CAHIER 9425 # THE EFFECT OF LINEAR FILTERS ON DYNAMIC TIME SERIES WITH STRUCTURAL CHANGE Eric GHYSELS' and Pierre PERRON¹ Département de sciences économiques and Centre de recherche et développement en économique (C.R.D.E.), Université de Montréal. #### December 1994 We would like to thank two referees for their comments and to acknowledge the financial support from the Canadian International Development Agency (CIDA) under the auspices of the Programme d'analyses et de recherches économiques appliquées au développement international (PARADI) and the Fonds pour la formation de chercheurs et l'aide à la recherche du Québec. The second author would like to thank also the National Science Foundation and CAFIR (Université de Montréal). Finally, we thank Christian Tritten who provided research assistance. C.P. 6128, succursale Centre-ville Montréal (Québec) H3C 3J7 Télécopieur (FAX): (514) 343-5831 Courrier électronique (E-Mail) : econo@tornade.ERE.Umontreal.CA Ce cahier a également été publié au Centre de recherche et développement en économique (C.R.D.E.) (publication no 2994). Dépôt légal - 1994 Bibliothèque nationale du Québec Bibliothèque nationale du Canada ISSN 0709-9231 #### RÉSUMÉ Très souvent, lorsque les modèles paramétriques sont testés pour des changements structurels, ils sont construits avec des séries filtrées plutôt que des données brutes. Plusieurs filtres, comme ceux associés au programme d'ajustement saisonnier X-11, ont pour effet de lisser les données. Par conséquent, ils ont tendance à masquer une instabilité structurelle. Cet article analyse, à la fois théoriquement et par l'intermédiaire de simulations de Monte Carlo, l'effet d'un filtrage linéaire sur les propriétés statistiques de plusieurs tests faisant intervenir un changement structurel. Des séries historiques sur l'activité économique couvrant la Grande Dépression sont utilisées pour étudier et illustrer la sensibilité de certains tests à l'application de filtres d'ajustement saisonnier. Mots-clés : racine unitaire, point de rupture, biais asymptotique, ajustement saisonnier, filtre X-11 du Census. #### **ABSTRACT** Quite often, when parametric models are tested for structural change, they are fitted to filtered series instead of raw data. Many filters, like those associated with the X-11 seasonal adjustment program, have smoothing properties. Hence, they have a tendency to disguise structural instability. The paper analyzes, both theoretically and via Monte Carlo simulations, the effect of linear filtering on the statistical properties of several tests involving structural change. Historical series of economic activity covering the Great Depression are used to study and illustrate the sensitivity of some tests to the application of seasonal adjustment filters. Key words: unit root, change-point, asymptotic bias, seasonal adjustment, Census X-11 filter. #### 1. INTRODUCTION The analysis of structural change has occupied an important place in econometrics to assess the adequacy of particular models and to characterize the temporal behavior of economic time series. Typically, a parametric model is not fitted to raw data but instead to filtered series, such as seasonally adjusted data. As these filters entail smoothing of data, they may conceal a structural change in the unadjusted Data Generating Process (DGP). The widely used Census X-11 seasonal adjustment program, for instance, leaves a constant linear trend unaffected, as noted in Ghysels and Perron (1993), but has no such invariance property with respect to breaking trends and level shifts. This observation, discussed in section 2, makes seasonal adjustment with X-11, not an innocuous operation with regard to tests involving aspects of structural instability. The paper analyzes, both theoretically and via simulations, the effect of linear filtering on the statistical properties of various classes of tests in the presence of structural change. While our discussion focuses on a general class of two-sided linear filters, satisfying certain regularity conditions, specific attention is given to the linear approximation of the X-11 procedure. Three classes of tests are considered, namely, (1) tests for a unit root allowing for the presence of a change in the trend function, as discussed in Perron (1989, 1993), Banerjee, Lumsdaine and Stock (1992), Zivot and Andrews (1992) and others, (2) tests for changes in a polynomial trend function for a dynamic time series model, proposed by Gardner (1969), MacNeill (1978) and Perron (1991b), and (3) tests for parameter instability with unknown change point, as discussed by Andrews (1993). A general theoretical treatment of filtering effects on the asymptotic properties of the tests, particularly those belonging to the second and third classes, is not presented. Certain simplifications are made to obtain tractable analytical results. For instance, in some developments it is assumed that the DGP is a simple level shift model without seasonals. While there is not point in seasonally adjusting such series, one can interpret our analysis as focusing on a particular component of interest which is part of a more complex time series. Monte Carlo simulations complement our theoretical findings and show that the qualitative effects uncovered by the asymptotic results extend to more general models. The outline of the paper is as follows. Section 2 presents a preliminary analysis of the effects caused by seasonal adjustment procedures on purely deterministic components when structural breaks are present. Section 3 discusses in more detail the models and statistics involved, while section 4 elaborates on the large sample behavior of tests with filtered data. On the other hand, section 5 reports simulation experiments which allow us to better assess these effects in small samples and extends some of the large sample results to more complex time series models. Finally, section 6 concludes with empirical examples. Historical series covering the Great Depression are used to illustrate the adverse effects seasonal adjustment filters may have on tests involving structural changes. #### 2. FILTERING AND BREAKING TRENDS For the purpose of motivating the discussion, let us consider two purely deterministic time series, namely: (2.1) $$y_t = \mu + \beta t + \theta DU_t,$$ (2.2) $$y_t = \mu + \beta t + \theta DU_t + \gamma DT_t^*,$$ where DU_t = 1, DT_t* = t - T_b if t > T_b and 0 otherwise with T_b representing a breakpoint. In (2.1), a level shift is present in the DGP with intercept μ for t < T_b and μ + θ thereafter. In (2.2), a change in both the intercept and the slope occurs after T_b. Let us consider now the effect of "seasonally adjusting" these processes. Of course, there is no point in seasonally adjusting such series since they exhibit no seasonal behavior. Yet, as they may be a component of a time series which is being seasonally adjusted, it is useful to consider the effect of a filter like X-11 on these trend components. To simplify the discussion, we consider the linear approximation of the X-11 filter rather than the actual procedure and focus on the monthly filter denoted by $\nu_{X-11}^{M}(L)$ 2. It is a two-sided symmetric filter spanning 65 observations on each side with weights that add to 1.3 Several researchers have proposed a set of desirable properties that any seasonal adjustment procedure should have (e.g., Granger (1978) and Hylleberg (1986, Chapter 2)). One of them, sometimes referred to as idempotency, is that adjustment filters should leave already adjusted and/or nonseasonal time series unaffected. In that spirit, a desirable seasonal adjustment procedure would leave equations (2.1) and (2.2) unaffected. For a more detailed discussion of the linear approximation, see, for instance, Bell (1992) and Ghysels and Perron (1993). We will not repeat the details here, and the reader should refer to these papers. By focusing on this linear approximation, we abstract from the modus operandi of the X-11 procedure in practice. At the end of this section, we briefly discuss issues which make the actual X-11 procedure different from its linear filter approximation and to what extent these differences are relevant with respect to analyzing structural changes. ³ The filter weights appear in Ghysels and Perron (1993), Table A.1. The "seasonally adjusted" series $y_t^{sa} = v_{X-11}^M(L)y_t$ are plotted in Figures 2.1 and 2.2 which contain the original series (panel A) as well as their filtered counterparts (panel B). For purpose of comparison, Panel C presents a graph of $y_t^- - y_t^{sa}$ in both cases. The first example, appearing in Figure 2.1, is one where a level shift occurs at Tb = 150 and the sample size T is 300 (though not the entire sample is plotted on the graphs). To simplify the presentation, we set $\beta=0$ in (2.1) and choose $\mu=-.5$ and $\theta=1$. Hence, at $t=T_b=$ 150, a level jump equal in magnitude to one occurs. Such an abrupt level shift is obviously difficult to smooth. Two things happen when a level shift is filtered with $u_{X-11}^{M}(L)$. First, the magnitude of the discrete jump at $t=T_b$ is reduced by approximately 10% (this feature is more explicit in panel C where the difference between the two, i.e., $y_t - y_t^{sa}$, is plotted). Second, a saw-toothed pattern appears before and after the actual break. The pattern, in fact, looks seasonal. The source of this pattern is relatively easy to understand, considering the filter weights of $\nu_{X-11}^{M}(L)$. As the filter is two-sided, it starts picking up the break at $t = T_b - 65$ when the most extreme lead term of the linear approximation "hits" T_b . Moreover, the break still affects y_t^{sa} at T_b + 65 due to the most extreme lag term. Moreover, the saw-toothed pattern is a consequence of the design of the filter weights. Consider next the case corresponding to (2.2), where the slope and the intercept change at time $\mathrm{T_{b}}$
