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RESUME

Trés souvent, lorsque les modsles paramétriques sont testés pour des changements
structurels, ils sont construits avec des séries filtrées plutét que des données brutes. Plusieurs
filtres, comme ceux associés au programme d'ajustement saisonnier X-11, ont pour effet de
lisser les données. Par conseéquent, ils ont tendance & masquer une instabilité structurelle. Cet
article analyse, & la fois théoriquement et par lintermédiaire de simulations de Monte Carlo,
I'effet d'un filtrage linéaire sur les propriétés statistiques de plusieurs tests faisant intervenir un
changement structurel. Des séries historiques sur Factivité économique couvrant la Grande
Dépression sont utilisées pour étudier et illustrer la sensibilité de certains tests a I'application de
filtres d'ajustement saisonnier.

Mots-clés : racine unitaire, point de rupture, biais asymptotique, ajustement saisonnier, filtre
X-11 du Census.

ABSTRACT

Quite often, when parametric models are tested for structural change, they are fitted to
fitered series instead of raw data. Many filters, like those associated with the X-11 seasonal
adjustment program, have smoothing properties. Hence, they have a tendency to disguise
structural instability. The paper analyzes, both theoretically and via Monte Carlo simulations,
the effect of linear filtering on the statistical properties of several tests involving structural
change. Historical series of economic activity covering the Great Depression are used to study
and illustrate the sensitivity of some tests to the application of seasonal adjustment filters.

Key words: unit root, change-point, asymptotic bias, seasonal adjustment, Census X-11 filter.






1. INTRODUCTION

The analysis of structural change has occupied an important place in econometrics to
assess the adequacy of particular models and to characterize the temporal behavior of
economic time series. Typically, a parametric model is not fitted to raw data but instead
to filtered series, such as seasonally adjusted data. As these filters entail smoothing of
data, they may conceal a structural change in the unadjusted Data Generating Process
(DGP). The widely used Census X~-11 seasonal adjustment program, for instance, leaves a
constant linear trend unaffected, as noted in Ghysels and Perron (1993), but has no such
invariance property with respect to breaking trends and level shifts. This observation,
discussed in section 2, makes seasonal adjustment with X-11, not an innocuous operation
with regard to tests involving aspects of structural instability.

The paper analyzes, both theoretically and via simulations, the effect of linear filtering
on the statistical properties of various classes of tests in the presence of structural change.
While our discussion focuses on a general class of two-sided linear filters, satisfying certain
tegularity conditions, specific attention is given to the linear approximation of the X-11
procedure. Three classes of lests are considered, namely, (1) tests for a unit root allowing
for the presence of a change in the trend function, as discussed in Perron (1989, 1993),
Banerjee, Lumsdaine and Stock {1992), Zivot and Andrews (1992) and others, (2) tests for
changes in a polynomial trend function for a dynamic time series model, proposed by
Gardner (1969), MacNeill (1978) and Perron (1991b), and (3) tests for parameter
instability with unknown change point, as discussed by Andrews (1993).

A general theoretical treatment of filtering effects on the asymptotic properties of the
tests, particularly those belonging to the second and third classes, is not presented.
Certain simplifications are made to obtain tractable analytical results. For instance, in
some developments it is assumed that the DGP is a simple level shift model without
seasonals. While there is not point in seasonally adjusting such series, one can interpret
our analysis as focusing on a particular component of interest which is part of a more
complex time series. Monte Carlo simulations complement our theoretical findings and
show that the qualitative effects uncovered by the asymptotic results extend to more
general models.

The outline of the paper is as follows. Section 2 presents a preliminary analysis of the
effects caused by seasonal adjustment procedures on purely deterministic components
when structural breaks are present. Section 3 discusses in more detail the models and
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statistics involved, while section 4 elaborates on the large sample behavior of tests with
filtered data. On the other hand, section 5 reports simulation experiments which allow us
to better assess these effects in small samples and extends some of the large sample resulls
to more complex time series models. Finally, section 8 concludes with empirical examples.
Historical series covering the Great Depression are used to illustrate the adverse effects
seasonal adjustment filters may have on tests involving structural changes.

2. FILTERING AND BREAKING TRENDS

For the purpose of motivating the discussion, let us consider two purely deterministic

time series, namely:
(2.1) Yy =4+ o+ (IDUt,
(2.2) yy=6+ g+ ODUt + ’yDT:,

where DUt =1, DT: =t - Ty if t > Tp and 0 otherwise with Ty representing a
breakpoint. In {2.1), a level shift is present in the DGP with intercept g for t < Ty and g
+ 0 thereafter. In (2.2), a change in both the intercept and the slope occurs after Ty. Let
us consider now the effect of "seasonally adjusting” these processes. Of course, there is no
point in seasonally adjusting such series since they exhibit no seasonal behavior. Yet, as
they may be a component of a time series which is being seasonally adjusted, it is useful to
consider the effect of a filter like X-11 on these trend components.! To simplify the
discussion, we consider the linear approximation of the X-11 filter rather than the actual

procedure and focus on the monthly filter denoted by uh}g_“([,) 2 It is a two-sided
symmetric filter spanning 65 observations on each side with weights that add to 1.3

1 Several researchers have proposed a set of desirable propertics that any seasonal adjustment
procedure should have (e.g., Granger (1978) and Hylleberg (1986, Chapter 2)). One of
them, sometimes referred to as idempotency, is that adjustment {ilters should leave already
adjusted andfor nonseasonal time series unaffected. [n that spirit, a desirable seasonal
adjustment procedure would leave equations (2.1) and (2.2) unaffected.

2 For a more detailed discussion of the linear approximation, see, for instance, Bell (1992)
and Ghysels and Perron (1993). We will not repeat the details here, and the reader should
refer to these papers. By focusing on this linear approximation, we abstract from the modus
operandi of the X—!1 procedure in practice. At the end of this section, we bricfly discuss
issues which make the actnal X—~11 procedure different from its linear filter approximation
and to what extent these differences are relevant with respect to analysing structural
changes.

