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RESUME

On considére le modéle autorégressif quasi intégré y, = Yy *+ U OU a = exp(a/T) et ol
la séquence d'erreurs U suit soit un processus MA(1) (=g + 0e,_,), soit un processus AR(1)
(W =pu_, +2) On éudie i distribution de &, l'estimateur des moindres carrés de . On
suggére des modifications a la structure asymptotique locale telle qu'analysée par Nabeya et
Perron (1992), lesquelles permettent d'excellentes approximations pourtous les cas ol 8 et p sont
prés de leur frontidre respective.  L'idée derriére cette nhouvelle approximation découle de
l'approche basée sur Ia théorie des déterminants de Fredholm, Plutdt que d'approximer, par

exemple, la distribution échantillonnale finie P{T(GM) < x] par P{f(‘) f; K(s,t,x) dW(s)aw(t) > O}

o K{s,t,x) est un noyau limite approprié (indépendant de Ia taille de I'échantilion T), on utilise un
noyau Ky{s,1,x} qui dépend de la taille de échantillon. Par un choix judicieux de ja dépendance
du noyau & T, il est possible d'obtenir des approximations qui sont non seulement excellentes
mais aussi relativement faciles a évaluer en utilisant des techniques d'intégration numérique
simples. Nos résultats sont rés encourageants et manifestent le potentiel de recherche
intéressant de cette approche et la nécessité de Fappliquer & des modales plus complexes.

Mots~ciés : approximations asymptotiques, fonction caractéristique, déterminant de Fredholm,

modéles quasi intégrés, modéles quasi stationnaires.

ABSTRACT
We consider the near-integrated autogressive model Y1 =0y + U, where a = exp(c/T, )
and the sequence of errors y, is aliowed to be an MA(1) process y = & + Bey_,) or an AR(1)

process (u, = PU_y +&). We study the distribution of &, the least-squares estimator of o We
suggest modifications to the local asymptotic framework analyzed by Nabeya and Perron (1992)
which provide excellent approximations for all cases where ¢ of p are close 1o their relevant
boundaries. The idea behind this new approximation is based on the *Fredhoim determinant
approach® where instead of approximating, for example, the finite sample distribution

PIT(& - 1) < by, say, P[f(;f(;
kemel (independent of the sample size T), we use a kernel, say, Ky{s,t.x) that depends on the
sample size. By a judicious choice of the dependence of the kemel on T, wa ars able to obtain
approximations that aré not only excellent but also relatively easy to evaluate using straightforward
numerical integration techniques. Our results are very encouraging and show the approach to be

worthy of further investigations and applications in more complex models.

K{s,1,x) dW(s)dwy) 2 Oj where K(s,t,x) is a suitable limiting

Key words: asymptotic approximations;  characteristic function;  Fredhoim determinant;
near-integrated models; nearly stationary models.






1.INTRODUCTION.

This paper is concerned with the issue of approximating the exact
distribution of estimators in dynamic linear models where substantial
dependence over time is allowed in the errors. Models involving such features
have become quite popular in econometrics mainly because of the possibility to
apply a new class of central limis theorems (or functional central limit theorems)
which provides asymptotic results allowing both substantial heterogeneity and
dependence. Asymptotic inference in these models are now commonplace (see,
€.g., White (1984) and Gallant and White (1988)), yet little is known about the
adequacy of the asymptotic distributions as approximations {o the finite sample
distributions. In particular, when the asymptotic distribution is a poor guide to
the exact distribution, little is known about what kind of alternative
approximations provide useful improvements. This paper is an attempt to
outline a class of approximations that we show is particularly successful in
providing good approximations when existing asymptotic frameworks fail.

Our study considers the leading case of a dynamic first-order autoregressive
model when the errors are allowed to be dependent. To be more precise, we
consider the following first-order stochastic difference equation :

V=g +u, (t=1,.,T), (1.1)

where Yo 15 a fixed constant (or a random variable with a fixed distribution
independent of T, the sample size) and {“t} is a sequence of weakly dependent
random variables with mean zero, The least-squares estimator of o based on a

sequence of observations { yt}'gis:

syl T 2 1
a"zt=1ytyt-1()3t=1yg_1) . (1.2)

We consider the class of near-integrated processes with an autoregressive
parameter defined by o = exp(c/T) where the constant ¢ is a measure of the
deviation from the unit root case. Theoretical aspects of the limiting



distribution of the least-squares estimator & have been considered in Bobkoski
(1983), Cavanagh (1986), Chan and Wei (1987) and Phillips (1987).
Tabulations of the limiting distribution in the case where the errors {u,} are
uncorrelated have been obtained by Chan (1988), Cavanagh (1986), Nabeya and
Tanaka (1990) and Perron (1989) using different procedures. These studies also
provide measures of the adequacy of this limiting distribution as an

approximation to the finite sample distribution of & when /s in the vicinity of
1. They show the approximation to be quite good in the case where Yo = 0.
Perron (1991a,b) and Tanaka (1990) also consider a continuous-time
approximation which performs well even in the case where the initial condition
is non-zero. These asymptotic frameworks provide substantial improvements
over the traditional asymptotic distribution theory, when ais in the vicinity of
one, essentially because the asymptotic distributions obtained are continuous
with respect to the autoregressive parameter a.

Perron (1992) presented an extensive simulation. analysis to assess the
adequacy of this limiting distribution as an approximation to the finite sample
distribution, concentrating on two leading cases, namely MA(1) errors (ut =e

+ Oy giey iid. N(0, 02)) and AR(1) errors (ut =pu 4+ ét)' The results
shown in Perron (1992) can be summarized as follows: 1) the asymptotic
distribution is a very poor guide to the finite sample distribution, even for quite
large sample sizes, when either 0 (in the MA case) or p (in the AR case) are close
to-1;2) theinadequacy of the approximation is more severein the MA case (for
a given equal value of 0 and p); 3) when p is close to + 1, the approximation is
not as bad but the approach to the limiting distribution is quite slow; 4) the

stochastic asymptotic expansion of the limiting distribution to order O (T’l)
provides a less accurate approximation in most cases than the standard limiting
distribution.

In a recent paper, Nabeya and Perron (1992) considered an alternative

framework where the parameter indexing the extent of the serial correlation in
the errors (i.e. 0 or p) is Jocal to a boundary for which the asymptotic
approximation fails. To be more precise, three cases were considered: a) MA

root local to -1 specified such that Op = -1+ 6/T1/ 2; b) AR root local to + 1



with pr. = exp(¢/T); and ¢€) AR root local to - 1 such that pp = - exp(¢/T).
They derived the limiting distributions under these local frameworks as well as
the appropriate limiting characteristic functions allowing the computation of
distributional quantities of interest. It was shown that these alternative local
asymptotic distributions not only give an explanation for the failures of the
usual asymptotic distribution but also provide substantial improvements in
approximating the exact distributions.

