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RESUME

Nous cherchons 2 généraliser les mécanismes de partage de coit les plus populaires au cas od les
fonctions de coiit ne sont pas homogenes. Nous proposons I’axiome d’Ordinalité qui exige I'invariance
de la solution proposée 2 toute transformation préservant la nature du probldme de partage considéré.
Suivant d’abord I'approche de la valeur, nous utilisons P’axiome d’Ordinalité pour caractériser la regle
de Shapley-Shubik. Nous proposons une extension du mécanisme proportionnel qui, contrairement 2
la regle d’Aumann-Shapley, est ordinale. Enfin, nous définissons et caractérisons deux extensions
ordinales du mécanisme sériel.

Mots clés :  partage des coilts, valeur, proportionnel, sériel, invariance ordinale

ABSTRACT

We ask how the three best known mechanisms for solving cost sharing problems with
homogeneous cost functions - the value, the proportional, and the serial mechanisms - should be
extended to arbitrary problems. We propose the Ordinality axiom, which requires that cost shares be
invariant under all transformations preserving the nature of a cost sharing problem. Following the value
approach first, we present a characterization of the Shapley-Shubik rule based on Ordinality. Next, we
note that the Aumann-Shapley extension of the proportional mechanism is not ordinal; we propose an
alternative proportional extension satisfying Ordinality. Finally, we define and characterize two
extensions of the serial mechanism which, contrary to the Friedman-Moulin rule, are ordinal.

Key words : cost sharing, value, proportional, serial, ordinal invariance






1  INTRODUCTION

This paper reconsiders the problem of allocating the cost of a jointly used productive
facility among its users. Each agent demands a quantity of a personalized good, and
we wish to divide the total cost equitably among all agents. The entire cost function is
known but the agents’ preferences are not : the cost sharing rule must rely exclusively

on the cost function and the reported demands.

Even in the so-called homogeneous case, i.e., when all goods enter additively in
the cost function and may therefore be regarded as just a single good, at least three
radically different mechanisms deserve our attention. Under the value mechanism
advocated by Shubik (1962), the vector of cost shares is the Shapley value of the
so-called stand-alone cost game (in which each coalition is assigned the cost of meeting
the demands of its members). Under the proportional mechanism, cost shares are
simply proportional to demands. Finally, under the serial mechanism of Moulin and
Shenker (1992), demands are ranked, say, @1 £ ¢ < ... £ gn, and the successive
increments in production and cost along the sequence 0,nq;,q; + (n—1)go,....q1 +

-+ + gy are split equally among the agents who are not fully served.

We address the issue of extending the three above-mentioned mechanisms to
arbitrary cost functions. The problem is not new. The so-called Shapley-Shubik
(cost sharing) rule proposed by Shubik (1962) generalizes the value mechanism in the
obvious way. The two other mechanisms are harder to extend because they use the
sizes of the agents’ demands to compute the cost shares : while such comparisons
make sense in the homogeneous case, they are not meaningful in general. The
Aumann-Shapley rule (1974) generalizes the proportional mechanism by charging
each agent the integral of his marginal cost along the ray to the demand vector
(41,42,...,¢s) . Finally, the Friedman-Moulin rule (1995) extends the serial mechanism



by charging each agent the integral of his marginal cost along the “piecewise diagonal

curve” linking 0 to (q1,¢1,.-,91) to (g1,92, - q2) to ... to (q1,92, - qn) -

This paper argues that cost shares should not depend on the conventions
used to measure the agents’ demands. The formal expression of this principle is the
Ordinality axiom defined in the next section : it strengthens the classic axiom of
Scale Invariance by imposing that the cost shares be invariant under essentially all

increasing transformations of the measuring scales rather than just the linear ones.

By its very definition, the Shapley-Shubik rule is ordinal. We prove in Section 3
that it is in fact the only ordinal rule satisfying the classic axioms of Additivity,
Dummy, and Symmetry. The Aumann-Shapley rule, though scale-invariant, is not
ordinal. Section 5 proposes and defends an alternative extension of the proportional
mechanism, called the ordinally proportional rule, which is ordinal. Contrary to the
Aumann-Shapley rule, it also satisfies the important axiom of Demand Monotonicity
introduced in Moulin (1995) : when an agent’s demand increases while all other
demands stay put, that agent’s cost share does not decrease. Turning to the
Friedman-Moulin rule, we note that it violates not only Ordinality but even Scale
Invariance (as remarked by the authors themselves). Section 4 analyzes two ordinal
extensions of the serial mechanism : the Moulin-Shenker serial rule (due to these
authors but never formally studied) and a new method called the arial serial Tule.

Both rules are axiomatized.

2 A FRAMEWORK AND THE MAIN AXIOM

2.1 Cost Sharing

Let N = {1,..,n} be a nonempty finite set of agents, or coalition. A demand

vector (for N) is a vector ¢ in Rﬁ’ . Vector inequalities are written <, <, < .



Let Co(N) be the set of functions C - RY — R, which are nondecreasing
(p<g=C(p)<C(g) for all p,g) and satisfy C(0) = 0. A cost function (for N)
Is an element of some domain C (N) C ¢, (N). Two different domains are used in
this paper. If the first-order partial derivative of C € Co (N) with respect to its
ith argument exists at ¢ € RY, we denote it by 8,C(g).! The domain C, (N) is
made up of all continuously differentiable functions in Co(N). The domain C, (N)
consists of all twice continuously differentiable functions C in Co (N) which have
bounded derivatives : there exist real numbers a (C) and b(C) such that 0 < a (C) <
6C <b(C)forallie N. A (cost-sharing) problem is a list (N;q; C) where N is
& coalition, ¢ is a demand vector for N, and C is a cost function for N. A (cost
sharing) rule  assigns to each problem (N; ¢; C) a vector of cost shares z (¢;C) in
RY satisfying the budget balance condition ieizjv Zin (g, C) = C(q) . Section 3 assumes
C=C (i, C(N)=C (N) for all N) while Sections 4 and 5 assume C = Cp.2

A cost function C € C(N) is homogeneous if there is a mapping c: R, — R,

suchthat C(g) =c| T q,-) for all ¢ € RY. We call a problem (N; ¢; C) homogeneous
iEN

if the cost function C is homogeneous. A (cost sharing) mechanism is the restriction

of a cost sharing rule to the homogeneous problems.

2.2 Ordinality

Fix a coalition N and a domain C (N). Let f = (f1,.-., fa) be a bijection from RY
onto itself. For each cost function C in € (N), define the function C/ : RY — R, by

Cl(t)=C(f (1)) forall t e RY .

1 If ¢; =0, it is understood that &C (q) stands for the right-hand derivative.

2 The reason for choosing different domains is the following. The main result of Section 3,
namely, Theorem 1, relies on the well-known Dummy axiom which has absolutely no bite
if only increasing cost functions are admissible, as in Sections 4 and 5. On the other hand,
two of the rules in Sections 4 and 5 are based on systems of differential equations whose
solutions would be ill-defined under the domain assumption of Section 3.



We call f an ordinal transformation if C (N) is closed under it, i.e.,
CfeC(N) forall C€C(N).

Which bijection qualifies as an ordinal transformation depends on the domain of cost
functions under consideration. When C(N) = C;(N), a bijection [ is an ordinal
transformation if and only if it is increasing and continuously differentiable. When
C(N) = Co(N), [ must be twice continuously differentiable and each derivative f}

must be positive and bounded.

Consider now two problems (g; C) and (¢'; ') for N. We call these problems

ordinally equivalent if there exists an ordinal transformation f such that
C'=C’andg=f(¢),

in which case, of course, f~! := ( e fo 1) is also an ordinal transformation under
which C = (C")’ 7 and ¢ = f71(g) . (The suggestive notation /q will be used instead

of f~1(g) in the sequel.) The central axiom of this paper reads as follows :

Ordinality. Let N be an arbitrary coalition. If (g; C) and (¢'; C') are two ordinally
equivalent problems for N, then zy (¢;C) = Zn (¢;C").

In words : cost shares should be invariant under all transformations that
presérve the nature of the problem under consideration. Compared with the standard
requirement of Scale Invariance (formally defined in Samet and Tauman (1982)
or Friedman and Moulin (1995), for instance), Ordinality may seem exceedingly
demanding. We hope to convince the reader in the following three sections that
it does leave us a lot of flexibility. Let us just emphasize at this point that Ordinality

allows us to use more information than just the “stand-alone cost data”.

