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RESUME

Les procédures standards pour tester la présence de racines unitaires aux tréquences
saisonniéres sont basées sur une représentation invariante ARIMA. Une dasse alternative de
processus est celle des modéles & variations périodiques des paramétres. Dans cette étude,
nous présentons des tests de racines unitaires qui prennent explicitement en compte une
structure périodique. Les distributions asymptotiques sont dérivées. Une étude Monte Carlo
démontre les avantages de nos tests par rapport aux procédures standards.

Mots-clés: modéles périodiques, racines unitaires saisonniéres.

ABSTRACT

The standard testing procedures for seasonal unit roots developed so far have been based
mainly on time invariant ARMA processes with AR polynomials involving seasonal differencing.
One attractive aliernative Is to employ periodic ARMA models in which the coefficients are
allowed 1o vary with the season. In this Ppaper, we present convenient procedures for testing for
the presence of unit roots at the zero and seasonal frequencies in periodic time series. The
limiting distributions of these statistics are derived and tabulated. Simulation evidence illustrates
the advantages of allowing for periodicity In this context when it is present. The tests are
illustrated via applications to macroeconomic and ozone level data.

Key words: periodic models, seasonal unit roots.






This class of models, popularized through the work of Box and Jenkins (1976), has
become standarg textbook materia). 1 A celebrated example of this class is the

papers explored the estimation and lesting of periodic models, including Jones ang
Brelsford (1967), Pagano (1978), Troutman (1979), Tiao and Guuman (1980),
Andel (1983), Cipra (1983), Vecchia (1985a), Andel (1987), Andal (1989), Hurd ang
Gerr (1991), Lutkepohl ( 1991), Sakai (1991), Vecchia and Ballerini (1991), Anderson
and  Vecchia (1993), Boswijk and Franses (1993), Ghysels and Hall (1993),
McLeod (1993), Bentarzi and Hallip (1994), Franses (1994), among others, In addition,
these models foungd Successful applications in economics, environmental studies,
hydrology and meteorology, see inter alia., Bhuiya (1971), Noakes e al. (1985),
Vecchia (1985b), Vecchia et al. (1985), Osborn (1988), Birchenhall e{ al. (1989),
Jiménez eq al, (1989), Osbomn angd Smith (1989), Todd (1990), Ghysels and Hall (1992),
McLeod ( 1993).

and 1abulate (he limiting  distributions of our statistics, Simulation evidence

————

! Besides extbooks, it is also worth mentioning survey papers on the subject such as Bel) and
Hillmer (1984) or Ghysels (1994), While the majority of the lierature focuses on univariate
models, some authors have studied multivariate €xtensions. Recemy examples include 1_ce (1993)
and Ahn and Reinsel (1994).



demonstrates that there can be considerable gains in power from taking account of the
presence of periodicity when it is present.

An outline of the paper is as follows: in section 2, we examine the issue of
testing for the presence of certain roots in the autoregressive polynomial of a periodic
\ime series. Section 3 extends this analysis by introducing joint tests for the presence
of these roots; one of these tests examines whether seasonal differencing is appropriate.

Section 4 contains the results from a simulation study and an investigation of wo
empirical examples. All proofs are relegated 10 8 mathematical appendix.

2. TESING FOR THE PRESENCE OF INDIVIDUAL ROOTS

Let the seasonal differencing operator 1o be defined as 8, = (1 - B®) where B is

the backshift operator and S is the seasonal sampling frequency. in the cases of annual,
biannual, quarterly and monthly data, S takes the values 1, 2, 4, and 12, respectively.
Following Box and Jenkins (1976), the seasonal differencing operator is applied 10 2
series because it is believed to render a series stationary around, potentially, somc
deterministic level. However, although this wransformation is a very natural choice, it
actually amounts 10 an assumption about the values of roots of the autoregressive
polynomial. For example:

A =1-B
A2 = A(l + B)
2
A4 =A.2(l+B)
i 2 2 2 2
A12-A4(l+B+B)(1-B+B)(I+JIB+B)(I—JSB+B).

Therefore, as is well-known, the use of A comresponds 10 the assumption of a real
autoregressive root of 15 A, corresponds 10 real roots of 115 4, contains these two real

roots plus the complex roots 44, contains the roots of A, plus four additional pairs

of complex conjugate TOOLS. These roots imply different types of behavior.
For example, the root of -1 cBnesponds 10 a component exhibiting two cycles per year
and the roots of H correspond 10 a component exhibiting four cycles per year. From
this perspective, it may be of interest to test for the presence of these individual effects.
In this section, we develop 1est procedures that allow this in the context of periodic



lime series. In the next section, we extend this 1o joint tests which allow onc,
for instance, 10 test whether seasonal differencing is appropriate.

given period and the arguments of this function. All paramelters are represented by

"lower case" greek leters and we use §l. say, 1o denote the periodic function ¥ D
s=]

where Ds' is an indicator variable which takes the value 1 if s = { mods. Similarly, §j'

st s

S
denotes I Dsl ésj‘ It will always be clear from the context whether we refer 10 the
s=]

function 5‘ or o the values it 1akes {fs; s=1,..,8).

It is most convenient 10 introduce the tests in the context of a zero mean periodic
autoregressive model and then extend the results 10 models with an intercept and time
rend. Consider the model:

Y, =j§l pj' yl_j +u. 2.1

Without loss of generality, we assume = (n - DS+sforn=1,2 .. N and
$=1,2,..,8; this gives a sample of size T=NS. To facilitate our analysis, we
impose the following condition:

C.1: {u] is a sequence of ij.d. random variables with E(ul)=0, E(uf): o and

sup, E]u‘|7< = for some y> 2.

Our inference is based on the regression models given in equations (2.2)
and (2.3). First, consider the model:

p-1
ylgal Y +j£| Bjezl,bj*un 22
where z?l =(1 - ¢B)y‘. If ¥, possesses a unit root at the zero frequency, then it has
the representation in (2.2) with a=1s=1,2.,8 and ¢=011If Y, has the root -1,



then it has the representation in (2.2) with a, =-1, s=12,..8, and ¢=-1.

Therefore, 10 test for the presence of either of these roots, one can estimate (2.2) with
¢ =c and iest whether a =¢ for ¢ = 1. These two null hypotheses can be writlen

compaclly as:

R, ... _ _
Higra = 4.5=1.2..8

for ¢ = -1 or 1; here the R superscript siands for "real” roots. The aliernative denoted
Hi:‘(ﬂ. is that at least one & # ¢.

