
Université de Montréal

Factorized second order methods in neural networks

par

Thomas George

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures

en vue de l’obtention du grade de

Maître ès sciences (M.Sc.)

en informatique

August 31, 2017

c© Thomas George, 2017

SOMMAIRE

Les méthodes d’optimisation de premier ordre (descente de gradient) ont permis d’obtenir

des succès impressionnants pour entrainer des réseaux de neurones artificiels. Les méthodes

de second ordre permettent en théorie d’accélérer l’optimisation d’une fonction, mais dans

le cas des réseaux de neurones le nombre de variables est bien trop important. Dans ce

mémoire de maitrise, je présente les méthodes de second ordre habituellement appliquées

en optimisation, ainsi que des méthodes approchées qui permettent de les appliquer aux

réseaux de neurones profonds. J’introduis un nouvel algorithme basé sur une approximation

des méthodes de second ordre, et je valide empiriquement qu’il présente un intérêt pratique.

J’introduis aussi une modification de l’algorithme de rétropropagation du gradient, utilisé

pour calculer efficacement les gradients nécessaires aux méthodes d’optimisation.

Mots-clés: Apprentissage automatique, apprentissage profond, optimisation, second or-

dre, gradient naturel

iii

SUMMARY

First order optimization methods (gradient descent) have enabled impressive successes for

training artificial neural networks. Second order methods theoretically allow accelerating

optimization of functions, but in the case of neural networks the number of variables is far

too big. In this master’s thesis, I present usual second order methods, as well as approximate

methods that allow applying them to deep neural networks. I introduce a new algorithm

based on an approximation of second order methods, and I experimentally show that it is of

practical interest. I also introduce a modification of the backpropagation algorithm, used to

efficiently compute the gradients required in optimization.

Keywords: Machine learning, deep learning, optimization, second order, natural gradi-

ent

v

CONTENTS

Sommaire . iii

Summary . v

List of Tables . xi

List of Figures . xiii

List of acronyms and abbreviations . xv

Remerciements . xvii

Introduction . 1

Chapter 1. Neural networks . 5

1.1. Artificial intelligence . 5

1.2. Machine learning . 6

1.2.1. Parametric functions and learning . 6

1.2.2. Empirical risk and bias-variance tradeoff . 7

1.2.3. Regularization . 8

1.3. Neural networks . 8

1.4. Common types of neural networks . 9

1.4.1. Multilayer perceptron. 9

1.4.2. Convolutional networks . 9

1.4.3. Autoencoders . 10

1.5. More elaborated cost functions . 10

Chapter 2. Optimization of neural networks. 13

2.1. Gradient descent and backpropagation . 13

2.1.1. Learning using gradient descent. 13

2.1.2. Computing the gradients using backpropagation . 14

vii

2.1.3. Automatic differentiation tools . 14

2.2. Stochastic gradient descent . 15

2.3. Hyperparameters . 16

2.4. Limits of (stochastic) gradient descent and some directions to overcome

them. 17

2.4.1. Gradient magnitudes . 17

2.4.2. Initialization. 18

2.4.3. Gradient smoothing methods . 19

Chapter 3. Second order methods in neural networks 21

3.1. Second order methods . 21

3.1.1. Newton steps . 21

3.1.2. The learning rate . 23

3.1.3. Validity of Newton for non quadratic functions and Tikhonov

regularization. 23

3.1.4. Gauss-Newton approximation of the Hessian . 24

3.1.5. Block diagonal Hessian . 26

3.2. Natural gradient methods. 26

3.2.1. Fisher Information Matrix . 26

3.2.2. Natural gradient descent . 27

3.2.3. An expression for the FIM using jacobians . 28

3.2.4. Approximating the FIM . 29

3.3. Gauss-Newton and Fisher share a very similar structure 29

3.3.1. Relation between the FIM and the GN approximation of the Hessian. . 29

3.3.2. An original interpretation from the output of the network 30

3.4. A cheaper Gauss-Newton matrix for cross-entropy . 30

Chapter 4. Experimental setup . 33

4.1. Benchmark tasks . 33

4.1.1. A standard benchmark: Autoencoding written digits 33

4.1.2. A classification task on an image dataset. 34

4.2. Biased random search . 34

viii

Chapter 5. Proof of concept: Evolution of the backpropagated gradient

while updating the parameters . 37

5.1. How is the gradient modified when changing the value of the parameters

of a layer . 37

5.2. A first order update of a first order derivative . 38

5.3. Updated backpropagation algorithm . 40

5.4. Experiments . 40

5.5. Limits of this method. 40

5.6. Conclusion . 41

Chapter 6. Factorized second order . 43

6.1. A local criterion and the importance of the covariance of inputs in a layer 43

6.1.1. Derivation of a new update . 43

6.1.2. Comparison with standard SGD . 44

6.1.3. What is behind this local criteria . 45

6.2. Decomposition using the Kronecker product . 45

6.2.1. Decomposition into 2 smaller matrices . 47

6.2.2. Focus on the covariance part of the decomposition . 47

6.3. Algorithms . 49

6.3.1. Centered gradient descent . 49

6.3.2. Amortized covariance preconditioner . 50

6.4. Other related approximate second order algorithms . 50

6.4.1. KFAC . 50

6.4.2. Natural Neural Networks . 51

6.5. Experiments . 52

6.5.1. Centering tricks . 52

6.5.2. Comparison of 2nd order approximate methods . 52

6.5.3. Interpretation and conclusions . 53

6.5.3.1. How do all second order methods compare ? . 53

6.5.3.2. Does the improvement come from the centering trick or from the

covariances ? . 53

ix

6.5.3.3. Stability . 54

6.5.3.4. How does KFAC compare to KFAC for Gauss-Newton ? 54

Conclusions . 57

Bibliography . 59

Appendix A. Derivations of the second derivatives of common loss

functions. A-i

A.1. Quadratic error . A-i

A.2. Binary cross entropy . A-i

A.3. Multiclass cross entropy . A-i

Appendix B. Derivations of the expression for the FIM B-i

B.1. Quadratic error . B-i

B.2. Binary cross entropy . 2

B.3. Multiclass cross entropy . 2

x

LIST OF TABLES

3. I Expressions for the Gauss-Newton approximation of the Hessian, for a single

example xi. For the cross entropy, all operations (division, squarred value)

are elementwise, and the diag function transforms a vector into a diagonal

matrix with the vector values on its diagonal. Full derivation in appendix. . . 25

3. II Expressions for the FIM, for a single sample xi. For the cross entropy, all

operations (division, squarred value) are elementwise, and the diag function

transforms a vector into a diagonal matrix with the vector values on its

diagonal. Full derivation in appendix. 28

3. III Expressions for the middle term D (fθ (x) , y) and D (fθ (x)) for GN and FIM 29

4. I Final empirical risk obtained after training 100 hyperparameter tuning

procedures, each consisting of 100 experiments (lower is better) 35

xi

LIST OF FIGURES

1.1 A multilayer perceptron consists in alternatively stacking layers of a linear

transformation and a nonlinearity . 10

2.1 Forward (in black) and backward (in red) propagation of the intermediate

results of the process of computing the output of the network and the gradient

corresponding to this output and the desired "true" output. The green arrows

represent the computation of the gradients with respect to the parameters,

given the gradients with respect to the pre-activations.. 15

2.2 Relation between 2 hyperparameters: for this experiment we can clearly see

that the plotted hyperparameters are not independant one from each other.

The color scale represents the final performance (best performing runs in

blue). 18

4.1 Comparison of hyperparameter tuning methods. On the left a grid search, in

the middle a random search and on the right a biased random search. Each

experiment consisted in 100 iterations of SGD from a randomly initialized

network (circles). We tune 2 hyperparameters on the x and y axis (what

they represent is not relevant here). The color scale represents the final loss

attained after a fixed number of iterations. The best experiments are in blue,

the worst experiments in yellow. 36

5.1 Training error for standard backpropagation (in blue) and updated

backpropagation (in orange) . 42

6.1 Comparison of centering methods on MNIST autoencoder: blue: standard

SGD with fixed learning rate; orange: mean-only batch norm; green: centered

updates as presented in section 6.3.1; red: ACP with fixed α as presented in

section 6.3.2. 53

6.2 Comparison of second order methods on MNIST autoencoder: blue: ACP

with fixed α as presented in section 6.3.2; orange: ACP with heuristic for α

xiii

as presented in section 6.3.2; green: Natural Neural Network; red: KFAC;

purple: batch norm with standard SGD; brown: standard SGD 54

6.3 Comparison of second order methods on CIFAR10 classification: blue: ACP

with fixed α as presented in section 6.3.2; orange: ACP with heuristic for

α as presented in section 6.3.2; green: Natural Neural Network; red: KFAC

for Gauss-Newton; purple: batch norm with standard SGD; brown: standard

SGD; pink: KFAC for natural gradient . 55

xiv

LIST OF ACRONYMS AND ABBREVIATIONS

ACP Amortized Covariance Preconditioner (section 6.3.2)

FIM Fisher Information Matrix (section 3.2.1)

GN Gauss-Newton approximate Hessian matrix (section 3.1.4)

GPU Graphics Processing Unit

KFAC Kronecker Factored Approximate Curvature (section 6.4.1)

MLP Multilayer Perceptron (section 1.4.1)

SGD Stochastic Gradient Descent (section 2.2)

UBP Updated Backpropagation (section 5.3)

xv

REMERCIEMENTS

Passer ses journées à étudier, apprendre et explorer un sujet aussi passionant que l’intelligence

artificielle est une chance. Celle-ci nous a été rendu possible, et à moi aussi, par des milliers

d’années de construction d’une civilisation humaine et de savoirs scientifiques. Tous les

acteurs de ces constructions, illustres et inconnus, sont à remercier.

De manière plus prosaïque je souhaite remercier le Québec et tous les québécois que j’ai

rencontré pendant ces 2 dernières années, qui m’ont accueilli dans cette étonnante ville de

Montréal: Merci.

À mes proches, famille et amis, à qui j’ai parfois eu beaucoup de mal à expliquer à quoi

j’occupais mes journées. Pour leur regard extérieur souvent circonspect, mais surtout pour

les bons moments passés: Merci.

Aux membres du jury qui s’apprêtent à prendre connaissance du fruit de mon travail:

Merci.

Aux étudiants et professeurs du MILA, et en particulier César toujours présent pour

discuter d’une nouvelle idée et l’implémenter à n’importe quelle heure de la nuit pendant les

semaines de deadline: Merci.

À Pascal Vincent qui m’a supervisé dans ce travail de recherche, tout en me donnant les

clés pour débloquer les situations où j’avais déjà retourné le problème dans tous les sens:

Merci.

Et merci à Lisa bien sûr... pas le laboratoire !

xvii

INTRODUCTION

This thesis presents my work during my master at MILA under the supervision of Pascal

Vincent.

Artificial neural networks are a powerful machine learning tool for modeling complex

functions. Training a neural network for a given task often reduces to minimizing a scalar

function of several millions of variables, which are the parameters of the model. While

optimization is a full field of research on its own, usual methods do not scale to the order

of magnitude of several millions of variables. For this reason neural networks practitioners

stick to first order optimization methods, while not benefiting of the acceleration provided

by using more powerful methods. Amongst the family of optimization methods, second

order methods are a conceptually simple way of accelerating optimization. But practically,

they require too much memory and computational power in order to be really useful when

scaled to millions of parameters. We circumvent these practical constraints by approximating

second order methods, trading off between computational cost, and speed up.

This work is mostly focused on optimization applied to artificial neural networks. My

contributions are a deeper understanding of the many techniques involving second order tech-

niques applied to neural networks, the derivation of new expressions tuned for the particular

structure of neural networks, and their use in the definition of a new algorithm that competes

with current state of the art on a standard benchmark. Crucially, this benchmark is a deep

network with several millions of parameters, and is trained to convergence in approximately

1h on a single computer.

In the process, I also explore alternatives to the backpropagation technique, which is

used to efficiently obtain gradients in neural network optimization. As a core component of

training neural networks, backpropagation has been the object of much research efforts since

it was first used in the 1980s, but it has remained exactly the same since then. We contribute

to this research by exploiting the sequential computations of backpropagation. We derive

an alternative to backpropagation and experimentally show that it is able to find better

update directions, at the cost of more computation. This contribution is of no practical

use as is, because it requires too much computation. However it is a proof a concept that

backpropagation can be improved. As the foundation of the whole training procedure of

neural networks, a computationnally cheaper method of improving backpropagation would

impact all other optimization methods that rely on computing the gradients.

This document is organized as follows:

• the first chapter sets up the basic framework of machine learning and introduces

neural networks ;

• in chapter 2 we introduce the usual methods of optimization that have enabled the

recent successes in deep learning ;

• in chapter 3 we review 2 second order methods called Gauss Newton and natural

gradient, and we show how they relate and how they differ ;

• in chapter 4 we describe the experimental setup that we use next to assess the per-

formance of our algorithms, and we contribute a simple hyperparameter tuning pro-

cedure ;

• in chapter 5 we contribute a new technique that modifies backpropagation ;

• the last chapter presents a factorization that we can use to efficiently approximate

second order methods. We contribute a detailed derivation of second order meth-

ods for the particular structure of neural networks, and we highlight the links with

some old tricks. We also contribute a new optimization algorithm that exploits this

factorization.