There are, nevertheless, some regions where none of the asymptotic
frameworks available provide a satisfactory approximation. Examples of such
regions include the case where the sample size is small and the autoregressive or
moving-average parameters are close to -1. These cases illustrate the need for
further refinements in the asymptotic approximations.

The purpose of this paperis to suggest modifications to the local asymptotic
frameworks analyzed by Nabeya and Perron (1992) which provide excellent
approximations for all cases where for p are close to their relevant boundaries.
The idea behind this new approximation is based on the "Fredholm determinant
approach" and can be explained as follows. The usual way to derive limiting
distributions using the Fredholm determinant approach is to approximate the

finite sample distribution P[T(&-1) ¢ x] by, say, P S0 s, x)aw(syawie)
2 0] where K(s,t,x) is a suitable limiting kernel (independent of the sam ple size
T). The characteristic function is then obtained as a transformation of the
Fredholm determinant of this kernel. In the present work, instead of
approximating the exact distribution using the limiting kernel, we use a kernel
KT(s,t,x), say, that depends on the sample size. By a judicious choice of the
dependence of the kernel on T we are able to obtain approximations that are not
only excellent but also relatively easy to evaluate using straightforward
numerical integration techniques.

We apply this technique to all cases mentioned above and emphasize i) an
assessment of the quality of the approximations to the finite sample
distributions and ii) their relative performances compared to other existing
approximations. Qur results are very encouraging and show the approach to be
worthy of further applications in more complex models.

The plan of this paper is as follows. Section 2 provides preliminary material



describing the models in more detail and covering the existing asymptotic
approximations to the least-squares autoregressive estimator (1.2). Section 3

summarizes the so-called Fredholm determinant approach for deriving
~ appropriate limiting characteristic functions that can be used 1o numerically
evaluate the cumulative distribution functions. We also describe how our
approach differs from the basic framework. Sections 4, 5, and 6 contain
derivations of the proposed approximation to the limiting characteristic
functions in each of the cases mentioned above for the structure of the errors,
namely a) an AR root approaching 1, b) an AR root approaching -1, and ¢) an
MA root approaching -1. In each case, the adequacy of the asymptotic
approximation offered is assessed via simulations of the finite sample
distribution. Section 7 offers concluding comments.

2. PRELIMINARIES.

1t is useful at this point to review details about some existing asymptotic
approximations in the nearly integrated first-order autoregressive model. As
discussed in the introduction the data-generating process of interest is (1.1) and
the estimator under consideration is (1.2). Limiting results about this OLS
estimator are available under quite general conditions on the error sequence
{“t}‘ To be concrete we hereby state those originally considered by Herrndorf
(1984) involving the concept of sirong mixing.

ASSUMPTION 1: (o) E(u)) = 0; (b) sup, E| utlﬂ“ < oo forsomef > Zand € >
0; (c) o® = immp, o T'IE(S;} eztsts and P> 0, where S; =Z§uj; (d) {ut}o;) is

strong mizing with mizing numbers a, that satisfy: Eo;’ a 71n-2/ p < 00.

When the sequence {u, } is strictly stationary condition (c) is implied by (a),

(b) and (d) and o =2nf u(()) , where{ (0)is the non-normalized spectral density
function of {u} evaluated at frequency zero. The following notation is used
throughout the paper: '=»' denotes weak convergence in distribution; {et}

denotes a sequence of i.i.d. (0, ag) random variables; W(r) is the unit Wiener



process on C[0,1], the space of real-valued continuous functions on the {0,1)

interval, and Jc(r) = féexp((r—s)c)dW(r) is the Ornstein-Uhlenbeck process
with unit variance and adjustment parameter c. Phillips (1987) proved the
following Theorem under the conditions of Assumption 1 1 (see also, Nabeya and
Tanaka (1990, Theorem 4)).

LEMMA 1 (Phillips (1987)): Let {yt} be generated by (1.1) with {“t} satisfying

. . 2 2 2, 2 _ .. ~1 T 2
Assumption 1 and define 7 = (c© - au)/(.?a ), o, = hmTeoo T E'(Et___Iut).
Then:

T~ a)= { fé]c(r}dW(r) +7'} {f éjc(r)edr}“l .

Also, IimT_’ooP[T(& ~ 1) < z]is given by P[Zg > 0] with Zg is a random variable
with characteristic function Dg(z:’w)_‘,/ 2 where, definingpu = ( - 2Az)1/ 2,

DN = exp(e = A1 - 21))feosh(u)  (c - A)sinh i) )

As discussed in the introduction, this limiting distribution provides an
excellent approximation to the exact distribution when the errors are
uncorrelated. However, as documented by Perron (1992), the quality of the
approximation seriously deteriorates as the errors are more highly serially
correlated, in particular when they are negatively correlated. To that effect,
Nabeya and Perron (1992) considered alternative local asymptotic frameworks
forrestricted cases. Their results are summarized in the following lemmas.

LEMMA 2 (Positive AR(1) errors): Let {y;} be generated by (1.1) and {u} by u,

= eé:p(qS/T)ut_I * e, Also define the function QC(J¢(T)) = f; ezp((r —
v)c)J¢(v)dv, then as T o00: '

! See also Perron (1992) for an extension considering Op(T‘l) asymptotic
expansions.



T(a- )= (1/2) Q4P f 40Ty or) ™"

Also, the limiting distribution of T(a — 1), limeP[T(& — 1)< zj, is given by
P(Zi > 0} where Z; is o random variable with the characteristic function

D;( 2iw)” 1/2 yhere :

DL(\) = cap(c +) | coshlie Jeoshling) + ob sink(i Jsinh g/l )
(1)) (c + 8 leosh{s Jsinh(iug)/ g + sinhin Jeoshlng)/ ]
+ [+ (c+8)(e - 9)%/2cosh(i )sinh(ug)/itg
— sinh(isJeosh(ug)/ 1/ 0 ~ )

+oN(gz—c—-9)1- cosh(pI)cosh(p.e)
+ (24 9%)sinh(s Jsinh(ng)/ (% i)/ 1] -5
with 4, u§=‘(1/2){ 24622 (2 - o2+ s /Py