Definition 1. The stand-alone (cost) game generated by a problem (N;g;C) is the

cooperative game C, given by

Cy(8)=C(gs,0ms) forall SCN.
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(ffg,t €e RY and S c N, (qs, tN\s) is the vector in RY whose ith coordinate is g; if
1€ Sandtifie N\S.)

Let us call Simplicity the requirement that all problems generating the same
stand-alone game receive the same solution. Simplicity obviously implies Ordinality.
To see that the converse is false - and to appreciate how wide is the gap between the
two principles - fix N and assume that C (N) = C, (N). Observe that the relation
“being ordinally equivalent to” is indeed an equivalence relation on the set of all
problems for N. It is easily seen that each equivalence class that it generates contains

exactly one problem (g; C) for N which is normalized in the following sense :
C(t,0m;) =t; foreacht; >0 andie N,

(Throughout the paper, we write i instead of {#} whenever there is no risk of
confusion.) Since two different normalized problems for N cannot be ordinally
equivalent, Ordinality allows us to solve them differently. By contrast, Simplicity
commands that all the (uncountably many!) normalized problems generating a same

stand-alone game receive the same solution.

3 ORDINALITY AND THE VALUE APPROACH
Throughout this section, we let C = ;. We combine Ordinality with the following
three axioms.

Additivity. If N is a coalition, g a demand vector for N, and C, ¢ two cost functions
for N, then zy (¢;C + C') = zx (¢;C) + zn (0.

Dummy. Let (N;q;C) be a problem and i € N. If 0;C = 0, then z;v (¢;C) = 0.

Symmetry. Let (N;q;C) be a problem and t,j € N. If C is symmetrical in the
demands of i and j and ¢; = g;, then z;y (G:C)=z;v(¢;C).

These conditions are among the most classic requirements in the literature



and need no introduction. They constitute in the cost sharing model the natural
counterparts of Shapley’s (1953) axioms in the cooperative game model. However,
while Shapley’s axioms characterize the Shapley value, a wide variety of cost sharing
rules satisfy Additivity, Dummy, and Symmetry : see Friedman and Moulin (1995).
Among them is the so-called Shapley-Shubik rule.

Definition 2. The Shapley-Shubik rule z5° assigns to each problem (N;g; C) the

Shapley value of the stand-alone game that it generates :

(s= 1) (n—s)

252 (0) = Y Lm0 T e (5)- ¢y (sv),

SCN

where s denotes the cardinality of S.

Clearly, this rule is ordinal. As it turns out, no other ordinal rule satisfies

Additivity, Dummy and Symmetry.

Theorem 1 : The Shapley-Shubik rule is the only rule satisfying Additivity, Dummy,
Symmetry and Ordinality.

Proof : It is clear that the Shapley-Shubik rule satisfies our four axioms. Conversely,
let z be a rule satisfying these axioms. The proof that z = z5% is conveniently divided
into five steps.® Throughout Steps 1 to 4 we fix an arbitrary coalition N. If p,g € RY,
we let [p, g] denote the rectangle {t eRY |p<t< q} .

Step 1 : We derive the implications of Dummy, Symmetry, and Ordinality on a class
of particularly simple problems.

Fix a nonempty S C N and q¢ = (qs,ON\s) € RV such that gs > 0. Let
p= (ps,UN\s) € R" and € € R be such that 0 < ps K gsand 0 <e < g — ps for all

3 The proof below shows explicitly how our axioms lead to the Shapley-Shubik formula. While
this may be of some interest, it is not necessary, since we need only show that at most one
rule satisfies the axioms. Following that alternative approach would make Step 4 a bit
shorter.
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i € 5. Define the mepping C,,s : RY — R, by
CcpS (t) = Z (_1)47"“ H Cep; (ti) ) (1)
TrCcS €T

where c,p, (t;) = min {1 max {0,¢; ——p,}} It is obvious that C,,s(0) = 0 and we

claim that C,,s is nondecreasing. To prove this point, let us consider the real-valued

function Cs defined on the unit square [0,€] in RY by Cs (y) = E (=1)TH*1 11
€T

and let us show that
Cs (es,yms) = 1 and 8,Cs (y) > 0 for all i € N and all yeloe. (2)

Clearly, (2) is true if |S] = 1. Fix now sg > 1 and suppose that (2) is true for each
S C N with [S] < sp — 1. Fix S; with |So| = so. If i & Sp, then 0,Cs, =0. i € S,
observe that

0:Cso (y) = 1= Cso\i (y) forall y € [0,¢]. ©)

By the induction hypothesis, Cso\i (eso\,-,yN\(go\i)) =1 and 9;Cs,\; (y) > 0 for all
J € N and y € [0,€]. Therefore Cso\i (¥) < 1, hence 8,Cs, (y) > 0, for all y€[0,¢.

Moreover,
80 30
CSO (eSnayN\So) 22 Z (_.l)k‘H =E ( l)k+1 (so) Z ( 1 ( ) =1
k=1 T]CS]; k=1
IT|=

proving (2). Since each Cep; is nondecreasing in t;, it follows that Ceps is nondecreasing.

Unfortunately, C,ps is not quite a cost function because it is not differentiable.
But we can approximate it arbitrarily well by a continuously differentiable function.

Foreacha=1,2,..., and t € RY, define

Cos®) =3 (-1)™' ez, (¢, (4)
TCS €T
1+3
where oy (i) is worth %(gmax{o,ti—pi}) if0 < ¢ < p+ g and
1+4

1 - % (-62- max {0, — ¢; +p,~}> * otherwise. Check that each Cg2 is in C; (N)



and that their sequence converges uniformly on [0,g] to Ceps. We claim that

1

— ifi €5,
lim 2o ( Cos) = 5] ) (5)

0 otherwise.
The reason is simply that every problem of the form (q; Cgps) (where we recall that
gs > 0 and gn\s = Om\s) is ordinally equivalent to a problem in which all members of
S express the same demand, all mermbers of N\S demand zero, and the cost function
is symmetrical in the demands of the members of S. Indeed, let & :=x_1éi1xvx (g —p5)-

J

For each i € N, construct a strictly increasing differentiable mapping f; such that

fi(@) =0,
fi(t) = l4t;—piwhenp, St Spite, {6)
filg) = 1+6&

This is obviously feasible. The mapping [ = (f1,---, fn) is an ordinal transformation

that makes the problem (q; Cf‘ps) ordinally equivalent to

(((1 +8)es,0ns) i C:(e&“”\s)s) ’

where e denotes the unit vector in RYM. By Dummy and Symmetry, i's cost share in
the latter problem is 1/|S]if i € S and zero otherwise. By Ordinality, the cost shares

are the same in the former problem. Since this is true for each a, (5) follows.

Step 2 : Since z satisfies Additivity and Dummy, we may invoke the integral
representation result of Friedman and Moulin (1995, Lemma 3). For all ¢ € RY and
all i € N, there is a nonnegative measure jiq On [0, g] such that, for every C' € C (N),
zin (g C) = / 0;C dpig. (M)

10,9}

Moreover, the projection of pjg on the one-dimensional interval 0 < t; < ¢; is the

one-dimensional Lebesgue measure.

Step 3 : We derive the key restriction imposed by Symmetry and Ordinality on the

measures flig-
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Fix a demand vector ¢ > 0 andi € N. Ifi € § C N, define the set Q, (S) =
({251, 0v519) » (45, Omys)] and let Qs = Ugyescr O, (S). We claim that the latter
set has full measure in [0, g] :
Hiq (Qs) = g ([0, q)) . (8)
To prove this claim, fix a coalition S containing 4, and fix p = (ps, O s) and ¢ such
that 0 < p<«gande < g; — p; for all j € N. Consider the mapping C,,s defined in
(1). Note that 8,Cqps does not exist on the set Zi(s,p)={te0,q] |t € {pi,ps + e}}
but
tiq(Zi (e,p)) = 0 (9)
because the projection of Hig on the interval 0 < ¢; < ¢: is the Lebesgue measure.
Elsewhere in [0,q], 8,C.ps (t) exists and is easily computed. Letting Cep(t) =
(Cepy (21) -, Cepn (tn)) and recalling (3),

0:Ceps () = (1= Csvi (cep (t))) cly, (1)
Note that this expression can be positive only when ¢ belongs to
Ai(e,p,8):={te[0,q] | pi <t; <pi+¢and ti <pj+e Vje S\i}
and is worth 1/¢ on the set

B;(e,p,S) :={te0,q] | p; < t; <piteandt; <p; Vj€ S\i}.