We now wrmn to inference about the complex roots. Consider the regression
model:

) S

= i (-yl'l) + 72t Y2 + jzl ejl Zz.l-j + ul @3
where z" =(1-¢B+ B? ), Note that for notational convenience, the coefficients on
zfu and z" ¥ in equations (2.2) and (2.3) are both denoted 0 however, the values
taken by 9 are different in each case. This will not cause any ambtguny since none of
the tests exphculy depend on 8 If y, possesses the complex conjugate pair of roots
associated with (1 - ¢z + z) then it has the representation in (2.3) with 7, = ¢,
Yoy = }fors=1,2,..5 .Consequently, one can test for the presence of these roots by
estimating (2.3) with the appropriate choice of ¢in zg'l and testing if v, = ¢ Y= 1

This null hypothesis can be writien compactly as:

Ciay vy = = 1's=
Hy(@): 7, = 6. Ty = 1;5=1,2,...5

for ¢ = 0,11, 1/3. Here, the C superscript stands for *complex” roots. The aliemative,
denoted HC(¢) is that at least one 7, ¥ g orone 7, * 1 in which case the series does

not possess the roots associated with (1 - ¢z + 2 )

All our inference procedures are based on the Wald statistic for testing linear
restrictions on the parameters of a linear regression model estimated by ordinary



least squares. The generic formula for the statistic is as follows. Suppose the
regression model is:

y=XB+u
where y, u are Tx 1| vectors of observations on the dependent variable and error
respectively; X is the T x k matrix of observations on the regressors. The Wald
statistic for testing RB=ris:

W= RB - iy [ReX: Xy TRy RB -1/ (2.4)

where = (x x)1 x- yand & =yl - xx' xy! Xy /T.

Let ng) denote the Wald statistic for testing H§(¢) based on (2.2) and ler
WSC(O) denote the Wald Statistic for testing Hg(¢) based on (2.3). To present the

00 =16, (0,512 G, 1), (7212 Gy, (57272 G, my

G N S s S/2 "
hi = B 5 e - , = -1 o,
where Y] sEI 551 Gz(r) si:l (-1 Bss(r) Gs(r) szl (-1) st(s)
S/72
j(s) = 2s-1, G“(r) = ¥ (-1 Bsm), k(s) = 25. The distributions of these test statistics
s=]
are as follows:
THEOREM 2.1: Lg ¥, be generated by (2.1) and assume C.| and A.] defined in the

appendix hold, then: (i) undes HY(@), LAOP VA 81 1; (ii) under HS(9), W@ =
Ve o=l 11, 43



S
where vf = I 113 G,® a1/ IR G, o,
s=1
1 R 1 R B ,
¥5 = vrace {1 Gy, ()" 0GO) 11§ G0 Gty 011 [ Gay®) 6G(Y').
and 634(') is the (2 x 1) subvector of G(r) containing its 3rd and 4th elements.

The limiting distributions only depend on the known parameter S. Percentiles are
presented in Table 2.1 for S = 4,12.2 The table covers the case without intercept and
linear trend. The intercept case, as well as intercept plus wrend cases, are discussed

next.

In many cases, it may indeed be appropriate to include an intercept or time trend
in the model. Accordingly. consider the models:

; Pl g 29

Y= Yt M o+ jil Ojl 2t u, (2.5
. LI

Y, =& Yt Mo+ Bl(n - N2) + j.)_i‘ Ojl 2t u, (2.6)
. P2 o o9

Y, = NYed * T N +p ot j);l B, 2305 * V¢ @
N I

Y, = V) * T N +p + Bl - N2) + jil 0, 230 * V¢ 2.8

Let w‘;“w). WR (9) be the Wald sutistics for testing Hy(¢) based on (2.5
and (2.6), respectively. Likewise, let wgu(m. wg ) be the Wald statistics for testing
ng) based on (2.7) and (2.8), respectively.  The Jimiting distributions of these

statistics are as follows:

JENEE——————— e

2 All computations were pesformed using the RATS, Version 4.01, package of ESTIMA, Inc. To
calculate the critical values, we uscd 10,000 iterations. For S = 12 and N = 20, we only repont
the case of no intercept and trend since the other cases yiclded essentially similas critical values.



THEOREM 2.2: Let Yy, be generated b (2.1) assume C.1 and assumplion A.] defined
, be g y
R R
sul® 3 Vs, W o) s vE  for g = 11

(ii) under HS(g): Wgu"’) ¥, WS (9) 2 Vs, for9=0.11, 13

in the appendix hold, then: (i) under ng), w

For brevity, these limiting distributions are defined in the appendix; again, they
only depend on S and percentiles are presented in Table 2.] as noted before.

Finally, we observe tha the statistics W';(qp) are asympiotically equivalent 10 the
sum overs=1,2,.. S of the squared t-statistics for Ho: a, = ¢ from the appropriate

regression model. This provides a convenieni method of calculation from standard
regression computer output.

3. TESTING FOR SEASONAL DIFFERENCING

illustrate the structure of these joint tests, we concentrate on the case where S = 4. The
procedures easily extend 1o the case where S = 12 and this js discussed in the appendix.
Lt vy =0 +B+B 4By y = ., p. BY,e vy = -0+ By, of=

(1- B‘)yl and consider the regression model;

-3
4 p 4
L= o Vi * ot Yuu * "3 y3|-l * Y32 * ji:l ejl Z(-j U G.n

In the context of aperiodic time series, Hylleberg et al. (1990) showed that
various parameter restrictions among the x coefficients correspond to the existence of
the roots discussed in the previous section. Ghysels, Lee and Noh (1994) showed that
this procedure can be exiended 1o test for seasonal differencing. In this section, we
generalize this framework (o periodic time series.

If ¥, possesses all the roots #1, 4, then it has the Tepresentation in (3.1) with
7. =0 is5s=1213 4 This corresponds 1o the Case where seasonal differencing

yields stationari ty.
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We denote this null hypothesis by:

Aay ¢ = -
H0(4). no= 0 foralli,s=1,2, .., 4

where the A superscript stands for "all roots” and the 4 refers t0 the quarterly data. The
alternative, HA(4) is that at least one @, # 0.

A related hypothesis is whether all the "seasonal roots”™ -1, 4+ are present. 1f this
is the case, then y has the representation in (3.1) with x = 0 for i=2,3,4,

s=1,...4. Note that this representation is valid imespective of whether y, possesses

the root 1,i.€..a unit root at the zero frequency. We denote this null hypothesis by:

S, A\ _ . _
Ho(d). nis-() i=23.4,s5=12..4

where the S superscript stands for =seasonal roots”; again the aliernative is that & # 0

for at least one i > 1 and one s.