2

CONTENTS

Chapter 1

NEURAL NETWORKS

In this chapter, we will introduce concepts and techniques that are used in artificial intelli-

gence tasks. In particular, we will introduce neural networks, that have proven a powerful

model and produced state of the art results in a variety of tasks.

1.1. Artificial intelligence

Intelligence is a difficult concept to define. We will use the following definition: the

ability to make sensible decisions in a given situation, possibly making use of a memory of

past events that share similarities with the current situation. The most intelligent individual

agent that we are aware of nowadays is certainly the human being, amongst other animals.

Human beings are constantly making decisions given their perception of the world that is

provided by their 5 senses, using knowledge that they have studied or experienced in their

life. But there is no a priori reason to think that intelligence could not be present in other

systems, and in particular artificial intelligence is a scientific field that aims at implementing

intelligence in non-living machines.

How our society of humans can benefit from artificial intelligence is still an open question,

out of the scope of the present document. Regardless, given the recent popularity of artificial

intelligence among public research laboratories and in the industry, and the recent successes

at solving complex tasks, we can say without taking risks that artificial intelligence will

continue to play a big role in shaping the future of our society.

From a more practical perspective, implementing an artificial intelligent machine requires

designing a system that takes data that represent the current situation, data that represents

the memory of the machine, and output a decision using this data.

To put things into context, we will now describe an example task. We want to design

a program that takes a picture of an animal and a sound as input, and outputs whether it

thinks the animal present in the picture makes the provided sound. In a computer, a picture

is often encoded as a mathematical tensor of scalar values or pixels, the sound as a timeseries

of samples of the sound wave, and the final decision can be a single scalar value, which will

be close to 0 if the animal is very unlikely to make the noise, or to 1 if the animal is very

likely to make the noise. The complex machinery inbetween is the intelligent part.

Manually designing a program for such a task is an overwhelming task. Even provided

that the input image is quite a small image of 32 × 32 RGB pixels and the sound lasts

1s recorded at a sample rate of 20kHz we have a total of 32 × 32 × 3 + 20 000 = 23 072

scalars. If we restrict each of these numbers to have 256 possible values, it leaves us with

25623 072 ≈ 1055 000 possible combinations. Even if we only keep the combinations that are

plausible, there is too many to create a naive program. Even with carefully engineered

feature extractors based on image and sound processing techniques, the remaining work is

still challenging.

Instead, the most successful attempts at solving such tasks use a procedure called ma-

chine learning: instead of manually defining our program, we define a generic model, and

we use a dataset of annotated examples of picture, sound, and the corresponding answer,

and we leave to the computer the task of extracting information from the dataset to tune

the model so as to obtain the desired program.

1.2. Machine learning

1.2.1. Parametric functions and learning

Generally speaking, machine learning consists in finding an unknown function f from a

family of functions F , that will solve a certain task. We typically restrict our search to a

small family of functions, which consists in parametrized functions Fθ. We will denote by

fθ such a function, parametrized by a vector of parameters θ. Adapting the value of the

parameters will change the output of the function fθ. The challenges of machine learning

are to find a correct parametrization so that our desired function can be approached by a

member of Fθ, and to learn the parameters of this target function.

To this end, we need a measure of the performance of a given function at solving our

task. We choose a loss function ℓ, adapted to this task. The better our function, the lower

the value of ℓ. The remaining ingredient is a data generating distribution p from which we

sample datapoints x ∼ p that are our examples. A measure of the performance of a function

fθ for the given task is given by the risk:

R (θ, p) = Ex∼p [ℓ (fθ (x) , x)]

R is a scalar value. If this value is high, then fθ is bad at solving the desired task. In

the opposite, the best function can be found by adjusting θ so as to reach the smallest value

of R. The best value for the parameter vector θ∗ is given by:

6

θ∗ = argminθR (θ, p)

Finding this value θ∗ is the task of learning from the data.

We now present two common tasks and their corresponding loss functions. We will

restrict to the less general setting of supervised learning, where each data point is composed

of an input x and a true target y. The risk can be written as R (θ, p) = Ex,y∼p [ℓ (fθ (x) , y)]

meaning that the function fθ only uses the input, and returns a target ŷ = fθ (x). In

supervised learning, the loss function compares the true target y with the current estimated

target ŷ.

In regression, the input vector x is mapped to a numerical value y. To assess the

performance of fθ, we use the loss function ℓ (fθ (x) , y) = ‖fθ (x)− y‖2
2, called the quadratic

error. It reaches its minimum 0 when fθ (x) = y. For example we can design a model that

predicts the price of a real estate, given some features such as the size of the house, the

number of bedrooms and whether it possesses a fireplace.

In supervised classification, we classify each data point x into a cate-

gory y. A natural loss that comes up is the misclassification indicator function

1 (fθ (x) , y) = {0 if fθ (x) = y or 1 otherwise}. It counts the examples that are mis-

classified. This function present the disadvantage of not being differentiable (it is not even

continuous), and we will see in future sections that differentiability is a valuable property for

machine learning. Instead, we usually make our function fθ output a vector of the number

of categories, which represents computed probabilites of being a member of each category (a

scalar between 0 and 1). We use the loss called cross entropy ℓ (fθ (x) , y) = − log
(

(fθ (x))y

)

.

This will push the probability of the correct category toward 1. An example classification

task is proposed by the ImageNet project [Deng et al., 2009] where the task is to classify

images to detect what they represent such as an animal, or a car and so on.

1.2.2. Empirical risk and bias-variance tradeoff

In practice, often, we do not have access to a data generating function p, but instead we

have a limited number of samples from it. This dataset of examples gives us an estimate of

the true risk, by replacing the expectation with a finite sum, called the empirical risk R:

R (θ, p) ≈ R (θ,D) = 1
n

∑

x∈D ℓ (fθ (x) , x) (1.2.1)

n is the total number of examples in D.

For random values of the parameters θ, the empirical risk and the true risk will have

similar values. But this is not the case when the parameters have been tuned so that the

empirical risk is minimum. In the extreme case, consider a model that has memorized all

7

examples of the training set by heart. In order to make a prediction for a new example, this

model will seek the closest example in D, in term of the euclidean distance, and output the

exact same answer than this closest example. This model is called a 1-nearest neighbour

regressor or classifier regarding the considered task. In this case the empirical risk is 0, but

we have no guarantee that the model generalizes on new examples.

A model with too much expressivity, or variance, will be able to learn all examples in

the training set by heart without having the ability to generalize on new examples, which

is called overfitting. A model with not enough expressivity will not be able to perform

well even on the training set, which is called underfitting. In the meantime it will have a

similar performance on the true data generating distribution. We say that there is a bias

toward a family of model. The bias-variance tradeoff consists in selecting a model that has

sufficient expressivity to have a good performance on the train set, while not having too

much expressivity so that it will not overfit, and still have good performance on the true

data generating distribution.

1.2.3. Regularization

A way of combatting overfitting is to use regularization. It is a way of constraining the

values of the parameters of a function using priors. For example L2 regularization penalizes

the squared norm of the parameter vector. It constrains all values to stay small.

Data augmentation is another mean of combatting overfitting. We can use the knowledge

that we have of our dataset to create new examples. For example for a classification task

of images, we know from our experience of the world that rotating or translating an image

will not change its content. We can thus artificially augment our training set by including

rotated and translated versions of the same images.

1.3. Neural networks

Neural networks are a family of parametrized models. They have empirically proven very

powerful at solving complex tasks. Along with the availability of easy to use frameworks

to build neural networks and learn from data, new interests have developed from industry

to integrate artificial intelligence inspired techniques in more and more products. The first

commercial successes date back to the 90s when AT&T developed an automated system to

read handwritten digits on bank checks, using convolutional neural networks [LeCun et al.,

1998]. Recent successes include advances in machine translation, image and voice recognition,

close-to-realistic image generation. They have applications in online services integrated in

smartphones, but also enable the invention of new automated systems that will benefit more

traditional industries, (energy, agriculture, arts, ..)

8

1.4. Common types of neural networks

1.4.1. Multilayer perceptron

We now define the simplest neural network structure called the perceptron [Rosenblatt,

1961]. From an input data vector x, it creates a prediction y using the relation y (x) =

f (〈w, x〉+ b). w is called the weight vector, and b is the bias. f is a function, and is

sometimes called the nonlinearity or activation function as it allows the function y to be

different from just a linear function of its input x. From a trained perceptron, we take a

decision for an example x by comparing the value of the corresponding y using a threshold

value. Perceptrons were implemented before the invention of modern computers, as complex

electronic circuits. The weights were encoded in hardware potentiometers and trained using

an error-propagating process. Remarkably, these complex pieces of machinery were capable

of obtaining good results for the task of recognizing simple shape images.

These perceptrons were designed to approximately replicate the computations made by

a network of biological neurons. Each neuron gets input data from several other neurons,

consisting in voltage spikes. The rate at which these spikes occur can be intepreted as

whether a neuron is excited or not. Each neuron has different sensibilities regarding how it

will react to an increase in spike rate from other neurons, this sensibility being mimicked

by the weights in artificial neural networks. In its most simple modeling, the human brain

is just a very complex network of these neurons. This is the inspiration for artificial neural

networks.

This single perceptron is extended in a more complex model called the multilayer

perceptron (MLP). It consists in alternatively stacking layers of linear transformation

a = Wx + b and nonlinearities y = f (a), using a vectorized generalization of the per-

ceptron: y (x) = f (Wx + b). W is now a weight matrix, and b a bias vector. f is often an

elementwise function. We stack these transformations to get more complex functions. An

example for 2 layers gives a function y (x) = f2 (W2f1 (W1x + b1) + b2). The intermediate

values obtained at each layer f1 (W1x + b1) are called the hidden representations as they are

new representations of the same input data, but encoded in a different way. A trained neural

network will create representations that are better suited for its task. For example, if we

imagine a task of classifying images between those which picture a dog and those with a cat,

we are interested in a high level representation of characteristics such as a long tail, whiskers

or sharp ears.

1.4.2. Convolutional networks

Convolutional networks [LeCun et al., 1989] are well-suited for tasks involving sequential

(timeseries) or spatial data (images). Instead of multiplying a weight matrix with the whole

input vector as in MLPs, we split this input into smaller chunks of fixed sized corresponding

9

of a given painting. To this end, they create a cost function that measures how a generated

image resembles both the picture and the painting:

Ltotal (p, a, x) = αLcontent (p, x) + βLstyle (a, x)

p is the picture, a is the artwork that we want to extract the style, and x is any image.

Lcontent is a loss function that measures how close x is from p in terms of contents, and

Lstyle is a loss function that measures a distance from a to x in terms of artistic style. By

minimizing Ltotal (p, a, x) with respect to x for given p and a, we obtain the desired image

in x. α and β are scalar values that control the influence of each part of the loss. In the

original paper [Gatys et al., 2015] we start from a randomly initialized x and we perform

gradient descent on each pixel of x. In Ulyanov et al. [2016] we use a convolutional neural

network to generate x, which takes the picture as input, and outputs the desired stylized

image. This network is trained using Ltotal. It has the main advantage of being very fast as

generating new images once it has be trained on a specific artwork.

Another family of cost functions that becomes more and more popular is that of the

discriminators in Generative Adversarial Networks [Goodfellow et al., 2014], that can

be thought of as learned cost functions. In this setup, 2 networks are trained one against

each other : the generator part takes random noise and generate a sample that tries to

fool the discriminator. The discriminator also is a trained network that tries to classify

whether its input is from a given data distribution, or if it was generated by the generator.

Training these networks is very unstable, and is the object of many research at the time of

this writing. But provided that we successfully trained both parts, we get a generator that

is able to generate new samples of complex data, such as realistic images.

11

Chapter 2

OPTIMIZATION OF NEURAL NETWORKS

2.1. Gradient descent and backpropagation

2.1.1. Learning using gradient descent

Once we have chosen a model, and supposing that this model is capable of solving a

given task with a dataset of examples of this task, the main challenge is now to learn the

parameters of the model from the data. Some simple models have closed form solutions,

this is for example the case for a linear model and a regression task. For more complex

models such as neural networks, we can not derive a simple formula for getting the values

of all parameters given a dataset. In this case, we start from an initialized network and

iterate updates for our parameters until we get the expected results. To this end, we must

find an efficient way of getting an update ∆θ of our parameters θ. Considering that we

aim at finding the minimum of the empirical risk, such an update is given by the steepest

direction of descent of the empirical risk, given by minus the gradient of the empirical risk,

with respect to the parameters, denoted by ∇θR:

∇θR =
1
n

∑

i

∇θℓ (fθ (xi) , yi)

Once we have a direction, we must choose how far to move in this direction. One way

of choosing this rate is by using a line search algorithm. But its requires evaluating our

objective several times, which can be costly for deep networks or big datasets. We will stick

to a simple fixed scalar learning rate λ, so that each iteration becomes:

θ ← θ − λ∇θR

Of course the learning rate λ plays a very important role. If we choose a value that is too

small then it will take many steps to reach the same performance, so it will take longer. If

the value is too large then we can go too far, to a point in the space of parameters where the

gradient has changed so the direction that we are following is no longer a descent direction.