3 The filter weights appear in Ghysels and Perron (1893), Table A1
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The "seasonally adjusted" series yjr = ”!)\(d_u(l')yt are plotted in Figures 2.1 and 2.2
which contain the original series (panel A) as well as their filtered counterparts (panel B).
For purpose of comparison, Panel C presents a graph of ¥y - ¥pe in both cases. The first
example, appearing in Figure 2.1, is one where a level shift occurs at Ty, = 150 and the
sample size T is 300 (though not the entire sample is plotted on the graphs). To simplify
the presentation, weset § = 0 in (2.1) and choose 1 = -.5 and 6 = 1. Hence, at t = Ty, =
150, a level jump equal in magnitude to ore occurs. Such an abeupt level shift is obviously

difficult to smooth. Two things happen when a level shift is filtered with ugv(l_“(!,). First,
the magnitude of the discrete jump at t = Ty, is reduced by approximately 10% (this
feature is more explicit in panel C where the difference between the two, i.e., SRS is
plotted). Second, a saw-toothed patlern appears before and after the actual break. The
pattern, in fact, looks seasonal. The source of this pattern is relatively easy to understand,

considering the filter weights of ugg_“(L). As the filter is two-sided, it starts picking up

the break at ¢ = Ty, - 65 when the most extreme lead term of the linear approximation
"hits" Ty, Moreover, the break still affects ¥§® at Ty + 65 due to the most extreme lag
term. Moreover, the saw-toothed pattern is a consequence of the design of the filter
weights. Consider next the case corresponding to (2.2), where the slope and the intercept

change at time Ty. Here again, we observe the two effects of passing y, through vx;g_“(L),
namely, the level shift is reduced while the change in slope zig-zags through time.

Before turning our attention to the test procedures, we make two observations about
the use of the linear X-11 filter. First note that the smoothing produced by the actual
X-11 program is probably greater than that resulting from the application of the linear

filter uﬁ_“(L)‘ Indeed, two features of the actual procedure have a smoothing effect not
captured by the linear approximation. First, the detrended series, obtained using the
so-called Henderson filter, is rescaled once outliers are detected . This part of the
procedure replaces actual observations by refitted values based on a rescaled and nearest
neighbor smoothing scheme. Secondly, the Henderson filter can be replaced by a longer
moving average with 23 terms instead of the default value of 8. In the remainder of this
paper, we continue to work with the linear approximation, as any theoretical development
would be difficult with any of the real-time complications associated with the procedure.
One should keep in mind though that the nonlinearities of the X-11 program not taken

4 Hylleberg (1986, p. 90) provides a reasonably nontechnical description and summary of this
feature of the X—11 program. Ghysels, Granger and Siklos (1994) discuss in detail and
provide simulation evidence about the nonlinear features of the X—~11 program.
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into account in fact exacerbate the undesirable effects of seasonal adjustment on
procedures involving structural breaks. Finally, note that we consider only two-sided
filters while in practice one-sided filters are often used when all the data required to apply
the two-sided filters are not available. Such is the case at either end of the sample or
whenever preliminary data releases are studied. We do not pursue any analysis of
one-sided filters primarily for two reasons. First, regularity conditions required for a linear
Gilter not to affect a linear trend rule out one-sided filters (see Ghysels and Perron (1993)).
Second, there are a multitude of one-sided linear filters, in principle 131 for the monthly
X-11 case. Choosing a specific one could only be justified using some arbitrary criterion.

3. THE MODELS AND STATISTICS

In this section, we briefly review the models and statistical procedures and, when
necessary, extend them to a seasonal context. Three different classes of tests are
investigated, namely, (1) tests for a unit root allowing for the presence of a change in the
trend function, (2) tests for changes in a polynomial trend function for a dynamic time
series and (3) tests for general parameter instability with unknown change point.

3.1 Unit root tests

A detailed discussion of tests for a unit root allowing for the presence of a change in
trend function appears, for instance, in Perron (1989,1993). A first model is one where
only a change in the intercept of the trend function is allowed under both the null and
alternative hypotheses. The "innovational outlier" version generalized to allow for seasonal
components leads to the following regression to compute the relevant unit root test:

k S—1
(31) y, =p+ 00U, + pt + 8D(Ty), + ay, ; + B Ghy St B 1bgdg g

where D(TB)t = 1if t = Ty + 1 and zero otherwise, and d, is a set of § - 1 seasonal
dummies with corresponding mean shifts denoted by b..

Before turning to the second and third models, a brief discussion about the appearance
of seasonal dummies in (3.1) is in order. First note that in all the models considered
seasonal mean shifts remain fixed under both the null and the alternative hypotheses. This
assumption avoids the complication of changing seasonal patterns discussed in Ghysels
(1990) and Canova and Ghysels (1991). As all auxiliary regressions include a constant, we
know from results in Hylleberg et al. (1991) that the asymptotic distributions of test
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statistics will not be affected. Hence, the presence of seasonal dummies in (3.1) and other
regressions below, does not entail any change in the asymptotic critical values to be used.

Under the second model, both a change in the intercept and a change in the slope of
the trend function are allowed at time T, and the appropriate regression is:

— * J k S_l
(3.2) y =4t (J'I)Ut + ft+ T + JD('lg,)t +ay,  + Ei::lciAyt-i + zs=1bsdsc +e,.
In the third model, a change in the slope of the trend function is aliowed but both
segments are joined at the break. Hence, the change is presumed to occur rapidly and
corresponds to the “additive outlier model", as discussed in Perron (1989). The null
hypothesis of a unit root can be tested using the following two regressions:

. _ S S—1
(3.3.4) yy=nt i+ 7D'It +y, + Es:lbsdst‘

(3.3 3,

i

- Kk -
oy, + Li:lciAyt—i +e.

We denote by t&(i,Tb,k) (i = 1, 2, 3), the t-statistic for @ = 1 under Model i with a
break date Ty, and truncation lag parameter k. In the simulation experiments {o be
reported in section 5, we consider both cases where Ty is assumed known and unknown. In
the former case, the proper critical values to be used are those in Perron (1989) for all
three models (see also Perron and Vogelsang ( 1992b)). When the breakpoint is treated as
unknown, we follow Zivot and Andrews (1992) and consider the statistics t;(i) =
Mi“'['be(k+2,T) t&(i,Tb,k) (i = 1, 2, 3), whereby Ty, is chosen such that the t-statistic for
a = 1 is minimized over all possible breakpoints. In this case, the appropriate asymptotic
critical values to be used are those reported in Zivot and Andrews (1992) for Models 1 and
2 and in Perron and Vogelsang (1992b) for Model 3.

To select the truncation lag we consider, in both the simulations and the empirical
applications, a data-dependent method based on a general to specific recursive strategy
using the value of the t-statistic on the coefficient associated with the last lags in the
estimated autoregressions .