Now, for each o, 0;C4,s exists and is continuous everywherein [0, g]. Moreover,

the sequence {6,-0‘;3 (t)} is uniformly bounded and converges to §,C,ps (t) whenever

&

t ¢ Zi(e,p). Using (5), (7), (9), and Lebesgue’s dominated convergence theorem, we

obtain
1 .
§ = dm [ acisdu,
10,91\ Zi(=,p)
= / B:Ceps dpsig
10,91\ Z:i(e.p)

1 1
= gHa(Bile,p,S)) + - / (1= Csui (cep (£))) duig (2)
Ai(ep,S\Bi(e.p,S)



and therefore,
€

lhq(B:(EaP,S))S IS} S/—‘"](A? (€7p7s)) (10)
But if p' = (p’s,ON\s) is defined by p, = p; and p; = p; +e forall j € S\i, we see
that A4; (e,p,5) = Bi (6,7, 5) - As longase < gj—p; forall j € S, it follows from the
first inequality in (10) that g (Ai (e, P, S)) < €/18]. Therefore,

£

i3] (11)

Hig (Af (61p=S)) =

forall p= (ps,ON\s) and ¢ such that 0 < ps < g¢s and 0 < & < (g; — P;) /2 for all
j € S. Letting S and p vary, it follows that

i (Qi () = pig (10, 1)

where Q;(e) = Ussi Qi(6,5), Qi(e,S) = {t€ [0,g]|t;<e if j € N\S and
tj > g —eifje S\i} . Letting ¢ go to zero yields (8).

Step 4 : We find the exact expression of the measures pig.
In order to do so, we first note the following combinatorial result : for any

n=01,...and t =0,1,...,

no(k4t)  (ntt+1)!
LR T AErD (12)

(The proof is by induction on 7. If n = ng = 0, (12) reduces to t! = (t + 1)1/ (t + 1),
which is true for all ¢. Letting no > 1 and assuming that (12) holds for n < ng — 1

and for all t, we get
mo (k+t)! nol (k+t)! | (ng+1t)!
= +
P PR ol
(ng +1)! (ng +1)!
(no— 1 +1) !

(no+t+1)!
nol (t+1)

k=0

as desired.)
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Letnowi€e SCN, 0<p= (pS,ON\s) < ¢,and 0 < ¢ < (g; — p;) /2 for all

J € N. Defining E; (¢,p) :={t € [0,q] | p; < t; < p; + ¢}, we note that
Ai(e,p,S)NQi =E; (e,p) N ( U @ (T)) .
T:TrS={3}
(Indeed, if t € A; (e,p,S) N Q; (T), we know that t; < g; for all j € S by definition
of Ai(e,p,S) and t; = g; for j € T\i and t; < g; for j € N\T by definition of
Qi (T) : therefore T NS = {i} and the claim follows.) In view of (8) and (11), this
observation implies that
2 #aBEnNQD) =g (13)
T:TNS={i}

Using (12), we may now conclude from (13) that

(t - l)iz En - 1)

Hig (Ei (6,p) N Qi (T)) = (14)

whenever i € T C N and |T| = t. The proof is again by induction. If S = N,
(13) becomes piq (E; (€,p) N Q; {i}) =€ : this establishes (14) for T = {i} . Now, let
2 < to £ n and suppose that (14) holds wheneveri € T C N and 1 SIT=t<t—-1.
Fix Tp such that i € Ty C N and |Tp| = to, and define S, = (N\Tp) U {i} . Note that
1So] = n— to + 1. By (13),

&  _ o (Ei(e,p) N Q, (T
P — Tm%:m# (Ei(e,p) NQ:(T))

2 g (Bi(e,p) NQi(T)) + g (E; (e,p) N Qi (To))

T3e€TCTy
#

and therefore,
to-1

-2 Y wg(Eie,p)NnQi(T)).
b+l H .
€TCTp
Using the induction hypothesis and the fact that there are (to—1)1/ (t—1)!(to — t)!
coalitions T of cardinality ¢ such that i € T ¢ To, the right-hand side of the above
1 (to—l"i‘(n—t)'
n—typ+1 n! (to — t)!

t=1

tia (B (2,9) N Qi (Ty) = —

equality is worth
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Defining k = to — t and applying (12), the sum in the above expression equals
(n!/ (to—~ ! (n—to+1)) = (n - to)!. We obtain that (14) holds true for ¢ = to, as

was to be proved.
Step 5 : We conclude the proof.

From (7) and (14) follows that zy (;C) = 25’ (¢; C) for all C and ¢ > 0.
If g is an arbitrary demand vector in RY, let N* = {ieN | g > 0} and define
C* on ]Rﬂf+ by C*(tn+) = C(tN+,0N\N+). For each i € N1, we know that
zin+ (qu+;C*) is #'s Shapley value in the stand-alone game with player set N¥
generated by (gv+;C*) . A familiar combinatorial argument shows that this is also i's
Shapley value in the stand-alone game with player set N generated by (¢; C). Hence
zn (¢:C) = =¥ (¢ C).- u

A few remarks are in order. First, Theorem 1 is tight : the reader should
have no difficulty finding examples of rules other than Shapley-Shubik’s satisfying

any combination of three of our four axioms.

It should also be noted that the variable population assumption is used only in
the very last step of the proof, and in & very inessential way. Theorem 1 remains true
for a fixed coalition of agents whose demands are constrained to be positive. That

proviso can be dropped if the rule is required to be continuous in the demands.

Theorem 1 is related to several known results. McLean and Sharkey (1992)
characterized the Shapley-Shubik rule by combining Additivity, Dummy, Symmetry,
and the Simplicity axiom discussed in Subsection 2.2. As already mentioned,
Simplicity is stronger than Ordinality. In Friedman and Moulin’s (1995) Theorem 2,
Scale Invariance and Demand Monotonicity replace our Ordinality axiom. In their
Theorem 4, a lower bound condition replaces the combination of Symmetry and

Ordinality in our result.
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Since Dummy and Symmetry are hardly disputable conditions of equity*,
Theorem 1 indicates that equitable ordinal rules must violate Additivity. The three

main rules discussed in the following two sections are nonadditive.
4 ORDINALITY AND THE SERIAL APPROACH

4.1 Serial Extensions and the Serial Principle

Throughout this section, we let C = C,. We search for ordinal generalizations of
the serial mechanism introduced by Moulin and Shenker (1992) for the case of
homogeneous problems. Moulin and Shenker’s mechanism works as follows. Agent 1,
with the lowest demand of output g, pays (1/n)th of the cost of ng;. Agent 2,
with the next lowest demand g,, pays agent 1’s cost share, plus 1/ (n — 1)th of the
incremental cost from ng, to ¢ + (n — 1) g2. Agent 3, with the next lowest demand g3,
pays agent 2's cost share, plus 1/(n — 2)th of the incremental cost from a+(n-1)g
to g1 + g2 + (n — 2) gs. And so on. Formally, let us call a demand vector gin RY, or
a problem (g; C), naturally ordered if ¢, < ... < ¢n. For any demand vector q in RY
and i € N, define the demand vector ¢ (¢) by ¢; () = min {gi,¢;} for &ll j € N.

Definition 3. For any coalition N, any naturally ordered vector g in RY, and any
homogeneous cost function C for N , the serial mechanism s computes the cost shares

for (N;g; C) according to the formula

Cq (7)) C
8in (;C) = = -(qz(-i-)l) ;(; = 4(-41)]()) 7 forallie N. (15)

Demand vectors that are not naturally ordered are reordered before formula (15) is

applied.

Moulin and Shenker (1992, 1994), and others, have shown that the serial

4 We have in mind the standard interpretation of the cost-sharing  model
[see, e.g., Shubik (1962)]. The Dummy axiom can be criticized if the agents are not
held responsible for their marginal cost functions.
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mechanism enjoys remarkable strategic and ethical properties. It is therefore natural

to investigate how it could be “extended” to arbitrary cost sharing problems.

Definition 4. A cost sharing rule is a serial extension if it coincides with the serial

mechanism for every homogeneous problem.

