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SOMMAIRE

L’objectif principal de mémoire est la modélisation des données temporelles non
stationnaires. Bien que les modèles statistiques classiques tentent de corriger les
données non stationnaires en différenciant et en ajustant pour la tendance, je
tente de créer des grappes localisées de données de séries temporelles station-
naires grâce à l’algorithme du « self-organizing map ». Bien que de nombreuses
techniques aient été développées pour les séries chronologiques à l’aide du « self-
organizing map », je tente de construire un cadre mathématique qui justifie son
utilisation dans la prévision des séries chronologiques financières. De plus, je
compare les méthodes de prévision existantes à l’aide du SOM avec celles pour
lesquelles un cadre mathématique a été développé et qui n’ont pas été appliquées
dans un contexte de prévision. Je compare ces méthodes avec la méthode ARIMA
bien connue pour la prévision des séries chronologiques. Le deuxième objectif de
mémoire est de démontrer la capacité du « self-organizing map » à regrouper
des données vectorielles, puisqu’elle a été développée à l’origine comme un réseau
neuronal avec l’objectif de regroupement. Plus précisément, je démontrerai ses
capacités de regroupement sur les données du « limit order book » et présenterai
diverses méthodes de visualisation de ses sorties.

Mots Clés: Self-Organizing Map, Limit Order Book, Réseau Neuronal, Anal-
yse en Composantes Principales, Classification Hiérarchique, Stationnarité, Prévi-
sions
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SUMMARY

The main objective of this Master’s thesis is in the modelling of non-stationary
time series data. While classical statistical models attempt to correct non-
stationary data through differencing and de-trending, I attempt to create localized
clusters of stationary time series data through the use of the self-organizing map
algorithm. While numerous techniques have been developed that model time
series using the self-organizing map, I attempt to build a mathematical frame-
work that justifies its use in the forecasting of financial times series. Additionally,
I compare existing forecasting methods using the SOM with those for which a
framework has been developed and which have not been applied in a forecasting
context. I then compare these methods with the well known ARIMA method
of time series forecasting. The second objective of this thesis is to demonstrate
the self-organizing map’s ability to cluster data vectors as it was originally devel-
oped as a neural network approach to clustering. Specifically I will demonstrate
its clustering abilities on limit order book data and present various visualization
methods of its output.

Keywords: Self-Organizing Map, Limit Order Book, Neural Network, Prin-
cipal Component Analysis, Hierarchical Clustering, Stationarity, Forecasting
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INTRODUCTION

Since the creation of the stock exchange, experts from a wide variety of fields
have been implementing methods to increase investment returns. When it comes
to making predictions in the stock market there are two broad approaches to
achieving this, fundamental and technical analysis. Fundamental analysis refers
to the method of analyzing the performance of the companies underlying each
stock through the use of various metrics. Technical analysis, on the other hand,
involves the use of historical data to build models that are able to capture pat-
terns and trends. My study will involve the use of technical analysis to build
models that can be used by experts to engineer portfolios of financial products
that provide a guaranteed profit through the continuous implementation of said
models, a concept known as statistical arbitrage.

Classically, the modeling of financial time series has been done based on the
assumption of an arbitrage free market through the use of geometric Brownian
motion models with estimated drift and volatility components. However, when
it comes to short term market movements it has become quite evident that due
to exogenous causes created by human involvement in the market, a single dif-
ferential equation is not quite accurate in modeling the movement of financial
time series. Additionally, even in the long term, it has been observed that finan-
cial markets can follow different behaviors over time due to such causes such as
overreaction and mean reversion. This issue can be explained by the fact that
financial time series are non-stationary, meaning their mean, variance and auto-
correlations are not constant through time.

Methods for modeling non-stationary times series generally rely on models
that use a rolling window based on past observations of the series to build fore-
casts. Such models base themselves on specific assumptions on the statistical
distribution of the error terms to model parameters. An example outside the
scope of my study would be the use of factor models and principal component



analysis incorporated into regression models (Avellaneda and Lee, 2008.) In my
study, I will be using the ARIMA model for comparative purposes, which is a
model for non-stationary time series in which the value of a series at any given
point in time is a function of its values in a specified preceding window. The
ARIMA model manages to model non-stationary time series by applying a dif-
ferencing operator to the series at each point in time. In addition to relaxing the
assumption of stationarity, the advantage of moving away from geometric Brow-
nian motion models is that the assumption of arbitrage free markets can be let
go and forecasting models that create arbitrage opportunities can be developed.

The methods to model non-stationary time series that I plan to address in-
volve the use of models that learn from data and adapt to grow and change when
exposed to new data sets, so-called machine learning algorithms. Machine learn-
ing algorithms differ from classical approaches in that the models do not need
to be explicitly programmed and are thus significantly more robust than classi-
cal methods. Specifically, I will be implementing neural networks, which are a
branch of machine learning algorithms in which a set of interconnected neurons
is used to visualize data as well as extract inferences, similar to a human brain.
Now, machine learning algorithms in general can be divided into supervised and
unsupervised variants. The supervised variant is meant to extract input-output
relationships from data. By identifying a set of input (independent) variables
and output (dependent) variables, the algorithm is meant to extract a relation-
ship between the two. Once this relationship is defined it can be applied on a
separate data set in order to draw relevant conclusions. Unsupervised machine
learning algorithms, on the other hand, have no explicit input or output variables
defined but are rather techniques for classifying large data sets in order to im-
prove interpretability.

The purpose of using neural networks in my study will be to model financial
time series data. Specifically, I will use a neural network approach to clustering
to model a time series of financial product prices and build corresponding fore-
casts. By clustering vectors of current and lagged prices formed by moving a
fixed length window through the series, my aim is to show that the clusters can
essentially be interpreted as local models for the series. Since this approach can
develop local representations of a non stationary time series, by using the local
models independently for forecasting, adjustments to non-stationarity as in the
ARIMA model are no longer necessary. In the context of time series forecasting
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with neural networks, the input vectors or the independent variables, are the cur-
rent and lagged prices. The output vector, the dependent variable, can thus be
seen as the one step ahead price on the particular financial product. Additionally,
in order to demonstrate such a neural network’s ability to cluster characteristics
of a time series, I will use one to model intra day snapshots of limit order book
data, a log of prices and volumes that individuals are willing to buy and sell a
particular stock at, in order to gain insight into the behavior of financial market
participants. The specific neural network that I will use to achieve this will be the
self-organizing map. A self-organizing map is a neural network that uses an unsu-
pervised training algorithm that configures a set of neurons into a representation
of the original data. SOM essentially reduces a multi-dimensional data set to a
lower-dimensional map of neurons. I will be using it in its original unsupervised
implementation to cluster characteristics of the limit order book of a particular
stock. The supervised variants of this algorithm that I plan to use for forecasting
purposes are the double vector quantization method proposed by Simon et al.
(2004) and the X-Y fused SOM proposed by Melssen et al. (2006).

Previous work on time series clustering and forecasting has been explored from
various perspectives. As far as implementing unsupervised clustering of high fre-
quency financial data, Blazejewski and Coggins (2006) use self-organizing maps
to cluster variables extracted from the limit order books of ten stocks on the
Australian stock exchange with the largest market capitalization in order to test
a set of hypotheses about intra-day price movements. In the realm of supervised
learning, Deboeck and Kohonen (2000) use self-organizing maps in the prediction
of interest rates by modeling distributions of interest rate shocks conditional on
interest rate structure classes. Barreto (2007) presents several approaches to time
series prediction using self-organizing maps which include the vector quantization
method, the double vector quantization method, local AR models from clusters
of data vectors, on-line learning of local linear models as well as time-varying
local AR Models from Prototypes. Koskela et al. (1998) used a temporal variant
of the SOM, called the Recursive SOM, to cluster financial time series data. The
research performed by Sanchez-Marono et al. (2003) use SOM for data parti-
tioning, while local models in each cluster are built using functional networks.
As a final mention, Dablemont et al. (2003) propose a method in which vector
quantization is done on a set of input vectors and a corresponding set of output
vectors. These are then combined in a probabilistic way, using Radial Basis Func-
tion Networks, to build a prediction. In the vector quantization method, Barreto
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(2006) uses a rather simplistic approach for transforming the original unsuper-
vised self-organizing map algorithm to a supervised variant. The work done in
this thesis builds on his method by incorporating X-Y fused SOMs, which is a
more sophisticated variant of the supervised self-organizing map, which is then
compared to the double vector quantization method.

The first chapter of this thesis will consist of presenting all the concepts rel-
evant to the framework of my study. A formal definition of time series and
stationarity will be presented as well as the concepts of principal component
analysis and hierarchical clustering which will be relevant in the interpretation
of the output of the self-organizing map. Additionally, I will present the concept
of a limit order book and the manner in which it is used to match buyers and
sellers of a particular stock. In the second chapter, I will present the concept of a
neural network as well as the specifics behind training and testing such a network.
Additionally, the self-organizing map algorithm in both its original unsupervised
implementation as well as the supervised variants will be presented. I will also
be discussing the concept of overfitting, which is vital in scenarios where testing
a model is done on a data set separate from the training set. I will also introduce
the concepts of cross validation which is necessary for selecting the optimal tuning
parameters of a neural network. The third chapter will address forecasting, in
which I will present the concept of forecasting a time series using a model trained
with a rolling window, a variant of the cross validation method. I will also present
the various methods explored in terms of training and testing SOMs as well as
the error criteria that I will use to compare these methods. In the fourth chapter,
I will present the results of the analysis conducted in R involving the clustering
of high frequency cross-sectional data from the limit order book of Apple stock.
Finally in the fourth chapter, I will present the results of forecasting obtained
from the prices of the Dow Jones Industrial Average Index as well high frequency
prices of Apple stock extracted from the same limit order book. I will compare
the results obtained through the X-Y fused SOM implementation of the SOM
as well as the results of the double vector quantization model and the ARIMA
model. A conclusion will complete this thesis.
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Chapter 1

PRELIMINARIES

In this section, I present the essential concepts needed to understand the nature
of our analysis. We begin by presenting the notion of a time series as well as
stationarity. Following this, we present the well-known ARIMA process which
is an integrated combination of the AR and MA processes, which will also be
presented. Although we limit our discussion of the ARIMA model to the scope
of our analysis, further insights can be found in Wei (2006.) Additionally, the
concepts of hierarchical clustering and principal components, which will be used
in conjunction with our neural network approach to time series analysis, will
be presented. Additional information pertaining to hierarchical clustering can be
found in Everitt et al. (2011) and that pertaining to principal component analysis
in Jolliffe (2002.)

1.1. Time Series

In order to understand the concept of a time series an understanding of a sto-
chastic process must be established. A stochastic process is a family of random
variables X(ω, t) in which ω belongs to a sample space, representing the set of all
possible outcomes, and t belongs to an index set.

Definition 1.1.1. A time series can be defined as the realization of a stochastic
process X(ω, t), as a function of t, for a given ω.

In stochastic processes, the collection of all possible realizations of a time se-
ries is known as an ensemble. In our analysis, we assume that that the index set
for a stochastic process consists of integers, {X(ω, t) : t ∈ Z} and we denote a
realization of a stochastic process, a time series, as {X(t) : t ∈ Z}. Additionally,
we represent {X(t1), X(t2), ..., X(tn)} as random variables, which are defined as



a set of variables in a stochastic process for fixed times t1, t2, ..., tn.

The mean function of a stochastic process can be defined as:

μ(t) = E(X(t)).

The variance function of a stochastic process can be defined as:

σ2(t) = E(X(t) − μ(t))2.

The covariance function between X(tp) and X(tq) can be defined as:

γ(tp, tq) = E[(X(tp) − μ(tp)) · (X(tq) − μ(tq))].

1.1.1. Stationarity

Stationarity is an important concept in time series analysis and in order to
understand its implications we define the n-dimensional distribution function for
a stochastic process {X(ω, t) : t ∈ Z} as:

FX(t1),X(t2),...,X(tn)(x1, x2, ..., xn) = P (X(t1) < x1, X(t2) < x2, ..., X(tn) < xn).

Definition 1.1.2. A stochastic process is said to be strictly stationary if its joint
distribution function does not depend explicitly on time. For n ∈ Z, we must
have FX(t1),X(t2),...,X(tn)(x1, x2, ..., xn) = FX(t1+k),X(t2+k),...,X(tn+k)(x1, x2, ..., xn) for
n-tuple (t1, t2, .., tn) and k ∈ Z.

In time series analysis the joint distribution function of an observed stochas-
tic process and therefore strict stationarity is difficult to actually verify. For this
reason we define a concept that is closely related but easier to verify in practice,
so called second order weak-stationarity.

Definition 1.1.3. A process is second order weekly stationary if it is strictly sta-
tionary up to order to 2, FX(t1),X(t2)(x1, x2) = FX(t1+k),X(t2+k)(x1, x2) for k ∈ Z

and whose first two moments are finite, E(|X(t)|) < ∞ and E(X2(t)) < ∞.

Several consequences follow from a process exhibiting 2nd order weekly sta-
tionarity

• the mean function is constant for all t: μ(t) = μ

• the variance function is also constant for all t: σ2(t) = σ2
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• the covariance between X(t) and X(t + k) depends only on the time
difference k: γ(t, t + k) = γ(k).

1.2. ARIMA Model

When it comes to analyzing time series, in practice, the assumption of sta-
tionarity is often not met. For this reason, it becomes crucial to develop models
that correct for non-stationarity in order to fit a robust model to a time-series.
The most common violation to stationarity is that of a non-constant mean and
there are two scenarios under which this can happen.

The first is the presence of a deterministic trend in time, for which the mean
of the process will be a deterministic function of time. Although the original
process is not stationary, the deviation from the mean, X(t) − μ(t), is a station-
ary process. We denote the original process X(t) a trend-stationary process. In
such cases, there are various models that can be developed to represent the non-
constant mean (Wei, 2006.) The second scenario is when a time-series behaves
similarly at various windows in time after having adjusted for differences in local
means. In this case, Δ(X) is stationary and the original process X(t) is denoted
a homogeneous non-stationary process.

In my study, I will present models that correct for homogeneous-nonstationarity
through a process known as differencing. In order to present models that incor-
porate this procedure, we must first define several time series processes.

Definition 1.2.1. The autoregressive process of order P, AR(P), can be defined
as

Ẋ(t) = φ1Ẋ(t − 1) + φ2Ẋ(t − 2) + ... + φpẊ(t − p) + ε(t)

or

φp(B)Ẋ(t) = ε(t),

where φp(B) = 1 − φ1B − φ2B
2 − ... − φpBp,

Ẋ(t) = X(t) − μ,

8



Bd refers to the dth order backshift operator i.e Bd(X(t)) = X(t − d) for d ∈ N

and ε(t) represents a sequence of uncorrelated random variables from a distribu-
tion with constant mean and variance known as a white noise process.

We refer to Wei (2006) in his demonstration that the AR(p) process is homogeneous-
stationary if the roots of φp(B) = 0 lie outside of the unit circle.

Definition 1.2.2. The moving average process of order q, MA(q), can be defined
as

Ẋ(t) = ε(t) − θ1ε(t − 1) − θ2ε(t − 2) − ... − θqε(t − q)

or

Ẋ(t) = θ(B)ε(t),

where θ(B) = 1 − θ1B − θ2B
2 − ... − θqB

q,

Ẋ(t) = X(t) − μ

and ε(t) represents a white noise process.

We again refer to Wei (2006) in his demonstration that the MA(q) process is
always homogeneous-stationary.

Definition 1.2.3. The autoregressive moving average model, ARMA(p,q), is de-
fined as

φp(B)Ẋ(t) = θq(B)ε(t)

or

φp(B)X(t) = θ0 + θq(B)ε(t),
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where θ0 = (1 − φ1B − φ2B
2 − ... − φpBp)μ.

With these definitions, we can now begin to develop a model that incorpo-
rates homogeneous non-stationarity. One manner in which homogeneous non-
stationarity can be corrected is by computing differences between consecutive
observations in order to stabilize the time series. By incorporating such differ-
encing into the previously defined ARMA model, we obtain a fairly robust time
series model for non-stationary data.

Definition 1.2.4. The autoregressive integrated moving average model, ARIMA(p,d,q),
is defined as

φp(B)(1 − B)dX(t) = θ0 + θq(B)ε(t).

For values of d ≥ 1, θ0 represents the deterministic trend term and is omit-
ted from the model unless the data has a clear deterministic trend that we are
interested in modeling.

1.3. Principal Component Analysis

Principal component analysis is a data visualization method whose goal is to
reduce the dimensionality of a data set by performing a transformation on the
original variables. These transformed variables, the principal components, are
uncorrelated and are ordered so that the first few retain most of the variation
present in the original variables.

Definition 1.3.1. Principal components Y = (Y1, Y2..., YN) that result from the
transformation of a data set composed of N-dimensional vectors X = (X1, X2..., XN)
are defined to be vectors that result from a transformation in which V ar(Yi) is
maximized for i=1,...,N subject to the constraint that Cov(Yi, Yj) = 0 for j<i.

Since the variability present in the original data is translated directly to the
variability of the principal components, the dimensionality reduction aspect can
be achieved by retaining p < N principal components that explain the majority
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of the variance present in the original data set. The remaining N − p principal
components can simply be discarded. It is this property of principal components
that make it such a powerful data visualization tool.

