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SUMMARY

In this thesis we propose a model to numerically study the behavior of blood, which is considered as
an incompressible Newtonian fluid, in the presence of a clot attached to a vessel wall. The purpose
of this study is to find out whether different flow regimes may cause a clot to detach from a vessel
wall or it would lead to a stable state. In Chapter 1, we give a literature review of previous studies
modeling blood coagulation, blood clots in the vascular system, platelet adhesion and aggregation
and pathological clot formation. Our work is mainly based upon some part of the mathematical
model given by Bajd and Serša [3], which is presented in Chapter 1. Then, we will describe the
mathematical modeling of the fluid representing the blood and the solid representing the clot in
Chapter 2. The third chapter will focus on the numerical approach consisting of a projection me-
thod and the immersed boundary method [36] for solving the Navier-Stokes equations. Finally, in
Chapter 4, we will discuss the results and give conclusions about the influence of different flow
regimes on the clot stability.

Keywords : Blood coagulation, the Navier-Stokes equations, projection method, the immersed
boundary method
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SOMMAIRE

Dans ce mémoire, nous proposons un modèle pour étudier numériquement le comportement du
sang, qui est considéré comme un fluide newtonien incompressible, en présence d’un caillot atta-
ché à une paroi vasculaire. Le but de cette étude est de savoir si des régimes d’écoulement différents
peuvent provoquer la décollement d’un caillot d’un mur de vaisseau ou conduire à un état stable.
Dans le Chapitre 1, nous donnons une revue de la littérature sur les études précédentes, la modé-
lisation de la coagulation sanguine, des caillots sanguins dans le système vasculaire, l’adhésion
plaquettaire et l’agrégation et la formation de caillots pathologiques. Notre travail repose principa-
lement sur une partie du modèle mathématique donné par Bajd et Serša [3], qui est présenté dans
le chapitre 1. Ensuite, nous décrirons la modélisation mathématique du fluide représentant le sang
et le solide représentant le caillot au chapitre 2. Le troisième chapitre se concentrera sur l’approche
numérique consistant en une méthode de projection et la méthode de limite immergée [36] pour
résoudre les équations de Navier-Stokes. Enfin, au Chapitre 4, nous discuterons des résultats et
donnerons des conclusions sur l’influence de différents régimes d’écoulement sur la stabilité du
caillot.

Mots-clés : la coagulation du caillot, les équations de Navier-Stokes, la méthode de projection, la
méthode des frontières immergées
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Chapter 1

INTRODUCTION

Hemostasis is a process causing bleeding to stop, meaning that within a damaged blood vessel it
is the first stage in wound healing. This involves blood changing from a liquid to a gel. The intact
blood vessels play a central role in moderating blood’s tendency to clot. When endothelial injury
occurs, the endothelial cells stop secretion of coagulation and aggregation inhibitors. Therefore,
three steps are included in hemostasis:

1. vasoconstriction (blood vessels narrowed as a result of contraction),

2. temporary blockage of a wound by a platelet plug,

3. blood coagulation (formation of a fibrin clot).

Blood coagulation is a mechanism by which the blood changes from a liquid to a gel and involves
the activation, adhesion and aggregation of platelets along with deposition and maturation of fibrin
- a participating protein in blood clotting. Thrombosis is the result of a blood clot inside a blood
vessel obstructing the flow of blood through the circulating system. Blood platelets take part in
both hemostasis and thrombosis. Disorders of coagulation are disease states which can result in
hemorrhage (bleeding) or thrombosis. In 1966, Levin [26] proposed a linear mathematical model
of coagulation kinetics. Since then, several non-linear models have been reported [21, 23, 37, 42,
47]. Thrombogenicity refers to the tendency of a material in contact with the blood to produce a
thrombus (clot). It not only refers to fixed thrombi but also to emboli, clots which have become
detached and travel through the blood stream. All materials are considered to be thrombogenic
with the exception of the normal state of endothelial cells which line blood vessels.

Blood coagulation can also occur because of some pathological diseases, such as arteriosclero-
sis (the thickened and less elastic walls of arteries (blood vessels that carry blood away from the
heart)), one of many lifestyle diseases. In such situations, coagulation is initiated without wall
injury. In contrast, thrombolysis (blood clot dissolution) has led to clinical approaches for the



restoration of vessel patency after a partial or complete blood-flow obstruction in massive throm-
bosis. As a measure of the importance of this procedure, researchers have tried to construct and to
propose mathematical models describing thrombolysis.

1.1. THROMBOSIS AND COAGULATION

Thrombosis is an extremely complex dynamic process that involves many disparate types of me-
chanical, biophysical, biochemical, cell activation and polymerization interactions [16].

The primary obstacles to turning the thrombin (an enzyme catalyzing coagulation reactions) pro-
duction on are physical (flow and platelet deposition) not chemical inhibitors. Transport within
the growing thrombus may be very important in determining the eventual size and structure of the
thrombus.

The interplay between physical and chemical processes is critical to understanding thrombosis.
Mathematical modeling and computational simulations are essential tools in comprehending this
interplay and the function of the clotting system as an integrated dynamical system.

Experimental studies have recognized that clot formation rarely occurs in regions of parallel flow,
but primarily in regions of stagnation point flows, within blood vessel bifurcation, branching and
curvature. Following a vessel wall disruption, an immediate reaction is triggered that promotes
vasoconstriction , i.e. minimizing vessel diameter and diminishing blood loss. During activation,
platelets undergo intrinsic and extrinsic mechanisms leading to a series of chemical and morpho-
logical changes. The platelet starts balling up into a spherical shape and extends a number of ap-
pendages called pseudopodia. It leads to a sufficiently flexible structure that over time can spread
out over the surface to which it adhered. Organelles (specialized subunits within the platelet) in the
platelet’s cytoplasm bind to collagen (exposed by arterial damage) and release their contents of cy-
toplasmic granules containing chemicals like adenosine diphosphate (ADP) and platelet-activating
factors. Other platelets attracted by ADP are activated, interact with plasma proteins like fibrin
and fibrinogen (a protein produced by the liver which helps stop bleeding) and promote platelet
aggregation and adhesion to sub-endothelial tissue. This results in the formation of hemostatic
plugs and is the primary step in hemostasis. However, it is observed that when the concentration
of activators exceeds a threshold value, platelet aggregates resulting from this process can break
up and cause aggregation at locations other than the site of damage.

1.1.1. Mathematical models

Bodnar and Sequeira [5] discussed a numerical simulation of the coagulation dynamics of blood.
An incompressible generalized Newtonian model with shear-thinning viscosity was adopted to

2



describe the blood flow. Therefore, the application of the physical principles of momentum and
mass conservation leads to the equations defined in the flow domain Ω

ρ

(
∂u

∂t
+ u.∇u

)
= −∇p+∇.τ (u),

∇.u = 0,

where u(t, x) and p(t, x) are the blood velocity and the pressure defined in Ω, the vascular lumen,
for t ≥ 0. The equation is completed with appropriate initial and boundary conditions. ρ is the
fluid density and τ (u) is the deviatoric stress tensor, proportional to the symmetric part of the
velocity gradient, given by

τ (u) = 2µ(γ̇)D,

such that
D = 1

2(∇u+∇uT )

is the stretching tensor, γ̇ is the shear rate and µ(γ̇) is the shear-rate dependent viscosity function
which decreases with increasing shear rate.

Advection-diffusion-reaction equations modeling the cascade of biochemical reactions included in
the coagulation process described the evolution in time and space of various enzymes and zymo-
genes, proteins, inhibitors, tissue pathway plasminogen activator and fibrin/fibrinogen involved in
the extrinsic pathway of the blood coagulation and fibrinolysis (a process that prevents the prob-
lematic growth of the blood clot ) in quiescent plasma. Zymogenes are inactive enzyme precursors
and plasminogen is a glycoprotein circulating in the blood and is the precursor of plasmin, an im-
portant enzyme which degrades many plasma proteins. A tissue pathway plasminogen activator is
an enzyme converting fibrin/fibrinogen involved in the extrinsic pathway of the blood coagulation.
These equations are expressed as:

∂Ci
∂t

+ ∆.(Ciu) = ∇.(Di∇Ci) +Ri,

where Ci stands for concentration of the ith reactant, Di denotes the corresponding diffusion coef-
ficient (which could be a function of the shear rate) and u is the velocity field. Ri is a nonlinear
reaction term that represents the production or depletion of Ci due to an enzymatic cascade of
reactions.
The authors obtained a numerical solution of the coupled fluid-biochemistry using a three-
dimensional code based on a finite-volume semi-discretization in space, on structured grids, where
both inviscid and viscous flux integrals were evaluated using centered cell numerical fluxes. An
explicit multistep Runge-Kutta scheme was used for the time integration.

3



1.1.2. A mathematical model of a blood clot in the human vascular system

Appiah et al. [2] hypothesized that clot dynamics are proportional to the flow rate of blood plasma
dissipated along the clot. Therefore, they studied the velocity of three different blood flow regimes.
Turbulence can occur for de-accelerated flow during diastole (the period when the heart refills with
blood after contraction) even at Reynolds numbers less than 1000. Electrographs of recanalisation
channels (the reopening of previously blocked blood vessels) through blood clots showed that non-
occlusive blood clots have rough walls and since flow along non-occlusive clots is pulsatile, the
onset of turbulence is expected at Reynolds numbers lower than 2000. It was considered that there
are three possible situations for the flow through the narrowed segment along the clot; i.e. laminar-
laminar flow, laminar-turbulent flow and turbulent-turbulent flow (Figs. 1.1-1.2) For the first case,

FIGURE 1.1. The material volume

FIGURE 1.2. The material volume

the flow velocity was modeled as

v2 = vL
1

x+ 1
Mx

,

where vL and M are, respectively, the average blood velocity in the first vessel segment alone and
the ratio between the length of the first segment (l1) and that of the second vessel segment (l2)
defined to be the channel where the blood flows around a non-occlusive clot. x is the ratio between
the cross sectional areas of the two vessel segments. In the second situation,

v2 = vLTMx3/2

√1 + N

Mx5/2 − 1
 ,
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where M has the same meaning as for the case of laminar- laminar flow; and

vLT = 4πη
fρ
√
A1

and N = fρ∆pA3/2
1

16π2η2l1
.

A1 is the cross sectional area of the first segment; ∆p is the pressure drop, ρ is the density, f is a
frictional coefficient and η is the fluid viscosity coefficient. Lastly, for the turbulent-turbulent case:

v2 = vt
1√

x2 + 1
M
√
x

,

where vT corresponds to the blood velocity when the clot is totally dissolved (x = 1).

The conclusion was that in the cases of both the laminar-laminar and the turbulent-turbulent cases
the clot will not have any effect on the human system since the velocity and pressure of the blood
keep decreasing as the ratio between the lengths and the ratio between the cross-sectional areas is
increased. In the case of the laminar-turbulent flow since the velocity and pressure of the blood
increase until they hit a maximum as M and x are increased the clot will have an effect on the
human system. At the peak of the blood velocity this effect is high blood pressure.

In 2011, a mathematical model of the lysis (break down) of clots in blood vessels was constructed
on the basis of the convection-diffusion equations by Khramchenkov and Khramchenkov [24].
The fibrin clot was considered as an immobile solid phase, and the plasminogen, plasmin, and
plasminogen activators as dissolved liquid phases. As a result of the numerical solution of the
model, predictions of the development of the lysis process have been obtained.

In critical situations caused by the clogging of important vessels with a clot, the necessity for
dissolving the clot with the help of lytic means arises which dissolve fibrin. The physical and
biochemical structures of the clot depend on many factors: the concentration of thrombin and
fibrinogen, the ionic strengths in the solution, and hemodynamic forces.

The lysis process consists of the plasminogen–activator entering into a reaction with plasminogen
to form the active substance plasmin. The latter reacts with fibrin fibers of the clot gradually
destroying them and penetrating into the clot material under the action of the transfer and diffusion.
The tissue plasminogen activator reacts with the plasminogen on the fibrin surface where it settles
in the course of penetration into the fibrin structure.

The problem is that the process of transfer of lytic agents proceeds due to convection and diffu-
sion. Convection in the clot is highly impeded, and diffusion is a comparatively long process. The
process of plasminogen-to-plasmin transformation takes a few minutes, while penetration and de-
struction of even small clots requires about an hour or more. Thereafter, it is necessary to have as
complete information on the dissolution dynamics and the character of motion of components of
the lysis process as possible.
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To obtain a mathematical model of the lysis of clots in the blood vessels, it is necessary to con-
struct a system of equations of filtration in a deformable porous medium with a porous skeleton of
variable mass. The mass of the porous skeleton substance was considered as:

Ms = (1− ε)ρsV0exp(θ),

where V0 is the initial value of the volume of the deformed porous medium, θ is the cubic expansion
coefficient of the solid phase material and ρs is the density of the solid phase substance. The change
in the clot porosity is described by the expression:

∂ε

∂t
= (1− ε)∂θ

∂t
− 2(1− ε)R′t

Rs

,

and R′t = ∂Rs
∂t

and the equation of shrinkage of the clot skeleton is:

∂θ

∂t
+ ∂v

∂x
= 2(1− ε)R′t

Rs

,

where Rs is the fibrin fiber radius, v is the current value of the deformed porous medium and ε is
the porosity.

On the basis of the model a numerical scheme was constructed for investigating the processes in
the course of dissolution of the clot. With the use of the developed model, the lysis dynamics,
the motion of clot components in the blood plasma and fibrin, and the influence of the clot char-
acteristics on the lysis process were investigated. The volume of the introduced lytic agents and
the duration of their action depending on the rheological properties and deformations of the clot
material have been determined. The results of this research led to prediction of the conditions for
the development of thrombosis and thrombolysis in the human organism.