In this case, we can even decrease the performance. For a practical example think of a valley.

We start from a side of the valley and follow the steepest descent direction. If we go too far

we will pass the bottom of the valley and start going up again.

2.1.2. Computing the gradients using backpropagation

It might be difficult to get an exact expression for the gradient of a complex function,

such as a neural network. What enabled the success of neural networks was a smart use of

the chain rule for splitting the computation of the gradient, into a sequence of linear algebra

operations, that is described in figure 2.1. For example we can decompose the gradient going

through a layer hl = fl (al) = fl (Wlhl−1 + bl) using the expression:

∇hl−1
ℓ =

(

Jhl−1
al

)T
∇al

ℓ

=
(

Jhl−1
al

)T (

J
al

hl

)T
∇hl

ℓ

We denote by Jx
f the jacobian of the vector function f with respect to x. It is the

matrix composed of the partial derivatives
(

Jx
f

)

ij
= ∂fi

∂xj
, so it has dimension nf × nx. In

the particular case of neural networks we have simple expressions for the jacobians of the

backpropagated signal (red arrows in figure 2.1):

Jhl−1
al

= Wl

J
al

hl
= diag (f ′

l (al))

where diag is the operation that takes a vector and transforms it to a diagonal matrix

with the values of the vector as diagonal terms. These jacobians can be thought of the

gradient flow between layers.

We also have expressions for the jacobians of the activations with respect to the param-

eters (green arrows in figure 2.1):

JWl
al

= ∇al
ℓ (hl−1)

T

Jbl
al

= ∇al
ℓ

2.1.3. Automatic differentiation tools

A key component in training neural networks is the library that we use to implement

our models. The difficulty of implementing backpropagation in all kinds of neural networks

inspired models, is solved using an automatic differentiation tool, such as Theano [Bastien

14

that is more precise but that takes longer. Typically it is more efficient to compute several

noisy gradients using mini-batches in the GPU memory and make several updates, than to

compute a single more precise update on a bigger mini-batch or the full dataset.

2.3. Hyperparameters

In the preceding sections we have introduced the learning rate (section 2.1) and the

minibatch size (section 2.2). These values are called hyperparameters, which is another kind

of parametrization of our learning procedure. Hyperparameters also include the structure of

our model, such as the number of hidden layers and hidden units, the number of training

iterations, the coefficients of the regularization terms. The success of our learning procedure

is dependent on the values of the hyperparameters. We do not find the optimal value using

gradient descent, but instead we tune it by running several time the same experiment with

different hyperparameter values, and compare the final value of the risk on a held-out set of

examples called the validation set.

A difficulty in comparing optimization algorithms resides in the fact that there perfor-

mances can change drastically for different values of hyperparameters. Optimization papers

sometimes mention heuristics that they experimentally found provide with a sensible value

for some hyperparameters. But to overcome this difficulty and provide “fair” benchmarks,

we usually tune the values of the hyperparameters by trying several sets of values. Hyper-

parameters tuning is a research field on its own, so we will just introduce 2 existing methods

and we will later motivate our use of a new technique that we call biased random search

(section 4.2).

The most simple hyperparameter tuning procedure, called grid search, consists in se-

lecting values at fixed length intervals, or using a logarithmic scale. A simple example would

be a training procedure involving only one hyperparameter: the learning rate. We can launch

several experiments for all values in {10−3, 10−2, 10−1, 1} for a fixed number of updates and

select the learning rate for which we obtained the best value for our target criteria such

as the validation loss. When generalizing to several hyperparameters, we have to select all

combinations of values, which make our search space grow exponentially, and similarly for

the number of experiments we will have to run.

A first extension to grid search replaces the fixed length intervals by random samples in

our search space. It is called random search. Its main advantage over grid search shows

up when any hyperparameter has no important effect on the learning algorithm [Bergstra

and Bengio, 2012]. It will explore more different values for the other hyperparameters. In

this case, it clearly appears that they are correlated, in the sense that the best value for one

hyperparameter depends on the chosen value for the other hyperparameter.

In the rest of this work, we will use an extension of random search that we call biased

random search, and that we present in section 4.2.

16

To give a more intuitive understanding of the effect of the hyperparameter values on the

learning algorithm, we also introduce a graphical representation that helps making sense

of the interaction between different hyperparameters, which we now describe. We launch

a hyperparameter search on 2 hyperparameters and plot this point on a scatter plot, with

a color scale depicting the final result of each experiment. By observing this plot, we can

identify 2D patterns of the link between 2 hyperparameters. As an illustration, we use the

task described in section 4.1.1, using standard stochastic gradient descent and by keeping all

hyperparameters values fixed, that is we use a fixed mini-batch size, and a fixed number of

parameter updates. We tune 2 hyperparameters: the learning rate and the variance of the

initial random weights, and we plot the result in figure 2.2. These plots show the interaction

between 2 hyperparameters. We observe that the best values lie in a region with a very

particular shape that can be assimilated to a tilted valley (it is not parallel to the x-axis nor

the y-axis).

These plots and this random search technique are a key component for assessing the true

performance of optimization techniques that we present in section 4 and 5. Indeed it is easy

to experimentally find that a new optimization technique which gives better performance

than a baseline if we spend too much time tuning hyperparameters for our new technique

but stick to default values for baselines.

2.4. Limits of (stochastic) gradient descent and some directions

to overcome them

We can think of the task of training a neural network as the one of finding the minimum of

a scalar field in n dimensions, n being the number of parameters. Each gradient descent step

is a small shift in this field. We must ensure that this path in the field of the empirical risk

is feasible. We now present reasons that can make this field have a pathological structure,

and directions to avoid these difficulties.

2.4.1. Gradient magnitudes

A common issue for deep networks or recurrents networks is how to control the magnitude

of the gradient flow for many layers. If the spectral norm of the jacobians Jhl−1
al

J
al

hl
is too

large, then the norm of the gradient will exponentially grow for lower layers. This can

happen if the weight matrices have singular values that are too large compared to 1 while

the derivatives of the activation functions take large values. In this case, we are in a situation

of exploding gradients. This effect is amplified in recurrent networks, where the same weight

matrix is repeatedly used in the backward pass. For such a ill-conditioned problem, gradient

descent will not be effective. Indeed, in the case of exploding gradient, two layers separated

by several others will have updates of different order of magnitude.

17

forward pass matters so the weights should be initialized from a distribution with variance
α

nin
. In both cases, α depends on the activation function. While Glorot and Bengio [2010]

propose default values for tanh and ReLU, we treated α as a hyperparameter when assessing

for the performance of an optimization algorithm, and tuned it using a biased random search

(section 4.2).

2.4.3. Gradient smoothing methods

A family of optimization tricks uses geometrical considerations in the space of parameter

values. In this case with some common sense we can define a simple principle to derive

better updates which is that for an equivalent decrease of the empirical risk, we must follow

a direction of descent that has a smaller derivative for longer in order to achieve the same

improvement as for a direction that has a larger derivative. Many popular techniques use

this principle, the most successful ones at the time of writing being Adam [Kingma and Ba,

2014], RMSProp [Tieleman and Hinton, 2012], Nesterov momentum [Nesterov, 1983] and so

on.

19

Chapter 3

SECOND ORDER METHODS IN NEURAL

NETWORKS

In section 2.1 we described how training a neural network for a given task reduces to an

optimization task: the one of minimizing the empirical risk, by iteratively updating the

values of the parameters of the network. We obtained the updates by following the direction

given by minus the gradient. But there are more efficient updates.

In this section, we introduce the well known second order methods known as Newton’s

method and the less popular but very effective natural gradient descent. We then derive the

updates of these methods adapted to neural networks and we contribute a unified formulation

for both methods. We also present a new interpretation of both methods and contribute a

more efficient way of computing the Gauss-Newton approximation.

3.1. Second order methods

3.1.1. Newton steps

Second order methods refer to all optimization methods that make use of the second

derivative or Hessian matrix of the function to be minimized. It follows from the Taylor

series decomposition of the function:

f (x + ∆x) = f (x) + (∇f)T

x ∆x +
1
2

∆xT
(

∇2f
)

x
∆x + o

(

‖∆x‖2
2

)

(∇2f)x is the Hessian matrix of f , expressed at x. We use the little-o notation o that

represents an unknown function with the only property that limx→0
o(x)

x
= 0.

In the context of neural network optimization, f is the empirical risk, and x are the

parameters.

By constraining ‖∆x‖2
2 too stay small, we can ignore higher order terms (o

(

‖∆x‖2
2

)

= 0)

and we have a quadratic approximation for f . Using this approximation in a minimization

problem, we get the following minimization which has a closed form solution:

∆x∗ = argmin∆xf (x + ∆x)

≈ argmin∆xf (x) + (∇f)T

x ∆x +
1
2

∆xT
(

∇2f
)

x
∆x

This expression is solved by taking the derivative with respect to ∆x, and setting it to

zero which yields:

(

∇2f
)

x
∆x = − (∇f)x

If we assume that f has a minimum in x∗, then the Hessian will be positive definite in

x∗, and under the supplementary assumption that the Hessian is continuous, it will also be

positive definite in a neighborhood of x∗. In this case, it is invertible and we get the solution:

∆x = −
(

∇2f
)−1

x
(∇f)x (3.1.1)

This update (eq 3.1.1) is called the Newton step. By making several iterations of

Newton, and under the assumption that we are close enough to a minimum so that (∇2f)x

remains positive definite, the updates will converge to this minimum.

The main difficulty of this algorithm is that it does not scale well when applied to

problems with many variables such as neural network optimization. In this case f is the

empirical risk, and the variables that we are optimizing are the parameters of the network.

The limitations come from the following aspects:

1. Getting the value of the Hessian matrix: Using an automatic differentiation software,

we can get an expression for the Hessian, by differentiating the symbolic expression

of the gradient. But unlike the computation of the gradient, the graph produced to

compute the Hessian will have many more nodes. We will explore this question in

more details in section 3.1.4 and present an approximate value of the Hessian called

Gauss-Newton.

2. Storing the Hessian matrix: The Hessian matrix is a square matrix of size nparameters×

nparameters. As the number of parameters grows, which is the case when building deep

networks, the memory required to store the Hessian will grow in O (n2). We will

present an approximation of the Hessian that saves memory in section 3.1.5.

3. Inverting the Hessian matrix: Inverting the Hessian matrix is also costly as it grows

in O (n3) with the size of the matrix. Some techniques use 2nd order information

without inverting the Hessian such as Hessian Free [Martens, 2010]. We propose to

factorize the Hessian so as to require inverting a smaller matrix while benefiting from

some 2nd order information in section 6.2.2.

22

4. Saddle points: The optimization problem of minimizing a cost function over a dataset

has many more saddle points than local minima [Dauphin et al., 2014]. In this case

using the Hessian will fail as it will converge to a saddle point instead of escaping

from it in order to find a minimum.

3.1.2. The learning rate

Amongst other hyperparameters, the learning rate of standard (stochastic) gradient de-

scent plays a particular role which we will show in the following. We use the quadratic

approximation for a function f :

∆x∗ = argmin∆xf (x) + (∇f)T

x ∆x +
1
2

∆xT
(

∇2f
)

x
∆x + o

(

‖∆x‖2
2

)

If we replace the Hessian with a scaled diagonal matrix λI, we can simplify this expression

to the following one that is often used for deriving the first order gradient descent update:

∆x∗ ≈ argmin∆xf (x) + (∇f)T

x ∆x +
λ

2
∆xT ∆x

By solving this minimization problem we recover the update ∆x∗ = − 1
λ

(∇f)x with
1
λ

playing the role of the usual learning rate. But of course this λ hides second order

information. In fact, LeCun et al. [1993] proposes to automatically adapt the value of

the learning rate by using the biggest eigenvalue of the hessian as λ. In this case we are

guaranteed that we do not go too far in the direction of greatest curvature (which is the

corresponding eigenvector). But in exchange it will equivalently scale down an update in

any other direction, even if an optimal step would require to go further in this direction.

3.1.3. Validity of Newton for non quadratic functions and Tikhonov regulariza-

tion

In the previous section, we considered that our function was approximated by its second

order Taylor series decomposition. While this is true in a neighborhood of x, the approxi-

mation becomes less precise as we move away from x. In particular this is the case when the

Newton step provide big updates, that is when the Hessian has at least one small eigenvalue.

The corresponding eigenvector points in a direction that will have a low curvature using the

quadratic approximation, so the minimum following this direction will be far away. But the

actual function that we are minimizing is not a quadratic, and the terms hidden in o
(

‖∆x‖2
2

)

will become preponderant for bigger values of ∆x.