. Here again, we observe the two effects of passing y_t through $u_{\mathrm{X-11}}^{\mathrm{M}}(\mathrm{L})$, namely, the level shift is reduced while the change in slope zig-zags through time Before turning our attention to the test procedures, we make two observations about the use of the linear X-11 filter. First note that the smoothing produced by the actual X-11 program is probably greater than that resulting from the application of the linear filter $\nu_{X-11}^{\rm M}({\rm L})$. Indeed, two features of the actual procedure have a smoothing effect not captured by the linear approximation. First, the detrended series, obtained using the so-called Henderson filter, is rescaled once outliers are detected 4. This part of the procedure replaces actual observations by refitted values based on a rescaled and nearest neighbor smoothing scheme. Secondly, the Henderson filter can be replaced by a longer moving average with 23 terms instead of the default value of 9. In the remainder of this paper, we continue to work with the linear approximation, as any theoretical development would be difficult with any of the real-time complications associated with the procedure. One should keep in mind though that the nonlinearities of the X-11 program not taken Hylleberg (1986, p. 90) provides a reasonably nontechnical description and summary of this feature of the X-11 program. Ghysels, Granger and Siklos (1994) discuss in detail and provide simulation evidence about the nonlinear features of the X-11 program. into account in fact exacerbate the undesirable effects of seasonal adjustment on procedures involving structural breaks. Finally, note that we consider only two-sided filters while in practice one-sided filters are often used when all the data required to apply the two-sided filters are not available. Such is the case at either end of the sample or whenever preliminary data releases are studied. We do not pursue any analysis of one-sided filters primarily for two reasons. First, regularity conditions required for a linear filter not to affect a linear trend rule out one-sided filters (see Ghysels and Perron (1993)). Second, there are a multitude of one-sided linear filters, in principle 131 for the monthly X-11 case. Choosing a specific one could only be justified using some arbitrary criterion. #### 3. THE MODELS AND STATISTICS In this section, we briefly review the models and statistical procedures and, when necessary, extend them to a seasonal context. Three different classes of tests are investigated, namely, (1) tests for a unit root allowing for the presence of a change in the trend function, (2) tests for changes in a polynomial trend function for a dynamic time series and (3) tests for general parameter instability with unknown change point. #### 3.1 Unit root tests A detailed discussion of tests for a unit root allowing for the presence of a change in trend function appears, for instance, in Perron (1989,1993). A first model is one where only a change in the intercept of the trend function is allowed under both the null and alternative hypotheses. The "innovational outlier" version generalized to allow for seasonal components leads to the following regression to compute the relevant unit root test: $$(3.1) \ \ y_{t} = \mu + \theta DU_{t} + \beta t + \delta D(T_{b})_{t} + \alpha y_{t-1} + \Sigma_{i=1}^{k} c_{i} \Delta y_{t-i} + \Sigma_{s=1}^{S-1} b_{s} d_{st} + e_{t}$$ where $D(TB)_t = 1$ if $t = T_b + 1$ and zero otherwise, and d_{gt} is a set of S-1 seasonal dummies with corresponding mean shifts denoted by b_g . Before turning to the second and third models, a brief discussion about the appearance of seasonal dummies in (3.1) is in order. First note that in all the models considered seasonal mean shifts remain fixed under both the null and the alternative hypotheses. This assumption avoids the complication of changing seasonal patterns discussed in Ghysels (1990) and Canova and Ghysels (1991). As all auxiliary regressions include a constant, we know from results in Hylleberg et al. (1991) that the asymptotic distributions of test statistics will not be affected. Hence, the presence of seasonal dummies in (3.1) and other regressions below, does not entail any change in the asymptotic critical values to be used. Under the second model, both a change in the intercept and a change in the slope of the trend function are allowed at time T_b and the appropriate regression is: $$(3.2) \ y_{t} = \mu + \theta DU_{t} + \beta t + \gamma DT_{t}^{*} + \delta D(T_{b})_{t} + \alpha y_{t-1} + \Sigma_{i=1}^{k} c_{i} \Delta y_{t-i} + \Sigma_{s=1}^{S-1} b_{s} d_{st} + e_{t}.$$ In the third model, a change in the slope of the trend function is allowed but both segments are joined at the break. Hence, the change is presumed to occur rapidly and corresponds to the "additive outlier model", as discussed in Perron (1989). The null hypothesis of a unit root can be tested using the following two regressions: $$(3.3.i) \quad \mathbf{y_t} = \mu + \beta \mathbf{t} + \gamma \mathbf{DT_t^*} + \tilde{\mathbf{y}_t} + \Sigma_{s=1}^{S-1} \mathbf{b_s} \mathbf{d_{st}}.$$ $$(3.3.ii) \quad \tilde{\mathbf{y}}_{t} = \alpha \tilde{\mathbf{y}}_{t-1} + \Sigma_{i=1}^{k} \mathbf{c}_{i} \Delta \tilde{\mathbf{y}}_{t-i} + \mathbf{e}_{t}.$$ We denote by $t_{\hat{\alpha}}(i,T_b,k)$ (i=1,2,3), the t-statistic for $\alpha=1$ under Model i with a break date T_b and truncation lag parameter k. In the simulation experiments to be reported in section 5, we consider both cases where T_b is assumed known and unknown. In the former case, the proper critical values to be used are those in Perron (1989) for all three models (see also Perron and Vogelsang (1992b)). When the breakpoint is treated as unknown, we follow Zivot and Andrews (1992) and consider the statistics $t_{\alpha}^*(i) = \min_{T_b \in (k+2,T)} t_{\hat{\alpha}}(i,T_b,k)$ (i=1,2,3), whereby T_b is chosen such that the t-statistic for $\alpha=1$ is minimized over all possible breakpoints. In this case, the appropriate asymptotic critical values to be used are those reported in Zivot and Andrews (1992) for Models 1 and 2 and in Perron and Vogelsang (1992b) for Model 3. To select the truncation lag we consider, in both the simulations and the empirical applications, a data-dependent method based on a general to specific recursive strategy using the value of the t-statistic on the coefficient associated with the last lags in the estimated autoregressions 5. More specifically, the procedure selects that value of k, say k*, such that the coefficient on the last lag in an autoregression of order k* is significant and that the coefficient on the last lag in an autoregression of order greater than k* is insignificant, up to some maximum order kmax selected a priori. We use a two-sided 10 % test based on the asymptotic normal distribution to assess the significance of the last lags. See Ng and Perron (1993) for further discussion on the theoretical justification for this procedure and Perron and Vogelsang (1992a) for simulation results in the context of unit root tests with breaks. ### 3.2 Tests for changes in a polynomial trend function We now consider tests for structural change in a polynomial trend function. The basic process has three components, namely, (1) a polynomial trend function of order p denoted N_t , (2) a stationary AR(k) process denoted X_t and (3) a set of seasonal deterministic mean shifts. Except for the third component, the setup is similar to that in Gardner (1969), MacNeill (1978) and Perron (1991b). The process y_t is then characterized as: (3.4.a) $$y_t = N_t + X_t + \Sigma_{s=1}^{S-1} b_s d_{st}$$ (3.4.b) $$N_t = \sum_{i=0}^p \beta_{i,t} t^i$$, (3.4.c) $$X_t = \sum_{j=1}^k \alpha_j X_{t-j} + e_t$$, where e_t is i.i.d. $N(0, \sigma_e^2)$. Under the null hypothesis, $\beta_{i,t} = \beta_i$ for all i. Under the alternative, some of the $\beta_{i,t}$ change at least once over time. Again, the seasonal pattern is assumed to be fixed under both the null and the alternative hypotheses. A one-time change in the coefficients at a given date T_b will be the alternative hypothesis of interest. To describe the test statistics, consider first the following regression estimated by OLS: $$(3.5) y_t = \sum_{i=0}^{p} \hat{\beta}_i t^i + \sum_{s=1}^{S-1} \hat{b}_s d_{st} + \sum_{j=1}^{k} \hat{a}_j y_{t-j} + \hat{e}_{p,t}^{S} (t = 1,...,T),$$ where we denote the estimated residuals by $\hat{e}_{p,t}^S$ to highlight the fact that they are obtained from a regression involving a polynomial trend of order p and a set of seasonal dummies. We shall denote the residuals by $\hat{e}_{p,t}$ when the dummies are not present in the regression. The test statistic, denoted $\mathrm{QD}_T^S(p)$ is given by: (3.6) $$QD_T^S(p) = T^{-2} \hat{\sigma}^{-2} \Sigma_{t=1}^{T-1} (\Sigma_{j=1}^t \hat{e}_{p,j}^S)^2$$, where $\hat{\sigma}^2 = T^{-1}\Sigma_{t=1}^T (\hat{e}_{p,t}^S)^2$. A similar test statistic for the nonseasonal case will be denoted $QD_T(p)$ when $\hat{e}_{p,t}^S$ is replaced by $\hat{e}_{p,t}$. The asymptotic distribution of this test was derived in Perron (1991b). It depends on p and is tabulated in MacNeill (1978) for the case where the noise component is a stationary process. # 3.3 General tests for parameter instability with unknown change point The last class of tests considered are special cases of the general framework considered in Andrews (1993). We again consider data generated by (3.4), with the restriction, however, that p=0, yielding an AR(k) nonzero mean model, possibly with seasonal mean shifts. The null hypothesis H_0 : $\beta_{0,t}=\beta_0$ is considered. This corresponds to what is termed by Andrews as a "partial" structural change test, as it does not involve testing the time invariance of the parameters α_j and those associated with the seasonal mean shifts. We let $T_b=\pi$ T where π belongs to a subset of [0, 1]. We use $\pi\in[0.15, 0.85]$ in the