Let W, w3 with § = 4 denote the Wald statistics for testing Hj(4) and H3(@),

respectively. The limiting distributions of these statistics are derived in the appendix.
The notation for these distributions is presented in Table 3.1 and the percentiles are
given in Table 3.2. One may also wish 10 include an intercept or a ime trend in the
model and so estimate either:

a2 P34
2, = )3 T Vi * T Y32 +p ot }3 Gjl 2t u, 3.2)
i=1 j=1
or
4 _ 3 p-3 4
z, = izl Vit R Va2 T AT Bn - N2) + jzl 8,75+ v O

The presence of the deterministic terms in (3.2) and (3.3) does not alter the
arguments above, although it does change the limiting distributions. Let Wg w W;‘ T

with S=4 be the Wald statistics for testing H3(4) based on (3.2) and (3.3),
respectively. Similarly, let wgu, W3, be the Wald staistics for testing H{(4) based on

(3.2) and (3.3). The limiting distributions are summarized in Table 3.1 and described
in the appendix.



For the case where § = 12, one must modify the regression models in the fashion
shown in the appendix. The notation for these lests is analogous 1o the qQuarterly case:

H(12): A, Y, is stationary

H(S)(IZ): Y, possesses the roots of A,2 /4,

and W?z is the Wald est of H(';(IZ) based on the monthly analogs of 3.1

(equation (A.21) in the appendix), eic. The limiting distributions are summarized in
Table 3.1 and the percentiles presented in Table 3.2,

We conclude this section by noting that all the limiting distributions presented in
this section are free of nuisance parameters,

Table 3.1: Test Statistics and Their Limiting Distributions

Null hypothesis Regression model Limiting distributions
of Wald statistics
A
H{(4) 6. A
3.2) Vi
(3.3) uf:r
s .
H3(4) 3.1 v
(3.2) A ;
(a.3) Vi,
A
HO(12) (A21) v},
(A.22) "’1'2‘;1
(A23) V’x?z
s
Ho(12) (A21) v,
(A22) w,?,,
(A23) S
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4. SIMULATION EVIDENCE OF FINITE SAMPLE PROPERTIES AND
EMPIRICAL APPLICATIONS

In this final section, we report results of a Monte Carlo study of the finite sample
properties of the statistics presented in the previous 1wo sections and then two empirical
applications.

The design of the experiments was based on the following data generating
process:

2y =
Qa- n‘B)(l +B)1 - a‘B )y, =y, 4.1)

where u is iid. N(O1) and t=(n-1)4+s Notice, we focus exclusively on a

quarterly model where periodic behavior may appear at the zero and scasonal
frequencies; the values of a, are given in Table 4.1. It should be noted that a  was

selected to control both types of roots simultaneously in order to keep the number of
cases limited. A total of six test statistics were considered, three of which are
commonly used and do not explicilly exploit the periodic features in the DGP, and
three statistics introduced in sections 2 and 3. The first set of statistics includes:
(a) the Dickey-Fuller 1 statistics, denoted DF; (D) the joint test proposed by Ghysels,
Lee and Noh (1994) for the presence of unit roots at all the seasonal frequencies,
denoted GLN; and (c) the joint test for the (1 - B‘) operator proposed by Hylleberg
et al. (1990), denoted HEGY. In each case, the auxiliary regression models did not
include a trend nor seasonal dummies or a constant. The sample size selected was
20 years, or 80 observations. The second set of three statistics includes: (a) the W':(I)

statistic described in Theorem 2.1, (b) the Wi statistic, and (c) the W:‘ statistic both

appearing in section 3. Hence, the first and second set of test statistics cover similar
hypotheses regarding the presence unit roots at the zero and seasonal frequencies.

Table 4.1 reports simulation results based on 10,000 Monte Carlo simulation
using the RNDN function of the GAUSS package. The top line of Table 4.1 shows that
none of the statistics show any noticable size distortion. The nexi line in Table 4.1
stresses an interesting feature as it relates 1o a case where the product of the a.

coefficients equals one, yet with the a, differing dramatically. Let us first focus on the

first set of three statistics. First, we notice that the DF statistic has its power equal t0
its size while the two joint statistics GLN and HEGY reject the null outright.
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This first case stresses the advantage of taking periodicity into account as is done in the
second block of three statistics. Indeed, with the product of the a_ coefficients equal 10

one, the DF statistic is "iricked” by the fact that, on average across all four seasons,
there is a unit root. The GLN and HEGY statistics arc not affecied by the fact that
4 4

na=»=L instead they would be affected by for instance Tl (a‘)"2 = 1. Looking at
s=1 s=1

the three statistics togeher, DF, GLN and HEGY, one would conclude in most
circumstances that one should take a first difference of the data. Instead, the periodic
tests, W':(_l). W§ and W‘:. show good power properties in rejecting unit root behavior

at all the frequencies. The next case is also particularly interesting. The product of the
a cocfficients now equals -1, because all but one coefficient equal 1.0 and the fourth

is -1. Let us first discuss what impact this has on the data generaling process
appearing in (4.1). Since the polynomial on the lefi-hand side equals (1 - asB) (1+B)

1+ asBz). one finds for the three scasons A-B+B)(1+ Bz) while for the fourth

season, the polynomial equals (1 + B)3 (1 - B). Hence, in each of the four seasons, the

polynomial contains the (1 - B) unit root. Yet, looking at the results in Table 4.1, we

notice that the DF statistic strongly rejects the zero frequency unit root hypothesis,
4

simply because Tl a = -1 and no unit root behavior is detected on average.
s=1

1n conurast, the W‘:(l) statistic correctly identifies the zero frequency unit root while
the Wi and W’: also strongly reject the presence of unit roots at all seasonal

frequencies. The final case appearing in Table 4.1 stresses the fact that the nonperiodic
tests may be powerful, nevertheless. Here, the product of the a, coefficients equals

0.64 which is far from the unit circle yet two coefficients equal to 1.0 while the two
others equal 0.8. Comparing DF, GLN and HEGY with the periodic tests reveals that
the former group of tests is more powerful in these circumstances. Such a DGP is
probably uncommon in pracice yet it is useful here 10 point out situations where
wraditional tests are more powerful.

To conclude, we consider some empirical applications which draw upon
Osborn (1988), Osborn and Smith (1989) and Bloomfield, Hurd and Lund (1994). The
former two applied periodic models t0 economic lime series while the lauer studied
stratospheric ozone data with similar models. Using the data from the original articles,
we apply our tests as well as the three nonperiodic tests considered in the Monte Carlo
simulations. Osborn and Smith (1989) examine U.K. quarterly consumers' expenditures
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and assess the benefits that may accrue from the use of periodic models. Nondurable
consumer goods are available in a number of categories: alcoholic drink and tobacco;
clothing, footwear; and energy products. To this set of series, we also add the total of
nondurable consumption as well as disposable income and prices [the latier are siudied
in Osbomn (1988)]. Al data cover a sample from 1955:1 until 1984:2. The results
appearing in the 10p panel, covering the Quarterly data series, underline the benefits of
allowing for periodicity in testing for unit roots in seasonal data. With the GLN and
HEGY test statistics, one would accept the presence of unit roots at seasonal
frequencies in several cases. In contrast, for none of the eight series is there supporting
evidence of unit roots at seasonal frequencies according 10 the Wf and Wﬁ statistics.