Theorem 1.3.1. For i=1,...,N the kth principal component, denoted Yk = αi ·X,
has a loading vector αi equal to the eigenvector corresponding to the kth largest
eigenvalue, λk of the variance-covariance matrix, Σ = V ar(X). Furthermore, if
αi has unit length (α′

i · αi = 1), then V ar(Yk) = λk.

Proof. We begin with the first principal component Y1. The goal is to maximize

V ar(Y1) = V ar(α1X) = α′
1V ar(X)α′

1 = α′
1Σα1

with respect to α1, subject to the constraint that α′
1 ∗ α1 = 1. We resort to the

method of Lagrange multipliers to achieve this end.

The function we wish to maximize reduces to

f(α1) = α′
1Σα1 − λ1(α′

1α1 − 1).

Taking the derivative with respect to α1 and setting the result to 0 yields

f ′(α1) = Σα1 − λ1α1 = 0
Σα1 = λ1α1,

which can be recognized as an equation where α1 corresponds to an eigenvector
of Σ and λ1 to the eigenvalue. The question that remains is which eigenvector
of Σ do we choose? To answer this question, we return to the function that we
originally intended on maximizing, which we can now write as:

V ar(Y1) = α′
1Σα1 = α′

1λ1α1 = λ1α
′
1α1 = λ1

We now observe that in order to maximize V ar(Y1) we chose λ1 to be the
largest eigenvalue of Σ and α1 the corresponding eigenvector.

By repeating this process, starting with Y1 and ending with YN , each time
choosing the next largest eigenvalue and corresponding eigenvector, we obtain
principal components Y = (Y1, Y2..., YN) with progressively decreasing variances,
V ar(Y1) = λ1 > V ar(Y1) = λ2 >, ..., > V ar(YN) = λN .
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Additionally, because the matrix Σ is a variance-covariance matrix and hence a
symmetric matrix, its eigenvectors can be chosen to be orthogonal and hence have
a dot product of 0, α′

iαj = 0 for i �= j. Since Cov(Yi, Yj) = Cov(α′
iXi, α′

jXj) =
α′

iΣαj = α′
iλjαj = λjα

′
iαj , Cov(Yi, Yj) = 0 for orthogonal eigenvectors αi and

αj .

�

In order to reduce the dimensionality of our data set from N to P < N we
can simply decide the proportion of explained variance we wish to retain, which
here can be represented by (λ1 + ... + λP )/(λ1 + ... + λN) and only keep the cor-
responding components Y1, ..., YP .

Now, despite the inherent statistical nature of principal components, the
derivation shows that principal components are the result of an orthogonal linear
transformation of a set of vectors optimizing certain algebraic criteria. As a result
of this, several algebraic properties result from this derivation, the best known of
which is certainly the spectral decomposition theorem.

Theorem 1.3.2. The variance-covariance matrix of vectors X = (X1, X2..., XN)
can be written

Σ = λ1α1 · α′
1 + λ2α2 · α′

2 + ... + λpαN · α′
N . (1.3.1)

Proof. From the derivation of principal components we have directly that

ΣA = AΛ,

where

A is a p · N matrix whose columns correspond to the loading vectors αk,

Λ is a diagonal matrix whose kth diagonal element is λk.

We can therefore write Σ = AΛA′ and the result follows directly.

�
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From the spectral decomposition theorem it becomes clear that the variance-
covariance of the original variables can be reconstructed with knowledge of the
values of the loading vectors (eigenvectors) as well as the variances of the princi-
pal components (eigenvalues).

Another point to be made about principal component analysis is that it is
in many cases desirable to first standardize the original variables before deriving
the associated principal components, thereby deriving the principal components
of the correlation matrix of the original variables. In other words, it can be
desirable to derive the principal components Z = A′X∗ where Xi

∗ = Xi√
V ar(Xi)

for i = 1, ..., N . The major advantage of standardizing the variables before the
application of principal component analysis is to work with unitless measures.
Due to different units of measure that could potentially be used for the various
components of the original variables the results become difficult to interpret.
Additionally, large differences between the variances of the components of X can
cause those variables whose variances are largest to dominate the first few PCs.
By standardizing the components relative to each vector, and hence working with
the decomposition of the correlation matrix, these issues can be circumvented.

1.4. Hierarchical Clustering

Hierarchical clustering is a clustering method which is divided in two cate-
gories: Divise and agglomerative.

Definition 1.4.1. Divisive clustering is a top down strategy based on starting
with a single cluster which consists of all n data vectors and successively breaking
it down into finer groups until n clusters are formed, each containing one data
vector.

Definition 1.4.2. Agglomerative clustering is a bottom up strategy which consists
of fusing n data vectors into successively larger clusters until a single cluster is
formed containing all n data vectors.

Since agglomerative methods are more commonly used and will be applied in
this study in conjunction with self-organizing maps, they will be the focus of my
analysis.
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Agglomerative clustering consists of the following procedure:
(1) The clusters are initialized by assigning each vector to its own cluster,

creating n separate clusters, each with one data point
(2) A distance measure between all the clusters is computed
(3) The two clusters with the smallest distance between them are merged

together to form a new single cluster
(4) Step 2 is repeated until there is a single cluster remaining, containing all

n vectors.
Differences between various agglomerative hierarchical clustering methods

arise from the choices of inter-cluster proximity measures which we aim to min-
imize at each step of the process. Following is a table with the most common
proximity measures used in hierarchical clustering and the minimization criterion
for fusing clusters at each step of the process.

Method Inter-cluster proximity
Single linkage Smallest inter-cluster distance between all containing data

vectors
Complete linkage Largest inter-cluster distance between all containing data

vectors
Average linkage Average inter-cluster distance between all containing data

vectors
Centroid linkage Inter-cluster distance between means of all vectors belong-

ing to each cluster
Median linkage Weighted inter-cluster distance between means of all vectors

belonging to each cluster
Ward’s method Increase in the total within-cluster error sum of squares

The distinction between the various proximity measures has been elegantly
summarized by Lance and Williams (1967) via a single parametrized measure.

Definition 1.4.3. The distance between a group k and a group (ij) formed by the
fusion of two groups (i and j) can be written as

dk(ij) = αidki + αjdkj + βdij + γ|dki − dkj| (1.4.1)

where dij is the distance between groups i and j.

Now, following is a table with the most common distance measures used in hi-
erarchical clustering along with their descriptions and their parameters in Lance
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and Williams (1967) generalized distance measure.

Method αi β γ

Single linkage 1/2 0 -1/2
Complete linkage 1/2 0 1/2
Average linkage ni/(ni + nj) 0 0
Centroid linkage ni/(ni + nj) −ninj/(ni + nj)2 0
Median linkage 1/2 -1/4 0
Ward’s method (nk + ni)/(nk + ni + nj) −nk/(nk + ni + nj) 0

Now, when agglomerative hierarchical clustering is performed the end result
is one large cluster that contains all the data points. Considering this, the issue
that arises is when to cease the process in order to obtain a representative amount
of clusters. The most straightforward approach would be visual inspection of a
dendrogram, which is essentially a tree diagram representing the clusters that
form at every iteration of the algorithm. Cutting the tree at a point at which
recombining clusters would seem to be redundant in the context of the problem
would be one way to approach this issue. Other methods have been developed
that add some objectivity to cutting the tree. Dynamic tree cutting proposed
by Langfelder et al. (2008) permits the cutting of the tree at different levels
for different branches. The concept revolves around combining and decomposing
clusters over many iterations until a stable state is achieved. Due to the multitude
of other methods available as well as the vast array of parameters for the cut
heights and the cluster sizes that must be chosen, the study remains very much
subjective.

1.5. Limit Order Book

The limit order book is a trading method that is used by exchanges that
matches customers submitted orders to buy or sell a stock at a particular price
and volume on a time priority basis. Essentially, the limit order book consists
of two queues, the bid side (the buy side) and the ask side (the sell side). The
bid side consists of orders submitted by buyers specifying the desired volume of
shares for purchase and a price constraint specifying the maximal price at which
a trade can occur. The ask side, on the other hand, consists of orders submitted
by sellers specifying the desired volume of shares for sale and a price constraint
specifying the minimal price at which a trade can occur.
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At a given time t, the limit order book will contain a queue of unexecuted ask
orders at prices α1(t), α2(t), ..., αn(t) and another queue of unexecuted bid orders
at prices β1(t), β2(t), ..., βn(t) each waiting to be matched with incoming orders.
Additionally, we have that the following must hold

βn(t) ≤, ..., β2(t) ≤ β1(t) < α1(t) ≤ α2(t), ..., ≤ αn(t). (1.5.1)

The bid with the highest limit price, β1 is called the best bid and the ask with
the lowest limit price, α1 is called the best ask. The best bid and the best ask
have priority to trade first and the difference between their corresponding prices
constitutes the bid ask spread.

Bids and asks are entered into the limit order book throughout the trading
day and are stored in the book until they are removed or traded. A trade takes
place either when a bid arrives with a limit price equal to or higher than the price
of the best ask or when an ask arrives with a limit price equal to or lower than the
price of the best bid. This triggers an order matching mechanism in which one
or several limit orders are executed on a price-time priority basis, based on the
volume desired by the trade initiator. We denote Vβn(t), the volume of a stock at
time t at the nth level on the bid side of the limit order book corresponding to
the order of price βn and Vαn(t) the volume of a stock at time t at the nth level
on the ask side of the limit order book corresponding to the order of price αn.
The matching mechanism functions as follows:

If the new order is an ask limit order for a volume Vα at the price α then:

• If α ≤ β1 and Vα ≤ Vβ1

– The new ask is matched with the best unexecuted bid and the two
are executed at the bid price β1.

• If α ≤ β1 and Vα > Vβ1

– Vβ1 of the total ask volume is matched with the best unexecuted bid
and executed at the bid price β1.
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– The remaining volume Vα − Vβ1 is then matched against the subse-
quent bids until an m ∈ Z is reached such that Vα ≤ ∑m

n=1 Vβn under
the constraint that α ≤ βm.

– If for m ∈ Z, βm+1 < α ≤ βm and Vα >
∑m

n=1 Vβn , ∑m
n=1 Vβn is

executed at the corresponding bid prices and the remaining volume
Vα − ∑m

n=1 Vβn joins the queue of unexecuted asks in the order book.

• If α > β1, no match is possible and the new ask joins the queue of unex-
ecuted asks in the order book

If the new order is an bid limit order for a volume Vβ at the price β then:

• If β ≥ α1 and Vβ ≤ Vα1

– The new bid is matched with the best unexecuted ask and the two
are executed at the ask price α1.

• If β ≥ α1 and Vβ > Vα1

– Vα1 of the total bid volume is matched with the best unexecuted ask
and executed at the ask price α1.

– The remaining volume Vβ − Vα1 is then matched against the subse-
quent asks until an m ∈ Z is reached such that Vβ ≤ ∑m

n=1 Vαn under
the constraint that β ≥ αm.

– If for m ∈ Z, αm ≤ β < αm+1 and Vβ >
∑m

n=1 Vαn , ∑m
n=1 Vαn is

executed at the corresponding ask prices and the remaining volume
Vβ − ∑m

n=1 Vαn joins the queue of unexecuted bids in the order book.

• If β < α1, no match is possible and the new ask joins the queue of unex-
ecuted bids in the order book

We also note that if two bids (asks) are submitted at the same price, βn(t) =
βm(t)(αn(t) = αm(t)), trade priority goes to those that were first entered into
the queue. The trade is called buyer-initiated if the initiating order was a buy
order (execution of ask limit orders), and seller-initiated if the initiating order
was a sell order (execution of bid limit orders) and the intraday quoted price of
a stock corresponds to the last known execution price in the limit order book.
Additionally, during trading, a limit order at a competitive price will be imme-
diately executed against the best available bid or ask just as though it were a

17



market order. Consequently, using the previously defined terminology we define
the price of execution of a market order, which is an order to buy (sell) a specified
quantity of a stock at the best price currently available, as follows:

Definition 1.5.1. A market order to sell a volume of Vα of a stock is executed
at a price of:

αMO =
m−1∑
n=1

βn · Vβn + (Vα −
m−1∑
n=1

Vβn) · βm (1.5.2)

for

m−1∑
n=1

Vβn ≤ Vα <
m∑

n=1
Vβn .

Definition 1.5.2. A market order to buy a volume Vβ of a stock is executed at a
price of:

βMO =
m−1∑
n=1

αn · Vαn + (Vβ −
m−1∑
n=1

Vαn) · αm (1.5.3)

for

m−1∑
n=1

Vαn ≤ Vβ <
m∑

n=1
Vαn .
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Chapter 2

NEURAL NETWORKS

A neural network, the class of machine learning algorithm that I will be imple-
menting in my study, is a model that consists of a collection of neurons that
attempts to artificially reproduce the manner in which cognition works in the
human brain. Similar to the brain, an artificial neural network has the ability
to store knowledge and then make it available for use. Analogous to the hu-
man brain, an artificial neural network has a collection of neurons with synaptic
weights that are used to acquire knowledge from its environment, which is known
as the training phase of the network. Through these weights, the network stores
this information and is then capable of generalizing and drawing conclusions on
previously unseen information presented to the neural network. This stage of
implementing the network is known as the testing phase.

Neural networks are powerful tools used in modeling as they are capable of
capturing non-linear relationships in data. These non-linear relationships can be
captured by the neural network’s capability of building input-output mappings
without specifying any assumptions for the statistical model on the input data.
From this perspective, using neural networks to model data falls in the paradigm
of non-parametric statistical inference.

In this section, a description of the learning method known as competitive
learning will be presented as this will be the general learning method I will be
using to train the network. A detailed description of training and testing such
a network will be presented. Following this, I will present the self-organizing
map and a description of its learning algorithm in both its original unsupervised
implementation as well as a supervised variant known as the X-Y fused SOM.
Finally, I will define the issue of overfitting and tests that can be used to test for
such a phenomenon.



2.1. Learning Methods

In the context of neural networks, learning is defined by the manner in which
the synaptic weights of the network are adapted to the data. The process of
learning is comprised of a neural network first being stimulated by a set of in-
put data, undergoing changes in its weights and then responding to a new set of
input data through these newly developed weight values. A well defined set of
rules which a neural network follows during the training phase characterizes the
learning method of the network. In my study, I will focus on a type of learning
method known as competitive learning.

2.1.1. Competitive Learning

Competitive learning is a type of learning algorithm for neural networks that
is well suited for finding clusters within a data set. As stated by Haykin (1999)
a competitive learning algorithm is characterized by the following:

Definition 2.1.1. Competitive learning is characterized by three basic features:

• The neurons in the network are indistinguishable except for a random ini-
tialization of the synaptic weights that allow them to respond differently
to input data.

• There is a limit to the strength of the synaptic weights of the neurons.

• The neurons in the network compete for the right to respond to a subset
of the input data in a manner that only one neuron wins the competition,
the so called "winner take all" neuron.

A competitive neural network consists of a single layer of output neurons,
each of which is connected to every single input value. These connections from
the input values to the neurons are known as feed forward connections as they
stimulate the neurons to become active. The neurons themselves are connected
to each other through lateral connections that permit them to interact during the
training phase.

Each neuron in the network is assigned a synaptic weight denoted mj =<

mj1, mj2, ..., mjN > and the competition takes place by computing, for each input
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vector Xi =< Xi1, Xi2, ..., XiN >, a similarity measure between the input and
each neuron. The winning neuron is then determined as the one with the largest
similarity measure with a given input vector. For input vector Xi, the output of
winning neuron m is then:

mji =

⎧⎪⎨
⎪⎩

1, for input vector Xi

0, otherwise.
(2.1.1)

Additionally, the standard competitive rule for updating the synaptic weight vec-
tors of the neurons in the network is the following:

Δmj =

⎧⎪⎨
⎪⎩

α · (Xi − mj), for winning neuron mj

0, otherwise.
(2.1.2)

The parameter α is known as the learning-rate parameter.

2.2. Self Organizing Maps

A self-organizing map is a type of competitive neural network in which the
neurons are positioned at the nodes of a lattice and compete for the right to
be activated by the input vectors. A defining characteristic of the self-organizing
map, as put by Kohonen (1990), is that through its implementation a topographic
map is created for the input patterns in which the locations of the neurons in the
lattice are indicative of features and patterns contained in the input vectors.
This formulation of the self-organizing map which consists of a two-dimensional
map in which there is no specific distinction between dependent and independent
variables in the input vectors is the original, deemed unsupervised, variant of the
algorithm.

2.2.1. Unsupervised Maps

The steps to training a self-organizing map can be broken down into three
components: The competitive phase, the cooperative phase, and synaptic adap-
tation phase. We now describe each step in detail.