simulations and empirical applications. For any given value of π , consider the regression $$(3.7) \quad \mathbf{y_t} = \beta_{01}(\pi)(1 - \mathbf{DU_t}) + \beta_{02}(\pi)\mathbf{DU_t} + \Sigma_{j=1}^k \alpha_j \mathbf{y_{t-j}} + \Sigma_{s=1}^{S-1} \mathbf{b_s} \mathbf{d_{st}} + \mu_t^S(\pi).$$ From (3.7), it is relatively straightforward to construct Wald statistics over the range of possible breakpoints. Namely, for π given: $$(3.8) \ \ W_{\rm T}^S(\pi) = {\rm T}(\hat{\beta}_{01}(\pi) - \hat{\beta}_{02}(\pi))'(\hat{V}_1(\pi)/\pi + \hat{V}_2(\pi)/(1-\pi))^{-1}(\hat{\beta}_{01}(\pi) - \hat{\beta}_{02}(\pi))$$ and compute $\sup_{\pi} W_T^S(\pi)$, denoted Sup W_T^S . The variances $\hat{V}_1(\pi)$ and $\hat{V}_2(\pi)$, for $\hat{\beta}_{01}(\pi)$ and $\hat{\beta}_{02}(\pi)$ respectively, are obtained from each of the subsamples and involve corrections for possible heteroskedasticity and autocorrelation as discussed, for instance, in Newey and West (1987). An equivalent statistic for the nonseasonal case will be denoted Sup W_T . The asymptotic distribution of $\sup_{T} W_T^S$ and $\sup_{T} W_T$ is tabulated in Andrews (1993). Along the same lines, one can construct likelihood ratio tests denoted Sup LR_T^S and Sup_{T} , this time involving the estimation of a constrained model. # 4. LARGE-SAMPLE ANALYSIS Our aim in this section is to discuss the qualitative features of the effect of seasonal adjustment filters on the behavior of some test statistics in large samples. In particular, we want qualitative results that will enable us to draw some conclusions about the likely direction of the biases in terms of size or power. As we shall see, things get complex quite quickly and, in view of keeping the exposition manageable, we consider only simple models and special cases of the statistics described above. #### 4.1 Unit root tests For the unit root tests, we consider as DGP a special case of Model 3 with a change in slope in the context of a known breakpoint T_b. The tests are constructed without the addition of seasonal dummies and without additional lags in the autoregression (3.3.ii). Under these restrictions, the two step procedure for this model reduces to: (4.1) $$\mathbf{y}_{t} = \mu + \beta \mathbf{t} + \gamma \mathbf{D} \mathbf{T}_{t}^{*} + \tilde{\mathbf{y}}_{t},$$ $$(4.2) \tilde{y}_t = \alpha \tilde{y}_{t-1} + e_t,$$ estimated by OLS. Without loss of generality, we also set the true values $\mu = \beta = 0$. Consequently, the DGP considered is of the form: $$(4.3) y_t = \gamma DT_t^* + Z_t,$$ where Z_t is the noise component. If a unit root is present, we have $Z_t = Z_{t-1} + v_t$ where v_t is a stationary ARMA process of the form $A(L)v_t = B(L)e_t$ with $e_t \sim i.i.d.$ (0, σ^2). For a trend stationary process, Z_t is itself stationary. We denote the seasonal adjustment filter by $\nu(L) = \Sigma_{-m}^{rm} \nu_i$, a two sided polynomial with 2m+1 terms. The following analysis assumes this filter satisfies $\nu(L) = \nu(-L)$ and $\nu(1) = 1$ (the last condition being necessary to justify our elimination of the intercept and the slope in (4.3)). This framework covers the case of the linear approximation to X-11. Let y_t^f denote the filtered data. As is well known, the normalized least-squares estimator of α in (4.2) using filtered data is given by $T(\hat{\alpha}^f - 1) = T^{-1}\Sigma_{t=2}^T \bar{y}_t^f (\bar{y}_t^f - \bar{y}_{t-1}^f) / T^{-2}\Sigma_{t=2}^T (\bar{y}_{t-1}^f)^2$. Our aim is to study the limiting distribution of $T(\hat{\alpha}^f - 1)$ under the null hypothesis of a unit root and the probability limit of $\hat{\alpha}^f$ when considering the alternative hypothesis of a stationary noise component. The filtered data is given by: (4.4) $$y_t^f = \nu(L)y_t = \gamma \nu(L)DT_t^* + \nu(L)Z_t.$$ Note first that the unit root property is preserved by the application of the filter. Indeed, if a unit root is present, $\nu(L)Z_t \equiv Z_t^f = Z_{t-1}^f + \nu(L)v_t \equiv Z_{t-1}^f + \eta_t$ where $\eta_t = \nu(L)A(L)^{-1}B(L)e_t$. Since $\nu(L)$ does not contain a root on the unit circle, η_t is itself a stationary process having a different variance from v_t though an identical spectral density function at the origin. The effect of the filter on the trend properties of the data is such that: (4.5) $$\nu(L)DT_{t}^{*} = 0$$, if $t \leq T_{b} - m$, $$= t - T_{b}, \qquad \text{if } t \geq T_{b} + m,$$ $$= \chi_{m,t} \equiv \Sigma_{i=T_{b}-m+1}^{t} (t+1-i) \nu_{T_{b}+1-i}, \quad \text{if } T_{b} - m < t < T_{b} + m.$$ It is shown in the Appendix that the asymptotic distribution of $T(\hat{\alpha}^f-1)$ is the same as that stated in Perron and Vogelsang (1992b) for the case where the data is not filtered except for the fact that the nuisance parameter $\delta = (\sigma_{\eta}^2 - s_{\eta}^2)/2\sigma_{\eta}^2$ is now defined in terms of $s_{\eta}^2 = \lim_{T \to \infty} T^{-1} \Sigma_{t=1}^T E(\eta_t^2)$ instead of $s_v^2 = \lim_{T \to \infty} T^{-1} \Sigma_{t=1}^T E(v_t^2)$ where we recall that $\eta_t = \nu(L)v_t$ (note that $\sigma_{\eta}^2 = \lim_{T \to \infty} T^{-1} (\Sigma_{t=1}^T \eta_t)^2 = \sigma_v^2 = \lim_{T \to \infty} T^{-1} (\Sigma_{t=1}^T v_t)^2$ since $\nu(1) = 1$). Since usual tests for unit root do not depend asymptotically on nuisance parameters, the tests will have an identical limiting distribution under the null hypothesis whether the data are filtered or not. Consider now the limiting behavior of \hat{a}^f under the alternative hypothesis of a stationary noise component. Tedious algebra yields δ : $$(4.6) \qquad T^{-1} \Sigma_{t=2}^{T} \tilde{y}_{t}^{f} \tilde{y}_{t-1}^{f} = T^{-1} \Sigma_{t=2}^{T} Z_{t}^{f} Z_{t-1}^{f} + o_{D}(1)$$ and (4.7) $$T^{-1}\Sigma_{t=2}^{T}(\bar{y}_{t-1}^{f})^{2} = T^{-1}\Sigma_{t=2}^{T}(Z_{t-1}^{f})^{2} + o_{p}(1).$$ Hence, the limiting bias of $\hat{\alpha}^f$ is the same as in the case where no break in the trend function is present. This case was analyzed in detail in Ghysels and Perron (1993) who showed that the probability limit of $\hat{\alpha}^f$ depends on the underlying process and is, in almost all cases, greater than the true first-order autocorrelation coefficient when $\nu(L)$ is the X-11 filter. This last fact, which still prevails here, implies a loss of asymptotic power for Using (A.2) in the Appendix and especially the fact that c_3 and c_4 are $O_p(T^{-3/2})$ when Z_t is stationary (as well as the fact that m is fixed as $T \to \infty$). tests of unit roots. Note that, as shown in Ghysels and Perron (1993), this asymptotic bias still prevails if the tests are based on augmented autoregressions. The basic reason for the fact that filtering the data in the presence of a break in the trend function does not add a further element of bias to the test asymptotically is that, even though the filter does not leave the trend function unchanged, it affects it for a finite number of periods only, related to the length of the filter (m). An alternative asymptotic framework would let this number of leads and lags increase as the sample size increases. The idea here is akin to a continuous time asymptotic framework where the sampling interval decreases to zero as the sample size increases to infinity. Indeed, it is well known that seasonal filters, such as the linear approximation to X-11, incorporate more lags, the finer the sampling interval. Though we do not analyze explicitly a continuous time approximation, such an asymptotic framework with m increasing can yield additional insights into the qualitative properties of the tests in the presence of filtering. To that effect, we first need to specify the framework relating the behavior of the filter weights as the sample size increases. We specify the sequence of weights: (4.8) $$T \nu_T([Ts]/T) \rightarrow \nu(s) \text{ as } T \rightarrow \infty.$$ Condition (4.8) is reasonable in the sense that it lets the weights on distant leads and lags decrease to zero at a fast enough rate. Let the number of lags on each sides of the filter be such that $m/T \to \kappa$ as $T \to \infty$ (we also specify $T_b/T \to \lambda$). Using (4.8), we have: $$\begin{aligned} (4.9) \qquad & \mathbf{T}^{-1}\boldsymbol{\chi}_{\mathbf{m},[\mathbf{Tr}]} = \mathbf{T}^{-1}\boldsymbol{\Sigma}_{\mathbf{i}}^{\mathbf{t}} = \mathbf{T}_{\mathbf{b}-\mathbf{m}+1}(\mathbf{t}+1-\mathbf{i}) \; \boldsymbol{\nu}_{\mathbf{T}_{\mathbf{b}}+1-\mathbf{i}} \\ & = \mathbf{T}^{-1} \; \boldsymbol{\Sigma}_{\mathbf{i}}^{[\mathbf{Tr}]-\mathbf{T}_{\mathbf{b}}+\mathbf{m}}([\mathbf{Tr}]-\mathbf{T}_{\mathbf{b}}+\mathbf{m}+1-\mathbf{i}) \boldsymbol{\nu}_{\mathbf{m}+1-\mathbf{i}} \\ & = \int_{0}^{\mathbf{r}-\lambda+\kappa} [\mathbf{r}-\lambda+\kappa-\mathbf{s}] \mathbf{T} \boldsymbol{\nu}_{\mathbf{T}}(\kappa-\mathbf{s}) \mathrm{d}\mathbf{s} \\ & \Rightarrow \int_{0}^{\mathbf{r}-\lambda+\kappa} [\mathbf{r}-\lambda+\kappa-\mathbf{s}] \boldsymbol{\nu}(\kappa-\mathbf{s}) \mathrm{d}\mathbf{s} = \int_{-\kappa}^{\mathbf{r}-\lambda} (\mathbf{r}-\lambda-\mathbf{s}) \boldsymbol{\nu}(-\mathbf{s}) \mathrm{d}\mathbf{s}. \end{aligned}$$ Under this alternative asymptotic framework, we obtain a rather different characterization. From (A.2) in the Appendix, we can verify that the term $\chi_{m,t}$ is $O_p(T)$ and dominates all others under the alternative hypothesis of a stationary noise component. ⁷ The quarterly X-11 filter involves 27 leads and lags whereas the monthly one has 65. Hence, we deduce that $$\begin{split} \hat{\alpha}^f &= T^{-3} \Sigma_2^T y_t^f y_{t-1}^f / T^{-3} \Sigma_2^T (y_t^f)^2 \\ &= T^{-3} \Sigma_{t=T_b-m}^{T_b+m} \chi_{m,t} \chi_{m,t-1} / T^{-3} \Sigma_{t=T_b-m}^{T_b+m} \chi_{m,t}^2 + o_p(1). \end{split}$$ Considering first the numerator of $\hat{\alpha}^{f}$, we have: $$\mathbf{T}^{-3}\boldsymbol{\Sigma}_{t=T_{b}-m}^{T_{b}+m}\boldsymbol{\chi}_{m,t}\boldsymbol{\chi}_{m,t-1} =
