
 

Université de Montreal 

 

The Visual Impairment/Cognitive Impairment Co-morbidity: 

Examining the Genotype-Structure-Function Relationship 

 

by 

Caitlin Murphy 

 

School of Optometry 

 

This thesis is presented to the Faculty of Graduate Studies  

in order to obtain the degree Doctor of Philosophy (Ph.D.) in  

Vision Science, option Low Vision and Rehabilitation 

 

 

November 13, 2017 

 

 

ã Caitlin Murphy, 2017 



 ii 

Résumé  

Un nombre de recherches rapportent une forte cooccurrence de la 

dégénérescence maculaire liée à l'âge (DMLA) et la maladie d'Alzheimer (AD), ce qui 

suggère que les déficiences visuelles et cognitives peuvent être liées. Ceci est davantage 

soutenu par des similitudes structurelles dans la rétine et le cerveau qui sont des facteurs 

de risque de maladie partagés et des preuves histopathologiques, y compris le bêta-

amyloïde. En raison de cela, l'hypothèse selon laquelle DMLA et AD peuvent également 

partager des facteurs de risque génétiques. L'objectif de cette recherche était de 

reproduire des études démontrant une incidence plus élevée d'altération cognitive chez les 

personnes atteintes de DMLA et d'explorer la relation entre le génotype, la structure, et la 

fonction dans cette comorbidité.  

Les résultats ont montré qu'un plus grand nombre de personnes atteintes de 

DMLA ont obtenu un résultat positif pour déficience cognitive par rapport aux témoins. 

Le résultat MoCA moyen pour le groupe DMLA était inférieur à celui du groupe témoin, 

mais ce n'était pas significatif. Ces résultats positifs pour déficience cognitive dans la 

DMLA et les groupes témoins diffèrent considérablement sur les domaines cognitifs avec 

lesquels ils avaient des difficultés. Bien que les contrôles aient des difficultés avec la 

mémoire seulement, ceux avec DMLA ont eu de la difficulté avec la mémoire en plus 

d'autres domaines cognitifs, ce qui indique un risque plus élevé de progression vers AD.  

Les résultats génétiques ont montré que les polymorphismes de nucléotide 

unique (SNP), CFHY402H et ARMS2A69S de DMLA les plus fréquents se produisent 

dans les fréquences attendues au sein de la population québécoise. FADS1 rs174547, qui 

a une contribution moins significative à AMD, a été constaté surreprésenter dans la 

population québécoise, ce qui indique un effet fondateur pour ce SNP. En terme de 

fonction visuelle, les transporteurs de CFHY402H se sont révélés avoir une mauvaise 

stabilité de la fixation par rapport aux non-porteurs, tandis que les porteurs d'ARMSA69S 

avaient une acuité visuelle et une sensibilité au contraste plus médiocres. L'analyse de la 

structure rétinienne a révélé que CFHY402H était liée à l'augmentation de la zone de 

Drusen, à la réflexivité moyenne et à l'atrophie géographique, tandis que l'ARMS2A69S 
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avait moins de corrélations avec les caractéristiques du Drusen. Ensemble, ces résultats 

suggèrent que le SNP de CFH joue un rôle dans la perturbation de l'architecture de la 

rétine alors que le SNP ARMS2 est impliqué dans le dysfonctionnement des 

photorécepteurs. Ceci est encore mis en évidence par les résultats des mesures 

psychophysiques, où les porteurs d'ARMS2A69S avaient une difficulté particulière avec 

les stimuli de premier ordre qui dépendent fortement de la sensibilité au contraste. Bien 

qu'aucune différence significative n'a été trouvée dans la performance cognitive basée sur 

le statut de transporteur CFH ou ARMS2, tous ceux qui ont obtenu une évaluation 

positive pour une déficience cognitive étaient des porteurs du SNP FADS1 avec des 

homozygotes ayant les scores cognitifs les plus bas.  

Ces résultats ont des répercussions sur les domaines de la génétique, de la 

biologie et de la rééducation à faible vision. En explorant la comorbidité cognitive de 

DMLA dans l'ensemble du spectre de la fonction génotype-structure, la communication à 

travers les sciences augmente pour mieux servir la population croissante confrontée à 

cette comorbidité.  

Mots clés: La dégénérescence maculaire liée à l'âge (DMLA), la maladie d'Alzheimer 

(AD), la déficience cognitive légère, le facteur de complément H (CFH), la susceptibilité 

à la maculopathie liée à l'âge 2 (ARMS2), la désaturase acide gras 1 (FADS1), le 

nucléotide unique polymorphisme (SNP), drusen, retina, fonction visuelle 
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Abstract 

Research reports a high co-occurrence of Age-related Macular Degeneration 

(AMD) and Alzheimer’s Disease (AD), suggesting that visual and cognitive impairments 

may be related. This is further supported by structural similarities in the retina and brain, 

shared disease risk factors, and histopathological evidence, including beta-amyloid. Due 

to this, it is hypothesized that AMD and AD may share genetic risk factors as well. The 

goal of this research was to replicate studies demonstrating a higher incidence of 

cognitive impairment among individuals with AMD, and to explore the relationship 

among genotype, structure, and function in this co-morbidity.  

The results showed a greater number of individuals with AMD scored positive for 

mild cognitive impairment (MCI) compared to controls. Mean Montreal Cognitive 

Assessment score for the AMD group was lower than that of the control group, however 

this was not significant. Those scoring positive for MCI in the AMD and control groups 

did differ significantly on the cognitive domains with which they had difficulty. While 

controls had difficulty with only memory, those with AMD had difficulty with memory 

in addition to other cognitive domains, indicating a higher risk of progression to AD. 

The genetic results showed that the most common AMD single nucleotide 

polymorphisms (SNPs), CFHY402H and ARMS2A69S, occur in the expected 

frequencies within the Quebec population. FADS1 rs174547, which has a less significant 

contribution to AMD, was found to be overrepresented in the Quebec population, 

indicating a possible Founder Effect for this SNP. In terms of visual function, carriers of 

CFHY402H were found to have greater ecentricity compared to non-carriers while 

carriers of ARMSA69S had poorer visual acuity and contrast sensitivity. Analysis of 

retinal structure revealed CFHY402H was related to increased drusen area, mid 

reflectivity, and geographic atrophy, meanwhile ARMS2A69S had fewer correlations 

with characteristics of drusen. Taken together, these results suggest that the CFH SNP 

plays a role in the disruption of retinal architecture while the ARMS2 SNP is involved in 

photoreceptor dysfunction. This is further evidenced by the results of psychophysical 

measures, where carriers of ARMS2A69S had particular difficulty with first order stimuli 
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which relies heavily on contrast sensitivity. Although no significant differences were 

found in cognitive performance based on CFH or ARMS2 carrier status, all those scoring 

positive for MCI were carriers of the FADS1 SNP with homozygotes having the lowest 

cognitive scores. 

These results have implications for the fields of genetics, biology, and low vision 

rehabilitation. Exploration of the AMD/cognitive impairment co-morbidity across the 

spectrum of genotype-structure-function increases communication across the sciences to 

better serve the growing proportion of the population facing this co-morbidity. 

Keywords: Age-related Macular Degeneration (AMD), Alzheimer’s Disease (AD), Mild 

Cognitive Impairment (MCI), Complement Factor H (CFH), Age-related Maculopathy 

Susceptibility Gene 2 (ARMS2), Fatty Acid Desaturase 1 (FADS1), Single nucleotide 

polymorphism (SNP), Drusen, Retina, Visual function 
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Chapter 1: Introduction and Literature Review  

Background 

As the Canadian population ages, the shift in demographics is reflected by an 

increase in age-related health problems such as Age-related Macular Degeneration 

(AMD) and Alzheimer’s Disease (AD). According to the National Eye Institute, AMD 

affects 2.5% of the population over 50, with a prevalence that increases with age and with 

up to 35% of the population above 80 being diagnosed with intermediate or advanced 

stages of the disease. It is presently the leading cause of severe visual impairment in 

industrialized nations (Klein et al., 2007). According to the World Health Organization, 

dementia affects 5-8% of people over the age of 60. AD is currently the leading cause of 

dementia, accounting for approximately 60-70% of cases (Burns & Iliffe, 2009). While 

AMD affects abilities such as reading and driving, AD reduces one’s ability to 

understand and to communicate. Thus, both conditions severely affect quality of life, 

independence and social participation. Currently, the causes of these ailments are not well 

understood and there are few, if any, effective treatments. As life expectancy increases 

and the population ages, more cases will develop. 

 Age-related Macular Degeneration (AMD) 

 AMD is a degenerative condition with few available treatment options. The 

disease is classified into “Early” and “Late” stages. Early AMD involves the development 

of soft drusen - yellowish deposits between the RPE and Bruch’s membrane that are 

composed of protein and lipid debris. Small, hard drusen that develop in the periphery are 

typical with age, while soft drusen in the area of the macula indicate the development of 

AMD (Ding, Patel, & Chan, 2009; Katta, Kaur, & Chakrabarti, 2009). Soft drusen occur 

in large numbers, tend to be larger in size and have irregular borders. Patients often 

perceive them as fuzzy cotton-like spots in their visual field. The early stage of AMD is 

also accompanied by the thickening and loss of normal architecture in Bruch’s membrane 

(Ding et al., 2009; Pappuru et al., 2011). At this stage patients typically experience some 
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loss of central vision and have trouble with contrast sensitivity and spatiotemporal 

sensitivity (Katta et al., 2009). 

 Late stage AMD consists of two phenotypes: the atrophic (dry) form and the 

exudative (wet form). Dry AMD is the most common, accounting for 85-90% of cases. 

At this stage, soft drusen become so large and numerous that they begin to coalesce 

preventing the transport of nutrients supplied by the choroidal capillaries. The lack of 

nutrition causes the death of photoreceptor cells and a thinning of the RPE layer, referred 

to as geographic atrophy (Katta et al., 2009). The slow degeneration of the RPE occurs 

over a number of years gradually blurring central vision (Campochiaro, 2011). Presently, 

there is no treatment for the dry form of AMD. Removal of drusen by laser has been 

attempted (Group, 2003; Owens, Bunce, Brannon, Wormald, & Bird, 2003; Owens, 

Guymer, Gross-Jendroska, & Bird, 1999), but the results were not conclusively 

prophylactic or restorative (Owens et al., 2003). Initially, the intake of antioxidant 

vitamin and mineral supplements as indicated by the Age-Related Eye Disease Study 

(AREDS) study was shown to decrease the risk of progression to late stage AMD, but 

research as of late has been controversial (Rojas-Fernandez & Tyber, 2016; Seddon, 

Silver, & Rosner, 2016). 

 Wet AMD comprises 10% of cases. It is considered the more severe form due to 

the rapid loss of vision associated with it. It is characterized by choroidal 

neovascularization (CNV), the growth of new and fragile vasculature. These vessels 

break through Bruch’s membrane into the sub-retinal pigment epithelium and are prone 

to leaking or haemorrhaging due to their lack of tight junctions. Blood and/or fluid in this 

region of the eye can lead to retinal detachment or destruction of photoreceptors. Fluid-

filled regions block the delivery of oxygen and nutrients to the RPE resulting in massive 

cell death and the development of dense scars in the macula (Campochiaro, 2011; Ding et 

al., 2009; Francis & Klein, 2011; Katta et al., 2009; Wells et al., 1996). The best current 

treatment for wet AMD consists of intraocular injections of anti-Vascular Endothelial 

Growth Factor (anti-VEGF) to prevent the growth of new vasculature. 
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Alzheimer’s Disease (AD) 

 AD, also a progressive, degenerative disorder, is characterized by a gradual 

decline in cognitive function. Early stages are marked by short-term memory loss that can 

evolve into language problems, disorientation, moodiness, loss of ability to care for 

oneself and behavioural issues such as aggression (Burns & Iliffe, 2009). Due to the 

nature and slow progression of the disease, it is likely that neurodegeneration begins long 

before the clinical manifestation of symptoms. This pre-clinical phase is recognized as a 

separate entity: Mild Cognitive Impairment (MCI). Individuals identified as having MCI 

are at a higher risk of progressing to AD, but this prognosis is not absolute. 

 Anatomically, AD brains show shrinkage of the cerebral cortex and hippocampus 

and enlargement of the ventricles. These changes are accompanied by histopathological 

abnormalities including neuronal loss, neurofibrillary tangles (Braak & Braak, 1996; 

Grundke-Iqbal, Iqbal, Quinlan, et al., 1986; Grundke-Iqbal, Iqbal, Tung, et al., 1986), 

granulovascular degeneration and senile plaques containing β-amyloid (βA) (Hardy & 

Selkoe, 2002). These changes typically affect the hippocampus and limbic structures 

leaving the motor and visual cortices relatively spared (Hinton, Sadun, Blanks, & Miller, 

1986, 2010). Patients can be tentatively diagnosed using a combination of 

neuropsychological tests and brain imaging techniques. Studies investigating the 

identification of cerebrospinal biomarkers for AD are underway (Sui, Liu, & Yang, 2014), 

but, currently, a definitive diagnosis is only achieved through post-mortem study of the 

brain. Due to the slow progression of the disease and known treatment being most 

effective at early stages, research efforts are focused on the search for biomarkers in order 

to detect AD and monitor progression/treatment (Cummings, 2011). 

