quantitative than 

luciferase assays.  

As the Tac1p-independent fluphenazine induction of TAC1 is more noticeable than that 

of CDR1 (see Figure 6), we therefore chose to first study whether the induction level of TAC1 

would significantly decrease upon MRR1 deletion in the SC5314-derived tac1∆/∆ mutant. 

Surprisingly, the SC5314-derived tac1∆/∆ mrr1∆/∆ mutant exhibited an unexpected feature 

that its TAC1 promoter activity is higher than that in the SC5314-derived tac1∆/∆ mutant 

under all the fluphenazine conditions tested, suggesting that Mrr1p might transcriptionally 

inhibit fluphenazine-induced TAC1 upregulation in strain SC5314. However, these results are 

preliminary and further experiments are required for making firm conclusions. Besides, with 

the use of luciferase assays, we can also study the residual induction of CDR1 by fluphenazine 

in the SC5314-derived tac1∆/∆ mrr1∆/∆ mutant and the related strains in the future. 

It is well known that fluphenazine is able to induce the upregulation of many Tac1p 

target genes, but the exact molecular mechanism is still unknown until now. Zinc cluster 
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transcription factors are functionally and architecturally akin to metazoan nuclear receptors 

and the activities of a number of zinc cluster transcription factors in S. cerevisiae are indeed 

regulated by specific small molecules, such as nutrients and environmental chemicals [57]. As 

mentioned in the Introduction section, in S. cerevisiae, the zinc cluster transcription factor 

Pdr1p can bind to ketoconazole, cycloheximide and rifampicin, thereby leading to the 

overexpression of its target gene PDR5 that encodes a drug efflux pump [58]. These facts 

therefore raise the possibility that fluphenazine may bind directly to Tac1p and alter its 

conformation, thereby rendering it hyperactive. To test whether fluphenazine binds to Tac1p, 

we could conduct cold competition assays as previously published [58]. 

Fluphenazine belongs to the phenothiazine family commonly used in the treatment of 

psychoses, such as paranoia and schizophrenia. Although structurally distinct from azoles, 

fluphenazine is also a substrate for Cdr1p and Cdr2p in C. albicans [24]. Moreover, 

fluphenazine is an antagonist of calmodulin, which is a highly conserved calcium-binding 

protein among eukaryotes and plays a role in the growth of some fungi [92]. It was previously 

found that relatively low concentrations of fluphenazine exhibit only a weak antifungal effect, 

but can significantly strengthen the antifungal activities of fluconazole and ketoconazole in C. 

albicans [93, 94]. In accordance with the above findings, we have observed that the growth of 

the wild-type C. albicans strain SC5314 was suppressed in the presence of relatively high 

concentrations of fluphenazine (data not shown). Besides, the fluphenazine treatment of C. 

albicans results in the induction of several putative stress response genes, including SAS3 and 
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GRP2 [95]. Taken together, the fact that fluphenazine can be harmful to C. albicans and bring 

about complex molecular changes within the cell due to its antifungal characteristics 

especially at relatively high concentrations inevitably complicates our investigation of whether 

and how Mrr1p functions in fluphenazine-induced transient upregulation of TAC1, CDR1 and 

other Tac1p target genes involved in azole resistance. 

Since it is likely that Mrr1p does not play a positive role in the Tac1p-independent 

induction of the TAC1 promoter by relatively high concentrations of fluphenazine in strain 

SC5314, what could be the factor responsible for this process? A good candidate is the zinc 

cluster transcription factor Mrr2p. As explained in the Introduction section, Mrr2p can 

upregulate CDR1 in a Tac1p-independent manner. It is thus possible that Mrr2p may also 

regulate the expression of TAC1 and be positively involved in the transient induction of TAC1 

by fluphenazine independently of Tac1p. To test this possibility, we could first delete MRR2 in 

the SC5314-derived tac1∆/∆ mutant and then study whether the induction of the TAC1 

promoter by relatively high concentrations of fluphenazine would disappear upon MRR2 

deletion.  

A new MRR1 deletion cassette was constructed through two rounds of PCR and used to 

delete MRR1 in the clinical isolate 5674. However, the design of the primers was based on the 

MRR1 sequence of the wild-type strain SC5314 instead of isolate 5674, as it was the only 

MRR1 sequence available at that time. Thus, the reason why the second allele of MRR1 could 

not be deleted using the new deletion cassette is probably because there is polymorphism in 
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the non-coding upstream and downstream regions of MRR1, which has been confirmed by 

whole genome sequencing of isolate 5674. Although the MRR1 deletion cassette from Dr. 

Joachim Morschhäuser also contains the upstream and downstream sequences of MRR1 of 

strain SC5314, these homology regions are about 300 bp in length and should therefore work 

more effectively than the 120 bp homology arms of the new deletion cassette, so the problem 

of MRR1 polymorphism was successfully overcome. 