LEMMA 3 (Negative AR(1) errors): Let {yg} be generated by (1.1) and {ut} by v,
= —exp(p/Thu,_; + € Define the random functions J i(s) S f‘;’) exp((s —
v)q‘))dWi(v) and Q (J ,i(r))’—; f Zezp((r - s)c)J¢’i(s)ds (i = 1,2); where Wl(r)

and Wg(r) are independent Wiener processes. Also let J, 108 = f ‘; exp((s -
v)c)dWI('v). Then as T 00: ,

a1 - 2 Laefar| f Wiae) - B)f + B har) !

with A(r) = (¢ - C)[Qc(‘]d),l(r)) - QC(J¢’2(r))]+ eJc,J{T) and B(t)= J¢’1(r) -
J 8 2(1"). Also, the limiting distribution of &, limp ~'OOP[?Jz < z, is given by P(Ziz
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0) with Zf a random variable with characteristic Junction Df( eiw)"J/ 2 where:

D) = an(e +9)feoshle? - Az - 1)/ 1/
- csinh({® -2z~ )/ /2 /(2 <o - 1)/2)1/%)
[cosh({$® - Mz + 1)/2} /%)
“osihll6" Mt 1)/ )0 -2 r 1)),

LEMMA 4 (Negative MA(1) errors): Let {yt} be generated by (1.1) with Yo=¢p
=0, and the sequence of errors generated by u =, + 07‘et~1’ 0T =—148//T,
thenas T- 00 :

a= { 5 f éJC(r)gdr} {1 +65f 1 Jc(r)gdr} =1

Let p={c? ~ 263z — 1)} /2 the limiting distribution of &, limy, _Pla< ) is
given by P[Z': > 0] where Zi 8 a random varisble with characteristic function

Di( 2iw)_1/ 2, where

D) = exp(e = Aa)eosh(i) - c sinh ).

The characteristic functions described in the above lemmas allow direct
computation, by numerical integration, of the asymptotic cumulative
distribution functions. The limiting distributions denoted by Fj(x) (i=o0,..,3)
can be numerically evaluated using Imhof’s (1961) formula:

Fix) = (1/2) + (1/m) [ S0/ w)M{DI (2iw) 2}aw | (2.1)

where IM(-} denotes the imaginary part of the argument. In computing the

integrals the upper limit was set to a value w for which {Di(?iw)'l/ ?‘l < 10710
holds. Note that care must be exercised in evaluating these integrals since they
involve the square root of complex valued quantities (see Perron (1989)).

7



3. OUTLINE OF THE FREDHOLM DETERMINANT APPROACH.

In this section, we briefly describe the so-called Fredholm determinant
approach to obtain limiting characteristic functions. For a more detailed
treatment oriented towards applications in econometrics, see Nabeya (1987)
and Tanaka (1990). We suppose that we have under consideration a random
vafiable Py 527, with a non-degenerate limiting distribution and that we are
interested in approximating its distribution, namely P(¢ip ¢ x). What is
assumed to hold is that P(¢p ¢ x) is equivalent to P(Sp2 0) for some Sy, of the
form:

19T 5T . ' '
Sip= Ej =1Zk=1BT(J’k)ejek’ A (3.1)

where {BT(j,k)} is a deterministic sequence and {et} is a sequence of ii.d.

random variables? with mean 0 and variance ag. The main ingredient of this
approach is the existence of a symmetric and continuous function K(s,t), called
akernel, defined on [0,1] x [0,1], that satisfies:

an—»oomaxj,kl Bp(ik) -K(j/TXx/T)| =0. (3.2)

The kernel K(s,t) is also assumed to be nearly definite in the sense that all
but a finite number of eigenvalues of the following integral equation have the
samesign: '

i(t)= A f gK(s,1)i(s)ds. o , (3.3)

The eigenvalues of the kernel K(s,t) are those values of A for which (3.3) has
a non zero continuous solution f(t). The solutions f(t) are the eigenfunctions
corresponding to A. Denoting the sequences of eigenvalues and the associated

2 The method extends naturally to a sequence e} of random variables
generated by a linear process {se¢ Tanaka (1990)). Given the applications
considered here, we only need we resirict our attention

e} tobeii.d. an
to this special case.



orthonormal eigenfunctions by {An, fn(t); n = 1,.., 00}, Mercer’s Theorem
statesthat

K(s)=3F_ 2t (o), (v). (3.4)

Denoting by D(}) the Fredholm determinant associated with the kernel
K(s,t) we have:

D) =1%_,[1-(A/A,)] (335)
and D()) is an entire function of \ with D(0) = 1.Insome applications, however,
the Fredholm determinant D(}) is obtained using the integral equation (3.3).
The procedure s described in Nabeya and Tanaka (1988).

The usefulness of Lhis approach lies in the fact that the kernel K(s,t) and the
associated Fredholm determinant D(2) contain all the relevant information to
characterize limT_‘ ooP[ST 2 0] or, equivalently, the limiting distribution of the
random variable of interest, namely lim, | ooP{a/;T ¢ x]. This characterization is
summarized in the following lemma proved in Nabeya and Tanaka (1988).

LEMMA 5: As T- 00, we have (S’T/af): f;f é]((s,t)d W(s)dW(t), a random
variable with characteristic function Dy .‘Ziw)*l/ 2

Our modification to this general procedure can be described as follows.
Suppose we can decompose BT( J,k) as follows:

Bylik)=27_ p; 1B, (i), , (3.6)

where P (i=1, ..., m) are functions that depend on T but not on the indices j
and k. 'In this framework, we have Pip = P;p 83y, as T ~+ oo, and

lim., 0o™2%; 1 |B; (k) - K{(i/T,k/T)| = 0, say, such that z‘lepixi(s,t) =

K(s,t), the original kernel. The modification proposed is then to use, in place of



the Jimiting kernel K(s,t), the function
_yin
I-(T(s,t):I)i =1pi,TKi(s’t)' (3.7)

Note that, since p; . = p; a8 T 5 00 and 37 1pil(i(s,t) = K(s,t), the modified

i=

kernel still satisfies a requirement similar to (3.2), namely:

limepoomax; y | B (k) - Ko/ T/ T) =0 (3.8)

Therefore, all the apparatus described before can be used. In the end, however,

what is obtained is a characteristic function DT(Ziw)—ll 2 that depends on the
sample size but which converges to the limiting characteristic function

D(2iw)_1/2 as T - 00.