The major sites of AMD pathology are the retinal neurons, especially 

photoreceptors, implying that AMD, much like AD, may be a neurodegenerative disorder 

associated with aging. Research has established that AMD and AD are complex 

multifactorial diseases influenced by genetics, lifestyle choices and the individual’s 

environment. Recent studies have found a higher than expected co-occurrence of these 

ailments leading to investigations that identified common histopathology and raised 
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questions about similar pathologic mechanisms and underlying genetic factors. With the 

sequencing of the human genome, the development of non-invasive imaging techniques 

and sophisticated psychophysical tools, scientists can study the aetiology of complex 

human diseases like AMD and AD from the molecular level all the way to functional 

manifestation. This dissertation aims to explore the visual impairment/cognitive 

impairment co-morbidity in terms of genotype, retinal structure and visual/cognitive 

function. 

Literature Review 

 The retina and brain have a lot in common. Philosophers and poets were saying 

that “the eye is the window to the soul” long before researchers explored the scientific 

basis of the metaphor. Anatomically, the retina is a sensory extension of the central 

nervous system (CNS). In embryology, the retina and the optic nerve extend from the 

diencephalon and are considered part of the brain (Chang et al., 2014; London, Benhar, & 

Schwartz, 2012). Axons from the Retinal Nerve Fiber Layer (RNFL) and optic nerve 

synapse directly with several brain regions. The primary units of the retina and brain, the 

retinal ganglion cells (RGCs) and CNS neurons respectively, share structural properties 

as well. Both cell types are composed of a central cell body, dendrites, which receive 

signals, and axons, which propagate the signal. Posterior to the globe, RGC axons are 

covered by a myelin sheath much like CNS neurons (London et al., 2012). RGCs behave 

like CNS neurons when suffering from insult. There is anterograde and retrograde 

degeneration of severed axons, myelin destruction, scar formation and creation of a 

neurotoxic environment involving oxidative stress, abnormal aggregation of debris, toxic 

levels of neurotransmitters and deprivation of neurotrophic factors. Much of what we 

have learned about CNS nerve regeneration has come from studying the optic nerve 

(London et al., 2012).  

 Like the CNS, the retina is an immune-privileged site having a specialized 

immune response. The anterior chamber of the eye is filled with aqueous humor, a fluid 

that carries anti-inflammatory and immunoregulatory mediators similar to the cerebral 

spinal fluid that circulates around the brain and spinal cord. Blood barriers and strict 
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gating systems aid in the protection of these immune-privileged areas. Barriers are 

composed of non-fenestrated endothelial cells connected by tight junctions and reinforced 

by astrocyte and Müller cell processes. Pericytes, cells that wrap around endothelial cells 

on the inside of capillaries, play an important role in the functionality of the barrier. 

Through paracrine signalling and direct cell contact, they regulate capillary blood flow 

and vesicle trafficking and communicate with endothelial cells to regulate clearance, flow 

and permeability. This restricts the movement of materials from the blood to the retina 

and brain compared to other tissues (London et al., 2012).  

Visual and Ocular Manifestations of Alzheimer’s Disease 

 Given the similarities between the structure and properties of the brain and retina, 

scientists began to investigate what similarities they might have in disease states. It was 

found that several neurodegenerative disorders including stroke, Multiple Sclerosis, 

Parkinson’s Disease and AD, all of which affect the brain, also have ocular 

manifestations (Chang et al., 2014; London et al., 2012). In terms of AD, this makes 

sense since visual disturbances are common complaints of patients with a probable AD 

diagnosis (Berisha, Feke, Trempe, McMeel, & Schepens, 2007; Kesler, Vakhapova, 

Korczyn, Naftaliev, & Neudorfer, 2011). These complaints include reduction in visual 

field, deficits in colour vision and contrast sensitivity as well as difficulty with fixation 

stability, motion perception, visual attention and visual memory (Ikram, Cheung, Wong, 

& Chen, 2012). Behavioural studies using transgenic AD mice have also confirmed 

visual dysfunction (Chiu et al., 2012; Parnell, Guo, Abdi, & Cordeiro, 2012). This led to 

the study of the ocular manifestations specific to AD.  

 Researchers studying changes in the vision of AD patients have found a number 

of visual deficits. It has been found that advanced AD, but not early stages of the disease, 

is associated with a loss in visual acuity (Uhlmann, Larson, Koepsell, Rees, & Duckert, 

1991). It has also been reported that AD is associated with deficits in colour vision 

(Pache et al., 2003) and contrast sensitivity (Neargarder, Stone, Cronin-Golomb, & Oross, 

2003). Furthermore, several studies indicate that there is damage to the magnocellular 

pathway in AD (Gilmore, Wenk, Naylor, & Koss, 1994; Hof & Morrison, 1990; Rizzo & 
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Nawrot, 1998) despite it being relatively clear of plaques. This is evidenced by a deficit 

in motion perception. After evaluation with a correlated motion paradigm, AD subjects 

had significantly higher motion detection thresholds compared to age-matched controls. 

In addition, motion thresholds correlated with disease severity with higher thresholds in 

more advanced cases (Gilmore et al., 1994). 

 There has been speculation that cortical dysfunction alone is not enough to 

explain the visual disturbances so often reported in AD (Coppola et al., 2015). Some 

studies went as far as to claim that the ocular manifestations might precede clinical 

disease symptoms (Koronyo-Hamaoui et al., 2011; Koronyo, Salumbides, Black, & 

Koronyo-Hamaoui, 2012; London et al., 2012). Visuospatial disorientation is associated 

with posterior cortical atrophy and impaired visual motion processing in AD. In response 

to neurological testing, one study demonstrated that ½ of AD patients, 1/3 of MCI 

patients and 1/5 of age-matched controls had impaired visual motion processing. This 

poor performance was not associated with verbal or memory deficits, leading the 

investigators to conclude that the observed visuospatial impairment may be an 

independent sign of neurodegenerative disease, possibly preceding clinical onset 

(Mapstone, Steffenella, & Duffy, 2003). This claim is supported by histopathological 

studies in animals. In a mouse model of AD, the plaque-labelling fluorochrome, curcumin, 

was used to show that retinal plaques preceded the deposition of plaques in the brain 

(Koronyo et al., 2012). One group proposed visual impairments may be due to plaques in 

the visual association cortex rather than changes to the retina or optic nerve (Rizzo & 

Nawrot, 1998). When the plaque density in the primary visual cortex was measured, it 

was found to correspond to the losses in visual field (Armstrong & Kergoat, 2015). 

Retinal Manifestations 

Several groups have found significant differences between the eyes of individuals 

with AD and those without. Hinton and colleagues were the first to report structural 

changes in the optic nerve head. Post-mortem analysis of AD eyes showed thinning of the 

optic nerve head and RGC loss resulting in optic disk cupping and pallor (Hinton et al., 

1986). A healthy optic nerve head has approximately 1.2 million nerve fibers passing 
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through it, transmitting information between the retina and brain. The cup-to-disk ratio is 

a measure of empty space in the optic nerve head. A ratio of 0.5 is normal and means that 

there is an equivalent amount of nerve fiber tissue and empty space in the optic nerve 

head. Optic disk cupping occurs when the cup-to-disk ratio is higher. This indicates 

pathology since there is more empty space than nervous tissue (Hinton et al., 1986, 2010).  

 Early post-mortem findings spurred further study by other groups, this time in 

vivo, using fundus photography, optical coherence tomography (OCT), scanning laser 

ophthalmoscopy (SLO) or combined OCT/SLO. A 2001 study using Heidelberg retinal 

tomography disagreed with post-mortem findings. They were unable to detect differences 

in optic nerve head structure between controls and individuals with early Alzheimer’s 

type dementia (Kergoat, Kergoat, Justino, Robillard, et al., 2001). However, another 

group using the SLO and fundus photography, revealed that those with AD have fewer 

ganglion cell axons and are more likely to have a larger cup to disc ratio compared to 

healthy peers (Danesh-Meyer, Birch, Ku, Carroll, & Gamble, 2006). A later study by 

Hinton’s group examining live optic nerves showed that 8/10 AD patients had optic disk 

cupping. Patients had a two- to three- fold depletion of axons compared to age-matched 

controls. The remaining axons were not only smaller in diameter, but interspersed with 

increased amounts of glia compared to what were normally thicker axons arranged in 

bundles with infrequent glia. The replacement of dead axons with glial tissue and 

accompanying reduction in capillaries causes the optic nerve head to appear whiter than 

normal upon examination of the fundus. This is referred to as optic disk pallor. Many 

older adults have ophthalmic disease but even the most common optic neuropathies occur 

in less that 5% of the elderly population. Hinton et al. speculated that it was unlikely that 

8/10 patients had bilateral optic neuropathies unrelated to AD (Hinton et al., 2010).  

 The reduced number of RGC axons led to imaging of the RNFL via OCT. RNFL 

thickness was reduced in AD and MCI patients compared to age-matched controls (Iseri, 

Altinas, Tokay, & Yuksel, 2006; Marziani et al., 2013; Paquet et al., 2007), particularly 

in the superior RNFL (Parnell et al., 2012). This was consistent with the compromised 

function measured in inferior visual field of AD patients during ophthalmic examination 

(Trick, Trick, Morris, & Wolf, 1995). Further study of the RFNL in AD patients showed 
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that thickness correlated with severity of AD as determined by the Mini Mental State 

Exam (MMSE) (Guo, Duggan, & Cordeiro, 2010). 

 Overall, macular volume was also affected, with AD patients demonstrating 

thinning in the inferior, nasal and temporal quadrants, but not the superior quadrant (Iseri 

et al., 2006). This was contrary to RNFL studies indicating other retinal layers may be 

affected. Chorioretinal thickness, measured via spectral-domain OCT, showed that 

macular ganglion cell complex thickness was significantly reduced in AD patients 

compared to controls, especially in the superior and inferior areas, however, no difference 

in outer retinal thickness was found. When the same group measured choroidal thickness 

alone, other than a region 3.0 mm temporal of fovea, thickness was severely decreased in 

the AD group. When Mini-Mental State Exam (MMSE) scores were compared with OCT 

findings, cognitive scores correlated with macular ganglion cell complex thickness, but 

not choroidal thickness (Bayhan, Aslan Bayhan, Celikbilek, Tanık, & Gürdal, 2015).  

Ascaso et al. (2014) did a similar study comparing OCT findings among AD patients, 

amnestic MCI (aMCI) patients and age-matched controls. aMCI is the most common 

early cognitive impairment that converts to AD. They too, found decreased RNFL 

thickness in AD patients compared to controls. An unexpected finding, however, was the 

aMCI group actually had the greatest macular volume of the groups followed by the 

controls and finally, the AD group. Researchers speculate these results could be due to 

inflammation and gliosis known to occur early in AD. This would explain the increase in 

macular volume during aMCI followed by the decrease post-AD diagnosis. Multiple 

regression analysis found a strong association between MMSE score and RNFL thickness, 

but no association between MMSE score and macular volume or thickness (Ascaso et al., 

2014). 

 Of course, there have also been studies disputing these findings. One of these 

measured RNFL thickness near the optic nerve head centre in mild-moderate AD subjects 

and controls. No difference in RNFL thickness or distribution of optic nerve fibers was 

found between groups (Kergoat, Kergoat, Justino, Chertkow, et al., 2001; Kergoat, 

Kergoat, Justino, Robillard, et al., 2001). These conflicting results could be due to 

differences in methodology. No significant differences were found between AD groups 
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and controls in studies that used scanning laser tomography and scanning laser 

polarimetry rather than OCT. This is particularly true for earlier studies using earlier 

versions of the equipment (Chang et al., 2014). Meta-analysis of 17 studies comparing 

AD patients and healthy age-matched controls noted a significant reduction in mean 

RNFL thickness in the AD group. Of those studies, five included a MCI group. They also 

found a significant difference between RNFL thickness in MCI versus controls. Finally, 

the meta-analysis concluded that RNFL thickness as measured by OCT is diagnostically 

useful in discriminating between healthy, MCI and Alzheimer’s states (Thomson, Yeo, 

Waddell, Cameron, & Pal, 2015). 

Non-retinal Ocular Manifestations 

 The retina is not the only component of the eye that is affected in AD. A large 

number of AD patients have been shown to have equatorial supranuclear cataracts 

(Goldstein et al., 2003). Insoluble protein aggregates are a common feature of the senile 

plaques in AD and cataracts. This type of cataract, unlike the more common age-related 

type, is obscured from view by the iris. It does not disrupt the visual axis and is usually 

not identified during routine eye exams. Equatorial supranuclear cataracts can be viewed 

by pupil dilation. More research is required but, if this type of cataract were found to 

precede neurological symptoms in AD, screening for it may be useful in the early 

detection of AD (Chang et al., 2014; Goldstein et al., 2003; Liang, 2000).  

 AD is also characterized by oculomotor deficits. Research has found that AD is 

associated with increased saccade latencies  (Fletcher & Sharpe, 1986; Scinto et al., 

1994). Furthermore, AD patients display less efficient eye movement patterns compared 

to age-matched controls. They have difficulty maintaining fixation on still and moving 

targets (Fletcher & Sharpe, 1986). Smooth pursuit is also a problem (Pelak, 2010): AD 

patients tend to move their eyes in a jerky manner due to reduced accuracy followed by 

“catch-up” saccades. Research has also found that advanced stages of AD are associated 

with reductions in vergence (Uomori et al., 1993). 