An injury of a blood vessel requires quick repair of the wound in order to prevent a loss of blood.
This is done by a hemostatic system. The key point of the work of Tokarov et al. [44] was the for-
mation of an aggregate of platelets. A mathematical model was proposed in which the movement
of its boundary due to the adhesion and detachment of platelets was determined by the level set
method. The model took into account the inhomogeneous distribution of erythrocytes (red blood
cells) and platelets across the blood flow, the reversible adhesion of platelets, their activation, se-
cretion, and aggregation. The calculation results were in accordance with the experimental data
concerning the kinetics of the ADP-evoked growth of a thrombus in vivo for different flow veloc-
ities. Platelets are instantly activated near the injured vascular wall and become capable of strong
adhesion to the wall and to each other. The platelet carried by the flow were captured at the rate

W adh
RP = αJwallRP χ

Θ
s
,

W adh
AP = αJwallAP χ

Θ
s
,
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where α is the capture efficiency, JRP and JAP are the platelet flows toward the wall. The function
Θ is the surface indicator (it is greater than zero in the transition zone where the adhesion occurs
and is equal to zero outside it) and s is the width of the transition zone. The function χ indicates
the ability of the surface of the aggregate on a vascular wall to fix a platelet.

They neglected the differences in the densities of erythrocytes and the plasma and the non-
Newtonian properties of the blood because they become evident only for shear velocities ∼ 50s−1

and lower, whereas the typical shear velocities in microcirculation vessels are 0.5×103s−1 . There-
fore, the rate of convection of free erythrocytes and free platelets was assumed to be equal to the
velocity of the medium. The platelets fixed in the aggregate were assumed to be motionless.

Tokarov et al. took into account only the basic soluble activators of platelets, ADP, because the
other activators (thrombin and thromboxane A2 (a stimulating activator of new platelets as well as
increasing platelet aggregation)) were considered similar to ADP.

The near-wall shear velocity was the main parameter determining the influence of the flow on the
thrombocyte components of hemostasis, because it controls the delivery rate of platelets to the
point of adhesion and their detachment by the flow and also the velocity of the convection drift of
thrombocyte activators. So, they studied the influence of shear velocity on the thrombus growth
rate in their model. An advantage of their model is its flexibility and its ability to be integrated into
continuous models of blood flow in domains with a complete geometry and with fixed or moving
walls, and also for the whole vascular network.

1.1.3. Mathematical models of Fogelson

1.1.3.1. Studying platelet adhesion and aggregation

In 1984, Fogelson et al. [13] studied platelet aggregation on a microscopic scale, representing
blood by a viscous incompressible fluid in which discrete massless platelets are suspended. The
diffusion-like motion of platelets which was observed experimentally in flowing blood was simu-
lated and it was thought to result from local “stirring” induced by tumbling and colliding among
the much larger red blood cells which occupy 45 percent of blood volume. This additional platelet
motion is important, for it provides a mechanism for platelet transport to the vessel wall. They re-
garded platelets as point particles which can generate local forces and the geometry of the domain
in which the equations of the model were solved remained constant in time. They expressed the
transport of adenosine diphosphate (ADP) as the advection-diffusion equation:

∂c

∂t
+ u.∇c = σ∆c+ s(s, t),
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where c(x, t) is the concentration of ADP, σ is the ADP diffusion coefficient, and s(x, t) is the
source term created by the release of ADP [13].

The model was restricted to two spatial dimensions to economize on computer and memory. The
numerical method applied grid-based finite difference schemes to solve the fluid dynamics and
ADP-transport equations. Deploying a simple Euler scheme, the platelets were tracked indepen-
dently of the grid to solve for the advective motion. Moreover, a random walk technique was
used to simulate the diffusive motion. To avoid large instabilities, an implicit scheme was used to
determine the intra-platelet forces.

In 1992, Fogelson [14] developed continuum models of the platelet aggregation process. Contin-
uum models are based upon the interactions in a viscous, incompressible fluid; a population of
nonactivated and activated platelets; a distribution of interplatelet links, and an interplatelet signal-
ing chemical. The two equations given below describe the assumption that nonactivated platelets
are transported by convection and diffusion and that the transport of activated platelets by convec-
tion and their creation by the activation of non-activated platelets

∂φn
∂t

+ u.∇φn = Dn4φn −R(c)φn,

∂φa
∂t

+ u.∇φa = R(c)φn,

where φn is the concentration of nonactivated platelets, φa is the concentration of activated
platelets, u is the velocity vector, Dn is the diffusion coefficient and R(c)φn is the rate of con-
version to activated platelets.

Nevertheless, the influence of variable diffusion was not considered in this study. It was concluded
that the presence of sufficient concentrations of activated platelets and interplatelet links within
a portion of the suspending fluid can alter the behavior of the composite material from that of a
viscous fluid to that of an elastic solid. In addition, Fogelson claimed that there exists an interesting
possibility of a chemically-induced fluid-to-solid phase transition.

1.1.3.2. Continuum models of platelet aggregation

Later on, Fogelson [14] turned his attention to the development of continuum models of the platelet
aggregation process. His model was appropriate for studying aggregation in the smallest arteries,
which have a diameter of approximately 50µm, but it was not suitable for studying aggregation
in vessels the size of the coronary arteries (diameter ≈ 1mm) in which the number of platelets is
enormous.

In 1999, computational methods for continuum models were proposed [46] to study mathematical
models of platelet aggregation [14] in vessels of the size of the cornary arteries or larger.
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Developing numerical methods for studying, in two dimensions, the general form of aggregation
models [46], the general form required solving a four-dimensional partial differential equation.
The evolution of the density of interplatelet bonds was described as

Et + u.∇xE + (v.∇u).∇vE = α(|v|)φ2
a − β(|v|)E,

where E is a function of time t, the spatial coordinates, as well as a vector v that expresses the
connection between two ends of an intra-platelet bond. E is advected at velocity u in physical
space and at velocity v.∇ in v-space. ∇vE refers to the difference in velocity u at the two ends of
an intraplatelet bond. The new bonds were created at the rate α(|v|)φ2

a, and β(|v|)E is the rate of
breaking down of the existing bonds.

To simulate the behavior of Fogelson’s continuum models of platelet aggregation a numerical
method was applied whose components were multidimensional high resolution finite difference
schemes for advective transport, alternating direction implicit method for diffusive transport, and
a new hybrid finite-difference spectral method for the model’s elastic link transport equation.

1.1.3.3. The influence of flow-mediated transport on the initiation and inhibition of coagulation

Fogelson and Tania [18] discussed the interactions among coagulation biochemistry, platelet depo-
sition, activation and flow-mediated transport of platelets and coagulation proteins in response to
vascular injury. They assumed that prothrombin (a glycoprotein in the blood plasma and an essen-
tial component of the blood clotting mechanism) and thrombin competed for binding sites on an
activated platelet. Later on, it was assumed that there are separate binding sites on the platelet for
prothrombin and thrombin [17]. When a prothrombin molecule bound to an activated platelet, the
resulting thrombin molecule immediately was released into the plasma, where it became subject
to inhibition by ATIII (antithrombine, which is a small protein molecule that inactivates several
enzymes of the coagulation system) and to being carried away by the flow. They assumed it could
also rebind to a thrombin-specific site on an activated platelet. Along with other assumptions, since
the earlier model [18] made predictions that had been validated experimentally, it was a reason-
able standard against which to assess the quality of the new model with separate prothrombin and
thrombin binding sites [18]. At shear rates of 50 s−1 or more, flow-mediated removal of throm-
bin is, by far and away, the dominant inhibitor of thrombin activity in the reaction zone of model
simulations.

1.1.3.4. Cell-based approach

Cell-based models were proposed for blood clotting [15] such that platelet aggregation formed dur-
ing the blood clotting was modeled on two scales, microscopic and macroscopic. For the former, a
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major tool is the immersed boundary (IB) method [34]. The fundamental problem for which the IB
method had been developed concerns the interactions of a viscous incompressible fluid with one
or more moving and/or deformable elastic objects in contact with that fluid. The immersed bound-
ary force contributions are distributed to the Eulerian grid using a discrete version of following
equation

f(x, t) =
∫
F (q, t)δ(x−X(q, t))dq,

where f(x, t) represents the fluid force density in the terms of the boundary elastic force density
F , x is some point in the fluid, q is the elastic membrane parameter and X(q, t) is the position
vector at time t of the membrane point labeled by q.

Each platelet and each vessel wall were represented as an IB object in this model, i.e., as a col-
lection of elastically linked Lagrangian points so that each pair moved at the local fluid velocity.
The model consists of stochastic and partial differential equations and auxiliary change of state
conditions.

Each platelet was presented as a separate object using Peskin’s IB method [34] in semi-discrete
microscale models. Continuum macro-scale models were motivated by the IB idea of representing
biological tissue as a compressible fluid-elastic material, so that changes in geometry or phase
were manifested solely through changes in mechanical forces within the material. In addition, it
was believed that the macroscale continuum models could be the basis of models of biological gels
and their mechanics.

1.2. PATHOLOGICAL CLOT FORMATION

As mentioned before, there is a widespread concern regarding pathological clot formation which
plays an important role in patients who suffer various diseases.

In 1998, a mathematical model for the prothrombin time test (a test to diagnose unexplained bleed-
ing which studies the extrinsic and common pathways of the coagulation cascade and it is used
to determine clotting tendency of blood) was proposed which anticipated that the test should be
able to make known severe coagulation disorders connected with a more than five-fold decrease
in the concentrations or activities of the blood coagulation factors. Pohl et al. [37] published a
mathematical model of the extrinsic pathway in vitro (prothrombin time test) estimating unavail-
able kinetic constants by comparing the prothrombin time values in patients with the results of the
mathematical modeling via a chi-square fit.

A tissue factor in vitro consists of a cascade of enzymatic reactions and three positive feedback
loops [22]. According to Khanin et al. [22], a set of ordinary differential equations describing the
balance for every component of the tissue factor pathway, such as a balance equation for factor Xa
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maybe written as:

d[Xa]
dt

=KX,TF−V II [X][TF − V ii]
KmX,TF−V II + [X] ,

+ KX,TF−V IIa[X][TF − V IIa]
KmX,TF−V IIa + [X] ,

+ KX,V IIa[X][V IIa]
KmX,V IIa + [X] −KXa−V a[Xa− V a],

−KATIII−Xa[ATIII][Xa]−KATIII−[Xa−V a][ATIII][Xa− V a],

where KX,TF−V II , KX,TF−V IIa and KX,V IIa are direct measures of the catalytic production of
product under optimum conditions (saturated enzyme) for corresponding enzymatic reactions.
KmX,TF−V II , KmX,TF−V IIa and KmX,V IIa are measures of the substrate concentration required
for effective catalysis to occur) for these reactions. KXa−V a, KATIII−Xa and KATIII−[Xa−V a]

are the second order constants for complex formation. KX,TF−V II [X][TF−V ii]
KmX,TF−V II+[X] is factor X activation

by tissue factor VIII complex. KX,TF−V IIa[X][TF−V IIa]
KmX,TF−V IIa+[X] is the factor X activation by tissue factor

VIIa complex; KX,V IIa[X][V IIa]
KmX,V IIa+[X] is factor X activation by tissue factor VII. KXa−V a[Xa − V a] is

factor Xa decrease due to prothrombinase formation; KATIII−Xa[ATIII][Xa] is the factor Xa de-
crease through the inhibition by ATIII; and lastly, KATIII−[Xa−V a][ATIII][Xa− V a] is factor Xa
decrease through the inhibition of prothrombinase by ATIII (factors V, VII, X are some of the pro-
teins in coagulation cascade; factor Va, VIIa, Xa are activated factors V, VII and X, respectively;
tissue factor is a transmembrane receptor for Factor VII/VIIa (FVII/VIIa) prothrombinase complex
catalyzes the conversion of prothrombin to thrombin).

It was known that the deficiency of coagulation factors may be connected not only with the de-
crease in their concentrations in plasma but also with the decrease in their enzymatic activities.
The proposed mathematical model enabled the authors to obtain data which cannot be measured
experimentally.

Another study done by Bajd and Serša [3] dealt with a coarse-grained molecular dynamics based
microscale mathematical model of blood clot dissolution. In this model a blood clot was considered
as “an assembly of blood cells interconnected with elastic fibrin bonds, which are cleaved either
biochemically (bond degradation) or mechanically (bond overstretching) during flow-mediated
thrombolysis”. Thrombolysis is used in the treatment of ischemic cerebro-vascular stroke (a stroke
caused by the interruption of blood flow to the brain owing to a blood clot) and pulmonary em-
bolism (occurring when one or more arteries in the lungs becomes blocked) or as an auxiliary
treatment in “acute arterial and deep-vein thrombosis” [10, 12, 32, 41]. The blood cell dynamics
were calculated using Newton’s second law. For a selected blood cell within a blood clot, the
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equation of motion is therefore

mai(t) =
∑
j=1
F b
i,j(t) + F d

i (t) + FB
i (t) + F g

i + F ḡ
i ,

where m is the mass of the blood cell, ai(t) is the cell acceleration, F b
i,j(t) is the binding force,

F d
i (t) is the net drag force, FB

i (t) is a stochastic Brownian force, F g
i is the surrounding plasma

medium gravitation force and F ḡ
i is a buoyancy force.

The principal findings which were qualitatively in good agreement with previous experimental re-
sults were that the blood clot dissolution is triggered when there is a high velocity plasma flow; the
progress of blood clot dissolution is followed the removal of clot fragments that are still intercon-
nected by a partially dissolved fibrin meshwork; and the higher plasma velocity is, the larger are
the sizes of the removed fragments.

Recent studies have provided evidence of a significant role of the Hageman factor (a plasma protein
which is a part of the coagulation cascade) in pathological clot formation. Since auto-activation
of the Hageman factor prompts the intrinsic coagulation pathway, Shavlyugin et al. [43] studied
the dynamics of pathological clot formation considering the intrinsic pathway as the predominant
mechanism of this process. It was hypothesized that in many cases the rate of pathological clot
formation is much lower than that of a hemostatic clot. This assumption was used to simplify the
mathematical model and to estimate kinetic constants of biochemical reactions that bring about
pathological clot formation. The deployed approach emphasized the effects of activated platelets
on the dynamics of pathological clot formation in the following process: thrombin production, then
platelet activation, then expression of phospholipids by platelets, after that, increase in the values
of the kinetic constants of biochemical reactions.