\mathbf{T}^{-3}\boldsymbol{\Sigma}_{t=T_{b}-m}^{T_{b}+m}[\boldsymbol{\chi}_{m,t-1}^{2} + \boldsymbol{\nu}_{T_{b}+1-t}\boldsymbol{\chi}_{m,t-1}].$$ Using (4.8) and (4.9), we have the limiting results $$(4.11) T^{-3} \Sigma_{\mathbf{t} = \mathbf{T}_{\mathbf{b}} - \mathbf{m}}^{\mathbf{T}_{\mathbf{b}} + \mathbf{m}} \chi_{\mathbf{m}, \mathbf{t} - \mathbf{l}}^{2} = \int_{\lambda - \kappa}^{\lambda + \kappa} (\mathbf{T}^{-1} \chi_{\mathbf{m}, [\mathbf{T}_{\mathbf{r}}]})^{2} d\mathbf{r}$$ $$\Rightarrow \int_{\lambda - \kappa}^{\lambda + \kappa} \left[\int_{-\kappa}^{\mathbf{r} - \lambda} (\mathbf{r} - \lambda - \mathbf{s}) \nu(-\mathbf{s}) d\mathbf{s} \right]^{2} d\mathbf{r}.$$ Using (4.10), (4.11) and the fact that $T^{-2}\Sigma_{t=T_b-m}^{T_b+m}{}^{\nu}T_{b+1-t}\chi_{m,t-1}=O_p(1)$, it is readily seen that $\hat{\alpha}^f \to 1$ under the alternative asymptotic framework where m increases to infinity as T increases. Our argument is not that this alternative limiting result provides a better approximation to the finite sample distribution. Rather, we view the fact that $\hat{\alpha}^f \to 1$ under the alternative hypothesis as suggesting the presence of an additional bias, caused by seasonal adjustment filters, that will reduce the power of the tests in finite samples. To summarize, our results, though obtained from a special model and test statistic, suggest the following features to be expected in finite samples about unit root tests that allow for the possibility of a break in the trend function: (1) seasonal adjustment filters have little effect on the size of the tests; (2) they, however, create a bias towards nonrejection of the unit root. This bias is caused by two components: the upward bias on $\hat{\alpha}^f$ that would occur without breaks (as analyzed in Ghysels and Perron (1993)) and a further bias caused by the distortionary effect of filtering on the trend function itself. # 4.2 Tests for structural change To keep the theoretical derivations analytically tractable again, while still aiming for qualitative results about distortions to size and power caused by filtering, we consider the simple case of a change in mean in an i.i.d. sequence whereby the statistic QD_T(0) is applied. The data-generating process is given by (4.12) $$y_t = (\delta/\sqrt{T}) DU_t + e_t$$, where $e_t \sim i.i.d.(0,\sigma^2)$ and DU_t is defined in equation (2.1). Under the null hypothesis, $\delta = 0$. By specifying the process with change in mean δ/\sqrt{T} , our goal is to provide a comparison of the local asymptotic power of the statistic constructed with and without filtered data. This derivation is obtained using the asymptotic framework whereby m increases to infinity as T increases and (4.8) is specified for the sequence of filter weights. We recall from the definition of $\mathrm{QD}_T(0)$ that we can write $\mathrm{QD}_T(0) = \mathrm{T}^{-2}\hat{\sigma}^{-2}$ $\Sigma_{t=1}^{T-1}\{\Sigma_{j=1}^t(y_j-\bar{Y})\}^2$, where $\hat{\sigma}^2=\mathrm{T}^{-1}\Sigma_1^T(y_t-\bar{Y})^2$. The statistic constructed with filtered data, $\mathrm{QD}_T^f(0)$, is defined analogously with y_t replaced by $y_t^f=\nu(L)y_t$. We first discuss the limit of the statistics under the null hypothesis. From MacNeill (1978), we have (4.13) $$QD_{T}(0) \Rightarrow \int_{0}^{1} B(s)^{2} ds$$, where $B(s) = W(s) - \int_0^1 W(s) ds$ is a demeaned Wiener process. It is straightforward, using arguments similar to those in Perron (1991b), to show that (4.14) $$QD_{T}^{f}(0) \Rightarrow \psi^{-1} \int_{0}^{1} B(s)^{2} ds$$, where $\psi = \int_{-\kappa}^{\kappa} \nu(s)^2 ds = \lim_{T\to\infty} T^{-1} \Sigma_1^T (\nu(L) e_t)^2 / \sigma_e^2$. Comparing (4.13) and (4.14), we see that filtering will induce size distortions in the limit if $\psi \neq 1$. Note that we have the approximation $\psi \approx \Sigma_{-m}^m \nu_i^2$. For the linear approximation to the X-11 seasonal adjustment procedure, ψ is 0.826 for the quarterly version while 0.785 for the monthly version. In both cases, the application of the seasonal adjustment filter will induce tests that are liberal (oversized) even in the limit (slightly more so in the monthly case). We now consider the local asymptotic power function of the tests. Consider first the case where the unfiltered series are used. From Perron (1991b, Theorem 6), we deduce: $$\mathrm{QD}_{\mathrm{T}}(0) \Rightarrow \int_0^1 \mathrm{B}_{0,\delta}^*(r)^2 \mathrm{d} r \; , \label{eq:QDT0}$$ where $B_{0,\delta}^* = W(r) - rW(1) - (\delta/\sigma_e)(1-\lambda) r + 1(r > \lambda)(\delta/\sigma_e)(r-\lambda)$. To simplify, we analyze the case where δ is "large". In that case, we have the approximate relation (4.15) $$QD_{T}(\theta) \approx (\delta^{2}/\sigma_{e}^{2}) \lambda^{2} (1-\lambda)^{2}/3.$$ We now consider the case where filtered data are used. It is shown in the Appendix that for large δ we have the approximation: QD_T^f(0) $$\approx (\delta^2/\sigma_e^2) \left\{ [\Gamma(\lambda + \kappa) + (1 - \lambda - \kappa)]^2 (\lambda - \kappa)^3 / 3 + [\Gamma(\lambda + \kappa) + (\lambda - \kappa)]^2 (1 - \lambda - \kappa)^3 / 3 + \int_{-\kappa}^{\kappa} [\Gamma(r + \lambda) - (r + \lambda)\Gamma(\lambda + \kappa) - (r + \lambda)(1 - \lambda - \kappa)]^2 dr \right\}$$ where $\Gamma(r + \lambda) = \int_{\lambda-\kappa}^{r+\lambda} \left[\int_{-\kappa}^{j-\lambda} \nu(-s) ds \right] dj = \int_{-\kappa}^{r} \int_{-\kappa}^{j} \nu(-s) ds$. The relative asymptotic power function of $\mathrm{QD}_{\mathrm{T}}^{\mathrm{f}}(0)$ and $\mathrm{QD}_{\mathrm{T}}(0)$ in the filtered and unfiltered case is given by the ratio of (4.16) to (4.15). This ratio can be evaluated using the following approximations: $$\Gamma_{i} \equiv \Gamma(r+\lambda) = T^{-1}\Sigma_{j=-m}^{i}(\Sigma_{s=-m}^{j}\nu_{-s}) \qquad \frac{i-1}{T} \leq [Tr] < \frac{i}{T} (i=-m+1,..., m),$$ and the approximation for the integral in (4.16) is given by $$T^{-1}\Sigma_{i=-m}^{m}[\Gamma_{i}-(i/T+\lambda)\Gamma_{m}-(i/T+\lambda)(1-\lambda-\kappa)]^{2}.$$ Using these approximations, we evaluated the relative asymptotic power function of the $QD_T^f(0)$ and $QD_T(0)$ tests when the data were filtered using the linear approximation to X-11. Note that for the quarterly case, m=27 and for the monthly case, m=65. We set $\kappa=m/T$ and considered a range of T between 100 and 1,000 and $\lambda=.1$, .2, ..., 9. The results are presented in Table 4.1. Several interesting qualitative features emerge from these results. The most important being the fact that the relative efficiency of the test is lower with filtered data than with unfiltered data when λ is small, i.e., when the break occurs early in the sample. The reverse is true when λ is greater than .5. With λ around .5, the two versions are approximately as powerful. These qualitative results are little affected by different values of T. Finally, filtering the data induces a greater power loss, in general, with the quarterly filter compared to the monthly filter. In general, however, the power losses or gains are relatively small, within \pm 5%. Our results, though obtained from a simple model and test statistic, show important qualitative effects that are likely to extend to other models and tests. They show that size can be affected (overly liberal tests) as well as power. Unlike tests for unit roots, the effect on power can go either way, depending on the position of the break. # 5. A SIMULATION STUDY OF THE FINITE SAMPLE BEHAVIOR We now turn our attention to the finite sample behavior of the various test statistics presented in section 3. We first describe the Monte Carlo design followed by the results for each of the three classes of tests. #### 5.1 The Monte Carlo design We focused exclusively on the monthly X-11 filter and studied the statistical properties of tests in samples of 100 and 200 filtered observations, hence a ten to twenty -year span of monthly observations. In effect, data sets of 400 observations were drawn in each Monte Carlo iteration so that the two-sided X-11 filter could be applied. A sample with 200 filtered observations started with the 101^{st} observation after the entire series of length 400 is adjusted with the $\nu_{X-11}^{M}(L)$ filter. Whenever seasonality was present in the DGP, the following monthly pattern was chosen: $b_1 = -.05$, $b_2 = -.03$, $b_3 = .03$, $b_4 = .05$, $b_5 = .05$, $b_6 = .02$, $b_7 = -.05$, $b_8 = -.02$, $b_9 = .02$, $b_{10} = .02$ and, $b_{11} = .02$. Hence, the dummy shifts sum to zero and exhibit what can be viewed as a typical monthly seasonal pattern in economic time series (assuming b_1 corresponds to the second month). For each model, we considered two scenarios regarding the treatment of a seasonal component in the DGP. One scenario consisted of generating data without a seasonal pattern. The other included seasonal dummies, with the mean shift values described above. With no seasonality in the data, we constructed the tests using regressions without seasonal dummies and compared their properties with and without filtering. Here, as seasonality is absent, we isolate the effect of linear filtering with $\nu_{X-11}^{M}(L)$ on the statistical properties of the different tests. In the second scenario, when the DGP contains seasonal patterns, filtering serves as an attempt to remove the seasonal mean shifts. # 5.2 Unit root tests allowing for a breaking trend We focus here on Models 1 (a change in intercept) and 3 (a change in slope). Model 2 is not reported as the results were similar to those of Model 3. The DGP's considered imposed an AR(1) structure so that, under the null hypothesis of a unit root, the process is a pure random walk. Under the alternative hypothesis, the noise component, denoted $\phi(L)e_t$, is an AR(1) such that $\phi(L)=(1-\alpha L)^{-1}$. To analyze power, we set $\alpha=0.85$. Moreover, it was assumed that $\mu=\beta=0$ in equations (3.1) and (3.3). With