 It is well known that there is a reduction in cerebral blood flow in AD patients. 

The Rotterdam Study has shown that cerebral hypoperfusion precedes the onset of 
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clinical dementia (Ruitenberg et al., 2005). Animal studies have speculated that this is 

due to senile plaques. Their accumulation causes cerebral arteries to constrict in order to 

make room for them (Iadecola, 2004). Whether abnormal flow leads to neuronal cell 

death or is a result of it is still under debate (de la Torre, 2000). More recently, Doppler 

Imaging was used to show that the retinal vasculature mirrors the change in blood flow in 

the brain (Berisha et al., 2007; Chang et al., 2014; Parnell et al., 2012). This was evident 

when fundus photography demonstrated that AD patients had significantly narrower 

vasculature compared to controls (Berisha et al., 2007). 

The Co-occurrence of Visual and Cognitive Impairments 

 Visual and cognitive impairments are known to increase with age. Visual 

disturbances are among the earliest complaints of individuals with a probable AD 

diagnosis (Berisha et al., 2007). Studies have also shown vision impairment to be a risk 

factor for cognitive decline (Lin et al., 2004; Reyes-Ortiz et al., 2005). Recently, there 

has been a growing body of literature suggesting there may be more than just age linking 

the two conditions. Several studies in our lab have shown that 25-50% of study 

participants with AMD score positive for MCI according to the Montreal Cognitive 

Assessment (MoCA) (Boxerman, Wittich, & Overbury, 2015; Duponsel, Wittich, Dubuc, 

& Overbury, 2010) . 

 One early study (Wong et al., 2002) used retinal photography and the Wisconsin 

AMD Grading System (Klein et al., 1991) to categorize patients as having early AMD or 

late AMD. Cognitive function was assessed using three neuropsychological tests; the 

Delayed Word Recall Test, the Digit-Symbol Subtest of the Wechsler Adult Intelligence 

Scale Revised and the Word Fluency Test from the Multilingual Aphasia Examination. 

After controlling for factors such as age, gender, race, level of education and 

cardiovascular risk, results showed that participants with severe impairments according to 

the Word Fluency test were 60% more likely to have early AMD and associated lesions 

than those without cognitive impairment. Severe impairment on the other two 

neuropsychological tests was not associated with AMD grades (Wong et al., 2002). 
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 A series of studies by Whitson et al. investigated the relationship between 

macular disease and cognitive impairment in a low vision rehabilitation setting (Whitson 

et al., 2007, 2010, 2011, 2013). Early investigations showed that participants with 

coexisting visual and cognitive impairments were at higher risk of disability according to 

the Instrumental Activities of Daily Living scale, with each condition contributing 

additively to disability risk (Whitson et al., 2007). Comparison of participant results with 

age-matched normative data on the Telephone Interview for Cognitive Status (modified) 

found that 18.8% of their participants scored positive for cognitive impairment and 

another 27.7% had a score near the cut-off value (Whitson et al., 2010). Further study led 

to the development of the Memory or Reasoning Enhanced Low Vision Rehabilitation 

(MORE-LVR) intervention plan to help patients with macular disease and cognitive 

impairment. The 6-week intervention plan consisted of three components, each 

specifically tailored to the recipient. The first component consisted of frequent training 

sessions with an occupational therapist having low vision experience. Training sessions 

were focused on three functional goals (reading, cooking, shopping, etc.) decided upon 

by the therapist and client ahead of time. The second component was a simplified training 

environment, meaning sessions occurred in a quiet, minimally distracting place and 

maintained a focused educational agenda. The final component was the involvement of 

an informal companion having no cognitive or visual impairments, typically a friend or 

family member. The purpose of the companion was to provide social interaction and to 

aid in the practice of what was learned during training sessions. The MORE-LVR pilot 

study revealed improvements in vision-related function and cognitive measures in 

addition to high patient satisfaction (Whitson et al., 2013). This series of studies is limited 

by the choice of participant population. Being from a low vision rehabilitation clinic, the 

focus was not strictly on AMD as participants with other macular pathologies were 

included. Further, those with AMD receiving rehabilitation are likely in later stages of the 

disease and have already had extensive vision loss. Finally, no examination of the retina 

was performed, preventing any investigation into the relationship between cognitive 

function and retinal health beyond the initial AMD diagnosis. 
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 Several studies have investigated the relationship between AMD and cognitive 

impairment as determined by the MMSE (Baker et al., 2009; Harrabi et al., 2015; Pham, 

Kifley, Mitchell, & Wang, 2006). Pham et al. (2006) tested cognitive status across three 

different participant groups (early AMD, late AMD and non-AMD) based on evaluation 

of fundus photographs using the Wisconsin AMD Grading System (Klein et al., 1991). 

The results reveal a statistically significant relationship between cognitive impairment 

and late AMD (Pham et al., 2006). The significance remained even after excluding 

vision-related components of the MMSE. This result is supported by more recent work, 

which found those with retinal disease had lower MMSE scores compared to healthy 

controls (Harrabi et al., 2015). Pham et al., (2006) reported cognitive scoring in early 

AMD was not statistically different from that of the non-AMD group (Pham et al., 2006). 

This finding is also supported by later studies (Baker et al., 2009) that failed to find 

significant associations between cognitive impairment and early AMD. However, given 

that the MMSE is not sensitive to MCI (Dong et al., 2012; Hoops et al., 2009), it is 

possible that early AMD may be associated with cognitive deficits too mild to be detected 

by the test. Research continues to demonstrate that the MoCA is better suited to detecting 

MCI (Dag, Örnek, Örnek, & Türkel, 2014; Nasreddine et al., 2005).  

 More recent studies have investigated the relationships between AMD 

characteristics and cognitive impairment. Using fundus photography and the International 

Classification System for AMD (Bird et al., 1995), Lindekleiv et al. (2013) assigned 

participants to one of four groups based on AMD phenotype. The phenotype was defined 

based on the most severe lesion located in the macula of the worse eye: normal (drusen < 

63 µm), intermediate drusen (drusen 63-125 µm), large drusen (drusen > 125 µm), and 

late stage AMD (presence of choroidal neovascularization or geographic atrophy). They 

used three types of cognitive tests to evaluate cognitive function; a digit-symbol coding 

task, verbal memory test and a finger-tapping task. When comparing their results to 

normative data, it was shown that late-stage AMD was associated with low verbal 

memory scores and intermediate and large drusen were associated with poor performance 

in the digit-symbol coding task (Lindekleiv et al., 2013). 
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 Woo and colleagues (2012) also divided participants into groups based on a 

different set of characteristics: early stage and late stage. Late stage was subcategorized 

into neovascular (wet), geographic atrophy and polypoidal choroidal vasculopathy. The 

Alzheimer’s Disease Neuropsychological Assessment Battery, Benton Visual Retention 

Test and Digit Span Test were used to evaluate cognitive function. They found that 

cognitive function is impaired in AMD patients and that they have a 3-fold higher risk of 

developing MCI compared to age-matched controls. Patients who had geographic atrophy 

had the worst cognitive scores (Woo et al., 2012). 

 Other research groups have studied the association of AMD with different 

cognitive domains. Those with wet AMD were found to have poorer memory 

performance compared to controls while those with dry AMD had poorer executive 

function in addition to deficits in memory (Rozzini et al., 2014). Previous research has 

shown that poor episodic memory paired with a decline in executive function is seen 

most commonly in MCI patients that progress to AD (Rozzini et al., 2007). This suggests 

that individuals with dry AMD may be at a higher risk of developing AD. This 

hypothesis was supported by a study from a Turkish population that showed a higher 

prevalence of AD among those with the dry form compared to wet AMD or controls 

(Demirci et al., 2015). 

 Large-scale studies investigating the occurrence of co-morbid AMD and cognitive 

impairment have also been conducted. An Italian study sought to reliably establish 

whether or not there was a relationship between cognitive impairment and age-related 

vision disorders. They showed a closer association of AMD with AD than with other 

types of dementia such as mixed or vascular. The same was true for the association of AD 

with other types of vision impairment (Mandas et al., 2014). An earlier and more specific 

endeavour, The Rotterdam Study, a prospective population-based investigation in the 

Netherlands, found an increased prevalence of the development of cognitive impairment 

in AMD subjects over a four-year period (Klaver et al., 1999). The AREDS Report No. 

16 performed a cross-sectional analysis of data produced by nearly 3,000 people. They 

showed macular abnormalities and lower visual acuity were associated with poorer 

cognitive function (AREDS Research Group, 2006). This study was limited by using 
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strictly psychological tests and not evaluating cognitive function in detail. Late stage 

AMD was also considered one category instead of examining wet versus dry. The Blue 

Mountain Eye Study, conducted in Australia, also found a significant association between 

late AMD and cognitive impairment (Pham et al., 2006). They relied solely on the 

MMSE for cognitive testing and also did not separate the types of late-stage AMD. The 

Cardiovascular Health Study used the Digit Symbol Substitution Test and the Modified 

Mini Mental State Examination to determine cognitive status along with the modified 

Wisconsin AMD Grading Scheme to evaluate fundus photographs. They found a strong 

association between low scores on the Digit Symbol Substitution test and early AMD, but 

no association with AMD status and the modified Mini Mental State Exam score (Baker 

et al., 2009). Another population-based study, this time from Taiwan, agreed with the 

former two studies, showing that individuals with AMD were at a higher risk of 

developing AD or senile dementia, especially those with advanced dry AMD (Tsai, Chen, 

Huang, Yuan, & Leu, 2015).  

 Conversely, a large-scale study from England found that the development of 

cognitive impairment among those with AMD was no more prevalent than that of chance 

in a normal population (Keenan, Goldacre, & Goldacre, 2014). Although this study 

utilized a large sample population (N>200,000), patients receiving anti-VEGF treatment 

were recruited from hospital-based clinics. Since only the wet form of AMD receives this 

type of treatment, their sample lacked the dry form. Given that studies mentioned 

previously demonstrated a stronger link between dry AMD and cognitive impairment 

(Demirci et al., 2015; Rozzini et al., 2014; Tsai et al., 2015; Woo et al., 2012), 

recruitment from a hospital-based clinic may have introduced a sample bias. 

Shared Risk Factors 

 AMD and AD are both complex diseases whose development is influenced by a 

variety of factors. The most well-established risk factor for both is age. Epidemiological 

studies have shown the risk of developing AMD increases three fold for those between 60 

and 80 years of age compared to those under 60 (Friedman, Katz, Bressler, Rahmani, & 

Tielsch, 1999), while the risk for developing AD doubles every five years after the age of 
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65 (Qiu, Kivipelto, & Von Strauss, 2009a). During the natural aging processes several 

pathological changes occur that affect the integrity of retinal and neural tissues 

contributing to AMD and AD respectively (Katta et al., 2009; Parnell et al., 2012). Some 

of the key biological factors in development of these diseases are inflammation, oxidative 

stress and metabolic stress (Katta et al., 2009).  

 There is not much that can be done to combat aging, but some risk factors that 

exacerbate the negative effects of aging can be avoided. These include hypertension, 

obesity and smoking. The Age-Related Eye Disease Study (AREDS) reported that 

untreated hypertension was associated with advanced forms of AMD (AREDS, 2000). 

Hyman and associates went on to show that systemic hypertension with a diastolic blood 

pressure greater than 95mm Hg was linked to wet AMD. They found no association with 

dry forms (Hyman, Schachat, He, & Leske, 2000). AD studies have shown hypertension 

during midlife to be a risk factor for developing AD later on (Kivipelto et al., 2001). 

Subsequent studies have shown a protective effect of antihypertensive therapy (Haag, 

Hofman, Koudstaal, Breteler, & Stricker, 2009).  

 Some studies have shown a link between an elevated BMI (Body Mass Index) and 

AMD (Johnson, 2005; Katta et al., 2009). Johnson hypothesized the link could be due to 

the physiological changes that accompany obesity changes in lipoprotein profiles 

(AREDS, 2000; Johnson, 2005). Hypercholesterolemeia is a risk factor for both AD and 

AMD. Cholesterol affects the degradation of APP by modulating secretases. An increase 

in cholesterol favours beta-secretase degradation of APP into βA (Martins et al., 2009). 

Animal studies have shown that a diet high in fat can induce higher levels of 

inflammation and oxidative stress (Otaegui-Arrazola, Amiano, Elbusto, Urdaneta, & 

Martinez-Lage, 2013). This does not apply to all fats however, the general health benefits 

of omega-3 fatty acids have been known for decades (Cakiner-Egilmez, 2008). Omega-3 

fatty acids contribute to the health and maintenance of many body processes. They have 

been associated with lower blood pressure and triglyceride levels as well as decreased βA 

build up (Surette, 2008). AMD studies (Cakiner-Egilmez, 2008) have shown a slower 

progression in vision loss with a diet high in omega-3s while observational AD studies 

have hypothesized this type of diet plays a neuroprotective role (Otaegui-Arrazola et al., 
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2013). The definitive benefits of omega-3 fatty acids are still controversial as some 

studies argue otherwise (Arendash et al., 2007). 