In previously published models, the mechanism of platelet activation by thrombin and its effects on
the functioning of the enzymatic cascade was not considered in detail, whereas the model in [43]
took into account the impact of the platelet activation process on intrinsic coagulation pathway
(ICP) dynamics with respect to the dependence of inferred experimental constants for enzymatic
kinetics on some part of activated platelets. This model consisted of a system of ordinary differ-
ential equations, representing the mass balance of ICP reagents and equations that describe the
kinetics of platelet activation by thrombin. A spatially localized process of in vivo plot coagulation
formation was modeled, so that the loss of coagulation factors in plasma were not taken into con-
sideration. Published experimental data were not available to validate the proposed mathematical
model.
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The contact system is the initiating subsystem of ICP whose activation in vivo is described by the
following mathematical model of the contact system:

d[XIIa]
dt

= kXIIacatXII

[XIIa][XII]
KXIIa
mXII + [XII] + kKcatXII

[K][XII]
KK
mXII + [XII] − I

C1inh
XIIa [XIIa][C1inh],

d[K]
dt

= kXIIacatPK

[XIIa][PK]
KXIIa
mPK + [PK] + kPRCPcatPK

[PRCP ][PK]
KPRCP
mPK + [PK] − I

C1inh
K [K][C1inh],

where [XIIa], [K] and [PRCP ] are the concentrations of activated Hageman factor, kallikrein and
prolylcarboxypeptidase, respectively, kXIIacatXII , k

K
catXII and kXIIacatPK are the catalytic kinetic constants

of the reactions implied their indices, KXIIa
mXII , K

K
mXII , K

XIIa
mPK and KPRCP

mPK are Michaelis constants
of the reactions implied by their indices and IC1inh

XIIa and IC1inh
K are the kinetic constants of inhibition

of Hageman factor and kallikrein, respectively. Kallirkrein and prolylcarboxypeptidase are the
enzymes capable of cleaving peptide bonds in proteins; [XII] and [PK] are the concentrations of
Hageman factor and prekallikrein (an enzyme which is cleaved to produce kallikrein by activated
XII. C1 complement is a molecule that inhibits the activation. [C1inh] is the concentration of the
inhibitor of complement C1)

It was claimed that known experimental studies deal only with the processes of fast clot forma-
tion (completed within a few minutes) under high thrombin concentrations. Besides, in most of
the experimental studies, the effects of platelet activation are simulated by artificial injection of
phospholipids which prohibited the evaluation of the effects of platelet activation kinetics whereas
these effects are central in [43].

A more detailed study of lysis and thrombolysis process to treat the diseases resulting from oc-
cluded artheries, such as celebro-vascular stroke should be specially noticed and developing cur-
rent models such as the one presented by Bajd and Serša in [3] could be valuable. Describing the
behavior of the blood near the bifurcation of the arteries going through the brain as they become
smaller and smaller would be helpful while an embolus passes through them and may result in a
stroke. Moreover, seizures after stroke are more likely to happen after a severe hemorrhagic stroke
or a stroke involving the part of the brain called the cerebral cortex. The most common seizures
resulting from strokes occur after a delay of weeks or months. The likelihood of any stroke pro-
ducing such delayed seizures is dependent on its size and location. Small strokes deeper in the
brain, are unlikely to cause seizures. Larger strokes and those involving the outer surface of the
brain known as the grey matter, or cortex, are more likely to cause delayed seizures. Therefore, it
might be possible to prevent these types of seizures happening by appropriate treatment after larger
strokes.

The stability of clots is closely related to the fibrin network, which provides the structural sup-
port for a blood clot. The viscoelastic properties of a thrombus partially occluding a vessel will
determine whether the flowing blood will cause it to deform reversibly or irreversibly, rupture or
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embolize. Thrombi that are very stiff or brittle might have a greater tendency to embolize, while
those that are more viscose or plastic might deform to a new shape.

At low strains or deformations, stress is directly proportional to strain while at large strains, the
stiffness of the clot increases up to a large factor. This phenomenon allows fibrin clots to be com-
pliant at normal strain levels and then become stiffer at larger deformations that could otherwise
threaten clot integrity. In fact, fibrin can be reversibly stretched about 4-5 times before rupture.
So it means that forces imposed by the flow greater than this strength of the fibrin could cause an
embolus.

Formation of an embolus generally favors arteries that receive the highest volumetric flow of blood.
Previous investigations suggest that particles tend to favor wider diameter daughter branches at
vessel bifurcations and this bias increases with increasing particle size. The embolic particles can
be modeled as spheres and coupled to the fluid dynamics by the Maxe-Riley equation:

(ρp + 1
2ρf )

(
dv(x(t))

dt

)
= (ρp − ρf )g = 3

2ρf
Du(x(t))

Dt
− 9

2
µ

a2 (v(x(t))− u(x(t))) ,

where v is the particle velocity, u is the blood velocity, g is gravity, a is the particle radius, µ is the
blood viscosity and ρp and ρf are particle and blood densities.

The multiscale models developed so far have been mostly for 2D blood vessels. However, further
study is needed to provide quantitative descriptions of thrombus development or breakdown. The
ability to predict the outcomes of simultaneous variation at multiple hemostatic components will
possibly enable us to more accurately evaluate hemorrhagic or thrombotic risks for patients.

As previously mentioned, Bajd and Serša [3] presented a model in which the blood clot was com-
posed of randomly distributed, spherically shaped blood cells interconnected by elastic fibrin bonds
which seems to be a practical model for clot dissolution. Each nonsuperficial cell has 6 nearest
neighbor bonds, 12 next nearest neighbor bonds and 8 third next nearest neighbor bonds yielding
26 bonds/cell. All cells are randomly displaced from their original positions which is followed
by calculating the equilibrium lengths of the fibrin fibers connecting neighbor blood cells. Due to
the viscoelastic properties of fibrin fibers, the binding force could be modeled by a Kelvin-Voigt
model as:

F b
i,j(t) =

[
kFb(‖ri,j(t)‖ − ‖ri,j(0)‖)− ηFb

‖ri,j(t)− ri,j(t−∆t)‖
∆t

]
ri,j(t)
‖ri,j(t)‖

,

where kFb and ηFb correspond to effective fibrin bond stiffness (or a spring constant) and a fibrin
viscous coefficient, respectively; and ri,j(t) is the difference between the positions of ith and jth
blood cells at time t (t = 0 indicating the initial time).

However, as the fibers in a fibrin clot are structures that have length to diameter ratio of 30-50, those
predominantly deform under load by bending, rather than stretching the elements. According to
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[9], assuming a homogeneous, isotropic, linearly elastic fiber, its elastic modulus by the stretching
formula is given by E = 4pL/(πd2y), where E is elastic modulus, p is force applied, L is effective
length of fiber segment, d is the fiber diameter and y is deflection at the point load. From stretching
experiments, the elastic modulus was 1.9 ± 1.8MPa, whereas the calculated elastic modulus for
fibers was 2.6± 1.5MPa.

Particle j exerts a force on particle i if it is within a radius of influence r of particle i. Therefore,
this force can be expressed as;

Fij = aij

(
1− rij

r

)
r0
ij,

where aij is the maximum repulsion force per unit mass, rij is the distance between i and j,
r0
ij = rij

‖rij‖ is the unit vector pointing in direction from j to i. Two other forces also introduced as
dissipative, FD

ij , and random (Brownian) forces, FR
ij :

FD
ij = −γwD(vij.eij)r0

ij,

FR
ij = σwRξijr

0
ij,

where γ is the friction coefficient, σ is the amplitude of the random force, wD and wR are the
weight functions for dissipative and random forces dependent on the distance r from the particle i
and ξij is a random number with zero mean and unit variance.

The weight functions wD and wR can be expressed as:

wD = (1− rij
r

)2,

wR = (1− rij
r

).

In the work of Bajd and Serša [3], the net drag force on the spherical cell included the interaction
between plasma flow and the blood clot:

F d
i (t) = −6πηpR (vi(t)− vpi ) ,

where ηp is blood plasma viscosity, vi(t) is the current velocity of the cell, and vpi (t) is the back-
ground plasma velocity at the site of the blood cell.

The net effect of the Brownian force on each cell was approximated by normally distributed vectors
with variance

√
2kBT × 6πηpRδ(t− t′). Here, kB is the Boltzmann constant, T is an absolute

physiological temperature and δ(t− t′) is the Dirac delta function.

Initial blood cell velocities were considered equal to zero and blood cells next to the vein walls
remained fixed at their initial positions during all simulation steps, whereas the positions of the
other cells were calculated by applying the explicit integration method at each time step. Cell
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positions were calculated by the Verlet algorithm:

ri(t+ ∆t) = 2ri(t)− ri(t−∆t) + ∆t2
m
Fi(t),

and their velocities calculated by

vi(t+ ∆t) = (ri(t+ ∆t)− ri(t))
∆t .

The hemodynamic conditions were described by the Womersley equation, i.e., the Navier-Stokes
equation for incompressible Newtonian fluid with the Stokesian approximation:

ρ
∂vp(t)
∂t

= −∇p(t) + ηp∆vp(t).

The superposition of a constant pressure gradient (with amplitude A1) maintains a net flow rate
through the vein chamber and a pulsatile sinusoidal pressure gradient which mimics heart pulsation
(with amplitude A2 and frequency ν = ω/2π) is given by:

−∇p(t) = A1ey + A2sin(ωt)ey.

The effect of bond decay between two neighboring cells referred to spatial corrosion and was also
dependent on relative bond stretching (so-called deformational corrosion). A bond was removed
either when it became totally degraded or when it was mechanically overstretched. Fibrin fibers are
extremely elastic and they can be stretched up to 300%. Bond removal caused by overstretching
was induced by the mechanical forces of streaming plasma. All the parameters of the Kelvin-Voigt
model were calculated from the experimental results. We will return to the basic modeling of the
thrombus using beads and springs in the next chapter.
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Chapter 2

MATHEMATICAL MODELING OF THE PROBLEM

To study the behavior of the blood in an artery in the presence of an occlusion, a rectangular
channel is considered in which the clot adheres to part of the lower wall (Fig. 2.1).

FIGURE 2.1. A rectangular channel representing an artery in the presence of a clot

2.1. FLUID MODELING: THE NAVIER-STOKES EQUATIONS

The flowing blood in our modeling will be considered as an incompressible Newtonian fluid. With
this in view, we need some definitions and fundamentals to describe the behavior of the blood and
now give a brief derivation of the incompressible Navier-Stokes equations, based on the treatment
in Chapter 2 of Owens and Phillips [33].

2.1.1. Forces and equations of motion

Suppose that we have a volume V (t) of infinitesimal fluid particles with a closed bounded surface
S(t), with an orientation n, as shown in Fig. 2.2



FIGURE 2.2. The material volume

We define the stress vector sn(x, t) as:

sn(x, t) = δF (x, t)
δS

(2.1.1)

where δF (x, t) is the force exerted at time t on the surface element A having area δS by the fluid
into which n is pointing.

The total force experienced by the fluid including the force exerted on its surface and the body
forces such as gravity can be written as∫

S(t)
sndS +

∫
V (t)

ρbdV, (2.1.2)

where ρ is the density of the fluid in V (t) and b is the body force per unit mass.
Theorem 2.1.1 (The Reynolds transport theorem). Let V (t) be a material volume and G(x, t) any
scalar or vector function. Then

d

dt

∫
V (t)

GdV =
∫
V (t)

(DG
Dt

+G∇.u
)
dV.

D/Dt is called the material derivative and defined as:

D

Dt
= ∂

∂t
+ u(x(t), t).∇. (2.1.3)

Applying the Reynolds transport theorem to the conservation of mass equation

d

dt

∫
V (t)

ρdV = 0 (2.1.4)

we obtain ∫
V (t)

(Dρ
Dt

+ ρ∇.u
)
dV = 0. (2.1.5)
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If we have a continuous integrand and since (2.1.5) is valid for any material volume V (t), we can
deduce from (2.1.5) that:

Dρ

Dt
+ ρ∇.u = 0. (2.1.6)

If Dρ/Dt = 0, we say the fluid is incompressible and from (2.1.6) we have a solenoidal velocity
field, i.e.

∇.u = 0. (2.1.7)

Theorem 2.1.1 along with (2.1.6) are used in the principle of linear momentum (Euler),

d

dt

∫
V (t)

ρudV =
∫
S(t)

sndS +
∫
V (t)

ρbdV, (2.1.8)

⇒
∫
V (t)

(
D(ρu)
Dt

+ ρu∇.u
)
dV =

∫
S(t)

sndS +
∫
V (t)

ρbdV, (2.1.9)

⇒
∫
V (t)

(
ρ
Du

Dt
+ uDρ

Dt
+ ρu∇.u

)
dV =

∫
S(t)

sndS +
∫
V (t)

ρbdV, (2.1.10)

⇒
∫
V (t)

(
ρ
Du

Dt

)
+ u

(Dρ
Dt

+ ρ∇.u
)
dV =

∫
S(t)

sndS +
∫
V (t)

ρbdV, (2.1.11)

⇒
∫
V (t)

ρ
Du

Dt
dV =

∫
S(t)

sndS +
∫
V (t)

ρbdV. (2.1.12)

2.1.1.1. The stress tensor

From equation (2.1.12) the existence of a stress tensor σ having the following property can be
proved:

sn(x, t) = n.σ. (2.1.13)

Theorem 2.1.2. Let D be a bounded region in R3 and let sn(x, t) be a stress vector defined
throughout D . There exists a second-order stress tensor σ(x, t) such that throughout D ,

sn = n.σ, (2.1.14)

ρ
Du

Dt
= ∇.σ + ρb, (2.1.15)

σ is symmetric. (2.1.16)

PROOF. See [33]. �
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In fact, substituting (2.1.14) into Eqn. (2.1.12) and using the divergence theorem on the right-hand
side of (2.1.12), we can obtain (2.1.15).