Competitive Phase

During the competitive phase of training a self-organizing map, the input
vectors are presented to the network one at a time and a similarity measure is
computed with each neuron in the network. The neuron whose synaptic weight
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maximizes the value of the similarity measure is deemed the winning neuron. De-
pending on the context either the location on the grid of the winning neuron i(x)
or its associated synaptic weight is deemed the response of the network. In my
study, I will use the inverse of the Euclidean distance as the similarity measure.
In other words, the winning neuron is that whose synaptic weight mi minimizes
the Euclidean distance with the input vector Xj. The Euclidean distance can be
defined as:

Definition 2.2.1. The Euclidean distance between vectors X =< X1, .., XN >

and Y =< Y1, ..., YN > is defined as

d(X, Y) =

√√√√ N∑
i=1

(xi − yi)2 (2.2.1)

Cooperative Phase

Once the winning neuron is determined, the next phase of the process consists
of updating its synaptic weights. An additional level of sophistication to that of a
standard competitive learning algorithm that the self-organizing map has is that
the neurons in the vicinity of the winning neuron i(x) also have their synaptic
weights updated. The winning neuron can be seen as the neuron that constitutes
the center of the neighborhood of cooperating neurons. To this end, the cooper-
ative phase consists of determining which neurons are updated and quantifying
a relationship between them. The definition of a neighborhood function becomes
necessary to define the extent to which neighbors of the winning neuron i(x) are
updated.

Definition 2.2.2. A neighborhood function for winning neuron i(x) is defined as:

hj,i(x) = f(dj,i(x)) (2.2.2)

where dj,i(x) denotes the lateral distance between winning neuron i(x) and neuron
j in a defined neighborhood, σ, of i(x) and hj,i(x) must satisfy the following con-
ditions:
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• hj,i(x) attains a maximum value for winning neuron i(x)
i.e max(hj,i(x)) = hi(x),i(x) = f(0).

• hj,i(x) is a monotonically decreasing function of dj,i(x)

i.e for dj1,i(x) ≤ dj2,i(x), hj1,i(x) ≥ hj2,i(x).

We note that the lateral distance between nodes i(x) and j, dj,i(x) is a function
of the topology of the network. For neurons i(x) and j at positions (xi(x), yi(x))
and (xj, yj) on the grid, dj,i(x) is taken as the Euclidean distance between these
positions i.e. dj,i(x) =

√
(yj − yi(x))2 + (xj − xi(x))2. In my study, I will attempt

to model the neighborhood function with two functions that satisfy the previous
requirements. I will then analyze the trade-off between accuracy of prediction
and computational efficiency between the two approaches.

• Bubble neighborhood function

hj,i(x) =

⎧⎪⎨
⎪⎩

1, for neurons j whose lateral distance dj,i(x) < σ

0, otherwise.
(2.2.3)

• Gaussian neighborhood function

hj,i(x) =

⎧⎪⎨
⎪⎩

e
−d2

j,i(x)/2σ2
, for neurons j whose lateral distance dj,i(x) < σ

0, otherwise.
(2.2.4)

Adaptive Phase

The adaptive phase of the self-organizing map algorithm consists of the win-
ning neuron and its topological neighbors within a vicinity σ updating their synap-
tic weights based on an updating rule. The updating rule for the self-organizing
map can be seen as a modified rule, with an additional level of sophistication,
when compared to standard competitive learning, by replacing the learning pa-
rameter α with α · hj,i(x).
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Δmj =

⎧⎪⎨
⎪⎩

α · hj,i(x)(Xi − mj), for neurons j whose lateral distance dj,i(x) < σ

0, otherwise.

(2.2.5)

In discrete time, if the synaptic weight of neuron j is denoted mj(t) the
adaptive phase of the algorithm can be denoted as:

mj(t+1)−mj(t) =

⎧⎪⎨
⎪⎩

α(t) · hj,i(x)(t)(Xi − mj(t)), for neurons j whose lateral distance dj,i(x) < σ(t)
0, otherwise.

(2.2.6)

In this formalism of the adaptive phase of the self-organizing map, α(t), σ(t)
and consequently hj,i(x)(t) are monotonically decreasing functions of t.

The testing phase of the self-organizing map can then be seen as a non-linear
mapping from the continuous input space η defined by the relationship of the
input vectors and the discrete output space α defined by the relationship of the
synaptic weights vectors arranged at the nodes of a lattice:

φ : η → α (2.2.7)

For a given set of input vectors Xi ∈ η the SOM algorithm first performs
the non linear mapping φ through the determination of the winning neuron i(x).
The synaptic weight belonging to this neuron can then be viewed as a pointer
back into the input space. In this way the SOM algorithm is able to provide a
small set of synaptic weight vectors mj ∈ α that provide a good approximation
of the probability distribution of the input space, which consists of a larger set of
input vectors Xi ∈ η. While techniques such as principal component analysis can
achieve this for data forming a plane in the input space, due to the topological
ordering property of the self-organizing map, it can be seen as a generalization
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to non-linear density estimation.

The steps of the SOM leaning algorithm can be summarized as follows:

Summary

(1) Initialization The number of clusters is chosen and the map’s synaptic
weights, mj(0) ∈ RN , are initialized such that mj(0) �= mk(0) for j �= k

(2) Sampling The data set Xi ∈ RN is presented to the network one vector
at a time through random sampling of the inputs.

(3) Competitive Phase For each Xi, distances between Xi and all the
synaptic weights are computed. The winning neuron is chosen as the neu-
ron whose synaptic weight mi(x) has the smallest Euclidean distance to Xi,
in other words mi(x) is chosen amongst all mj such that D = ||Xi − mj||
is at a minimum

(4) Cooperative Phase A radius σ(t) is established around the winning
neuron i(x) which in turn is assigned a neighborhood function hj,i(x) =
f(dj,i(x)), where hj,i(x) is a monotonically decreasing function of dj,i(x), the
distance between winning neuron i(x) and neurons j, for all neurons j

within a distance σ(t) of i(x).

(5) Adaptive Phase The winning neuron and its topological neighbors are
updated by being moved closer to the input vector in the input space.
The rule used to update the vectors in the vicinity of the winning neuron
is the following:

mj(t + 1) = mj(t) + α(t) · hj,i(x) · (Xi − mj(t)), (2.2.8)

where α(t) is the learning rate.

Note: α(t) and σ(t) are monotonically decreasing functions of t

(6) The time step t is increased and the next vector is presented to the net-
work. This process is repeated for as many iterations as required until
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convergence.

It must be noted that the SOM algorithm was formalized from an intuitive
perspective and not from the derivation of a specific error function. As put by
Kohonen et al. (1991), it just so happens to be true that the optimization of
an error functional leads to the SOM algorithm and the heuristically established
algorithm reflects topological relationships between clusters of data without an
explicit mathematical formalization. However, we follow Kohonen et al. (1991)
in his approach to establish a formalism and derive a slightly modified SOM al-
gorithm. In order to follow this approach several definitions must be established.

Definition 2.2.3. Let Xi ∈ RN be a vector and mi(x) ∈ RN the associated synap-
tic weight vector with smallest Euclidean distance amongst all synaptic vectors.
We define the locally weighted mismatch of Xi with respect to the winner as

E =
∑

j

hji(x)||Xi − mj||2 (2.2.9)

where hji(x) describes the interaction of winning synaptic weight vector mi(x) and
synaptic weight vectors mj during the training phase.

The locally weighted mismatch for Xi is essentially a sum of the distances
between the input vector Xi and all synaptic weight vectors mj, weighted by the
neighborhood function of closest synaptic weight vector to Xi applied to mj.

Now, the self-organizing map originated from a concept known as vector quan-
tization. This concept developed in the context of signal processing and consists
of partitioning a space of vector valued input data into a finite number of re-
gions, each of which is represented by a single model vector, the centroid. As
such, it can be seen as a non-neural network generalization of the self-organizing
map algorithm as it is essentially, also, a clustering algorithm used to reduce
high-dimensional data. The synaptic weight vectors can therefore be seen as the
equivalent of the centroids in vector quantization algorithms.

Since the training phase of the self-organizing map is based upon this princi-
ple we define the mean quantization error.
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Definition 2.2.4. We denote the N dimensional input vectors as Xi ∈ RN and
mi(x) ∈ RN the associated centroid. The mean quantization error can then be
defined as

E(||Xi − mi(x)||)2 =
∫

i
||Xi − mi(x)||2p(Xi)dXi (2.2.10)

where

p(Xi) is the probability density of Xi

and dXi is a differential hyper volume element in the Xi space.

The optimization of this objective function leads to centroids mi(x) whose
spatial locations and values can be used to construct density estimators of the
corresponding vectors Xi. Now, a type of vector quantization closely related to
the SOM is k-means clustering which aims to partition the vectors into k groups
such that the sum of squares from points to the assigned cluster centers is mini-
mized.

Definition 2.2.5. For i ∈ Z, the k-means clustering algorithm for vectors Xi

i=1,...,n is defined by centroids mi(x) defined the minimization of the following
objective function

E(||Xi − mi(x)||)2 =
n∑

i=1
||Xi − mi(x)||2/N. (2.2.11)

We note that there are a wide variety of algorithms that minimize (2.2.11)
such as those developed by MacQueen (1967), Lloyd (1957) and Forgy (1965).
In order to draw a parallel to the self-organizing map, I present Kohonen’s al-
gorithm, which leads to the formation of centroids that minimize (2.2.11) with
respect to i(x).

Theorem 2.2.1. The optimal values of mi(x) that minimize (2.2.11) are the
values of mj that result from the convergence of the following iterative algorithm

mj(t + 1) = mj(t) + α(t) · δji(x) · (Xi − mj(t)) (2.2.12)

where δji(x) is the kronecker delta,
0 < α(t) < 1,
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∑∞
t=0 α(t) = ∞ and ∑∞

t=0 α(t)2 < ∞.

Proof. For a formal proof using both a stochastic approximation method as well
as the true steepest descent optimization we refer to Kohonen et al. (1991).

�

We note that in this formulation, the only distinction between the k-means
and the SOM is the width of the neighborhood kernel, which reduces to 1 for
the neuron whose synaptic weight vector is closest to Xi and 0 elsewhere in the
k-means algorithm.

By combining the locally weighted mismatch function with the mean quan-
tization error we now obtain the objective function that we are then interested
in minimizing to obtain the weights for the self-organizing map. The difference
between this objective function and that of the k-means is the distance of each
input from all of the synaptic weight vectors instead of just the closest one is
taken into account, weighted by the neighborhood function.

E =
∫

i

∑
j

hji(x)||Xi − mj||2p(Xi)dXi (2.2.13)

Kohonen et al. (1991) showed that the asymptotic values m∞ of the following
iterative algorithm define the set of mi(x) that globally minimize E.

mj(t+1) =

⎧⎪⎨
⎪⎩

mj(t) + α(t) · [hi(x)i(x) · (Xi − mi(x)(t)) − 1
2

∑
k �=i(x) hi(x)k · (Xi − mk(t))]

mj(t) + α(t) · hji(x) · (Xi − mj(t)) for j �= i(x)
(2.2.14)

The difference between this algorithm and that of the SOM is that on each
iteration the neuron whose synaptic weight vector is closest to Xi and its topolog-
ical neighbors are updated based on slightly different principles. Due to this, the
asymptotic value of the mj in the original SOM algorithm do not coincide per-
fectly with those that minimize (2.2.13). However, numerical simulations have
shown that the practical differences between the two versions of the SOM are
negligible particularly if the time invariant neighborhood function is replaced by
a time variant counterpart that decreases monotonically with each iteration.
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We now refer to properties of the self-organizing map as presented by Haykin
(1999). These properties result both from the author’s derivation of the map from
first principles as well as empirical results. For a formal proof of the following
properties I invite the reader to consult Haykin (1999).

(1) Approximation of the Input Space
The feature map φ : η → α, represented by the synaptic weight vectors in
the output space, mj, provides a good approximation to the input space η.

(2) Topological Ordering
The map approximates the input space η through synaptic weight vectors
mj in such a way that the spatial location of the corresponding neurons
in the lattice, (xj, yj), correspond to a particular domain or features in
the input space.

(3) Density Matching
Regions in the input space η from which sample vectors X are drawn with
high probability of occurrence are mapped onto larger domains of the out-
put space α.

(4) Feature Selection
Given data from an input space with a non-linear distribution, f(X), the
self-organizing map is able to select a set of best features, mi(x), for ap-
proximating the underlying distribution.

Additionally, I refer to computer simulations conducted by Haykin (1999) in
which the properties of the SOM were studied in the context of a two dimensional
map driven by a two dimensional distribution. The author simulates vectors X
drawn from a two-dimensional uniform distribution on [-1,1] and then clusters
the vectors using a SOM algorithm driven by a 10 · 10 map. Visual inspection
of the vectors X and well as mi(x) in the input space showed that the statistical
distribution of the neurons in the map approached that of the input vectors.

2.2.2. Supervised Maps

Now that the fundamentals of the self-organizing map have been presented,
my focus now shifts on developing a supervised variant of the SOM for predictive
modeling. The idea behind using supervised self-organizing map formulations
is to capture non-linear relationships between input and output variables, while
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in addition preserving the topology present in the data, properties that classi-
cal supervised learning models such as multiple linear regression fail to possess.
Additionally, as I will present in chapter 3, supervised SOM variants enable the
modeling of non-stationary time series data without the need for any adjustments.

In classical supervised regression models, parameters, β1, ..., βn, are estimated
using a training set of data to develop a function that quantifies the relation-
ship between the set of independent and dependent variables. These are usually
estimated using assumptions of statistical distributions on the error terms and
applied to the independent variables in a testing set of data to get an out of
sample estimate of the dependent variable. The use of such models requires hav-
ing a preconceived notion of the type of relationship between the independent
and dependent variables and in most cases this involves the assumption of linear-
ity. Since a self-organizing map is a type of machine learning algorithm, no such
assumptions are necessary and the parameters that are estimated, the synaptic
weight vectors, can be used to build a predictive model free of these constraints.

X-Y fused SOM

While the models presented in chapter 3 are variations of the classical SOM
algorithm found in literature specifically used for time series forecasting, here I
present a model developed by Melssen et al. (2006) whose use extends to any
regression or classification problem, the X-Y fused SOM. The X-Y fused SOM
involves simultaneously training two separate maps of equal dimensions: an input
X-map for the independent variables and an output Y -map for the dependent
variable, which are concatenated together, forming a combined input-output map.
To take into account the non-linear relationship between input and output vari-
ables, in the X-Y fused model, the training of the maps is guided by a fused
similarity measure. For an input-output pair (Xi, Yi), the similarity obtained for
an input Xi and the synaptic weights in the X-map, mjX

, is combined with the
similarity corresponding to the output Yi and the synaptic weights in the Y -map,
mjY

, to drive the formation process of the maps. This similarity measure can be
defined as follows:

Definition 2.2.6.

D = γ · ||Xi − mjX
|| + (1 − γ) · ||Yi − mjY

||, (2.2.15)
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where γ regulates the relative weight on the input and output mappings.

The common winning unit in the X and Y maps, (mi(x), mi(y)) is taken as the
joint (mjX

, mjY
) that minimize 2.2.6. The updating of synaptic weight vectors

in both maps is done simultaneously and in a manner analogous to that of the
unsupervised SOM. Since in such a setup, information present in the inputs and
output is used during the update of the weights of the neurons, the formation of
the concatenated map is driven by X and Y in a truly supervised way. Addition-
ally the relative weight parameter γ can be adjusted based on the dimension of
the vector Xi.

The idea is then to use a testing set of independent variables X, treat the
synaptic weight vectors of the winning neurons, mXi(x) in the input space as
point estimators of their respective input vectors and the corresponding synaptic
weights in the Y space, mYi(y) are then the estimated predictions.

2.3. Overfitting

In machine learning, the generalization capabilities of a learning algorithm
from the data set that is used to estimate its parameters, the training set, is mea-
sured by its performance on an independent data set, the testing set. Overfitting
is a phenomenon that occurs in this context when a model memorizes the training
data as opposed to learning from it and is then unable to generalize on previ-
ously unseen data. When overfitting occurs, a statistical model describes random
noise in the data instead of the underlying relationship. The contributors to an
overfitted model are the number of data points presented to train the model as
well as the number of parameters chosen. Underfitting, on the other hand, occurs
when a model is unable to capture the relationships even in the training data.
Underfitting is a sign that the model is mis-specified and a fundamental change
in the specification of the model becomes necessary.

When it comes to fitting models to time-series data, overfitting occurs when
patterns in the time series are present in the testing set but not present in the
training set. The data in the training set that does not appear in the testing
set, on the other hand, is noise and a robust learning algorithm is one that is
efficient at reducing the fitting of noise to the trained model. In classical predic-
tive modeling, given an input vector Xi, a response variable Yi, and a prediction
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Ŷi, the expected loss function over a test set for a given training set τ for mea-
suring the errors between Yi, and Ŷi, can be written as Errτ = E(Lτ (Yi, Ŷi)|τ).
The corresponding expected loss function for a test set over arbitrary training
sets, in other words averaged over the randomness in a particular training set,
can then be written as Err = E(Errτ ) = E(Lτ (Yi, Ŷi)). An effective model in
machine learning can minimize this expected loss function through optimization
of so called tuning parameters.

Definition 2.3.1. This error is often represented by the expected square error
defined as:

E(Lτ (Yi, Ŷi)) = E((Yi − Ŷi)2) (2.3.1)

To better understand the phenomenon of overfitting, particularly in the con-
text of neural networks we begin with a definition of the bias-variance trade off.
The bias variance trade off can be understood as the decomposition of the ex-
pected error as:

Theorem 2.3.1.