To counter this undesirable effect, we simply add a regularization term that penalizes

bigger values of ∆x:

23

∆x∗ = argmin∆xf (x + ∆x)

≈ argmin∆xf (x) + (∇f)T

x ∆x +
1
2

∆xT
(

∇2f
)

x
∆x +

ǫ

2
‖∆x‖2

2

= argmin∆x (∇f)T

x ∆x +
1
2

∆xT
((

∇2f
)

x
+ ǫI

)

∆x

This gives the Tikhonov regularized version of the Newton step:

∆x = −
((

∇2f
)

x
+ ǫI

)−1
(∇f)x

This new hyperparameter ǫ controls the size of the steps, and thus plays a very similar

role to the learning rate.

In addition to this, we can also mention that it stabilizes the inversion when the condition

number of (∇2f)x is too big, and that it can account for the estimation error when we

estimate (∇2f)x using a minibatch of examples instead of using the true risk.

3.1.4. Gauss-Newton approximation of the Hessian

In the case of neural network optimization, the Hessian matrix we need to evaluate is

the second derivative of the empirical risk, with respect to the parameters. A first remark

that we can make, is that it is also composed of a sum of second order derivatives, to be

computed at each example of the dataset:

H =
∂2R

∂θ2

=
∂2

∂θ2

{

1
n

∑

i

ℓ (fθ (xi) , yi)

}

=
1
n

∑

i

∂2

∂θ2
{ℓ (fθ (xi) , yi)}

By making use of the chain rule we can also give an expression for the second derivative

of the loss, for a single example. We start with the first derivative:

∂

∂θ
{ℓ (fθ (xi) , yi)} = Jθ (xi, θ)T

(

∂

∂f
{ℓ (fθ (xi) , yi)}

)T

J is the jacobian of the output of the network f with respect to the parameters θ. In

this notation we made the dependance in θ of both parts of the product explicit. Note that

both parts also take different values for each examples xi. We now derive this expression

once more to obtain the Hessian:

24

Loss function ∂2

∂f2
θ

{ℓ (fθ (xi) , yi)}

quadratic error I

cross entropy for binary decision yi

(fθ(xi))
2 + 1−yi

(1−fθ(xi))
2

cross entropy for multiclass classification diag
(

yi

(fθ(xi))
2

)

Table 3. I. Expressions for the Gauss-Newton approximation of the Hes-
sian, for a single example xi. For the cross entropy, all operations (division,
squarred value) are elementwise, and the diag function transforms a vector
into a diagonal matrix with the vector values on its diagonal. Full derivation
in appendix.

∂2

∂θ2
{ℓ (f (xi, θ) , yi)} = Jθ (xi, θ)T ∂2

∂f 2
{ℓ (fθ (xi) , yi)}Jθ (xi, θ)

︸ ︷︷ ︸

Gf (xi,θ)

+
∑

j

(

∇2fθ (xi)j

)
(

∂

∂fj

{ℓ (fθ (xi) , yi)}

)T

Gf (xi, θ) is called the Gauss-Newton (GN) approximation of the Hessian [Schraudolph,

2002]. The remainder is proportional to ∂
∂fj
{ℓ (fθ (xi) , yi)}. As we get closer to the optimum,

this part will go toward 0 as it is a first derivative, so the approximation will get more

precise. At a minimum for ℓ (fθ (xi) , yi), we will have ∂2

∂θ2 {ℓ (fθ (xi) , yi)} = Gf (xi, θ) so it

is a reasonable approximation to use in practice. Note that a minimum for the empirical

risk R (θ) will not necessarily be a minimum for each example ℓ (fθ (xi) , yi), especially if the

capacity of the neural network is not sufficient to model the data distribution.

In terms of computational cost, we can also note that we can compute the GN part using

standard backpropagation, but this time of the jacobian. The other term is much more

complicated because it involves a second derivative of a composed function.

In practice, Gf (xi, θ) presents a much more convenient expression for common loss func-

tions, as the second derivative of the loss with respect to the ouput of the network simplifies

(table 3. I).

We finally give an expression for the Gauss-Newton approximation of the Hessian for the

empirical risk:

Gf (θ) =
1
n

∑

i

Jθ (xi, θ)T ∂2

∂f 2
{ℓ (fθ (xi) , yi)}Jθ (xi, θ)

We will show in section 6.2 that this matrix can be factorized to design optimization

algorithms adapted to the particular structure of neural networks.

25

3.1.5. Block diagonal Hessian

Apart from the issue of computing a value for the hessian matrix, a main limit is that we

need to invert it. The hessian matrix has size nparameters×nparameters, and the procedure used

for numerically inverting a square matrix requires O (n3) operations so it rapidly becomes

untractable for deep networks. A first approximation we make is by ignoring the interactions

between the parameters of different layers. We make the hessian block diagonal, each block

having the size of the number of parameters of the corresponding layer. An interesting

property of block diagonal matrices is that we get the inverse by inverting every smaller

block separately:

(

∇2f
)−1

≈











H1 0 · · · 0

0 H2
...

...
. . . 0

0 · · · 0 Hn











−1

=











H−1
1 0 · · · 0

0 H−1
2

...
...

. . . 0

0 · · · 0 H−1
n











It also makes the implementation easier, as we can treat each block “locally” in the

network, and use its inverse to update the gradient direction for the corresponding block (or

layer) using θi ← θi−λH−1
i

∂C
∂θi

. We do not need to store a big nparameters×nparameters matrix.

3.2. Natural gradient methods

We now present the natural gradient. We give some context and interpretation for the

natural gradient, and we give its expression for neural networks.

3.2.1. Fisher Information Matrix

The Fisher information matrix (FIM) is well used in statistics. In the context of machine

learning, and in particular deep learning, we use its inverse as a preconditioner for the gradi-

ent descent algorithm, similarly to the Newton algorithm (section 3.1.1). In this section, we

show how the FIM can be derived from the KL divergence and how we get a better “natural”

gradient using this information. Let us first write the definition of the KL divergence for 2

distributions p and q:

KL (p ‖ q) = Ep

[

log

(

p

q

)]

From a broad view, it is a non-negative quantity that measures how much q differs

from p. In particular, KL (p ‖ q) = 0 when p = q. Note that it is not symmetric, so it

cannot be considered a true metric. We now use the probabilistic interpretation of neural

networks, and consider that the examples from a dataset are drawn from a joint distribution

26

pθ (x, y) = pθ (y|x) p (x) where pθ (y|x) is the function that we model with the neural network,

and p (x) is the input distribution.

One can view natural gradient as using KL divergence as a regularizer when doing gradi-

ent descent. We will denote by pθ (x, y) a parametric model and ∆θ a change in its parameter

values. KL (pθ (x, y) ‖ pθ+∆θ (x, y)) is used as our regularizer, so that each change ∆θ gives

a desired change magnitude in the distribution space that we control using a new hyperpa-

rameter. Instead of using the full expression for KL (pθ (x, y) ‖ pθ+∆θ (x, y)) we will use its

second order Taylor series around θ (for full derivation see for instance Pascanu and Bengio

[2013]):

KL (pθ (x, y) ‖pθ+∆θ (x, y)) = ∆θT F∆θ + o(‖∆θ‖2
2)

F = Epθ(x,y)

[(
∂ log pθ(x,y)

∂θ

)T (∂ log pθ(x,y)
∂θ

)]

is the Fisher information matrix (FIM), which

can be used directly as a regularizer as we shall see shortly. Interestingly, even if the

KL divergence is not symmetric, its second order approximation is, as we also have

KL (pθ+∆θ‖pθ) = ∆θT F∆θ + o(‖∆θ‖2
2) (note that we swapped the terms in the KL).

3.2.2. Natural gradient descent

As noted in section 3.1.2, the parameter update vector used in ordinary gradient descent

can be obtained as the result of the following minimization problem:

∆θ∗ = argmin∆θ∆θT∇θR +
1

2λ
∆θT ∆θ

where R is the empirical risk, as previously defined in eq 1.2.1 in section 1.2.2.

This expression can be easily solved giving the usual gradient descent update ∆θ =

−λ∇θR. The parameter λ is the usual learning rate, and controls how much each param-

eter can change. We will now add a new regularizer using the FIM, and transform the

minimization problem into:

∆θ∗ = argmin∆θ∆θT∇θR +
1

2λ
∆θT ∆θ +

1
2ǫ

∆θT F∆θ

We now constrain our gradient step to be small in term of change of parameter values,

and also to be small in term of how much the resulting distribution changes. This expression

can be solved to give ∆θ∗ = −λ
(

I + λ
ǫ
F
)−1
∇θR. This expression also gives an insight

for the role of λ and ǫ, which control 2 different but related quantities expressed by our

constraints. This new update is called the natural gradient [Amari, 1998].

27

Loss function D (fθ (x))
quadratic error I

cross entropy for binary decision 1
fθ(x)(1−fθ(x))

cross entropy for multiclass classification diag
(

1
fθ(x)

)

Table 3. II. Expressions for the FIM, for a single sample xi. For the cross
entropy, all operations (division, squarred value) are elementwise, and the diag
function transforms a vector into a diagonal matrix with the vector values on
its diagonal. Full derivation in appendix.

3.2.3. An expression for the FIM using jacobians

Using the probabilistic interpretation of neural networks, the FIM can be expressed

F = Epθ(x,y)

[(
∂ log pθ(x,y)

∂θ

)T (∂ log pθ(x,y)
∂θ

)]

which simplifies in:

F = Epθ(x,y)





(

∂ log pθ (x, y)
∂θ

)T (

∂ log pθ (x, y)
∂θ

)



= Ex∼p(x)



Ey∼pθ(y|x)





(

∂ log pθ (x, y)
∂θ

)T (

∂ log pθ (x, y)
∂θ

)







Since log pθ (x, y) = log pθ (y|x) + log p (x) and p (x) does not depend on θ then this can

be further simplified in:

F = Ex∼p(x)



Ey∼pθ(y|x)





(

∂ log pθ (y|x)
∂θ

)T (

∂ log pθ (y|x)
∂θ

)







Interestingly, for the usual distributions expressed by neural networks, we can derive an

exact expression for the inner expectation. The FIM takes the following simple form as

shown by Pascanu and Bengio [2013]:

F = Ex∼p(x)

[

Jθ (x, θ)T
D (fθ (x)) Jθ (x, θ)T

]

The values for x are drawn from the data generating distribution p. Similarly to section

3.1.4, the notation Jθ (x, θ)T is used for the jacobian of the output of the network (i.e. the

probability expressed at a given x : p (y | x)), with respect to the parameters. In other

words, it measures how much the output of the network p (y|x) will change for a given x

if we change the parameters. For usual loss functions, D is a diagonal matrix with non

negative diagonal terms, and depends of the cost function used. For the quadratic loss it is

the identity (table 3. II).

28

3.2.4. Approximating the FIM

Similarly to the Hessian, the FIM is difficult to compute because of its size (nparameters×

nparameters) and because in general we do not have an expression for q but only samples from

a training dataset. As for Newton, we can make the two following approximations:

• A first approximation that we can make is by ignoring the interactions between layers.

In this case the FIM takes the form of a block diagonal matrix, where each block is a

square matrix which has the size of the parameters of a layer. For a neural network

with nlayers layers this reduces the FIM into nlayers smaller matrices. We will denote

by Fi the block corresponding to layer i.

• A second common approximation we make in practice is to use the empirical FIM

for a training dataset of n examples xi: F = 1
n

∑

i Jθ (xi, θ)T
D (fθ (x)) Jθ (xi, θ)T .

3.3. Gauss-Newton and Fisher share a very similar structure

3.3.1. Relation between the FIM and the GN approximation of the Hessian

We have just shown that the Gauss-Newton of the empirical risk with respect to the

parameters, and the Fisher Information Matrix share a similar structure that is composed of

the jacobians of the output of the network with respect to the parameters, and a symmetric

matrix:

1
n

∑

i

Jθ (xi, θ)T
D




fθ (xi) , yi

︸︷︷︸

opt




Jθ (xi, θ)T (3.3.1)

The main difference is in this symmetric matrix D (fθ (x) , y). For Fisher methods it does not

depend on any true target and it is just an intrinsic property of a neural network, associated

with an input distribution. We can thus remove the y: D (fθ (x)). In the case of the GN

matrix it depends on the true target y in general, with a notable exception for the quadratic

error (table 3. III).

Gauss-Newton Fisher
D (fθ (x) , y) D (fθ (x))

quadratic error I I

cross entropy for binary decision yi

(fθ(xi))
2 + 1−yi

(1−fθ(xi))
2

1
fθ(x)(1−fθ(x))

cross entropy for multiclass classification diag
(

yi

(fθ(xi))
2

)

diag
(

1
fθ(x)

)

Table 3. III. Expressions for the middle term D (fθ (x) , y) and D (fθ (x))
for GN and FIM

This common structure is of great interest as we will show in section 6.2 since we will

derive an approximate form that applies to both matrices. Acknowledging this share of

structure is a minor contribution. Regardless of the technique that we want to use between

29

natural gradient and Gauss-Newton, there is a shared part. By designing optimization

algorithms that exploit this part only, we can approximately benefit from both methods.