seasonality in the DGP, three testing strategies are considered. The first consists of applying the tests to filtered series, while the second involves unfiltered data and adding seasonal dummies to the regressions used to calculate the tests. Finally, the third strategy consists also of using the unfiltered data and constructing the tests using standard augmented regressions without added seasonal dummies. The value of kmax for the data-dependent method to select the truncation lag was set equal to 4 except for the latter configuration, where it is 12. We report results for T=200. In generating the data, the breakpoint T_b was set at half-sample, i.e., $T_b=100$ (or the 200th observation generated). All simulations were done with 1000 replications. Table 5.1 reports size and power of the unit root tests for Models 1 and 3. In the first model (3.1), the parameters δ and θ were chosen such that $\delta = \theta/(1-\alpha)$, hence for any value of δ , we have $\theta = \delta(1-\alpha)$. We selected $\delta = .5$ and 1.0, measuring two different magnitudes of discrete jumps at time T_b . A level shift equal to .5 is small considering that its magnitude is half the standard error of the disturbance term. For Model 3, we set $\gamma = .05$ and .10. The parameter γ determines a change in slope rather than a jump, hence the different order of magnitude. The top two panels of Table 5.1 display the size and power for tests related to Model 1 under different configurations with the breakpoint assumed known or unknown and where the DGP lacks or exhibits seasonal mean shifts. The nominal and empirical sizes of the $t_{\hat{\alpha}}(1,T_b,k)$ statistics appear very close, indicating that size distortions are at most minor. This observation also applies to test statistics pertaining to Model 3 (the bottom panels of Table 5.1), and, hence, we focus our attention exclusively on the power properties of the various tests. The fact that no size distortions occur in small samples agrees with the asymptotic results discussed in section 4.1. For the power properties, let us first turn our attention to cases where the DGP does not exhibit seasonal mean shifts. As the asymptotic development indicated, it clearly appears from the simulation experiments that tests are less powerful, irrespective of the assumption about knowing the breakpoint, whenever data series are passed through the linear X-11 filter. When the DGP exhibits seasonal mean shifts, this finding also generally holds with some exceptions when one compares the filtered and unfiltered simulation scenarios (the column labeled unfiltered (kmax = 12) will be discussed later). Indeed, for Model 1 with a known breakpoint, it appears from Table 5.1 that tests applied to unfiltered data yield slightly better power, sometimes by a margin exceeding 10%.8 A third scenario for dealing with seasonality in the DGP consists of using unfiltered data combined with setting kmax = 12 (since simulated data represent monthly series) but without including seasonal dummies in the regression. As the series are unfiltered, we no longer have the negative effect of X-11 on the power of tests. Moreover, as there are no seasonal dummies but only an autoregressive expansion of at most length 12, we may clearly expect to gain power relative to the first scenario which almost always involves more regressors. The power properties of the second scenario, i.e., filtering and kmax = 4 versus the third one are a priori not easy to assess because the former usually involves less regressors. Regarding Model 1, the third scenario is the most powerful. Overall, the results for Model 3 are quite similar, except for the fact that the three different scenarios in the seasonal case do not yield such marked differences in power. Perhaps the most important conclusion to retain from these simulations is that introducing seasonal dummies in regressions, sometimes a natural thing to do with unadjusted data, does not seem to be as good compared to filtering either via AR lag augmentation or via a procedure like X-11. The difference between the latter two does not seem to be such a clear-cut case, though the third scenario seems to have an edge over standard seasonal adjustment filtering. It is also worth recalling at this point the fact that the actual implementation of the X-11 procedure entails most likely more smoothing than the linear filter induces. Taking this into account makes the edge of the third scenario all There is an easy explanation for this. Two opposite effects on the overall power properties in finite samples must be taken into account. On the one hand, we know that filtering will reduce power; on the other hand, reducing the number of regressors implies increased power. Which of the two effects will dominate depends on the specific situation. ⁹ Although, strictly speaking, one should correct for degrees of freedom lost due to filtering. the more important in most practical circumstances. # 5.3 Tests for changes in a polynomial trend function and parameter instability with unknown change point We now study the finite sample properties of the tests presented in sections 3.2 and 3.3. Because the asymptotic derivations in section 4.2 were restricted to the analytically tractable simple case of the $\mathrm{QD}_{T}(0)$ statistic we focus first on a Monte Carlo design tailored towards the theoretical developments. Thereafter, we broaden the scope of the analysis by investigating cases which were not be covered by the analytic local asymptotic developments. Moreover, we investigate, even in the simple case, not only the $\mathrm{QD}_{T}(0)$ statistic but also the QD_{T}^{S} , $\mathrm{Sup}\ \mathrm{W}_{T}$, $\mathrm{Sup}\ \mathrm{LR}_{T}^{S}$, $\mathrm{Sup}\ \mathrm{W}_{T}^{S}$ and $\mathrm{Sup}\ \mathrm{LR}_{T}^{S}$ statistics as well. To conduct our first experiments, a data series of normally distributed $\mathrm{N}(0,1)$ white noise was generated under the null hypothesis and a white noise process around a level shift under the alternative hypothesis. Such a design suits all classes of tests. Similar to the previous section, we distinguish data with and without seasonal means. Three scenarios were again considered when seasonal mean shifts were present in the data. Table 5.2 summarizes the results. The values of δ are the same as in Table 5.1. All tests now apply to cases where the breakpoint is assumed unknown and $\mathrm{T}_b = 50$ with a sample size of 100. We observe in Table 5.2 that in some cases, minor size distortions appear due to filtering. This finding is in line with the asymptotic size distortions found in section 4.2. We also observe that filtering may yield more powerful tests, yet taking into account the size distortions (see, for instance, $\mathrm{QD}_{\mathrm{T}}(0)$, filtered and unfiltered with seasonals), such increases in power are not very meaningful. For the QD statistic, and the Sup W and Sup LR statistics, we also obtain a power loss due to filtering, though the loss is not as significant as in Table 5.1. It should also be observed that, when seasonals are present, it is advisable to include seasonal dummies instead of long lag expansions like k = 12. The use of the latter greatly reduces the power of the $\mathrm{QD}_{\mathrm{T}}(0)$ statistics compared to $\mathrm{QD}_{\mathrm{T}}^{\mathrm{S}}(0)$, for instance. It should also be noted that the Sup W and Sup LR appear to be slightly less powerful than the tests for a change in a polynomial trend function. This may not be surprising, because the Monte Carlo design is specifically tailored to investigate QD-type statistics. Overall, we may conclude that we find a negative effect of filtering on power, though not as pronounced as in Table 5.1. As Table 5.2 covered the situation of a mid-sample break, it is not surprising, given the asymptotic results of Table 4.1 that filtering has a negligible impact on power. According to the computations based on asymptotic local power approximation we should find more impact of filtering in cases like $T_b=20$ and $T_b=80$. Though the simulation results using a sample of T=100 do not display clearly such filtering effects, they hold in larger samples. For instance, with T=200 and $T_b=40$ the size corrected power was 8% higher with unfiltered series compared to filtered ones. With $T_b=160$, using filtered series resulted in tests with 13% more power. These latter figures show the relevance of the qualitative results concerning the direction of the bias in the power function described in Section 4.2. It was conjectured that the analytic asymptotic results, restricted to simple cases, would probably carry over to more complicated situations. We now consider a Monte Carlo design where the DGP is an AR(1) model, instead of white noise, with or without a break in intercept at $T_b = 50$. To simplify the presentation, we focus exclusively on the $QD_T(0)$ statistic with k=1 for an AR(1) with $\alpha=.0,.1,.2,...,.9$. The size of the jump δ is set equal to 1. The results are reported in Figures 5.1a and 5.1b. The first covers size and reveals that filtering induces size distortions which diminish, relative to the unfiltered case, as α increases towards 1. The next figure covers the difference in size corrected power, unfiltered versus filtered. Here, we clearly see a remarkable and devastating effect on power produced by filtering data when values of α are in the range of .4 and .8. Indeed, up to almost 30% power is lost because of filtering. Hence, with $\alpha=0$ and $T_b=50$, we found little effect of filtering (cf. Table 4.1 and Table 5.2). In contrast, with AR(1) stationary models, we find quite strong filtering effects. Size distortions occur as well because of filtering, although they taper off as α increases. # 6. EMPIRICAL EXAMPLES We now turn our attention to empirical examples, demonstrating the
effect of filtering in practical applications. The examples relate to tests for unit roots discussed in section 3.1. We analyze a set of monthly historical time series measuring economic activity before WWII. More specifically, we consider an index of aggregate industrial production and an index of pig iron production both covering the period 1884:1-1940:12. The data are described in more detail in Miron and Romer (1990). This monthly data set covers a long span which is particularly desirable when testing for unit roots (see Perron (1991a)). From the monthly series, we also constructed quarterly indices covering 1884:Q1-1939Q4. Figures 6.1 and 6.2 display plots of the monthly series. Table 6.1 contains empirical results for the quarterly and monthly IP series. For each series, three regressions were applied, namely two involving unadjusted data, once with and once without seasonal dummies. In the sequential procedure to select the autoregressive order, we considered kmax = 12 for the monthly data and kmax = 10 for the quarterly series. In Table 6.1, we present tests for the unit root hypothesis using Models 2 and 3, denoted $t^*_{\alpha}(2)$ and $t^*_{\alpha}(3)$ respectively. 