5 More specifically, the procedure selects that value of k, say k*, such that the coefficient on
the last lag in an autoregression of order k* is significant and that the coefficient on the
last lag in an autoregression of order greater than k* is insignificant, up to some maximum
order kmax selected a priori. We use a two—sided 10 % test based on the asymptotic
normal distribution to assess the significance of the last lags. See Ng and Perron (1993) for
further discussion on the theorctical justification for this procedure and Perron and
Vogelsang (1992a) for simulation results in the context of unit root tests with breaks.
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3.2 Tests for changes in a polynomial trend [unction

We now consider tests for structural change in a polynomial trend function. The basic
process has three components, namely, (1) a polynomial trend function of order p denoted
N, (2) a stationary AR(k) process denoted X, and (3)a set of seasonal deterministic
mean shifts. Except for the third component, the setup is similar to that in Gardner
(1969), MacNeill (1978) and Perron (1991b). The process y, is then characterized as:

_ S—1
(34a) y =N +X + B0 p bsdgy s

_yp i
(34b) N =E_, B b,

ok
(34c) X =Ei_ aX jte,

=17}

where e, is i.d.d. N(O, aZ). Under the null hypothesis, ﬁi,t = ﬁi for all i. Under the
alternative, some of the ﬂi,t change at least once over time. Again, the seasonal pattern is
assumed to be fixed under both the null and the alternative hypotheses. A one-time
change in the coefficients at a given date Ty will be the alternative hypothesis of interest.

To describe the test statistics, consider first the following regression estimated by OLS:

WP i, pS—l k- .S _
(3.5) y, = 2i=0ﬂit + Es:lbsdst + Lj:lajyt—j + &t (t=1,.T),

where we denote the estimated residuals by ést to highlight the fact that they are
obtained from a regression involving a polynomiai trend of order p and 2 set of seasonal

dummies. We shall denote the residuals by épt when the dummies are not present in the

3

regression. The test statistic, denoted QD%(p) is given by:

=2 .2 oT—1 (pt 38 32
(3.6) QD%(D)=T L )

where % = 'I‘"l))'f:l(ép t)2. A similar test statistic for the nonseasonal case will be

denoted QDT(p) when égt is replaced by € . The asymptotic distribution of this test
was derived in Perron (19§1b). It depends on p and is tabulated in MacNeill (1978) for the

case where the noise component is a stationary process.
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3.3 General tests for parameter instability with unknown change point

The last class of tests considered are special cases of the general framework considered
in Andrews (1993). We again consider data generated by (3.4), with the restriction,
however, that p = 0, yielding an AR(k) nonzero mean model, possibly with seasonal mean
shifts. The null hypothesis HO: ﬂ(),t = ﬂo is considered. This corresponds to what is termed
by Andrews as a "partial” structural change test, as it does not involve testing the time
invariance of the parameters a. and those associated with the seasonal mean shifts. We let
Tb = » T where 7 belongs to a subset of {0, 1). We use x € {0.15, 0.85) in the simulations
and empirical applications. For any given value of , consider the regression

_ k —1 S
(37) yy = By (w1 = DU + fp(w)DU, + 2% _ g, + 25 hba +43(m)
From (3.7), it is relatively straightforward to construct Wald statistics over the range of
possible breakpoints. Namely, for x given:

(3.8) W'%(”) = T(ﬁm(”) - 302(7))'(\.,1(”)/7‘ + \."2(")/(l - ”))‘l(ﬁm(”) = 502(”))

and compute sup w3 ), denoted Sup ws. The variances V. (r) and V (), for A, ()
' T T 1 2 01

and 302( 7) respectively, are obtained from each of the subsamples and involve corrections
for possible heteroskedasticity and autocorrelation as discussed, for instance, in Newey and
West (1987). An equivalent statistic for the nonseasonal case will be denoted Sup W'I"

The asymptotic distribution of sup W,f‘ and sup WT is tabulated in Andrews (1993).

Along the same lines, one can construct likelihood ratio tests denoted Sup LR,f. and Sup
LRT, this time involving the estimation of a constrained model.

4. LARGE-SAMPLE ANALYSIS

Our aim in this section is to discuss the qualitative features of the effect of seasonal
adjustment filters on the behavior of some test statistics in large samples. In particular,
we want qualitative results that will enable us to draw some conclusions about the likely
direction of the biases in terms of size or power. As we shall see, things get complex quite
quickly and, in view of keeping the exposition manageable, we consider only simple models
and special cases of the statistics described above.



4.1 Unit root tests

For the unit root tests, we consider as DGP a special case of Model 3 with a change in
slope in the context of a known breakpoint Tp. The tests are constructed without the
addition of seasonal dummies and without additional lags in the autoregression (3.3.i).
Under these restrictions, the two step procedure for this model reduces to:

(4.1) yy=u+t f+ 7DT’£ + it'
(4.2) ¥, = ay,_; + e,

estimated by OLS. Without loss of generality, we also set the true values p = g =0.
Consequently, the DGP considered is of the form:

- *
(4.3) V= DT} + Z,

where 7, is the noise component. If 2 unit root is present, we have Z = Z a1t where

v, is a stationary ARMA process of the form A(L)v = B(L)e with e, ~ ii. d. (0, ¢ ) For

a trend stationary process, Zt is itself stationary.

We denote the seasonal adjustment filter by {L) = Ef_“_mui, a two sided polynomial
with 2m + 1 terms. The following analysis assumes this filter satisfies /(L) = ¥{~L) and
1) = 1 (the last condition being necessary to justify our elimination of the intercept and
the slope in (4.3)). This framework covers the case of the linear approximation to X-11.
Let y{ denote the filtered data. As is well known, the normalized least-squares estimator
of @ in (4.2) using filtered data is given by T(a -1) = l)IT__2yt(yt y‘ l)
/T 2)"1. -2(yt l) . Our aim is to study the limiting distribution of T(a ~ 1) under the

null hypothesis of a unit root and the probability limit of &[ when considering the
alternative hypothesis of a stationary noise component. The filtered data is given by:

(44)  yl= L)y, = MLIDT] + LL)Z,.

Note first that the unit root property is preserved by the application of the filter. Indeed,

if a unit root is present, YL.)7%, = I;f = Zt | + L)y, = Z{ 1+, where = L)AL )_l
B(L)e Since (L) does not conta.m a root on the umt circle, n, is itsell a stationary
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process having a different variance from v, though an identical spectral density function at
the origin. The effect of the filter on the trend properties of the data is such that:
(4.5) v(L)DTz =0, it < Ty - m,

=1t -Ty, iftZTb+m,

_ -

= Xm,t z Xisz—m+l(Hl—i)uTb+1~i' ifTy-m<t< Ty +m.