3.3.2. An original interpretation from the output of the network

In the cases where D is a diagonal matrix (i.e. cross entropy and quadratic error, see eq

3.3.1 and table 3. III), we can rewrite both GN and FIM matrices applied to an update as

a norm in the space of the output of the network:

∆θ∗ = argmin
∆θ

(∇R)T

θ ∆θ +
1
2

∆θT 1
n

∑

i

Jθ (xi, θ)T
D (f (xi, θ) , yi) Jθ (xi, θ) ∆θ +

1
2λ

∆θT ∆θ

= argmin
∆θ

(∇R)T

θ ∆θ +
1
2

1
n

∑

i

〈D (f (xi, θ) , yi) Jθ (xi, θ) ∆θ, Jθ (xi, θ) ∆θ〉+
1

2λ
∆θT ∆θ

= argmin
∆θ

(∇R)T

θ ∆θ +
1
2

1
n

∑

i

〈D (f (xi, θ) , yi) ∆fθ (xi, ∆θ) , ∆fθ (xi, ∆θ)〉+
1

2λ
∆θT ∆θ

We denoted by ∆fθ (xi, ∆θ) = Jθ (xi, θ) ∆θ a first order approximation of the change in

the value of fθ (xi) induced by a change ∆θ of θ for example xi. With this decomposition we

can understand GN and natural gradient as being a regularizer for each example, using the

metrics D (f (xi, θ) , yi) that depends on the considered example. We regularize for several

undesirable effect:

• We ensure that ∆fθ (xi, ∆θ) cannot take a large value. This distributes the effect of

the update evenly between examples, instead of having a large change in fθ (xi) for

a single example, and smaller changes for others.

• We weight this changes using D (f (xi, θ) , yi). For the cross entropies for instance we

observe that this term grows with 1
fθ(x)

(the vector of probabilities of each class). If

this vector is not evenly distributed, that is if for one class t we have a larger value

of (fθ (x))t, all other values will be close to 0, which means that
(

1
fθ(x)

)

i6=t
will take

a very large value. In this case we put more weight on the examples for which our

model is more confident of its prediction.

3.4. A cheaper Gauss-Newton matrix for cross-entropy

We now present a computational trick for computing the Gauss-Newton in the case of

cross-entropy. Interestingly, in the expression of Gauss-Newton for log losses we have the

unexpected equivalence
(

∂2ℓ
∂f2

θ

)

tt

= −
(

∂ℓ
∂fθ

)2

t
for the true class t and

(

∂2ℓ
∂f2

θ

)

ii

= 0 = −
(

∂ℓ
∂fθ

)2

t

when i 6= t:

ℓ (fθ (x) , y) = −
∑

i

yi log ((fθ (x))i)

30

(

∂

∂fθ

ℓ (fθ (x) , y)

)

t

= −
1

(fθ (x))t
(

∂2

∂f 2
θ

ℓ (fθ (x) , y)

)

tt

=
1

(fθ (x))2
t

=

(

∂

∂fθ

ℓ (fθ (x) , y)

)2

t

The reason is that the second derivative of the log function (x 7−→ − 1
x2) is minus the square

of its first derivative (x 7−→ 1
x
). Getting back to the expression of the GN matrix (here for a

single example), we can combine the second derivative with the jacobians and get a simple

expression:

Gf (x, θ) = Jθ (x, θ)T ∂2

∂f 2
{ℓ (fθ (x) , y)}Jθ (x, θ)

= Jθ (x, θ)T

(

∂ℓ

∂fθ

)T (

∂ℓ

∂fθ

)

Jθ (x, θ)

= ∇θℓ (fθ (x) , y)∇θℓ (fθ (x) , y)T (3.4.1)

This gradient in eq 3.4.1 is the exact same as the gradient used to compute the update

in gradient descent. So for no additional cost we get the expression of the GN matrix. Note

that we still need to invert it, which is a O (n3) operation in the size of the matrix.

This gives an explanation of the outer product metrics mentionned in Ollivier [2013]. To

the best of our knowledge this result has not been published before, which is very suprising

as it gives a very cheap way of computing the GN matrix.

31

Chapter 4

EXPERIMENTAL SETUP

In order to be able to assess the performance of the ideas and algorithms in the next chapters,

we now present our experimental setup.

We present 2 standard tasks. We then contribute a simple method called biased random

search which improves random search of hyperparameter values, and motivate its use in

order to provide a fair comparison of optimization algorithms.

4.1. Benchmark tasks

4.1.1. A standard benchmark: Autoencoding written digits

We now describe the main benchmark that we will be using in the rest of this document.

The dataset MNIST [LeCun et al., 2010] is composed of 60.000 28 × 28 grayscale images

of handwritten digits, and the corresponding value of the digit that is represented in the

image. For this benchmark, we use an autoencoder (see section 1.4.3) with layer sizes

{784, 1000, 500, 250, 30, 250, 500, 1000, 784}. The autoencoder encodes the input image into

a vector of size 30, and then decodes it to reconstruct the original image. We use the

reconstruction error ℓ (f (x) , y) = ‖f (x)− y‖2
2. The benchmark consists in minimizing the

empirical risk over the train set after a fixed time on the same architecture.

This benchmark has a long history in the neural network optimization litterature [Hinton

and Salakhutdinov, 2006, Martens, 2010, Martens and Grosse, 2015, Desjardins et al., 2015].

To assess the performance of an algorithm, we can use 2 metrics: the empirical risk after

a given number of iterations of the algorithm, and the empirical risk after a fixed elapsed

time for a given computer. In real world tasks, the latter is more useful. It gives a better

understanding of the trade-off between a more complex update that takes longer to compute

and gives a better improvement, and a fast update that gives a small improvement, but that

can be iterated several times in the meantime.

The limits of the benchmark are many. In particular the fact that the state of the art

papers in computer vision do not use MLPs and sigmoid activations but rather variants of

mixed convolutional networks and residual connections, and variants of ReLU activations.

Another limit is in the use of the quadratic loss. Nonetheless, we still use this benchmark

as it is used by several other papers which allows for a fair comparison, and because it is

reasonably deep (8 layers) and wide (the biggest weight matrix has size 1000× 784).

4.1.2. A classification task on an image dataset

The second benchmark that we use is a multilayer perceptron with rectifier activation

functions, trained to recognize images amongst 10 classes on the CIFAR-10 dataset [Torralba

et al., 2008]. It is composed of 60.000 32 × 32 color images, meaning that each image is

composed of 32 ∗ 32 ∗ 3 = 3072 pixels. The network has 8 hidden layers of size 100 making

it reasonably deep but still fast to train in order to experiment with many algorithms. We

train it using multiclass cross entropy.

This architecture is far from producing state of the art results for this task. In particular,

it starts overfitting for a very small number of updates. Instead, we use it to compare

optimization algorithms, which means that we are more interested in its performance on the

train set. If we were interested in generalization performance, we could add regularization

to better condition the optimization problem.

4.2. Biased random search

While comparing optimization techniques on real tasks, we found that it was very difficult

to provide a fair benchmark, because a slight change in a hyperparameter value can drasti-

cally improve or alter its performance. Indeed, with simple hyperparameter adjustments, we

were often able to improve the benchmarks reported as state-of-the-art in previous applied

optimization papers.

More sophisticated approaches to automatic hyperparameter tuning exist, such as

Bayesian optimization (see e.g. Snoek et al. [2012]). While hyperparameter tuning is an

active research area on its own, it is not the focus of our work. We just use a simple

technique that refines random search, by allocating more ressources to explore regions in the

hyperparameter space that are more likely to give a good performance. We now describe this

method that we call biased random search (algorithm 1), and we validate its performance

using a simple experiment.

During the hyperparameter tuning procedure, we create a model of our cost landscape

in the space of hyperparameters. As the number of experiments grows, the cost landscape is

refined. We use this estimated cost landscape to bias our random search, so that regions of the

hyperparameter space that are expected to provide a better result will have higher probability

of being explored. In practice, we use a simple 1-nearest neighbor regressor [Altman, 1992]

to model the cost landscape. Using the estimated value of the criteria cestimate, we decide to

keep the sampled value with probability p, or otherwise we reject the value and sample a new

34

HP tuning procedure Average Standard deviation
Grid search 27.23 0.42

Random search 27.02 0.28
Biased random search 26.61 0.13

Table 4. I. Final empirical risk obtained after training 100 hyperparameter
tuning procedures, each consisting of 100 experiments (lower is better)

one, and so on until we get a value that is not rejected, which will be our next experiment.

We can choose the value of p using different heuristics, in practice we use p = cmax−cestimate

cmax−cmin

(in this notation, the criteria needs to be minimized) where cmax and cmin are defined as the

current maximum and minimum value that we have obtained so far. This value for p will

almost surely reject values that are close to the worst experiments, and almost surely accept

values that are close to the best experiments.

Algorithm 1 Biased random search

Require: M used to model the cost landscape in the space of HP
Require: D the domain of HP that we will explore

1: H ← [] ⊲ History of explored HP values and corresponding result
2: while not converged do

3: rejected← true
4: while rejected do

5: a ∼ U (D) ⊲ Sample values for HP
6: cestimate ←M (H, a) ⊲ Estimate c for HP a using history H
7: p← cmax−cestimate

cmax−cmin

8: x ∼ U ([0, 1])
9: if x < p then

10: rejected← false
11: end if

12: end while

13: result← run (a) ⊲ Run experiment with HP values a

14: H ← H + (a, result)
15: end while

To assess the performance of biased random search we ran 100 searches of 100 experi-

ments on the MNIST autoencoder task (section 4.1.1) where we tuned 2 hyperparameters.

We observe that biased random search consistently finds comparable or better results than

standard random search. We report the results in table 4. I and we show a comparison of a

single search consisting in 100 experiments in figure 4.1.

In figure 4.1 we can clearly see that with biased random search the majority of experiments

is launched around the region with best performing hyperparameter values.

35

7 6 5 4 3 2 1 0 1 2
lr (log scale)

10

12

14

16

18

20

pr
es

ca
le

7 6 5 4 3 2 1 0 1 2
lr (log scale)

10

12

14

16

18

20

pr
es

ca
le

7 6 5 4 3 2 1 0 1 2
lr (log scale)

10

12

14

16

18

20

pr
es

ca
le

Figure 4.1. Comparison of hyperparameter tuning methods. On the left a
grid search, in the middle a random search and on the right a biased random
search. Each experiment consisted in 100 iterations of SGD from a randomly
initialized network (circles). We tune 2 hyperparameters on the x and y axis
(what they represent is not relevant here). The color scale represents the final
loss attained after a fixed number of iterations. The best experiments are in
blue, the worst experiments in yellow.

36

Chapter 5

PROOF OF CONCEPT: EVOLUTION OF THE

BACKPROPAGATED GRADIENT WHILE

UPDATING THE PARAMETERS

In this section, we present a prototype technique to account for the interactions between

parameters of different layers while computing updates. While we could not come up with

an efficient algorithm to implement this technique, early results show that it could be useful

in deep networks.

5.1. How is the gradient modified when changing the value of

the parameters of a layer

In usual gradient descent, we compute the gradient of the empirical risk with respect to

all parameters, then we update all parameters at once. But it is not really clear that in doing

so we will actually decrease the value of the empirical risk. The direction provided by the

gradient is locally a descent direction. But how much locally? As we increase the number of

parameters, we might need to use an optimal learning rate that is even too small to make

any perceptible progress overall.

We experiment with a technique that aims at improving the update directions. It is a

modification of the gradient, that can be computed following the same chaining of operations

as computing the gradient using forward and backward propagation, but requiring more

computation.

We now present the technique, and describe the derivation of this new update direction.

Since we are using backpropagation, then the process of getting the partial derivatives is

sequential, that is, we get the derivatives of the top layers first, and afterwards we get the

derivatives of the bottom layers. Now suppose that we apply the update for the parameters

of the top layers before backpropagating through them. We are now optimizing an updated

function. Instead of using the backropagated gradient that we have obtained so far, we

could reestimate the forward and backward pass for this updated function and get a new

backpropagated signal. To a certain extent it could be seen as doing coordinate descent, but

instead of optimizing each parameter separately, we group them by layer, and we optimize

each layer separately.

What we propose lies somewhere in-between: instead of recomputing the whole forward

pass and the backward pass up until the current layer, we estimate how updating the pa-

rameters of the top layers will modify the backpropagated signal.

To illustrate the idea, we focus on the transformation computed by a single layer:

hl = f (al)

al = Whl−1 + b

Using backpropagation through this layer we get the partial derivative of the loss function

ℓ:

∂ℓ

∂hl−1

=
∂ℓ

∂al

∂al

∂hl−1

=
∂ℓ

∂al

W (5.1.1)

This partial derivative is thus a function of W in an explicit way. It is also a func-

tion of W and b through the other term ∂ℓ
∂al

. Can we get an update expression for
∂ℓ

∂hl−1
(W + ∆W, b + ∆b)? This gradient ∂ℓ

∂hl−1
is in turn used for computing the gradient

of each preceding (deeper) layer using the chain rule. By obtaining a more accurate value

for ∂ℓ
∂hl−1

(W + ∆W, b + ∆b) we expect to improve all consecutive parameter updates.