2.1.2. The Newtonian fluid

A Newtonian fluid is one for which there is a simple linear relationship between the stress and the
rate of strain. The stress tensor σ in (2.1.15) has a particular form and we proceed to explain how
to derive it. The components σij of σ are of the form:

σij = −pδij + Tij, (2.1.17)

where δij the Kronecker δ, the pressure p and the linear function T so-called deviatoric stress or
extra-stress are in the form:

δij =

0, if i 6= j,

1, if i = j
(2.1.18)

p = −1
3

3∑
i=1

σii (2.1.19)

Tij = Aijkl
∂uk
∂xl

, (the components of T ) (2.1.20)

whereA is an isotropic fourth-order tensor, i.e. its physical properties are independent of direction.

SinceA is isotropic we may write the components Aijkl ofA in the form:

Aijkl = λδijδkl + µδikδjl + νδilδjk, (2.1.21)

where λ, µ and ν are constants. From Theorem 2.1.2 we see that T in (2.1.17) is symmetric and
therefore, from (2.1.20)Amust be symmetric in its first two indices. Then, we can reduce (2.1.21)
to:

Aijkl = λδijδkl + µ(δikδjl + δilδjk) (µ = ν), (2.1.22)

and from (2.1.20):

Tij = λδij
∂uk
∂xk

+ µ
(∂ui
∂xj

+ ∂uj
∂xi

)
,

= λ

2 δij
3∑

k=1
γ̇kk + µγ̇ij, (2.1.23)

where γ̇ij is the ijth component of the rate of strain tensor γ̇ given by:

γ̇ =
(
∇u+ (∇u)T

)
. (2.1.24)
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Taking i = j in (2.1.17) and the definition of p in (2.1.19) we have:
3∑
i=1

σii = −3p+
3∑
i=1

Tii ⇒
3∑
i=1

Tii = 0, (2.1.25)

Therefore, from (2.1.23)
3∑
i=1

Tii = 3
2λ

3∑
i=1

γ̇ii + µ
3∑
i=1

γ̇ii = 0 (2.1.26)

⇒ 3λ+ 2µ = 0, (2.1.27)

so that,

Tij = −1
3µγ̇kkδij + µγ̇ij. (2.1.28)

Since
3∑

k=1
γ̇kk = 2

3∑
k=1

∂uk
∂xk

= 2∇.u = 0, (2.1.29)

therefore, for an incompressible fluid (2.1.17) becomes:

σij = −pδij + µγ̇ij. (2.1.30)

Finally, by inserting (2.1.30) into (2.1.15) we obtain the equation of motion for a Newtonian fluid:

ρ
Dui
Dt

= − ∂p

∂xi
+ µ

∂

∂xj

(∂ui
∂xj

+ ∂uj
∂xi

)
+ ρbi, (2.1.31)

= − ∂p

∂xi
+ µ

∂2ui
∂x2

j

+ ρbi. (2.1.32)

Hence, the vector form of the Navier-Stokes equations for an incompressible fluid is given by:

ρ
Du

Dt
= −∇p+ µ∇2u+ ρb. (2.1.33)

2.1.3. The two-dimensional Navier-Stokes equations

As mentioned previously, we suppose that the blood is a Newtonian fluid. From (2.1.33) the in-
compressible Navier-Stokes equations in two dimensions in a rectangular domain for a Newtonian
fluid can be written as:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2 + ∂2u

∂y2

)
+ Fx (2.1.34)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2 + ∂2v

∂y2

)
+ Fy (2.1.35)

ux + vy = 0 (2.1.36)
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where u and v are horizontal and vertical components of fluid velocity, respectively; p is the fluid
pressure; ρ is the fluid density; µ is the dynamic viscosity and F = (Fx, Fy) is the force exerted
by the clot boundary on the fluid. We denote the fluid velocity by u := (u, v) and introduce a
characteristic velocity U , characteristic time T and characteristic length L (the way these are cal-
culated will be described in the next section) and non-dimensionalize the Navier-Stokes equations
as follows:

u∗ = u

U
, t∗ = t

T
, x∗ = x

L
and y∗ = y

L
(2.1.37)

where an asterisk on a variable indicates that it is dimensionless. From (2.1.34)

Uρ

T

∂u∗

∂t∗
+ ρU2

L
u∗
∂u∗

∂x∗
+ ρU2

L
v∗
∂u∗

∂y∗
=

− 1
L

∂p

∂x∗
+ µU

L2

(
∂2u∗

∂x∗2
+ ∂2u∗
∂y∗2

)
+ Fx (2.1.38)

⇒ ∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= − 1

ρU2
∂p

∂x∗
+ µ

LρU

(
∂2u∗

∂x∗2
+ ∂2u∗
∂y∗2

)
+ T

ρU
Fx (2.1.39)

Here we are assuming that T = L/U . We now define p∗ := p/ρu2 and Re = LρU/µ and
F ∗x = (T/ρU)Fx, so that (2.1.39) becomes

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −∂p

∗

∂x∗
+ 1
Re

(∂
2u∗

∂x∗2
+ ∂2u∗
∂y∗2

) + F ∗x (2.1.40)

Similarly, from (2.1.35) we have

∂v∗

∂t∗
+ u∗

∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −∂p

∗

∂y∗
+ 1
Re

(∂
2v∗

∂x∗2
+ ∂2v∗
∂y∗2

) + F ∗y (2.1.41)

Finally, (2.1.36) becomes
∂u∗

∂x∗
+ ∂v∗

∂y∗
= 0 (2.1.42)

Eqn. (2.1.36) allows us to write down an alternative form of Eqns. (2.1.40)-(2.1.41):

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= ∂u∗2

∂x∗
+ ∂(u∗v∗)

∂y∗
(2.1.43)

u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= ∂(u∗v∗)

∂x∗
+ ∂v∗2

∂y∗
(2.1.44)

Therefore, the non-dimensionalized Navier-Stokes equations with some rearrangements can be
rewritten as follows
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∂u∗

∂t∗
+ ∂p∗

∂x∗
= −

(
∂u∗2

∂x∗
+ ∂(u∗v∗)

∂y∗

)
+ 1
Re

(
∂2u∗

∂x∗2
+ ∂2u∗
∂y∗2

)
+ F ∗x (2.1.45)

∂v∗

∂t∗
+ ∂p∗

∂y∗
= −(∂(u∗v∗)

∂x∗
+ ∂v∗2

∂y∗
) + 1

Re

(
∂2v∗

∂x∗2
+ ∂2v∗
∂y∗2

)
+ F ∗y (2.1.46)

∂u∗

∂x∗
+ ∂v∗

∂y∗
= 0 (2.1.47)

To solve this system of equations, we have the following boundary conditions (Fig. (2.3))

1. On inflow we impose Dirichlet conditions on the velocity components u and v obtained
from the exact solutions to start up Poiseuille flow in a channel, with initial velocity zero
and a constant pressure gradient ∂p/∂x = K̃ (for a certain K̃).

2. On outflow a homogeneous Dirichlet condition on the component v, a Neumann condition
on the pressure ∂p/∂x = K̃ and a homogeneous Neumann condition on the component u
are imposed;

3. On the upper and the lower walls we have no-slip and no-penetration boundary conditions
and a homogeneous Neumann condition on the pressure.

FIGURE 2.3. The boundary conditions on the flow.

The pressure is defined as
p = Kx+ p0 + p̃ (2.1.48)
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where K is an imposed pressure gradient and p̃ is the excess pressure which should tend to zero as
t→∞.

The Dirichlet boundary condition for the flow velocity’s horizontal component on inflow is the
solution of the following nonhomogeneous equation

∂u

∂t
= −K̃ + 1

Re

∂2u

∂y2

where u is the horizontal component of the flow velocity and K̃ := K
Re

is the dimensionless pressure
gradient on inflow (we assume that ∂p̃

∂x
= 0).

To solve this equation, we treat a particular solution up = up(y) such that

∂2up
∂y2 = K

and by integrating both sides we have

∂up
∂y

= Ky + c1, for some constant c1.

Now, we would like to have ∂up
∂y

= 0 when y = 1/2, so that

∂up
∂y

= K
(
y − 1

2

)
.

Integrating again

up = K

(
y2

2 −
1
2y
)

+ c2 for some constant c2,

with the boundary condition up(0) = 0, we therefore get

up = K

2 y(y − 1),

and we see that up(1) = 0 as well as up(0) = 1 because we have no-slip boundary conditions on
the upper and lower walls.

Now solve ∂uh
∂t

= 1
Re

∂2uh
∂y2 , where the homogeneous solution uh = u(t, y). And solve the equation

via the method of separation of variables, i.e., we write uh = f(t)g(y) for functions f and g to be
determined.

f ′g = 1
Re

fg′′
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⇒ Re
f ′

f
= g′′

g
= λ

⇒ f(t) = Ae
λ
Re
t (and to have a decreasing solution we choose λ = −k2)

and
g′′

g
= −k2

⇒ g(y) = A cos(ky) +B sin(ky).

uh(t, y = 0 or y = 1) = 0, therefore, A = 0 when y = 0 and B sin(ky) = 0 when y = 1. By
choosing k = nπ such that n ∈ N, the solution is

uh(t, y) =
∞∑
n=1

Bn sin(nπy)e−n
2π2
Re

t,

And the complete solution is

u(t, y) = Ky

2 (y − 1) +
∞∑
n=1

Bn sin(nπy)e(−n
2π2
Re

t).

We require u(t = 0, y) = 0,

⇒ Ky

2 (y − 1) +
∞∑
n=1

Bn sin(nπy) = 0,

Multiplying both sides by sin(mπy) and integrating from 0 to 1 we have

K

2

∫ 1

0
y(y − 1) sin(mπy dy) + Bm

2 = 0.

Having simplified the equality, it gives Bm = 4K
m3π3 for odd values of m. Hence, the dimensionless

time-dependent function u is

u(t, y) = K

2 y(y − 1) + 4K
π3

∑
n odd

1
n3 sin(nπy)e−n

2π2
Re

t.

In order that the average value of the streamwise velocity be 1 in fully developed flow we require

K

2

∫ 1

0
(y2 − y) dy = 1

⇒ − K

12 = 1

⇒ K = −12.

Thus, K̃ = K/Re = −12/Re.
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2.2. MODELING OF THE SOLID

A clot may be viewed as an ensemble of particles that are interconnected by fibrin fibers. The fibrin
fibers of a clot are viscoelastic materials. That is, they have both viscous properties of viscous fluids
and elastic properties of elastic solids. Therefore, we consider the clot as a system of beads and
springs in which the former represents the clot particles (red cells) and the latter represents the
fibrin fibers (Fig 2.4). Elastic materials behave like a spring. That is, they deform and recover from

FIGURE 2.4. A bead-spring schematic representation of a clot

deformation in a similar way. For a Hookean elastic material, the stress is proportional to the strain
(see Fig. 2.5) [30].

σ = Eε (2.2.1)

where σ is the applied force divided by the cross-sectional area of the material, E is the elastic
modulus and ε is the strain variable.

FIGURE 2.5. A comparison between an elastic material and a linear spring
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For a Newtonian fluid, stresses are dependent upon the strain rates. Water and blood plasma are
examples of such fluids. For these fluids,

σ = ηε̇

(
ε̇ = dε

dt

)

where η is the coefficient of viscosity which is the constant of proportionality between the stress σ
and the strain rate ε̇. Fig. 2.6 shows the σ − ε̇ graph of a Newtonian fluid [30].

FIGURE 2.6. Stress-strain rate graph for a Newtonian fluid

There are two basic mechanical elements used to simulate the mechanical behavior of a material:
the spring and the dashpot. A dashpot is a simple piston-cylinder. For a dashpot, the applied force
F is linearly dependent on the rate of displacement ẋ (see Fig. 2.7) [30],

F = µẋ (ẋ = dx

dt
) (2.2.2)

where µ is the coefficient of friction.

2.2.1. Viscoelastic models

In a linear spring and a linear dashpot, a constant applied force produces a constant deformation
and a constant rate of deformation, respectively. However, a spring deformation is completely
recoverable, whereas in a dashpot the deformation is permanent. Various combinations of springs
and dashpots are used to construct viscoelastic models. Here we discuss two of these models.

2.2.1.1. The Kelvin-Voigt model

A parallel system of a spring and a dashpot is called the Kelvin-Voigt model in which the total
stress produced by the system
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FIGURE 2.7. A linear dashpot

σ = σspring + σdashpot (2.2.3)

will deform the spring and the dashpot equally because of their parallel setting. Therefore, the
strain ε of the system is equal to the strain of the spring and the strain of the dashpot (Fig. 2.8) [30],

ε = εspring = εdashpot (2.2.4)

FIGURE 2.8. Kelvin-Voigt model; εs := εspring; εd := εdashpot; ε := ε

From now on, σs := σspring and σd := σdashpot stand for the spring and the dashpot stresses,
respectively. The combination of (2.2.3) and (2.2.4) results in:

σs = Eεs (2.2.5)

σd = ηε̇d (2.2.6)

28



⇒ σ = Eεs + ηε̇d (2.2.7)

⇒ σ = Eε+ ηε̇ (2.2.8)

2.2.1.2. The Maxwell model

The Maxwell model is a configuration of a spring and a dashpot in series (Fig. 2.9) [30]. In this
model, the stress applied to the whole system is the same as the stresses applied to the spring and
to the dashpot and the strain is the sum of the strains in the spring and the dashpot,

σ = σs = σd (2.2.9)

ε = εs + εd (2.2.10)

⇒ Eηε̇ = η(E(ε̇s) + E(ηε̇d) (2.2.11)

⇒ Eηε̇ = ησ̇ + Eσ (2.2.12)

FIGURE 2.9. Maxwell model; εs := εspring; εd := εdashpot; ε := ε

2.2.2. Clot model

When we represent the elastic solid materials with springs and apply a constant stress, there is a
limit to how much the Hookean spring will deform. On the other hand, a dashpot representing a
viscous fluid deforms continuously as long as there is a force. Therefore, in a Maxwell model, a
force applied on the system deforms both the spring and the dashpot. The spring deformation is
limited, but the dashpot keeps deforming while the force is exerted. Therefore, a Maxwell model
is more like a viscoelastic fluid than a solid. We saw in the Kelvin-Voigt model there is an equal
strain in the dashpot and the spring. Therefore, it causes a limited deformation of the dashpot
because the spring can undergo a restricted deformation. Consequently, the Kelvin-Voigt model is
more like a viscoelastic solid.