It is shown in the Appendix that the asymptotic distribution of T(&r ~ 1) is the same
as that stated in Perron and Vogelsang (1992b) for the case where the data is not filtered

except for the fact that the nuisance pa.rameter §= (:7,7 -5 )/20', is now defined in terms

of 3, = limgp l2)}__1]5}(%) instead of s = hmT 00 18’{__113(\%) where we recall
2 2 1
that 7, = u(L)vt (note that a’) = llmquo T (Xt )= o, =limp T (2 { =1 t)

since »(1) = 1). Since usual tests for unit root do not depend asymptotically on nuisance
parameters, the tests will have an identical limiting distribution under the nuil hypothesis
whether the data are filtered or not.

Consider now the limiting behavior of &f under the alternative hypothesis of a
stationary noise component. Tedious algebra yields 9

f,f

() 17T 22 +0,(1)

=27

55 T
Y- _thz

and

~1e] - -1
(4.7) T IE{=2(YQ_1)2 =T 8?:2(25-1)2 + Op(l).

Hence, the limiting bias of &f is the same as in the case where no break in the trend
function is present. This case was analyzed in detail in Ghysels and Perron (1993) who

showed that the probability limit of af

all cases, greater than the true first-order autocorrelation coefficient when AL) is the

depends on the underlying process and is, in almost

X~-11 filter. This last fact, which still prevails here, implies a loss of asymptotic power for

L Using (A.2) in the Appendix and especially the fact that <4 and €4 are Q ('I /2) when Zz

is stationary (as well as the fact that m is fixed as T - 00)
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tests of unit roots. Note that, as shown in Ghysels and Perron (1993), this asymptotic bias
still prevails if the tests are based on augmented autoregressions.

The basic reason for the fact that filtering the data in the presence of a break in the
trend function does not add a further element of bias to the test asymptotically is that,
even though the filter does not leave the trend function unchanged, it affects it for a finite
number of periods only, related to the length of the flter (m). An alternative asymptotic
framework would let this number of leads and lags increase as the sample size increases.
The idea here is akin to a continuous time asymptotic framework where the sampling
interval decreases to zero as the sample size increases to infinity. Indeed, it is well known
that seasonal filters, such as the linear approximation to X-11, incorporate more lags, the
finer the sampling interval.? Though we do not analyze explicitly a continuous time
approximation, such an asymptotic framework with m increasing can yield additional
insights into the qualitative properties of the tests in the presence of filtering.

To that effect, we first need to specify the framework relating the behavior of the filter
weights as the sample size increases. We specify the sequence of weights:

(48) T wg[Ts)/T) = 1fs) as T - co.

Condition (4.8) is reasonable in the sense that it lets the weights on distant leads and
lags decrease to zero at a fast enough rate. Let the number of lags on each sides of the
filter be such that m/T ~ k as T - 0o (we also specify Tp/T ~ A). Using (4.8), we have:

-1 = B
@9 T =T Femymett D rypg

=717 ):{E?'T‘ﬁ“’m([Tr}-Tb+m+14)um 1
= f([)”)‘+"[r~A+n-s]TvT(s—s)ds

= fB-A+~[Y‘A+K"SlU(K's)ds = f{;A(f—A’S)U(“S)dS

Under this alternative asymptotic framework, we obtain a rather different
characterization. From (A.2) in the Appendix, we can verify that the term X, is Op(T)
and dominates all others under the alternative hypothesis of a stationary noise component.

7 The quarterly X—11 filter involves 27 leads and lags whereas the monthly one has 65.
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Hence, we deduce that

I 35T L f o80T, £,
@ =T Ry /T 50y
(4.10)
_ p=3sTh+m ~3Ty +m 2
=T 2t,='I‘ b-mxm,txm,t—l/T thT b-m¥Xm,t * OP(I)'

Considering first the numerator of &f, we have:

m=3pT p+m _ p=3¢Tp+m 2
I 2 p-m¥m,tXm-1 =T Ty 2 b—m[xm,t-l ks WY S

Using (4.8) and (4.9), we have the limiting results

S3eTu4+m 2 bl 2
T8 2t p-m¥m,t-1 = fA-n(T xm,[Tr]) dr
(4.11) .
A —-A
afA_t:[ffK (r-A~s)u(-s)ds] dr.
Using (4.10), (4.11) and the fact that T.ZE'{§$T_muTb+l__txm -1 = Op(l). it is

readily seen that Exf = 1 under the alternative asymptotic framework where m increases to
infinity as T increases. Our argument is not that this alternative limiting result provides a

better approximation to the finite sample distribution. Rather, we view the fact that &f ~
L under the alternative hypothesis as suggesting the presence of an additional bias, caused
by seasonal adjustment filters, that will reduce the power of the tests in finite samples.

To summarize, our results, though obtained from a special model and test statistic,
suggest the following features to be expected in finite samples about unit root tests that
allow for the possibility of a break in the trend function: (1) seasonal adjustment filters
have little effect on the size of the tests; (2) they, however, create a bias towards
nonrejection of the unit root. This bias is caused by two components: the upward bias on

o that would occur without breaks (as analyzed in Ghysels and Perron (1993)) and a
further bias caused by the distortionary effect of filtering on the trend function itself.

4.2 Tests for structural change

To keep the theoretical derivations analytically tractable again, while still aiming for
qualitative results about distortions to size and power caused by filtering, we consider the
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simple case of a change in mean in an ii.d. sequence whereby the staiistic QDT(O) is
applied. The data-generating process is given by

(.12) y, = (6/YT) DU, +e,,

where e, ~ i.i,d'(0‘02) and DU, is defined in equation {2.1). Under the null hypothesis, § =

0. By specifying the process with change in mean §/yT, our goal is to provide a
comparison of the local asymptotic power of the statistic constructed with and without
filtered data. This derivation is obtained using the asymptotic framework whereby m
increases 1o infinity as T increases and (4.8) is specified for the sequence of filter weights.