It is important to note that the modified kernel KT(s,t) depends on sample
size only through functions which do not depend on s or t. This allows the
modified procedure to remain analytically tractable. Since we use the finite
sample counterparts p; T instead of their limit, we can expect the corresponding
approximation to the characteristic function to be closer to the finite sample
characteristic function. Hence, we can expect 2 better approximation to the
finite sample distribution. Though we have not been able to show that the
difference |BT(j,k) - KT(j/T,k/T)} is uniformly smaller than the difference
! BT( jk)-K(j/T,k/T)|, our results in the next sections provide strong evidence
of amuch improved approximation.

4. APPROXIMATIONS IN THE NEARLY TWICE INTEGRATED MODEL.

In this Section we consider an approximation to the distribution of T(&-1)
when the errors have an AR(1) structure with (1arge) positive correlation. We
have the following local parameterization:

vy =exp(c/T)yy g+ ‘ (41)

10



u = exp(qb/T)ut_l +e,, (4.2)

where, for simplicity, we specify e ~iid. (0,a§) and Yo =Y_; = 0. We can write
{y}as:

Y, = [exple/T) + exp(9/T)ly,; -exp((c + $)/T)y, 5 +e,. (4.3)

As T converges to infinity {yt} becomes Y = 2yt_1 ~Yyo € a process with
two unit roots, hence the expression "nearly twice integrated”. The inequality

T(@-1) ¢ xisequivalent to theinequality xVip -Up 20, where

35T T 2
U= 200 vy By v ), (4.4)
4 2
Vp=2175]_y2 . (4.5)

For ease of exposition, we let a; = exp(c/T) and @y = exp(¢/T) and consider
first the case

c#0,4#0 and c24¢2. (4.6)

From equations (A.8) and (A.9) of Nabeya and Perron (1992) we have:

WVp-Up= 12 B /7%y -ap) DBy 1(5) + 4pBy 7(iK)
+ ITBS,T(j'k)}ejek’ (4.7)
where
B a(ik) = (af - ofTik42)
A B2,T(j'k) - (a%j‘kl - agT*j‘k-PZ)’

-ji+1  T-j+1,, T-k+1 T-k+1
(o] THL QT (TR Tty

11



and

2-a,—
2x, 1 1 2 )
bp= 28y et Tha
T 1__03 1-a;, 09 1+a; l-ayay
2-0,—
_2x1 1 I '
qT"’T'_(l 2"1-0[10:2)'*'1+a2 I-ajay ’ (4.8)

Since Tz(oz1 - 012)2 [(c- ¢>)2 > 0 (including the case of conjugate complex ¢ and
¢), we consider the inequality ST 2 Oinstead of xV.p.- Up20, where

5= {T2(ey - 2g)”/(c- #)*}(xVp- Up)
= _'}'2?:12'{:1{z§=1pi,TBi,T(j’k)}ejek’

. 2 C N2 2 . .
withp) 7= ppl(c-9) Py T= ap/(c-9)" P3T= 1p/(c-¢)". Theinequality
ST » 0is used since it allows simplifications in the statement of the approximate
distribution that will be given in Theorem 1. We note the following limit
relations:

oyl e-9) =y,
pz,T*x(zgg~;1,s)/(c-¢)25p2,
py 7+ (1-Zp)l(c-4) =pg.

Letting j= Ts and k = Tt, we also have the limit relations %

B, 4 (1 - K ),

3 Notethat 2?=1piKi(s,t) corresponds to the limiting kernel used in Nabeya

and Perron (1992), xKD(s,t) —KN(s,t) in their notation.

12



By i)+ (e?15H - e# 25ty ey,
By (i) +-(e0) - Dy ee10) 9 (1) (o).

Given the strategy discussed in the introduction, we thereby approximate

PT(&-1) <x]by PIf | [ 1K (5,0)aW(s)dW(t) > 0], where
K,}(s,t)sxi 1P 7K (). (4.9)

The Fredholm determinant associated with the kernel KT(s t) is expressed in
Theorem 1.

THEOREM 1: Under the conditions ({.6), the Fredholm, determinant, 01 (M),
associated with the kernel Kgr(s,t) defined by (4.9) is:

sinh by sinh By
By ko

c+¢ sinh g sznhul
———é——(coshﬂl i i coshpg)

+ g3 N p+ (b= pag)/ (e - ) + (c +¢ (e - 6)%/2]
17H2

D%'I(A} =ezp(c+$) coshp jcosh iy + cp

sinh B sinh p

x[coshpl o - i coshuzj
(c+¢)r
2*2—'—-—?{1 cosh,ulcoshﬂg
/‘2/’

+( ; +AcpT+¢qT sinh ,ulsznh u2}
(c-9)%" #1 By |

where u? and pg are theroots of the quadratic equation inz,

13



2, .2

g L1 ptlir 22 “ap+¢Pr

A o A )+ 2o + Acp —— T
2 (c - ¢)? (c -¢)%

=0,

and, hence

91/2

(c+¢)(cpp — ¢4 (cpp +947)
R e e

The distribution P[T(& ~ 1) < ©]can be approzimated by P[Zi 3 0] where ~Zi isa

random variable with characteristic function D;, 2:( 2iw)—1/ 2

Remark (1): The above expression for D,}‘ x()\) presumes that conditions (4.6)
are satisfied. If any of the conditions is violated, the corresponding Fredholm

determinant can be evaluated by taking a suitable limiting process to D.%\ x()‘)
as defined by Theorem 1, noting the definitions of Py O and I as stated in

(4.8). For example, if welet ¢~ 0 and ¢ - 0, we have (cpp + ¢ap)/(c- ¢)2 - -

(x/6T2 + 1/2T) , (c + 8)(cpp - $ap)/( - 8) + 2x, xp + (cpp - dap)/ (e~ 9) -
x/T +1,and (c+ ¢)rp--2x. Therefore, when ¢ = ¢ = 0: '

1 A sinh ey 'siph I
DT, x()«) = cosh p; cosh iy + ;2—:;25(—31‘-.-{- 1)(cosh py —-—"—2——— i cosh pi)
1

A)x . x 1 sinh m sinh gy
+—3AX 19 cosh py cosh o~ A5 +57) — 5
(-2 { O 2 Ty By

where

2 2 x , 1 N2, X, 112,1/2
B2 2= MNZ5+ g £ 2+ M (= 5+ 7))
) o2 2T | R

Remark (2): As T- 0o, we have (cpp + pap)/(c-9)2 20, (c + #)(cpp-dap)/ (e
-¢) = 2x, 1 + (epp - ¢qT)/(c -¢)~1,and (c+ ¢)rT -+ ¢ + ¢ -~ 2x. Hence,
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D,%, x(’\) converges to Di()&) as defined by Lemma 2, and we recover the result of
Nal;eya and Perron (1992},

Remark (3): The support of the limiting distribution of T(& - 1) considered in
Nabeya and Perron (1992) and described by Lemma 2 is limited to the interval
[0,00), and its density approaches oo a5 x approaches 0 from above. On the other

hand, the support of both the finite sample distribution of T(&-1) and the
approximation obtained using Theorem 1 are not limited to the interval [0,00).
We can, accordingly, expect our modified approximation to be more accurate,
especially for values of x near 0.