The fibrin fibers of a clot are viscoelastic materials. That is, they have both viscous properties of
viscous fluids and elastic solids. Therefore, from what has been discussed above, the Kelvin-Voigt
model may describe the stress applied on the clot particles very well. The only force exerted by
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the clot boundary on the fluid is due to the binding force arising from stretch and motion of fibrin
fibers interconnecting neighboring blood cells in the clot. This model is a modified version of the
Kelvin-Voigt model by Bajd and Serša [3]:

Fi,j =
[
κ(‖ri,j(t)‖ − ‖ri,j(0)‖) + η

‖ri,j(t)‖ − ‖ri,j(t−∆t)‖
∆t

]
ri,j(t)
‖ri,j(t)‖

(2.2.13)

where κ and η are the effective fibrin-bond stiffness (or a spring constant) and the fibrin viscous
coefficient, respectively. ri,j(t) = rj(t)−ri(t) and rij(0) = rj(0)−ri(0) represent the current and
initial distance respectively between two neighboring blood cells i and j. For the sake of simplicity,
each blood cell in the clot is considered a massless particle. The modified Kelvin-Voigt model is
resistant only against the stretch [29]. Fibrin fibers are extremely elastic and can be stretched up
to several times their initial distance at rest. Following Bajd and Serša [3] we apply the following
criterion to snap a bond: ∥∥∥∥∥ rij(t)rij(0)

∥∥∥∥∥ > 3.

The clot boundary moves under the influence of the background fluid. Therefore, the interior par-
ticles will also move until they reach an equilibrium state. Consequently, in order that any interior
particle finds its new equilibrium position the net force exerted by all the connected neighboring
particles j should be zero (Fig. 2.10). In another words, we solve the following equation to find a
new position for particle i in equilibrium with the others:

∑
j

[
κ
(
‖r̃i,j(t)‖ − ‖ri,j(0)‖

)
+ η
‖r̃i,j(t)− ri,j(t−∆t)‖

∆t

]
r̃i,j(t)
‖r̃i,j(t)‖

= 0 (2.2.14)

where r̃i,j = (xnewi , ynewi ) − (xj, yj) and j runs over all the neighboring particles connected to
particle i. The precise way that we solve (2.2.14) numerically will be described in Section 3.3. Let
Xi be the position of any particle i on the clot boundary. The net force Fi felt by this particle is the
sum of the binding forces (2.2.13) between this particle and all the connected neighboring particles
j.

Let f(s, t) be a Lagrangian force density with respect to the arc length s of the boundary of the
clot at time t. We denote X(s, t) the position vector at time t of a material point on the surface
having label s (see Fig. 2.11). Then, the Eulerian force density exerted at a point having position
vector x is

F (x, t) =
∫ L

0
f(s, t)δ(x−X(s, t))ds (2.2.15)

where L is the arc length of the clot boundary. We evaluate f at each boundary particleXi and we
denote this by fi. Then, we approximate the Eulerian force density as follows.

F (x, t) ≈
∑
i

fiδh
(
x−Xi

)
∆si (2.2.16)
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FIGURE 2.10. The forces exerted on an interior particle by the connected neigh-
boring particles.

FIGURE 2.11. The clot boundary

≈
∑
i

Fiδh
(
x−Xi

)
(2.2.17)

where Fi = ∑
j Fij , Fij being as in (2.2.13) and j running over all particles connected to the

ith particle. δh denotes a regularized approximation to the two-dimensional delta function (see
Chapter 3 , Section 3.2).

Remember that F ∗ = T
ρU
F (see (2.1.40)-(2.1.41)). Therefore, we can non-dimensionalize the net

force density Fi:

T

ρU
Fi
δ∗h
L2 = T

ρU

∑
j

Fi,j
δ∗h
L2 (2.2.18)
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=
[
κ
L2

ρU2
1
L2

(
‖r∗i,j(t)‖ − ‖r∗i,j(0)‖

)
(2.2.19)

+ η
L

ρU

1
L2
‖r∗i,j(t)− r∗i,j(t−∆t)‖

∆t∗

] r∗i,j(t)
|r∗i,j(t)|

δ∗h (2.2.20)

where L, U and T are the characteristic length, velocity and time, respectively, and δ∗h = L2δh.

Table 2.I helps us to calculate the characteristic velocity U , and consequently, having in hand the
Reynolds number value and the known values of the fluid density and viscosity, a characteristic
length L is obtained.

Therefore, the non-dimensionalized effective fibrin-bond stiffness κ∗ and fibrin viscous coefficient
η∗ are defined as follows:

κ∗ = κ
1
ρU2 & η∗ = η

1
ρUL

. (2.2.21)

The extent to which the fluid penetrates the boundary of the clot depends on the density of the
boundary particles. Ideally, we would prefer no fluid to penetrate the clot. Otherwise, Darcy’s law
should be taken into account which calculates the permeability of a porous medium. The fibrin
spring constant, κ = 0.013N/m, and viscous coefficient of a fibrin, η = 1.4 × 10−3N/(m/s), in
the Kelvin-Voigt model are taken from [3]. The Navier-Stokes equations are solved with respect
to five sets of entries for the channel diameter, mean flow, blood density and Reynolds number for
a common carotid artery shown in Table 2.I.

TABLE 2.I. Common carotid artery parameters for the study models; Modified
idealized: idealized normal carotid bifurcation model; Modified in vivo I & II: the
right carotid bifurcations of the 28 and 32 year old volunteers, respectively [27];
Test I is for comparing the results with idealized case.

Model Diameter Mean flow Reynolds number Density Viscosity
(mm) (ml/s) (kg/m3) (Pa.s)

Modified idealized 6.3 6.0 346 1035 1.4×10−3

Modified in vivo I 6.3 6.0 444 1035 1.4×10−3

Modified in vivo II 6.3 6.0 360 1035 1.4×10−3

Test I 6.3 6.0 100 1035 1.4×10−3

The clot’s deformation and break down are studied for each set of parameters. The spring constant
and the viscous coefficient are considered with the multiplicative factors 104 and 105 for comparing
the results for a clot with a less rigid structure and for a more rigid one. All the equations are
dimensionless, the ratio of the dimensions of the channel (width to length) is 1:5 and as explained
in Section 2.1.3, the imposed pressure gradient is calculated so that the average of horizontal
velocity component is equal to 1.
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Chapter 3

NUMERICAL APPROACH

In this chapter, in order to solve the Navier-Stokes equations for the blood passing through a
channel in the presence of a clot, two numerical methods are used. The first one is a projection
scheme to discretize the Navier-Stokes equations [40] and the second one is the immersed bound-
ary method [36]. Therefore, the algorithm utilized here is a combination of these two methods
to calculate the force F exerted by the clot boundary on the surrounding fluid by applying the
immersed boundary method and consequently, by substituting the resulting force in the Navier-
Stokes equations, we are able to find the velocity everywhere in the channel. The fibrin fibers are
the bonds between the clot’s particles. When the clot’s boundary moves under the influence of the
background blood, the boundary experiences some deformation which leads to the movement of
all the interior particles as well. In other words, when any points on the boundary move, the net
binding force exerted by the connected neighboring particles on each interior particle is not zero
any more. So, they move until they reach an equilibrium state, that is, until the net binding force
is zero. The rectangular channel is meshed into small rectangles of the same size. Moreover, the
clot is considered as an ensemble of massless points whose positions are not compatible with the
channel’s meshgrid. The structure of the clot is defined by the fibrin bonds between the particles.
If any bond on the boundary snaps, the boundary should be reconfigured. This means that some
of the fibrin fibers and the particles attached to them which were previously inside the boundary
may now appear on the reconfigured boundary. We define all the initial connections, i.e., the fibrin
fibers between the clot particles, using Delaunay triangulation. Therefore, the particles are the
vertices of the triangles such that no particle lies on any triangle’s side or inside the circumcircle
of any triangle (Fig. 3.1).

3.1. PROJECTION SCHEMES

The theoretical background of projection method for solving the incompressible Navier-Stokes
equations is the Helmholtz-Hodge decomposition theorem.



FIGURE 3.1. A clot inside a channel at t = 0

Theorem 3.1.1. If u is a vector field in a simply connected domain, it can be decomposed into a
divergence-free (solenoidal) part usol and an irrotational part uirrot.
Thus,

u = usol + uirrot = usol +∇φ (3.1.1)

where∇φ := uirrot for some scalar function φ. Since∇×∇φ = 0, taking the divergence of Eqn.
(3.1.1) gives:

∇.u = ∇2φ (since, ∇.usol = 0).

The fractional-step projection method was first introduced by Chorin [7, 8] for solving the Navier-
Stokes equations. The main idea of the projection method is described in two steps:

1. An intermediate velocity ũ is calculated without considering the pressure term and
incompressibility.

2. A Poisson equation for the pressure is solved. This step is equivalent to a projection of ũ
onto the space of incompressible velocity fields.

Chorin proposed a simple pressure-correction scheme. In this method the implicit Euler time
stepping is used. The algorithm is as follows [20]:

1. Set the initial condition u0 = u0.

2. Let a superscript denote the time step counter and solve the following equations to compute
ũ, uk+1, pk+1 for k > 0.
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1
∆t(ũ− u

k)− ν∇2ũ = F (tk+1), ũ|Γ = 0 (3.1.2)

1
∆t(u

k+1 − ũ) +∇pk+1 = 0 (3.1.3)

∇.uk+1 = 0, uk+1.n|Γ = 0 (3.1.4)

where ν is the kinematic viscosity and Γ is the boundary. Eqn. (3.1.3) is usually referred to as the
projection step, or pressure-correction step. By taking the divergence of both sides of (3.1.3) and
considering (3.1.4), we will solve the following Poisson’s equation to compute pk+1:

∇2pk+1 = ∇.ũ

There are two remarkable points about this approach [20]:

1. A Neumann boundary condition is enforced on the pressure for Eqn. (3.1.3). A numerical
boundary layer resultes from this artificial Neumann boundary condition such that the
scheme is not fully first-order for the velocity and pressure.

2. Using a more accurate discretizations of the time derivative in Eqns. (3.1.2)-(3.1.3) does
not improve the overall accuracy of this scheme because it has an irreducible splitting error
of order O(∆t).

In the 1980s, several second order time-discrete versions of a projection method were proposed [6].

Some of these versions were motivated by the second order time-discrete semi-implicit forms:

un+1 − un

∆t +∇pn+1/2 = −[(u.∇)u]n+1/2 + ν

2∇
2(un+1 + un) (3.1.5)

∇.un+1 = 0 (3.1.6)

un+1|∂Ω = un+1
b (3.1.7)

where [(u.∇)u]n+1/2 is a second order approximation at time step t = n + 1/2 and ub is a vector
defining a boundary condition.

Eqns. (3.1.5)-(3.1.6) are hard to solve directly. Therefore, a fractional step may be used to ap-
proximate the solution of these two equations. To do so, an intermediate velocity variable u∗ is
introduced for solving an analog to Eqn. (3.1.5). There are three steps:
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1. Step 1: Solve the following equation for the intermediate u∗

u∗ − un

∆t +∇q = −[(u.∇)u]n+1/2 + ν

2∇
2(u∗ + un) (3.1.8)

where q is an approximation to pn+1/2 and the boundary condition for u∗ should be
specified.

2. Step 2: The projection step

u∗ = un+1 + ∆t∇φn+1 (3.1.9)

∇.un+1 = 0 (3.1.10)

with the Dirichlet boundary condition for u∗ and the Neumann boundary condition for
un+1.

3. Step 3: Pressure-correction

pn+1/2 = q + L(φn+1) (3.1.11)

where L is a function of φn+1.

3.1.1. The selected projection scheme

In this work we use the Chorin’s method with a slight modification [19]. The general problem to
solve numerically and all the required steps are explained as follows:

We discretize the dimensionless Navier-Stokes equations given in the form of

∂u

∂t
+ ∂p

∂x
= −∂u

2

∂x
− ∂(uv)

∂y
+ 1
Re

(
∂2u

∂x2 + ∂2u

∂y2

)
+ Fx (3.1.12)

∂v

∂t
+ ∂p

∂y
= −∂(uv)

∂x
− ∂v2

∂y
+ 1
Re

(
∂2v

∂x2 + ∂2v

∂y2

)
+ Fy (3.1.13)

∂u

∂x
+ ∂v

∂y
= 0, (3.1.14)

on a rectangular domain Ω = [0 × lx] × [0 × ly] where lx and ly are the dimensionless width and
diameter of the channel, respectively.

For numerical approximations instead of considering u, v and p as the solutions of the Navier-
Stokes equations we use U , V and P , respectively. Therefore, Un ≈ u(n∆t, x, y) and V n ≈
v(n∆t, x, y) are the velocity field components at the nth time step satisfying

∂Un

∂x
+ ∂V n

∂y
= 0.
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The solution at the time step (n+ 1) is calculated in three steps, i.e., treating nonlinear terms step,
an implicit viscosity step and a pressure correction step.

First, the nonlinear terms of the incompressible Navier-Stokes equations are treated

U∗ − Un

∆t = −∂(Un)2

∂x
− ∂(UnV n)

∂y
− K̃ + Fx (3.1.15)

V ∗ − V n

∆t = −∂(UnV n)
∂x

− ∂(V n)2

∂y
+ Fy (3.1.16)

where K̃ is an imposed pressure gradient, Fx and Fy are the force density components exerted by
the boundary of the clot on the fluid.