We want our extension to preserve the spririt of the serial mechanism as well
as possible. Perhaps the most essential feature of that mechanism is the protection
it offers to smaller demanders against larger demanders. As Moulin and Shenker
(1992) point out, their mechanism is in fact directly characterized by combining Equal
Treatment of Equals (which requires that agents with equal demands pay equal cost
shares) with the requirement that an agent’s cost share be independent of demands
larger than his own. The difficulty is that the latter condition, which we call the
Serial Property, does not make much sense in the context of heterogeneous goods
because the quantities of different goods are not comparable. Only cost shares remain
comparable. The natural extension of the Serial Property, therefore, requires that an
agent’s cost share be unaffected by changes in the demands of those who pay more

than him. The precise condition is as follows.
Serial Principle. Fix a coalition N and a cost function C for N. A rule « satisfies
the Serial Principle for (N,C) if for all ¢,¢ € RY end alli € N,
{q’J =g; for j=1and forall j € N\i such that 2y (¢;C) < Zan (¢ C)}
and
{g; 2 g; for all j € N\i such that z;y (¢:C) 2 zan (4:C)}
imply that z;n (¢;C) = Ziv (¢;C) . The rule satisfies the Serial Principle if it satisfies

the Serial Principle for every (N,C).

An immediate consequence of the Serial Principle, which will be useful in the

proof of Lemma 1 below, is the following classic property.

No Exploitation. Let (NV;g; C) be a problem andi€ N. Ifg; =0, thenz;v (¢;C) =
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Clearly, every rule which satisfies the Serial Principle and meets Equal
Treatment of Equals on the homogeneous problems (or the stronger property of
Symmetry defined in Section 3) is a serial extension. Not all serial extensions satisfy
the Serial Principle, however. It is easily seen, for instance, that the Friedman-Moulin
rule violates it. The principle nevertheless defines a rich class of rules that we now

describe.

For any coalition S, a path (in Ri) is a continuous map 7 : Ry — RS such
that 7 (0) = 0. It is convenient to think of the argument of 7 as being time. The path

7 is increasing if 7 (r) < 7 (') whenever 7 < 1.

Definition 5. Fix (N, C). A path function for (N,C) is a mapping IT which assigns
to each (¢, 5) in RY x N an increasing path II(t; S) in RY. (Here, A denotes the
set of nonempty subsets of N). A path function is made up of a collection of path
functions for all (N,C).

For any demand vector g in RY, the path function IT for (N, C) generates a
path 7 in RY in the following natural way. We first follow the path II(0; V) until
we meet, say, the first coordinate of ¢ at a point that we call ¢' =TI (0;N)(r'). We
define

m(r)=I(0;N)(r) for 0 < r <rl,

We then follow the path ¢' + (0,11 (¢%; N\1)) in RY until we meet, say, the second
coordinate of g at g% = ¢' + (0,11 (¢; N\1) (r2 — 1)) . We define

m(r) =g'+ (0,1 (¢ M\1) (r— 1)) for ' <7 <92,

We continue in this way until we get 7 (r") = g and set 7 (r) = g for every r > ™.
This completes the definition for the case where the coordinates of ¢ are met at
distinct times. The definition is easily extended to handle the case where several

coordinates are met simultaneously. For instance, if II{0; N) meets the demands
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of all members of M C N simultaneously at g™, we subsequently follow the path
g™ + (0w, T (g N\M)).

Definition 6. Fix (N,C). The cost sharing rule for (N, C) generated by the path
function II for (N, C) is the mapping 2% (.; C) defined on RY as follows. Let g € RY.
Assume, without loss, that the path 7 generated by II at g meets the coordinates of g
in natural order, i.e., ¢ = ¢; whenever j < i (where g' :=  (r') for each ). Compute
the cost shares by splitting the successive cost increments along the sequence ¢, ..., ¢"

equally among the agents who are not fully served. This yields the formula :

L _Cd) C(¢) .
:z:{}v(q,c)—n_i+1—;(n_j+1)(n_j)forallz€N. (16)

The cost sharing rule generated by a path function is defined in the obvious way.

Tt is easily seen that every rule generated by a path function satisfies the Serial

Principle. The converse is also true if the rule is continuous (in the demands).

Lemma 1. A continuous rule satisfies the Serial Principle if and only if it is generated

by a path function.

Proof. The “if” part is clear. To prove the “only if” part, we fix (N, C), a rule z for
(N, C) satisfying the Serial Principle for (N,C), and we construct a path function IT
for (N, C) that generates z. (It will be clear that many such path functions exist, but
that is irrelevant.) Throughout the proof, N and C are dropped from the notations
whenever this causes no confusion. The reference to (N, C) is implicit in all concepts

involved in the argument.
Step 1 : Defining II(; N).
Let P (0;N) :={gle(9) = o, @)}, We claim that
(i) for any distinct ¢, ¢’ in P (0; N), either ¢ < ¢ or ¢ > ¢’;

(i1) for each k > 0, there is some g in P (0; N) such that C (q) = k.
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These two facts mean that P (0; N) is the image of some increasing path I1(0; N) in
RY. We then complete the definition of IT(.;N) by letting II (¢; N) be any arbitrary

increasing path in RY when t # 0.

To prove (i), let ¢, ¢’ € P(0; N). Contrary to the claim, suppose that for some
nonempty strict subset M of N, we have ¢; < ¢ for all i € M and g; = g for all
J € N\M. Consider the demand vector g V q.

From ¢ to ¢ V ¢, the demands from the agents in N\ M remain fixed. Since
g € P(0; N), the Serial Principle implies that
Vi€ N\M,z;(qV ) =z;(q). (17)
Since g <qV¢,C(g)<C(qVvy¢ ) and budget balance implies that
HeEM:zi(qvye)>zi(q). (18)

Since ¢ € P(0;N), (17) and (18) imply that Ji € M : Vi € N\M,z;(qgV ) >

zi(gVg).
FHeM:Vje N\M,z;(qVq)>z;(qV{). (19)

Now, from ¢ to ¢V ¢/, the demands from the members of M remain fixed. By

the same argument as above (mutantis mutandis),
JjEN\M:Vie M,z;(qVq)>z:(qVy),

which contradicts (19). This proves (i).

The proof of (ii) relies on a fairly standardAcontinuity argument. Fix k > 0.
Since the case k = 0 is trivial, assume k > 0. Our assumptions on C guarantee that
the isocost surface {q|C (q) = k} is homeomorphic to the closed n-dimensional simplex
A. Since z satisfies the Serial Principle, it also satisfies No Exploitation. Moreover,
recall that z is continuous in g. Therefore, we need only show that if a continuous

mapping £ : A — A meets the condition

VgeAandi€N,g;=0=(g) =0, (20)
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there must exist some g € A such that £(g) = (3, l) Define FF: A — A by

n

 game{i-6@.0)
PO e T 6 0.0)

for all i € N. Observe that (20) guarantees that F; (q) > 0 even if ¢, = 0. We claim
that £(q) = (%,,%) if F(g) = ¢. Indeed, if £ (q) # (},, l) , there must exist two
agents, say 1 and 2, such that & (g) < 1 <& (q)- But then Z max{ —&(q 0} >
0 and therefore F; (¢) < ¢; + max {;1; &(q) ,0} forallie N. In partic ular, F2 (q) <
g2, the desired contradiction. Since the continuity of £ implies that of F, Brouwer'’s

theorem ensures the existence of some g such that F (g) = ¢ and we are done.
Step 2 : Completing the definition of II.

We complete the definition of II by applying the same argument as in Step 1
to coalitions of decreasing sizes. Thus, to construct II (., N\1), we proceed as follows.

For any ¢* € P(0; N), define
P (ql,N\l) = {dN\I‘Vi € N\l,x,' (ql + (Olde\l)) - Xy (ql)
- (e (@ + (@uan) e (@)}
By essentially the same argument as before, this set is the image of sorne increasing

path TI(g'; N\1) in R}, We then complete the definition of I (; N\1) by letting
II1(t; N\1) be an arbitrary increasing path if t ¢ P(0;N). Continuing in this way

completes the definition of a path function IL
Step 3 : Checking that II generates .

Let " be the rule for (I, C) generated by II and fix an arbitrary demand
vector g. We must check that = (q) = z(q). If g € P(O;N), then z"(g) =
(%ﬂ,...,gé‘ﬂl = z(q) and we are done. If ¢ ¢ P(0;N), we move up along the
curve P (0; N) and observe that there exists a unique ¢* € P(0; N) such that

qg= q] + (Oide\i)
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for some agent i € N and some vector dyy € Rf\‘. Without loss, let us assume
¢ =1 If dva € P(¢; N\1), then 2P (¢) = E(:—l) = 1 (¢) and 27 (g) = 2(7_“{) +
2 (C@Q)-Cg) = (g) for all i € N\1, and we are done. If dw € P(g'; N\1),
we repeat the above argument. ]

An important consequence of Lemma 1, which reinforces the appeal of the

Serial Principle, should be mentioned at this stage. Recall the following definition.

Demand Monotonicity. Let (N;q;C) and (N; ¢; C) be two problems and let j€ N.
Ifg<q andg; = g; for all j € N\i, then z;y (g; C)<zin (¢;0).