We recall from the definition of QDT(O) that we can write QDT(O) = 1%

zf‘}{zgzl(yj - ¥))2, where 3% = T'E1(y, - ¥)%. The statistic constructed with filtered

data, QD,{\(O), is defined analogously with y, replaced by y{ = V(L)yt. We first discuss the
lirmit of the statistics under the null hypothesis. From MacNeill (1978), we have

(4.13)  QD(0) = [ iB(s)%ds ,

where B(s) = W(s) - f(l)w(s)ds is a demeaned Wiener process. It is straightforward, using
arguments similar to those in Perron (1991b), to show that

(414)  Qplh) = v fiB(s)%s,

where ¥ = ffﬂu(s)zds = limyp_ o T'lE’f(V(L)et)Z/az Comparing (4.13) and (4.14), we
see that filtering will induce size distortions in the limit if ¢ # 1. Note that we have the

approximation ¥ % Efmu? For the linear approximation to the X-11 seasonal adjustment
procedure, ¥ is 0.826 for the quarterly version while 0.785 for the monthly version. In both
cases, the application of the seasonal adjustment filter will induce tests that are liberal
(oversized) even in the limit (slightly more so in the monthly case).

We now consider the local asymptotic power function of the tests. Consider first the
case where the unfiltered series are used. From Perron (1991b, Theorem 6), we deduce:
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QD(0) = f 555_ FORTS

where By § = W(r) - rw(1) - (6/06)(1 -A)r+ I > A)(&/ae)(r ~ A). "To simplify, we
analyze the case where § is "large". In that case, we have the approximate relation

(4.15)  QDy(0) = (6%70%) A% (1 - 1),

We now consider the case where filtered data are used. It is shown in the Appendix
that for large 6§ we have the approximation:

QD.f(0) = (52/03){[1‘0 +6) + (=) - )44 - x)¥3
(4.16) PO+ 8) + (A -m)(1- 2= x)Y)3

+ JEID( 4 0) = (04 DA+ ) = (0 4+ A)(1 - A - x)J%dr

where I'(r + A) = f;ii[fé;Av(—s)dstj = f{xff-nu(ﬂ)ds. The relative asymptotic
power function of QD,{‘(O) and QDT(O) in the filtered and unfiltered case is given by the
ratio of (4.16) to (4.15). This ratio can be evaluated using the following approximations:

LoD+ A) = T8

i -1 L=
=-mTs=m?) T[T < T(=-m+1L.., m)

and the approximation for the integral in (4.16) is given by

T I - G/T + M = GIT + A) (1= -m)f2

Using these approximations, we evaluated the relative asymptotic power function of

the QD,{.(O) and QD..(0) tests when the data were filtered using the linear approximation
to X~11. Note that for the quarterly case, m = 27 and for the monthly case, m = 65. We
set & = m/T and considered a range of T between 100 and 1,000 and A = .1,.2, ...,.9. The
results are presented in Table 4.1.

Several interesting qualitative features emerge from these results. The most important
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being the fact that the relative efficiency of the test is lower with Gltered data than with
unfiltered data when A is small, i.e., when the break occurs early in the sample. The
reverse is true when A is greater than 5. With A around .5, the two versions are
approximately as powerlul. These qualitative results are little affected by different values
of T. Finally, filtering the data induces a greater power loss, in general, with the quarterly
filter compared to the monthly filter. In general, however, the power losses or gains are
relatively small, within * 5%.

Our results, though obtained from a simple model and test statisiic, show important
qualitative effects that are likely to extend to other models and tests. They show that size
can be affected {overly liberal tests) as well as power. Unlike tests for unit roots, the effect
on power can go either way, depending on the position of the break.

5. A SIMULATION STUDY OF THE FINITE SAMPLE BEHAVIOR

We now turn our attention to the finite sample behavior of the various test statistics
presented in section 3. We first describe the Monte Carlo design followed by the results for
each of the three classes of tests.

5.1 The Monte Carlo design

We focused exclusively on the monthly X-11 filter and studied the statistical
properties of tests in samples of 100 and 200 filtered observations, hence a ten to twenty
~year span of monthly observations. In effect, data sets of 400 observations were drawn in
each Monte Carlo iteration so that the two-sided X-11 filter could be applied. A sample

with 200 filtered observations started with the 101** observation after the entire series of

length 400 is adjusted with the u?({_“([,) filter. Whenever seasonality was present in the
DGP, the following monthly pattern was chosen: bl = -05, b.2 = -03, b3 = .03, b4 = .05,
bg = .05, bg = .02, by = ~05, by = -02, by = .02, b = 02 and, by, = .02. Hence, the
dummy shifts sum to zero and exhibit what can be viewed as a typical monthly seasonal

pattern in economic time series (assuming by corresponds to the second month).

For each model, we considered two scenarios regarding the treatment of a seasonal
component in the DGP. One scenario consisted of generating data without a seasonal
pattern. The other included seasonal dummies, with the mean shift values described
above. With no seasonality in the data, we constructed the tests using regressions without
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seasonal dummies and compared their properties with and without filtering. Here, as

seasonality is absent, we isolate the effect of linear filtering with ug'(i_l (L) on the
statistical properties of the different tests. In the second scenario, when the DGP contains
seasonal patterns, filtering serves as an attempt to remove the seasonal mean shifts.

5.2 Unit root tests allowing for a breaking trend

We focus here on Models 1 (a change in intercept) and 3 (a change in slope). Model 2
is not reported as the results were similar to those of Model 3. The DGP's considered
imposed an AR(1) structure so that, under the null hypothesis of a unit root, the process is
a pure random walk. Under the alternative hypothesis, the noise component, denoted

¢v(L)et, is an AR(1) such that ¢(L) = (1 - aL)_l. To analyze power, we set a = 0.85.
Moreover, it was assumed that g = # = 0 in equations (3.1} and (3.3). With seasonality in
the DGP, three testing strategies are considered. The first consists of applying the tests to
{iltered series, while the second involves unfiltered data and adding seasonal dummies to
the regressions used to calculate the tests. Finally, the third strategy consists also of using
the unfiltered data and constructing the tests using standard augmented regressions
without added seasoral dummies. The value of kmax for the data-dependent method to
select the truncation lag was set equal to 4 except for the latter configuration, where it is
12. We report results for T = 200. In generating the data, the breakpoint Ty, was set at
hal{-sample, i.e,, Ty, = 100 {or the 200th observation generated). All simulations were
done with 1000 replications.