For the zero frequency unit root, the results are more mixed, often finding agreement
between the DF and W?(l) statistics.

Table 4.2: Empirical Results of Tests for Unit Roots in Periodic Time Series

Data DF GIN  HEGY W wg we

UK. Income 3.76°~ 14.28 14.09*~ 18.69°** 83.02° 100.63*+
UK. Nondusbles 268+ 029 709 2033 4050 5075
Prices 165 2388 jgages BA8 19533 199360
Food 334 2500 ggges 1806% 5054 6477+
Alcobol 33 027 3q3e 1190 49356 63260
Footwear 219 1% g 1973% 6277 720p%s
Clothing 285 01 247 863 4298 5546n
Energy AT S0 10060 631 347" eq60e

=
Arosa Stratospheric
Ozone Data 5.81% 31.81° 3193+ 20.06 985.88**  1007.4**

Notes: For description  test statistics, see Table 4.1, The quarterly daa are taken from
Osbom (1988) and Osbom and Smith (1989). The monthly data are from Bloomfield,
Hurd and Lung (1994).

Stratospheric ozone data from Arosa, Switzerland. Bloomfield, Hurd and Lund show
that the correlation Structure of such data displays strong periodic features and suggests
an ARMA model with periodically varying coefficients 10 fit the data. According (o
the results appearing in Table 4.2, we find one significant difference between the left
and right panels, respectively, covering tests based on nonperiodic and periodic models,
Indeed, we find thag the zero frequency unit root hypothesis cannot be rejected with the
W?(l) test. This appears 10 contradict the evidence based on a standard DF test, -



APPENDIX A

We first present some useful notations and results which will be used below 10
develop the asymptotic distribution theory for the statistics proposed in the text.

Define:

n S
wn;z‘ Zleu(s) fork=1,23.4, (A1)
1=1] S§=

where
B PRt
€4S = U5y see 2T D Vaon sue
= <1 l i -
e3i(8) = siny 1G-1DS+5s] UG-1) S+s and

) P
€,,(8) = cosy {G-1)S+5s] Y1) Ses°

Note that (A.1) implies that:
gs ES .

w, = u, W, = -

in =1 t 2n =1 1

nsS x nS z
Wi = ‘Zl sin(zt) v, and w, = lzl cos(z-() u.

Note also that:

n
W, =W +v, = L V¥ (A2)

S
where v, = 1 em(s).
s=1

Let Ulm denote S x 1 vectors such that:

U, = te (D €, 2 - O fork=1,2,3,4 (A3)




From Phillips and Durlauf (1986, Theorem 2.1), we have:

an 'N']
N ) n " IB (D =oW(@) (A4.])
nel

where B (r) & W(r) is an S-dimensional standard Brownian motion with s " element W (r)
Similarly, we can show that:

an 1N
N nzl UznqoBz(r) (A4.2)

where 82(r) is an S-dimensional standard Brownian motion with st element st(r) =(-1)

Ws(r) fors=1, .., 8.

Noting that:
c3n(s)=0 forS=2k+2andk =0,1,..

€,.(8) = Un-l)ses fOrs=4k+1]

€, =(-1) Yn-1)54s fOrs=4k+3

it can be shown that N'm I U -0 BB(r), where
n_

B,(n) = w,m,0, - W,10,0,..]. (A.4.3)
an [Nr]
From the definition of e 4n(8): We can similarly show that N I U w~ OB 4(D), where
n=]

Bd(t) = [0, - Wz(r). 0. Wd(f). . (A.4.9)
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Using (A.2), we have:

N
v, =1 L U

3
W, =
- kn n=1

KN

1 kn

where 1 is an S-dimensional vector of ones. From the relations in (A.4), it follows that:

an INA)
N n?—:-l an"aGk(') (A.5)

S
where Gk(r) = 1 Bkj(r). Note here that from the relations (A.4.1)-(A.4.4), we have
=1

S S ; $12 S/2
Gm= ¥ W Gm= I -D'W(), G,(N= T DWW, (1), and G n=1
1 j=1 j 2 i1 j k! j=1 2j-1 4 j=1
- sz")- ‘

Finally, let y (k = 1,2,3) denote the time series Processes generated by the

following equations:

- p-l l
V1=V ? jzl elj it (a6.)
p—l -1
Yo = Yo * j)=:l Ou 25N (A.6.2)
. P2e 0
Y3 = Va2t j)=:l O‘j L tu, (A.6.3)

The processes 1& are defined following equations (2.2) and (2.3) for k=1 and

k = 2, respeclively. Furthermore, we shall assume the following:
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Assumption A.1: The 7.?' processes have an infinite order moving average representation
CBlu = £ C. u ., where ) iC.| <o, (A7)
{ LI 8} l=0 1

i=0

The following relations are usefy) in deriving the asymptotic distribution of the tes
statistics in Theorem 2.1,

Lemma A.l: AST ~ « (and thus N 4 «), we have:

T
() N23% Dyl ~CoR G mar (A81)
=1 -] 01

T
-2 2 2 1 2
N l):l Dy ¥yt~ C-12 & ) Gy (A8.2)

T
-2 2 . 12 2 (1 2
N lgl Dsl y3.t-l-i - lsm§ (s - Q] 02 ICR IO G-t(’) dr
+C 1y Gy ar - oo ) Gy dr + feosF (s - ) o [C2 I G0 ar

+clyl G, dr+ . € I(’) Gy G dr]  fori=0,1 (A8.3)

T
2 s 22 (a2
N 151 Dy Y301 Y30+ 1 (€ - €D J5 Gy G ytr) ar

+CpC, I G407 - G, an) (A.8.4)

T
i N L DYy =CaliGmas, (A9.1)
I= ’

T
-1 ]
N lzl D=y, ) u-C-o Io G,(r) dB, (1) (A.92)
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T
-1 n 1 i
N l); | D (-Yy,.) Y, = C08(39) O ICg 5N 4B, )+ C, [ G40 4B (1)

- ssn(g $) 01C, f! 5 Gyt dBy () - C, K o Gyt 4B, (0] (A.9.3)

T
. . X 1 1
N lzl Ds‘(-ya‘l’z) u - sm(i s)o lCR Io Gs(r) dBas(r) + C' ]0 Gd(r) ch(r)]
- cosE 5) 01C, I Gytn) B (1) - 1 Gyn) 9B, (0] (A9.4)
where Co and C,, respectively, denote the real and imaginary pan of C(i).