Then, we clearly have the following result.

Corollary 1. Every continuous rule satisfying the Serial Principle satisfies Demand

Monotonicity.
Proof. This follows directly from Lemma 1 and Definition 6.

The remaining subsections are devoted to three rules satisfying the Serial
Principle. The rule described in Subsection 4.2 is the crudest of all. It is not
ordinal but will be useful to define and/or understand the ordinal rules proposed
in Subsections 4.3 and 4.4.

4.2 The Direct Serial Rule

The simplest rule satisfying the Serial Principle just applies the serial formula to all

problems without any modification.

Definition 7. For any coalition N , any naturally ordered demand vector g in RY,
and any cost function C for N, the direct serial rule, which we also denote by s,
computes the cost shares for (N;g;C) according to formula (15). Again, demand

vectors that are not naturally ordered are reordered before applying the formula.
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This rule is generated by any path function which assigns to eve ry (N, C) and
every (t; S) in RY x N a path sending R4 onto the diagonal of RS. We hausten to repeat
that it violates Ordinality. In fact, it is not even scale-invariant. Morewver, an agent
whose marginal cost function is arbitrarily small may have to bear a smbstantial part
of the total cost : if weakly increasing cost functions were allowed, Duammy would in

fact be violated. Finally, the direct serial rule also violates the following basic axiom.

Separation. Let (N;g;C) be a problem. FC({)=Y Ci(t;) forall t € RY, then
€N
ziv (q; C) = Ci(g:) for each i € N.

In spite of all its shortcomings, the direct serial rule enjoys several interesting
properties. Besides Additivity, Symmetry (and, of course, No Exploitation and
Demand Monotonicity), we mention for future reference two properties that have not
been studied so far in the cost sharing context. The first property says that an agent
who demands nothing may safely be ignored : counting him or not does not affect the
cost shares of those with a positive demand. Formally, if C is a cost function for some
coalition N and S is a subset of N, define Cs : RS - Rby Cs(gs) = C (qs,ON\g) )

The axiom reads :

Independence of Null Agents. For every problem (N;g;C) and every i € N,
{gi =0} = {25 (@ C) = zimy (qvi Cwye) forall j€ N \i}-

This axiom really contains two distinct requirements : 1t implies No
Exploitation and, in addition, embodies a limited form of consistency. Haller (1994)
studied a variant of this property in the abstract framework of cooperative games

under the name of “null player out property”.

The second property states that a change in an agent’s dermand does not
affect the ranking of the other agents’ cost shares : whether agent i pays more than

j depends on these two agents’ demands only.

Rank Independence of Irrelevant Agents. If (N;q;C) and (N ;¢;C) are two
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problems and ¢,j are two agents in N for whom ¢; = ¢ and 9 = ¢}, then

{ziv (4,C) S 2n (;C)} & {zin (¢5C) < zZn (¢5C)} .

This powerful axiom is violated by most well-known rules, including the
Shapley-Shubik, Aumann-Shapley, and Friedman-Moulin rules. The fundamental
idea that justifies the axiom, however, is extremely simple and fairly compelling :
if an agent 7 pays more than another agent j, it must be because we judge that i’s
demand is larger than j’s. While any information about the cost function is meaningful
when comparing i and j's demands, the demands of the other agents are irrelevant

and should not be used.

4.3 The Axial Serial Rule

We are now ready to describe our first ordinal rule satisfying the Serial Principle.
The idea is simply to apply the direct serial rule after a suitable normalization of the

problem under consideration.

If N is a coalition and (¢;C) an arbitrary problem for N, there is a unique
problem (“‘q; CA) for N which is ordinally equivalent to (¢;C) and satisfies the

following azial normalization condition

Cl(t:)=tiforallt; € Ry, all i € N.

In fact, the azially normalized problem (Aq; CA) is explicitly given by

4g:=Ci(g) forallie Nand CA(t) = C (i), ..o (tn)) forall t € RY.

(Here and below, 4g; must be read (Aq),- )

Definition 8. The azial (serial) rule s computes the cost shares for any given
problem (N, g; C) by applying the direct serial rule to the axially normalized form of

that problem :
sn (6:0) = sv (*g;C*). (21)
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For instance, if 4q is naturally ordered (which does not amount to ¢ being

naturally ordered), we obtain

C4 (A4 (i) c* (*4(9) _
sin (:0) = it ) ,Z’ -J+1)(n_j)foralleN, (22)

where 4¢ (i) means (Aq) (i). These cost shares do not generally coincide with
those recommended by the direct. serial rule. They do, however, if the cost
functlon C satisfies the axial normalization condition and, more generally, whenever
C, = C; = ... = Cp. To see this, suppose without loss that g is naturally
ordered. Since C; = ... = Cn, Ag is naturally ordered as well and C'A( q(z)) =
CA (Aqy, - 1.4 g™ &) = C (@1, 91,8, %) = C (¢ (i) for every i € N, as
desired. - This implies in particular that s is a serial extension (which also follows
from the fact that it satisfies the Serial Principle and Symmetry).

Some further definitions will be useful to analyze the axial serial rule. If
is a cost sharing rule, (N;g;C) a problem, and 1, j two members of N, we write
iR, (N;g;C)j if and only if z;n (g, C) < zjn (¢;C) . We refer to R; (N; q; C) as the
(cost-share) ranking prescribed by the rule z for the problem (N;q;C). S C N,
R.(N;q;C) | S denotes the restriction of that ranking to S. We call R the ranking

function of .

Lemma 2. (i) The azial serial rule is a serial extension satisfying Ordinality,

Independence of Null Agents, and Rank Independence of Irrelevant Agents.

n(ii) The ranking function of any serial extension satisfying these three

azioms is precisely that of the azial serial rule.

Proof. (i) We already know that s is a serial extension. Since the solution to two
ordinally equivalent problems is computed by applying the direct serial rule to their
common axially normalized form, it is obvious that the axial rule is ordinal.

Independence of Null Agents and Rank Independence of Irrelevant Agents are
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easily proved by invoking the fact that the direct serial rule enjoys these properties.

(ii) Let z be a serial extension satisfying Ordinality, Independence of Null
Agents, and Rank Independence of Irrelevant Agents. Let (N;¢;C) be a problem with
n 2> 3 and let 7, § be two distinct agents in N. By Rank Independence of Irrelevant
Agents, R, (N;¢;C) | {ij} = R, (w; (q{i,«},oN\{ij}) ;C) | {ij}. On the other hand,
by repeated application of Independence of Null Agents, zy ( (q{jj})ON\{ij)) ; C') =
Thgis) ((q;, 4); C{,v,-}) for k =4, 7. From these two facts,

B (N::C) [ {ig} = Re ({33} 5 (21,9 Cpp) (23)

In words : the ranking of agents i and J’s cost shares in the problem (N; ¢; C) coincides
with that for the two-agent problem ({z HCEDE C{,-j}). Since that must be true
for all pairs of agents, the rankings of cost shares in the two-agent problems must be

consistent with each other : for any three %, j,k in N, the statements
ity ((90,9)) Cint) < 255 ((g95); Ciin)

and

00y (g5, ); Cuiny) < Tapzny ((g5rq0); Cumy)
imply that

Tifir} ((qi, @); C{t’k}) < Tifiry ((‘Ii» a); C{ik}) »

This consistency, we claim, implies that the ranking of i and k’s cost shares
in the two-agent problem ({zk} (G, q); C{,—k}) depends upon Clix} only through the
behavior of that mapping on the ith and kth axes : if Clix satisfies C; = C; and
Ci = Cy, then R, ({ik};(q,,qk);Ci,-k}) =R, ({zk} ; (qi,qk);C(,»k}). To see why, it
suffices to observe that Cliry can be extended to a cost function C' for N that satisfies

Clisy = Cpizy and Gy = Ciay.

Recalling (23), we thus reach the conclusion that R; (N;q;C) depends on C
through Cy,...,C, only. The proof is now easily concluded. If C satisfies the axial
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normalization C; (t;) = t; for all t; and 4, we obtain R.(N;¢;C) = R:(N;q;Go),
where Cp is the cost function Co(t) = 2 t; But R: (N;q;Co) = Ra (N;q:Co) =
R,(N;q;C) = R (N;q; C) (by the assumptlon that z is a serial extension, the
definition of the direct serial rule, and the fact that the axial and serial rules coincide
on axially normalized problems). Therefore, Rz (N;¢;C) = R (N3 g; C). We now
invoke Ordinality to extend this conclusion to the case when C does not satisfy the
axial normalization. This proves that the ranking function of = coincides with that
of the axial rule on every problem involving at least three agents. This conclusion is
extended to two-agent problems by recalling (23) end noting that the latter expression
is valid in pattlcular for = s#. The proof is now complete. B

The reader may have noticed that the full force of Ordinality and Independence
of Null Agents was not exploxted in the proof of (ii). The argument carries over, '

mutatzs mutandis, if the following “rank” versions replace the original axioms.