Err = E((Yi − Ŷi)2) = Bias(Ŷi)2 + V ar(Ŷi) + σ2 (2.3.2)

where

Bias(Ŷi) = E(Ŷi − Yi)

V ar(Ŷi) = E(Ŷ 2
i ) − E(Ŷi)2

σ2 represents the irreducible error variance and can also be seen as a lower
bound on the expected error on unseen testing sets

Proof. E(Yi − Ŷi)2=

E(Y 2
i + Ŷ 2

i − 2 · Yi · Ŷi) = E(Y 2
i ) + E(Ŷ 2

i ) − 2 · E(Yi · Ŷi)=

V ar(Yi) + E(Yi)2 + V ar(Ŷi) + E(Ŷi)2 − 2 · E(Yi · Ŷi)=
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V ar(Yi) + V ar(Ŷi) + (E(Y 2
i ) + E(Ŷi)2 − 2 · E(Yi · Ŷi))=

σ2
Yi

+ V ar(Ŷi) + Bias(Ŷi)2

�

As a model increases in complexity it can better adapt to the data presented
in the training set, thus increasing variance but decreasing bias. On the other
hand, a less complex model is less adapted to the training data, producing less
variance, although increasing bias. Thus, high variance produces overfitting while
high bias produces underfitting. The goal is to determine an intermediate model
complexity that gives minimum expected test error while producing results within
a reasonable computation time.

When it comes to competitive neural networks, however, we are not modeling
a predictive relationship but rather applying a neural network approach to clus-
tering using a set of synaptic weights. The synaptic weights can be seen as point
estimators for the input vectors contained by their corresponding neurons. In
the case of unsupervised self-organizing maps the synaptic weight vectors, mi(x)

can be seen as estimators for vectors Xi and in the case of supervised SOMs
(mi(x), mi(y)) are estimators for (Xi, Yi).

Drawing an analogy to the previous definition of bias variance trade off, in
the case of competitive learning algorithms, the inputs are the Xi, the outputs
are the best matching synaptic weight vectors mi(x) and the error functional can
be defined as,

Err = E(Xij − mi(x)j)2 = Bias(X2
ij) + V ar(mi(x)j) + σ2

Xi

for m-dimensional vectors Xi and mi(x) and j = 1, ..., m.

For supervised learning we add the additional term:

Err = E(Yi − mi(y))2 = Bias(Y 2
i ) + V ar(mi(y)) + σ2

Yi

In both supervised and unsupervised context the balance between bias and
variance for self-organizing maps is one that cannot be tackled from a theoretical
standpoint due to the fact that there is no closed form that relates the error to the
the tuning parameters of the model. However, empirical tests can be conducted
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to determine the effect of varying tuning parameters on both the training and
testing error, thereby measuring the trade off between variance and bias.

2.3.1. Cross-Validation

The method that I plan to use to control for overfitting is that of cross valida-
tion. Cross validation is a technique used to estimate the expected out of sample
error Err = E(Errτ ). Cross validation consists of partitioning a data set into
k roughly equal sized groups, withhold one group and then fit the model to the
points belonging to the remaining k −1 groups. Following this, testing is done on
the withheld group and a loss function computed. This process is then repeated
until all k groups have been tested on and the loss function is averaged over the
test sets.

Mathematically, let Ŷ −k denote the fitted function, computed with the kth
part of the data removed. The cross validated prediction error can then be de-
fined as:

Definition 2.3.2.

CV (fhat) = 1/N
N∑

i=1
L(Yi, Ŷ −k) (2.3.3)

In the context of competitive neural networks the loss is between the input
vectors and best matching synaptic vectors. The neighborhood function, hj,i(x)

as a tuning parameter, can be made to vary to determine its effects on the cross-
validation error. Additionally, the number of neurons, ψ, being a tuning parame-
ter can be also made to vary to determine its effects on the cross-validation error.
We can therefore define the testing error which we are interesting in minimizing,
in relation to the training error as:

Definition 2.3.3.

CV (fhat, hj,i(x), ψ) = 1/N
N∑

i=1
L(Yi, Ŷ −k(hj,i(x), ψ)) (2.3.4)

By varying the number of neurons as well as the neighborhood function for
a fixed number of training and testing vectors, we can then observe an empirical
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representation of the training error in relation to the testing error, giving an idea
of the effect the tuning parameters have on over and under fitting.
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Chapter 3

FORECASTING

Forecasting time series has been a topic that has been explored using many dif-
ferent techniques and approaches. The process of forecasting time series involves
the use of historical data in order to build a model that can predict future obser-
vations. My study will focus specifically on one-step ahead forecasting, meaning,
building models that predict one time step into the future.

Definition 3.0.1.

Given a stochastic process X(ω, t) defined at times t1, t2, ..., tn:

{X(t1), X(t2), ..., X(tn)}
The one-step ahead forecast of the process at time tn+1 can be defined as

X̂(tn+1) = Eω(X(tn+1)|{X(t1), X(t2), ..., X(tn)}). (3.0.1)

In this chapter, I will begin by presenting forecasting using the ARIMA model.
The ARIMA model is one of the most commonly used time series models used
in forecasting future values of a series. For this reason, I will present the manner
in which it is implemented, starting with an explanation of the minimum mean
square error approach to estimate the parameters. Additionally, I will present the
KPSS test, which is used to determine the optimal amount of times differencing
is required to negate the effects of homogeneous non-stationarity. Additionally, I
will present the AIC criterion, which is used to compare several ARIMA models
with varying levels of the parameters p and q in order to chose the most robust
model. Following this, I will present an alternative approach to time series pre-
diction, the use of neural networks, specifically the self-organizing map.



The use of self-organizing maps in time series prediction can be seen as a cross-
over of function approximation and vector quantization. By applying the use of
the self-organizing map, which was originally designed as a vector quantization
algorithm to time series prediction, which can be seen as a function approxima-
tion task, we are venturing into a domain that has been scarcely explored. The
main advantages of using vector quantization algorithms in time series prediction
mainly revolve around the fact that there is no need to specify any distributional
assumptions about the underlying data. That being said, there are certainly fur-
ther advantages to using the self-organizing map in time series prediction as well.

Firstly, referring to the properties of the map presented in section 2.2, a
self-organizing map is a non-linear, topologically preserving mapping from a con-
tinuous vector-valued input space η to a discrete space of synaptic weight vectors
α. The probability distribution of the weight vectors can thus be seen as match-
ing the probability distribution of the corresponding vectors in the input space.
Therefore, for vectors Xin(t) =< X(t), X(t − 1), ..., X(t − h) >, t = 1, ..., n be-
longing to cluster i, F (mi(x)) ≈ F (Xin(t)) ≈ F (Xin(t + h)) ≈ ... for X ∈ η

for all h ∈ R such that Xin(t + h) belongs to cluster i. Referring to the fea-
ture selection property, which according to Haykin (1999) is a culmination of the
previous properties, the self-organizing map can essentially be seen as detecting
regions in the input space, η, where a time series possesses a similar underlying
distribution. Following this, the SOM approximates the value of this distribution
function through the topology of the map as well as the values of the synap-
tic weight vectors, mi(x), which can in turn be used together with a similarity
measure, for forecasting. In this sense, the clusters represent localized station-
ary models which can then be independently used during the testing phase to
determine the synaptic weight vector that best represents an out-of-sample se-
ries. An approach such as the X-Y fused SOM can then be used to create an
additional mapping from the X component of synaptic weight vectors mi(x) in
the X space to the Y component of synaptic weight vectors mi(y) in the Y space.
mi(y), in turn, is assumed to have a marginal probability distribution approxi-
mating that of Y out(t) = X(t + 1) and therefore the following estimate can be
made: mi(y) = X̂(t + 1). In addition to this, the self-organizing map offers tuning
parameters which can be adjusted based on the nature and scope of the data,
namely the learning rate α(t), the neighborhood function, hi(x)j(t) and the radius
σ(t).
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Although the self-organizing map was originally designed as an unsupervised
machine learning algorithm, several attempts have been made to implement it as
a supervised variant in time series prediction. I will present the Vector-Quantized
Temporal Associative Memory model (VQTAM) in its original implementation
as well as the Double Vector Quantization model. Following this, I will show how
an X-Y fused SOM is a more generalized model of the VQTAM that should yield
improved results and propose its use for time series prediction over the former.

3.1. Maximum Likelihood Forecast

The maximum likelihood forecast is an approach to estimating the parameters
φp(B) and θq(B) of the ARIMA model. In order to understand this approach, a
definition must be established.

Definition 3.1.1. An ARIMA process, φp(B)(1 − B)dX(t) = θq(B)ε(t), is said
to be invertible if it can be represented in the form:

π(B)X(t) = ε(t)

where π(B) = 1 − ∑∞
j=1 πjB

j = φ(B)(1 − B)d/θ(B) and ∑∞
j=1 |πj| < ∞.

We refer to Wei (2006) for a proof of the fact that an ARIMA time series
model is invertible if the roots of θq(B) = 0 lie outside of the unit circle. Under
this condition, we can therefore represent the ARIMA model as:

X(t) = ∑∞
j=1 πjX(t − j) + ε(t).

This representation is crucial in order to be able to make forecasts, since the
current value of a time series represented by an ARIMA model can be written as
a linear combination of past observations with an additive error term. Addition-
ally, for an invertible process, the πj weights converge and one could simply take
the most recent observations that account for a desired degree of accuracy of the
model.

For building a one step ahead forecast we can use the model:
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X(t + 1) = ∑∞
j=1 πjX(t + 1 − j) + ε(t + 1),

where ε(t + 1) ∼ N(0, σ2).

Now, once invertability has been established, to estimate the parameters,
φp(B) and θq(B) in an ARIMA model, we adopt a slightly different representa-
tion:

X(t + 1) = Ψ1X(t) + ... + Ψ(p + d)X(t + 1 − p − d) + ε(t + 1) − θ1ε(t) − ... −
θqε(t + 1 − q).

Taking ε̂(t + 1) = 0 and ε(n) = ε̂(n) = E(ε(n)|X1, ..., Xt) for n ≤ t we obtain:

X̂(t+1) = Ψ1X(t)+ ...+Ψ(p+d)X(t+1−p−d)−θ1ε̂(t)− ...−θq ε̂(t+1−q),

where Ψ(B) = φ(B)(1 − B)d.

With a representation that allows us to calculate the one-step ahead forecast
of an ARIMA (p,d,q) model, the next step would be to determine the values of
the unknown parameters in the model, namely, σ2, θ and φ. The method I use
in my study is that of the maximum likelihood estimation.

Definition 3.1.2. For ε(t) ∼ N(0, σ2), we choose as σ2, θ and ψ those values
that maximize the joint gaussian density subject to the constraints of the param-
eters, also known as the likelihood function:

L(σ2, θ, φ) = fσ2,θ,φ(X(1), X(2), ..., X(N)).

The representation of the likelihood function, as well as the methods used in
its maximization are topics of discussion in their own regard. We refer the reader
to Dufour (2008) for a detailed discussion on the topic.

Now, when it comes to fitting an ARIMA model to time series data, we now
present different approaches to determining the optimal parameters of p,d and q.

3.1.1. KPSS Test

The KPSS test, named after Kwiatkowski, Phillips, Schmidt and Shin, is a
test to determine the minimal value of d necessary to incorporate into an ARIMA
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model in order to negate the effects of homogeneous non-stationarity. We begin
by fitting the following model to the data:

X(t) = ξ(t) + ε(t),

where ε(t) is stationary and ξ(t) = ξ(t − 1) + v(t) and v(t) ∼ IID(0, σ2
v).

We use the following as null and alternative hypothesis:

H0 : σ2
v = 0

HA : σ2
v > 0

We note that under the null hypothesis σ2
v = 0, ξ(t) = ξ(0), X(t) = ξ(0)+ε(t)

and Xt is stationary.

In applying this test to a time series at time T , we begin by fitting the fol-
lowing estimated model using linear regression: Xt = ξ̂(t) + ε̂(t).

Using the following test statistic to determine whether or not we should reject
the null hypothesis:

KPSS = 1/T 2 ·
T∑

t=1
S2

t /σ̂2,

where St = ∑t
s=1 ε̂s and σ̂2 is an estimator of the variance of ε̂(t).

The test determines for a given significance level, the smallest integer value
of d needed to not reject H0 and applies it on the time series data. In my study,
I use a significance level of α=0.05.

3.1.2. AIC Criteria

The Akaike information criterion (AIC) is a measure of strength of a given
model. We begin by establishing its definition.

Definition 3.1.3. AIC = −2log(L) + 2k,

where k is the number of free parameters to be estimated

and L is the previously defined likelihood of the model.
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In the case of an ARIMA model, the number of free parameters to estimate
corresponds to p θ parameters q φ parameters and σ2, for a total of p+q+1 pa-
rameters. The AIC criteria therefore becomes:

AIC = −2log(L) + 2(p + q + 1)

In my study I will apply ARIMA models to my data with a grid of values for
p and q, each varying from 0 to 5 and chose that with the lowest value of the AIC
criteria.

3.2. VQTAM Model

The Vector-Quantized Temporal Associative Memory model proposed by Bar-
reto (2007) is a method for predicting the one-step ahead return of a time series
using the self-organizing map algorithm. This method was devised as a general-
ization to time-series data of a supervised SOM-based associative memory tech-
nique used for static data in the domain of robotics, also implemented by Barreto
(2003.) The method first involves creating N -p regressor vectors, each with p

consecutive observations of a given time series. The vectors should be formed by
moving a time window by one time step for each consecutively observed vector.
In other words, the N -p vectors formed can be denoted:

< X(p), ..., X(1) >

< X(p + 1), ..., X(2) >

...

< X(N − 1)...X(N − p) > .

These vectors are denoted the input vectors Xin(t) t = p..., N −1 in the appli-
cation of our model. Additionally, for each vector the one-step ahead observation
X(t+1) is denoted the associated output value Y out(t) . We can therefore denote
the vectors that we are clustering as well as the synaptic weight vector for neuron
i as follows:

X(t) = (Xin(t) Y out(t))

m(t) = (mi(x)(t) mi(y)(t)).

The concept behind using the VQTAM model in time series prediction is first
using the input vector Xin(t) in determining the best matching weight. In other
words the best matching synaptic weight is chosen as the vector mi(x)(t) with the
smallest Euclidean distance to Xin(t). However for updating the weights both
the input and associated output vectors are used,
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mi(x)(t + 1) = mi(x)(t) + α(t) · hi(x)j(t) · (Xin(t) − mi(x)(t)) (3.2.1)

mi(y)(t + 1) = mi(y)(t) + α(t) · hi(y)j(t) · (Y out(t) − mi(y)(t)). (3.2.2)

In order to perform a one-step ahead prediction for testing vector Xin(t), the
parameter vector mi(x) with the smallest Euclidean distance is computed and the
output component mi(y) is used as the one-step ahead prediction. In other words,
for an input vector Xin(t) the one-step ahead prediction is:

Ŷ out(t) = X̂(t + 1) = mi(y).

It is important to note here that in the VQTAM model, the flow of information
is directed from the X-map towards the Y -map. In other words, the information
present in the output Y out(t) is not taken explicitly into account during the for-
mation process of the driving X-map. The X-Y fused SOM is almost identical to
the VQTAM model but offers the additional benefit that a fused similarity mea-
sure between the input and output variables drives the updating of the synaptic
weights. The relative weight γ also permits the adjustment of this measure based
on the dimension of the input vectors. In this model, during the testing phase,
the mapping between mi(x) and mi(y) for a testing vector Xin(t) is truly driven
by the relationship between the independent and dependent variables. For this
reason, I decide to use the more sophisticated X-Y fused SOM for time series
forecasting in my results and compare it to the existing methods presented in
this chapter.

3.3. Rule Extraction

As mentioned previously the probability distribution of the synaptic weight
vectors, m(t) = (mi(x)(t), mi(y)(t)) can be seen as approximating the probability
distribution of the associated vectors X(t) = (Xin(t) Y out(t)). For this reason, the
components of the weight vectors mi(x)(t) should approximate the components of
associated input vectors Xin(t). I therefore present two additional methods that
can be used to determine the degree to which the probability distribution of the
weight vectors approximates the probability distribution of the inputs.

The concepts here are based on the work of Barreto (2007), who attempted to
build rule extraction procedures for determining intervals for the one-step ahead
forecast.
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3.3.1. Min/Max Method

The min-max method for determining whether or not a prediction is reliable
is as follows:

(1) First the SOM model is trained using the input vectors Xin(t) =< X(t), ..., X(t−
p + 1) > and the associated output vectors Y out(t) = X(t + 1).

(2) We denote χi the set of all input vectors mapped to neuron i and we
denote the jth such vector Xin

j =< Xj1, ..., Xjn > .

(3) For each set χi we denote

Xl(min) = min(Xl) ∀j l = 1, ..., n

Xl(max) = max(Xl) ∀j l = 1, ..., n

(4) Now, for each input vector in the testing set, we determine which neu-
ron i is closest based on Euclidean distance and denote the testing vector
Xtest

j =< X test
j1 , ..., X test

jn >. The one-step ahead return X̂(t + 1) = mi(y)

is then reliable if all the following conditions hold:

X1(min) < X test
j1 < X1(max)

X2(min) < X test
j2 < X2(max)

...