Second, after having obtained U∗ and V ∗, the viscosity terms, i.e., the intermediate velocity field
(U∗∗ , V ∗∗) is introduced to improve the solutions U∗ and V ∗ by solving the equations

U∗∗ − U∗

∆t = 1
Re

(∂
2U∗∗

∂x2 + ∂2U∗∗

∂y2 ) (3.1.17)

V ∗∗ − V ∗

∆t = 1
Re

(∂
2V ∗∗

∂x2 + ∂2V ∗∗

∂y2 ) (3.1.18)

with the boundary conditions for U∗∗ and V ∗∗ chosen so that the boundary conditions for Un+1

and V n+1 are satisfied, at least approximately:

U∗∗N := U∗∗upper wall = 0 U∗∗S := U∗∗lower wall = 0

U∗∗W := U∗∗inflow(y) = K

2 y(y − 1)+4K
π3

∑
j odd

1
j3 sin(jπy)e−

j2π2
Re

(n+1)∆t

∂U∗∗E
∂x

:=
∂U∗∗outflow

∂x
= 0

V ∗∗N := V ∗∗upper wall = 0 V ∗∗S := V ∗∗lower wall = 0

V ∗∗W := V ∗∗inflow = 0 V ∗∗E := V ∗∗outflow = 0

where the subscripts N , S, W and S denote the upper wall, the lower wall, inflow and outflow,
respectively. K was already calculated and is equal to −12.

Finally, the intermediate velocity field is corrected:

Un+1 − U∗∗

∆t = −∂P̃
n+1

∂x
(3.1.19)

V n+1 − V ∗∗

∆t = −∂P̃
n+1

∂y
(3.1.20)

where P̃ n+1 is an approximation of p̃((n+ 1)∆t, x, y). Since in Eqns. (3.1.19)-(3.1.20) the excess
pressure is at time step (n + 1), it should be treated implicitly. Enforcing incompressibility at
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each time step means that, by taking the derivative of both sides of (3.1.19) with respect to x and
(3.1.20) with respect to y we end up with

− 1
∆t

∂U∗∗

∂x
= −∂

2P̃ n+1

∂x2 (3.1.21)

− 1
∆t

∂V ∗∗

∂y
= −∂

2P̃ n+1

∂y2 (3.1.22)

⇒ − ( 1
∆t

∂U∗∗

∂x
+ 1

∆t
∂V ∗∗

∂y
) = −(∂

2P̃ n+1

∂x2 + ∂2P̃ n+1

∂y2 ) (3.1.23)

Taking F n = −( 1
∆t

∂U∗∗

∂x
+ 1

∆t
∂V ∗∗

∂y
), therefore, we solve Poisson’s equation

−∆P̃ n+1 = F n

with the following boundary conditions for P̃ n+1 chosen so that the boundary conditions for Un+1

and V n+1 given by (3.1.19)-(3.1.20) and the pressure (2.1.48) are satisfied

∂P̃ n+1

∂x
= 0 on inflow

P̃ n+1 = 0 on outflow

∂P̃ n+1

∂y
= 0 on the upper and lower walls

Having found P̃ n+1, we compute ∂
∂x

(P̃ n+1) and ∂
∂y

(P̃ n+1) and substitute them in (3.1.19) and
(3.1.20), respectively, to update the velocity field

(Un+1 , V n+1) = (U∗∗ −∆t∂P̃
n+1

∂x
, V ∗∗ −∆t∂P̃

n+1

∂y
)

Algorithm 1 The projection scheme algorithm
Treat nonlinear terms:

1: Solve the equation u∗−un
∆t = −(un.∇)un for u∗

Implicit Viscosity:
2: Solve the implicit equation u∗∗−u∗

∆t = 1
Re

(∇2u∗∗) for u∗

Pressure Correction
3: Applying the Helmholtz-Hodge decomposition on un+1−u∗∗

∆t = −∇p̃n+1

4: −∇2p̃n+1 = − 1
∆t∇.u

∗∗
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3.1.2. Spatial discretization

In order to solve Eqns. (3.1.17) and (3.1.18), we should discretize them spatially on a suitable
mesh. For the first derivatives as well as the second derivatives, we use central finite differences.
Using a regular grid (collocated grid), all the variables are located on the same point of the grid
and this leads to spurious pressure mode instabilities, when the pressure term is approximated by
central differencing [11] because of the coupling between the pressure and the velocity.

In order to avoid this instability we use a staggered grid. This grid is divided into cells such that
P̃ n+1 is computed on the cell centers and the intermediate velocities (U∗∗ and V ∗∗) are computed
on the vertical and horizontal cell boundaries, respectively [31, 40].

Fig. 3.2 shows a staggered grid in which for each cell, the center represents P̃ n+1, the center of
left side represents U∗∗ and the lower side center represents V ∗∗.

FIGURE 3.2. A staggered grid; horizontal and vertical arrows represent the inter-
mediates velocities U∗∗ and V ∗∗, respectively.

In our problem, according to the boundary conditions, these three fields should be computed on the
interior points. Additionally, U∗∗ should be computed on outflow points. The number of unknowns
to determine for each field is given in Table 3.I.

TABLE 3.I. Pressure and velocity fields sizes

Field Grid points
Pressure P̃ n+1 nx × ny

Velocity component U∗∗ nx × ny
Velocity component V ∗∗ nx × (ny − 1)
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nx and ny are the number of the cells in each row and each column of the rectangular domain,
respectively. Therefore, the length and height of each cell are defined by hx = lx

nx
and hx = ly

ny
,

respectively.

Eqns. (3.1.17)-(3.1.20) are discretized at interior and outflow points for U∗∗ and at interior points
for V ∗∗ and P̃ n+1. The second derivatives are approximated by centred finite differences at a grid
point related to the corresponding field. For example, to approximate the second derivative of
U∗∗i+1/2,j with respect to x we have

∂2U∗∗i+1/2,j

∂x2 =
U∗∗i−1/2,j − 2U∗∗i+1/2,j + U∗∗i+3/2,j

h2
x

i = 1, . . . , nx, j = 1, . . . , ny

If i = 1, U∗∗i−1/2,j is located on inflow and if i = nx, Unx+1/2 is located on a so-called ghost cell.
Ghost cells appear on the right side of outflow, on the top of the upper wall and on the bottom of
the lower wall and are added in order that the boundary conditions for U∗∗, V ∗∗ and P̃ n+1 may be
satisfied. See Fig. 3.3, [40]. We describe how this is done in the remainder of this section.

FIGURE 3.3. A staggered grid with the boundary cell and ghost cells (gray cells);

The intermediate velocity U∗∗1/2,j at inflow is prescribed directly. The homogeneous Neumann

boundary condition
∂U∗∗

nx+1/2,j
∂x

= 0 on outflow can be treated as:

U∗∗ghost − U∗∗nx−1/2

2hx
= 0 ⇒ U∗∗ghost = U∗∗nx−1/2 (outflow ghost cell)
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resulting in a modification to the discretization of ∂2U∗∗

∂x2 as follows:

U∗∗nx−1/2,j − 2U∗∗nx+1/2,j + U∗∗ghost,j
h2
x

=
U∗∗nx−1/2,j − 3U∗∗nx+1/2,j

h2
x

Similarly, on the lower and upper walls we prescribe the values for V ∗∗ directly. Therefore, the
discretized ∂2V ∗∗

∂y2 for j = 1 and j = ny is

V ∗∗i,1/2 = V ∗∗i,lower wall = 0

V ∗∗i,ny+1/2 = V ∗∗i,upper wall = 0
V ∗∗i,1/2 − 2V ∗∗i,3/2 + V ∗∗i,5/2

h2
y

=
−2V ∗∗i,3/2 + V ∗∗i,5/2

h2
y

V ∗∗i,ny−3/2 − 2V ∗∗i,ny−1/2 + V ∗∗i,ny+1/2

h2
y

=
V ∗∗i,ny−3/2 − 2V ∗∗i,ny−1/2

h2
y

For the values of U∗∗ on the upper and lower walls that lie between grid points of U∗∗ and artificial
ghost points, we take the average of the two points below and above the boundary (Fig. 3.3).

Since U∗∗i+1/2,ny+1/2 = U∗∗i+1/2,1/2 = 0, the discretized ∂2U∗∗

∂y2 is:

U∗∗i+1/2,ny+1/2 =
U∗∗i+1/2,ghost + Ui+1/2,ny

2 = 0

where U∗∗i+1/2,ghost is the upper wall neighboring ghost cell,

⇒ U∗∗i+1/2,ghost = −U∗∗i+1/2,ny

⇒
U∗∗i+1/2,ny−1 − 2U∗∗i+1/2,ny + U∗∗i+1/2,ghost

h2
y

=
U∗∗i+1/2,ny−1 − 3U∗∗i+1/2,ny

h2
y

.

Moreover,

U∗∗i+1/2,1/2 =
U∗∗i+1/2,ghost + U∗∗i+1/2,1

2 = 0

where U∗∗i+1/2,ghost is the lower wall neighboring ghost cell,

⇒ U∗∗i+1/2,ghost = −U∗∗i,1

⇒
U∗∗i+1/2,ghost − 2U∗∗i+1/2,1 + U∗∗i+1/2,2

h2
y

=
−3U∗∗i+1/2,1 + U∗∗i+1/2,2

h2
y
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On inflow and outflow V ∗∗1/2,j+1/2 = Vnx+1/2,j+1/2∗∗∗ = 0, therefore we have (Fig. 3.3):

V ∗∗1/2,j+1/2 =
V ∗∗ghost,j+1/2 + V ∗∗1,j+1/2

2 = 0

where V ∗∗ghost,j+1/2 is the inflow neighboring ghost cell,

⇒ V ∗∗ghost,j+1/2 = −V ∗∗1,j+1/2

⇒
V ∗∗ghost,j+1/2 − 2V ∗∗1,j+1/2 + V ∗∗2,j+1/2

h2
x

=
−3V ∗∗1,j+1/2 + V ∗∗2,j+1/2

h2
x

.

Moreover,

V ∗∗nx+1/2,j+1/2 =
V ∗∗nx+1/2,j+1/2 + V ∗∗ghost,j+1/2

2 = 0

where V ∗∗ghost,j+1/2 is the outflow neighboring ghost cell,

⇒ V ∗∗ghost,j+1/2 = −V ∗∗nx,j+1/2

⇒
V ∗∗nx−1,j+1/2 − 2V ∗∗nx,j+1/2 + V ∗∗ghost,j+1/2

h2
x

=
V ∗∗nx−1,j+1/2 − 3V ∗∗nx,j+1/2

h2
x

Finally, the boundary conditions ∂P̃n+1

∂x
= 0 on inflow, P̃ n+1 = 0 on outflow and ∂P̃n+1

∂y
= 0 on the

upper and lower walls are used in the discretization at certain points of ∂2P̃n+1

∂x2 and ∂2P̃n+1

∂y2 since
Poisson’s equation is solved at all interior points.

A centred difference approximation to ∂P̃n+1

∂x
= 0 on inflow is written as

P̃ n+1
ghost,j+1/2 − P̃

n+1
1,j+1/2

hx
= 0

where P̃ n+1
ghost,j+1/2 is the inflow neighboring ghost cell. Therefore, P̃ n+1

ghost,j+1/2 = P̃ n+1
1,j+1/2 results

in
P̃ n+1
ghost,j+1/2 − 2P̃ n+1

1,j+1/2 + P̃ n+1
2,j+1/2

h2
x

=
−P̃ n+1

1,j+1/2 + P̃ n+1
2,j+1/2

h2
x

Similarly, a centred difference approximation to ∂P̃n+1

∂y
= 0 on the upper wall is

P̃ n+1
i,ghost − P̃ n+1

i,ny

hy
= 0

where P̃ n+1
i,ghost is the upper wall neighboring ghost cell. Therefore, P̃ n+1

i,ghost = P̃ n+1
i,ny gives us
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P̃ n+1
i,ny−1 − 2P̃ n+1

i,ny + P̃ n+1
i,ghost

h2
y

=
P̃ n+1
i,ny−1 − P̃ n+1

i,ny

h2
y

The Neumann boundary condition ∂P̃n+1

∂y
= 0 on the lower wall is discretized using a centred finite

difference as

P̃ n+1
i,ghost − P̃i,1

hy
= 0

where P̃i,ghost is the lower wall neighboring ghost cell. Therefore,

P̃ n+1
i,ghost − 2P̃ n+1

i,1 + P̃ n+1
i,2

h2
y

=
−P̃ n+1

i,1 + P̃ n+1
i,2

h2
y

And lastly, P̃ n+1 = 0 on outfolow which can be approximated by

P̃ n+1
ghost,j + P̃ n+1

nx,j

2 = 0

where P̃ n+1
ghost,j is the outflow neighboring ghost cell.

Therefore, P̃ n+1
ghost,j = −P̃ n+1

nx,j results in

P̃ n+1
nx−1,j − 2P̃ n+1

nx,j + P̃ n+1
ghost,j

h2
x

=
P̃ n+1
nx−1,j − 3P̃ n+1

nx,j

h2
x

3.1.2.1. The matrix representations of the intermediate velocities and the excess pressure

In order to solve Eqns. (3.1.17) and (3.1.18) for U∗∗ and V ∗∗, we bring all the unknowns on one
side and the knowns and the boundary conditions on the other side

U∗∗i+1/2,j −
∆t
Re

(U∗∗i−1/2,j − 2U∗∗i+1/2,j + U∗∗i+3/2,j

h2
x

+
U∗∗i,j−1/2 − 2U∗∗i,j+1/2 + U∗∗i,j+3/2

h2
y

)
= U∗ + Ubc (3.1.24)

where Ubc is the known value of U∗∗ and U∗ is given by (3.1.15).