Rank Ordinality. For each coalition N and any two ordinally equivalent problems .
(;C) and (¢;C') for N, Ry (N;¢;C) = Rz (N;¢5.C).

Rank Independence of Null Agents. For every problem (N;q; C) and every
i€ N, {g=0} = {R. (N;¢;C) [N\i=R: (N\iQ‘]N\i;CN\i)}~

~ More importantly, the assumption that z is a serial extension is also
unnecessarily strong. It can be replaced with Separation. In fact, the following

e:z:tremely mild condition suffices :

Weak Rnnk Separation.® Let (NV;¢;C) be a problem and i,j € N.If C (t) Z t;
fOl’ a‘n t E RI:: then {mi (N)qv C) ..<- xj (Nt q; C)} had {‘1: S QJ}

Summing up the foregoing discussion, we obtain :

5 The term “weak” stresses the fact that the condition is imposed only on the cost function
c{t) = 2 t; rather than on all separable cost functions. The term “rank” emphasizes that

onlytherankmg not the magnitude - of the cost shares is at stake.
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Lemma 3. The ranking function of any cost sharing rule satisfying Weak
Hank Separation, Rank Ordinality, Rank Independence of Null Agents, and Rank
Independence of Irrelevant Agents is precisely that of the azial serial rule.

Notice that only “rank” axioms are used in this result : this makes sense since
the conclusion also bears on the ranking of cost shares. Lemma 3 is an important
result in itself because it does not assume that the rule under consideration meets
the Serial Principle or is a serial extension. It can also be used to help single out the

axial rule from the class of cost sharing rules that do satisfy the Serial Principle.

Theorem 2. The azial serial rule is the only rule satisfying the Serial Principle,
Symmetry, Ordinality, Rank Independence of Null Agents, and Rank Independence of

Irrelevant Agents.

Proof. In view of Lemma 2, we need only prove uniqueness. Fix a rule satisfying

the axioms of Theorem 2.
Step 1: z is a serial extension.

This follows directly from the Serial Principle and Symmetry by essentially
the same argument as in Moulin and Shenker (1992), as already mentioned in
Subsection 4.1.

Step 2 : The ranking function of z is that of the axial serial rule.
This follows at once from Step 1 and Lemma 3.

Step 3 : Fix a problem (N;¢;C) and i,j € N. If C satisfies the axial normalization
condition and ¢; = g;, then z,y (g; C)=z;n(q;C).

The argument is as follows. If C is axially normalized, the cost shares
prescribed by the axial serial rule coincide with those prescribed by the direct serial
rule. Thus sf, (¢;C) = sfy, (¢;C) if ¢; = g;- The claim follows now from Step 2.



26

Step 4 : Fix a problem (N;q;C). If C satisfies the axial normalization condition,
then zn (¢;C) = si (¢:0).-

Assume without loss that g is naturally ordered. By Step 3, zin (¢(1);C) =
C(g(1))/n for all i € N. By the Serial Principle, z1v (¢(2);C) = zin (¢(1);C) =
€ (g(1))/nand by Step 3, zav (¢(2)) = C (¢ (1)) /n+(C (a(D)) ~ C (g 1))/ (-1
for all i € N \ 1. Continuing in this way shows that zy (¢;C) = z~ (¢(n);C) =
sn(g;C). But sy (¢;C) = s4 (g; C) since C is normalized; thus, we are done.

Step 5 : z is the axial serial rule.

nyhis follows immediately from Step 4 and Ordinality. k B

4.4 The Moulin-Shenker Serial Rule

We turn now to a second ordinal serial extension, which emerged from discussions
between Moulin and Shenker but was never formally analyzed. By contrast with the
previous subsection, the variable population framework will not be of Any use in this
subsection. We therefore fix an arbitrary coalition N once and for all and drop it from

our ‘notations whenever we can.

We begm by teking a second look at the Friedman-Moulin serial rule Rﬁcall
that i g is naturally ordered, this rule computes each agent’s cost share by mtegratmg
his marginal cost along the piecewise-diagonal curve to g. Crucially, this curve does
not depend upon the cost function : this ensures Additivity at the cost of vxolatmg
Ordmahty. By letting the curve vary with the cost function in an appropriate manner,

we will generate a (nonadditive) ordinal rule.

~ Let (g; C) be a given problem. Consider the following system of differential
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equations. For alli € N and r € R,

0 otherwise.

, { 1/8,C(a%(r)) ifal(r) < g,
() =

Think of r as measuring time. Together with the initial condition af (0) = 0, this
system defines a unique nondecreasing path a? : R, — [0,¢] which reaches q for
some value of 7 and remains there afterwards. Even though our notation does not

emphasize the fact that this path depends on C, it clearly does.

Definition 9. The Moulin-Shenker (serial) rule sMS computes agent i’s cost share

in (g; C) by integrating his marginal cost along the path a9 :

sM%(¢;C) =7 G;C (a%(r))al (r) dr for all i € N. (24)
0

By its very definition, this rule satisfies the Ordinality axiom. It is important
to note that at any point on the path a9, the incremental cost generated by a small
move along the path is shared equally among the agents not yet fully served : indeed,
8,C (a7 (r))af (r)dr = 8C (a (r)) & (r)dr whenever a?(r) < ¢ and al(r) < g;.
For that reason, letting r; = inf {r|af(r) = ¢} and assuming, without loss, that

1 <12 <... < r,, we can rewrite (24) as follows :

C (a?(ry)) C (a?(r;)) :
sMS(g:0) = - - - z — for all i € N. 25
o6 0) (n—i+1) jg(n-]—bl)(n-j) (25)
This is a particular form of formula (16) : the Moulin-Shenker rule satisfies
the Serial Principle,

To better understand this rule and relate it with the direct and axial rules,
assume that g is naturally ordered and that the marginal costs of all agents are equal
along the piecewise diagonal curve to g- This would be the case if (but not only if)
C was homogeneous. Then a? (i) = q (i) for each i and the cost shares are those

prescribed by the direct serial rule.
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In fact, just like the axial rule, the Moulin-Shenker rule computes the cost
shares for any given problem by applying the direct serial rule to a suitably normalized
version of that problem. If g is naturally ordered, define the piecewise diagonal curve
through g, denoted D (g), to be the union of the line segments in RY which link 0
to g(1) to ¢(2)... to g(n) = g to g(n+1), where ¢;(n+1) is g; if g < gn and +00
if gi = gn. Call a problem (g; C) piecewise-diagonally normalized if (i) q is naturally
ordered, and (ii) agent i’s marginal cost is one along the piecewise diagonal curve
through ¢ () :

8,C(t)=1for each t € D(q(i)) end each i € N.

It can be shown that each problem (g; C) is ordinally equivalent to a uni quely defined
piecewise-diagonally normalized problem (P g, CP ) . The Moulin-Shenker rule solves
(g; C) by applying the direct serial rule to (Pq; CP) : sMS(q;C) = (Pq; C'P) .

The Moulin-Shenker rule admits a surprisingly compact characterization which

does not even use Ordinality but relies on a technical property.

Theorem 3. The Moulin-Shenker rule is the only continuous rule that satisfies the

Serial Principle and has all partial first-order derivatives.

Proof. The theorem remains in fact valid if we restrict our attention to any subset
of C. Throughout the proof, we fix a given C in C and drop it from our notations
whenever possible. We give the argument for n = 2; the general proof is heavier on

notations but does not bring substantial new insights.

Let = be a continuous rule satisfying the Serial Principle. By Lemma 1, there
is an increasing path 7 : R, — Ri that generates « in the following sense. For each
g, let ¢* be the largest vector on 7 (R,) such that ¢* < g, let r* = 7~ 1{¢g*), and

assume without loss that ¢} < g3. Then,

i (g) = "“‘"C (2q{)

and 2, (g) = C (9) - C(q7) /2.
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Suppose now that z has all partial first-order derivatives, We may then assume,
without ioss of generality, that 7 is differentiable : if it is not, there is some other

path which is differentiable and generates  as well.

Assume now, contrary to the claim, that z is not the Moulin-Shenker rule.