Table I.a presents results assessing the adequacy of various approximations
to the finite sample distribution. It shows the maximum of the absolute distance
between the empirical distribution (based on 10,000 replications) and three
asymptotic approximations, namely: 1) our modified approximation obtained
using the result of Theorem 1 (denoted NP1), the local asymptotic distribution
of Nabeya and Perron (1992) described in Lemma 2 (denoted NP2), and 3) the
standard asymptotic distribution described by Lemma 1 (denoted PHL). In
conducting the simulations, we used uniform random numbers 4 for the sequence
{et} and the sample sizes are T = 25, 50 and 100. We considered 18 cases with
the various combinations of (<, 0‘2) obtained using ¢ = 0, -5, 2, and ay =
exp(¢/T) = 0.1, 0.3, 0.5,0.7, 0.9, 0.95. The results show that NP1 is far better
than the other two approximations. Though not presented here, the two curves
showing the cumulative distribution function from the empirical and the
NP1-approximation would be almost indistinguishable even for T = 25.

Table I.b considers in more detail the quah‘ty of the NP1-approximation in
the tails of the distribution. The entries provide the signed maximum distance.
between the finite sample distribution and the NP1 approximation. The left tai]
is defined to include percentage point lower than 5% and the right tail
percentage points greater than 95%. Two facts are worth noting from these

*  The use of uniform random variables allows us to assess the validity of the
approximation with errors that are clearly different from normality. The
use of normal variables yields, however, qualitatively similar results.
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results. First, the approximations in the tails are better than the
approximations in the center of the distribution, namely the range (.05, .95).
Indeed, the distances reported in Table Lb are generally smaller (in absolute
value) than those reported in Table 1.a. This feature is particularly encouraging
since oftentimes the tails are of more interest, for example when hypothesis
testing is involved. The second feature of interest is that for small sample sizes
the approximation to the c.d.f. lies above the exact c.d.{. in the left tail and
below it in the right tail. Hence, critical values taken from the approximation
would yield slightly conservative tests on either side. Note, however, that this
discrepancy is very small even for T = 25.

5. THE NEARLY INTEGRATED SEASONAL MODEL.

In this Section we consider an approximation 0 the distribution of & when
the errors have an AR(1) structure with (large) negative correlation. We have
the following local parameterization:

W= exp(c/T)yt'l +uy, (5.1)

u = -exp(¢/T)u,_; +¢, (5.2)
wheree, ~i.i.d. (0,02) and for simplicity ey = ug =0. Combining (5.1) and (5.2):

y, = [exp(c/T)-exp($/ Ty,  + expl(c+ )/ Ty g+ ¢ (53)

As T increases to infinity {yt} approaches the process y, =¥, o + € which
characterizes a seasonal model of period 2 with a root on the unit circle. We
therefore label the process (5.1) and (5.2) as a "nearly integrated seasonal

model". We note first that the inequality & < x is equivalent to the inequality

* * — -2 T * ~2 T 2
xV3-U3 20 where U, = 2T LN 15 1R and Vi = 2T By g9 Vi For
simplicity of notation, we specify a; = exp(c/T) and oy = - exp(¢/T).

Straightforward algebra yields the following expression:
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S S

L[ 1ik| | 2T-jk42
7%= k=1T{PT(“1 - )

l

o lik] 2T-ik+2 OT5k+2 . 2T-ik42
+qT(023' I Fxt )—rT(ozl T+ +aj J~+)}ee

ik

+

2r . .
T T T-j+1 T T-j+1
Nora )2 ()Jj =197 ej)(L‘jzla2 ej) (54)
172

where

2(x——al) i 2x~a1—a2)
2 l-a,a, /7

1
Pr=7

l—al 172
o ::_1‘(2(x—az)_2x-crl-a2
TT l-—ag I-a ay
Y 2x~a1-a2
T™T 1-a102

2 . 2
Note that P{xV,} -Ut 2 0] = P[( a - ay) (xV:I*‘ -U}) 2 0] since (a1 - 0y)° > 0.

Hence, we can, without loss of generality, consider approximating P& ¢ x] by
P[S.p, > 0] where, using (5.4):

=1yl T k| 2T-jk+2 lik|  2T-jk+2
ST*TEjzlzk:l{PT(%l - )+ ap(ay™! - af )
2T-jk+2 . 2T-jk42 1
~rpla) TRH2y 2Tk )}ejek+op(T ). (5.5)

The contributions of terms with J=Tork=Tin(5.5)can be shown to be of

order Op(’l"B/ 2) and can therefore be neglected if needed. We use this fact to
consider from now on that T is an even number (T = 2L, say) since it allows us to
State that omitiing the elements corresponding to j= T or k = T when T js odd
introduces negligible errors 5.

® In fact, the contribution of the terms with j= T or k=T in (5.5) is
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We now introduce the sequence of random variables {£, 75 j=1,.., L=
T/2}. We define éj = (1/1,/2)(92‘}_1 + ezj) and U (1/,/2)(432}1 -ezj). Note that
£.and 7, are uncorrelated and i.i.d. sequences with mean 0 and variance o, just
as the original sequence {e }. This specification implies that:

1 1 .
ezj_lz’ﬁ(gj"‘ WJ) and e2j='é(5j'”j)’ (i=1,..,L)

and upon rearrangements:

~loL L
Sp= Em=12n=1(amn£m£n +2bpném
-1
+ ¢ M) + Op(T ) (5.6)
where §

-1 2 2 T—1 T-j 2 -1 2
Tpy(1 - o) - rpaf}eqEzyer ey + op) + Tl - o) -

9vn T—1 T-i. , o2y s 9 2 :
r.r()zz}(2e,r)3j____1az2 Jej + eq). Since pep(1 - ay) - rpoy and gp(1 - a3) -

rTag are O(T’l) as T - 0o, the whole expression is Op(T“al 2) and can be
neglected.
. °} The exact values are as follows. Let A | = pp(2+ 2ey) +ap(2 + 2ay), i