5.2. A first order update of a first order derivative

We now focus on a single layer. Suppose that we update W ← W +∆W and b← b+∆b.

We want to estimate ∂ℓ
∂hl−1

(W + ∆W, b + ∆b), using a first order approximation:

∂ℓ

∂hl−1

(W + ∆W, b + ∆b) ≈
∂ℓ

∂hl−1

(W, b) +

(

∂

∂vec (W)

{

∂ℓ

∂hl−1

(W, b)

}

vec (∆W)

)T

+

(

∂

∂b

{

∂ℓ

∂hl−1

(W, b)

}

∆b

)T

We used the vec operator in order to have a matrix expression for the second derivative

with respect to W . Using the expression in eq 5.1.1 for ∂ℓ
∂hl−1

we see that it requires deriving

2 terms: ∂ℓ
∂al

and W :

38

∂

∂vec (W)

{

∂ℓ

∂hl−1

(W, b)

}

vec (∆W) =
∂

∂vec (W)

{

∂ℓ

∂al

W

}

vec (∆W)

=
∂

∂vec (W)






vec (W)T



I⊗

(

∂ℓ

∂al

)T









vec (∆W)

=

((

I⊗

(

∂ℓ

∂al

))

+ W T ∂2ℓ

∂a2
l

∂al

∂vec (W)

)

vec (∆W)

=

((

I⊗

(

∂ℓ

∂al

))

+ W T ∂2ℓ

∂a2
l

(

hT
l−1 ⊗ I

)
)

vec (∆W)

=
∂ℓ

∂al

∆W + W T ∂2ℓ

∂a2
l

∆Whl−1

∂

∂b

{

∂ℓ

∂hl−1

(W, b)

}

∆b =
∂

∂b

{

∂ℓ

∂al

W

}

∆b

= W T ∂2ℓ

∂a2
l

∂al

∂b
∆b

= W T ∂2ℓ

∂a2
l

∆b

Overall we get the following form:

∂ℓ

∂hl−1

(W + ∆W, b + ∆b) ≈
∂ℓ

∂hl−1

(W, b) + ∆W T

(

∂ℓ

∂al

)T

+ (∆Whl−1 + ∆b)T ∂2ℓ

∂a2
l

W

This can be further simplified by using the chain rule for ∂ℓ
∂hl−1

(W, b):

∂ℓ

∂hl−1

(W + ∆W, b + ∆b) ≈ W T

(

∂ℓ

∂al

)T

+ ∆W T

(

∂ℓ

∂al

)T

+ (∆Whl−1 + ∆b)T ∂2ℓ

∂a2
l

W

= (W + ∆W)T

(

∂ℓ

∂al

)T

+ (∆Whl−1 + ∆b)T ∂2ℓ

∂a2
l

W

This approximate new backpropagated gradient thus decomposes into 2 terms. The first

one (W + ∆W)T
(

∂ℓ
∂al

)T
is very similar to the usual backpropagated gradient but accounts for

the updated value of W . The second term (∆Whl−1 + ∆b)T ∂2ℓ
∂a2

l

W measures a global change

in the gradient. It requires using the Hessian of the preactivation. This Hessian estimates

how much will the gradient ∂ℓ
∂al

change when the value of al changes, which is exactly what

is computed by ∆Whl−1 + ∆b.

The Hessian ∂2ℓ
∂a2

l

is currently the limiting factor for this technique to be truly efficient.

It must be computed for every example. It has the size of the number of output units for

this layer, and must be computed for each example. It is thus smaller compared to the true

39

Hessian that we use in Newton’s method, which has the size nparameters×nparameters and also

requires computing a Hessian for each example that is summed in order to get the Hessian

of the empirical risk.

This Hessian ∂2ℓ
∂a2

l

can also be approximated by Gauss-Newton (see section 3.1.4): ∂2ℓ
∂a2

l

≈

Jal

T ∂2ℓ
∂f2 Jal

where the jacobians Jal
= ∂f

∂al
are the jacobians of the output of the network with

respect to the preactivation of the current layer al. This approximation drastically reduces

the computation required during backpropagation, and experimentally proves to be equally

efficient as using the true Hessian.

5.3. Updated backpropagation algorithm

Starting from the usual gradient computation, we propose to replace the backpropagation

step by backpropagating this updated gradient. We call this technique updated backpropa-

gation (UBP), and we describe a simple algorithm that implements it (algorithm 2).

In addition to backpropagating the gradient, we must also backpropagate the jacobians
∂f

∂al
for each example. This can be done in a similar fashion than the gradient, the main

difference being that the jacobians are matrices for each example, whereas the gradients are

vectors. The size of the jacobians grows with the size of the output of the network.

5.4. Experiments

We use the autoencoder benchmark to compare the performance of UBP with stochastic

gradient descent. Our results are plotted in figure 5.1. In terms of updates, we observe that

this method significantly outperforms SGD (note that this is a logarithmic scale). However

it takes 10 times longer to obtain an update using UBP making it unpractical on this task.

5.5. Limits of this method

A first obvious limit is that it is very costly to compute the jacobians, and also to store

them in memory.

A second limit which can also be very problematic is that similarly to the exploding

gradient issue in deep or recurrent networks, we observe that this update can cause the

backpropagated gradients to explode. Indeed, the problem resides in the fact that we have

to multiply by the square matrix
(

∂f

∂al

)T
∂2ℓ
∂f2

∂f

∂al
at each layer. This matrix is a measure of

how much will the preactivation of the current layer change when we update its value by

(∆Wh + ∆b). But by use the chain rule, we can see that we will once again multiply by this

matrix when we compute the update of the next layer (which is below as backpropagation

computes the derivatives backward from the top layer to the bottom layer). In the next

layer, this matrix will have the expression
(

∂f

∂al−1

)T
∂2ℓ
∂f2

∂f

∂al−1
=
(

∂al

∂al−1

)T (
∂f

∂al

)T
∂2ℓ
∂f2

∂f

∂al

∂al

∂al−1
, so

it will contain the former matrix. In this case, repeating this process multiple times will do

40

Algorithm 2 Updated backpropagation applied to a single training iteration using a mini-
batch
Require: D a minibatch of n examples
Require: λ learning rate
Require: fθ a neural network parametrized by θ

1: for all i ∈ D do

2: do forward propagation to get f
(i)
θ = fθ (xi) and intermediate representations h

(i)
l

3: dhi ←
(

∂ℓ

∂f
(i)
θ

)T

⊲ Gradient of the loss w.r.t the output of the NN for example i

4: Ji ←
√

∂2ℓ

∂f
(i)2
θ

⊲ Jacobian of the loss of the NN for example i

5: end for

6: for all l ∈ layers from top to bottom do

7: for all i ∈ D do

8: dai ←
(

∂f
(i)
l

∂a
(i)
l

)T

dhi ⊲ Derivative of the loss w.r.t the preactivation for example i

9: Ji ← Ji
∂f

(i)
l

∂a
(i)
l

⊲ For elementwise functions ∂f
(i)
l

∂a
(i)
l

is diagonal

10: end for

11: ∆b← −λ
∑n

i dai ⊲ bias update
12: ∆W ← −λ

∑n
i daih

T
l−1 ⊲ weights update

13: for all i ∈ D do

14: dhi ← (W + ∆W)T
dai + W T JT

i Ji

(

∆Wh
(i)
l−1 + ∆b

)

⊲ Updated backprop.
15: Ji ← JiW

16: end for

17: b← b + ∆b

18: W ← W + ∆W

19: end for

something like a power method, which will either explode or vanish depending on the biggest

eigenvalue of
(

∂f

∂al−1

)T
∂2ℓ
∂f2

∂f

∂al−1
.

5.6. Conclusion

This current implementation is certainly not statisfying as a way to accelerate optimiza-

tion, because of its computational cost. Instead we just see it as a proof of concept that

it is possible to act on the backpropagated signal in order to improve it. There are prob-

ably more efficient ways of doing similar things, which could improve training very deep

networks, where it could account for the interactions between layers that are separated by

several others.

41

Chapter 6

FACTORIZED SECOND ORDER

The expressions that we obtained for the FIM and the GN so far are generic in the sense

that they could be applied to any model and any empirical risk composed of a sum of terms.

We will now exploit the very particular structure of neural networks, to obtain a better

understanding of how to apply these techniques for real tasks.

In an unconvenional way, we will start by presenting the local criterion that we intro-

duce, which allowed us to get competitive results, and then we will introduce more general

expressions and algorithms.

6.1. A local criterion and the importance of the covariance of

inputs in a layer

6.1.1. Derivation of a new update

Neural networks are usually trained using gradients computed all the way from the loss

function to the parameters. Inspired by target propagation [Bengio, 2014, Lee et al., 2015],

we explored an alternative which consists in replacing the last step of the backpropagation

algorithm: the one of finding updates to the parameters given a derivative on the preactiva-

tions. In figure 2.1 (page 15) we keep the usual computation for backpropagation (red lines)

and replace the part in green.

We now focus on a single layer hl = fl (al) = fl (Wlhl−1 + bl) and from now on we

will drop the subscript l for brevity and write h′ = f (a) = f (Wh + b). The gradients on

the preactivation are given by ∇aℓ =
(

∂ℓ
∂a

)T
as usual. We formulate our local criterion as

finding updates ∆W ∗, ∆b∗ so that in expectation we will match the opposite gradients of

preactivations times a learning rate −λ∇aℓ. We call this optimization problem “local” in

the sense that it is formulated locally to a single layer. We formulate our criterion as:

∆W ∗, ∆b∗ = argmin∆W,∆b

1
n

∑

i

∥
∥
∥∆Wh(i) + ∆b− (−λ∇a(i)ℓ)

∥
∥
∥

2

2
+ ǫ ‖∆W‖2

2

= argmin∆W,∆b

1
n

∑

i

∥
∥
∥∆Wh(i) + ∆b + λ∇a(i)ℓ

∥
∥
∥

2

2
+ ǫ ‖∆W‖2

2

= argmin∆W,∆bℓC (∆W, ∆b)

We denoted by ℓC (∆W, ∆b) this new local criterion, to be solved for each layer. Instead

of using gradient descent to find the optimal values for ∆W ∗, ∆b∗, we directly solve this

expression by taking derivatives with respect to ∆W and ∆b and setting them to 0:

∇∆W ℓC =
1
n

∑

i

(

∆Wh(i) + ∆b + λ∇a(i)ℓ
)

h(i)T + ǫ∆W

= ∆b
1
n

∑

i

h(i)T + ǫ∆W + ∆W
1
n

∑

i

h(i)h(i)T +
λ

n

∑

i

(∇a(i)ℓ) h(i)T (6.1.1)

∇∆bℓC

1
n

∑

i

(

∆Wh(i) + ∆b + λ∇a(i)ℓ
)

= ∆b + ∆W
1
n

∑

i

h(i) +
λ

n

∑

i

∇a(i)ℓ (6.1.2)

By solving ∇∆bℓC = 0 for ∆b in eq 6.1.2 we get:

∆b∗ = −
λ

n

∑

i

∇a(i)ℓ−∆W
1
n

∑

i

h(i) (6.1.3)

By solving ∇∆W ℓC = 0 for ∆W in eq 6.1.1 and replacing ∆b using eq 6.1.3 we get:

∆W ∗

(

1
n

∑

i

h(i)h(i)T −
1
n

∑

i

h(i) 1
n

∑

i

h(i)T + ǫI

)

= −
λ

n

∑

i

(∇a(i)ℓ) h(i)T +
λ

n

∑

i

(∇a(i)ℓ)
1
n

∑

i

h(i)T

By putting both expressions together and simplifying the covariances we obtain:

∆W ∗ (C + ǫI) = −
λ

n

∑

i

(∇a(i)ℓ)

(

h(i) −
1
n

∑

i

h(i)

)T

∆b∗ = −
λ

n

∑

i

∇a(i)ℓ−
1
n

∆W ∗
∑

i

h(i)

We denoted by C = 1
n

∑

i

(

h(i) − 1
n

∑

i h(i)
) (

h(i) − 1
n

∑

i h(i)
)T

the covariance matrix of

the activation of the previous layer. This expressions can be solved by inverting the square

matrix (C + ǫI).

6.1.2. Comparison with standard SGD

The updates for standard SGD are ∆SGDb = −λ
n

∑

i∇a(i)ℓ and ∆SGDW =

−λ
n

∑

i (∇a(i)ℓ) h(i)T .

44

The update for b gets a new term − 1
n
∆W

∑

i h(i) that permits taking into account the

update of W . In practice, we found that it did not change much as ∆W is typically at least

one order of magnitude smaller than λ
n

∑

i∇a(i)ℓ.

The update for W is different in 2 ways. First, it is also scaled using the inverse covari-

ance matrix of the input C−1. Secondly, it is centered since we substract the expectation of

h. This is related to an old well used trick [LeCun et al., 1998, Schraudolph, 2012].

6.1.3. What is behind this local criteria

This new update is somewhere between usual gradient descent, and something that is

inspired from target propagation. From a theoretical point of view it is not yet clear why it

would provide sensible updates. Also surprising is the effectiveness of these new updates as

we will see in experimental section. In the following sections, we will show that it is actually

linked to second order methods applied to the particular structure of neural networks.