V ∗∗i,j+1/2 −
∆t
Re

(V ∗∗i−1/2,j − 2V ∗∗i+1/2,j + V ∗∗i+3/2,j

h2
x

+
V ∗∗i,j−1/2 − 2V ∗∗i,j+1/2 + V ∗∗i,j+3/2

h2
y

)
= V ∗ + Vbc (3.1.25)
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where Vbc is the known value of V ∗∗ and V ∗ is given by (3.1.16).

Therefore, ∂
2U∗∗

∂x2 and ∂2U∗∗

∂y2 on the left-hand side of (3.1.24) have the sparse matrix forms, respec-
tively as follows

−2 1
1 −2 1

1 −2 1
2 −2




(3.1.26)

and

−3 1
1 −2 1

1 −2 1
1 −3




(3.1.27)

The sparse coefficient matrices for ∂2V ∗∗

∂x2 and ∂2V ∗∗

∂y2 are

−3 1
1 −2 1

1 −2 1
1 −3




(3.1.28)

and

−2 1
1 −2 1

1 −2 1
1 −2




, (3.1.29)

respectively. Having solved Eqns. (3.1.17) and (3.1.18) we use U∗∗ and V ∗∗ in (3.1.21) and
(3.1.22). The sparse matrices representing ∂2P̃n+1

∂x2 and ∂2P̃n+1

∂y2 have the following forms.
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−1 1
1 −2 1

1 −2 1
1 −3




(3.1.30)

and

−2 1
1 −2 1

1 −2 1
1 −2




(3.1.31)

respectively.

3.2. THE IMMERSED BOUNDARY METHOD

For a viscous incompressible fluid in a region containing an immersed boundary, Peskin in 1972
introduced the first version of the immersed boundary method to study the flow behavior in the
presence of the forces exerted by the boundary on the fluid, [34]. In the non-dimensionalized
Navier-Stokes equations given by (3.1.12)-(3.1.13), F = (Fx, Fy) is the external force exerted by
the immersed boundary on the surrounding fluid. Assume a small length of the immersed boundary
a force f(s, t)ds at time t is exerted on the surrounding fluid (s is a Lagrangian variable). The total
force is then given by

F (x, t) =
∫∫
f(s, t)δ(‖x−X(s, t)‖) ds (3.2.1)

where δ indicates a two-dimensional Dirac delta function, x is a point in the Cartesian grid and
X is the coordinate of a Lagrangian point on the immersed boundary. In a discrete representation
the function δ may be approximated with a function D(Xk) such thatXk belongs to the immersed
boundary

D(Xk) =


1

16h2 (2− |α− x|)(2− |β − y|), |α− x| 6 2 and |β − y| 6 2
0, otherwise
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whereXk = (αh, βh) is a point on the Lagrangian mesh, x = (x, y) is a Cartesian mesh point and
h is the mesh width on a square mesh. Some examples of semidiscrete analogs of this δ function
are given in Fig. 3.4.

FIGURE 3.4. Semidiscrete analog of the δ function: three typical cases (the factor
1/16h2 has been omitted). The coefficients shown provide the linkage between the
boundary points and the fluid mesh [34]

A few years later, in 1977, Peskin [35] introduced an improved numerical representation of the
function δ (Fig. 3.5)

D(Xk) = d(xk − x)d(yk − y)

where

d(r) =


1
4h(1 + cos(πr/2h)), if |r| < 2h
0 if |r| > 2h

where Xk = (xk, yk) is a Lagrangian grid point, (x, y) is a Cartesian grid point and h is the mesh
width on a squared grid.

Tu and Peskin [45] compared the stability properties of three numerical methods for computing the
boundary force in the presence of an elastic immersed boundary. The numerical approximation δh
to the δ function used for all of them is the one introduced in [35].

The first method is an explicit method which is not always stable and when we have a big time step
for the membrane position update the boundary will explode. To compute the updated positions
of the boundary points Xn+1 at time step (n + 1) given Xn, the force density fnk exerted by each
point of the boundary Xk should be evaluated first. Then, the δh function is used to calculate the
force density F n

ij on all the computational grid points

F n
ij =

∑
k

fnk δh
(
xij −Xn

k

)
δs
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FIGURE 3.5. Numerical representation of the function δ [35]

where k runs over all the particles on the boundary, xij is a grid point, Xn
k is a boundary point at

the time step n and ∆s is the distance between two successive boundary particles.

Next, having solved the velocity unij on the grid points in the Navier-Stokes equations, they use the
δh function again to interpolate the velocity on the boundary points Un

k

Un
k =

∑
ij

unijδh
(
xij −Xn

k

)
h2.

Finally, the boundary positions are updated using

Xn+1
k = Xn

k + ∆tUn
k .

The second method used the approximate-implicit method which is similar to the first one except
that in order to avoid the numerical instability the force density was calculated implicitly. The
following system of equations was used to calculate the force density fk exerted by each boundary
particle.

Xn+1,∗
k = Xn

k + ∆tλfk
(
Xn+1,∗

1 ,Xn+1,∗
2 , . . . ,Xn+1,∗

Nb

)
,

whereXn+1.∗
1 ,Xn+1.∗

2 , . . . ,Xn+1.∗
Nb

are the intermediate boundary positions, λ is the magnitude of
the velocity induced at a point by a unit force applied to that point. For more details see [45]

An implicit method was the third approach in which they calculated the boundary force with respect
to the unknown configuration at the end of the time step. This method uses the fundamental
solution of the Stokes equations to compute the influence of one boundary point on another [45].
Having found the velocity uij at each grid point, an implicit method was used to compute the force

47



density
Xn+1

k = Xn
k + ∆th2∑

ij

un+1
ij δh

(
xij −Xn

k

)
.

where Xn+1
k is an updated boundary position at the time step (n + 1), h is the mesh width on a

square grid and xij is a grid point.

The reason for calling this the implicit method is because the boundary force was computed from
Xn+1

k [45]. Once the updated boundary force exerted by each boundary point fn+1
k was calculated,

the updated boundary points were found fromm

Xn+1
k = X0

k + ∆t∆sG̃fn+1
k ;

where G is the discrete Green’s function of the Stokes equations on a periodic domain (further
details can be found in [45]).

This method in comparison to the other ones had the best stability properties.

Roma et al., [38] suggested an adaptive mesh refinement technique and defined the discrete ap-
proximated δ function as follows

δ2
h(x = x0) = δ1

h(x− x0)δ1
h(y − y0)

where x = (x, y) is a point on the immersed boundary, x0 = (x0, y0) is a Cartesian mesh point, h
is the mesh width on a square grid and φ is defined as

φ(r) =


1
6(5− 3|r| −

√
−3(1− r2 + 1)), 0.5 6 |r| 6 1.5

1
3(1 +

√
−3 + r2 + 1), |r| 6 0.5

0, otherwise

where r = (x− x0)/h. δ1
h(x− x0) = 1

h
φ
(
x−x0
h

)
.

This method was tested for a two-dimensional problem but no significant difference was found
between the solution given by the locally refined mesh and a uniform mesh.

Other discrete δ functions have been used or introduced (Fig. 3.6).

In all the following functions, r is the distance between an Eulerian grid point and a Lagrangian
grid point and h is the mesh width. Saiki [39] used the following function:

δ(r) ≈ dh(r) = 1
h


1

4h2 (2h+ r), if r 6 2h
0, otherwise.
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FIGURE 3.6. (a) The force Fk exerted from Lagrangian boundary point to sur-
rounding fluid. (b) Various distribution functions [28].

If there are no discontinuities where the force is exerted, the simple discrete functions used by [35]
and [39] are second and first order accurate, respectively [4]. Beyer and Leveque [4] introduced
a more general discrete δ function and gave an interpretation for this function by extrapolating it
linearly on both sides of the discontinuity associated with a convex combination of two one-sided
extrapolations.

δ(r) ≈ dh(r) =


1− ( r

h
)2, if r 6 h

2− 3 r
h

+ ( r
h
)2, if h 6 r 6 2h

0, otherwise.

A formally second-order accurate immersed boundary method was presented by Lai and Pe-
skin [25] in which they used an explicit scheme for an immersed boundary method in which the
boundary force is computed in the beginning of the time step and then the Navier-Stokes equations
with the computed density force at time step n are solved to update the velocity field. The discrete
delta function is defined as follows

δ(x) = dh(x)dh(y)

where x = (x, y) is an Eulerian variable and
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dh(r) =


1

8h(3− 2| r
h
|+

√
1 + 4| r

h
| − 4( r

h
)2), if |r| 6 h

1
8h(5− 2| r

h
| −

√
−7 + 12| r

h
| − 4( r

h
)2), if h 6 |r| 6 2h

0, otherwise.

To study blood behavior everywhere including around the clot in a rectangular channel, the im-
mersed boundary method has been deployed which is both a mathematical formulation and a nu-
merical scheme.

In this work, the nondimensionalized net force density F exerted by the immersed boundary on
the surrounding fluid is given by (2.2.20).

The reason for using a Dirac delta function in (2.2.20) is incompatibility of the location of im-
mersed boundary with the points of the Cartesian mesh.

3.2.1. Our choice of delta function

For computing the net force given by (2.2.17) and resulting from (2.2.20), we need an approx-
imation to the δ-function. The approximation used here is two-dimensional version of the one
introduced by Peskin [36].

Suppose δh is the approximation to the δ-function so that δh → δ as h → 0. A δh-function with
such a property is defined as follows

δh(x, y) = 1
h2φ(x

h
)φ(y

h
)

where h is the meshwidth and L is a characteristic length. The single-variable function φ(r),
where r is a general real variable that can be taken as x/h or y/h, is a continuous function defined
as follows

φ(r) =



0, r ≤ −2
1
8

(
5 + 2r −

√
−7− 12r − 4r2

)
, −2 ≤ r ≤ −1

1
8

(
3 + 2r +

√
1− 4r − 4r2

)
, −1 ≤ r ≤ 0

1
8

(
3− 2r +

√
1 + 4r − 4r2

)
, 0 ≤ r ≤ 1

1
8

(
5− 2r −

√
−7 + 12r − 4r2, 1 ≤ r ≤ 2

0, 2 ≤ r

From the definition of the function φ(r), the support of this function is in the interval [−2, 2]. More
precisely, for the variables x and y the function δh has the support on x, y ∈ [−2h, 2h].
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Hence, the dimensionless function δ∗h is δh multiplied by L2. Therefore, by applying the nondimen-
sionalized δ∗h function in (2.2.20) the stress is distributed smoothly. In the numerical scheme, the
number of grid points affected by the delta function depends on where the δ-function is positioned
in the grid, but the strong point about the function φ is that it can easily include or exclude these
grid points. We should bear in our mind that each boundary point of the clot is considered as a ref-
erence point (Fig. 3.7). Consequently, x and y are defined as |xij−Xk| and |yij−Yk|, respectively,

FIGURE 3.7. The clot boundary points in a Cartesian mesh.

where xij and yij are the coordinates of each grid point and Xk and Yk are the coordinates of each
boundary point on the clot. There are other choices for φ(r) such as exp(−r2/2) or sin(r)/r, but
these would lead to large computational cost.

From now on, we are able to evaluate the exerted forceF = (Fx, Fy) by the clot on the surrounding
fluid, i.e., at each of the U∗∗ and V ∗∗ grid points. Let Fx be the evaluated component at the U∗∗

grid points and Fy be the evaluated component at the V ∗∗ grid points

Fx =
∑
i

F x
i δh(|xU

∗ −Xi|, |yU
∗ − Yi|) (3.2.2)

Fy =
∑
i

F y
i δh(|xV

∗ −Xi|, |yV
∗ − Yi|) (3.2.3)

where (F x
i , F

y
i ) are the components of Fi given by (2.2.20), (xU∗

, yU
∗) is a U∗ grid point and

(xV ∗
, yV

∗) is a V ∗ grid point.

3.3. UPDATING THE POSITION OF THE POINTS INSIDE AND ON THE CLOT

BOUNDARY

The position of the clot boundary is updated after having updated the velocities

Un ≈ U(n∆t, x, y) and V n ≈ V (n∆t, x, y) at every time step. To find the updated position, we
should evaluate the fluid velocity at the boundary points. Assume X is the position of a particle
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on the immersed boundary Let unX = u(n∆t,X) be the numerical approximation to the fluid
velocity at the boundary point X at time step t = n∆t and suppose unX = (unX , vnX). Then, we
can linearly interpolate unX using the Un grid points which lie on the cell containingX . Similarly,
vnX can be linearly interpolated using the two V n grid points which lie on the cell containing X .
Therefore,

uX =
d2U

n
i−1/2,j + d1U

n
i+1/2,j

hx

vX =
d3V

n
i,j−1/2 + d4V

n
i,j+1/2

hy

where d1 + d2 = hx and d3 + d4 = hy (see Fig. 3.8).

FIGURE 3.8. The position of an immersed boundary point with respect to the mesh grid.

Using the modified Euler method will help us to compute the updated position of every point on
the immersed boundary. The procedure for calculating the updated position via this method is:

X̃n+1 = Xn + ∆tu(n∆t,X)

Xn+1 = Xn + ∆t
2
(
u(n∆t,X) + u((n+ 1)∆t), X̃n+1

)

At this point, we have the updated positions of the clot boundary. From what we discussed in
Chapter 2, as the clot boundary moves all interior points move as well until they reach a new
equilibrium state. Therefore, the following iterative process is performed to find the new position
of each interior particle i by solving Eqn. (2.2.14).
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Algorithm 2 The iterative procedure to find the equilibrium state of all interior points
1: Set l := 1
2: Set Y0(n∆t, 1) := the initial position of particle i
3: Y0(n∆t, 1) := the centroid of all the connected neighbors of particle i
4: Solve the Eqn. (2.2.14) with the initial value to find the updated position of Y (n∆t, 1)
5: l := l + 1
6: Set Y0(n∆t, l) = Y (n∆t, l − 1)
7: Solve the Eqn. (2.2.14) with the initial value to find the updated position of Y (n∆t, l)
8: Stop if ‖Y (n∆t, l)− Y (n∆t, l − 1)‖ < ε
9: Otherwise go to the step 6

The criterion in the step 9 means that there is no significant difference between the updated position
at the current sweep and the previous on. So, we have an equilibrium state for the updated position
of the interior points.