 Numerous population-based studies have demonstrated the link between smoking 

and the increased risk of developing AMD (Delcourt, Diaz, Ponton-Sanchez, & Papoz, 

1998; L V Johnson et al., 2002; Katta et al., 2009; W Smith, Mitchell, & Leeder, 1996; 

Velilla, García-Medina, & García-Layana, 2013; Vingerling, Hofman, Grobbee, & de 

Jong, 1996). Smokers have also been shown to develop AMD 5 to 10 years earlier than 

their non-smoking counter parts. Smoking induces a state of hypoxia. The lack of oxygen 

reduces the amount of antioxidants in the blood, affecting cell metabolism contributing to 

AD and AMD pathology (Katta et al., 2009). Smoking also exacerbates vascular injury. 

The nicotine from cigarettes acts on endothelial nicotinic-acetylcholine receptors 

(nAChR) to activate endothelial cells and augment pathological angiogenesis (Cooke & 

Ghebremariam, 2008; Lee & Cooke, 2012; Wu et al., 2009). This increases circulating 

vascular endothelial growth factor (Pons & Marin-Castano, 2011) and promotes abnormal 

permeability and vessel growth. Animal studies have demonstrated that the 

administration of nicotine accelerates the formation of choroidal neovascularization 

(Kiuchi et al., 2008). AD studies have found nicotine to be responsible for increased 

cerebrovascular permeability (Cooke & Ghebremariam, 2008). A specific nAChR, alpha7, 

was found to be critical in nicotine signalling and angiogenesis. This receptor is 

expressed on all endothelial cell types, making it a problem in both AD and AMD (Wu et 

al., 2009). 

Histopathological Evidence 

 The high occurrence of comorbid AD and AMD, in addition to shared disease risk 

factors, suggests that these diseases may be related. This is further supported by 

histopathological studies showing age-related retinal changes were exaggerated in post-

mortem eyes of patients with AD compared to those without (Wong et al., 2002). During 

the natural aging process, several pathological changes occur that affect the integrity of 

brain and retinal tissues. These changes are further exacerbated by lifestyle and 

environmental factors.  
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β-amyloid (βA) 

 The defining characteristic of both diseases is the build-up of cellular debris: 

senile plaques in the case of AD and drusen in AMD. Investigations into the theory of 

AD and AMD being related were spear-headed by the finding that β-amyloid (βA), the 

protein best known as a constituent of the senile plaques associated with AD, was found 

to be a major component of the drusen in AMD (L V Johnson et al., 2002).  

 βA is derived from amyloid precursor protein (APP), which has been shown to be 

involved in the regulation of synapse formation (Priller et al., 2006) and neural plasticity 

(Turner, O’Connor, Tate, & Abraham, 2003). Two alternative pathways process APP: the 

non-amyloidogenic pathway and the amyloidogenic pathway. The former is characterized 

by the cleavage of APP by the enzyme alpha-secretase. This precludes the formation of 

amyloidogenic peptides and leads to the release of soluble APP fragments, which have 

neuroprotective properties. In contrast, the latter pathway uses beta- and gamma-

secretases to cleave APP into insoluble fragments, which can accumulate into plaques 

(Bu, 2009; Martins et al., 2009; Turner et al., 2003; Vaucher et al., 2001). 

 Further study into the role of βA in AMD found it was only in the drusen of AMD 

eyes, not the drusen associated with normal aging (Dentchev, Milam, Lee, Trojanowski, 

& Dunaief, 2003; Ohno-Matsui, 2011). βA immunoreactivity was found in the cytoplasm 

of RPE cells, particularly those located above drusen (L V Johnson et al., 2002). βA also 

had a greater presence in eyes with larger numbers of drusen, indicating that it may be 

associated with later forms of AMD (Anderson et al., 2004). Post-mortem examination of 

the retinas of AD patients and people suspected to have AD have found βA, but it was not 

found in healthy age-matched controls (Blanks, Torigoe, Hinton, & Blanks, 1996; Hinton 

et al., 1986). 

 Vesicles having layered substructures consisting of concentric ring-like elements 

occupy a substantial portion of drusen volume (Anderson et al., 2004). Immunoreactive 

staining of these vesicles was positive for βA, with the greatest concentration occurring in 

the outer layer (L V Johnson, 2002; Ohno-Matsui, 2011). Similar structures have been 

identified within the senile plaques formed in the brains of transgenic mice expressing 
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human APP (Terai et al., 2001). Several different types of βA assemblies have been 

identified in drusen. These include non-fibrillar oligomers, protofibrils and mature 

amyloid fibrils. Electron microscopy showed that mature fibrils are concentrated on the 

outside of vesicles forming a shell (Anderson et al., 2004; Isas et al., 2010).  

 In AD, mature fibrils are preceded by non-fibrillar βA oligomers and have distinct 

distributions from each other (Kayed, 2003). This was shown to be true for AMD as well 

when anti-oligomer antibodies were used to show accumulation of non-fibrillar βA 

oligomers in drusen. Their accumulation occurred close to the inner collagenous inner 

layer of Bruch’s membrane. This proximity suggests the oligomers are formed first and 

interact with other proteins and lipids found in drusen to become mature fibrils. The non-

fibrillar βA oligomers form distinct structures against Bruch’s membrane and do not co-

localize with the βA vesicular assemblies described earlier. These structures were deemed 

“amyloid oligomer cores”. They were found not to vary in size, remaining around 15 

microns. Larger drusen were found to contain multiple cores suggesting that these drusen 

may have formed from the coalescence of many smaller drusen (Luibl et al., 2006).  

Causes of βA Production: Metal Ions 

 The formation of βA assemblies has been found to be an early event in both AD 

and AMD, but whether it is the primary event is still to be determined (Garcia-Escudero, 

Martin-Maestro, Perry, & Avila, 2013). Parnell and colleagues hypothesized that the 

accumulation of βA is due to the dyshomeostasis of metal ions (Parnell et al., 2012). APP 

processing shifts to the amyloidogenic pathway in the presence of metal ions due to the 

high affinity metal binding site on APP. When this site is occupied, the alpha-secretase 

binding site is blocked from starting the non-amyloidogenic pathway. Parnell’s theory is 

supported by studies showing that βA plaques in AD contain high levels of zinc and 

copper. It is also worth noting that plaques are concentrated in the most zinc-rich area of 

the brain; the hippocampus (Frederickson & Danscher, 1990). Additionally, levels of 

hippocampal zinc have been shown to be higher in AD brains compared to age-matched 

controls (Barnham & Bush, 2008; Parnell et al., 2012). Iron has been shown to 

accumulate in the cortex and cerebellum of pre-clinical AD and in the RPE in AMD. This 
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accumulation triggers the production of superoxide anions and hydroxyl radicals, which 

damage brain and retinal tissue (Kaarniranta, Salminen, Haapasalo, Soininen, & Hiltunen, 

2011). 

Causes of βA Production: Oxidative Stress 

 AD and AMD share the problem of oxidative stress, another event known to 

occur early in both disease processes (Garcia-Escudero et al., 2013; Sivak, 2013). 

Oxidative stress is a pathologic mechanism common to areas of the body with high 

oxygen demands. It is caused by an imbalance in the generation of reactive oxygen 

species (ROS) and cellular ability to neutralize them or repair the damage they cause. 

ROS are unavoidable as they are produced as by-products from normal metabolic 

reactions. This causes protein misfolding and can lead to serious cellular damage 

(Kaarniranta et al., 2011; Katta et al., 2009).  

 The retina and brain are ideal for the generation of ROS due to its high oxygen 

consumption, the high amounts of polyunsaturated fats (PUFAs) and the regular 

phagocytosis of photoreceptor cell outer segments and synaptic elements. The retina has 

the additional detrimental factor of continuous exposure to light (Kaarniranta et al., 2011; 

Katta et al., 2009). The impairment in ROS clearance has been linked to mitochondrial 

defects. Mitochondria are critical for the maintenance of cellular integrity, energy 

metabolism and the regulation of ROS and apoptosis (Sivak, 2013). Dysfunction 

promotes ROS production starting a positive feedback loop, damaging mitochondrial 

DNA and oxidizing membrane lipids and proteins, which further deteriorates the 

organelle (Kaarniranta et al., 2011). Whether mitochondrial dysfunction is the cause or 

consequence of oxidative stress is still under debate.  

 The increased ROS-mitochondrial dysfunction is exacerbated by deficient 

autophagy; a process important for the quality control, cellular housekeeping and 

turnover of damaged or misfolded proteins (Garcia-Escudero et al., 2013). The efficiency 

of autophagy is also known to decrease with age. Together, declines in sufficient 

autophagy and mitochondrial function increase the level of ROS, which promote the 

accumulation of βA by facilitating the amyloidogenic degradation of APP. The presence 
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of βA propagates the cycle further by disrupting mitochondrial function and increasing 

ROS production (Kaarniranta et al., 2011; Sivak, 2013).  

Causes of βA Production: Lipofuscin 

 The brain and retina are constantly active and have a high cellular turnover. Any 

dysfunction in these areas would compromise the delicate balance that exists and 

accelerate degeneration. Balance is disrupted when lipofuscin, consisting of cross-linked 

pigmentary deposits with oxidative properties, begins to accumulate. Lipofuscin is 

released from photoreceptor cell membranes and neurons upon their metabolism, but is 

indigestible by the surrounding tissue. It remains, growing in concentration with age. 

When enough accumulates, it causes oxidative damage to the mitochondria starting the 

cycle of ROS and βA discussed earlier.  

 Giaccone and associates (2011) put forth a new hypothesis on the origins of βA; 

lipofuscin. APP and βA are components of lipofuscin. The lipofuscin released into the 

extracellular space when neurons or RPE cells die may act as a source of βA over time 

(Bancher, Grundke-Iqbal, Iqbal, Kim, & Wisniewski, 1989; Giaccone, Orsi, Cupidi, & 

Tagliavini, 2011; Telander, 2011). Although there is no solid evidence to support this 

theory yet, Giaccone argues that there is also no literature to say otherwise (Giaccone et 

al., 2011). 

Chronic Inflammation  

 In addition to βA, proteomic analyses have shown that the molecular components 

of drusen and senile plaques are similar. Among those are several complement 

components supporting the hypothesis of chronic inflammation contributing to the 

development of both diseases (Bhamra & Ashton, 2012; Hageman et al., 2001, 2005; 

Ohno-Matsui, 2011). Immunoreactivity studies have shown βA to co-localize with 

several different complement components including complement protein 3, complement 

factor H (CFH) and the membrane attack complex (MAC) in outer vesicular shells within 

drusen. This suggests a probable role for βA in the activation of the classic and 

alternative components of the complement system (Edwards et al., 2005; Hageman et al., 
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2005; Haines et al., 2005; R Klein et al., 2005). Fewer studies have been conducted with 

regard to AD and the complement system, but there is support for the involvement of the 

classic and alternative complement pathways as well (Bhamra & Ashton, 2012). 

Complement components and their activation products are upregulated in AD brains, 

particularly in affected areas. Immunohistochemical analysis demonstrated a high 

incidence of MAC on dystrophic neurons, indicating an over-activation of the 

complement has neurotoxic consequences (Song, Poljak, Smythe, & Sachdev, 2009; 

Yasojima, Schwab, Mcgeer, & Mcgeer, 1999).  

 Microglia also play a role in chronic inflammation (Bhamra & Ashton, 2012). 

Active microglia have been associated with the senile plaques in AD and drusen in AMD 

eyes (Ohno-Matsui, 2011). Like the complement system, microglia are also activated by 

βA (Bhamra & Ashton, 2012). Human (Langston et al., 1999) and animal studies (P L 

McGeer, Schwab, Parent, & Doudet, 2003) have demonstrated that, once activated, 

microglia can remain active for many years after the precipitating insult. Additionally, 

these cells are another source of ROS. Their respiratory burst system generates super 

oxide ions on their external membranes, which are then released as a form of attack (E G 

McGeer, Klegeris, & McGeer, 2005). The activation of the complement system and 

microglia are intended as beneficial, part of healing. Over-activation or chronic activation, 

however, can lead to pathology as seen in AD and AMD. 

Vascular Factors 

 AD and AMD have known vascular components, they even have their own 

vascular models (Friedman, 2004; Zlokovic, 2011), which are very similar. Both begin 

with the deposition of βA in capillaries, increasing the density of the microvasculature. 

This decreases perfusion (Berisha et al., 2007), inducing a state of hypoxia and triggering 

the release of vascular endothelial growth factor (VEGF) and the down regulation of an 

anti-angiogenic factor, pigment epithelium-derived growth factor (Ohno-Matsui, 2011; 

Yoshida et al., 2005). It is well known that VEGF contributes to the angiogenesis that 

occurs in wet AMD. In 2009, it was shown that angiogenesis is also occurring in brain 

regions affected by AD (Desai, Schneider, Li, Carvey, & Hendey, 2009). The decreased 
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perfusion also diminishes the clearance of βA. The accumulation of βA along with other 

cellular debris weakens the blood barriers protecting the retina and brain (Bhamra & 

Ashton, 2012), making them accessible to the new, leaky vessels created by angiogenesis 

(Biron, Dickstein, Gopaul, & Jefferies, 2011; Friedman, 2004; Vagnucci  Jr. & Li, 2003; 

Zlokovic, 2011). 