6.2. Decomposition using the Kronecker product

In this section, we will show a convenient factorization of the Gauss-Newton approxima-

tion of the Hessian, that was first applied to the Fisher Information Matrix in the litterature

[Martens and Grosse, 2015]. To this end, we will use an operation called the Kronecker

product that permits giving simple expressions for the GN matrix. For 2 matrices A of size

m× n and B of size p× q it produces a new matrix A⊗B of size mp× nq defined by:

A⊗B =








a11B · · · a1nB
...

. . .
...

am1B · · · amnB








Its most interesting property in the context of neural networks is its relationship with

the vec operation, that “flattens” a matrix into a vector. It is of great use for 2nd order,

because the weight matrices can be vectorized using vec, to give matrix expressions for the

Hessian, which otherwise could not be written. We will make use of the property:

vec (AXB) =
(

BT ⊗ A
)

vec (X)

Getting back to the expression for the Gauss-Newton matrix derived in section 3.1.4,

we use the block diagonal approximation and focus on a single layer defined by the linear

transformation a = Wh + b and the nonlinearity h′ = f (a). We start from the jacobian

of the output of the network, with respect to the output of the linear transformation a,

denoted by Ja. From this jacobian computed by backpropagation, we can get the jacobian

with respect to the parameters of the layer by making use of the chain rule Jθ = JaJa
θ . We

45

use the notation Ja
θ for the jacobian of a with respect to θ. In order to get an expression for

this jacobian, we now make use of the vec operator to transform W into a vector:

a = vec (a)

= vec (Wh) + b

=
(

hT ⊗ I
)

vec (W) + b

I is the identity, of the same size as a, that is the output size of the layer. We can now

give an expression for Ja
vec(W) and Ja

b :

Ja
b = I

Ja
vec(W) = hT ⊗ I

Or, if we stack vec (W) and b in a vector θ:

Ja
θ =

(

hT 1
)

⊗ I

And finally by the chain rule:

Jθ = Ja

((

hT 1
)

⊗ I
)

= (1⊗ Ja)
((

hT 1
)

⊗ I
)

=
(

hT 1
)

⊗ Ja (6.2.1)

where
(

hT 1
)

is the concatenation of the row vector hT and 1.

This jacobian is a first order measure of how much the output of the network will change

if we change the values of the parameters of this layer, for a single example. Let us now

recall the expression of the GN matrix Gf = 1
n

∑

i Jθ (xi)
T

D (xi) Jθ (xi) from section 3.1.4.

We can rewrite this expression using the factorization in eq 6.2.1:

Gf =
1
n

∑

i

[(

hT
i 1

)

⊗ Jai

]T
D (xi)

[(

hT
i 1

)

⊗ Jai

]

=
1
n

∑

i

(

hT
i 1

)T (

hT
i 1

)

⊗
(

JT
ai

D (xi) Jai

)

=
1
n

∑

i




hih

T
i hi

hT
i 1



⊗
(

JT
ai

D (xi) Jai

)

(6.2.2)

We used the property that (A⊗B) (C ⊗D) = AC ⊗BD when the sizes of the matrices

A, B, C, D match. This factorization is interesting because it separates the GN matrix into

46

a contribution from the backpropagated jacobian (red arrow in figure 2.1 page 15), and

a part that only uses the forward statistics and that is local to a layer. While these 2

contributions are clearly factorized for a single example, it is not clear whether the resulting

sum can still be factorized using a kronecker product. As we will show in the next section,

similar factorizations were exploited in KFAC [Martens and Grosse, 2015] and Natural Neural

Networks [Desjardins et al., 2015] to build efficient optimization algorithms. Note that in

this formulation in eq 6.2.2 we contribute an explicit distinction between the weight matrix

W and the bias b whereas in previous work authors usually put all parameters together

in a weight matrix with an extra column. As we will see in future sections, this is key to

understanding the role of centering the updates.

6.2.1. Decomposition into 2 smaller matrices

In second order algorithms, inverting the Hessian matrix is often the limiting factor as its

computational cost is O (n3). The Kronecker product has the pleasing property that it turns

the inversion of a big matrix into inverting 2 smaller matrices since (A⊗B)−1 = A−1⊗B−1.

In our case, if such a decomposition existed we would reduce the computational cost from

O (n3
inn3

out) to O (n3
in) + O (n3

out).

Unfortunately, we can not write the GN matrix nor the FIM using 2 matrices because

it is a sum of Kronecker products, so we aim at finding approximate factorizations that will

have the required form.

6.2.2. Focus on the covariance part of the decomposition

We now suppose that we can use the following approximation:

1
n

∑

i




hih

T
i hi

hT
i 1



⊗
(

JT
ai

D (xi) Jai

)

≈
1
n

∑

i




hih

T
i hi

hT
i 1



⊗ αI = Gin (6.2.3)

Here α is the same for all examples, it does not depend on i. This approximation means

that we ignore the interactions between the output preactivations. Instead we just focus on

some statistics of the activations of the current layer.

Looking back at the use we will make of this preconditioner, namely ∆θ = −λG−1
in ∇θR or

equivalently Gin∆θ = −λ∇θR, we can observe that this will penalize an update direction ∆θ

if the corresponding activation has a high variance, as measured by hih
T
i . This makes sense

since in this case changing the value here will change the next forward propagated signal

more that if the variance of the corresponding activation were lower. This would result in a

bigger expected change in the output.

47

By hiding all terms JT
ai

D (xi) Jai
in a diagonal matrix αI we also focus on the part of

the matrix Gin that is shared between the FIM and the GN matrix, removing the part that

differs (see section 3.3).

The left part A = 1
n

∑

i




hih

T
i hi

hT
i 1



 corresponds to some statistics on the input of the

considered layer. It has the size (nin + 1) × (nin + 1) with the line/column corresponding

to the bias. We will now derive the update that corresponds to using this matrix Gin as a

preconditioner:

We need to invert A. This matrix can be inverted blockwise. We denote by C =
1
n

∑

i

(

hi −
1
n

∑

j hj

) (

hi −
1
n

∑

j hj

)T
the covariance matrix of the input vector of the linear

layer. We get the inverse:





1
n

∑

i hih
T
i

1
n

∑

i hi

1
n

∑

i hT
i 1





−1

=




C−1 −C−1 1

n

∑

i hi

− 1
n

∑

i hT
i C−1 1 + 1

n

∑

i hT
i C−1 1

n

∑

i hi





Applying this preconditioner to a gradient update we can get a new update for the

weight matrix and the bias. Let us first recall the gradient for a minibatch of examples.

In order to be able to use it with our preconditioner we put the parameters into a vector

θ =
(

vec (W)T
bT

)T
:

∇θR = −
λ

n

∑

j




hj

1



⊗∇aj
ℓ

The corresponding update is a Newton step using the approximate Hessian (see eq 3.1.1

page 22):

G−1
in ∇θR =

1
n

∑

j




C−1 −C−1 1

n

∑

i hi

− 1
n

∑

i hT
i C−1 1 + 1

n

∑

i hT
i C−1 1

n

∑

i hi








hj

1



⊗
−λ

α
∇aj

ℓ

From this expression we can write the update for W :

∆vec (W) = C−1−λ

n

∑

j

hj ⊗
1
α
∇aj

ℓ− C−1 1
n

∑

i

hi ⊗
−λ

n

∑

j

1
α
∇aj

ℓ

=
1
α

C−1−λ

n

∑

j

(

hj −
1
n

∑

i

hi

)

⊗∇aj
ℓ

∆W =
−λ

α

1
n

∑

j

∇aj
ℓ

(

hj −
1
n

∑

i

hi

)T

C−1 (6.2.4)

And the update for b:

48

∆b = −
−λ

n

∑

j

1
n

∑

i

hT
i C−1hj

1
α
∇aj

ℓ +

(

1 +
1
n

∑

i

hT
i C−1 1

n

∑

i

hi

)

−λ

n

∑

j

1
α
∇aj

ℓ

=
−λ

n

∑

j

1
α
∇aj

ℓ +
λ

n

∑

j

1
n

∑

i

hT
i C−1

(

hj −
1
n

∑

i

hi

)

1
α
∇aj

ℓ

∆b = −
λ

α

1
n

∑

j

∇aj
ℓ−∆W

1
n

∑

i

hi (6.2.5)

Using an argument based on second order methods, we thus get back to the very same

update as in eq 6.1.1.

6.3. Algorithms

We now present 2 algorithms. The first one is very simple and just aims at isolating

the centering trick, in order to assess how much of the gain of performance comes from just

centering the update, and how much comes from the whole covariance. The other one is the

full update that we just derived.

6.3.1. Centered gradient descent

Following the update for W derived in eq 6.2.4, we simply replace the usual update for the

weight matrices by a centered version ∆W = 1
n

∑

j∇aj
ℓ








hj −

centering
︷ ︸︸ ︷

1
n

∑

i

hi








T

. The gradient, as

well as the inner expectation, are computed using a minibatch. Some authors refer to a very

similar idea as mean-only batch normalization [Salimans and Kingma, 2016] where the value

of h is replaced by h−E [h] in the forward pass, with the expectation being computed using

a mini-batch. The difference here is that we do not reparametrize the forward propagation,

instead we just follow a slightly different direction which is not the gradient but a centered

gradient, as suggested by eq 6.2.4.

Algorithm 3 Centered gradient descent

1: while not converged do

2: Sample a minibatch D
3: for all layers do

4: ∆ai
← −∇ai

l (f (xi) , yi)∀i ∈ D
5: b← b + λ 1

n

∑

i ∆ai

6: W ← W + λ 1
n

∑

i ∆ai

(

hi −
1
n

∑

j hj

)T

7: end for

8: end while

49

6.3.2. Amortized covariance preconditioner

In the updates derived from the covariance (for b eq 6.2.5 and for W eq 6.2.4), we require

an inverse of the matrix C = 1
n

∑

i

(

hi −
1
n

∑

j hj

) (

hi −
1
n

∑

j hj

)T
. This matrix has the size

of the input of a layer nin. While it is smaller than the full GN or FIM for a single layer

of size (nin + 1)× nout, it is still not very efficient to estimate the inverse at each iteration.

Meanwhile, these statistics do not change much between iterations so a natural idea is to

amortize the cost of inversion over several updates.

A question remains for the choice of α that we used to approximate the real GN matrix

in eq 6.2.3. We adopt two approaches. The first one consists in treating it as a fixed value,

so it is a hyperparameter that we tune using our biased random search (section 4.2). The

second one is a very experimental heuristic, which consists in taking the maximum value of

the squarred gradient α = maxi∈minibatch,j≤nout
(∇ai

ℓ)2
j . This gives a different value for each

layer, and also different for each minibatch. We found it worked very well experimentally,

and we justify it as being a rough heuristic estimate of the curvature of the empirical risk,

with respect to the output of the layer.

For numerical stability and to account for the imprecision of C between two estimates,

we use Tikhonov regularization (section 3.1.3). This adds a scalar value ǫ to the diagonal of

our approximate GN, which in this case is scaled by 1
α
:

1
n

∑

i




hih

T
i hi

hT
i 1



⊗ αIout + ǫI =
1
n

∑

i




hih

T
i + ǫ

α
I hi

hT
i 1 + ǫ

α



⊗ αIout

and the updated covariance matrix becomes:

C =
1
n

∑

i



hi −
1
n

∑

j

hj







hi −
1
n

∑

j

hj





T

+
ǫ

α
I

6.4. Other related approximate second order algorithms

The 2 following techniques have been proposed using the same factorization of the FIM

that we wrote in eq 6.2.2. In addition to their factorization we introduced the explicit

separation of weight matrix and bias, which we use in the following notations.

6.4.1. KFAC

Kronecker Factored Approximate Curvature (KFAC) [Martens and Grosse, 2015] is an-

other factorization where the sum of Kronecker products is approximated by a product of

50

Algorithm 4 Amortized covariance preconditioner (ACP)

Require: N estimate statistics every N minibatches
1: nupdates ← 0
2: while not converged do

3: if nupdates mod N = 0 then ⊲ Amortization
4: Sample a minibatch D and compute forward pass
5: for each layer j do

6: C(j) ← covD

(

h(j), h(j)
)

7: inv_C(j) ← inverse
(

C(j) + ǫ
α
I
)

8: end for

9: end if

10: Sample a minibatch D and compute forward pass
11: for each layer j do

12: ∆
a

(j)
i

← −∇
a

(j)
i

ℓ (f (xi) , yi) ∀i ∈ D

13: b← b + λ
α

1
n

∑

i∈D ∆
a

(j)
i

⊲ eq 6.2.5

14: W ← W + λ
α

1
n

∑

i∈D ∆
a

(j)
i

(

h
(j)
i −

1
n

∑

k∈D h
(j)
k

)T
inv_C(j) ⊲ eq 6.2.4

15: end for

16: nupdates ← nupdates + 1
17: end while

sums:

F ≈ E








hhT h

hT 1







⊗ E

[(

Ja
y

)T
D (y) Ja

y

]

The Kronecker product has the nice property that for 2 invertible square matrices A

and B, (A⊗B)−1 = A−1 ⊗ B−1. It follows that inverting the FIM now requires inverting

2 smaller matrices. As for the approximation we made in eq 6.2.3 section 6.2.2, we lose the

coupling between both parts of the kronecker product of each example in the FIM (see eq

6.2.2 page 46). In our experiments we found a comparable performance between KFAC and

ACP.