10 Perhaps the most straightforward example in Table 6.1 is Industrial Production sampled at a monthly frequency as all model and data configurations agree on a rejection of the unit root hypothesis. The results with the other data sets and regression specifications are ambiguous and hence more interesting for our purpose. Let us first discuss the quarterly IP series. While there is agreement among the results for Model 3, there is a striking difference between using SA versus NSA series with the test statistic $t^*_{\alpha}(2)$. With NSA data and seasonal dummies, there is strong evidence against the unit root null hypothesis. With seasonally adjusted series, one cannot reject the null. We know from the theoretical discussions and the simulations that filtering entails a loss in power, to which non-rejection of the null with filtered series can be attributed. Yet, also using NSA data with a correction via an AR augmentation instead of using seasonal dummies also favors the null. It is important to note, however, that the AR augmentation involves ten lags, hence more coefficients than in the regression with seasonal dummies and its four-lag AR expansion. This comparison of both tests using NSA data tells us that the seasonal dummy scenario is probably the most striking. With quarterly Pig Iron production, we also find disagreement among the tests, this time for both models. Now, the scenario involving NSA data and the use of AR augmentations yields rejection. Note, however, that the AR expansions are more parsimonious and clearly should lead to the most powerful tests. This empirical example, like the former one, underlines the conclusions obtained from the theoretical developments and simulations. Indeed, filtering with X-11 has a strong effect in this case on the power of the tests, particularly when they also involve long AR expansions. The last remaining case is that of monthly Pig Iron series. Here, there do not appear to be significant differences between the tests. It has been assumed that the data generating process had no unit roots at some of the seasonal frequencies. A comment is in order, though, before turning to the empirical results. For the IP series, there are reasons to believe that there might very well be unit roots at seasonal frequencies. Although we will not provide a formal proof here, we can extend the arguments in Ghysels et al. (1991) to show that Dickey-Fuller type tests can still be used to test for a unit root at the zero frequency to the extent that the autoregression is #### REFERENCES - Andrews, D.W.K. (1993), "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica 61, 821-856. - Banerjee, A., R.L. Lumsdaine and J.H. Stock (1992), "Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence," Journal of Business and Economic Statistics 10, 271-288. - Bell, W.R. (1992), "On Some Properties of X-11 Symmetric Linear Filters," Unpublished Document, Statistical Research Division, U.S. Bureau of the Census. - Canova, F. and E. Ghysels (1991), "Changes in Seasonals: Are They Cyclical?," Journal of Economic Dynamics and Control (forthcoming). - Christiano, L.J. (1992), "Searching for Breaks in GNP," Journal of Business and Economic Statistics 10, 237-250. - Dickey, D.A. and W.A. Fuller (1979), "Distribution of the Estimators for Autoregressive Time Series with a Unit Root," Journal of the American Statistical Association 74, 427-431. - Fuller, W.A. (1976), Introduction to Statistical Time Series, John Wiley and Sons: New York. - Gardner, L.A. (1969), "On Detecting Changes in the Mean of Normal Variates," Annals of Mathematical Statistics 40, 116-126. - Ghysels, E. (1990), "On Seasonal Asymmetries and Their Implication on Deterministic and Stochastic Models of Seasonality," mimeo, C.R.D.E., Université de Montréal. - Ghysels, E., C.W.J. Granger and P. Siklos (1994), "Is Seasonal Adjustment a Linear Filtering Process?," manuscript, C.R.D.E., Université de Montréal. - Ghysels, E., H.S. Lee and J. Noh (1991), "Testing for Unit Roots in Seasonal Time Series - Some Theoretical Extensions and Monte Carlo Investigation," *Journal* of Econometrics (forthcoming). - Ghysels, E. and P. Perron (1993), "The Effect of Seasonal Adjustment Filters on Tests for a Unit Root," Journal of Econometrics 55, 59-99. - Granger, C.W.J. (1978), "Seasonality: Causation, Interpretation and Implications," in A. Zellner (ed.), Seasonal Analysis of Economic Time Series, Department of Commerce, Washington, D.C. - Hylleberg, S. (1986), Seasonality in Regression, Academic Press, New York. - Hylleberg, S., R.F. Engle, C.W.J. Granger and B.S. Yoo (1990), "Seasonal Integration and Cointegration," Journal of Econometrics 44, 215-238. - Hylleberg, S., C. Jorgenson and N.K. Sorensen (1991), "Seasonality in Macroeconomic Time Series," *Empirical Economics* (forthcoming). - MacNeill, I.B. (1978), "Properties of Sequences of Partial Sums of Polynomial Regression Residuals with Applications to Tests for Change of Regression at Unknown Times," Annals of Statistics 6, 422-433. - Miron, J.A. and C. Romer (1990), "A New Monthly Index of Industrial Production," The Journal of Economic History 50, 321-338. - Newey, W.K. and K.D. West (1987), "A Simple, Positive Semi-Definite Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica 55, 703-708. - Ng, S. and P. Perron (1993), "Unit Root Tests in Autoregressive-Moving Average Models With Data Dependent Methods for the Truncation Lag," Discussion Paper, C.R.D.E., Université de Montréal. - Perron, P. (1989), "The Great Crash, the Oil Price Shock and the Unit Root Hypothesis," Econometrica 57, 1361-1401. - Perron, P. (1991a), "Test Consistency with Varying Sampling Frequency," Econometric Theory, 7, 341-368. - Perron, P. (1991b), "A Test for Changes in a Polynomial Trend Function for a Dynamic Time Series," Discussion Paper, C.R.D.E., Université de Montréal. - Perron, P. (1993) "Trend, Unit Root and Structural Change in Macroeconomic Time Series," manuscript, Université de Montréal, - Perron, P. and T.J. Vogelsang (1992a), "Nonstationarity and Level Shifts with an Application to Purchasing Power Parity," Journal of Business and Economic Statistics 10, 301-320. - Perron, P. and T.J. Vogelsang (1992b), "A Note on the Asymptotic Distributions of Unit Root Tests in the Additive Outlier Model with Breaks," Revista de Econometria (forthcoming). - Said, S.E. and D.A. Dickey (1984), "Testing for Unit Roots in Autoregressive Moving Average Models of Unknown Order," Biometrika 71, 599-608. - Zivot, E. and D.W.K. Andrews (1992), "Further Evidence on the Great Crash, the Oil Price Shock and the Unit Root Hypothesis," Journal of Business and Economic Statistics 10, 251-270. #### APPENDIX In this Appendix, we derive the asymptotic distribution of $T(\hat{\alpha}^f - 1)$. Let \tilde{y}_t^f be the residuals from a projection of y_t^f on $\{1, t, DT_t^*\}$ $\{t = 1, ..., T\}$. Note first that combining (4.4) and (4.5), we have: $$\begin{split} y_t^f &= Z_t^f, & \text{if } t \leq T_b - m, \\ &= \gamma (t - T_b) + Z_t^f, & \text{if } t \geq T_b + m, \\ &= \gamma \chi_{m,t} + Z_t^f, & \text{if } T_b - m < t < T_b + m. \end{split}$$ Straightforward algebra yields (see Perron and Vogelsang (1992b)): $$\begin{split} \tilde{y}_{t}^{f} &= y_{t}^{f} - \bar{Y}^{f} - (t - \bar{t})c_{3}^{f} + \bar{t}^{*}c_{4}^{f}, & t \leq T_{b}, \\ \tilde{y}_{t}^{f} &= y_{t}^{f} - \bar{Y}^{f} - (t - \bar{t})c_{3}^{f} - (t - T_{b} - \bar{t}^{*})c_{4}^{f}, & t > T_{b}, \end{split}$$ where $\bar{Y}^f = T^{-1}\Sigma_{t=1}^T y_t^f$, $\bar{t} = T^{-1}\Sigma_{t=1}^T t$, $\bar{t}^* = T^{-1}\Sigma_{t=1}^T b_t$. The variables c_3^f and c_4^f are defined by $[c_3^f, c_4^f]' = (W'W)^{-1}W'(Y^f - \bar{Y}^f)$ where $Y^f = (y_1^f, ..., y_T^f)$ and: $$W = \begin{bmatrix} 1 & -\bar{t} & -\bar{t}^* \\ \vdots & -\bar{t}^* \\ \vdots & 1 & \bar{t}^* \\ T & -\bar{t} & T - T_b - \bar{t}^* \end{bmatrix}.$$ The expressions for the level of y_t^f are somewhat cumbersome. Tedious algebra (using, in particular, the fact that the detrended variables are invariant to γ except for values of t in the interval $(T_b - m < t < T_b + m)$) yields: $$\begin{split} \bar{y}_t^f &= Z_t^f - \bar{Z}^f - (t - \bar{t})c_3 + \bar{t}^*c_4, & t \leq T_b - m, \\ \bar{y}_t^f &= Z_t^f - \bar{Z}^f - (t - \bar{t})c_3 + \bar{t}^*c_4 + \gamma \chi_{m,t}, & T_b - m < t \leq T_b, \\ \bar{y}_t^f &= Z_t^f - \bar{Z}^f - (t - \bar{t})c_3 - (t - T_b - \bar{t}^*)c_4 + \gamma \chi_{m,t}, & T_b < t < T_b + m, \\ \bar{y}_t^f &= Z_t^f - \bar{Z}^f - (t - \bar{t})c_3 - (t - T_b - \bar{t}^*)c_4, & t \geq T_b + m, \\ \bar{y}_t^f &= Z_t^f - \bar{Z}^f - (t - \bar{t})c_3 - (t - T_b -
\bar{t}^*)c_4, & t \geq T_b + m, \\ \end{split}$$ where $\bar{Z}^f &= T^{-1}\Sigma_{t=1}^T Z_t^f$, and the variables c_3 and c_4 are defined by $[c_3, c_4]' = T_b + T_b$ $$(W'W)^{-1}W'(Z^f - \bar{Z}^f)$$, where $Z^f = (Z_1^f, ..., Z_T^f)$. Using (A.2), the first-differences are: $$\begin{split} \tilde{y}_t^f - \tilde{y}_{t-1}^f &= \eta_t - c_3, & t \leq T_b - m, \\ &= \eta_t - c_3 + \gamma \chi_{m,t}, & t = T_b - m + 1, \\ &= \eta_t - c_3 + \gamma (\chi_{m,t} - \chi_{m,t-1}), & T_b - m + 1 < t \leq T_b, \\ (A.3) &= \eta_t - (c_3 + c_4) + \gamma (\chi_{m,t} - \chi_{m,t-1}), & T_b < t < T_b + m, \\ &= \eta_t - (c_3 + c_4) - \gamma \chi_{m,t-1}, & t = T_b + m + 1, \\ &= \eta_t - (c_3 + c_4), & t > T_b + m + 1. \end{split}$$ Consider the numerator of $T(\tilde{\alpha}^f - 1)$. We have: $$\begin{array}{ll} (\text{A.4}) \ \ T^{-1} \boldsymbol{\Sigma}_{t=2}^{T} \boldsymbol{\bar{y}}_{t}^{f} (\boldsymbol{\bar{y}}_{t}^{f} - \boldsymbol{\bar{y}}_{t-1}^{f}) & = T^{-1} \boldsymbol{\Sigma}_{t=2}^{T} (\boldsymbol{Z}_{t-1}^{f} - \boldsymbol{\bar{Z}}^{f} - (t-1-\bar{t}) \boldsymbol{c}_{3}) \boldsymbol{\eta}_{t} \\ & + T^{-1} \boldsymbol{\Sigma}_{2}^{T} \boldsymbol{b} (\bar{t}^{*} \boldsymbol{c}_{4} \boldsymbol{\eta}_{t}) + T^{-1} \boldsymbol{\Sigma}_{T_{b}+1}^{T} (t-1-T_{b}) \boldsymbol{c}_{4} \boldsymbol{\eta}_{t} \\ & + T^{-1} \boldsymbol{\Sigma}_{T_{b}-m+1}^{T} \boldsymbol{\gamma} \boldsymbol{\chi}_{m,t-1} \boldsymbol{\eta}_{t} + \boldsymbol{o}_{p}(1) \end{array}$$ where the terms subsumed under $o_p(1)$ correspond to some elements associated with the observations at $t=T_b-m+1$ and $t=T_b+m+1$. We note the following asymptotic results: $T^{-1}\bar{t} \Rightarrow 1/2$, $T^{-1}\bar{t}^* \Rightarrow (1-\lambda)^2/2$, and under the null hypothesis of a unit root, $T^{-1/2}\bar{Z}^f \Rightarrow \sigma_\eta \int_0^1 w(r) dr$, $T^{1/2}c_3 \Rightarrow -\sigma_\eta \psi_3/g_B$ and $T^{1/2}c_4 \Rightarrow -\sigma_\eta \psi_4/g_B$ with g_B , ψ_3 and ψ_4 as defined in Perron (1989, Theorem 2), and $\sigma_\eta^2 = \lim_{T\to\infty} T^{-1}E[S_{T,\eta}^2]$ with $S_{T,\eta} = \Sigma_{t=1}^T \eta_t$. Consider the last term in (A.4), we have: $$\begin{array}{lll} \text{(A.5)} \ \ T^{-1} \Sigma_{T_b-m+1}^{T_b+m-1} \gamma \chi_{m,t-1} \eta_t & = \ T^{-1} \Sigma_{T_b-m+2}^{T_b+m} \ \gamma \chi_{m,t} \eta_{t+1} \\ & = \ T^{-1} \Sigma_{T_b-m+2}^{T_b+m} \Sigma_{t=T_b-m+1}^{t} (t+1-i)^{\nu} T_{b} + 1 - i \eta_{t+1} \\ & = T^{-1} \Sigma_{j=1}^{2m-1} \Sigma_{i=0}^{j} j^{\nu} m + i + 1 \eta_{T_b-m+i+1} \end{array}$$ The whole expression converges to zero as $T \to \infty$. Hence, the limit of (A.4) is given by the limit of the first three terms and using results in Perron and Vogelsang (1992b), we have: $$\begin{array}{l} (\text{A.6}) \ \ \text{T}^{-1}\boldsymbol{\Sigma}_{t=2}^{T} \tilde{\boldsymbol{y}}_{t}^{f}(\tilde{\boldsymbol{y}}_{t}^{f} - \tilde{\boldsymbol{y}}_{t-1}^{f}) \Rightarrow \sigma_{\eta}^{2}\{\boldsymbol{H}_{B}/\boldsymbol{g}_{B} + (\psi_{4}/\boldsymbol{g}_{B}) \boldsymbol{\int}_{\lambda}^{1} \boldsymbol{w}_{B}(\boldsymbol{r}) d\boldsymbol{r}\} \\ & \quad \equiv \sigma_{\eta}^{2}\{\boldsymbol{\int}_{0}^{1} \boldsymbol{w}_{B}(\boldsymbol{r}) d\boldsymbol{w}(\boldsymbol{r}) + \delta + (\psi_{4}/\boldsymbol{g}_{B}) \boldsymbol{\int}_{\lambda}^{1} \boldsymbol{w}_{B}(\boldsymbol{r}) d\boldsymbol{r}\}, \end{array}$$ where $\delta=(\sigma_{\eta}^2-s_{\eta}^2)/2\sigma_{\eta}^2$ with $s_{\eta}^2=\lim_{T\to\infty}T^{-1}\Sigma_{t=1}^TE(\eta_t^2)$. Also $w_B(r)$ is the residual from a continuous time projection of the Wiener process W(r) on the function $\{1,\,r,\,dr^*(\lambda)\}$ with $dr^*(\lambda)=r-\lambda$ if $r>\lambda$ and 0 otherwise. Similar arguments hold for the denominator of $T(\hat{\alpha}^f-1)$ and we have $T^{-2}\Sigma_{t=2}^T\tilde{y}_{t-1}^f\Rightarrow\sigma_{\eta}^2K_B/g_B\equiv\sigma_{\eta}^2\int_0^1w_B(r)^2dr$. Proof of (4.16). We first note that: $$\begin{split} \boldsymbol{y}_t^f &= \nu(L)\boldsymbol{y}_t &= \nu(L)\boldsymbol{e}_t \;, & t < T_b - m, \\ &= (\delta/\sqrt{T}) + \nu(L)\boldsymbol{e}_t \;, & t > T_b + m, \\ &= (\delta/\sqrt{T})\tilde{\boldsymbol{\Psi}}_{m,t} + \nu(L)\boldsymbol{e}_t \;, \; T_b - m \leq t \leq T_b + m, \end{split}$$ where $\bar{\Psi}_{m,t} = \Sigma_{i=T_b-m+1}^t \nu_{T_b+1-i}$, and we note at the outset the limiting result $$\begin{split} (\Lambda.7) \qquad \bar{\Psi}_{m,[Tr]} &= \Sigma_{t=1}^{[Tr]-T_b+m} \nu_{m+1-i} = T^{-1} \Sigma_{i=1}^{[Tr]-T_b+m} T \nu([m+1-i]/T) \\ \\ &\Rightarrow \int_0^{r-\lambda+\kappa} \nu(\kappa-s) \mathrm{d} s, \qquad \text{as } T \to \infty, \end{split}$$ for $\lambda - \kappa < r < \lambda + \kappa$. Using this result and the fact that $T^{-1/2} \Sigma_{j=1}^{[Tr]} \nu(L) e_t \Rightarrow \sigma_e W(r)$ (since $\nu(1) = 1$) and $$T^{-1} \Sigma_{j=T_b-m+1}^{\left[T\ r\ \right]} \bar{\Psi}_{m,j} \Rightarrow \int_{\lambda-\kappa}^{r} \left[\int_{-\kappa}^{j-\lambda} \nu(-s) ds \right] dj,$$ we obtain: $$\begin{split} T^{-1/2} \Sigma_{j=1}^{\lceil \operatorname{Tr} \rceil} y_j^f & \Rightarrow \sigma_e W(r) \;, & \text{if } r < \lambda - \kappa, \\ (A.8) & \Rightarrow \sigma_e W(r) + \delta \int_{\lambda - \kappa}^r \left[\int_{-\kappa}^{j - \lambda} \nu(-s) \mathrm{d}s \right] \mathrm{d}j \;, & \text{if } \lambda - \kappa \le r \le \lambda + \kappa, \\ & \Rightarrow \sigma_e W(r) + \delta \int_{\lambda - \kappa}^{\lambda + \kappa} \left[\int_{-\kappa}^{j - \lambda} \nu(-s) \mathrm{d}s \right] \mathrm{d}j + \delta [r - \lambda - \kappa] \;, & \text{if } r > \lambda + \kappa. \end{split}$$ Using (A.8), the numerator of $\mathrm{QD}_{T}^{\,f}(0)$ has the following limit $$T^{-2}\Sigma_{t=1}^{T-1}\left[\Sigma_{j=1}^{t}(y_{j}^{f}-\bar{Y}^{f})\right]^{2} \Rightarrow$$ $$\begin{split} &\int_{0}^{\lambda-\kappa} \Biggl\{ \sigma_{e}[W(r)-rW(1)] - r\delta \int_{\lambda-\kappa}^{\lambda+\kappa} \Biggl[\int_{-\kappa}^{j-\lambda} \nu(-s) \mathrm{d}s \Biggr] \mathrm{d}j - r\delta(1-\lambda-\kappa) \Biggr\}^{2} \mathrm{d}r \\ &+ \int_{\lambda-\kappa}^{\lambda+\kappa} \Biggl[\sigma_{e}[W(r)-rW(1)] + \delta \int_{\lambda-\kappa}^{r} \Biggl[\int_{-\kappa}^{j-\lambda} \nu(-s) \mathrm{d}s \Biggr] \mathrm{d}j \\ &- r\delta \int_{\lambda-\kappa}^{\lambda+\kappa} \Biggl[\int_{-\kappa}^{j-\lambda} \nu(-s) \mathrm{d}s \Biggr] \mathrm{d}j - r\delta(1-\lambda-\kappa) \Biggr\}^{2} \mathrm{d}r \\ &+ \int_{\lambda+\kappa}^{1} \Biggl[\sigma_{e}[W(r)-rW(1)] + (1-r)\delta \int_{\lambda-\kappa}^{\lambda+\kappa} \Biggl[\int_{-\kappa}^{j-\lambda} \nu(-s) \mathrm{d}s \Biggr] \mathrm{d}j - \delta(\lambda-\kappa)(1-r) \Biggr\}^{2} \mathrm{d}r \end{split}$$ Note that the denominator of $\mathrm{QD}_{\mathrm{T}}(0)$ has the following limit: (A.10) $$\hat{\sigma}^2 \rightarrow \psi \sigma_e^2$$ The result (4.16) follows after some manipulations combining (A.9) and (A.10) and considering again the case where δ is large. Table 4.1 : Relative Local Asymptotic Power of $QS_T^f(0)$ and $QS_T(0)$ | | 1 - 0 1 | 3=02 | λ = 0.3 | $\lambda = 0.4$ | $\lambda \approx 0.5$ | $\lambda = 0.6$ | $\lambda = 0.1$ $\lambda = 0.2$ $\lambda = 0.3$ $\lambda = 0.4$ $\lambda \approx 0.5$ $\lambda = 0.6$ $\lambda = 0.7$ | $\lambda = 0.8 \lambda = 0.9$ | ۷= 0.9 | |-----------------------------------|---------|-------|---------|-----------------|-----------------------|-----------------|---|--------------------------------|--------| | | 1.0 = V | 1.5 | | | | | | | | | T = 100
Quarterly
Monthly | 0.857 | 0.932 | 696.0 | 0.991 | 1.008 | 1.025 | 1.046 | 1.084 | 1.215 | | T = 200
Quarterly
Monthly | 0.918 | 0.969 | 0.989 | 1.000 | 1.008 | 1.017 | 1.027 | 1.045 | 1.097 | | T = 500
Quarterly
Monthly | 0.968 | 0.989 | 0.997 | 1.002 | 1.005 | 1.008 | 1.012 | 1.020 | 1.040 | | T = 1,000
Quarterly
Monthly | 0.985 | 0.995 | 0.999 | 1.001 | 1.003 | 1.004 | 1.007 | 1.010 | 1.020 | | | | | | | | | | | | T - 2 Table 5.1 : Size and Power Properties Unit Root Tests Against Breaking Trend Alternatives Filtered and Unfiltered Series $t_{\hat{\alpha}}(i,T_b,k) \ Statistics, \ i=1,3 \ / \ Nominal \ Size 5 \ \%$ Sample size T = 200, T_b midsample | | | P without | Seasonal | Dummies | | | DGP w | vith Season | al Dumn | nies | |----------------|-------|-----------|----------|-------------|---------|------------|-------|-------------|---------|----------------------| | | U | nfiltered | F | iltered | Uı | ifiltered | | filtered | U | nfiltered
max-12) | | | Size | Power | Size | Power | Size | Power | Size | Power | Size | Powe | | | | | | Model I | - Known | Breakpoir | ., | | | | | δ =0.50 | 0.058 | 0.621 | 0.053 | 0.583 | 0.059 | 0.601 | 0.061 | 0.720 | 0.040 | | | δ=1.00 | 0.060 | 0.783 | 0.048 | 0.642 | 0.054 | 0.799 | 0.058 | 0.720 | 0.048 | 0.761 | | | | | | Model 1 - | Unknow | n Breakpoi | nt | | | | | δ =0.50 | 0.050 | 0.531 | 0.038 | 0.354 | 0.048 | 0.585 | 0.056 | 0.382 | 0.049 | 0.698 | | δ=1.00 | 0.052 | 0.573 | 0.041 | 0.418 | 0.053 | 0.773 | 0.054 | 0.611 | 0.051 | 0.833 | | | | | | Model 3 - | Known | Breakpoint | • | | | | | r=0.05 | 0.052 | 0.601 | 0.052 | 0.578 | 0.052 | 0.446 | 0.052 | 0.401 | 0.052 | 0.411 | | r=0.10 | 0.050 | 0.777 | 0.052 | 0.651 | 0.051 | 0.513 | 0.053 | 0.492 | 0.049 | 0.518 | | | | | | Model 3 - U | nknown | Breakpoin | ıt | | | | | =0.05 | 0.049 | 0.333 | 0.041 | 0.282 | 0.041 | 0.379 | 0.045 | 0.361 | 0.048 | 0.378 | | =0.10 | 0.042 | 0.411 | 0.041 | 0.351 | 0.051 | 0.448 | 0.047 | 0.489 | 0.049 | 0.452 | Table 5.2 : Size and Power Properties of Tests for Changes in a Polynomial Trend Function and General Tests for Parametric Instability with Unknown Change Point; Sample Size T = 100 | | DGP without Se
Level Shift and $QS_T(0)$, $k = 0$ | ft and $T_b = 5$, $k = 0$ | DGP without Seasonal Dummies and with Level Shift and $T_b = 50$ under Alternative $QS_T(0)$, $k = 0$ $QS_T(0)$, $k = 0$ | id with
rnative = 0 | D Le Le QS _T (0), k = 0 Unfiltered | DGP with Seasonal Dummies and with Level Shift and $T_b = 50$ under Alternative $QS_T(0)$, $k = 0$ $QS_T(0)$ Filte Unfiltered | 1 Dummies and
= 50 under Alte
k = 0
sred | I with rnative $QS_T(0)$, $k = 0$ Filtered | |-----------------------------|---|----------------------------|--|--------------------------------------|---|--|---|---| | | Unfiltered | tered | Lineicu | | | | | | | Size
&=0.50
&=1.00 | 0.0 | 0.050
0.051 | 0.088 | | 0.052 | 0.050 | 50
47 | 0.090
0.089 | | Power
8=0.50
8=1.00 | 0.00 | 0.602 | 0.701 | | 0.609 | 0.604 | 95 | 0.704 | | | QS _T (0)
Unfiltered | (0)
ered | QD _T (0)
Filtered |)
1
1
1
1
1
1
1 | QS ^S (0)
Unfiltered
k=1 k=2 | QS _T (0)
Unfiltere
k=1 k=2 | QS _T (0)
Unfiltered
k=2 k=12 | QS _T (0)
Filtered
k=1 k=2 | | | 1=X | V-4 | | | | | | - | | Size
&=0.50
&=1.00 | 0.049 | 0.048
0.046 | 0.079 | 0.065 | 0.047 0.048
0.044 0.046 | 0.048 0.0
0.048 0.0 | 0.047 0.034
0.047 0.034 | 0.077 0.070
0.073 0.066 | | Power
5=0.50 | 0.557 | 0.516 | 0.639 | 0.573
0.964 | 0.559 0.520
0.987 0.962 | 0.555 0.0.986 0. | 0.514 0.059
0.965 0.015 | 0.641 0.576
0.992 0.962 | | <i>0</i> =1.00 | MquS | SupW _T (k=1) | Supli | SupLR _T (k=1) | SupW _T (k=1)
Unfiltered | SupLR _T (k=1)
Unfiltered | SupW _T (k=1)
Filtered | SupLR _T (k=1)
Filtered | | | Onfutered | Filleren | OHITHOUS | | | | | | | Size
\$=0.50
\$=1.00 | 0.050 | 0.048 | 0.047 | 0.044 | 0.051 | 0.052 | 0.056
0.059 | 0.055
0.057 | | Power
\$=0.50
\$=1.00 | 0.541 | 0.561 | 0.582
0.919 | 0.511 | 0.441 | 0.491 | 0.398 | 0.501 | | | ١ | | | | | | | | Table 6.1 : Empirical Results – Historical Time Series Evidence on Unit Roots against Breaking Trend Alternatives Using $t^*_{\alpha}(2)$ and $t^*_{\alpha}(3)$ Test Statistics # Seasonally Unadjusted (NSA) versus Adjusted (SA) Data | Model · | NSA/SA | Seas. Dummies | kmax | k | T _b | p-valu | |---------|---------|-----------------------|-------------|------------|------------------|--------| | | Quarte | erly Index of Industr | rial produc | tion 1884: | _ | | | 2 | NSA | | | | . 1710.1 | | | - | NSA | Yes | 10 | 4 | 1931:3 | 0.00 | | | | No | 10 | 10 | 1931:3 | 0.38 | | | SA | No | 10 | 8 | 1931:3 | 0.30 | | 3 | NSA | Yes | 10 | 7 | 1005.0 | | | | NSA | No | iŏ | 7 | 1925:2 | 0.35 | | | SA | No | 10 | 7 | 1925:2
1925:3 | 0.36 | | | Quarte | erly Index of Pig Iro | n Producti | on 1884·1 | | 0.41 | | 2 | | | | | 17.0.7 | | | 2 | NSA | Yes | 10 | 3 | 1920:4 | 0.27 | | | NSA | No | 10 | 3