Table 5.1 reports size and power of the unit root tests for Models 1 and 3. In the first
model (3.1), the parameters § and # were chosen such that § = 6/(L - a), fience for any
value of §, we have § = &1 - a). We selected § = .5 and 1.0, measuring two different
magnitudes of discrete jumps at time Ty A level shift equal to .5 is small considering that
its magnitude is half the standard error of the disturbance term. For Model 3, weset v =
-05 and .10. The parameter 7y determines a change in slope rather than a jump, hence the
different order of magnitude. The top two panels of Table 5.1 display the size and power
for tests related to Model 1 under different configurations with the breakpoint assumed
known or unknown and where the DGP lacks or exhibits seasonal mean shifts. The
nominal and empirical sizes of the t&(l,Tb,k) statistics appear very close, indicating that
size distortions are at most minor. This observation also applies to test statistics
pertaining to Model 3 (the bottom panels of Table 5.1), and, hence, we focus our attention
exclusively on the power properties of the various tests. The fact that no size distortions
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occur in small samples agrees with the asymptotic results discussed in section 4.1.

For the power properties, let us first turn our attention to cases where the DGP does
not exhibit seasonal mean shifts. As the asymptotic development indicated, it clearly
appears from the simulation experiments that tests are less powerful, irrespective of the
assumption about knowing the breakpoint, whenever data series are passed through the
linear X-11 filter. When the DGP exhibits seasonal mean shifts, this finding also generally
holds with some exceplions when one compares the filtered and unfiltered simulation
scenarios (the column labeled unfiliered (kmax = 12} will be discussed later). Indeed, for
Model 1 with a known breakpoint, it appears from Table 5.1 that tests applied to
unfiltered data yield slightly better power, sometimes by a margin exceeding 10%.3

A third scenario for dealing with seasonality in the DGP consists of using unfiltered
data combined with setting kmax = 12 (since simulated data represent monthly series)
but without including seasonal dummies in the regression. As the series are unfiliered, we
no longer have the negative effect of X~11 on the power of tests. Moreover, as there are no
seasonal dummies but only an autoregressive expansion of at most length 12, we may
clearly expect to gain power relative to the first scenario which almost always involves
more regressors. The power properties of the second scenario, i.e., filtering and kmax = 4
versus the third one are a priori not easy to assess because the former usually involves less
regressors.® Regarding Model 1, the third scenario is the most powerful. Overall, the
results for Model 3 are quite similar, except for the fact that the three different scenarios
in the seasonal case do not yield such marked differences in power.

Perhaps the most important conclusion to retain from these simulations is that
introducing seasonal dummies in regressions, sometimes a natural thing to do with
unadjusted data, does not seem to be as good compared to filtering either via AR lag
augmentation or via a procedure like X-11. The difference between the latter two does not
seem to be such a clear-cut case, though the third scenario seems to have an edge over
standard seasonal adjustment filtering. 1t is also worth recalling at this point the fact that
the actual implementation of the X-11 procedure entails most likely more smoothing than
the linear filter induces. Taking this into account makes the edge of the third scenario all

8 There is an easy explanation for this. Two opposite effects on the overall power properties
in finite samples must be taken into account. On the onc hand, we know that filtering will
reduce power; on the other hand, reducing the number of regressors implies increased
power. Which of the two effects will dominate depends on the specific situation.

9 Although, strictly speaking, one should correct for degrees of freedom lost due to filtering.
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the more important in most practical circumstances.

5.3 Tests for changes in a polynomial trend function and parameter instability with
unknown change point

We now study the finite sample properties of the tests presented in sections 3.2 and
3.3. Because the asymptotic derivations in section 4.2 were restricted to the analytically
tractable simple case of the QD(0) statistic we focus First on a Monte Carlo design
tailored towards the theoretical developments. Thereafter, we broaden the scope of the
analysis by investigating cases which were not be covered by the analytic local asymptotic
developments. Moreover, we investigate, even in the simple case, not only the QDT(O)

statistic but also the QD%, Sup WT’ Sup LRT, Sup W% and Sup LR% statistics as well.

To conduct our first experiments, a data series of normally distributed N(0,1) white noise
was generated under the null hypothesis and a white noise process around a level shift
under the alternative hypothesis. Such a design suits all classes of tests. Similar to the
previous section, we distinguish data with and without seasonal means. Three scenarios
were again considered when seasonal mean shifts were present in the data. Table 5.2
summarizes the results. The values of § are the same as in Table 5.1. All tests now apply
to cases where the breakpoint is assumed unknown and Ty, = 50 with a sample size of 100.

We observe in Table 5.2 that in some cases, minor size distortions appear due to
filtering. This finding is in line with the asymptotic size distortions found in section 4.2.
We also observe that filtering may yield more powerful tests, yet taking into account the
size distortions (see, for instance, QDT(O), filtered and unfiltered with seasonals), such
increases in power are not very meaningful. For the QD statistic, and the Sup W and Sup
LR statistics, we also obtain a power loss due to filtering, though the loss is not as
significant as in Table 5.1. It should also be observed that, when seasonals are present, it
is advisable to include seasonal dummies instead of long lag expansions like k = 12. The

use of the latter greatly reduces the power of the QDT(O) statistics corpared to QD%(O),
for instance. It should also be noted that the Sup W and Sup LR appear to be slightly less
powerful than the tests for a change in a polynomial trend function. This may not be
surprising, because the Monte Carlo design is specifically tailored to investigate QD-type
statistics. Overall, we may conclude that we find a negative effect of filtering on power,
though not as pronounced as in Table 5.1. As Table 5.2 covered the situation of a
mid-sample break, it is not surprising, given the asymptotic results of Table 4.1 that
filtering has a negligible impact on power. According to the computations based on
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asymptotic local power approximation we should find more impact of filtering in cases like
Ty = 20 and Tp = 80. Though the simulation results using a sample of T = 100 do not
display clearly such filtering effects, they hold in larger samples. For instance, with T =
200 and Ty = 40 the size corrected power was 8% higher with unfiltered series compared
to filtered ones. With Ty = 160, using filtered geries resulted in tests with 13% more
power. These latter figures show the relevance of the qualitative results concerning the
direction of the bias in the power function described in Section 4.2

It was conjectured that the analytic asymptotic results, restricted to simple cases,
would probably carry over to more complicated situations. We now consider a Moate
Carlo design where the DGP is an AR{1) model, instead of white noise, with or without a
break in intercept at Ty, = 50. To simplify the presentation, we focus exclusively on the
QDT(O) statistic with k = 1 for an AR(1) with a = .0, .1, .2, ..., .9. The size of the jump é
is set equal to 1. The results are reported in Figures 5.1a and 5.1b. The first covers size
and reveals that filtering induces size distortions which diminish, relative to the unfiltered
case, as a increases towards 1. The next figure covers the difference in size corrected
power, unfiltered versus filtered. Here, we clearly see a remarkable and devastating effect
on power produced by filtering data when values of o are in the range of .4 and .8. Indeed,
up to almost 30% power is lost because of filtering. Hence, with a = 0 and Ty = 50, we
found little effect of filtering (cf. Table 4.1 and Table 5.2). [n contrast, with AR(L)
stationary models, we find quite strong filtering effects. Size distortions occur as well
because of filtering, although they taper off as a increases.