2 2|m-nl-1 2 2{m-nj-1 .
m=n,Amn=pT(l+al) allmnl +qT(1+a2) a2lm n ,ifm#¢

n; B = sgn(n - m){pg(l - a%)a.‘;“m‘““'l +agll - ag)ag\m—n]—l}

Con = pp(2 - 2a) + ap(2 - 2a,), if m = mn, and C /= - pT(l -

2 2|m-n|- )1 . ‘
o) a%‘m n|-l qT(l - a2)2a§‘m n 1, if m # n Then a = =

) 2 4L-2m-2n+2
(W2HA,, - (bp + T + @) o "2 (gp + 2p( +

02)203L—2m—2n+2}; by = (1/2){an + (pT + xT)(l -

2 4L-2m-2n+2
{Cp, - (b + = - e n+2 _ (gp + -

%)2 C“«%L'--2m-—2n+2}_

$
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. 2{m-n 4L-2m-2n+42 -1
amnzanm.:QpTal'm l—Q(L)T-i-r,r)arl m-en+ +0(T™7),

~1
b =0(T)),

2|m

_ _ 4L-2m-2n+2 -1
®mn = Sy = 2909 +0(T).

| —2(qT + rT)a2

Using the above relations, we can express {5.6) as:

71yl L 2)m-n| 4L-2m-2n+-2
ST'"T 2mzl“"‘nzl[{sz‘]l _2(pT+rT)al }fmfn

¥ -2m-2n+2 -1
+{2qTa§lanz(qT+rT)a§L 2m-2n+ }r)mnn]+0p(T ). (5.7)

Note that (5.7) is the sum of two terms of the form (3.6), viz.:
A, B ol
ST=ST+ST+OP(I‘ )
=1lgl L 2 A LA
=T 2mzlz"nzl{zizlpi 1TB,‘ "_[‘(m»n)}fmfn

-1oL L B .B -1
T S 2 {Eon] 18] 017, (s

A . A B _ B _ A i}
Wherepl,T=pT'p2,T=pT’H‘I"pl,T:qT’pQ,Tqu+rT’B1,T(m’n)=
2|m-n| A - o AL2m2n}2 _B - 2|mn| B
20:1!”'n’,Bz,T(m,n)rZa1 m-én+ ,BI,T(m,n)=2¢12'mn',B2’T(m,n)
=9 agL—2m—2n+2.

Consistently with our strategy to find better approximations, we consider
the limit of terms in (5.8) which do not involve the P; 1's. Using the fact that o
= exp(c/T) = exp(c/2L) and 0y =-exp(¢/T) = - exp{¢/2L) and denofing m =

sLand n =1L, we have the approximate kernels corresponding to S% and S%:

KA,T(s’t) = prpexp(c|s-t|) =(pp + rp)exp(e(2-5-1)), {5.9)

Kp,1(5:) = agexp(@]5-t]) (aq + rpexp((2-5-1)) . (5.10)
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Our approximation for P{& < x] is therefore

RS Az(603W 1 (8)4W (1)

+ [ 1 g p{s )W, (s)IWy(1)20), (5.11)

where Wl(‘) and WZ(') are independent Wiener processes, constructed from
the partial sums of {{n} and {ﬂn}, respectively. The Fredholm determinant for
thekernels K o T(s,t) andKp T(s,t) are stated in the following Theorem.

THREOREM 2. Under the conditions that ¢ # 0 and ¢ # 0, the Fredholm

determinants, D?‘ z()\) and D}% z('\)’ associated with the kernels (5.9) and (5.10)
are (denotinga 4= ¢ andaps $):
sinh .

D, (M) = ezp(a; ){coshi; = (a;- ArT)—;;J },  (=AB),
2 2 2_ .2 . -
wherepy = ¢ + 2Acpp and pp = ¢~ + 22pqp The distribution P{cx < z]can be
approzimated by P[Zi > 0] where -Zi is a rendom varieble with characteristic

function D% z{?iw)w 1/2 = [D‘%z(%w)D%z(in)]— 1/2.

Remark (1): If ¢ = 0, Theorem 2 applies with the modification ph=22(1-1p-

x). Similarly if ¢ = 0, the modification is p;"; =-2X1+x+ tT).

Remark (2): If welet T - 00, we have pp, - (1 -x)/¢, qp (1 + x)/ o, 1 - 0and
J - . - i j = 2 == 2 -2 -
DT,x()‘) exp(a J)[C()Sh(p,j) 3 smh(uj) / pj], for j= A, Bwherep, =c¢ Alx

1)and ;;123 = ¢2 -2X(x + 1). This result corresponds to that stated in Theorem 6
of Nabeya and Perron (1992) (see Lemma 3 of Section 2).

Table 11.a presents results showing the maximum of the absolute distance
between the empirical distribution (based on 10,000 replications} and three
asymptotic approximations, namely: 1) our modified approximation obtained

L]
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using the result of Theorem 2 (denoted N P1), thelocal asymptotic distribution
of Nabeya and Perron (1992) described in Lemma 3 {denoted by NP2), and 3)
the standard asymptotic distribution described by Lemma 1 (denoted by PHL).
In conducting the simulations, we used uniform random numbers for the
sequence {et} and the sample sizes are T = 25, 50 and 100. We considered 18
cases with the various combinations of (c, 0‘2) obtained using ¢ = 0, -5, 2, and o
=-exp(¢/T) =-.1,-3, -5,-7,-.9,-.95. The superiority of NP1 is again evident
although in three cases with ¢ = -5 NP1 provides a less accurate approximation
than NP2 (the differences are, however, only in the third decimals). Again, the
two curves showing the cumulative distribution function from the empirical and
the NP1-approximation would be almost indistinguishable even for T = 25.

Table ILb considers in more detail the quality of the N Pl-approximation in
the tails of the distribution. The analysis is similar to that reported in Section 4
for'the nearly twice integrated case. The general results are also similar, First,
the approximations in the tails are better than the approximations in the center
of the distribution, and indeed very accurate. Secondly, for a small sample size
the approximation to the ¢.d.1. again lies, in general, above the exact c.d.f. in the
left tail and below it in the right tail. Hence, critical values taken from the
approximation would, also in this case, yield slightly conservative tests on either
side. The discrepancies are, however, very small even for T = 25,

6. APPROXIMATIONS IN THE NEARLY WHITE NOISE MODEL.

In this Section we consider an approximation to the distribution of & when
the errors have an MA(1) structure with (large) negative correlation, We have
the following local parameterization:

Yy =exp(c/T)y, | +u,, (6.1)
e+ e, ;. (6.2)