The Cholinergic System 

 The treatment of AD has been dominated by use of acetylcholine esterase (AChE) 

inhibitors. AChE is an enzyme that regulates the amount of acetylcholine (ACh) at the 

synapse. The cholinergic hypothesis suggests that AD is caused by a dysfunction of 

cholinergic neurons in the brain. Synaptic loss in AD has been shown to correlate with 

degree of cognitive decline (Inestrosa, Alvarez, Dinamarca, Perez-Acle, & Colombres, 

2005). By inhibiting AChE, more ACh is available at the synapse for transmission. This 

is not the only role AChE plays in AD. It has also been shown to accelerate the assembly 

of beta-amyloid into plaques by acting as a chaperone (Inestrosa et al., 2005; Rees & 

Brimijoin, 2003). Prolonged exposure to these plaques has been shown to induce memory 

impairment and degeneration of cholinergic neurons in rats (Vaucher et al., 2001). A 

relationship between the cholinergic system and AD is well established, but its role in 

AMD is far less studied. Cholinergic receptors are involved in choroidal 

neovascularization (Kiuchi et al., 2008) and are exacerbated by smoking (Pons & Marin-

Castano, 2011). The cholinergic system may also have a higher-level influence on the 

visual system. ACh is expressed in the visual cortex (V1). Experiments show that 

cholinergic reinforcement of visual stimuli induces a long-term enhancement of cortical 

responsiveness in V1 (visual learning) (Kang & Vaucher, 2009). 

Shared Genetics 

 Given the structural similarities of the brain and retina as well as the common risk 

factors and histopathology of AD and AMD, it is not unreasonable to assume these 

diseases may share common genetic factors. 
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Genetic Contributions to AD 

 Approximately 5% of AD cases are classified as early onset familial AD 

(EOFAD). This form of AD refers to families having multiple cases occurring before the 

age of 60, although onset is usually in the 40s or early 50s (T D Bird, 2008). EOFAD is 

caused by autosomal dominant gene mutations in Presenilin-1, Presenilin-2 or Amyloid 

Precursor Protein. To date, over 230 mutations in these three genes alone have been 

shown to contribute to disease development (Qiu, Kivipelto, & Von Strauss, 2009b). 

These mutations affect the processing of APP causing excessive production of βA (T D 

Bird, 2008; Qiu et al., 2009b).  

 The majority of AD cases are sporadic and occur later in life. These later onset 

cases are thought to occur from a complex interaction of gene mutations and 

environmental factors. The Apolipoprotein E (ApoE) ε4 allele is known as a 

susceptibility gene and may contribute to familial aggregation. This means it increases 

the likelihood of having AD but it is neither necessary nor sufficient for development of 

the disease. Approximately 15-20% of cases are attributable to ApoEε4. Carriers are also 

more susceptible to the negative effects of excessive alcohol consumption (Qiu et al., 

2009b). 

 When investigating gene candidates that could possibly contribute to both AD and 

AMD, the first to be mentioned is ApoE. ApoE is involved is lipid trafficking. It 

contributes to the regulation of cholesterol uptake required by cells. When cells die, they 

release lipids, which are bound by ApoE and redistributed to be used in cell membrane 

biosynthesis (Klaver et al., 1998). ApoE has been implicated in AD in numerous studies 

(Bu, 2009; Butterfield, 2002; Harris & Deary, 2011; Song, Poljak, Smythe, & Sachdev, 

2009). It is associated with increased amounts of amyloid beta-peptides in the cerebral 

cortex (Patel, Adewoyin, & Chong, 2008). Similar components have been found in these 

cerebral cortex deposits and macular drusen. This has led to the speculation that ApoE is 

required to support the high rate of photoreceptor cell turnover in the macula and that 

impairment of its function leads to accumulation of drusen (Ding et al., 2009; Ishida et al., 

2004; Klaver et al., 1998; Patel et al., 2008). This was confirmed when ApoE was 
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determined to be a major component of drusen (Ishida et al., 2004). 

 ApoE has three isoforms. The ancestral form is ApoE3. Mutations developed in 

ApoE3 to create the isoforms ApoE2 and ApoE4. ApoE isoforms have been shown to be 

associated with the development of AMD and AD through impaired processing of APP 

and neuronal cell membrane renewal in the brain and retina. Lipids from the degeneration 

of photoreceptors are not redistributed causing them to build up between the RPE and 

Bruch’s membrane (Ding et al., 2009). A study by Patel et al. (2008) showed that AMD 

patients who were carriers of the ApoE2 variant developed the disease earlier in life 

compared to AMD patients that did not have this particular variant. The same study 

showed that the ApoE4 isoform might have protective properties due to a decreased 

prevalence of this isoform in patients with wet AMD (Patel et al., 2008). The opposite 

was found for AD. The ApoE4 confers a higher risk of developing AD while carriers of 

ApoE2 have a reduced risk. Despite numerous studies (Bu, 2009; Butterfield, 2002; 

Butterfield, Castegna, Lauderback, & Drake, 2002; Butterfield, Griffin, Munch, & 

Pasinetti, 2002; Logue et al., 2014; Sadigh-Eteghad et al., 2015), the explanation for the 

opposite allelic effects remains unclear. 

 

Genetic Contributions to AMD 

 The genetic factors influencing the development of AMD have only just begun to 

be explored. Genetic predisposition to AMD was initially discovered through case-

control association studies in the 1980s (Hyman, Lilienfeld, Ferris, & Fine, 1983). This 

was further supported by familial aggregation analysis (Klaver et al., 1998), segregation 

analysis (Yates & Moore, 2000), twin studies (Hammond et al., 2002) and classical 

linkage studies (Klaver et al., 1998). Higher concordance was found among monozygotic 

twins compared to dizygotic twins (Hammond et al., 2002). The risk of developing AMD 

was also shown to have an increased prevalence among first-degree relatives compared to 

other family members (Klaver et al., 1998). 

 With recent advances in gene sequencing technology and the Human Genome 

Project, there has been an increase in the study of single nucleotide polymorphisms 
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(SNPs). These are variations in DNA sequence that occur when a single nucleotide is 

altered. To be considered a SNP, the same variation must occur in 1% of the population. 

Many SNPs have no effect on protein function, but some can indicate an increased or 

decreased risk of developing disease. SNPs associated with a variety of pathological 

processes including inflammation, oxidative stress and angiogenesis have been linked to 

AMD (Ding et al., 2009). 

Complement Factor H (CFH) 

 The first specific gene variant shown to be associated with AMD was the Y402H 

SNP in the CFH gene (Edwards et al., 2005; Hageman et al., 2005; Haines et al., 2005; R. 

Klein et al., 2005). It accounts for 43% of cases (Haines et al., 2005; Patel et al., 2008). 

The chromosomal location of CFH is 1q32. It is independently transcribed and translated 

in both the brain and the retina as it is too large to pass through the blood-brain or blood-

retina barriers from systemic circulation (Lukiw & Alexandrov, 2012; Lukiw, Surjyadipta, 

Dua, & Alexandrov, 2012). Y402H refers to the amino acid substitution in the CFH 

protein caused by a single nucleotide change in CFH’s DNA sequence, a SNP. What was 

normally a tyrosine (Y) amino acid was changed to a histidine (H) amino acid at position 

402 in the protein. Transcripts of CFH are expressed in the RPE and choroid of the eye. 

Individuals with AMD have increased expression of the CFH variant in these areas 

compared to controls (Katta et al., 2009). 

 The CFH protein is involved in the alternative pathway of the complement system, 

the branch of the immune system responsible for chemotaxis, phagocytosis and the 

inflammatory response. The alternative pathway defends the body from foreign invaders 

such as bacteria and viruses and cleans up cell and tissue debris. This pathway must be 

carefully regulated to make sure only unwanted material is targeted and not the body’s 

healthy cells. This is where CFH comes into play. It is a negative regulator of the 

alternative pathway, meaning it deactivates the pathway when it is not needed, protecting 

healthy cells from being attacked by the complement system (Ding et al., 2009; Katta et 

al., 2009).  
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 The Y402H mutation is located in CFH’s binding site for C-reactive protein 

(CRP). The SNP impairs the ability of CFH to inhibit the complement system. CRP is 

released into circulation in response to inflammation in the body. When CFH does not 

bind CRP rendering it inactive, serum levels increase in a positive feedback loop 

propagating the inflammatory response and causing tissue damage (Ding et al., 2009). 

This contributes to the generation of cellular debris and the formation of drusen (Francis 

& Klein, 2011).  

Age-related Maculopathy Susceptibility 2 (ARMS2) 

 After CFHY402H, ARMS2A69S is the SNP most commonly associated with 

AMD. This gene is located at 10q26. Unlike CFH, ARMS2 was not a previously studied 

gene. It was identified from genome-wide association studies aiming to identify gene 

variants contributing to AMD (Fritsche et al., 2008; Jakobsdottir et al., 2005). A69S 

refers to an alanine to serine substitution in the amino acid sequence of the ARMS2 

protein. To date, the specific function of the protein is still unknown (Kanda et al., 2007), 

but GWAS have determined the A69S SNP to be associated with advanced forms of 

AMD (Ding et al., 2009; Jakobsdottir et al., 2005).  

 A protein expression study by Kanda et al. (2007) showed that ARMS2 was 

localized to retinal photoreceptors. Fritsche et al. (2008) went on to show that the 

ARMS2 transcript co-localizes with a mitochondrial marker, implicating that ARMS2 is 

expressed in the mitochondria of the photoreceptor layer. Mitochondria are a major 

source of the superoxide anion, which generates hydrogen peroxide and hydroxy radicals. 

These components interact with DNA, protein and lipids, ultimately inducing cell death. 

Mitochondria have been shown to play an important role in aging and the pathogenesis of 

AMD. Several studies show evidence of mitochondrial alterations in AMD (Ding et al., 

2009; Feher et al., 2006; Nordgaard, Karunadharma, Feng, Olsen, & Ferrington, 2008). 

The exact role of ARMS2 with respect to the mitochondria is unknown, but researchers 

hypothesize that the SNP increases oxidative stress in the retina (Ding et al., 2009; Feher 

et al., 2006; Fritsche et al., 2008; Jakobsdottir et al., 2005; Kanda et al., 2007; Nordgaard 

et al., 2008).  
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Are CFHY402H and ARMS2 related to AD? 

 In contrast to research on the AD risk gene, ApoE, with respect to its involvement 

in AMD, studies associating CFH and ARMS2 SNPs with AD are primitive and 

inconclusive. This is probably due to these SNPs being first identified in relation to AMD, 

facilitating further study. AD research to date has focused on the involvement of the 

classical complement pathway over the alternative pathway (Strohmeyer, Shen, & Rogers, 

2000) due to the discovery that βA binds and activates the initiator of the classic pathway 

(Rogers et al., 1992). Some have noted elevated concentrations of alternative complement 

components in AD brains without the matching elevation in the pathway inhibitor, CFH 

(Emmerling, Watson, Raby, & Spiegel, 2000; Strohmeyer et al., 2000). βA is also an 

activator of the alternative pathway, as are many of the inflammatory processes that occur 

later in AD disease progression (Bradt, Kolb, & Cooper, 1998). Mutated forms of CFH 

were shown to occur more often in individuals with AD compared to healthy controls 

(Lovestone et al., 2009; Lukiw, Alexandrov, Zhao, Hill, & Bhattacharjee, 2012; 

Zetterberg et al., 2008). Plasma concentrations of CFH in individuals with probable AD 

are significantly higher than in healthy controls (Hye et al., 2006; Scholl et al., 2008; 

Song et al., 2009). The CFHY402H gene product was found among the proteins 

deposited along the surface of amyloid vesicles in the brain (Hageman et al., 2005; Ohno-

Matsui, 2011). Additionally, CFHY402H has been linked to increased amounts of βA 

(Lukiw & Alexandrov, 2012; Lukiw, Alexandrov, et al., 2012; Lukiw, Surjyadipta, et al., 

2012). One research group has been developing microRNAs to target the degradation of 

CFHY402H transcripts as a treatment for both AMD and AD (Lukiw, Surjyadipta, et al., 

2012). Genetic linkage of the 10q26 chromosomal region, the location of ARMS2, has 

been associated with AD (Gatta et al., 2008). Gene expression analysis has identified 

transcript expression of ARMS in the cerebellum, hippocampus and cerebral cortex. 

Genetic studies by Gatta et al., (2008) suggest that it may infer individual risk of AD. 

Conversely, other studies have not found CFHY402H or ARMS2 A69S to be genetic 

determinants of AD (Le Fur et al., 2010; Proitsi et al., 2012; M Williams et al., 2015). 
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CFHY402H, ARMS2 and Drusen 

 The association of these SNPs has been better studied with respect to their 

association with drusen. CFH is synthesized by the RPE and accumulates within drusen 

(Hageman et al., 2005). Studies have shown that in high concentrations, the CFH protein 

is prone to oligomerization, facilitating the formation of drusen. The presence of the 

Y402H SNP increases the propotency of CFH to oligomerize (Boon et al., 2009). CFH 

has also been shown to affect the location of drusen. A 2015 study on individuals 

homozygous for the CFHY402H SNP found greater concentrations of central drusen 

compared to those carrying wild type CFH. The SNP was associated with drusen 

occupying >50% of the central 500µm radii from fovea. In addition, the same study 

found that CFH was associated with the progression of drusen phenotype after 2.6 years 

(Chang et al., 2014). This agreed with earlier studies claiming an association of 

CFHY402H with soft central drusen and phenotype progression (C Delcourt et al., 2011; 

Du et al., 2016; Magnusson et al., 2006).  