Xn(min) < X test
jn < Xn(max).

3.3.2. Confidence Interval Method

The confidence interval method that I propose for determining reliable predic-
tions is similar to the min-max method but incorporates the distribution of the
component vectors in each cluster of the self-organizing map. This method offers
additional sophistication to the method of Barreto (2007) in that a confidence
interval is a more accurate representation of the distribution of the components
of Xin(t) over a minimum and maximum, which can be heavily influenced by
outliers.

The confidence interval method for determining whether or not a prediction
is reliable is as follows:

(1) First the SOM model is trained using the input vectors Xin(t) =< X(t), ..., X(t−
p + 1) > and the associated output vectors Y out(t) = X(t + 1).
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(2) We denote χi the set of all input vectors mapped to neuron i and we
denote the jth such vector Xin

j =< Xj1, ..., Xjn >.
(3) For each set χi we denote

Xl(lowerbound) = X̄l − t0.975 ∗ sl/
√

mi ∀j l = 1, ..., n

Xl(upperbound) = X̄l + t0.975 ∗ sl/
√

mi ∀j l = 1, ..., n

where X̄l and sl represent the mean and standard deviation of component
vector l in cluster i,
mi is the number of vectors in cluster i,
tα represents the α percentile of the student t distribution.

(4) Now, for each input vector in the testing set, we determine which neu-
ron i is closest based on Euclidean distance and denote the testing vector
Xtest

j =< X test
j1 , ..., X test

jn >. The one-step ahead return X̂(t + 1) = mi(y)

is then reliable if all the following conditions hold:

Xl(lowerbound) < X test
j1 < X1(upperbound)

Xl(lowerbound) < X test
j2 < X2(upperbound)

...

Xl(lowerbound) < X test
jn < Xn(upperbound).

3.4. Double Vector Quantization Model

The Double vector quantization method proposed by Simon et al. (2004) is an
implementation of the self-organizing map algorithm in which two separate SOM
maps are trained and combined in order to produce a forecast. The concept was
developped in order to produce long term forecasts, although in our implemen-
tation, we will use it to produce the one-step ahead forecast. Again, the method
starts by creating N -p regressor vectors, each with p consecutive observations of
a given time series.

< X(p), ..., X(1) >

< X(p + 1), ..., X(2) >

...

< X(N − 1), ..., X(N − p) > .

Following this, we create deformations, which consists of subtracting the com-
ponents of consecutive vectors. The deformation associated with the vector Xin(t)
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is:
ΔX(t) = Xin(t + 1) − Xin(t)

Following this, two separate SOM algorithms are trained, one on the N -p
regressor vectors and the other on the associated deformations, each with its own
set of neurons. Once this is done, the conditional transition probability matrix
between cluster i in the regressor vector space and cluster j in the deformation
vector space is calculated, based on the following definition:

P (j|i) = P (ΔX(t) ∈ mj|X(t) ∈ mi) ∀j.

In other words, the conditional transition probability matrix for a vector
Xin(t) mapped to neuron i consists of counting all the associated deformation
vectors mapped to all neurons j and dividing it by the total number of associated
regressor vectors in neuron i.

Now, in order to compute the one-step ahead prediction, the following steps
are conducted:

(1) For a testing vector X(t), the parameter vector mi(x)(t) with the smallest
Euclidean distance is computed.

(2) Choose a random deformation mj (according to the conditional distribu-
tion P (j|i(x)) .

(3) Add the deformation to X(t), resulting in

X̂(t + 1) = X(t) + mj(t).

The one step-ahead prediction is then the first component of that vector.

This method is based on exploiting the mean-reverting nature between a re-
turn and a variance. The idea is that the probability of a large deformation is
high when the initial return is low and vice-versa. By clustering the deformations
separately from the returns, the SOM hopes to capture that mean-reverting na-
ture.

Theoretically, it would also be possible to predict an arbitrary time-horizon
into the future with the same initial testing vector by repeating the procedure
and each time replacing the testing vector with the one-step ahead prediction.
For this, a Monte Carlo procedure would have to be used to draw from the
the conditional transition probability matrix at each iteration. Additionally, the
process would be repeated a significant number of times with the same initial
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testing vector and the results averaged. It would then even be possible to build
a distribution of returns for a given initial testing vector. Kohonen and Deboek
(2000) did exactly this with both short and long interest rate structures. However,
my study will focus primarily on one-step ahead predictions since it would be
comparable to the other methods presented.

3.5. Out of Sample Tests

Now, an important topic in forecasting is the manner in which the data are
split between the training set and the testing set. It is important that the data
set used to estimate the parameters of the model, the training set, be disjoint
from the data set used to assess the accuracy of the model. Otherwise, the model
is simply memorizing training data as opposed to learning to generalize from it,
as previously discussed in the context of overfitting. When it comes to forecast-
ing, since we want to predict future values of a given time series, the k-fold cross
validation method discussed in section 2.3 cannot be applied since the vectors in
testing set must be drawn from a later time period than the vectors used to train
the model. There are various ways which can be implemented to train and test
a model applied to a time series and we refer the reader to Tashman (2000) for
an in depth analysis of the various methods available to separate a data set into
a training and testing set as well as various techniques used for updating and
recalibrating the model. In my study, I will borrow the method addressed in this
paper titled rolling window forecasting.

Definition 3.5.1. The rolling window method of forecasting involves training a
model on X(t),X(2),...,X(t + M − 1) and testing the model on X(t + M) for
t = 1, .., N − M,

where N denotes the size of the data set and

M denotes the number of points desired in the training set.

This method essentially involves first making a one-step ahead forecast us-
ing a given initial portion of data, calculating the forecasting error by com-
paring it with the actual one-step ahead value. Following this, the window is
rolled one step forward to reestimate the parameters of the model and the pro-
cess is repeated until the end of the data set. Since the self-organizing map
involves vectorizing the data, each X(t) in the previous definition is replaced by
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X in(t) =< X(t), X(t − 1), ..., X(t − p + 1) > and t = p, ..., N − M for vectors of
length p.

One setback that the rolling origin forecast for one-step ahead predictions
has is it leaves the model susceptible to so called data snooping biases. Since
we are vectorizing the input data, some of the values that were used to train
the model are used in the one-step ahead forecast. The details of this phenom-
enon are explained in detail in Chapados (2009.) However, in order to maintain
comparability between the ARIMA and the self-organizing map forecasts, I leave
explorations of this issue for further studies.

3.6. Error Criterion

Once a model has been trained, a sequence of one-step ahead estimates is
computed, X̂(t + 1). This sequence is then compared to the actual, known, one-
step ahead values, X(t+1), using an error criterion. The choice of error criterion
is important as its comparison across multiple forecasting methods as well as var-
ious time series will permit the identification of optimal models to retain. One
type of error that I will be using is an error measured in percentage terms, a scale
independent measure, called the Mean Absolute Percentage Error.

Definition 3.6.1. The mean absolute percentage error (MAPE) can be defined
as:

MAPE =
N−M+1∑
t′=t+1

|(X(t′) − X̂(t′))/X(t′)| ∗ (100/N − M − t + 1),

where N is the number of terms in the testing set.

One disadvantage that the MAPE has is that positive error terms are penal-
ized more heavily than the negative error terms. For this reason, an additional
error criterion that I plan on using is that of the Mean Squared Error.

Definition 3.6.2. The Mean Squared Error (MSE) can be defined as:

MSE =
N−M+1∑
t′=t+1

(X(t′) − X̂(t′))2/(N − M − t + 1).

The Mean Square Error is an important criteria in the evaluation of the out
of sample forecast since the training phase of the self-organizing map involves
minimizing the euclidean distance between the inputs Xi and synaptic weight
vectors mjX

in addition to Yi and mjY
for the X-Y fused SOM. Since minimizing
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euclidean distance is equivalent to minimizing the MSE, the latter is an excellent
indicator of the out of sample generalization capabilities of the SOM.
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Chapter 4

ANALYSIS OF CROSS SECTIONAL DATA

We begin our analysis of cross-sectional data by analyzing the limit order book of
Apple stock trading on the NASDAQ exchange for the trading day of 2012-06-21
between the hours of 9:30 and 16:00 . The limit order book data was based on the
official NASDAQ Historical TotalView-ITCH data which supplies information on
limit order events that change the state of the order book. LOBSTER in turn,
provides reconstructed limit order book data based on this feed that shows the
evolution of the order book throughout the trading day up to a specified depth.
Specifically, the data that is provided are the evolution of the limit order book
up to a depth of ten on the bid and ask sides as well as information on the event
causing an update of the order book. All events are time stamped to seconds
after midnight, with millisecond decimal precision.

The types of events that can cause an update of the limit order book are:

• submission of a new bid order at price β and volume Vβ or submission of
a new ask order at price α and volume Vα

• cancellation of a bid or ask limit order
• execution of a bid or ask limit order through the mechanics discussed in

section 1.5.

After each update of the limit order book, data are provided, at each level and
on both the bid and ask sides, of the price and volume of unexecuted trades. In
my analysis, I will only analyze the state of the limit order book after an update
caused by an order execution. This will give insight into the behavior of market
participants between executions, as far as submitting and removing limit orders
during these intervals. Using the terminology discussed in section 1.5, the volume
at each depth i ∈ 1, ..., 10 can be defined as follows:



Definition 4.0.1.
For a bid limit order,

BVi =
∑

ni∈Z

Vβni
(4.0.1)

such that βni1 = βni2 = ... & βni
< βni−1 < βni−2 ...

For a sell limit order

AVi =
∑
n∈Z

Vαni
(4.0.2)

such that αni1 = αni2 = ... & αni
> αni−1 > αni−2 ...

My goal will be to study market participants behavior through the volume
imbalance between the bid and ask sides. For this reason, I define the variable:

Definition 4.0.2.

Bid Ask V olume Imbalancei(t) = log(AVi(t)/BVi(t)) for i = 1, ..., 4 (4.0.3)

Additionally, in my study, I will be interested in executions of market orders,
which show up as a series of executions of limit orders that take place within
small time windows of each other. For this reason, I define a series of blocks
in the limit order book, which are comprised only of limit order executions, on
both the bid and ask sides, that happen within 100 milliseconds of each other.
As soon as a limit order is executed within more than 100 milliseconds of the
previous execution, it marks the beginning of the following block. I assume that
within each block there are only complete market order executions. The bid-ask
volume imbalances are then taken exclusively after the last limit order execution
of a block. Using this structure I then define the following variable:
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Definition 4.0.3. Letting tBn(1), ..., tBn(T ) denote the times of limit order exe-
cutions in block Bn for n ∈ Z

Execution Price Direction=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, for αE(tBn(1)) > α1(tBn−1(T )) (βE(tBn(1)) > β1(tBn−1(T )))
0, for αE(tBn(1)) = α1(tBn−1(T )) (βE(tBn(1)) = β1(tBn−1(T )))
−1, for αE(tBn(1)) < α1(tBn−1(T )) (βE(tBn(1)) < β1(tBn−1(T )))

(4.0.4)

where αE(t) (βE(t)) denotes the execution price at time t of a sell (buy) limit
order.

The total number of vectors after the definition of such a structure is 10 329.
We then proceed by separating these vectors into three equal groups of size 3443.
The first two groups will be used to determine the optimal tuning parameters
for the self-organizing map through cross validation. Using these parameters, the
remaining group will be used to train the self-organizing map, which can then be
used for testing on a live basis to develop trading strategies. The reason I define
such a structure is that in the case of competitive neural networks, the number of
neurons is itself a tuning parameter. In my study, I consider the optimal number
of neurons to be largely dependent on the number of training vectors, and by
performing 2-fold cross validation on 2/3 of the data vectors, we end up finding
the optimal number of neurons for 1/3 of the data vectors. Since the neighbor-
hood function hj,i(x), is also a tuning parameter, I proceed by performing 2-fold
cross validation on data vectors from 9:30 to 14:21 (6446 points) using both the
Gaussian and Bubble neighborhood functions using grid sizes that vary from 5*5
to 15*15. Then, for both neighborhood functions, I present the evolution of the
training error and validation error, as measured by mean square error from the
trained vectors Xi to their closest synaptic weight vectors mi(x) for increasing
map sizes. I also present additional parameters that were used to train the SOM
that were simply taken as their defaults in the kohonen package in R. rlen is de-
fined as the number of times the full data set X1, .., Xn is presented to the network.

In table 4.1 t = 1, ..., rlen and σ(0) is taken to be a value that covers 2/3 of all
map units. Additionally, when t′ is reached such that σ(t′) < 1, only the winning
unit gets updated.
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Table 4.1. Fixed Parameters for SOM

Parameters Values
rlen 100
α(t) 0.05-0.04/(rlen-1)*(t/N� -1)
σ(t) σ(0) -σ(0)/(rlen-1)*(t/N� -1)
mj(0) Initialized through random sampling of Xi

Topology Hexagonal

Referring to figures 4.1 and 4.2, we note that validation curves for the k-means
and the SOM with a Bubble neighborhood function are quite similar. However,
figure 4.3 shows that a Gaussian neighborhood function has a significant impact
on the shape of the validation curve. This shows that applying a radius around the
winning neuron in the cooperative phase of training only has a significant impact
if a Gaussian weighting is applied to the neurons within this radius. In my study,
I am interested in selecting a grid size that reduces overfitting by minimizing the
distance between the training and validation errors whilst selecting a sufficient
number of neurons that keeps both these errors sufficiently low. For this reason, I
chose the Gaussian function as the optimal neighborhood function. Additionally,
we note that for map sizes larger than 10 · 10 the validation error still decreases
but by a slower rate than the training error. In order to optimize the computation
time, we limit our choice for the number of neurons to a 10 · 10 map size for 3443
vectors.

Figure 4.1. Validation curve for k-means
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Figure 4.2. Validation curve for the SOM with a Bubble neigh-
borhood function
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Figure 4.3. Validation curve for the SOM with a Gaussian neigh-
borhood function
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Now, we train the map using the remaining 3443 data vectors that represent
volume imbalances of the order book between 14:21 and 16:00 using the deter-
mined optimal tuning parameters.
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Referring to figure 4.4, we are able to study the convergence of the algorithm
as measured by the mean distance of the training vectors to the synaptic weight
vectors of their closest neurons, after each iteration. Figure 4.4 plots t* on the
x-axis and ∑n

i=1(d(Xi(t∗), mi(x))2/n on the y-axis where t∗ = 1, ..., rlen and the
distance function represents Euclidean distance.

In this context, an iteration t∗ is the presentation of the full data set, one
vector at a time, to the self-organizing map algorithm. Around the 80th itera-
tion, we note the error drops drastically and remains between 0.006 and 0.008,
indicating that 100 iterations is an optimal number of iterations for the size of
our data set as increasing this value will increase computation time, without sig-
nificant decreases to the error.

Following this, we draw our attention to figures 4.5 and 4.6 which are pre-
sented for visualization purposes. A major advantage of the self-organizing map
(and neural network clustering algorithms) is that is permits efficient and clear
representations of the states of its neurons after training is completed. The count
plot depicts the number of training vectors mapped to each neuron with a slid-
ing color scale and the codes plot depicts individual fan representations of the
magnitude of each variable in the synaptic weight vector, for each neuron. To-
gether, these plots enable us to obtain a visual representation of the underlying
distribution of the input vectors.

Figure 4.4. Progression of MSE with each iteration
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Figure 4.5. Magnitude of each variable in each neuron
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Figure 4.6. Number of training vectors mapped to each neuron
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Now, after training the self-organizing map, I proceed with hierarchical clus-
tering of the synaptic weight vectors in order obtain a smaller number of clusters,
each of which will be a unique representation of the the state of the limit order
book, as characterized by the bid ask volume imbalances. With this approach,
I am able to benefit from both the neural network approach to clustering of the
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SOM as well as the agglomerative approach of hierarchical clustering.

Figure 4.7 represents a dendrogram, which is a tree diagram used to illustrate
the arrangement of the clusters produced by hierarchical clustering. At the bot-
tom of the dendrogram we have the individual synaptic weight vectors. Through
the agglomerative clustering approach, the synaptic weight vectors are then com-
bined until one large cluster is formed, as represented by the top branch in the
dendrogram. The distance between merged clusters is monotone increasing with
the level of the merger and the height in the plot on the y-axis represents the
distance between two merged clusters. In my study, the complete linkage method
is used as a distance method, and the distance measure used in the complete link-
age method is Euclidean. I invite the reader to consult section 1.4 for a detailed
description of this method. Through visual analysis of figure 4.7, I chose to cut
the dendrogram at the height of 2, producing 4 clear clusters. In figure 4.8, we
also see a representation of the SOM neurons by these "superclusters" with the 4
superclusters given unique colors.