Prooj

(i) When z‘“= Y~ Yiad has a moving average representation as in (A7), we can

show that jsee, e.g., Lee (1992, p. 34)]
1 - {
Yy = ): Cijl v i C, ): ul-1TC I vy (A.10.1)
=0 j=1 20 'j=-is )} li=0 Tj=t-in !
Using (A.1), it follows that:
27 2 2
N° 1 Doyl -C(I)N')LD )Iu
=1 =1}
.2 N
+o(l)-C(l) 2 *0(1)

The relation (A.8.1) now follows from (A.S) and the continuous mapping theorem.
Using similar arguments, it can be shown that:
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g . { ; .
(-Dy,, = [izl (-1 ci} LEI -1y uJ [Eo( 1 C, Z (-JYujI

J—~1~H

t R .
[Z -0 C I (-lyuj}. (A.10.2)

i=0 'j=t-iel

From (A.1) fork = 2, we can show that:
2
T T t-1 .
-2 2 o a2 B
N |£| Dyyy . =C-n'N li:l D"LEI( 1y ujJ +o,(1)

N
=C-12N2 5 W2
=]

n 2n-1 *Op”)'

Using (A.5) for k = 2, the relation (A.8.2) can be obtained. When z =(1+ B ) y3
has & moving average representation Z = C(B)u‘ we can rewrite Yy, 88 (sec Lee (1992,

p. 34)]

¥3,= Cy IC, sin§) - Scos(Fo) - C,ICsin() + Ssin(30] + oprr'”) (A.’ 10.3)
L -
where C =j.-2:l cos(x j) u and SI =j£l sin(x j) u.

Using (A.10.3), we can write:

T T
-2 2 _ 2 20:2 X2 2 a3 22 os® 12
N“ 1 Ds' Y3 =N l‘:\:l Dﬂ(CR(C‘(sm? ¢+ Sl cos(y )]+ C'l | Cos(z 1)

=1
+8Zsind 03 4 ¢ CIC, S(cosF 7 - € ssinZ 12)) 4 o )
t 2 R ™1 %y 2 (I 2 P

G AN i G 66

\+ICOS(§S)]2N2 2 IC; §H+C2w »t Cr G w3'“w4'"]+op(l).



24

Using (A1) and (A.5) for k = 3.4, the relation (A.8.3) can be obtained fori= 1. A

similar expression can be derived for N'2 ) Ds‘ yil > which leads to the result in (AB.4).
=1 =

Similarly, we can write:

-

Dst y3.|~l y3,|.2

z»
»~
e

=nN? { D |Q2IS C (cos¥ l)2 - C S (sin} 1)2]
1 - =1 RV el 3 a2

-

+Clis, €, (sing 02 - €S, (cos§ 0]+ Cy C|IC, C, (sin§ 07 - S, s, (cos3 V)
+C, €, IC, C,(c057 o? - .S, ,(sing 0] + 0 (1)-
When S is an even number, the above expression reduces 10:
-2 T 2 2
N ‘El D IC, S, C. G C S+ Cr C/(C, C.,- S, S

Combining (A.1) and (A.5), the relation (A.8.4) follows from the continuous
mapping theorem. The same argument applies 10 the case when S is an odd number. Note

that while N'2 X Dsl Y31 Y312 converges 10 a nondegeneraic asympiotic distribution
1 IREAYS

in (A.8.4), the 1wo scries ¥y and Vg, B asymptotically uncorrelated in the sensc that

S 2 T

TINL

s=1 t=

distribution (A.11.3) below.

| D Y3 ya_‘.zl = op(1). This property is useful in deriving the asympiotic

(i)  Using (A.1) and (A.10), we obtain:

N! 1 ¥

IEI Dslyh.l ul=C(l)N nzl wl.n-\ el,n(s) * Op“)

N! -{ D (-y. u)=N' { DDy, (-D'wu
= o YW= =1 Yau1 i

N
_ _ -1
=C(-)N nii W) ol eln(s) + op(l)
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N! '{ D_(-y u)=N"! Ig D_(-C_ (C sin‘hi)-s cosg-(l—i)]
=1 8 3l n=] R " T( -i

+ Cl IC'_i cosg(t -i)+ Sl_i sing(! - )]} v+ op(l)A

Noting that u = (- 1)""),2 cos(%r 1) u+ (‘I)"'zy2 sin(gi) u. we can write:
N! { D (- y=N! ;:r D (- Cu C., +C,'S ) fcosZ? u (- 1)+ D72
=] al Y32 = =1 sl” R "t 1 %1 7t 1

* Cr Sy + € €, fsind 02 u (-1*D2) 0,(1).

A similar expression can be derived for N'! }: D (- Y3, Y9)- Combining (A.))

and (A. 5) the relations (A.9) can be obtained by using the continuous mapping theorem.
Proof of Theorem 2.1.
(i) Using standard arguments, it can be shown that:
]
S . T
wh) = L @,- 01 [Il D, X, x;J
s= 1=

S

T 2 T
2
Elheonf el o) o

For the zero frequency case where the null hypothesis is that HR( 1): a =1 for all
$= - S, the relations (A 8. 1) and (A.9.1) can be used 10 derive

s
Vi = L 56,0 4B, 01111} 6,07 an, (A1L1)
s= .
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Similarly, for testing H'(;(-I): o = _1 for all s, the relations (A.8.2) and (A.9.2) can be

used to show:

s
PARIE zl (/2 G, ma]2 1y Gz(r)2 dr). (A11.2)
=

Noting that G (r) and G (t) are independent and B (r) =(-1 B (r), it follows that
q}l(l) and wR( 1) have the same distribution denoted u)( Thus, we can use the same

critical values when we are interested in testing for real unit roots, either - 1 or L.

(ii) To prove Wg(s) for complex unit roots, we first consider the test statistics under
HCO(O): Y= 0, Yoo = 1 for alt s=1,..,S. In this case, the Wald statistic can be

writien as:

o Yo T ! s onm
CO= I Gty D{| L DX X (o T - V!
s=1 =1 12,12

= D (y ,u.,y u) D X, X,
- - sl 2 e - i a1
s=1 L= =1 12,1:2

T ) 2
(El Dsl (yl-l Y Y2 ul) fo+ op(])

0

o _ 0
where x}t =Yy Y T Z21p42

).
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Dll‘yl-l “l' y|-2 u.)