 ARMS2 has a smaller effect on drusen development compared to CFH. While 

CFH is involved in the early stages of drusen development, the role of ARMS2 is more 

pronounced in later stages (Dietzel et al., 2014). ARMS2 A69S is associated with a 50% 

risk of progression from early AMD to late and conversion of intermediate drusen to 

large drusen. The ARMS2S has also been associated with reticular pseudodrusen (RPD). 

RPD is a type of drusen recognized by the Wisconsin AMD Grading System (R Klein et 

al., 1991). It is described as a poorly defined network of interlacing ribbons seen via red-

light fundus photography or scanning laser ophthalmoscopy (Arnold, Sarks, 

Killingsworth, & Sarks, 1995; R Klein et al., 1991). RPD is typically associated with a 

high risk of progression to late AMD. Studies linking the CFH SNP to RPD have been 

inconclusive with some claiming an association (Joachim, Mitchell, Rochtchina, Tan, & 

Wang, 2014; R J Klein et al., 2005) and others not (Boddu et al., 2014; Ueda-Arakawa et 

al., 2013). ARMS2 studies on the other hand, have had more definitive results (Joachim 

et al., 2014; Ueda-Arakawa et al., 2013; Zweifel, Imamura, Spaide, Fujiwara, & Spaide, 

2010; Zweifel, Spaide, Curcio, Malek, & Imamura, 2010). 
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Drusen and Cognitive Impairment 

 Although many studies have investigated the co-occurrence of AMD and 

cognitive impairment, few have looked at the possible relationship between drusen 

deposition and cognitive status. Early studies investigated the status of the retinas of AD 

patients post-mortem and found increased numbers of drusen compared to retinas without 

the accompanying AD diagnosis (J C Blanks et al., 1996; J Blanks et al., 1996; Hinton et 

al., 1986). More recent studies have found cognitive impairment to be associated with dry 

AMD over the wet type. Dry AMD is characterized by drusen in early stages and 

progresses to GA in later stages (Wong et al., 2002; Woo et al., 2012). One study found 

that individuals who have severe cognitive impairments determined by a word-fluency 

test were more likely to have early AMD, soft drusen and pigmentary abnormalities 

compared to those without severe impairment (Wong et al., 2002). A 2012 study used a 

variety of global and specific cognitive tests to evaluate the status of AMD patients. 

Those with late AMD were found to have significantly lower scores on a word-memory 

test compared to those with early stages of the disease. Those with large or intermediate 

drusen had significantly lower scores on a digit-symbol coding task compared to those 

with small drusen or a normal phenotype (Lindekleiv et al., 2013).  

Assessment of Visual and Cognitive Capacity 

 There is growing body of literature supporting a link between the presence of 

drusen and cognitive impairment. There is also solid evidence of the CFHY402H and 

ARMS2 A69S SNPs being involved in the formation and accumulation of drusen. 

Despite conflicting studies, this indirect evidence supports a role for these AMD SNPs in 

AD. The only way to gain a better understanding of AD, AMD, and their common 

pathogenesis is to study the spectrum of both diseases in terms of underlying genetics, 

abnormal brain and retinal structure and the visual and cognitive deficits. Not so long ago, 

this would not have been impossible, but with the sequencing of the human genome and 

the advent of non-invasive imaging techniques, complex diseases like AD and AMD can 

be studied from functional manifestation all the way across the spectrum to genotype. 
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Traditional Methods of Study 

Retinal Function  

 Traditionally, visual acuity (VA) is the primary measure for evaluating the retina 

and subsequently, visual function. VA is a measure of the spatial resolving power of the 

visual system. It plays an important role in discrimination and recognition of objects and 

features. Hermann Snellen designed the first clinical chart for measurement of VA in 

1865, but the ETDRS chart has become the universal method of measuring VA in clinical 

research. VA is typically measured under high contrast conditions, which is not realistic 

in terms of the evaluation of visual function.  

 It is also important to acknowledge the inaccuracy of measuring retinal function 

based on a single criterion. Research has shown that deficits in VA do no directly 

correlate with deficits in retinal/visual function nor is VA predictive of functional 

abilities (National Research council (US) Committee on Disability Determination for 

Individuals with Visual Impairments, 2002). Due to this, other aspects of vision such as 

contrast sensitivity and colour vision have become standard functional measures.  

 Contrast sensitivity (CS) can provide critical information about edges, borders and 

variations in luminance. Its measure can provide information on functional vision loss 

that is not apparent when measuring VA. It may not be helpful in terms of diagnosis, but 

it is a more useful measure in predicting visual function. CS seems to have a significant 

impact on reading ability (Leat, Legge, & Bullimore, 1999), face recognition (West et al., 

2002), and mobility (Marron & Bailey, 1982). CS scores have also been correlated with 

subjective driving comfort (Wood & Troutbeck, 1994), crash involvement (Owsley, 

Stalvey, Wells, Sloane, & McGwin, 2001), and the number of “at-fault” crashes (Owsley, 

McGwin, & Ball, 1998) where there was no association with VA. CS is clearly more 

indicative of visual function than VA, but more research is required in terms of how CS 

can affect social participation and ability to perform everyday tasks. 

 Clinically, a variety of CS charts have been developed over the last few decades. 

The Peli-Robson Chart and/or the Mars Chart are the most widely used today. In research 
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situations, CS is typically measured psychophysically, using gratings over a range of 

spatial frequencies. This requires sophisticated equipment and programming abilities.  

 Colour is another measurable aspect related to retinal function. It is an important 

cue for identifying and distinguishing between objects. Colour deficiencies can be 

congenital or acquired. Congenital colour impairments are typically classified as mild or 

severe and are present from birth. They are typically caused by cones having altered 

sensitivity or by the absence of a cone type. Acquired colour deficiency is typically due 

to visual pathology. Most retinal disease causes impairment in the blue end of the 

spectrum while optic nerve pathologies lead to red-green deficits. Colour vision also 

changes with age. The natural yellowing of the lens over time and the development of 

cataracts leads to impairment in the blue end of the spectrum (National Research council 

(US) Committee on Disability Determination for Individuals with Visual Impairments, 

2002). 

 A variety of colour vision tests are easily available in most clinical settings today. 

Pseudoisochromatic plates are used as rapid screening tools. Examples of these include 

the Ishihara, Dvorine and HRR plates. These tests are able to differentiate normal colour 

vision from different colour impairments; blue (Tritan) or red-green (duetan or protan), 

but do not quantify the loss. The Farnsworth-Munsell 100 Hues Test is able to classify 

the type of colour deficiency and the severity. It was developed from its shorter 

counterpart the Farnsworth-Munsell D15, which requires the arrangement of 15 different 

hues in a gradient from a fixed hue as a starting point.  

Retinal Structure 

 Leeuwenhowek first studied retinal structure via microscopy in the 1600s 

(Masters, 1994). The knowledge gained through this method was limited because it did 

not allow for in vivo study of the retina. Microscopy is still important in the study of 

retinal structure today but there are other options. In the 1850s, Helmholtz developed the 

first ophthalmoscope, allowing clinicians to inspect the live retina, optic discs, and blood 

vessels for any abnormalities. 
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 Ophthalmoscopy is still the choice method for observing the retina during routine 

eye examinations due to its low cost and non-invasive nature. This technique was 

followed by the retinal camera and fundus photography. For the first time, clinicians were 

able to document disease progression in their patients. Study of these physical images led 

to the development of the AMD grading scheme (R Klein et al., 1991). The next 

advancement was fluorescein angiography allowing viewing of the live retina and the 

integrity of retinal blood vessels (Masters, 1994). This method involves dilation of the 

pupils and injection of a fluorescent dye into the patient’s vein. As the dye moves through 

the patient’s body, the clinician is able to view blood vessels beneath the retinal surface 

that are not clearly visible otherwise. It is still used today to identify blockages or leaky 

retinal vessels, but is not comfortable for patients. Side effects such as an allergic reaction 

and nausea or vomiting can occur. 

Cognitive Function 

 Questionnaires have been used for a long time in studies evaluating cognitive 

function and are used most often at present. They are readily available and extensively 

validated. The MMSE is the most widely used short cognitive screening test. It measures 

memory, language, orientation and visuoconstructive function. Although the MMSE is 

not sensitive to MCI (Dag et al., 2014), evidence suggests (Ala, Hughes, Kyrouac, 

Ghobrial, & Elble, 2002) that it may be useful in the differentiation of AD-like dementia 

from Lewy Body Dementia. The MoCA, although less widely used, is sensitive to MCI. 

It measures visuospatial capabilities, language, memory, executive function, attention and 

orientation. Compared to the MMSE, the MoCA has a sensitivity of 90% versus 18% in 

detecting MCI (Dag et al., 2014). The MMSE and MoCA both have “Blind” versions 

validated for use in visually impaired populations (Busse, Sonntag, Bischkopf, 

Matschinger, & Angermeyer, 2002; Wittich, Phillips, Nasreddine, & Chertkow, 2010). 

Newer Methods of Study 

Retinal Structure: Optical Coherence Tomography (OCT) 

 The retina is composed of several functional layers and in order to truly study 

retinal structure, tomographic viewing is necessary. This was made possible by the 
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development of optical coherence tomography (OCT) in the 1990s. This was the first 

non-invasive, non-contact instrument allowing cross-sectional imaging of the live retina. 

The OCT interprets the interference pattern created from backscattering light reflected 

from the retinal layers and a reference mirror. Users were able to visualize and measure 

the thickness of retinal layers in addition to detecting swelling, fluid and abnormal tissue. 

Over the last several years, research has begun to investigate on the characteristics of 

drusen such as contour, reflectivity, and content that can be identified on OCT images 

with the hope of developing a method of predicting progression to later stages of AMD 

(Khanifar et al., 2010; Leuschen et al., 2013; Schlanitz et al., 2015). The relationships 

between these characteristics and their impact if any on visual function have yet to be 

explored. 

 Each generation of OCT improved in terms of scan speed and image resolution. 

Eventually, OCT was combined with scanning laser ophthalmoscopy (SLO), enabling a 

fundus image and a cross-sectional image of the retina to be taken simultaneously. The 

OCT and SLO images can be correlated pixel to pixel to generate 3D topographical maps, 

providing more information on the retina than ever before.  

Retinal Function: Scanning Laser Ophthalmoscope (SLO) 

 In the laboratory, the evaluation of visual function improved and accelerated by 

the development of the Scanning Laser Ophthalmoscope (SLO) in the early 1980s. The 

SLO allows the monitoring of dynamic processes such as blood flow and fixation 

stability (Reinholz, Ashman, & Eikelboom, 1999) as well as the assessment of retinal 

function and visual behaviour. Visual stimuli can be projected onto the retina while it is 

simultaneously viewed, the retina enabling observers to see what part of the retina an 

individual is using to view a stimulus (Seiple, Rosen, & Garcia, 2013).  

 Webb and colleagues introduced the first SLO model, the Flying TV 

Ophthalmoscope, in 1980. Its purpose was to make viewing the fundus for an extended 

period of time more comfortable for the patient (Webb, Hughes, & Pomerantzeff, 1980). 

It also enabled observation for multiple viewers, proving useful for education and 

consultation (Webb, 1983). The perimetry feature was added shortly after. Timberlake 
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demonstrated the usefulness of the SLO in measuring visual function in AMD by its 

ability to map the retinal location of scotomata (Timberlake, Mainster, Webb, Hughes, & 

Trempe, 1982). By the 1990s, the first SLOs were commercialized and had begun to be 

paired with other well-known techniques including electroretinography, angiography, 

Doppler flowmetry and optical coherence tomography (OCT). 

 The next generation SLOs had the option of imaging at several wavelengths 

simultaneously (Reinholz et al., 1999) or sequentially (Manivannan et al., 2001). This 

increased resolution and allowed the added features of eye-tracking, adaptive optics and 

combination OCT/SLO (Sharp, Manivannan, Xu, & Forrester, 2004). Eye motion was a 

major problem for both diagnostic and therapeutic treatments such as laser 

photocoagulation. Hammer et al. reported the use of an integrated SLO and retinal tracker 

in 2003. A tracking beam was used to lock onto a retinal feature and sense the motion of 

the eye. The information from the tracking beam movement was used to steer imaging 

(Hammer et al., 2003). MacKeben et al. improved upon this with the development of 

“smart microperimetry”. The program provides a gaze-contingent display of the stimulus 

and senses the conditions for image tracking so that stimulus position can be corrected in 

the case of blinks and involuntary eye movements (MacKeben & Gofen, 2007). This 

improved the mapping of scotomata and the imaging of patients with fixation problems 

such as those with diabetic retinopathy and AMD (Hammer et al., 2003; Sharp et al., 

2004). In 2002, Roorda et al., described the first SLO to use adaptive optics. This 

improved the resolution of the SLO such that, for the first time, it was possible to 

visualize photoreceptors, nerve fibres and the flow of white blood cells in retinal 

capillaries (Roorda et al., 2002; Sharp et al., 2004). The combination OCT/SLO allows 

the exact location of the OCT line-scan to be seen on the SLO image. This is helpful for 

locating the anatomical fovea when it is damaged in the case of disorders like macular 

hole, AMD or diabetic retinopathy (Sharp et al., 2004). 