Figure 4.7. Dendrogram
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Figure 4.8. Supercluster representation of SOM map

Superclusters

Following the training of the SOM algorithm, the idea is that real time snap-
shots of the market, as defined by volume imbalances in the limit order book
following the execution of a market order, can be presented to the network for
testing, and the supercluster that it falls in gives insight into the current state of
the market. By studying the Execution Price Direction variable, we can obtain
insight into the manner in which volume will be added into the order book, on
both the bid and ask sides. This enables the development of strategies in which
a desired volume of stocks is obtained at the optimal price. In tables 4.2-4.5, I
present the frequency distribution of the variable Execution Price Direction for
both buy and sell limit orders, for all 4 superclusters. In figure 4.9, I then present
bar plots of the mean Bid Ask Volume Imbalances for all 4 superclusters.

Referring to tables 4.2 and 4.3, we begin by noting that P (Execution Price Direction =
1|BuyLO) is largest in the first supercluster with a value of 61.9% and P (Execution Price Direction =
−1|SellLO) is largest in the second supercluster with a value of 63.0%.

Drawing our attention to figure 4.9, we note that the first supercluster ex-
hibits the lowest mean values for all 4 levels of volume imbalances amongst the
superclusters. This indicates that when BVi(t) is much larger than AVi(t), mar-
ket participants are likely to submit bid limit orders at a price β > β1(t) in an
effort to have their orders executed in a timely manner and not be put at the end
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of a long queue.

Alternatively, referring to figure 4.9, we note that it is one of two superclusters
exhibiting a positive volume imbalance on the first level, the other one being the
fourth supercluster, as indicated by figure 4.9. This indicates that when AV1(t)
is much larger than BV1(t) , market participants are likely to submit ask limit
orders at a price α < α1(t). Similarly to the previous situation, this is likely
due to market participants submitting orders such that they end up executed in
a timely manner. Although, referring to 4.9, the fourth supercluster exhibits a
larger volume imbalance at the first level, despite P (Execution Price Direction =
−1|SellLO) being at the lower value of 55.3%, we note that there are simply less
training vectors that fall within this supercluster. Therefore, during the testing
phase the fourth supercluster should not guide any trading strategies.

Finally, referring to table 4.4 and figure 4.9, we note that in the third super-
cluster all four levels of the bid ask volume imbalance are negative, although larger
than those in supercluster 1. Appropriately, we note that P (Execution Price Direction =
1|BuyLO) is 57.2%, a value slightly less than the corresponding value in the first
supercluster.

Ideas for further research might involve modelling the time between the ex-
ecution of the last limit order in a block and the submission of volume into the
limit order book, separately for each supercluster. This would give insight into
the patterns of volume submission into the book between tBn−1(T ) and tBn(1).
One might imagine a starting point would be the application of a Poisson sto-
chastic process to model this time, which would give a market participant insight
not only into the manner in which volume is added but the time until it is added.
This would enable the developments of algorithms that submit opposing market
orders based on both the current state of the book and time to submission.
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Table 4.2. Frequencies-SuperCluster 1

Next Limit Order Execution
Sell Buy

Count Column N % Count Column N %
-1 103 48.1% 4 1.40%

PriceDirection 0 89 41.6% 102 36.7%
1 22 10.30% 172 61.90%
Total 214 100.0% 278 100.0%

Table 4.3. Frequencies-SuperCluster 2

Next Limit Order Execution
Sell Buy

Count Column N % Count Column N %
-1 617 63.00% 70 5.10%

PriceDirection 0 319 32.6% 549 40.00%
1 44 4.50% 754 54.90%
Total 980 100.0% 1373 100.0%

Table 4.4. Frequencies-SuperCluster 3

Next Limit Order Execution
Sell Buy

Count Column N % Count Column N %
-1 116 57.40% 7 2.3%

PriceDirection 0 67 33.20% 124 40.50%
1 19 9.40% 175 57.20%
Total 202 100.0% 306 100.0%

Table 4.5. Frequencies-SuperCluster 4

Next Limit Order Execution
Sell Buy

Count Column N % Count Column N %
-1 21 55.3% 5 9.6%

PriceDirection 0 16 42.10% 21 40.4%
1 1 2.60% 26 50.00%
Total 38 100.0% 52 100.0%
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Figure 4.9. Bid-Ask Volume Imbalance Bar Plots
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Now, referring to figure 4.10, we can also analyze the vectors representing
bid ask volume imbalances based on the time of day that their corresponding
superclusters occurred in. In the figure, we see the first 100 vectors in the testing
set, which represent order executions between 14:21 and 14:25 color coded by the
superclusters to which they belong. The y-axis represents the execution price
of the trade that caused the update of the limit order book at time t and the
x-axis, an index corresponding to an ordering in time of the last executed trade
of a block. This representation can give insight into the relationship between
the execution price of a stock and the evolution of state of the bid-ask volume
imbalance throughout the day.

Another type of representation of the superclusters is through principal com-
ponent analysis. In order to work with unitless measures and the correlation
matrix of the original variables, we again standardize the bid-ask volume imbal-
ances within each supercluster with the respective means and variances. Then, in
the following figures, I use principal component analysis to graphically represent
the bid ask volume imbalance vectors in each supercluster. Figure 4.11 represents
the variance (y-axis) associated with each of the principal components (x-axis).

60



To better illustrate the data, we choose to retain the first two PCs for each su-
percluster, which we note represents a sufficient amount of explained variance. In
figure 4.12, I then present a two dimensional plot of the bid ask volume imbalance
vectors projected on to a plane defined by the first two principal components. On
the x-axis, we see the first principal component as well the percentage of ex-
plained variance that it represents and on the y-axis we see the same for the
second principal component. Additionally, the planes embedded on each of prin-
cipal component planes represent a projection of the axes in the original, higher
dimensional data. In other words, given PCk = αk1 ∗ BAV I1 + .. + αk4 ∗ BAV I4

for k = 1, 2 the vectors representing bid ask volume imbalance in the plane can
be represented as:

BAVIi = α1i ∗ Ix + α2i ∗ Iy

where Ix and Iy are unit vectors pointing in the direction of the X and Y planes
respectively.

This type of representation can be used in conjunction with tables 4.2 to 4.5 to
develop trading strategies. As previously mentioned, principal component analy-
sis can be seen as a linear dimensionality reduction technique. The advantage of
applying principal component analysis after the application of the self-organizing

Figure 4.10. Price vs Time based on SC representation of BAVI
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map is that the latter has the ability of mapping high-dimensional non-linear
data. In other words, data in n-dimensional space that cannot be projected onto
a hyperplane in a lower dimensional space. Since the underlying relationship of
bid ask volume imbalances at four separate levels is assumed to be non-linear,
we make use of the topological ordering property of the SOM to create clusters
with similar topologies before applying principal component analysis within these
clusters. While it is true that the data within the clusters is not expected to be
distributed over a plane and hence not ideal to be projected onto a lower di-
mensional hyperplane, less complex topographical relationships in input data for
principal component analysis still produces clearer representations of the output.
Additionally, the superclusters represent states of the limit order book and our
goal is to obtain a visualization of individual observations within each superclus-
ter.

Further research into dimensionality reduction in limit orders can entail appli-
cation of principal component analysis and the SOM on the original data vectors
and comparison of the output would give insight into the topographical relation-
ships in the data. I refer to Annas et al. (2007) for a comparative study between
the self-organizing map and principal component analysis in dimensionality re-
duction. In my study, Figure 4.12 can be used as a visualization tool that gives
insight into the relative similarity of bid ask volume imbalances within each su-
percluster. Since principal components are simply the direction in space along
which projections of the data have the largest variance it is an excellent tool for
outlier detection.

In addition to being used as a visualization tool, using this strategy, regression
models can be developped in which the principal components can be used as
regressors for a desired dependent variable i.e Yi = β0+β1∗PC1+...+β4∗PC4+εi

with the advantage that multicollinearity between the predictors, an assumption
of multiple regression, can be circumvented. This holds since principal component
analysis is essentially an orthogonal transformation in which Cov(PCi, PCj) = 0
by definition.
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Figure 4.11. Variance of Principal Components
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Figure 4.12. Projection on first 2 PCs
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Chapter 5

ANALYSIS OF SEQUENTIAL DATA

We now proceed with the analysis of time series data for both the Dow Jones
Industrial Average Index as well as Apple stock. The Dow Jones is an index that
follows 30 large publicly owned companies based in the United States. The value
of the Dow is the sum of the component prices divided by a factor which changes
whenever one of the component stocks has a stock split or stock dividend. In
my analysis, I take 20 years worth of the daily closing price for the Dow index,
between 1997-01-20 and 2017-01-20. The daily closing price consists of incorpo-
rating the last daily execution price of the constituent stocks. The prices that I
use in my analysis for Apple data are the limit order execution prices of Apple
stock, again for the trading day of June 21, 2012 between the hours of 9:30 and
16:00. Specifically I take αE(tBn(T )) (βE(tBn(T ))), the limit order execution price
that caused the last update in a market order block, whether the execution was
that of a bid or ask limit order. In figure 4.10, I represented the first such 100
prices for the testing set used in that context.

In our analysis of cross-sectional data, it was determined that the optimal
dimensions to train a self-organizing map for 3443 vectors was a 10 · 10 map
with a Gaussian neighborhood function. For this reason, in this section, I use a
rolling window approach with M=3443 data vectors to train a 10 · 10 map with
a Gaussian neighborhood function at every iteration for both the Dow Jones and
Apple data. Although here we analyze a sequential data set pertaining to time
series of financial product prices as opposed to snapshots of the state of the limit
order book, we again assume that the number of training vectors is the main de-
termining factor as to the optimal number of neurons. In fields outside of finance
a driving factor would be an insight into the nature of the data that would give
an idea as to the number of clusters that should form. Since we possess no insight
as to the number of stationary clusters in a given time series we make use of the



previously determined results.

The value of λ that I use in the training of the X-Y fused SOM is a constant 0.5
and I incorporate a lag of 5 for the independent variable into the model. In other
words, my objective here is to determine X̂(t + 1) = Eω(X(t + 1)|{X(t), X(t −
1), ..., X(t − 4)}), which for the X-Y fused SOM is based on a fused similarity
measure of:

D = 0.5∗|| < X(t), .., X(t−4) > − < mjX(t) , .., mjX(t−4) > ||+0.5∗||X(t+1)−mjX(t+1) ||.
I adopt these values to simplify the model in order to reduce the computation

time as the rolling window approach comes at a high computational cost. Further
directions that research in this field can be taken in is the determination of the
optimal values of γ as well the lag to apply on the independent variables. Another
direction for further research is in improving the quality of the local models
through the mapping between the mi(x) and mi(y). By building local time series
models into the synaptic weights, a greater predictive accuracy can be achieved
since this would combine the unsupervised clustering properties of the SOM with
the accuracy that a supervised model would bring in reducing the error. It is also
to note that the prices for each lag here are scaled by their respective means and
variances, as this was shown empirically to produce better results. The remaining
parameters of the self-organizing map are set to their default values, as specified
in the previous section.
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5.1. Dow Jones Industrial Average Index

First we note that the analysis of the Dow Jones Industrial Average Index
through the use of a rolling window approach on 3443 training vectors yielded 1586
values of X̂(t + 1) with the min/max method producing 1335 reliable predictions
and the confidence interval method yielding only 17 reliable predictions. Referring
to table 5.1, we note that the MSE shows that the ARIMA model exhibits the
lowest testing error. However, the X-Y fused SOM, after application of the
confidence interval extraction rule, actually lowers the error to below that of
the ARIMA. Although, through the analysis of the MAPE metric, the ARIMA
model performs slightly better than the others even through the implementation
of the min/max and confidence interval extraction rule methods for the X-Y fused
SOM. It is important to remember, however, that my goal in the application
of these models was to model non stationary time series data. The ARIMA
model actually corrects for non-stationarity through a differencing operator after
conducting the KPSS test while the self-organizing map algorithm performs no
such correction. My goal is to show that through the implementation of the SOM,
localized stationary clusters are produced. Since the error for the ARIMA model
is not far off from the errors produced by the SOM algorithms, to a certain extent,
my hypothesis is verified. It is also worth noting that the min/max and confidence
interval methods lower the forecasting error through both the MAPE and MSE
criteria. Although, it may seem impractical that over 20 years of daily data, only
17 daily forecasts were deemed reliable by the confidence interval method. It
is for this reason, as robust as this method might be, its practical significance
becomes apparent in its implementation on high frequency data, as presented in
the following section.

Table 5.1. Error Criteria-Dow Jones

MSE MAPE
XYF SOM 0.003576579 9.738847
Min/Max 0.003170116 9.010667
CI 0.001343007 8.511181
Double VQTAM 0.002950391 9.986324
ARIMA 0.001567704 6.392019

Referring to figures 5.1, 5.2 and 5.3, we also can visually inspect the one step
ahead forecast produced by the various models in relation to their actual values.
The points represent the realized standardized prices, and the solid lines, their
forecast. In order to implement these forecasting methods in trading strategies,
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it would simply be a matter of applying the mean and variance of X(t + 1) in
unstandardizing both X(t + 1) and X̂(t + 1).

Figure 5.1. X-Y Fused SOM Model-Dow Jones
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Figure 5.2. Double VQTAM Model-Dow Jones
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Figure 5.3. ARIMA Model-Dow Jones
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5.2. Apple

In the analysis of execution prices extracted from the limit order book of Ap-
ple stock, the number of values of X̂(t + 1) when the rolling window was applied
on 3443 vectors was 6880, the number of reliable predictions was 5259 as estab-
lished by the min/max method and 95 as established by the confidence interval
method. We also immediately notice that in percentage terms the ARIMA yields
the worst forecasting accuracy out of all the applied models. While analysis of
the MSE shows that the ARIMA performs better, the errors are so small that the
differences are negligible. We additionally note that the confidence interval ex-
traction rule lowers the prediction error in both instances, for both the Dow Jones
Index and Apple data. Additionally, although there were only 95 reliable predic-
tion determined by this method, since these are high frequency execution prices
of one trading day of Apple stock, it is certainly more practical to implement a
trading strategy with these results than with those obtained with the Dow Jones
index. For this reason, I can state with certainty that this is an improvement over
Barreto’s (2007) previously proposed min/max method. We note, though, that
for both the Dow Jones Index and Apple stock the min/max and the confidence
interval prediction rules lower the forecasting error as measured by the MSE and
MAPE, making them both efficient methods. All in all, the results obtained here
show that on a micro structure level, the SOM algorithms perform an excellent
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job of modelling non stationary time series without the application of a correction
as is done in the ARIMA model.

Table 5.2. Error Criteria-Apple

MSE MAPE
XYF SOM 0.00189613 27.49212
Min/Max 0.001239807 26.57013
CI 0.000682054 15.65443
Double VQTAM 0.000970927 19.23865
ARIMA 0.000618478 53.3081

Just as before, we refer to figures 5.4, 5.5 and 5.6 to visually inspect the one-
step ahead forecast produced by the various models in relation to their actual
values. The points represent the realized standardized prices, and the solid lines,
their forecast.

Figure 5.4. X-Y Fused SOM Model-Apple
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Figure 5.5. Double VQTAM Model-Apple
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Figure 5.6. ARIMA Model-Apple
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Chapter 6

CONCLUSION

In conclusion, the field of neural networks has vast applications in all data science
driven fields. While error correcting networks such as feed forward and recurrent
neural networks are being extensively studied for forecasting purposes, my goal
in this Master’s thesis was to assess the self-organizing map’s ability in forecast-
ing specifically non-stationary time series data. The intuition behind using such
an approach was that through its topological preserving and density matching
properties, local stationary clusters can be determined through the application of
its iterative algorithm.

It is important to note, though, that the self-organizing map falls in the realm
of evolutionary computation, in other words algorithms that offer only a heuristic
approach to optimization. As such, the iterative SOM algorithm is not based on
a solid mathematical framework and much of its results and practical significance
are based on empirical results. Nonetheless, I follow Kohonen et al. (1991) in his
derivation of the self-organizing map algorithm based on an error functional as
well as attempt to provide framework for the algorithm’s implementation in time
series forecasting.

Despite its lack of theoretical background, the results obtained in this thesis
show that the SOM is a powerful tool in time series forecasting of non-stationary
data as the errors it produced either closely matched or improved upon the errors
produced by the ARIMA model, which applied an approach based on the mathe-
matical framework of unit roots for correcting non-stationarity. We also noted of
its particular efficiency in forecasting high-frequency time series data, extracted
from the limit order book of Apple stock.