3 | 1930:1 | 0.02 | | | SA | No | 10 | 8 | 1930:2 | 0.02 | | 3 | NSA | Yes | 10 | 0 | | | | | NSA | No | 10 | 9 | 1914:1 | 0.41 | | | SA | No | | 3 | 1914:3 | 0.03 | | | | | 10 | 8 | 1914:2 | 0.74 | | | Monthly | y Index of Industria | l Productio | n 1884:1 | 1940:12 | | | 2 | NSA | Yes | 12 | 12 | | | | | NSA | No | 12 | 12 | 1931:11 | 0.00 | | | SA | No | 12 | 12 | 1931:11 | 0.00 | | | | 140 | 12 | 11 | 1931:11 | 0.00 | | 3 | NSA | Yes | 12 | 12 | 1005 5 | | | | NSA | No | 12 | | 1925:5 | 0.01 | | | SA | No | 12 | 12 | 1925:5 | 0.02 | | | | | | 11 | 1925:11 | 0.00 | | | Monthl | y Index of Pig Iron | Production | 1884:1-19 | 940:12 | | | 2 | NSA | Yes | 12 | 12 | 1000 - | _ | | | NSA | No | 12 | 12 | 1930:7 | 0.13 | | | SA | No | 12 | 12 | 1930:4 | 0.08 | | | | **** | 12 | 11 | 1930:7 | 0.06 | | 3 | NSA | Yes | 12 | 12 | 1914:6 | 0.15 | | | NSA | No | 12 | 12 | | 0.15 | | | SA | No | 12 | 11 | 1914:8 | 0.11 | | | | | | 11 | 1914:6 | 0.09 | Note: T_b represents the estimated break point, kmax is the maximal lag in the selection procedure and k is the selected order of the autoregression. Slope and/or Level shift before and after filtering Figure 6.1: Monthly Index of Industrial Production 1884:1-1940:12 Figure 6.2: Monthly Index of Pig Iron Production 1884:1-1940:12 # Université de Montréal Département de sciences économiques Centre de documentation C.P. 6128, succursale Centre-ville Montréal (Québec) H3C 3J7 Cahiers de recherche (Discussion papers) 1993 à aujourd'hui (1993 to date) Si vous désirez obtenir un exemplaire, vous n'avez qu'à faire parvenir votre demande et votre paiement (5 \$ l'unité) à l'adresse ci-haut mentionnée. I To obtain a copy (\$ 5 each), please send your request and prepayment to the above-mentioned address. - 9301 : Mercenier, Jean, "Nonuniqueness of Solutions in Applied General-Equilibrium Models with Scale Economies and Imperfect Competition : A Theoretical Curiosum?", 26 pages. - 9302: Lemieux, Thomas, "Unions and Wage Inequality in Canada and in the United States", 66 pages. - 9303: Lemieux, Thomas, "Estimating the Effects of Unions on Wage Inequality in a Two-Sector Model with Comparative Advantage and Non-Random Selection", 9304: Harchaoui Tarek H. "Time Mark Parks." - 9304: Harchaoui, Tarek H., "Time-Varying Risks and Returns: Evidence from Mining Industries Data", 20 pages. 9305: Lévy-Garboua, Louis et Claude Management (Page 1997) - 9305 : Lévy-Garboua, Louis et Claude Montmarquette, "Une étude économétrique de la demande de théâtre sur données individuelles", 40 pages. - 9306: Montmarquette, Claude, Rachel Houle et Sophie Mahseredjian, "The Determinants of University Dropouts: A Longitudinal Analysis", 17 pages. - 9307: Gaudry, Marc, Benedikt Mandel et Werner Rothengatter, "A Disagregate Box-Cox Logit Mode Choice Model of Intercity Passenger Travel in Germany", 17 pages. - 9308: Fortin, Nicole M., "Borrowing Constraints and Female Labor Supply: Nonparametric and Parametric Evidence of the Impact of Mortgage Lending Rules", 38 pages. - 9309: Dionne, Georges, Robert Gagné, François Gagnon et Charles Vanasse, "Debt, Moral Hazard and Airline Safety: an Empirical Evidence", 34 pages. - 9310: Dionne, Georges, Anne Gibbens et Pierre St-Michel, "An Economic Analysis of Insurance Fraud", 40 pages. - 9311: Gaudry, Marc, "Asymmetric Shape and Variable Tail Thickness in Multinomial Probabilistic Responses to Significant Transport Service Level Changes", 26 pages. - 9312: Laferrière, Richard et Marc Gaudry, "Testing the Linear Inverse Power Transformation Logit Mode Choice Model", 29 pages. - Kollmann, Robert, "Fiscal Policy, Technology Shocks and the US Trade Balance 9313: Deficit", 38 pages. - Ghysels, Eric, "A Time Series Model with Periodic Stochastic Regime 9314: Switching", 54 pages. - Allard, Marie, Camille Bronsard et Lise Salvas-Bronsard, "Ck-Conjugate 9315: Expectations and Duality", 22 pages. - Dudley, Leonard et Claude Montmarquette, "Government Size and Economic 9316: Convergence", 28 pages. - Bronsard, Camille, "L'histoire de l'économie mathématique racontée à Juliette", 9317: - Tremblay, Rodrigue, "The Quest for Competitiveness and Export-Led Growth", 9318: 16 pages. - Proulx, Pierre-Paul, "L'ALÉNA", 12 pages. 9319: - Proulx, Pierre-Paul, "Le Québec dans l'ALÉNA", 28 pages. 9320: - Dionne, Georges, Denise Desjardins, Claire Laberge-Nadeau et Urs Magg, 9321: "Medical Conditions, Risk Exposure and Truck Drivers' Accidents: an Analysis with Count Data Regression Models", 20 pages. - Ghysels, Eric, "Seasonal Adjustment and other Data Transformations", 28 pages. 9322: - Dufour, Jean-Marie et David Tessier, "On the Relationship between Impulse 9323: Response Analysis, Innovation Accounting and Granger Causality", 12 pages. - Dufour, Jean-Marie et Eric Renault, "Causalités à court et à long terme dans les 9324: modèles VAR et ARIMA multivariés", 68 pages. - Ghysels, Eric et Alastair Hall, "On Periodic Time Series and Testing the Unit 9325: Root Hypothesis", 36 pages. - Campbell, Bryan et Jean-Marie Dufour, "Exact Nonparametric Orthogonality and 9326: - Random Walk Tests", 28 pages. Proulx, Pierre-Paul, "Quebec in North America: from a Borderlands to a 9327: Borderless Economy: an Examination of its Trade Flows with the U.S.A. at the - National and Regional Levels", 24 pages. Proulx, Pierre-Paul, "L'ALÉNA, le Québec et la mutation de son espace 9328: - économique", 36 pages. Sprumont, Yves, "Strategyproof Collective Choice in Economic and Political 9329: Environments", 48 pages. - Cardia, Emanuela et Steve Ambler, "The Cyclical Behaviour of Wages and 9330 : Profits under Imperfect Competition", 24 pages. - Arcand, Jean-Louis L. et Elise S. Brezis, "Disequilibrium Dynamics During the 9331: Great Depression", 64 pages. - Beaudry, Paul et Michel Poitevin, "Contract Renegotiation: a Simple Framework 9332: and Implications for Organization Theory", 48 pages. - Dagenais, Marcel G. et Jean-Marie Dufour, "Pitfalls of Rescaling Regression 9333: Models with Box-Cox Transformations", 16 pages. - Bonomo, Marco et René Garcia, "Disappointment Aversion as a Solution to the 9334: Equity Premium and the Risk-Free Rate Puzzles", 40 pages. - 9335 : Ghysels, Eric et Offer Lieberman, "Dynamic Regression and Filtered Data Series : A Laplace Approximation to the Effects of Filtering in Small Samples", 9336 : Kollmann Pobert "The Power of the Effects of Filtering in Small Samples", - 9336: Kollmann, Robert, "The Duration of Unemployment as a Signal: Implications for Labor Market Equilibrium", 19 pages. 9337: Kollmann Robert "Foreille Communications" - 9337: Kollmann, Robert, "Fertility, Consumption and Bequests in a Model with Non-Dynastic Parental Altruism", 22 pages. Mercenier, Japan et Berner, 1998. - 9401: Mercenier, Jean et Bernardin Akitoby, "On Intertemporal General-Equilibrium Reallocation Effects of Europe's Move to a Single Market", janvier 1994, 9402: Gauthier
Céline et Michael Paris, in 1994, - 9402: Gauthier, Céline et Michel Poitevin, "Using Ex Ante Payments in Self-Enforcing Risk-Sharing Contracts", février 1994, 38 pages. - 9403 : Ghysels, Eric et Joanna Jasiak, "Stochastic Volatility and Time Deformation : an Application of Trading Volume and Leverage Effects", février 1994, 37 pages. 9404 : Dagenais Marcel G et - 9404: Dagenais, Marcel G. et Denyse L. Dagenais, "GMM Estimators for Linear Regression Models with Errors in the Variables", avril 1994, 33 pages. - 9405: Bronsard, C., Fabienne Rosenwald et Lise Salvas-Bronsard, "Evidence on Corporate Private Debt Finance and the Term Structure of Interest Rates", avril 1994, 42 pages. - 9406: Dinardo, John, Nicole M. Fortin et Thomas Lemieux, "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach", avril 1994, 73 pages. - 9407: Campbell, Bryan et Jean-Marie Dufour, "Exact Nonparametric Tests of Orthogonality and Random Walk in the Presence of a Drift Parameter", avril 9408: Bollersley Tim et France. - 9408: Bollerslev, Tim et Eric Ghysels, "Periodic Autoregressive Conditional Heteroskedasticity", mai 1994, 29 pages. 9409: Cardia Empresale "The December 1994". - 9409: Cardia, Emanuela, "The Effects of Government Financial Policies: Can We Assume Ricardian Equivalence?", mai 1994, 42 pages. 8410: Kollmann Robert "Lidder III." - 9410: Kollmann, Robert, "Hidden Unemployment: A Search Theoretic Interpretation", mai 1994, 9 pages. - 9411: Kollmann, Robert, "The Correlation of Productivity Growth Across Regions and Industries in the US", juin 1994, 14 pages. - 9412: Gaudry, Marc, Benedikt Mandel et Werner Rothengatter, "Introducing Spatial Competition through an Autoregressive Contiguous Distributed (AR-C-D) (QDF)", juin 1994, 64 pages. - 9413 : Gaudry, Marc et Alexandre Le Leyzour, "Improving a Fragile Linear Logit Model Specified for High Speed Rail Demand Analysis in the Quebec-Windsor Corridor of Canada", août 1994, 39 pages. - 9414: Lewis, Tracy et Michel Poitevin, "Disclosure of Information in Regulatory Proceedings", juillet 1994, 38 pages. - 9415: Ambler, Steve, Emanuela Cardia et Jeannine Farazli, "Export Promotion and Growth", août 1994, 41 pages. - 9416: Ghysels, Eric et Haldun Sarlan, "On the Analysis of Business Cycles Through the Spectrum of Chronologies", août 1994, 37 pages. - 9417: Martel, Jocelyn et Timothy C.G. Fisher, "The Creditors' Financial Reorganization Decision: New Evidence from Canadian Data", août 1994, - 9418: Cannings, Kathy, Claude Montmarquette et Sophie Mahseredjian, "Entrance Quotas and Admission to Medical Schools: A Sequential Probit Model", - septembre 1994, 26 pages. 9419: Cannings, Kathy, Claude Montmarquette et Sophie Mahseredjian, "Major Choices: Undergraduate Concentrations and the Probability of Graduation", septembre 1994, 26 pages. - 9420: Nabeya, Seiji et Pierre Perron, "Approximations to Some Exact Distributions in the First Order Autoregressive Model with Dependent Errors", septembre 1994, - 9421: Perron, Pierre, "Further Evidence on Breaking Trend Functions in Macroeconomic Variables", octobre 1994, 50 pages. - 9422: Vogelsang, Timothy J. et Pierre Perron, "Additional Tests for a Unit Root Allowing for a Break in the Trend Function at an Unknown Time", novembre 1994, 57 pages. - 9423: Ng, Serena et Pierre Perron, "Unit Root Tests in ARMA Models with Data Dependent Methods for the Selection of the Truncation Lag", décembre 1994, - 9424: Perron, Pierre, "The Adequacy of Asymptotic Approximations in the Near-Integrated Autoregressive Model with Dependent Errors", décembre 1994, 37 - 9425 : Ghysels, Eric et Pierre Perron, "The Effect of Linear Filters on Dynamic Time Series with Structural Change", décembre 1994, 35 pages.