6. EMPIRICAL EXAMPLES

We now turn our attention to empirical examples, demonstrating the effect of filtering
in practical applications. The examples relate to tests for unit roots discussed in section
3.1. We analyze a set of monthly historical lime series measuring economic activity before
WWIL. More specifically, we consider an index of aggregate industrial production and an
index of pig iron production both covering the period 1884:1-1940:12. The data are
described in more detail in Miron and Romer {1990). This monthly data set covers a long
span which is particularly desirable when testing for unit roots (see Perron {1991a)). From
the monthly series, we also construcied quarterly indices covering 1884:Q1-1939Q4.
Figures 6.1 and 6.2 display plots of the monthly series.

Table 6.1 contains empirical results for the quarterly and monthly 1P series. For each
series, three regressions were applied, namely two involving unadjusted data, once with
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and once without seasonal dummies.

In the sequential procedure to select the autoregressive order, we considered kmax =
12 for the monthly data and kmax = (¢ for the quarterly series. In Table 6.1, we present
tests for the unit root hypothesis using Models 2 and 3, denoted t;(2) and t;(3)
respectively. © Perhaps the most straightforward example in Table 6.1 is Industrial
Production sampled at a monthly frequency as all model and data configurations agree on
a rejection of the unit root hypothesis. The results with the other data sets and regression
specifications are ambiguous and hence more interesting for our purpose.

Let us first discuss the qQuarterly IP series. While there is agreement among the results
for Model 3, there is a striking difference between using SA versus NSA series with the test
statistic L;(2). With NSA data and seasonal dummies, there is strong evidence against the
unit root null hypothesis. With seasonally adjusted series, one cannot reject the null. We

involves ten lags, hence more coefficients than in the regression with seasonal dummies
and its four-lag AR expansion. This comparison of both tests using NSA data tells us that
the seasonal dummy scenario is probably the most striking. With quarterly Pig Iron
production, we also fing disagreement among the tests, this time for both models. Now,
the scenario involving NSA data and the use of AR augmentations yields rejection, Note,
however, that the AR expansions are more parsimonious and clearly should lead to the
most powerful tests. This empirical example, like the former one, underlines the
conclusions obtained from the theoretical developments and simulations. Indeed, filtering
with X-11 has a strong effect in this case on the power of the tests, particularly when they
also involve long AR expansions. The last remaining case is that of monthly Pig Iron
series. Here, there do not appear to be significant differences between the tests.

e
Y It has been assumed that the data generating process had no unit roots at some of the
seasonal frequencies. A comment is in order, though, before turning to the empirical results.
For the IP series, there are reasons to believe that there might very well be unit roots at
seasonal frequencies. Although we will not provide a formal proof here, we can extend the
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APPENDIX

In this Appendix, we derive the asymptotic distribution of ’I‘((’:«f - 1). Let i: be the

residuals from a projection of y{ on {1,t, DT:} (t =1, .., T). Note first that combining
(4.4) and (4.5), we have:

f f

W= Zt’ ift<Tp—m,
= At-Ty) + 2 iy Ty +m,
=7xm,t+7‘{' ifTy-m<t<Tp+m

Straightforward algebra yields (sec Perron and Vogelsang (1992b)):

Bt ool o mf s qed \
o= =Y - (t-Ueg + ey t ¢ Ty,

(A1) } ) )
5':::y{—Yf-(t.—t)cé-(l-—’l‘b-—t“)ci, t> To,

of il f 5 iyl e _ mp-lgT—=Ty . { {
where Y© =T ztzlyt, t =1 Et___lt, t*="T 2t=l t. The variables ¢y and c, are
defined by [cg, c};]’ = (W'W)'XW’(Yf - \—’f) where Y! = (y{, . y.{.) and:
-1 -t

. _.i*

: -t
T -1 T-Ty-t*
‘The expressions for the level of y{ are somewhat cumbersome. Tedious algebra (using, in
particular, the fact that the detrended variables are invariant to 7 except for values of tin
the interval (Tp - m < t < Ty + m)) yields:

-f f 5f - -
y":Zt—Z -(&—t)c3+t‘c4, t¢Tp~-m,
I S 14 : -
yt=Zt_Z —(t—t)c3+t’c4fl-7xm’t, Tp-m<t< Ty,
(A-2) 'f-zf-’{?f—(t—i)c —(t-Tp- e, + Ty<t<Tp4m
y""‘ t 4 q b 4 7Xﬂ\,l' b b )
;{:Z{-Zf-(t-I)cs—(t—Tb~§‘)c4, t> Ty +m,

where AR lgT 2!

L=12y and the variables cq and ¢, are defined by {cs, 04}’ =
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(W'W)‘lW‘(Zr— Z‘), where 2 = (Zf Z{,). Using (A.2), the first-differences are:

ll ¥

.

N ¥ =m-c, t<¢To-m,
="t_c3+7xm,t’ t=To-m+1,
= 7]& _cs + %Xm't 'Xm,t“[)’ Tb ~-m+ 1<t < Tb,

(A.3) =1 -(c3 +c) + "(xm,t “Xpi1h Te<t<Ty+m,

=ﬂt-(c3+c4)—7xm,t_x, t=Ty+m+ 1,
=’I,.-(C3+C4). t>T, +m+ 1.