Additionally, we also determined that the original, unsupervised variant of
the SOM was also extremely efficient in clustering bid-ask volume imbalances in
the same limit order book of Apple stock. Through an unsupervised study of the
relationship between volume imbalance and volume submission and deletion in
the order book, I presented a model that can be used to determine optimal times
to submit market orders. The output of the self-organizing map was also used
in conjunction with hierarchical clustering and principal component analysis to
demonstrate further techniques that can be used for both visualization purposes
as well as starting points for further research. All in all, I can conclude that as
an unsupervised machine learning algorithm the SOM is certainly not the ideal
solution for all predictive models nor is it the ideal robust visualization tool.
However, its simplicity of use, the intuitive nature of its iterative algorithm as
well as its ability to produce clear and concise visual representations of its output
make it a powerful algorithm that all data scientists should have knowledge of.
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Appendix A

R CODE

## VISUALIZATION ##

# XYf−SOM #

TestingData<−apply ( P r i c e s [ 1 : ( nrow ( P r i c e s ) −3443) , ] ,2 , rev )

p l o t ( TestingData [ 1 : 5 0 0 , 1 ] , x lab="Order Execut ions " , y lab=" Pr i ce " , main="X−Y Fused SOM" )

l i n e s ( Vecto ro fPred i c t i onsXyf [ 1 : 5 0 0 ] )

# Double VQTAM #

TestingData<−apply ( P r i c e s [ 1 : ( nrow ( P r i c e s ) −3444) , ] ,2 , rev )

p l o t ( TestingData [ 1 : 5 0 0 , 1 ] , x lab="Days " , ylab=" Pr i ce " , main="Double VQTAM" )

l i n e s ( VectorofPredictionsDoubleVQTAM [ 1 : 5 0 0 ] )

# ARIMA #

TestingDataARIMA<−DataforARIMA [ 3 4 4 4 : l ength ( DataforARIMA ) ]

p l o t ( TestingDataARIMA [ 1 : 5 0 0 ] , x lab="Days " , ylab=" Pr i ce " , main="ARIMA" )

l i n e s ( VectorofPredictionsARIMA [ 1 : 5 0 0 ] )

# SIMPLE SOM #

s e t . seed (9999)

l i b r a r y ( readr )

l i b r a r y ( " c a r e t " , l i b . l o c ="/ Library /Frameworks/R. framework/ Vers ions /3 .3/ Resources / l i b r a r y " )

l i b r a r y ( " kohonen " , l i b . l o c ="/ Library /Frameworks/R. framework/ Vers ions /3 .3/ Resources / l i b r a r y " )

l i b r a r y ( p a s t e c s )

Limit_Order_Book_Data_Depth_2 <−
read_csv ("~/ Dropbox/ Thes i s /LOBSTER/ Limit Order Book Data Depth 2 with time . csv " )

View ( Limit_Order_Book_Data_Depth_2 )



LimitOrder<−as . matrix ( s c a l e ( Limit_Order_Book_Data_Depth_2 [ , c ( 2 2 , 2 4 , 2 6 , 2 8 ) ] ) )

View ( LimitOrder )

## Training / Va l idat ing ##

TrainingData<−head ( LimitOrder , round ( (2/3)∗ nrow ( LimitOrder ) ) )

nrow ( TrainingData )

Folds<−c r e a t e F o l d s ( TrainingData [ , 1 ] , k=2)

## K−Means ##

SSETrainingKmeans<−c ( rep (NA, 1 1 ) )

SSEValidationKmeans<−c ( rep (NA, 1 1 ) )

f o r ( i in 1 : 1 1 ) {

parameters<−somgrid ( xdim = ( i +4) , ydim = ( i +4) , topo = " hexagonal " , neighbourhood = " bubble " )

TrainingKmeans<−som( TrainingData [ Folds$Fold1 , ] , g r i d=parameters , r a d i u s =c ( 0 . 9 9 , 0 . 9 9 ) )

Train ingErrorsFold1 <−sum( TrainingKmeans$distances )

ValidationKmeans<−p r e d i c t ( TrainingKmeans , TrainingData [ Folds$Fold2 , ] )

Va l idat ionErrorsFo ld2 <−c ( rep (NA, l ength ( Folds$Fold2 ) ) )

Distances <−c ( rep (NA, l ength ( Folds$Fold2 ) ) )

f o r ( j in 1 : l ength ( Folds$Fold2 ) ) {

Dis tances [ j ]<− d i s t ( rbind ( TrainingData [ Folds$Fold2 , ] [ j , ] , Va l idat ionKmeans$pred ict ions [ [ 1 ] ] [ j , ] ) )

}

Val idat ionErrorsFo ld2 <−sum( Dis tances ^2)

TrainingKmeans<−som( TrainingData [ Folds$Fold2 , ] , g r i d=parameters , r a d i u s=c ( 0 . 9 9 , 0 . 9 9 ) )

Train ingErrorsFold2 <−sum( TrainingKmeans$distances )

ValidationKmeans<−p r e d i c t ( TrainingKmeans , TrainingData [ Folds$Fold1 , ] )

Va l idat ionErrorsFo ld1 <−c ( rep (NA, l ength ( Folds$Fold1 ) ) )

Distances <−c ( rep (NA, l ength ( Folds$Fold1 ) ) )

A-ii



f o r ( j in 1 : l ength ( Folds$Fold1 ) ) {

Dis tances [ j ]<− d i s t ( rbind ( TrainingData [ Folds$Fold1 , ] [ j , ] , Va l idat ionKmeans$pred ict ions [ [ 1 ] ] [ j , ] ) )

}

Val idat ionErrorsFo ld1 <−sum( Dis tances ^2)

SSETrainingKmeans [ i ]<−( Tra in ingErrorsFo ld1+Tra in ingErrorsFo ld2 )/ l ength ( TrainingData )

SSEValidationKmeans [ i ]<−( Va l idat ionError sFo ld1+Val idat ionError sFo ld2 )/ l ength ( TrainingData )

}

p l o t ( 5 : ( l ength ( SSEValidationKmeans )+4) , SSETrainingKmeans , yl im=c ( min ( SSETrainingKmeans ) ,

max( SSEValidationKmeans ) ) , type="b " , xlab=" s q r t (#Neurons ) " , y lab="MSE" ,

main=" Va l idat i on Curve " , sub="K−means " )

p o i n t s ( 5 : ( l ength ( SSEValidationKmeans )+4) , SSEValidationKmeans , type="b " , c o l =2)

legend ( 1 1 , 0 . 3 2 , box . l t y =0, legend=c ( " Va l idat i on Error " , " Train ing Error " ) ,

l t y =1, c o l=c ( " red " , " b lack " ) , cex =0.8)

## Bubble Neighborhood ##

SSETrainingBubble<−c ( rep (NA, 1 1 ) )

SSEValidationBubble<−c ( rep (NA, 1 1 ) )

f o r ( i in 1 : 1 1 ) {

parameters<−somgrid ( xdim = ( i +4) , ydim = ( i +4) , topo = " hexagonal " , neighbourhood = " bubble " )

TrainingSOM<−som( TrainingData [ Folds$Fold1 , ] , g r i d=parameters )

Train ingErrorsFold1 <−sum( TrainingSOM$distances )

ValidationSOM<−p r e d i c t ( TrainingSOM , TrainingData [ Folds$Fold2 , ] )

Va l idat ionErrorsFo ld2 <−c ( rep (NA, l ength ( Folds$Fold2 ) ) )

Distances <−c ( rep (NA, l ength ( Folds$Fold2 ) ) )

f o r ( j in 1 : l ength ( Folds$Fold2 ) ) {

Dis tances [ j ]<− d i s t ( rbind ( TrainingData [ Folds$Fold2 , ] [ j , ] , Val idat ionSOM$predict ions [ [ 1 ] ] [ j , ] ) )

}

Val idat ionErrorsFo ld2 <−sum( Dis tances ^2)

TrainingSOM<−som( TrainingData [ Folds$Fold2 , ] , g r i d=parameters )
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Train ingErrorsFold2 <−sum( TrainingSOM$distances )

ValidationSOM<−p r e d i c t ( TrainingSOM , TrainingData [ Folds$Fold1 , ] )

Va l idat ionErrorsFo ld1 <−c ( rep (NA, l ength ( Folds$Fold1 ) ) )

Distances <−c ( rep (NA, l ength ( Folds$Fold1 ) ) )

f o r ( j in 1 : l ength ( Folds$Fold1 ) ) {

Dis tances [ j ]<− d i s t ( rbind ( TrainingData [ Folds$Fold1 , ] [ j , ] , Val idat ionSOM$predict ions [ [ 1 ] ] [ j , ] ) )

}

Val idat ionErrorsFo ld1 <−sum( Dis tances ^2)

SSETrainingBubble [ i ]<−( Tra in ingErrorsFo ld1+Tra in ingErrorsFo ld2 )/ l ength ( TrainingData )

SSEValidationBubble [ i ]<−( Va l idat ionError sFo ld1+Val idat ionError sFo ld2 )/ l ength ( TrainingData )

}

p l o t ( 5 : ( l ength ( SSEValidationBubble )+4) , SSETrainingBubble , yl im=c ( min ( SSETrainingBubble ) ,

max( SSEValidationBubble ) ) , type="b " , xlab=" s q r t (#Neurons ) " , y lab="MSE" ,

main=" Va l idat i on Curve " , sub="Bubble Neighborhood " )

p o i n t s ( 5 : ( l ength ( SSEValidationBubble )+4) , SSEValidationBubble , type="b " , c o l =2)

legend ( 1 1 , 0 . 3 2 , box . l t y =0, legend=c ( " V a l idat i on Error " , " Train ing Error " ) ,

l t y =1, c o l=c ( " red " , " b lack " ) , cex =0.8)

## Gaussian Neighborhood ##

SSETrainingGaussian<−c ( rep (NA, 1 1 ) )

SSEValidationGaussian<−c ( rep (NA, 1 1 ) )

f o r ( i in 1 : 1 1 ) {

parameters<−somgrid ( xdim = ( i +4) , ydim = ( i +4) , topo = " hexagonal " , neighbourhood = " gauss ian " )

TrainingSOM<−som( TrainingData [ Folds$Fold1 , ] , g r i d=parameters )

Train ingErrorsFold1 <−sum( TrainingSOM$distances )

ValidationSOM<−p r e d i c t ( TrainingSOM , TrainingData [ Folds$Fold2 , ] )

Va l idat ionErrorsFo ld2 <−c ( rep (NA, l ength ( Folds$Fold2 ) ) )

Distances <−c ( rep (NA, l ength ( Folds$Fold2 ) ) )
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f o r ( j in 1 : l ength ( Folds$Fold2 ) ) {

Dis tances [ j ]<− d i s t ( rbind ( TrainingData [ Folds$Fold2 , ] [ j , ] , Val idat ionSOM$predict ions [ [ 1 ] ] [ j , ] ) )

}

Val idat ionErrorsFo ld2 <−sum( Dis tances ^2)

TrainingSOM<−som( TrainingData [ Folds$Fold2 , ] , g r i d=parameters )

Train ingErrorsFold2 <−sum( TrainingSOM$distances )

ValidationSOM<−p r e d i c t ( TrainingSOM , TrainingData [ Folds$Fold1 , ] )

Va l idat ionErrorsFo ld1 <−c ( rep (NA, l ength ( Folds$Fold1 ) ) )

Distances <−c ( rep (NA, l ength ( Folds$Fold1 ) ) )

f o r ( j in 1 : l ength ( Folds$Fold1 ) ) {

Dis tances [ j ]<− d i s t ( rbind ( TrainingData [ Folds$Fold1 , ] [ j , ] , Val idat ionSOM$predict ions [ [ 1 ] ] [ j , ] ) )

}

Val idat ionErrorsFo ld1 <−sum( Dis tances ^2)

SSETrainingGaussian [ i ]<−( Tra in ingErrorsFo ld1+Tra in ingErrorsFo ld2 )/ l ength ( TrainingData )

SSEValidationGaussian [ i ]<−( Va l idat ionError sFo ld1+Val idat ionError sFo ld2 )/ l ength ( TrainingData )

}

p l o t ( 5 : ( l ength ( SSEValidationGaussian )+4) , SSETrainingGaussian , ylim=c ( min ( SSETrainingGaussian ) ,

max( SSETrainingGaussian ) ) , type="b " , xlab=" s q r t (#Neurons ) " , y lab="MSE" ,

main=" Va l idat i on Curve " , sub="Gaussian Neighborhood " )

p o i n t s ( 5 : ( l ength ( SSEValidationGaussian )+4) , SSEValidationGaussian , type="b " , c o l =2)

legend ( 1 1 , 0 . 3 5 , box . l t y =0, legend=c ( " V a l idat i on Error " , " Train ing Error " ) ,

l t y =1, c o l=c ( " red " , " b lack " ) , cex =0.8)

## Test ing ##

s e t . seed (9999)

TestingData<−LimitOrder [ round ( (2/3) ∗ nrow ( LimitOrder )+1): nrow ( LimitOrder ) , ]

nrow ( TestingData )

parameters<−somgrid ( xdim = 10 , ydim = 10 , topo = " hexagonal " , neighbourhood = " gauss ian " )

TestingSOM<−som( TestingData , g r i d=parameters )
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# Training Progres s #

p l o t ( TestingSOM , type="changes " )

# Node Count #

p l o t ( TestingSOM , type="count " )

# Codes / Weight v e c t o r s #

p l o t ( TestingSOM , type="codes " )

## SUPERCLUSTERS ##

HierClust<−h c l u s t ( d i s t ( u n l i s t ( TestingSOM$codes ) ) )

KohonenCluster<−c u t r e e ( HierClust , 4 )

p l o t ( HierClust , l a b e l s = FALSE, main = " Clus te r Dendrogram " ,

xlab="Synaptic Weights " , y lab = " Height " , sub ="")

Pal <− colorRampPalette ( c ( ’ blue ’ , ’ yel low ’ , ’ green ’ , ’ red ’ ) )

p l o t ( TestingSOM , type="mapping " , main = " S u p e r c l u s t e r s " , bgco l = Pal ( 4 ) [ KohonenCluster ] )

SuperClusters <−c ( rep (1 , nrow ( TestingData ) ) )

f o r ( i in 1 : nrow ( TestingData ) )

{ SuperCluste r s [ i ]= KohonenCluster [ TestingSOM$unit . c l a s s i f [ i ] ] }

## DESCRIPTIVE STATS ##

DataForStats<−Limit_Order_Book_Data_Depth_2 [ round ( ( 2/3)∗ nrow ( LimitOrder )+1): nrow ( LimitOrder ) , ]

DataForStats<−cbind ( DataForStats , SuperCluste r s )

View ( DataForStats )

wr i t e . csv ( DataForStats , "/ Users /maxim/Dropbox/ DataForStatsEvenSpl i t . csv " )

## SUPERCLUSTER 1 ##

SC1Vectors<−subset ( DataForStats , SuperCluste r s==1)

Averages<−c (mean( SC1Vectors [ , 2 2 ] ) , mean( SC1Vectors [ , 2 4 ] ) , mean( SC1Vectors [ , 2 6 ] ) , mean( SC1Vectors [ , 2 8 ] ) )

BarPlotSC1<−barp lo t ( Averages , main="SC1 Bid Ask Volume Imbalance " ,

names . arg=c ( " BAVI1 " , " BAVI2 " , " BAVI3 " , " BAVI4 " ) )

StatsForBuyOrdersSC1<−subset ( SC1Vectors , SC1Vectors [ , 3 3 ] == 1)
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StatsForSel lOrdersSC1 <−subset ( SC1Vectors , SC1Vectors [ , 3 3 ] == −1)

TotalNumberofBuyUpMovementsSC1<−t a b l e ( StatsForBuyOrdersSC1 [ , 3 2 ] ) / nrow ( StatsForBuyOrdersSC1 )

TotalNumberofSelUpMovementsSC1<−t a b l e ( StatsForSe l lOrdersSC1 [ , 3 2 ] ) / nrow ( StatsForSe l lOrdersSC1 )

## SUPERCLUSTER 2 ##

SC2Vectors<−subset ( DataForStats , SuperCluste r s==2)

Averages<−c (mean( SC2Vectors [ , 2 2 ] ) , mean( SC2Vectors [ , 2 4 ] ) , mean( SC2Vectors [ , 2 6 ] ) , mean( SC2Vectors [ , 2 8 ] ) )

BarPlotSC2<−barp lo t ( Averages , main="SC2 Bid Ask Volume Imbalance " ,

names . arg=c ( " BAVI1 " , " BAVI2 " , " BAVI3 " , " BAVI4 " ) )

StatsForBuyOrdersSC2<−subset ( SC2Vectors , SC2Vectors [ , 3 3 ] == 1)

StatsForSel lOrdersSC2 <−subset ( SC2Vectors , SC2Vectors [ , 3 3 ] == −1)

TotalNumberofBuyUpMovementsSC2<−t a b l e ( StatsForBuyOrdersSC2 [ , 3 2 ] ) / nrow ( StatsForBuyOrdersSC2 )

TotalNumberofSelUpMovementsSC2<−t a b l e ( StatsForSe l lOrdersSC2 [ , 3 2 ] ) / nrow ( StatsForSe l lOrdersSC2 )

## SUPERCLUSTER 3 ##

SC3Vectors<−subset ( DataForStats , SuperCluste r s==3)

Averages<−c (mean( SC3Vectors [ , 2 2 ] ) , mean( SC3Vectors [ , 2 4 ] ) , mean( SC3Vectors [ , 2 6 ] ) , mean( SC3Vectors [ , 2 8 ] ) )

BarPlotSC3<−barp lo t ( Averages , main="SC3 Bid Ask Volume Imbalance " ,

names . arg=c ( " BAVI1 " , " BAVI2 " , " BAVI3 " , " BAVI4 " ) )

StatsForBuyOrdersSC3<−subset ( SC3Vectors , SC3Vectors [ , 3 3 ] == 1)

StatsForSel lOrdersSC3 <−subset ( SC3Vectors , SC3Vectors [ , 3 3 ] == −1)