There must exist some r € R, such that, say,
C (m(r) 71 (r) < &C (x (r)) 7ra (r) (26)

Let g = m (r) . We claim that the partial derivative of agent 2’s cost share with respect
to agent 1's demand does not exist at g. To see this, note first that the right-hand

derivative
Za (g + €, q2) ~ 22 (q)
€

+ 1
Oz (q) "gl_i}})
exists and is zero since z, (q; + ¢, ;) = z, (q9) =C(g) /2 for all € > 0. We claim next
that the left-hand derivative

T3 (¢ +€,q2) — 25 (q)
£

9 73 (q) =lim
<
also exists but is not zero. Define the mapping p: m (Ry) = Ry by p(th) = £, &

(t1,ts) € m(Ry) . For each € < 0, we have

zy (g +e, @) — 22 (q)
[Cla+ea)-Cla+ep(@m+e)-1[Cl)-Cla +e,p(q +¢)))
[Cla+60)-C@)+3[C(Q)~Cla+eplg+e) .

I

Therefore,

022 (0) = BC (g) - iy LR 6) 2 Clg) o

The limit on the right-hand side exists and equals the directional derivative of C at
¢ in the direction (1,7, (r) /7, (1)), i.e.,

fa(r),)
tim S ten@te)-Cg) . Claten+ i) -c()

&0 € e—~0 £
<
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= D@ aa(r)m (0 C (@)

But this directional derivative is just a linear combination of the partial derivatives

at g, namely,

r)
r)

Because of (26), this expression is strictly greater than 28,C (g) . Returning to (27),

DisnerymnenC (@) = 8:C (@) + 2§ 720 50(q) - (28)

we conclude that 8; z2 (g) < 0, as desired.

We have proved that if a continuous rule satisfies the Serial Principle and has
all first-order partial derivatives, it can only be the Moulin-Shenker rule sM5. The
sMS rule is continuous and satisfies the Serial Principle. That it has all first-order
derivatives is clear from the above argument : if 7 generates sMS the inequality sign
in (26) must be replaced with an equality. At any g, (27) and (28) hold true for
£ = sMS; now, however, expression (28) is exactly equal to 26,C (q), and it follows
that 0y sM5 (q) = 0 = 87 s}'5 (g) . Of course, the first-order derivatives exist at any

demand vector not on the path. n

The reader will check that the Moulin-Shenker rule is in fact differentiable, and
even continuously so. Because the main interest of Theorem 3 lies in the uniqueness
part of the result, we found it preferable to use continuity and the existence of the

partial derivatives rather than the stronger property of differentiability.

5 ORDINALITY AND THE PROPORTIONAL APPROACH

As in the previous section, we assume that C = C,. For simplicity, we restrict
our attention to the two-agent case (with strictly positive demands). Throughout
the present section, any problem (¢;C) must be understood as a problem for

= {1,2}, with ¢ > 0. The reference to N will be dropped. Our purpose
is to generalize the proportional mechanism. Recall that this mechanism solves

every homogeneous problem (g; C) by splitting the cost in proportion to demands :
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2 (:C) =qC(q) /(g1 + g) for i = 1,2.

Definition 10. A cost sharing rule is a proportional extension if it coincides with

the proportional mechanism for every homogeneous problem.

We impose on our proportional extension the Ordinality requirement. As
explained in Section 1, this forces us to discard the Aumann-Shapley cost sharing
rule. To construct an ordinal proportional extension, it seems natural to try to
apply the proportional formula to some normalized version of the problem under
consideration. Indeed, this type of approach proved fruitful when constructing ordinal
serial extensions in the previous section. F inding a suitable normalization procedure
is not straightforward, however. To understand the difficulty, consider the axial
normalization procedure of Subsection 4.3. Applying the proportional formula after
axial normalization yields the rule

Ci(g)
w(@0) = Ci(@m) + Ca(q)
This rule makes good sense but is not a proportional extension. For instance, if

C(t)=(t1+t)%and g = (1,2), it recommends the cost shares (9/5, 36/5) while the

C(q) fori=1,2and all(q; C).

proportional mechanism yields the solution (3, 6).

Instead of normalizing the problem along the axes, we suggest to normalize it

along the ray to the demand vector.
Definition 11. A problem (g; C) is proportionally normalized if

GC(rg)=1fori=12andall r > 0. (29)

The ordinally proportional rule applies the proportional formula to the
proportionally normalized problem which is ordinally equivalent to the problem at
hand. A formal definition will be given shortly. The purpose of the current section is
twofold. First, we show (in Lemmata 4 and 5) that the ordinally proportional rule is a

well-defined proportional extension : Ordinality is compatible with the “proportional



32

approach”. Secondly, we establish a number of interesting properties of the ordinally

proportional rule.

Lemma 4. To each problem (g;C) corresponds a unique proportionally normalized
problem which is ordinally equivalent to (¢;0).

Proof. Fix a problem (g;C). We must check that there exists & unique ordinal
transformation f such that (’ g, ¢’ ) is proportionally normalized. Since §,C’ (t) =
8C(f @) fi (t:) for i = 1,2 and every t € R?, the condition that (fq; C’) is
proportionally normalized reads

8,C (f (r "q)) fi (1'f,~’1 (q,~)) =1 fori=1,2,72>0. (30)

Let us assume for a moment that we know the value of /g, say, fg=¢q*. Fori=1,2
and r > 0, define
¢i(r) = filrg))- (1)

Then, ¢; (r) = g} f; (rq;) and if we write ¢(r) := (¢ (r), 92 (r)), (30) becomes

. __—_q_z_— .
¢:i(r) = 50 (6 () fori=1,2r>0. (32)

Since f is an ordinal transformation, we also have

$(0)=0. (33)

For each choice of ¢*, (32) and (33) form a so-called initial value problem. The
unique solution to this problem is an increasing path ¢ in R? : to indicate that this
path depends on ¢, we also denote it by ¢(g*,-). Associated with this path is an
ordinal transformation f (¢*,-) given implicitly by (31). Explicitly,

filghir)=¢ (q';%) fori=1,2,7r20.
What must be shown now, is that a unique choice of ¢" is “consistent” in the sense

that the ordinal transformation f (¢";-) that it generates does satisfy f@'g =g
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To prove that point, note first that the condition / g = ¢* is equivalent to

$(1)=gq. (34)

Given the problem (g; C), we must therefore show that there is a unique ¢* for which

the system (32), (33), (34) has a solution. Three observations will be useful. First,

(i) I gi/g5 < gi*/q3°, the curve #(q"; R4y ) is strictly above ¢(¢**;Ry,) in the
following sense : for all (t1,t2) € ¢(g*;Ry4) and (tl,t;) € ¢(q**; Ry+) we have
ty > t,.

The reason is as follows. From (32), we know that ¢, (¢*;0) /$2(g%0) <
b (g**;0) /s (g**;0) : hence, the curve ¢(q*;Ry4) is strictly above the curve
#(¢"*;R,4) in a neighborhood of the origin. Suppose the former does not remain
strictly above the latter : let § be the smallest nonzero vector belonging to both curves,
4= @(e5T") = ¢ (¢""). Then, if (t1,12) € ¢ (¢ Res), (10,13) € ¢ (" R,.),

and t; < §;, we have ¢, > t; and therefore
$1(a57") /o (g%57%) 2 G(a5r™) [y ("5 7°")

From (32), however, the opposite strict inequality holds. This is the desired

contradiction.
Next, we note :
(i) There exists ¢* such that ¢ (¢";Ry4) lies entirely above the ray through g, i.e.,

t > qata/g; for all (t;,t,) € #{q";Ry). Likewise, there exists q"* such that
#(q""; R4+ ) lies entirely below the ray through g.

This observation follows directly from (32) and our assumption that marginal costs

are bounded away from zero and infinity.

Finally, we have :
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(iii) For-eachr, ¢(g*;7) varies continuously with ¢*.

This is a standard property of solutions to ordinary differential equations : see, e.g.,
Coddington and Levinson (1955), Chapter 1, Section 7.

Using observations (i) to (iii), a simple intermediate value argument shows
that there exists a number ), which must be unique, such that ¢ (¢;Ry4) D gif and
only if g}/g} = X. The curve ¢(g*;R44) is the same for all ¢* such that g3/qf = A:
denote it A. Define a : Ry — R2 by

a(g)) = ¢ (a1, A1) 1) -

From (32) and our assumptions, a is strictly increasing, continuous and onto A. It
follows that there exists a unique g} such that a(q) = g. The vector (g3; Aq}) is the
unique ¢* for which system (32)-(33)-(34) has a solution. |

We are now in a position to define the ordinally proportional rule.