 Eccentric viewing is a common strategy adapted by individuals with visual 

impairment, but is not typically part of the equation in evaluating visual function. It 

involves directing the eye so that an image falls on healthy portions of the retina. In the 

1980s, Timberlake coined the term “Preferred Retinal Locus” or PRL to identify this 



 35 

region. Much investigation has been devoted to the variable characteristics of a PRL. 

Thanks to numerous SLO studies (Crossland, Culham, Kabanarou, & Rubin, 2005; 

Crossland, Engel, & Legge, 2011; Deruaz, Whatham, Mermoud, & Safran, 2002; 

Fletcher & Schuchard, 1997; Fletcher, Schuchard, & Watson, 1999; Greenstein et al., 

2008; Guez, Le Gargasson, Rigaudiere, & O’Regan, 1993; Lei & Schuchard, 1997; 

Nilsson, Frennesson, & Nilsson, 1998, 2003; Schuchard, 2005; Timberlake et al., 2005; 

Timberlake, Bothwell, & Moyer, 2013; Timberlake, Omoscharka, Grose, & Bothwell, 

2012; Watson, Schuchard, De l’Aune, & Watkins, 2006), we know that a PRL is a 

discrete, well-defined region where fixation occurs. It may be task-specific and is 

repeatable within and between trials. The PRL is not always the best region of the retina 

to be used, but it is the habitual region (Crossland et al., 2011).  

 A successful PRL allows an individual to scan and steadily fixate on a target in 

order to view details as the fovea would (Crossland, Culham, & Rubin, 2004; R W 

Cummings, Whittaker, Watson, & Budd, 1985; Schuchard, 2005). The SLO allows the 

quantitative measure of a PRL through fixation stability. The participant is asked to view 

a target for 20 seconds maintaining gaze as steady as possible. The SLO records the 

position of gaze with respect to the target while correcting for eye movements based on 

retinal anatomy. These positions are captured at regular intervals over the duration of the 

test resulting in an image of the fixating positions superimposed over the target. The 

quantitative measure is the bivariate contour ellipse area (BCEA) (Steinman, 1965), 

which is an ellipse encompassing the target and the majority of fixation positions. A large 

BCEA indicates poor fixation stability, while a smaller one indicates stable fixation. 

 There has been a plethora of research with regards to the PRL and various 

functional tasks including reading (Cheung & Legge, 2005; Crossland et al., 2004; 

Culham, Fitzke, Timberlake, & Marshall, 1992; R W Cummings et al., 1985; Fletcher et 

al., 1999; Kabanarou & Rubin, 2006; Nilsson et al., 1998, 2003; Palmer, Logan, Nabili, 

& Dutton, 2010; Seiple, Szlyk, McMahon, Pulido, & Fishman, 2005; Seiple, Grant, & 

Szlyk, 2011; Timberlake et al., 1986; Watson et al., 2006), handwriting (Timberlake et al., 

2013), face recognition (Seiple et al., 2013) and reach-grasp tasks (Timberlake, Grose, 

Quaney, & Maino, 2008; Timberlake et al., 2012; Timberlake, Omoscharka, Quaney, 
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Grose, & Maino, 2011). This research has led to eccentric viewing training and the 

development of a PRL for reading at least, to be common rehabilitation strategies.  

Cognitive Function 

 Where the imaging of retinal structure and the evaluation of visual function have 

made huge advances, imaging of the brain and its activity has not come as far. Functional 

magnetic resonance imaging (fMRI) is the latest in a long line of tools that uses blood 

flow and oxygenation to infer brain activity. It was developed in the 1990s and relies on 

the concept that when a brain area is more active, it requires more oxygen and blood flow 

to that particular area in order to meet the higher demands. Based on this, activation maps 

can be created based on which areas of the brain are required to carry out certain mental 

processes. The use of fMRI to image the brain is attractive due to the high-resolution 

images it can produce and the fact that it is relatively simple to use. It has the added 

benefits of being non-invasive and not reliant on radiation making it safe for patients. 

Where fMRI falls short is in validating its results (Eklund, Nichols, & Knutsson, 2016; 

Etz & Vandekerckhove, 2016; Open Science Collaboration, 2015). The cost of using 

fMRI is so high that studies are limited to small sample sizes and very few labs are able 

to afford running repeat experiments to replicate results. Moreover, a recent study has 

brought into question the validity of the software being used to interpret fMRI results. 

Some of the most popular software packages for analysis of fMRI images resulted in 

false-positive rates of up to 70%. This study has brought into question some 400,000 

studies published in reputable journals since 1992 (Eklund et al., 2016). 

 Now that computer programming is a more widely available skill, psychophysical 

testing of cognition is becoming more mainstream and is useful in combination with 

cognitive screening questionnaires. The Neurominder by Cognisens measures mild 

perceptual impairment, the precursor to cognitive impairment. It examines perceptual 

cognitive skills such as perceptual processing and working memory capacity for visual 

stimuli. It has been used to evaluate second-order perceptual processing in athletes and 

older adults compared to younger adults (Faubert, 2002; Faubert & Sidebottom, 2012; 

Legault & Faubert, 2012). Deficits in second-order processing are thought to be one of 
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the initial signs of MCI (Faubert, 2002; Sara & Faubert, 2000; Tang & Zhou, 2009). 

These deficits are so subtle, they are unlikely to be identified by traditional questionnaires.  

 Psychophysics can also be used to measure higher-order cognitive function. For 

example, a Neurotracker also by Cognisens, requires participants to follow targets 

through dynamic motion across a wide 3D projection (Legault & Faubert, 2012). Based 

on fMRI studies, the areas of the brain activated by neurotracking have been identified. 

Some of these areas are responsible for the eye movements required during 3D multiple 

object tracking (3DMOT). These are the superior parietal lobule and the frontal and 

supplementary eye fields.  Higher-order brain areas involved in processing visual 

information are also activated. These involve attention, which is a prerequisite for 

forming memory. The human motion area or V5 is activated. This area of the brain is 

sensitive to motion and is retinotopically organized. The anterior and posterior 

intraparietal sulci are also activated. These areas are responsible for deciphering object 

location and features, respectively (Howe, Horowitz, Morocz, Wolfe, & Livingstone, 

2009; Jain et al., 2010). The combination of cognitive questionnaires and psychophysical 

tools available today allows the exploration of cognitive function on a continuum. 

Objectives 

 A number of studies have reported an association between AMD and impaired 

cognitive function. However, these studies have been limited with regard to the level of 

evaluation of the retina. Many of these studies were based on diagnosis alone and did not 

examine the status of the retina. Those that did evaluate the retina were limited to broad 

classifications by using only fundus photography. To date, no study has investigated the 

link between the extent, location and characteristics of drusenoid deposits in AMD and 

the presence of cognitive impairment. Moreover, there is no literature on any genetic 

associations with these drusenoid components. Retinotopic quantification of drusen is 

made possible by newer technologies such as the OCT/SLO unit. 

 Cognitive assessment of participants in comorbid AMD-AD studies has also been 

limited. Several studies have relied on subjective memory complaints, which have been 
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shown to be inaccurate compared to more objective measures (Clement, Gauthier, & 

Belleville, 2012; Flicker, Ferris, & Reisberg, 1993; G E Smith, Petersen, Ivnik, Malec, & 

Tangalos, 1996). Others have used subscales of neuropsychological tests to assess 

cognitive function. Subscales by themselves cannot be used to reach a clinical diagnosis 

of cognitive impairment. Cognitive screening tools such as the MMSE have shown 

cognitive impairment to be associated with late AMD, but not earlier stages. Given 

research showing the MMSE is not sensitive to MCI (Dag et al., 2014), it is possible that 

AMD is associated with cognitive deficits too mild to be detected.    

 The ocular manifestations of AD have been well documented, but retinal 

characteristics predictive of cognitive deterioration, if any, have not yet been established. 

  The major objective of this study was to explore the genotype-structure-function 

relationship in AMD and MCI. The genetic focus was the SNPs CFHY402H and 

ARMSA69S whose contribution to the cognitive side of this equation is still not well 

understood. Retinal structure and retinal/cognitive function were evaluated using the 

traditional methods outlined above, but also combined with the more sophisticated 

technologies that have become available more recently.   

This study has: 

- Sought to support the findings of previous studies showing that carriers of the 

SNPs, CFHY402H and ARMS2A69S are more likely to have AMD than non-

carriers. 

- Further explored the connection between the SNPs of interest and the functional 

consequences of AMD as measured by traditional ophthalmologic tests and SLO. 

- Utilized OCT to investigate a possible correlation between drusen characteristics 

and the SNPs of interest. 

- Attempted to replicate recent studies demonstrating a higher prevalence of 

cognitive impairment among individuals with AMD compared to age-matched 

controls using traditional questionnaires and more sophisticated psychophysical 

measures. 
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- Investigated whether cognitive impairment can be linked to the presence of AMD 

SNPs. 

The following hypotheses were examined: 

- Carriers of the CFHY402H and ARMS2A69S SNPs would be more likely to have 

AMD than non-carriers. 

- Carriers of the SNPs of interest would have greater functional impairment 

compared to non-carriers. 

- Drusen characteristics as seen via OCT, such as drusen with core and 

hyperreflective foci above drusen, would be indicative of later stages of AMD. 

- Individuals with AMD would score lower on cognitive measures compared to 

age-matched controls 

- Carriers of the AMD SNPs would have poorer cognitive performance than non-

carriers. 
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Chapter 2: Study 1 - Genotyping 

 Age-related Macular Degeneration (AMD) is a complex disease whose 

development is influenced by a variety of genetic, environmental and lifestyle factors. 

Certain lifestyle factors that contribute to AMD such as diet and sun exposure can be 

controlled. It is important to study genetics given that it is a contributing factor which, to 

date, cannot be controlled. Understanding the molecular mechanisms involved in AMD 

while taking into account gene expression and epigenetic factors and how they interact 

with lifestyle factors will be important in developing therapeutic strategies. 

 Genetic predisposition to AMD was initially discovered in the 1980s through 

case-control studies (Hyman et al., 1983). Initially, no genetic loci were identified and the 

strength of the heritability of AMD was questioned due to failure of the disease to follow 

traditional Mendelian patterns. Eventually, epidemiological and genetic studies 

established the genetic factor to have 45-70% contribution to disease development 

(Seddon, Cote, Page, Aggen, & Neale, 2005). Higher concordance was found among 

monozygotic twins compared to dizygotic twins (Hammond et al., 2002; Klaver et al., 

1998; M L Klein, Mauldin, & Stoumbos, 1994; Seddon et al., 2005). This was further 

supported by other familial studies (Klaver et al., 1998; W Smith & Mitchell, 1998).  

 Prior to the genetic breakthrough that was the Human Genome Project, several 

studies investigating the pathogenesis of AMD established that several inflammatory and 

immunologic mediators were involved (Anderson, Mullins, Hageman, & Johnson, 2002; 

Anderson et al., 2010; Ding et al., 2009; Patel et al., 2008). Early genetic linkage analyses 

on siblings and multiplex families suggested the involvement of the ABCA4 locus, 

identified as causing autosomal recessive Stargardt disease (Allikmets, Singh, et al., 

1997) to be linked to AMD as well, but reports were inconsistent (Allikmets, 2000; 

Allikmets, Shroyer, et al., 1997; Guymer, 2001; Shroyer, Lewis, Yatsenko, Wensel, & 

Lupski, 2001). Finally, a large meta-analysis of all these genetic linkage studies 

convincingly revealed chromosomal regions 1q23.3-q32 and 10q26 to harbour AMD loci 

(Fisher et al., 2005). 
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 With the continued progress from the Human Genome Project, single nucleotide 

polymorphisms (SNPs) were identified and new methods of identifying AMD loci 

became available. Four independent research groups using complimentary genetics 

approaches converged on the association of AMD with a SNP in the gene encoding 

complement factor H on chromosome 1q32 (Edwards et al., 2005; Hageman et al., 2005; 

Haines et al., 2005; R J Klein et al., 2005). This discovery was not only a major landmark 

in the genetics of a complex disease, but it was also the first validation of the Genome-

wide Association Study (GWAS) approach. Since this pivotal breakthrough, GWAS has 

been used to investigate numerous genetic diseases, resulting in over 2000 publications 

(Cooke Bailey, Pericak-Vance, & Haines, 2014; Welter et al., 2014). GWAS studies in 

AMD now boast over one million markers (Neale et al., 2010), including the locus with 

the strongest single genetic effect; ARMS2A69S on chromosome q26 (Jakobsdottir et al., 

2005; Schwartz et al., 2014). 

 The purpose of this first study is to show the genetic distribution of the two SNPs 

with the strongest genetic effect on AMD in this study population. It was expected that 

the distribution would agree with countless studies showing that CFHY402H and 

ARMS2 contribute to over 50% of AMD cases. 