Consider the numerator of T( al- 1). We have:

AT fof f o~lgT o of -
AT i -7, =1 _y2 -2 (- 1- D)y,

g7

Lo Th -1 .
+ T Ezb(t'c4nt) + T Tb+l(t -1 ~’[b)c4nt

=1 Tp+m—1
T e Mg
where the terms subsumed under op( 1) correspond to some elements associated with the
observations at t = Ty~ m + 1 and t = Ty + m + 1. We note the following asymptotic

+ op(l)

results: T71{ = 1/2, Tl o (1~ A)2/2. and under the aull hypothesis of a unit root,
~1/25 . .
Y 7l = onféw(r)dr, Tl/2c3 = —ar,ws/gB and l‘llzc4 = —aﬂ¢4/g8 with g, ¥y and

¥y as defined in Perron (1989, Theorem 2), and o2 = anmT‘IE{S%V A with Sp =

n
2{‘:1%. Consider the last term in (A.4), we have:
aq=lpTh+m—1 _ p=lpTp+m
(As) T Shommt1 g, =T S ly—m+2 T g |
= Tlglotm gt

To—m+2% =Ty-m+ 1 vp
- p-lp2m-igj .
=T 5, 2:i=0*‘”m+i+1"'1‘1,-m-f-i+l'
The whole expression converges to zero as T ~ og. Hence, the limit of (A.4) is given by the
limit of the first three terms and using results in Perron and Vogelsang (1992b), we have:

(A8) T5L_p3((5, - 71_,) = oM /ey + (W) [ Lwg(e)ae)
= aﬁ{f(l)wB(r)dw(r) +68+ (w“/gB)fin(r)dr},
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where § = (afl - sn)/2an with sn limp Ty T-IE("O.) Also wB( t) is the residual
from a continuous lime projection of the Wiener process W(r) on the function {,r
dr*(A)} with dr*(,\) ¢ - Xifr > A and 0 otherwise. Similar arguments hold for the

denominator of'l(a — 1) and we have T Et ”2){ L= aqKB/gB z ar}fO B(t)2dr,

Proof of (4.16). We first note that:

=ul)y, = oL)e, t < Ty-m,
(6T) + ALY, 1> Tudm

= (15/,/'[‘)\11m  F YL, , To-m ¢t ¢ Ty +m,

WL

my = Li =Ty-m+1 Y1 and we note at the outset the limiting result

where ¥

Te)-T Lg{Tr]-T -
(A7) m“,rrz[ -Totm, =T s TETur ey + 1= i)/T)
t~A+K
&~ s)ds, as T - 00,

0

for A -k <1< A+ & Using this result and the fact that T'IIQESZE‘V(L)% = aeW(r)
(since (1) = 1) and

Tr A
™ EE—'T},—m-H m,j = f/\—rc[f u(—s)ds} dj,

we obtain:

11/2y gz P ROP ifr< A=k

(A.8) = 0 W(r) + 6f j\_n[ff;*u(—s)ds]dj , EA-RCICA+HR
= o W(e) + 8f ‘;i:[ I g"u(-s)ds]dj 4 fedn], ifE> A+ R

Using (A.8), the numerator of QDT(O) has the following limit

2
211y
1 La—l{; l(y Y)] =
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2
é_”(ae{W(r)—rW( D) -6 f Qj:[ f f';*u(-s)ds} dj - ré(l—/\—n)} dr
+f i‘iﬁ{aelw(r) Wi+ af§ {';"u(-s)ds]d;

2
(A9) ~r§fii2[ff:’\u(—s)ds]dj—r6(l - A ~Ii)} dr
2
+ f§+K{ae(W(r)-rW(1)1 +(1 _r)‘sfj\‘jg[j{;*p(-s)ds]dj-a(x-n)(x -r)} dr.

Note that the denominator of QDT(O) has the following limit:
(A10) . v,

The result (4.16) follows after some manipulations combining (A.9) and (A.10) and
considering again the case where § is large.
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T-2

Table 5.1 : Size and Power Properties Unit Root Tests Against Breaking Trend Alternatives
Filtered and Unfiltered Series
tz @, Ty, k) Statistics, i = 1, 3/ Nominal Size 5 %

Sample size 'T' = 200, T, midsample

DGP without Seasonal Dummies DGP with Seasonal Dummies

Unfiltered Filtered Unfiltered Filtered Unfiltered
(kmax-(2)

Size Power  Size Power  Size Power  Size Power  Size Power

Model I - Known Breakpoint
5=0.50 0.058 0.621 0.053 0.583 0.059 0.601 0.061 0.720 0.048 0.761

8=1.00 0.060 0.783 0.048 0.642 0.054 0.799 0.058 0812 U.045 0.882

Model I - Unknown Breakpoint
6=0.50 0.050 0.531 0.038 0.354 0.048 0.585 0.056 0.382 0.049 0.698
6=1.00 0.052 0.573 0.041 0.418 0.053 0.773 0.054 0.611 0.051 0,833

Model 3 - Known Breakpoint
r=0.05 0.052 0.601 Q.OSZ 0.578 0.052 0.446 0.052 0.401 0.052 0411
r=0.10  0.050 0.777 0.052 0.651 0.051 0.513 0.053 0.492 0.049 0518

Model 3 - Unknown Breakpoint
r=0.05 0.049 0.333 0.041 0.282 0.041 0.379 0.045 0.361 0.048 0.378
r=0.10 0.042 0.411 0.041 0.351 0.051 0.448 0.047 0.489 0.049 0.452
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Table 6.1 : Empirical Results - | listorical Time Serics Evidence on Unit Roots
against Breaking Trend Aliernatives Using l&('Z) and 13(3) Test Statistics

Scasonally Unadjusted (NSA) versus Adjusted (SA) Data

Model - NSA/SA  Scas. Dummies  kmax k Ty p-value

Quarterly Index of Industrial production 1884:1-1940:4

2 NSA Yes 10 4 1931:3 0.00
NSA No 10 10 1931:3 0.38
SA No 10 8 1931:3 0.30
3 NSA Yes 10 7 1925:2 0.35
NSA No 10 7 1925:2 0.36
SA No 10 7 1925:3 0.41

Quarterly Index of Pig Iron Production 1884:1-1940:4

2 NSA Yes 10 3 1920:4 0.27
NSA No 10 3 1930:1 0.02
SA No 10 8 1930:2 0.76
3 NSA Yes 10 9 1914:1 0.41
NSA No 10 3 1914:3 0.03
SA No 10 8 1914:2 0.74
Monthly Index of ndustrial Production 1884:1-1940:12
2 NSA Yes 12 12 1931:11 0.00
NSA No 12 12 1931:11 0.00
SA No 12 t 1931:11 0.00
3 NSA Yes 12 12 1925:5 0.0t
NSA No 12 12 1925:5 0.02
SA No 12 1l 1925:11 0.00
Monthly Index of Pig Iron Production 1884:1-1940: 12
2 NSA Yes 12 12 1930:7 0.13
NSA No 12 12 1930:4 0.08
SA No 12 B 1930:7 0.06
3 NSA Yes 12 12 1914:6 0.15
NSA No 12 12 1914:8 0.11
SA No 12 3! 1914:6 0.09
Note : Ty, represents the estimated break point, kmax is the maximal lag in the selection procedure

and k is the selected order of the autoregression,
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