53





Chapter 4

SIMULATIONS AND RESULTS

In our simulations, a clot is represented as an ensemble of massless points whose boundary inside
the channel is initially defined by a convex polygon the base of which lies on the lower wall of the
channel.

4.0.1. Choice of parameters

The coordinates of the points on the boundary can be randomly or uniformly distributed, and
clearly, the greater the number of points on the boundary, the less penetrable by the fluid it will
be. The interior points are randomly selected. A Delaunay triangulation is constructed using all
the points on and inside the boundary and the ones on the lower wall. The edges of the triangles
in the triangulation define the initial set of springs. We follow Bajd and Serša [3] in setting the
fibrin-bond spring constant κ in the Kelvin-Voigt model (2.2.14) to be equal to 0.013N/m and the
viscous coefficient η to be equal to 4.6× 10−3N/(m/s) .

The non-dimensionalized fibrin-bond spring constant κ∗ and viscous coefficient η∗ are shown in
Table 4.I and are calculated from (2.2.21) using the data in Table 2.I.

TABLE 4.I. The non-dimensionalized fibrin-bond spring constant κ∗ and viscous
coefficient η∗ with respect to four Reynolds numbers.

Reynolds number κ∗ η∗

444 0.0002058404×105 0.0074002817×105

360 0.000312025×105 0.0090992269×105

346 0.0003389546×105 0.0096200096×105

100 0.0040578345×105 0.0328571656×105

The general structure of the MATLAB code for calculating the fluid velocity and pressure is taken
from the algorithm supplied in [40]. For computing the force exerted by the clot boundary via
the immersed boundary method we use an adapted version of a two-step Peskin algorithm which



is accessible on the webpage GitHub [1]. All the computations are performed using the non-
dimensionalized Navier-Stokes equations.

The number of the computational cells (see, for example, Fig. 3.8) in the x- and y- directions of
the channel is taken equal to nx = 250 and ny = 50, respectively. The blood plasma density and
viscosity are ρp = 1035 kg/m2 and ηp = 1.4 × 10−3 Pa.s [3]. The channel length and width
were set equal to 5 and 1 dimensionless units, respectively. The dimensionless simulation time
step equalled ∆t = 1×10−3. The simulation results were obtained for two different multiplicative
factors for the spring constant and viscous coefficient. That is to say, we changed the stiffness of
the clot by multiplying κ∗ and η∗ by two different values.

4.1. RESULTS

4.1.1. Multiplicative factors 105 and 104

Two simulations were performed for each of the Reynolds numbers 100, 346, 360 and 444 to
study the clot stability in the channnel. 100 boundary points were distributed uniformly on the
boundary of a semi-ellipse for each Reynolds number in order to compare the effect of a less
rigid and more rigid boundary discretization on its stability. The results of the simulations with
the multiplicative factors of 104 and 105 for the spring constant and the viscous coefficient were
compared by examining the screen shots of the clots’ positions in the channel at a certain sequence
of numbers of time steps and by calculating the average speed of the clot boundary at those times.
In all the simulations the clot broke down and part of the clot detached completely as a separate
ensemble (an embolus), which was then transported by the background fluid flow.

4.1.1.1. Clot with less flexible structure - Multiplicative factor 105

The following figures are the screen shots of the clot position and the average speed of the
boundary points at different times for four flow regimes with the multiplicative factor set at 105.

The average speed and time step are dimensionless. The difference between the four flow regimes
is the characteristic speed U , representing the average of the physical speed of the fully developed
(Poiseuille) flow at entry. For instance,

URe=346 = 3.46URe=100.

Fig. 4.1 shows that the physical average speeds of the boundary points of the flows at Reynolds
numbers 100 and 346 at dimensionless time step number 1000 are approximately equal because,
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after calculating the values of the dimensionless average speeds at 1000 time steps as being ap-
proximately equal to 0.82 (for Re = 100) and 0.026 (for Re = 346), we have

‖u1‖ = 0.82URe=100

and
‖u2‖ = 0.026URe=346,

where ‖u1‖2 and ‖u2‖2 are the average speeds at boundary points at Re=100 and Re=346, respec-
tively. Since URe=346 = 3.46URe=100, consequently, ‖u1‖2 ≈ ‖u2‖2. However, t1, the physical
time corresponding to 1000 dimensionless time steps at Re = 100 is larger than t2, the physical
time corresponding to Re = 346 (in fact, t1 = 3.46t2). The conclusion is that the flow regime at
the Re = 100 attains the same average speed as the one at the Re = 346, but at a later physical
time. By comparing the clots’ positions in Fig. 4.2 we can say that the position of the clot in the
second channel (Re=346) was attained at an earlier physical time at a lower physical speed by the
clot in the first channel (Re=100). Therefore, if the physical time for the second flow becomes
equal to t1, the average speed of the boundary points will be faster and the clot will be moving
with a greater physical speed than the clot in the first channel.

FIGURE 4.1. The average speed of the boundary points: Re=100 (left) and Re=346 (right)

Fig. 4.3 shows the clot positions at 360 and 444 after 2000 dimensionless time steps. The physical
time of the snapshot in Fig. 4.2 (right) is greater than in Fig. 4.3 (left) which is greater in turn
than that in Fig. 4.3 (right). The images shown in Figs. 4.4-4.14 show clot positions at Re = 100,
346, 360 and 444 after 4000 dimensionless time steps (Figs. 4.4-4.5), 6000 dimensionless time
steps (Figs. 4.6-4.7), 7900 dimensionless time steps (Figs. 4.8-4.9), 8200 dimensionless time steps
(Fig. 4.10), 8800 and 9400 dimensionless time steps (Figs. 4.11-4.13). Consider, for example, the
results of the two flows given in Fig. 4.14 (right). Although the physical time in this Figure after
6000 dimensionless time steps is comparable to the physical time in Fig. 4.1 (right) after 7900
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FIGURE 4.2. Clot position after 2000 time steps for Re=100 (left) and Re=346 (right)

FIGURE 4.3. Clot position after 2000 time steps for Re=360 (left) and Re=444 (right)

dimensionless time steps, the physical average speed at Re = 444 is larger than that at Re = 3600,
as one would expect.

At Re = 100, Fig. 4.6 (left) indicates that the clot has broken down into smaller ensembles.
The average speed increases steadily. There are two peaks at around dimensionless time steps
2800 and 3700 (see Fig. 4.1 (left)). The former indicates that the bonds between the boundary
points were still intact but thereafter the tensions and extensions became so high that these bonds
snapped. Some interior points became new boundary points and the whole clot recovered shortly.
The average speed of the boundary points was changing very slowly up to around 3300 time steps,
which was showing a more or less stable clot. Thereafter, the average speed started increasing
steadily again and they were still intact. We conjecture that at around dimensionless time step
3700 the tensions and extensions of the bonds between the boundary points again became so high
that they snapped which led to a detachment from the main clot, i.e. a secondary clot (an embolus),
a sudden movement of some boundary points on the main clot back to regions of lower fluid speed
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FIGURE 4.4. Clot position after 4000 time steps for Re=100 (left) and Re=346 (right)

FIGURE 4.5. Clot position after 4000 time steps for Re=360 (left) and Re=444 (right)

FIGURE 4.6. Clot position after 6000 time steps for Re=100 (left) and Re=346 (right)
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FIGURE 4.7. Clot position after 6000 time steps for Re=360 (left) and Re=444 (right)

FIGURE 4.8. Clot position after 7900 time steps for Re=346 (left) and Re=360 (right)

FIGURE 4.9. Clot position after 7900 time steps for Re=444
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FIGURE 4.10. Clot position after 8200 time steps for Re=360 (left) and Re=444 (right)

FIGURE 4.11. Clot position after 8800 time steps for Re=346 (left) and Re=360 (right)

FIGURE 4.12. Clot position after 8800 time steps for Re=444
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FIGURE 4.13. Clot position after 9400 time steps for Re=360 (left) and Re=444 (right)

FIGURE 4.14. The average speed of the boundary points: Re=360 (left) and
Re=444 (right)

and movement of the embolus away from the main clot. We observe that although the average
speed drops following the snapping of bonds and the release of an embolus, it recovers shortly
thereafter.

Note that the interpretation of the results for the Reynolds numbers of 346, 360 and 444 was com-
plicated by the fact that to change the Reynolds number we should have used different characteristic
average speeds and slightly different characteristic lengths, in order to keep these quantities in the
physiological realm. Therefore, to avoid such a complicated situation, we fixed the quantity of the
characteristic length. Consequently, for obtaining these Reynolds numbers, we only changed the
characteristic average speeds.

However, the clot has broken down in both cases corresponding to Re = 346 and Re = 444, see
Fig. 4.13.

62



Finally, since the characteristic speed of the flow at Reynolds number 360 is smaller than the one at
Reynolds number 444, the clot’s state for the latter is shown at an earlier physical time in Fig. 4.13.
Therefore, when the physical time for the latter gets to the current physical time of the former, the
clot may be expected to break down and for there to be at least two separate ensembles, which is
confirmed by the result shown in Fig. 4.13 (right).

4.1.1.2. Clot with more flexible structure - Multiplicative factor 104

Another set of simulations with a smaller multiplicative factor (104) of the spring constant and
the viscous coefficient was executed to study the effect of the change of rigidity of the clot on its
motion.

What we expected was that the less rigid clot would be less resistant and move faster, which would
lead to more snapped bonds at an earlier time (both dimensionless and physical) in comparison
to the more rigid one, i.e. the clot with a multiplicative factor (105) of the spring and viscous
coefficient. By comparing the results in Figs. 4.15-4.22 with those in Figs. 4.2-4.10, we observe
that the bonds in the more flexible clot snapped faster than those in the more rigid clot. The
comparison of the results of the average speed of the boundary points in Figs. 4.23 and 4.24 with
the ones in Figs. 4.1 and 4.14 confirm that the smaller the multiplicative factor of the spring and
viscous coefficient is, the faster the clot moves.

FIGURE 4.15. Clot position after 2000 time steps for Re=100 (left) and Re=346 (right)

In Figs. 4.17-4.22 we observe the displacement of the clot, its resistance against the flow and
how fast it breaks down into smaller secondary clots (emboli) at different Reynolds numbers. The
majority of the snapshots are taken at the same number of dimensionless time steps as in Section
4.1.1.1 for the purpose of being comparable with the results obtained with the larger multiplicative
factor.
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FIGURE 4.16. Clot position after 2000 time steps for Re=360 (left) and Re=444 (right)

Some of the snapshots were taken at an earlier dimensionless time steps due to the fact that the
clot had broken down already into smaller ensembles. Therefore, it was pointless letting the
simulation keep running.

FIGURE 4.17. Clot position after 4000 time steps for Re=100 (left) and Re=346 (right)

All the results are compatible with our assumption that the possibility of having a steady state for
a more flexible clot is less likely. For example, comparing the results in Figs. 4.22 (right) and 4.10
(right) demonstrates that the more flexible clot in the former has been already broken down into
smaller ensembles while in the latter the main body is still intact and attached to the lower wall
although the tensions are so high that in a later time those bonds snapped.

Finally, the following figures show the average speed of the boundary points for Reynolds numbers
100 (Fig. 4.23 (left)), 346 (Fig. 4.23 (right)), 360 (Fig. 4.24 (left)) and 444 (Fig. 4.24 (right)).
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FIGURE 4.18. Clot position after 4000 time steps for Re=360 (left) and Re=444 (right)

FIGURE 4.19. Clot position after 6000 time steps for Re=100 (left) and Re=346 (right)

FIGURE 4.20. Clot position after 6000 time steps for Re=360 (left) and Re=444 (right)
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FIGURE 4.21. Clot position after 7900 time steps for Re=346 (left) and Re=360 (right)

FIGURE 4.22. Clot position after 7900 (left) and 8200 (right) time steps for Re=444

FIGURE 4.23. The average speed of the boundary points for Re=100 over 6000
time steps (left) and Re=346 over 7900 time steps (right)
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FIGURE 4.24. The average speed of the boundary points for Re=360 over 7900
time steps (left) and Re=444 over 8200 time steps (right)

As we see, the multiplicative factor of 104 corresponds to bonds that are less stiff than those in
Section 4.1.1.1. Therefore, less resistance is observed in clot displacement. All flow regimes
bring about clot break-down and partial detachment from the lower wall. Again, dimensionless
time steps are not the same as the physical time steps. In other words, by fixing a number of
dimensionless time steps at two different Reynolds numbers, the corresponding physical times are
not the same. Moreover, the average speed of the boundary points is dimensionless too. All the
interpretations given for the multiplicative factor 105 are valid here. The only difference is that
by keeping all the other conditions and parameters the same, the less stiff clot (with multiplicative
factor 104) moves faster than the stiffer clot (with multiplicative factor 105).

4.2. CONCLUSIONS

In this thesis, we have studied the behavior of two different idealized clots under different two-
dimensional blood flow regimes. For each type of clot we performed numerical simulations at
Reynolds numbers of 100, 346, 360 and 444. We tested several solvers available in MATLAB to
solve the nonlinear equations for finding the equilibrium positions of interior points at each time
step and arising from use of the Kelvin-Voigt spring model. The positions of the boundary particles
of the clot were determined from use of the immersed boundary method. The Kelvin-Voigt model
used in this work is a revised and corrected version of a model described by Bajd and Serša [3].

In none of the cases studied were we successful in getting a stationary solution for the boundary
particle positions which has been, admittedly, both a surprise and a disappointment. The choice
of Reynolds numbers made in this thesis led not only to the bonds between particles snapping, but
also to the creation of emboli. Even in flows at much smaller Reynolds numbers the clot would
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fragment into pieces which could result in embolism, although, of course, this process would take
much longer than at higher values of Re.
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