=1r ) thfyt-l Y Y2 u() [

T -1

l-—)zl Dl ® (yl-l y1-2)‘("1-1 y«~2)} x
1 DSl‘yl-l ul’ y|~2 ul)

Dll(yl-l Y yl-? u‘) '

ID,(y  u, u)
2|.y«-l |y|‘2 1 *OP“)

1 DSl(yM Y yl-2 ul)

where Dl = diag(D“. D2|' DSa)'

Using the relations (A.8.3) - (A.8.4) and (A.9.3) - (A.9.4), we can show that:
C ] 1 -1 ¢l . .
W0 ~ur( ) aw G5, G 1, (G, G 13 (G, G,y aw) (A.11.3)

where W(r) is as defined in (A.4.1). The derivation is tedious as the limiting distributions
in (A.8.3) - (A.8.4) and (A.9.3) - (A.9.4) depend on the value of S. In the simple case,
when CR =1 and Cl =0, ie, (I + Bz) Y, =u: however, the relation (A.11.3) can be

obtained by straightforward application of the results in Lemma A.1 and the continuous
mapping theorem.

s12 s
Noting that Gn= I (- Wy N and G, = 3 (—1)’w2.(r), it is convenient
j=1 i i=1 !
10 rewrite (A.1].3) as:
C, 1 Vil -1 1 .
W0~ W5 utf w6y 6, Uy Gy G 1" 1, G, @GY) (A.12)

where G(r) is an S-dimensional standard Brownian motion, the first four elements of

which are G = [(JS)" G, G, a5y G, VI8! G 4] ' and Gy (D isa 2x 1

vector with the third and fourth elements of G(r).3

3 G can be obtained from W(r) by multiplying an orthogonal mauix. Its first four columns are:
(.,5)“(1. N A T V25, 0,41, . oy ang VB . 0, .
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Next, we show that the hmmng distributions for testing the unit roots associated
with the polynomial (1 + ¢B + B? y do not depend on the value of ¢ = 2cos0. When the
hypothesis of inierest in the regression model (2.3) is given by H¢ (¢) Y =0 = } for

all s = 1, ..., S, it can be shown that testing H0(¢) in (2.3) is equivalent to testing whether
Y= 0and v = 1 hold in the regression:

N5
Y=Y BV jzl 2ETRAN

where y; | = sinfy S Yia Vo 2cos8y, | and ,_¢ =(1+¢B+ Bz) Yy Notice first
that when 6 = j the above regression model reduces 10 (2.3) and, hence, that the hypothesis
Hg‘: Ns =0, 7 =1 reduces in this case 0 H (0) 7)5-0 Y = 1 In general, the
hypothesis H + in the above regression can be shown o be equivalent 1o 7, = y;s =1 and

=N, sinf + )35(2(,058) = 2cosf = ¢.
Now, consider:

C S A A ‘l A A . 32
Wo@) = I (YT~ 2 D, Xp Xpn (g~ 0 Ty~ U/
s=1 1212

A A

(l y;s-l)“):D X' 43\] ‘1212( ls"ris»l)‘,o2

"
f 1

v,

|

S ([T T . -1
= 1|1 D Ot e Yiah ‘ElDﬂ(y:J‘ Vi) 0| X

s=1]|1=1

{2 D (y'l ‘ylzu)]lozu)(l)
1=

=(- _ ¢ ¢ . = (- _ ¢ ¢ .
where X o, CYep Y B2 2 g2 and x;‘_( Vi Vi 12.l~l"“'z2.l-p+2)'
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Using the relations:

N! { D (-y* u)=sing N} ;:r D (-y  u)
=] o Y (e =1 ® Y t

N! g D (-y*_ u)=N! { D (-y _u)- 2cos6 N} { D (-y .u)
=1 s:( Y= = MAH o s Yay

t

T
N?y

T
2 _ 2. 2
L D, TYy L, =sin‘ON él D“ Yia

T T
1 2 _ 2 2 2,2 2
N E D Yi, =N x‘=‘:l D“y“2+4cos ON li_’ Dsly(-l

it can be shown that:

T T Trr .
le Dn(y:-l ul' y:-z u() 'tzl Ds«(y:-l' "7-2’ (y:-l' ":-2) IEI Ds((yM ul' y|~2 l)
T T Trr .
= .El Ds‘(y“ U y|~2 UI) IEI Du(yc-l‘yu-Z) (ya-l' yl~2) IEI Dm(yu ux' y|~2 ul) :

Therefore, we have:
C _ 1 vl . Y .
W@ = ¥ = (]} 4G G} Gy, Gy [ G, 4G},
which is independent of the value of ¢.

To prove Theorem 2.2, we will use the results jn the following lemma.

Lemma A2, AST - = (and hence N - =), we have:
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@ N'm{ D u~aB (D (A13.D)
! =1 slul 1s R
N2 { D (-1'u 0B, (1) (A.13.2)
=1 st [ 2s s
N'm{ p sin(u - aB, (1) (A.133)
=1 st T i 3s o
N"”{ D cos(Eyu = 6B, (1) (A.13.4)
1=1 st 7‘ ] 4s e
(i) N‘3’2§ D ~CcyellG@d (A14.1)
! =1 s(yl.l-l 01 ‘ N
-312 T 3 1
N ZIDS‘(WI..])-‘(—I) Ci-1) o f G, dr (A142)
1= ”

N"”{ D (-y,. ) ~cos(3s) ol 1 G.mdr+C I G0 d
e Y3 ) 088 Cp Jg Gatn) dr + € 1y G (0 €1

- sin39) 0 (Cy § (‘) G dr-C J (') Gy dr) (A.14.3)

T
an . x . .
N tEl Dy(-¥3,9) +sing®) o1 Jp Gy dr + € INSOLY

- cos(3s) o [Cy | )G, m - C 1} 6,0 d) (A.14.4)
(iii) N‘5’2{ D n ~CcyollrGmadr (A15.1)
R Yia of Ul s
-512 T s 1
N32 L D n(y )= C() o yrG,mndr (A15.2)

=1
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T
(ivy N2 ):‘ D, nu~olB, (1) - I B, (1) dr) (A.16.1)
=

T
-3 t
N 151 Ds‘ -1 u‘-oo(st(l)-

Proof.

Iy B0 dr) (A.16.2)

i) The relations in (A. 13) follow immediately from (A.1) and (A.4).

(if) Using (A.1) and (A.10), it can be shown that:

T T
-3n _ -312
N Zl Dy, =CHN?

N
_ -3n
=C()N nzl Yol +op(l).

-1
] DNLEI uj) + op(l)

(n-1)S+s
To show (A, 14.2), define w, n-l(s) =(-1)® .}: -1y uj. Then, we have:

j=1

S .
=(-1NS -
%2018 = (-1 Y201 +j£l -y u(n-l)Sd'J'

Thus, we obtain-

T
N |§1 Dy ) =C-DN

’ N
=C-HN? 3 ¢
n=]

N
=C(-1) N ¥ zl(

n=

The relations (A.14.3) and (A.14.4
continuous mapping theorem. That is,

T -1 .
n R R
, :51 D, ( I)LE,( lfuj}mpu)
Dty * 0D

s
~1) w2.n~l + op(l).