We assume € ~iid. (0, 02) and Yo = €y = 0. The process defined by (6.1)

and (6.2) is an ARMA(1,1) where the autoregressive root approaches 1 and the
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moving average root approaches - 1 a8 T converges to infinity. In the limit, the
roots cancel and the process {yt} is white noise provided the sequence {e‘} is
white noise. However, in any finite sample, {yt} is ngarly integrated, hence the
expression "nearly white noise - nearly integrated model". For simplicity of
notation, we specifly ap = expl(c/T)-

12'{‘

~1eT 2
Define Urp = 2T Et =2yt—1(yt. - yt-l) and VT = 2T =9¥t1° then the

inequality &< xis equivalent to the inequality:

[Up-(1- ap)PVpl2agVy  =a-0+ ol)/2aq
¢x-(1+ a3)/20p 25 ~ (63)

E;panding Uy and V.28t

o 4,T T k| 2T-k
Up=-2T(1 + o) sJ.:lzkz__l(aJr | 2T Hyum,

2T o ikl T
+(TC!T) Ej:—.lzk::laT ujuk (TQT) zj:l“j’
and
Vo= 2(1(1- a2 T a_p-k\_ 2Ty,
T T #j=1"k=1 or Pk
wehave
2 o 4,7 T 2 4T 2
UT-(l-—aT) VT/2aT-,(TaT) (EjzlaT “j) -(Ta) 23:1“3’
Using (6.1) and (6.2), we also deduce that:
2 -1 T—1 T-j-1.12
agUrp-(1-aq)?Vp/20) =T [{eT+(aT+ ) J.:la}f e}
2 2\pT—1 2 T '
—e2-(14 03)8T 1 €1 -207%; =2ejej_1] (6.4)
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and
opVop = [2(ap + 0p)/(1-a2)]

{12 vapaal k’*%ﬂ“"'r)“%T'H’l}ejek}

_ -1,T—1 2
-20,T i e (6.5)

. 2 . .
-Defining W= aT{zTVT - (UT -{1- aT) VT/2C!T)}, the inequality (6.3)
is equivalent to WT 2 0, with WT expressed as:

WT=W1,T+W2,T, (6.6)
where
=l T—1aT—1 . -1/2 T-—1 .
Wl,T =T Ej =12k=1 BT(J,k)ejek +2T bTeT Ej =] BT(J,T)ej, (6.7)
ey | 2 T—1 2 -1 T .
W2,T =T (14 0,1,—20,1‘2,1‘)2‘..i =1 e.i + 20TT Ej:fﬁv (6.8)
with

. ik 2T-jk .
BT(J,k)szml,r l +qpaq T G k= 1,..,7), (6.9)
and

bp= ‘T—llz(a'r + HT)/!QT(pT + qT)L
Pp=2aq+ 0p)(1+ ayfy)an/(1-a3),
4y =~(ap + 0p)X2np/ay(1-02) + o).

Note that the ﬁrst component W1  defined by (6.7) involves BT( j,k) defined

by (6.9). Following our strategy to obtain improved approximations, we
consider the following associated kernel
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NRUUVRpe——————

Ka(s,t) = prpecltl+ qTeC(z”s"“) : © (6.10)

The component (W, T/ 02) can then be be approximated by the random

variable QT' where:

apzfof L K3 (5,4) AW(s)AW ()

+ 2bgleq/og) [ L K3(5,1)aW(s) (6.11)

Under the assumption that eqp~ N(O, oi), the characteristic function of QT can
be obtained using Theorem 3 in Tanaka (1990) 7. The Fredholm determinant
D%()\) for K%(s,t) and the value of the resolvent Rj}(s,t;)) for K.:}(s,t)
evaluated at s = t = 1 are given by

D3(A) = exp(c)loosh 1= {e + A(pp + ap)) sinh ), (6.12)
and
R3(1,1;0) = exp(€)(py + a)(cosh p-cS2BH /DI, (6.13)

where u2 = c2 + 2CPT’\‘ The characteristic function of QT is then given by:
(D3 (2iw) {1-2ib%w(RT(1,1;2aw)-KT(1,1))}1‘1/ 2
= exp(-c/2)[cosh p-(c + 2iw(pp+ a7)
+@w)ag + 0p)2/Ta3) si;—‘,%*” 2,

where u2 = c2 + 4icpTw. ) .
Consider now the distribution of the second component Wo defined by
3

7 For the following derivations to hold, the common distribution of {el, oy
eT—l} need not be the same as that of e, though it is assumed that they
have the same mean and variance.
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(6.8). Using the fact that T'lztl-:i ej? - ag and assuming that €, has finite

fourth moment, we have the following approximation:
2 2 ~lees 122 2 2
(WQ,T/Ue) 2 N(1+ 0T~20TzT, T 1+ 0T—10TzT) 7+407]), (6.14)

where 7 is the variance of (ef/og) 8, To obtain a manageable expression, we
proceed under the assumption that wl,T and W2,T are asymptotically
independent. The error introduced by this approximation will be small, for large
‘samples, if apiscloseto 1 and 0.1, is close to-1. Under this approximation we are

now able to describe the approximate characteristic function of (WT / ag) which
westatein the following Theorem ¢.

THEOREM 3: Consider the case where c# 0. Let u2 = 02 +2Aep pond Ppdp be
defined by (6. 9). Under the approzimation that WI r ond W2 T are

asymptotically independent an_d under the assumption that ep~ N(0, af) and that
e, has finite fourth moment, the distribution function Pla < z] can be
approzimated by P[Zz > 0] with Zg a random variable with characieristic
Junction D %z{ Qi) 1/ 2, where:

D‘%z()\ )= ezp{ ¢~ A(1+0%-20.27)
= O AT)(1 402~ 20,2y 4 107)

B 2 2 12 esinhg}
x{coshp (c+A(pT+qT)+A (aT+0T) /TaT) Il

8 I e~N (G,ag) we have 7 = 2, while if €, has the uniform distribution over
theinterval [w/?ae,ﬂoe], v=4/5.

¥ Note that we use the fact that P{WT 20]= P((WT/az) 2 0] since ag > 0.
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Remark (1): As =0, aq #1,zp 2 X~ 1 cpp= T+ 0)%(1-x) and pop + g~
(14 0p)1- Op + 20x), hence the characteristic function for the case ¢ = 0is

obtained from Theorem 3 using these limits and y2 =2AT{(1 + OT)2(1 -x).