KFAC has been introduced for the natural gradient, but as we showed in the previous

sections, it can also be adapted to Gauss-Newton.

6.4.2. Natural Neural Networks

Natural neural networks [Desjardins et al., 2015] exploit the same factorization by focus-

ing on the input covariance part of each layer. They propose a reparametrization that makes

E

[

hhT
]

equal the identity. They also notice that in order for their method to work well, they

have to use the centering trick. To this view, they change the original linear transformation

a = Wh + b to become:

51

a = V U (h− µ) + d

V is the new weight matrix and d are the new biases. µ = E [h] is the mean value for h and

U is the square root of the inverse covariance of h, defined by U2 =
(

E

[

(h− µ) (h− µ)T
])−1

,

denoted by U =
(

E

[

(h− µ) (h− µ)T
])− 1

2 . U and µ are not trained using gradient descent

but instead they are estimated using data from the training set.

The new parameters V and d are trained using gradient descent. We will denote by

he = U (h− µ) the new “effective” input to the linear transformation induced by the

weight matrix V . Let us first remark that E [he] = U (E [h]− µ) = U (µ− µ) = 0, so

the reparametrized input is centered on average. A second remark is that E

[

heh
T
e

]

=

UE

[

(h− µ) (h− µ)T
]

UT = I. By construction U cancels out the covariance. Wrapping

everything together we thus have the desired property that:

E








heh

T
e he

hT
e 1







 =




E

[

heh
T
e

]

E [he]

E

[

hT
e

]

1





=




I 0

0 1





The approximate FIM for the reparametrization thus has a better form. In this case the

natural gradient update will be closer to the usual gradient update.

6.5. Experiments

6.5.1. Centering tricks

We compare our algorithms using the autoencoder benchmark presented in section 4.1.1.

We ran all experiments on the same architecture using a Titan Black GPU.

For each experiment we plot the expected loss on the train set, and on a test set that

we did not use for learning (figure 6.1). To assess the practical performance, the x-axis

represents the actual time spent on each experiment. We selected the best hyperparameters

using biased random search, and we only plot the best experiment. For the test experiments,

we also only plot the best result for each technique. We ran each experiment for 3 × 105

updates.

6.5.2. Comparison of 2nd order approximate methods

In the second experiment, we compare all second order approximations to a baseline

using batch normalization on the autoencoder on MNIST. For all experiments we use an

amortization factor of 100, that is we update the statistics and invert the corresponding

52

CONCLUSIONS

In this work, we derived new expressions for the well known GN matrix and FIM. We showed

that there is a common factor in both matrices that is composed of the covariance matrix of

the activation at each layer, in the case of a block diagonal approximation. By separating

the bias and the weight matrices we introduced a new mathematical explanation for the well-

known centering trick. Using this new expressions we derived a new algorithm ACP that

loosely resembles two state of the art methods inspired by natural gradient. We benchmarked

our new algorithm against these methods and showed that they all perform similarly.

We also introduced a tentative modification of backpropagation in order to obtain better

derivatives. This algorithm showed promising result since it provided better updates than

vanilla gradient descent. However there remains some limits to applying this technique in a

real setup as it is still too computationnally expensive.

A natural follow-up to this work is to extend it to other architectures such as recurrent

neural networks as formally initiated in Ollivier [2015] or convolutional networks such as in

Grosse and Martens [2016]. Networks with very small outputs can also be good candidates,

as computing the jacobians and thus the FIM is linear in the number of outputs. Amongst

them is the very popular family of GAN networks where the output is a single unit, and

where the natural gradient could be used as a way to stabilize the training by balancing the

rate of change of the output from each part (generator and discriminator).

Another direction of pursuing this research is to look for better approximations of the

layer FIM/GN than the one of splitting into 2 expectations. Indeed, by better we do not mean

an approximation that is closer in norm to the real FIM, but instead to an approximation that

will give updates that are more efficient. Amortization can also be improved, by monitoring

how our inverse statistics stay close to the true statistics, and just performing updates of these

preconditioners when it is necessary, allowing for less updates (and less matrix inversions)

for layers where the statistics do not change much.

As a last word, let us just state that second order methods have proven very powerful

in a wide variety of optimization problems, but suffer from their computational complexity

and the difficulty to use them in a setup with a lot of variables to optimize. We hope

that by pursuing this effort of clarifying things and finding approximate methods that are

computationnally cheaper, we will carry on contributing to more efficient neural network

training.

58

Bibliography

Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric regression.

The American Statistician, 46(3):175–185, 1992.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):

251–276, 1998.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Arnaud

Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio. Theano: new

features and speed improvements. arXiv preprint arXiv:1211.5590, 2012.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via

target propagation. arXiv preprint arXiv:1407.7906, 2014.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Jour-

nal of Machine Learning Research, 13(Feb):281–305, 2012.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings

of COMPSTAT’2010, pages 177–186. Springer, 2010.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and

Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization. In Advances in neural information processing systems, pages

2933–2941, 2014.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-

scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, et al. Natural neural networks.

In Advances in Neural Information Processing Systems, pages 2071–2079, 2015.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style.

arXiv preprint arXiv:1508.06576, 2015.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward

neural networks. In Aistats, volume 9, pages 249–256, 2010.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in

neural information processing systems, pages 2672–2680, 2014.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for con-

volution layers. In International Conference on Machine Learning, pages 573–582, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In Proceedings of the

IEEE international conference on computer vision, pages 1026–1034, 2015.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with

neural networks. science, 313(5786):504–507, 2006.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne

Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code

recognition. Neural computation, 1(4):541–551, 1989.

Yann LeCun, Patrice Y Simard, and Barak Pearlmutter. Automatic learning rate maximiza-

tion by on-line estimation of the hessian’s eigenvectors. In Advances in neural information

processing systems, pages 156–163, 1993.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. Mnist handwritten digit database.

AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target prop-

agation. In Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pages 498–515. Springer, 2015.

James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th

International Conference on Machine Learning (ICML-10), pages 735–742, 2010.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored

approximate curvature. In International Conference on Machine Learning, pages 2408–

2417, 2015.

James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-free

optimization. In Proceedings of the 28th International Conference on Machine Learning

(ICML-11), pages 1033–1040, 2011.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of

convergence o (1/kˆ 2). In Doklady AN USSR, volume 269, pages 543–547, 1983.

Yann Ollivier. Riemannian metrics for neural networks i: feedforward networks. arXiv

preprint arXiv:1303.0818, 2013.

Yann Ollivier. Riemannian metrics for neural networks ii: recurrent networks and learning

symbolic data sequences. Information and Inference: A Journal of the IMA, 4(2):154–193,

2015.

60

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv

preprint arXiv:1301.3584, 2013.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent

neural networks. In International Conference on Machine Learning, pages 1310–1318,

2013.

Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain mech-

anisms. Technical report, DTIC Document, 1961.

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameteriza-

tion to accelerate training of deep neural networks. In Advances in Neural Information

Processing Systems, pages 901–909, 2016.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient de-

scent. Neural computation, 14(7):1723–1738, 2002.

Nicol N Schraudolph. Centering neural network gradient factors. In Neural Networks: Tricks

of the Trade, pages 205–223. Springer, 2012.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of

machine learning algorithms. In Advances in neural information processing systems, pages

2951–2959, 2012.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude. COURSERA: Neural networks for machine

learning, 4(2):26–31, 2012.

Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large

data set for nonparametric object and scene recognition. IEEE transactions on pattern

analysis and machine intelligence, 30(11):1958–1970, 2008.

Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S Lempitsky. Texture net-

works: Feed-forward synthesis of textures and stylized images. In ICML, pages 1349–1357,

2016.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting

and composing robust features with denoising autoencoders. In Proceedings of the 25th

international conference on Machine learning, pages 1096–1103. ACM, 2008.

61

Appendix A

DERIVATIONS OF THE SECOND DERIVATIVES

OF COMMON LOSS FUNCTIONS

A.1. Quadratic error

l (f, y) = ‖f − y‖2
2

∂l

∂f
= 2 (f − y)T

∂2l

∂f 2
= I

A.2. Binary cross entropy

l (f, y) = − (y log (f) + (1− y) log (1− f))

∂l

∂f
= −

(

y

f
−

1− y

1− f

)

∂2l

∂f 2
=

y

f 2
+

1− y

(1− f)2

A.3. Multiclass cross entropy

f and y are the vector (true, estimated) of probabilities of being a member of each class.

l (f, y) = −yT log (f)

∂l

∂f
= −

(

y

f

)T

∂2l

∂f 2
= diag

(

y

f 2

)

Here all operations (division, logarithm) are elementwise.

A-ii

Appendix B

DERIVATIONS OF THE EXPRESSION FOR THE

FIM

F = Ex∼q(x)



Ey∼pθ(y|x)





(

∂ log pθ (y|x)
∂θ

)T (

∂ log pθ (y|x)
∂θ

)







B.1. Quadratic error

In the case of the quadratic error we suppose that the samples are drawn from a gaussian

with diagonal covariance matrix σ2I centered in fθ (x) (the output of the network). We

denote by n the dimension of the output.

p (y|x) =
1

(2πσ2)
n
2

exp
(

−
1

2σ2
(y − fθ (x))T (y − fθ (x))

)

log pθ (y|x) = −
1

2σ2
(y − fθ (x))T (y − fθ (x))−

n

2
log

(

2πσ2
)

∂ log pθ (y|x)
∂θ

= −
1
σ2

(y − fθ (x))T

(

∂fθ (x)
∂θ

)

(

∂ log pθ (y|x)
∂θ

)T (

∂ log pθ (y|x)
∂θ

)

=
1

(σ2)2

(

∂fθ (x)
∂θ

)T

(y − fθ (x)) (y − fθ (x))T

(

∂fθ (x)
∂θ

)

Ey∼pθ(y|x)





(

∂ log pθ (y|x)
∂θ

)T (

∂ log pθ (y|x)
∂θ

)



=
1

(σ2)2

(

∂fθ (x)
∂θ

)T

Ey∼pθ(y|x)

[

(y − fθ (x)) (y − fθ (x))T
]
(

∂fθ (x)
∂θ

)

=
1

(σ2)2

(

∂fθ (x)
∂θ

)T

σ2I

(

∂fθ (x)
∂θ

)

=
1
σ2

(

∂fθ (x)
∂θ

)T (

∂fθ (x)
∂θ

)

B.2. Binary cross entropy

log pθ (y|x) = (y log (fθ (x)) + (1− y) log (1− fθ (x)))

∂ log pθ (y|x)
∂θ

=

(

y

fθ (x)
−

1− y

1− fθ (x)

)(

∂fθ (x)
∂θ

)

(

∂ log pθ (y|x)
∂θ

)T (

∂ log pθ (y|x)
∂θ

)

=

(

y

fθ (x)
−

1− y

1− fθ (x)

)2 (
∂fθ (x)

∂θ

)T (

∂fθ (x)
∂θ

)

=
(y − fθ (x))2

fθ (x)2 (1− fθ (x))2

(

∂fθ (x)
∂θ

)T (

∂fθ (x)
∂θ

)

Ey∼pθ(y|x)





(

∂ log pθ (y|x)
∂θ

)T (

∂ log pθ (y|x)
∂θ

)

 =
Ey∼pθ(y|x)

[

(y − fθ (x))2
]

fθ (x)2 (1− fθ (x))2

(

∂fθ (x)
∂θ

)T (

∂fθ (x)
∂θ

)

=
1

fθ (x) (1− fθ (x))

(

∂fθ (x)
∂θ

)T (

∂fθ (x)
∂θ

)

B.3. Multiclass cross entropy

f and y are the vector (true, estimated) of probabilities of being a member of each class.

log pθ (y|x) = yT log (fθ (x))

∂ log pθ (y|x)
∂θ

=

(

y

fθ (x)

)(

∂fθ (x)
∂θ

)

(

∂ log pθ (y|x)
∂θ

)T (

∂ log pθ (y|x)
∂θ

)

=

(

∂fθ (x)
∂θ

)T

diag

(

y2

fθ (x)2

)(

∂fθ (x)
∂θ

)

Ey∼pθ(y|x)





(

∂ log pθ (y|x)
∂θ

)T (

∂ log pθ (y|x)
∂θ

)

 =

(

∂fθ (x)
∂θ

)T

diag

(

Ey∼pθ(y|x) [y2]

fθ (x)2

)(

∂fθ (x)
∂θ

)

=

(

∂fθ (x)
∂θ

)T

diag

(

1
fθ (x)

)(

∂fθ (x)
∂θ

)

Here all operations (division, logarithm) are elementwise.

2