) can similarly be obtained from (A.10.3) and the
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T N
- 2 i
i ‘E‘ PulFa) |7V N nil(cn Wan ™ Gy W) ¥ gl fors odd

N
= (—l)s’2 N’y2 1 (CR Wan~ Cl w, n) + op(l), for s even
n=l . X

T N
-3 NG ANz R
N tzl Ds'(-yl‘_z) =(-1) N nEIiCR Wan Cl w4_n) + op(l). for s odd

4

N
= (-l)(sm'2 N’3'2 1 (CR W C' W, l‘) + op(l), for s even.
n=1 * ’

(ili) Using similar arguments, oné can show that:

T N
.52 _ 3n n
N2 L D ny, = CON RS (R) 11 % 00

T N
-512 s n n
N ‘E‘ D n(-y, )= - CHN nzl [N} Woart op(!).

The relations in (A.15) follow from (A.2), (A.4) and Phillips and Perron (1988).

Similar expressions can be obtained for y, . which are suppressed here, as they are not

explicitly used in the proof of Theorem 2.2.

(iv)  Similarly, onc can also show that
T N
-in i nl. . Y
N1 D e =N L (8] s1a0 1B - Jo Byt 90

The other result given in the lemma follows by similar arguments.

Proof of Theorem 2.2.

(i)  We follow the steps of the proof of Theorem 2.1. It can be shown that for ¢ = 1:
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R S [T _ 12 2T Yy
Wsy(fk):sz,l 151 Doy =¥ - ) 1 l;’ll Dy - %) *+o,(1)
(A17)

T _ T
Z] Ds‘yl.',us=N' ID u.

where y = N}
s t =1

Using standard arguments, it is easy 1o rewrite (A.17) as:
S T T T
R I _In32 n
Wsu®= 1 “N LDy, [” 1D, Y...] 1“’ .z, Py “.”

= t=

2 T T 241
2 -3
[N lz] DS( y'_l - [N li:] DS( yHJ } } + Op(l) (A.18)

Combining the resuls in Lemmas A.l ang A2, ie, (AS81), (A9.1),
(A.13.]), (A.14.1), we obtain the formula for v)sluw):

s
CE ):l(l(‘, G0 4B, - 16w ar B, 1)/ g Gye ar - ) G, dry?).
S=

(A.19.1)
As for WSRu(¢') with ¢ = -1, we can use similar arguments 10 obtain:
S T T T
R -1 . kJy] 1173
Wo-D= Y IN ID -y u-|N L D (-y )| IN I Do
Su s:l[ =] % “t1 =1 & ¢l =1 St

T T 2.1
2f 2 2 n
o [N IEI Dyyi, - [N’ |£1 Dn(-y“)J } *+o,(M).

T T
Noting that N2 § p y = (1) NI2 1 D (-Du, the formula for Y& can
=] 1t =] t Su

then be obtained as:

: S
_ 1 i 2,01 2 1 2
V);“(-l) = s;‘:'llo G,nd B, (1) - !o G,(r) dr B, (1)) IHO G,yn” dr - (Io G,(1) dr)?})

(A.19.2)
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As for Wgu(cp), we use arguments similar 10 (A.18) where y . ¥, and v, in the

Wald statistic need 10 be replaced by their "demeaned” counterparts, ie., (yH - il s).

(y‘_2 - i_u) and (ul - Gs). respectively. The results in Lemma A.1 and A.2 can be used 10
obtain:
C _ ] o . 3 \
W, = ¥, =111 96 Fyll} Fag Fag) ' Jg Pz 907 (A193)

1 . . o . C e - .
where F34(r) = Gy(r) - ]0 G34(r) dris a 2-dimensional Brownian motion, which is the

demeancd counterpan of G3 4(r).

(i)  As for the test statistics for the regression models with an intercept and a linear time
wend, we can show, for instance, that [see, €.2., Phillips and Perron (1998)]

s
R 4 o A2 M0
WSTW'sE]M*(aS 19?1 AINPNE - 1) /121 + 0, (1)

where
~ 4 T T
a - 1 .-_Ms IN(N + 1)/2] ‘E‘Ds‘nybI ‘E‘Ds‘ u,

T T

- [N(N + DN + 1)/6] l)=:l DY, ‘)i‘ D u,

T T T T
_ lei D "y, lElelrnx‘+[N(N<r 1/2) l);leyl_l ‘);‘le‘nu‘

+ INPQN2 - 1n12) { D +o (1)
=1 s!yl-l ul P
M—[N2(N2—l)l12]’)":D 2 -N’)[.Dn ’
s =1 s Vi1 =1 o Y

T T T 2
+N(N+1) IIDunyH )',IDsy‘_‘-[N(N+I)(2N+l)I6] zl DY,
1= i= 1=
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Combining the results for Y11 in Lemmas A.1 and A.2, we obuain:
WR (R L] Al/p (A.20.1)
Sz“ " ¥se = s ’
s=]
where
- I _ 1
A =6B, (1) [ 1G(Ndr-4 B} G, dr

- 1208, (1) - [} B, @) grG () dr - 1’, [5G, ar + I3 G, dB, (1),

D=/} G, dr- 12 Ugs G,mdr+ 12 N Gydr [} G, (1) dr

- 410y G, () dry?

The same formula can be obtained for ng('” except that G](r) and Bh(r) should

be replaced by Gz(r) and Bh(r). As mentioned in the proof of Theorem 2.1, W‘:t( 1) and
W§1( -1) have the same distribution, and the same critical values can be used 1o test for
real unit roots 1. As for the limiting distribution of Wgr(tp). it should be noted first that
A, and D in (A.20.1) can be rewritten as:

A= )G} 0B, () and D = g G0% ar
where G;(r) is a "detrended” Brownian motion such that
Ci0=6,0-41li6,wa-3 16 was 6l Gy a1 - 24! (G, an,
Using similar arguments to the derivation of w‘s:p in (A.19.3), it can be shown that:

Vi, = u() 4G Hy 1) Hy HyJ! fo Hy, 0G') (A.20.2)
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where

Hyy(n) = Gy - 4 (1) Gy 0t - 3 101G, a0 + 6r1J)) Gog) 1 - 21116, ail

Using analogous arguments to the proof of Theorem 2.1, it follows that for any
arbitrary choice of ¢ such that |¢| <2

C C
We u(:p) = Vs
C
W9~ Vgt
Proof of Theorem 3.1

As in the proof of Theorem 2.1, one can show that.