Remark (2): The result of Theorem 3 allows existing approximations as special
cases. Consider first treating O, fixed at 0 as T increases. The limit of P[T(a-1)
<x]as T ~+oois then equivalent to P[Zi > 0} where the characteristic function of

Zi is given by Theorem 3 replacing zp by x/T and taking the limit as T - o0,
which then reduces to:

expl(c/2) + iw(1 + )} [cosh p- {e-2iw(1 + 02} sinn(w)/l 2,

where p,2 == c2 ~4i(1+ 6)2xw. This characteristic function corresponds to that in
Phillips (1987) and in Nabeya and Tanaka (1990, Theorem 4) (see also Lemma l A
of Section 2). ’

Consider now the case where 0 = -1+ 6/yT. The limit, as T - 00, of the
characteristic function in Theorem 3 (noting theinequality (6.3))is:

exp((=c/2) + 2ixw)(cosh - sinh(4) w2,

where u2 =c +4i 52(1 -x)w, which is the result derived by Nabeya and Perron
(1992, Theorem 2) (see also Lemma 4 of Section 2).

Remark (3): The characteristic function of Theorem 3 can also be applied to the
framework considered by Pantula (1991). He analyzed the null distribution (i.e.
with ¢ = 0) of several unit root tests specifying a sequence of local values of the

form 0,1. = -1 + 6'I"d with d > 0. Among the tests he considered is the
normalized bias T(& - 1). The results above permit the analysis of the limit of

T(&-1),ina framework slightly more general than Pantula’s, i.e. under a
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At

sequence of local alternative indexed by ¢. The quantities ofinterest are aT[UT -

(1- ap)?Vop/20y) and o Vrp 5 defined by (6.4) and (6.5). 1f d = 0 (Phillips’

- (1987) approximation), then using (6.4):

ap{Up-(1-ag)?*Vo /20 )= 2+ oS o exp(c(1-5))dW(s)}2 - o1+ &)
whereasif d > 0, the first term in (6.4) vanishes, as T - 00, and

ap[Up-(1- aT)sz/2aT] =$-2crg.

Ifd = 1/2 (Nabeya and Perron’s (1992) approximation), then

apVy= 262 f HIE [(exp(c(2-6-1) -exp(c|s-t|)) /c]aW(s)dW(t) + 202

Ifd <1/2, the first term in the right side of (6.5) is dominant and

T oy = 802 [ S exp(e(2--)-exples41)) claw(s)aw(e)

On the other hand, ifd > 1 /2, the second term is dominant and aTVT = 20'§. It
is important to note that in all the cases discussed above, some terms in (6.4) or
(6.5) vanish as T - co and, hence; do not make a contribution to the asymptotic
distribution. The superiority of the approximation offered in this paper can be
understood by noting that many terms are taken into account as completely as
possible so that they contribute to a better approximation.

Table I11.a presents resulis showing the maximurm of the absolute distance
between the empirical distribution (based on 10,000 replications) and three
asymptotic approximations, namely: 1) our modified approximatim} obtained
using the result of Theorem 3 (denoted NP1), the local asymptotic distribution
of Nabeya and Perron (1992) described in Lemma 4 (denoted by NP2), and 3)
the standard asymptotic distribution described by Lemma 1 (denoted by PHL).
As before, we used uniform random numbers for the sequence {et} and the

sample sizes are T == 25, 50 and 100. We considered 18 cases with the various
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combinations of (c, ﬂT) obtained usingc=0,-5,2,and fp=-1+ §/yT =-.1,~3,
-5,-.7,-9,-.95.In computing the NPl-approximation, we specified v = 2, the
value corresponding to the normal distribution even though uniform random
numbers are used to simulate the empirical distributions 10. The results show the
NP1 approximation to be clearly the best 1. The maximum distances are,
however, higher than those reported in the previous two sections especially forc
=-5.

Table ITL.b considersin more detail the quality of the NP1-approximationin
the tails of the distribution. Here the qualitative resulls are somewhat different
{rom the previous two cases. First, comparing Table 111.a and 1ILb, it is seen
that, in general, most of the errors in approximating the exact distribution
comes from errors in approximating the left tail. Indeed, the entries in the
column "left" are, in general, larger in absolute value than those under the
column "right" and are close to the maximal distances reported in Table IlLa.
As in the previous two cases, the approximation to the ¢c.d.f. in theright tail is,
for a small sample size, below the exact distribution. Hence, critical values taken
from the approximation would yield slightly conservative right sided tests.
However, contrary to previous cases, there is no such clear pattern in the left
tail.

7.CONCLUSIONS.

This paper has considered alternative asyinptotic approximations in-a
specialized dynamic model with dependent errors. The method is based on .
substituting a suitable finite sample version for the limiting kernel in the
so-called Fredholm determinant approach often used to derive approximating
characteristic functions. Our results are very encouraging since they show the
modified procedure to yield excellent approximations to the finite sample

0 We performed sensitivity analyses by using different values of 7 to
generate the approximate distributions. The results showed the same
qualitative features. In - particular, the adequacy of the NPI-
approximation is similar to that reported here.

11 The only case where NP1 is not the best is ¢ = 0, 0‘1‘ =-1and T = 100,
but the difference is in the third decimal place.
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distribution when other existing approximations fail to be adequate.

At the heart of the method is the idea to use the fnite sample counterparts
of components in the coefficients BT( j-k) that do not depend on the indices jor
k. This allows analytical tractability in deriving the associated Fredholm
determinant, yet allows much improved accuracy as our experiments show. Two
remarks about this procedure are of immediate interest.

First, when considering the standard asymptotic approximation {denoted
PHL in the Tables), the kernels considered are limits of coefficients associated
with the products uuy in quadratic forms in the sequence of variables {u}
which are, in the general case considered, substantially correlated. In the
approximation considered by Nabeya and Perron (1992), denoted NP2, the
kernels used pertain to limits of coefficients associated with products e.e, where
{ej} is a sequence of i.i.d. random variables, The superiority of NP2 over PHL is
thereby likely to be due to the inadequacy of asymptotic approximations
provided by limiting results involving substantially correlated variables (see
also Perron (1992)). In the alternati ve asymptotic approximations considered in
this paper (denoted N P1), the kernels used again involve coefficients associated
with products e.e, with {ej} ii.d.. The approximate kernels used are, however,
not the limiting counterparts but are rather suitable functions of the sample size
that are éxpected to approximate more closely the finite sample coefficients
associated withe ).

The second remark concerns the theoretical Justification, or lack thereof, of
the proposed modification. Indeed, as stated in Section 3, we have not been able
to show that the difference IBp(ik) - Kp(i/Tk/T)| is uniformly smaller than
the difference IBT( k) - K(j/Tk/T)], or that the approximate Fredholm
determinants yield characteristic functions closer to their finite sample
counterparts than those implied using their limiting form. This issue is clearly
animportant topic for further research.
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