Mrr1p indeed contributes to azole resistance in the clinical isolate 5674, but very likely 

not through Tac1p-mediated mechanisms because the mRNA levels of CDR1 and TAC1 do not 

change upon MRR1 deletion. However, we cannot exclude the possibility that Mrr1p may 

positively regulate the expression of other Tac1p target genes which are less important in the 

maintenance of azole resistance than CDR1 and TAC1 in isolate 5674. Besides, it is also 

possible that the decrease in azole resistance caused by MRR1 deletion in isolate 5674 may be 

due to the changed expression of some of the Mrr1p target genes which are also involved in 

azole resistance or tolerance, as implied by our observation that the deletion of MRR1 may 

also lead to reduced fluconazole tolerance in the wild-type strain SC5314. Here it is important 

to mention that Morschhäuser et al. previously found that MRR1 deletion in strain SC5314 did 

not affect its sensitivity to fluconazole, but they did not show the detailed data (e.g. the percent 

growth of strain SC5314 and the mrr1∆/∆ mutant at all the concentrations of fluconazole 

tested) [64]. Therefore, it is possible that there might be a tiny difference between strain 

SC5314 and the mrr1∆/∆ mutant which they did not recognize. Since our results are 
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preliminary, one would need to repeat the experiment to ascertain that Mrr1p is involved in 

azole tolerance in strain SC5314. 

Although there is no GOF mutation in MRR1 in strains SC5314 and 5674, their 

wild-type MRR1 alleles may also regulate the expression of specific genes that help to cope 

with the azole stress. To test the above possibilities, we could compare the gene expression 

profiles of isolate 5674 and the 5674-derived mrr1∆/∆ mutant so that all the transcriptional 

changes upon MRR1 deletion in isolate 5674 would be determined. In this way, we may 

uncover the exact role of Mrr1p in regulating azole resistance in isolate 5674. 

Another interesting finding in this study is that the TAC1 transcripts in isolate 5674 have 

a very long 5’ UTR. This is not surprising as it was previously reported that in another 

azole-resistant clinical isolate that carries a GOF mutation in TAC1, the TAC1 transcripts also 

have a long 5’ UTR, and our lab has recently found that Tac1p binds to its own promoter at the 

CGG triplets about 1000 bp upstream of the start codon [91] [Louhichi F, unpublished data]. 

In strain SC5314, the 5’ UTR of the TAC1 transcripts is only 300 nt in length, suggesting that 

the basal level of TAC1 transcription in strain SC5314 may be controlled by other 

transcriptional regulators independently of Tac1p. This is supported by our previous data and 

the results in Figure 12 showing that TAC1 deletion does not affect the basal activity of the 

TAC1 promoter in strain SC5314. In eukaryotic cells, 5’ UTR often plays an important role in 

controlling translational efficiency, either in a positive or negative manner; it can sometimes 

decrease the translational efficiency either by forming secondary structures that affect 
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translation initiation, or by using uORF to prevent the translation of the main ORF [96]. A 

good example in C. albicans is UME6, which encodes a critical transcriptional regulator of 

hyphal growth [97]. The 5’ UTR of UME6, which contains two putative uORFs, is 3041 nt in 

length and it suppresses the translation of the UME6 transcripts, resulting in reduced Ume6p 

levels [89, 98]. Interestingly, by performing in silico analyses, we found that the 1025 nt 5’ 

UTR of TAC1 also contains a putative uORF (see Figure 3), which raises the possibility that 

the longer 5’ UTR may affect the translation of the longer TAC1 transcripts.  

In consideration of the important function of 5’ UTR and the fact that Mrr1p also binds 

to the upstream CGG-rich motif of the TAC1 promoter, we thus investigated whether Mrr1p 

contributes to the production of the long TAC1 transcripts in isolate 5674. Although we have 

found that Mrr1p is not implicated in this process, it is still appealing to study whether 

transcriptional regulators other than Tac1p are involved. Besides, we could perform the primer 

extension assays to test whether isolate 5674, the 5674-derived mrr1∆/∆ mutants and isolate 

Gu5 produce the TAC1 transcripts with other different lengths (e.g. 300 nt) of 5’ UTR. It may 

also be studied in the future whether the long 5’ UTR of the TAC1 transcripts plays a role in 

the translational regulation of TAC1 and azole resistance, although there are no good 

approaches at the moment. 

Since constitutively activated Tac1p is able to upregulate CDR1 and TAC1 without the 

requirement of Mrr1p in isolate 5674, will the transcription levels of CDR1 and TAC1 be 

elevated if a MRR1 allele with a GOF mutation is introduced into the genome of isolate 5674? 
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It is possible that constitutively hyperactive Mrr1p may cooperate with constitutively 

hyperactive Tac1p to further upregulate some of the Tac1p target genes in either a synergistic 

or an additive fashion in isolate 5674. To test this hypothesis, we could replace one wild-type 

MRR1 allele of isolate 5674 with a MRR1 allele carrying a GOF mutation and test whether the 

mRNA levels of CDR1 and TAC1 would hence be increased. We could also study whether the 

proportion of the long TAC1 transcripts in total TAC1 transcripts would change upon the 

introduction of a MRR1 allele carrying a GOF mutation into the genome of isolate 5674. 

Through these studies, we may gain deeper insights into the interactions between different 

transcriptional regulators of azole resistance in C. albicans. 
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