TotalNumberofBuyUpMovementsSC3<−t a b l e ( StatsForBuyOrdersSC3 [ , 3 2 ] ) / nrow ( StatsForBuyOrdersSC3 )

TotalNumberofSelUpMovementsSC3<−t a b l e ( StatsForSe l lOrdersSC3 [ , 3 2 ] ) / nrow ( StatsForSe l lOrdersSC3 )

## SUPERCLUSTER 4 ##

SC4Vectors<−subset ( DataForStats , SuperCluste r s==4)

Averages<−c (mean( SC4Vectors [ , 2 2 ] ) , mean( SC4Vectors [ , 2 4 ] ) , mean( SC4Vectors [ , 2 6 ] ) , mean( SC4Vectors [ , 2 8 ] ) )

BarPlotSC4<−barp lo t ( Averages , main="SC4 Bid Ask Volume Imbalance " ,

names . arg=c ( " BAVI1 " , " BAVI2 " , " BAVI3 " , " BAVI4 " ) )

StatsForBuyOrdersSC4<−subset ( SC4Vectors , SC4Vectors [ , 3 3 ] == 1)

StatsForSel lOrdersSC4 <−subset ( SC4Vectors , SC4Vectors [ , 3 3 ] == −1)
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TotalNumberofBuyUpMovementsSC4<−t a b l e ( StatsForBuyOrdersSC4 [ , 3 2 ] ) / nrow ( StatsForBuyOrdersSC4 )

TotalNumberofSelUpMovementsSC4<−t a b l e ( StatsForSe l lOrdersSC4 [ , 3 2 ] ) / nrow ( StatsForSe l lOrdersSC4 )

## GRAPH OF OBSERVATIONS BASED ON SUPERCLUSTERS ##

Price<−u n l i s t ( DataForStats [ 1 : 1 0 0 , 1 8 ] )

Colors<−Pal ( 4 ) [ SuperCluste r s ] [ 1 : 1 0 0 ]

Time<−c ( seq ( 1 : l ength ( Pr i ce ) ) )

p l o t (Time , Price , pch=20, c o l=Colors , x lab="Trades " , y lab=" Pr i ce " , main="Apple " )

l i n e s ( Pr i ce )

legend ( " t o p r i g h t " , box . l t y =0, legend=c ( " SC1 " , " SC2 " , " SC3 " , " SC4 " ) , l t y =1,

c o l=c ( ’ blue ’ , ’ ye l low ’ , ’ green ’ , ’ red ’ ) , cex =0.6)

## PRINCIPAL COMPONENT ANALYSIS ##

l i b r a r y ( d e v t o o l s )

l i b r a r y ( g g b i p l o t )

colnames ( LimitOrder)<−c ( " BAVI1 " , " BAVI2 " , " BAVI3 " , " BAVI4 " )

# Super Clus te r 1 #

SC1_BAVA<−subset ( LimitOrder , SuperCluste r s==1)

PCSC1<−prcomp (SC1_BAVA[ 1 : 1 0 0 , ] )

g g b i p l o t (PCSC1, obs . s c a l e = 1 , var . s c a l e = 1 , main="SC1 P r i n c i p a l Components " )

p r i n t ( p l o t )

p l o t (PCSC1, type=" l i n e s " )

summary(PCSC1)

p r i n t (PCSC1)

# Super Clus te r 2 #

SC2_BAVA<−subset ( LimitOrder , SuperCluste r s==2)

PCSC2<−prcomp (SC2_BAVA[ 1 : 1 0 0 , ] )

g g b i p l o t (PCSC2, obs . s c a l e = 1 , var . s c a l e = 1)

p l o t (PCSC2, type=" l i n e s " )

summary(PCSC2)

p r i n t (PCSC2)

# Super Clus te r 3 #
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SC3_BAVA<−subset ( LimitOrder , SuperCluste r s==3)

PCSC3<−prcomp (SC3_BAVA[ 1 : 1 0 0 , ] )

g g b i p l o t (PCSC3, obs . s c a l e = 1 , var . s c a l e = 1)

p l o t (PCSC3, type=" l i n e s " )

summary(PCSC3)

p r i n t (PCSC3)

# Super Clus te r 4 #

SC4_BAVA<−subset ( LimitOrder , SuperCluste r s==4)

PCSC4<−prcomp (SC4_BAVA[ 1 : 1 0 0 , ] )

g g b i p l o t (PCSC4, obs . s c a l e = 1 , var . s c a l e = 1)

p l o t (PCSC4, type=" l i n e s " )

summary(PCSC4)

p r i n t (PCSC4)

## IMPORT DATA ##

l i b r a r y ( readr )

l i b r a r y ( kohonen )

# DowJones20Years <− read_csv ("~/ Dropbox/ Thes i s /Data/DowJones20Years . csv " )

AppleData <− read_csv ("~/ Dropbox/ Thes i s /LOBSTER/ Limit Order Book Data Depth 2 with time . csv " )

## DEFINE VARIABLES ##

s e t . seed (9999)

# Data <− DowJones20Years$ ‘ Adj Close ‘

Data <− AppleData$Price

l ength ( Data )

NumberofLags<−5

PricewithLags<− f u n c t i o n ( NumberofLagsforPrice , NumberofValues , V e c t o r o f P r i c e s ) {

Price<−matrix (NA, nrow =NumberofValues −(NumberofLagsforPrice +1) , nco l =NumberofLagsforPrice +2)

f o r ( i in 1 : ( NumberofLagsforPrice +2)) {
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Pr i ce [ , ( NumberofLagsforPrice+2)−( i −1)]<− V e c t o r o f P r i c e s [ ( NumberofLagsforPrice+3− i ) : ( NumberofValues+1− i ) ]

}

re turn ( Pr i ce [ , 1 : ( NumberofLagsforPrice +1)])

}

Pr ices <−s c a l e ( Pr icewithLags ( NumberofLags , l ength ( Data ) , Data ) )

## VQTAM MODEL ##

UnitNumbers<−c ( rep (NA, ( nrow ( P r i c e s ) −3443)))

Rel iablePredict ionMinMax<−c ( rep ( 0 , ( nrow ( P r i c e s ) −3443)))

R e l i a b l e P r e d i c t i o n C I <−c ( rep ( 0 , ( nrow ( P r i c e s ) −3443)))

## XYF−SOM ##

s t a r t . time <− Sys . time ( )

parameters<−somgrid ( xdim = 10 , ydim = 10 , topo = " hexagonal " , neighbourhood = " gauss ian " )

Vectoro fPred ic t ionsXyf <−c ( rep (NA, ( nrow ( P r i c e s ) −3443)))

f o r ( i in 1 : l ength ( Vecto ro fPred i c t i onsXyf ) ) {

TrainingData<−P r i c e s [ ( nrow ( P r i c e s )−3441− i ) : ( nrow ( P r i c e s )+1− i ) , ]

XyfSOM<−xyf (Y=TrainingData [ , 1 , drop=F ] ,X=TrainingData [ , 2 : nco l ( TrainingData ) , drop=F ] , g r i d=parameters )

SOM<−som( TrainingData [ , 2 : nco l ( TrainingData ) , drop=F ] , g r i d=parameters )

TestingData<−t ( as . matrix ( P r i c e s [ ( nrow ( P r i c e s )−3442− i ) , 2 : nco l ( P r i c e s ) ] ) )

PredictionXyfSOM<−p r e d i c t (XyfSOM, newdata=TestingData , whatmap = 1)

Vecto ro fPred i c t i onsXyf [ i ]<−Predict ionXyfSOM$predict ion [ [ 2 ] ]

UnitNumbers [ i ]<−PredictionXyfSOM$unit . c l a s s i f

Vectors inEachCluster <−subset ( TrainingData [ , 2 : nco l ( TrainingData ) ] , XyfSOM$unit . c l a s s i f==UnitNumbers [ i ] )

i f ( nrow ( Vectors inEachCluster )>=2) {

MinValue<−apply ( Vectors inEachCluster , 2 , min )

MaxValue<−apply ( Vectors inEachCluster , 2 , max)

CILowerBound<−apply ( Vectors inEachCluster , 2 , f u n c t i o n ( x ) mean( x )

−qt ( 0 . 9 7 5 , df=( l ength ( x) −1))∗ sd ( x )/ s q r t ( l ength ( x ) ) )

CIUpperBound<−apply ( Vectors inEachCluster , 2 , f u n c t i o n ( x ) mean( x )

+qt ( 0 . 9 7 5 , df=( l ength ( x) −1))∗ sd ( x )/ s q r t ( l ength ( x ) ) )

}

i f ( nrow ( Vectors inEachCluster )<2) {
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Rel iablePredict ionMinMax [ i ]=0

}

e l s e i f ( a l l ( MinValue<as . vec to r ( TestingData ) & as . vec to r ( TestingData)<MaxValue ) ) {

Rel iablePredict ionMinMax [ i ]=1

}

e l s e

Rel iablePredict ionMinMax [ i ]=0

i f ( nrow ( Vectors inEachCluster )<2) {

R e l i a b l e P r e d i c t i o n C I [ i ]=0

}

e l s e i f ( a l l ( CILowerBound<as . vec to r ( TestingData ) & as . vec to r ( TestingData)<CIUpperBound ) ) {

R e l i a b l e P r e d i c t i o n C I [ i ]=1

}

e l s e

R e l i a b l e P r e d i c t i o n C I [ i ]=0

}

TestingData<−apply ( P r i c e s [ 1 : ( nrow ( P r i c e s ) −3443) , ] ,2 , rev )

nrow ( TestingData )

TestingData<−TestingData [ −14805 , ]

Vectoro fPred ic t ionsXyf <−Vectoro fPred i c t i onsXyf [ −14805]

l ength ( Vecto ro fPred i c t i onsXyf )

end . time <− Sys . time ( )

time . taken <− end . time − s t a r t . time

time . taken

# Overa l l Error #

NaiveForecast<−rowMeans ( TestingData [ , 2 : 6 ] )

MAPEXyf<−sum( abs ( ( TestingData [ ,1 ] − Vectoro fPred i c t i onsXyf )/ TestingData [ , 1 ] ) ) / nrow ( TestingData )∗100

MASEXyf<−(sum( abs ( TestingData [ ,1 ] − Vectoro fPred i c t i onsXyf ) ) ) / ( sum( abs ( TestingData [ ,1 ] − NaiveForecast ) ) )

MSEXyf<−(sum ( ( TestingData [ ,1 ] − Vectoro fPred i c t i onsXyf )^2) )/ nrow ( TestingData )

# Min/Max Error #

PredictionsMinMax<−subset ( Vectoro fPred ic t ionsXyf , Rel iablePredict ionMinMax [ −14805]==1)

TestVectorsMinMax<−subset ( TestingData , Rel iablePredict ionMinMax [ −14805]==1)

NaiveForecast<−rowMeans ( TestVectorsMinMax [ , 2 : 6 ] )

MAPEXyfMinMax<−sum( abs ( ( TestVectorsMinMax [ ,1 ] − PredictionsMinMax )/

TestVectorsMinMax [ , 1 ] ) ) / nrow ( TestVectorsMinMax )∗100

MASEXyfMinMax<−(sum( abs ( TestVectorsMinMax [ ,1 ] − PredictionsMinMax ) ) ) /

(sum( abs ( TestVectorsMinMax [ ,1 ] − NaiveForecast ) ) )

MSEXyfMinMax<−(sum ( ( TestVectorsMinMax [ ,1 ] − PredictionsMinMax )^2) )/

nrow ( TestVectorsMinMax )
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# CI Error #

Pred ict ionsCI <−subset ( Vectoro fPred ic t ionsXyf , R e l i a b l e P r e d i c t i o n C I [ −14805]==1)

TestVectorsCI<−subset ( TestingData , R e l i a b l e P r e d i c t i o n C I [ −14805]==1)

NaiveForecast<−rowMeans ( TestVectorsCI [ , 2 : 6 ] )

MAPEXyfCI<−sum( abs ( ( TestVectorsCI [ ,1 ] − Pred i c t i onsCI )/ TestVectorsCI [ , 1 ] ) ) / nrow ( TestVectorsCI )∗100

MASEXyfCI<−(sum( abs ( TestVectorsCI [ ,1 ] − Pred i c t i onsCI ) ) ) / ( sum( abs ( TestVectorsCI [ ,1 ] − NaiveForecast ) ) )

MSEXyfCI<−(sum ( ( TestVectorsCI [ ,1 ] − Pred i c t i onsCI )^2) )/ nrow ( TestVectorsCI )

## DOUBLE VQTAM MODEL ##

s e t . seed (9999)

s t a r t . time <− Sys . time ( )

SizeofMap <−10

VectorofPredictionsDoubleVQTAM<−c ( rep (NA, ( nrow ( P r i c e s ) −3444)))

NaiveForecast<−c ( rep (NA, ( nrow ( P r i c e s ) −3444)))

f o r ( i in 23921 : l ength ( VectorofPredictionsDoubleVQTAM ) ) {

TrainingData<−P r i c e s [ ( nrow ( P r i c e s )−3441− i ) : ( nrow ( P r i c e s )+1− i ) , ]

SOM<−som(X=TrainingData , g r i d=somgrid ( SizeofMap , SizeofMap , " hexagonal " ) )

MatrixofShocks<−matrix ( nrow=(nrow ( TrainingData ) −1) , nco l=nco l ( TrainingData ) )

f o r ( j in 1 : nrow ( MatrixofShocks ) ) {

Matr ixofShocks [ j ,]<−( TrainingData [ j , ] − TrainingData [ j +1 , ] )

}

SOMShocks<−som(X=MatrixofShocks , g r i d=somgrid ( SizeofMap , SizeofMap , " hexagonal " ) )

TestingData<−t ( as . matrix ( P r i c e s [ ( nrow ( P r i c e s )−3442− i ) , ] ) )

NeuronsMappedtoinTestingSet<−map(SOM, TestingData ) $uni t . c l a s s i f

NeuronandCorrespondingShocks<−cbind ( SOM$unit . c l a s s i f [ 2 : nrow ( TrainingData ) ] , SOMShocks$unit . c l a s s i f )

MatrixofCorrespondingShocks<−subset ( NeuronandCorrespondingShocks ,

NeuronandCorrespondingShocks [ ,1]== NeuronsMappedtoinTestingSet ) [ , 2 ]

RandomShock<−SOMShocks$codes [ [ 1 ] ] [ sample ( MatrixofCorrespondingShocks , 1 ) , 1 ]
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VectorofPredictionsDoubleVQTAM [ i ]<−TestingData [1 ]+ RandomShock

NaiveForecast [ i ]<−mean( TestingData )

}

TestingData<−apply ( P r i c e s [ 1 : ( nrow ( P r i c e s ) −3444) , ] ,2 , rev )

end . time <− Sys . time ( )

time . taken <− end . time − s t a r t . time

time . taken

# Overa l l Error #

MAPEDoubleVQTAM<−sum( abs ( ( TestingData [ ,1 ] − VectorofPredictionsDoubleVQTAM )/

TestingData [ , 1 ] ) ) / nrow ( TestingData )∗100

MASEDoubleVQTAM<−(sum( abs ( TestingData [ ,1 ] − VectorofPredictionsDoubleVQTAM ) ) ) /

(sum( abs ( TestingData [ ,1 ] − NaiveForecast ) ) )

MSEDoubleVQTAM<−(sum ( ( TestingData [ ,1 ] − VectorofPredictionsDoubleVQTAM ) ^2) )/

nrow ( TestingData )

l i b r a r y ( " f o r e c a s t " , l i b . l o c ="/ Library /Frameworks/R. framework/ Vers ions /3 .3/ Resources / l i b r a r y " )

DataforARIMA<−s c a l e ( rev ( Data ) )

VectorofPredictionsARIMA<−c ( rep (NA, l ength ( DataforARIMA) −3443))

s e t . seed (9999)

s t a r t . time <− Sys . time ( )

f o r ( i in 1 : l ength ( VectorofPredictionsARIMA ) ) {

TrainingData <− DataforARIMA [ i :(3443+ i −1)]

ARIMA<−auto . arima ( t s ( TrainingData ) )

VectorofPredictionsARIMA [ i ]<−as . numeric ( f o r e c a s t (ARIMA, h=1)$mean )

}

VectorofPredictionsARIMA<−u n l i s t ( VectorofPredictionsARIMA )

TestingDataARIMA<−DataforARIMA [ 3 4 4 4 : l ength ( DataforARIMA ) ]

end . time <− Sys . time ( )

time . taken <− end . time − s t a r t . time

time . taken

MAPE_ARIMA<−sum( abs ( ( TestingDataARIMA−VectorofPredictionsARIMA )/

TestingDataARIMA )/( l ength ( TestingDataARIMA ))) ∗100

MASE_ARIMA<−(sum( abs ( TestingDataARIMA−VectorofPredictionsARIMA ) ) ) /
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(sum( abs ( t a i l ( TestingDataARIMA,−1)−head ( TestingDataARIMA , −1)) ) )

MSE_ARIMA<−(sum ( ( TestingDataARIMA−VectorofPredictionsARIMA )^2) )/

l ength ( TestingDataARIMA ) $
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