-1
WA S A A A A T D x x' ) A A A R (AJ}
4 z‘(ﬂls’ T Mage xds) lzl st4t T M 1404 (xls' Ay Tygr “45) !

s=
S IT T i

= sil LEI Ds((yl.l-l Y Yo Up Y31 Y Y302 ul)] lel sz )(4‘ X"“] ]!:4.!:4
T : !

LEI Dst (yl.t.l Y y’LH e y3.«~l U y3.1-2 “l] * op“)‘

Moreover, according to the proof of Lemma A.l‘, it follows that:

T
-2 S 1
N ‘Eloyyu_l(-ym)w-l) cyc-1 & [5G0 G, dr

N2{ D - ) s - i) C() O
=1 slyl,l'l y3.|-I~i -cosl2(s—|)] M x

)G, Gy dr+ Gy 16,mGmd

- sin{%s + D) C(1) F1C, 166,00 G n dr - € 1 G, Gy o]
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T
N2 z] Dy Yppt Yapps = -1 cos| (s ~ 1)) C(-1) o x
& 13,

Ic, | (') Gy Gy ar + ¢, | G, (1) G, (1) dr]

i}
|
;i

T CW7sinis - 01 €1 (¢, 12 Gy G ey ar - €, 5 Gyt Gytry an)

T
Note that while N2 Y_ D yu c@i=1,2,3 k%)) have a nondegenerating

asymptotic distribution for each season, they are uncorrelated asymptotically so thai:

T2 {
YHY

S[ ,T
St LN I DLy, oy o,

Using this property, it can be shown that:

T
:Z’x D"(yl“ ul'yz.t-l e y3.l-l Uy y3.1.2 "l)
A _ . :
w 4= : X
T
:Ex D"'(y""' e Y201 Ve Yau Yy Y3029

T -1
[‘El Pal¥ipr Var Yoy Yot i Y Yoy )'3.1-2)] X

T v
lzl Dh(yl.H Ypr oo Y301 ul)

1 P 0, (1).
T
li:l D«(yl.:.l U e ”3..‘2 u‘)

The relations in Lemmas A.1 and A2 can then be used 10 obtain:

A I it a1l 3
Werutlyaw e () G g [3G aw)
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where G(r) is 8 4 -dimensional standard Brownian motion such that G = (1/2 G,. 1 G,Z.

12 Gy, 121G, Then as in (A.12), the above expression can be rewritten as:
A _ 1 o) b [l ,
wA v/} = ulf @0 G 1], G 6] J§ G (4GY1.

Note that the Wald statistic WA for the hypothesis that x, = %, = Ky = My = 0 for

all s= 1, .., 4 has the same asymptotic distribution as the Johanson‘s test statistic for
cointegration with (n - 1) = 4. See Table 1in Johanson (1988, p. 239).

As for the Wald statistic Wi, we can first show that.

-1
S A A A A A A
=1 ( 1 D X X! (n, X, X Y1
j=1 s M3 As ll 474 24.2:4 2s “3s 4s

s A
=s§l‘§ D, (¥a 1 Y Yau1 Ve V302" |]“2 D Xux«} L-‘.N

1 ?
‘E‘ Ds((yz.x.l Yy y3.l-l Yy y3.|-2 ul) I * op“)'

Then, it can be shown that:

WS < u[3(@W) Gy, g Oye Cndl V1§ GyaaldW))
where 0234(") = (112 Gz(r). 12 Gs(r). WIG 4(r))'. By multiplying an orthogonal matrix
10 W (see footnote 1 for details), we can show that:

s T -t . ,
w4ﬂ,§-u(lo(ac)emliocmcml 1]} G0

As for the test statistics for the regression models which contain deterministic lerms
(intercept and time wend), we can use developments similar to the proof of Theorem 22

except that the Brownian motion process G(r) needs 10 be replaced by its *demeaned” and
"detrended” versions, respectively. That is,
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WV, = utllae F Uy FFT' J! Faay)
..ufjr uf,(dG) 1 UgHHT! f3 HWGy)

where

F(r) = G(r) - l‘; G(r) dr

and

H = Fa) - 126 - ) la- %) F(1) du.

It should be noted that W:\u has the same asymptotic distribution as the LR statistic
for cointegration in Johanson and Juseljug (1990, Table A. 2), and that W has the same

distribution as TR1In - 1) statistic in Perron and Campbell (1993, P-787) with(n - 1) =
Similar expressions can be obtained for Wf” and Wf'. namely:
Wi~ Vi = ut a0y Frsa U Py Fyagl 1} F234(007)
Wi Vi, = el [aG) Hose g Hyg 1 11 1 H,,,(dG)').

To conclude, we urn our atiention 1o the monthly regression models. To do $0,
first, we define an appropriate set of filtered series:

y"=(l+B+Bz+Ba+B4+Bs+BG+B7+ Bs+Bg+Bm+B“)x.,
= -1 —B+Bz-83+B4-Bs+B°-B7+Bs-89+B’°-B”)xl.

Y3 =-(B-B34pB5_p7,p9_ B“)x'.

Yau=-0-B24pB*_ b, g8 _ B"’)x!.
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y5'=—%(l-»B-2Bz*B3+B4-285+B°+B7-288+B9+Bl0—28”)x‘,

ya:’%(l -B+B3—B4+B6—B7+B9-Bm)x‘,

y7‘=%(1 -B-282-83+B‘+2BS+B°-B’-23“—B9+B‘°+2B”)xl.

y8l=3%(l+B—B3—B4+B(’+B7-Bg—Blo)x‘.

Y9|=’%(\B'B+B3-ﬂ‘34+235'JxBé*Bv'Bg*ﬁBm‘zB“)x.'
Y100 = 30 -,/§B+232»\EB3+B“-B°+JSB7—2BS+J589— B'O)x,,
ymz%(ﬁ+B—B3-J§B4—2Bf’—JZBG—B7+89+J§B'°+2B“)X|.
ym=‘§(l+J3B+282+vﬂB3+B4-Bb-J337'238-vijg‘Bw)",-

1:2 = -8B,

Regressions similar to (3.1) through (3.3), can then be defined as:

12 p-3
12 _ 12 .
2= ii] R Vi * jEl Gj‘ 2. + 1 (A2))
12 p-3
12 _ 12
z = iil R Y YA jil 9;1 2 + 1, ) (A22)
12 p-3
12 _ 12
2= izl T Y Y ﬁ‘(n - NR2) + jil Oj‘z‘_j-r H, ) (A.23)

The hypotheses of interest, test statistics and distributions drawn from these regressions
appear in Table 3.1. The hypotheses H8(12) and Hg(n) are analogous 0 the quarterly

HA(4) and H3(@) appearing in the main body of the text.
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