Definition 12. Let us denote by (¢*;C*) the unique proportionally normalized
problem which is ordinally equivalent to (¢;C) (see Lemma 4). The ordinally
proportional rule £* computes agent i’s cost share in any given problem by applying

the proportional formula to its proportionally normalized version :

22 (g;C) = & 20 (@)=

n t—C(g),i=12.
g +

q‘
aG+a

By its very definition, this rule is ordinal. Qur next task is to check that it
yields the standard proportional formula when the cost function C is homogeneous.

Lemma 5. The ordinally proportional rule is a proportional extension.

Proof. Let (g; C) be a homogeneous problem with C(t)y=c(ti+tp) forallt € RZ.
Consider the initial value problem (32)-(33) with

._ G
REERIE)

fori=12.
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1t is easily seen that the solution to that problem is
¢ (r) = aic (1) fori=1,2andallr >0
13 - c_] (1) -4 = .

The corresponding ordinal transformation f is given by

qic._x re-i(1)
fi(r) = pos (1)‘ for i=1,2andallr>0. (35)

Obviously f7! (¢:) = gi/c™ (1) fori = 1,2, meaning that our choice of ¢* is consistent.

Therefore,

i@ G/t (1) &%
% (@0 = a +qic(Q) T (@ Hq) /et (l)C(Q) T q +q2C(q)

for i = 1,2, as was to be shown. [ ]

The above proof shows that the ratio of the individual demands in
a homogeneous problem is preserved after proportional normalization. The
proportionally normalized form of a homogeneous problem, however, need not be
homogeneous. This is clear from (35). For instance, if C(t) = (ty +t5)* and
¢ =(1,2), the unique proportionally normalized problem (g*; C*) which is ordinally
equivalent to (g; C) is given by ¢* = (1,2) and C* t) = (\/t_{-l- 2\/12/_5)2.

Our next result establishes two elementary but important properties of the
ordinally proportional rule. To put this result in perspective, recall that the

Aumann-Shapley rule is not demand-monotonic.

Lemma 6. The ordinally proportional rule satisfies Separation and Demand

Monotonicity.

Proof. (i) We prove Separation first. Suppose C (t) = C; (t1) + C; () for all t € R?
and fix a demand vector . We claim that 7; (¢;C) = C; (¢:) for i = 1, 2. To see this,
consider problem (32)-(33) with

q,-'=C.~(q,-) fori=1,2.
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Its solutien is
¢i(r) = C; 1 (rCi(g)) fori=1,2andallr 20.
The corresponding ordinal transformation is given by
T 1 .
(N)=¢i|l =——=]1=0 fori=1,2 >0.
filr)=¢ (Ci (%)) C7'(r) fori=1,2andall7 20

Since f;* (¢:) = Ci (@) = gi, our choice of ¢* is consistent. Therefore,

* (. — Ci(Qi) =C (g fori=
z} (¢;C) = (—-—————“—Cl @+ G (q2)) C(q) = Ci(g) fori=1,2,

as claimed.

(ii) To prove Demand Monotonicity, let ¢, y be two demand vectors such that
g1 > ¥ and g2 = Yo, and let C be an arbitrary cost function. It is enough to show
that

a/% 2 vi/Y; -
Suppose the opposite strict inequality holds. From observation (1) in the proof of
Lemma 4, the curve ¢ (¢",Ry+) solving (32)-(33) must lie strictly above the curve
¢ (y*; R4+) . But the former contains ¢ and the latter y. This contradicts the fact that

a1/% > Wi/Y- n

It appears from the proof of Demand Monotonicity that the proportion of the
total cost borne by an agent increases with his demand. This property, which is
stronger than Demand Monotonicity, is very much in the spirit of the proportional

approach.

We conclude with two further properties of the ordinally proportional rule. A
few definitions are in order. A cost function C - or, by extension, & problem (¢; C) -
is supermodular if H12C (t) = (BnC (t)) 2 0 for all t; it is submodular if the reverse
weak inequality holds for all t. Note that these restrictions are ordinal : if f is an

ordinal transformation, we have, for each t,

¢l = @)
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= (ac)m=ac(0)f )
= (2uC") () = 0uC (f (1) f; (1) f (1) 5
hence, C/ is supermodular (or submodular) if and only if C is.

When a problem is supermodular, it makes sense to ask that an increase in
an agent’s demand does not decrease the cost share paid by the other; the opposite

requirement is meaningful for a submodular problem. Formally,

Cross Demand Monotonicity. If 1, are distinct and ¢ < q; and g = q;, then
z;(¢;C) < z; (q'; C) whenever C is supermodular and z;(¢;C) > z; (¢'; C) whenever
C is submodular.

Interestingly, this axiom is satisfied by the Aumann-Shapley rule.’ As it turns
out, the ordinally proportional rule passes the test too :

Lemma 7. The ordinally proportional rule satisfies Cross Demand Monotonicity,

Proof. We only give a sketch. Let (g;C) be a submodular problem (the
supermodular case is similar). It can be shown that the ordinally proportional
rule z* is differentiable. We will prove that 6,7} (¢;C) < 0. Since z1(q; C) =

%iC(9) /(g +a3),
C * 4+ qt dq] _ ¢ 491 + e .
(9233; (q; C) - (Q) [(QJ %)& ‘il (dq, dgy + qlc;)QC (?) )
(g +43) g +g3
But C(g) = C*(¢*) and &C(g) = 8,C* (¢") 58 + 8,c° (¢°) &. Since (¢;C*) is
proportionally normalized, we know that 8,C* (@) =8C"(¢*) =1. Therefore,
. a c@) ¢ (q')) dgj ( c (4‘)) dq;]
71 (¢;C) = -y — ) L (1 =) Z )
%% (6 0) g +g [( G+e¢ ¢ )dg g +43) dg
But since (¢%;C*) is proportionally normalized, we also know that

'» * ]
CT_(q_.)_ =/ &C* (rg’)dr =1
Qe 0
8 This fact may come as a surprise since the Aumann-Shapley rule is not demand-monotonic.
Yet, it follows directly from the very definition of the rule. It implies that the
Aumann-Shapley rule is demand-monotonic on the submodular problems. This remains
true with more than two agents.
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and therefore,
C*(q") dgy

8911 (¢; C) = — .
180 = i g das

We claim now that the submodularity of C implies that dg; /dge < 0. Suppose
the opposite strict inequality holds. Consider the path ¢(g";R,4) solving the
complete system (32), (33), (34). Let the demand vector y satisfy y; = ¢q1 and 2 > @2,

and denote by ¢ (y*; R, ) the unique solution to the complete system associated with

y, ie.,
; vi -
@i (1) ———&C(d)(r)) fori=1,2, all7 >0,
$(0) = 0,
¢(1) = y.

If y is sufficiently close to g, dgj /dgz > 0 implies y; > ¢j. Comparing the systems
associated with ¢ and y and using the submodularity of C, we conclude that
é1(y*;7) > ¢1(g;7) for each 7 > 0. (The proof is similar to that of observation
(i) in the proof of Lemma 4.) But ¢ (y;1) =y =@ = ¢1(¢"; 1), which contradicts
this inequality. [ ]

The last property that we mention is a limited form of solidarity with respect

to changes in the cost function.

Cost Solidarity. Let C' and C? be two cost functions. Suppose there exists a
mapping v : Ry — Ry such that C? = v 0 C'. Then, z(g;C*) < z(g C?), or
2(g;C") = z(¢;C?), or 2 (¢;C") » 2(¢:C?).

Observe that the isocost surfaces of C* and C? are the same. A simple
argument shows that every rule satisfying Cost Solidarity and Separation is a
proportional extension. The stronger solidarity property obtained by asking that
cost shares be affected in a common direction by any change in the cost function is
incompatible with Separation, as the reader will easily check. This incompatibility

motivates our weaker version.
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Lemma 8. The ordinally proportional rule satisfies Cost Solidarity.

Proof. et C' and C? be two cost functions such that (2 = 70 C!, and let ¢
be a demand vector. From the initial value problems defining the proportionally
normalized forms of (¢;C") and (g;C?), it is clear that the cost share ratio is the
same under both cost functions : z} (g; C!) /23 (¢; C?) = 73 (¢; C?) /x4 (¢;C?). Cost
Solidarity follows. ]

The results of this section show that the ordinally proportional rule is
well-defined and very well-behaved. Characterizing it within the class of ordinal

proportional extensions remains an open problem.
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