Methods 

Phase I 

 Phase I of this investigation involved participants from a previous study 

(Smailhodzic et al., 2012) who had been genotyped from blood samples by Radboud 

University Medical Centre in Nijmegen, Netherlands. Participants were genotyped from 

blood samples for the following SNPs: rs4986790, rs10490924 (ARMS2A69S), 

rs2511989, rs2230199, rs1800555, rs1800553, rs3775291, rs4151667, rs429358, rs7412, 

rs10033900, rs10468017, rs9621532, rs1410996, rs9332739, rs699946, rs12678919, 

rs1883025, rs17457, rs3764261 and rs1061170 (CFHY402H). The study protocol was 

approved by the McGill University Health Centre research ethics committee and followed 



 42 

the tenets of the Declaration of Helsinki. All study participants gave signed, informed 

consent prior to their participation. 

From the pool of previously genotyped participants, all were recruited from the 

Montreal Retina Institute. The current study protocol was approved by Le Comité 

d'éthique de la recherche en santé at the Université de Montréal and followed the tenets 

of the Declaration of Helsinki. All study participants gave signed, informed consent prior 

to their participation in the study (Appendix A). Individuals aged 70 years or older with a 

diagnosis of AMD were included in the current study. Subjects with comorbid glaucoma 

or other retinal disorders were excluded. Subjects with diagnosed dementia or 

neurological impairments were also excluded. 

Phase II 

 This phase of the study expanded the subject pool by recruiting more AMD 

subjects and adding a control group. The results from Phase I determined the SNPs used 

in the genetic testing conducted in Phase II. 

 Participants were recruited via “word of mouth” and from the School of 

Optometry Clinic at the Université de Montréal. Study protocol was approved by Le 

Comité d'éthique de la recherche en santé at the Université de Montréal and followed the 

tenets of the Declaration of Helsinki.  All study participants gave signed informed 

consent prior to their participation in the study. 

 AMD-subject characteristics were the same as those in Phase I. The control group 

also consisted of participants aged 70 years or older. They were required to have normal, 

healthy retinas. Exclusion criteria included retinal disease, glaucoma and diagnosed 

cognitive problems. 

Asper Biotech Ltd. in Estonia conducted genotyping from saliva samples. Their 

AMD program uses targeted mutation analysis to identify three SNPs: rs1061170, 

rs10490924 and rs1410996. Based on the results obtained during Phase I, the SNP 

rs17457 was added to the panel. 
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Phase I: Results and Discussion 

Results 

 A total of 107 individuals were genotyped from the previous study (Smailhodzic 

et al., 2012). Mortality or development of AD since genotyping excluded 15 potential 

participants. Six were unreachable, two were excluded because they were under 70 years 

of age and 74 declined further participation. Ten individuals (3M, 7F) agreed to 

participate in more testing. Their characteristics can be seen in Table I.  

 Two participants had dry AMD in one eye and wet AMD in the other. The 

remaining eight participants had wet AMD in both eyes. There were four participants 

who carried neither of the ARMS2 or the CFH SNPs. The ARMS2 SNP was carried by 

6/10 participants with half of them being homozygous for the mutation. Only three 

individuals carried the CFH SNP, with one being homozygous. Three individuals carried 

both SNPs of interest.  

 The other SNPs tested as part of the AMD panel were not of interest in this study, 

but it was noted that 9/10 participants were carriers of a SNP, rs174547, from Fatty Acid 

Desaturase 1 (FADS1). Of these individuals, 6 were homozygous. 
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Table I. Phase I Participant Characteristics 

ID Sex Age AMD Diagnosis CFHY402H* ARMS2A69S* 
OD OS 

AMD1 F 80 Wet Wet 0 2 
AMD2 F 82 Wet Wet 1 1 
AMD3 M 72 Wet Wet 0 0 
AMD4 F 79 Wet Wet 2 2 
AMD5 F 86 Wet Wet 1 1 
AMD6 F 75 Wet Wet 0 0 
AMD7 F 85 Wet Wet 0 0 
AMD9 M 92 Dry Wet 0 1 
AMD10 F 79 Wet Wet 0 2 
AMD11 M 84 Wet Dry 0 0 

*The numbers in these columns represent the number of copies of the SNP the participant 

has. 
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Discussion 

 Given that the participants were recruited from retinal specialists, the majority of 

them had wet AMD. Currently, retinal specialists treat only wet AMD on a regular basis. 

The majority of those with dry AMD remain in the care of general ophthalmologists or 

optometrists for monitoring purposes. 

 As expected, approximately half of the participants were carriers of the ARMS2 

SNP. Only three individuals carried the CFH SNP. This was an unexpected finding given 

that CFHY402H is said to account for approximately 43% of AMD cases (Haines et al., 

2005). Even more surprising was that the majority of the sample members were carriers 

of the FADS1 SNP. FADS1 has been linked to AMD through GWAS studies (Neale et al., 

2010) and has been shown to be a genetic factor in heart disease, contributing particularly 

to plaque build-up (Lettre et al., 2011; Merino et al., 2011; Merino, Ma, & Mutch, 2010; 

Park, Kim, Lee, & Park, 2011) . Both of these anomalies could possibly be explained by 

the small sample of individuals who agreed to further testing. To determine this, the 

genetic results of the original 107 were analysed. 

 In the original sample, 69 individuals (64.5%) were carriers of the CFHY402H 

SNP and of them, 36.2% were homozygous.  These results were in better agreement with 

previous findings concerning the contribution of the CFH SNP to AMD (Haines et al., 

2005), confirming that the small sample size was the problem. 

 The original sample also contained 79 individuals (73.8%) who were carriers of 

the ARMSA69S SNP and, of them, 32.9% were homozygous. There were 56 individuals 

carrying copies of both SNPs of interest with 7 of them being homozygous for both. 

Eight individuals carried no copies of either SNP. 

 In terms of the FADS1 SNP, 91 individuals (85%) were found to be carriers and 

of them, 53.9% were homozygous.  
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Phase II: Results and Discussion 

Results  

A total of 31 individuals were genotyped as part of Phase II. Two participants 

were excluded due to co-morbidities. There were 11 participants with AMD (1M, 10F) 

having an age range of 71-87 years. These results were combined with those of Phase I to 

form the final AMD group (N=21). The control group consisted of 18 individuals (6M, 

12F) with an age range of 70-85 years. The genotyping results of Phases I and II were 

combined and are shown in Tables II and III. 

The CFHY402H SNP was found in 21/39 (53.8%) participants. Of the AMD 

group, 10 individuals were carriers, with five being homozygous for the SNP. There were 

11 carriers in the control group, with only one of them being homozygous. 

 The ARMS2A69S SNP was also found in 21/39 (53.8%) participants. Of the 

AMD group, 12 were carriers with five being homozygous for the SNP. There were nine 

carriers in the control group with only one being homozygous. 

The FADS1 SNP was found in 33/39 (84.6%) participants. Of the AMD group, 17 

were carriers with nine being homozygous for the SNP. There were 16 carriers in the 

control group, with six being homozygous. 

Discussion 

 After recruitment and testing in Phase II, the distribution of carriers of the CFH 

and ARMS2 SNPs was as expected for the AMD group. Homozygotes of either SNP 

were more likely to be in the AMD group than in the control group. The surprising result 

was the high frequency of carriers of the FADS1 rs174547 T allele.  
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Table II. Participant Characteristics: AMD v. Control Groups 

Group N Sex Age Diagnosis 
M F  Wet Dry Both 

AMD 21 4 17 78.14 ± 6.71 11 5 5 
Control 18 6 12 74.00 ± 3.86 na na na 

na: not applicable 
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Table III. Genetic Results 

SNP AMD Control Total 
CFHY402H 10 11 21 
      homozygotes 5 1 6 
ARMS2A69S 12 9 21 
      homozygotes 5 1 6 
FADS1 17 16 33 
      homozygotes 9 6 15 
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FADS1 Gene Product and its Function 

 FADS1 encodes an enzyme involved in lipid metabolism, one of the three 

pathogenic systems identified as carrying genetic mutations that contribute to AMD 

(Fritsche et al., 2014). More specifically, the FADS1 gene encodes delta-5 fatty acid 

desaturase, the rate-limiting enzyme required for polyunsaturated fatty acid (PUFA) 

biosynthesis (Figure 1) (Dumont et al., 2011; Martinelli et al., 2008). This desaturase is 

involved in both the omega-6 and omega-3 pathways. PUFAs are essential in regulating 

cellular membrane fluidity, intracellular signalling and transcriptional regulation (Jung, 

Torrejon, Tighe, & Deckelbaum, 2008). The SNP, FADS1 rs174547, was first linked to 

AMD in GWAS studies (Neale et al., 2010). This was followed by candidate gene studies 

(Fauser et al., 2011; Gorin, 2012; Lechanteur et al., 2012; Merle et al., 2011). These 

research groups suggested that changes in the metabolism of high-density lipoprotein 

(HDL) cholesterol play a role in AMD, possibly through the accumulation of lipids and 

cholesterol in drusen. Studies that followed this line of thought by investigating serum 

HDL levels with respect to AMD have created confusion. Results have been conflicting 

with some research showing no association between AMD and circulating levels of HDL 

(Abalain et al., 2002), others have confirmed GWAS theories of AMD being linked to 

higher levels of HDL (C Delcourt et al., 2001; van Leeuwen et al., 2004), while the 

inverse has been found for other groups (Wachter et al., 2004). 

The alleles present at rs174547 are C, the ancestral allele, or T. The T allele is 

considered the risk allele for AMD. The SNP has been associated with altered desaturase 

activity, and omega-3 and omega-6 PUFA biosynthesis. The presence of the T allele 

results in higher delta-5 fatty acid desaturase activity and higher levels of circulating 

HDL (Fauser et al., 2011; Hellstrand et al., 2012; Merino et al., 2011). The increased 

levels of HDL contribute to drusen formation as mentioned earlier, but the risk 

contributed by the increase in delta-5 fatty acid desaturase activity could be two-fold. 

Firstly, the omega-3 and omega-6 PUFA biosynthesis pathways compete for use of the 

delta-5 enzyme, with the omega-6 pathway usually coming out on top. This means that 

there is always a lower ratio of omega-3 fatty acids compared to omega-6. Due to the  
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Figure 1. The FADS1 Pathway. 

The FADS1 gene encodes the enzyme Δ5-desaturase, which plays a role in omega-6 and 

omega-3 fatty acid biosynthesis. The enzyme catalyzes the step required to produce 

arachidonic acid and eicopentaenoic acid (EPA), which the body uses to produce pro-

inflammatory and anti-inflammatory eicosanoids respectively. EPA can be converted into 

docosohexaenoic acid (DHA), which is used to produce stronger anti-inflammatory 

molecules. 

LA: Linoleic acid, ALA: α-Linolenic acid, AA: Arachidonic acid, EPA: Eicopentaenoic 

acid, DHA: Docosohexaenoic acid  
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western diet, the ratio of circulating omega-3 fatty acids to omega-6 is approximately 

1:10-20 (Cakiner-Egilmez, 2008). The retina has high concentrations of docosahexanoic 

acid (DHA) and eicosapentanoic acid (EPA), two long chain omega-3 fatty acids 

(Augood et al., 2008). Omega-3s from all sources are incorporated into phospholipid 

bilayer of cells in all body tissues. There, they are able to interact with membrane 

receptors to alter transduction pathways, inflammation, angiogenesis and affect cell 

processes such as apoptosis and cell survival. Some tissues such as the retina, brain and 

myocardium are particularly enriched. Changes in omega-3 levels can be measured only 

days after increasing dietary intake in these tissues (Surette, 2008). Diet-induced 

deficiencies of omega-3s have been known to alter photoreceptor function (Cakiner-

Egilmez, 2008). Retinal function depends on an adequate amount of DHA. 

Approximately 50% of the lipids in photoreceptor rod outer segments are DHA (Tuo et 

al., 2009).  

 Secondly, omega-6 PUFAs are used to synthesize eicosanoids, signalling 

molecules, which include prostiglandins, leukotrienes and thromboxane (Serini, Fasano, 

Piccioni, Cittadini, & Calviello, 2011). These molecules are released in response to injury 

and their action is required to help in the repair of damaged tissue. They play an 

important role in the inflammatory pathway, which has been shown to be involved in the 

pathology of AMD (Cakiner-Egilmez, 2008; Katta et al., 2009). Additionally, omega-6 

PUFAs compete with omega-3s for incorporation into cell membranes. The presence of 

omega-3s in cell membranes serves to dampen the inflammatory response, but without 

enough of them, the inflammation brought about by high levels of omega-6 PUFAs can 

go unchecked (Cakiner-Egilmez, 2008; Serini et al., 2011). 

FADS1 rs174547 Epidemiology 

 The major allele at this location differs depending on the population. The T allele 

is the minor allele in Mexican (0.39), Native American (0.21) and Native Hawaiian (0.42) 

populations, while it is the major allele in European (0.66), African (0.91) and Japanese 

(0.59) populations. This difference across populations coincides with AMD risk. 

Individuals of European, African and Japanese decent are at a higher risk of developing 
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AMD compared to those of Mexican, Native American or Native Hawaiian descent 

(Dumitrescu et al., 2011).  

 The population of the current study, consisting mostly of individuals of French-

Canadian heritage, could be considered most similar to a European population, or an 

American population. According to the dbSNP, a database of genetic and epidemiological 

information on SNPs from the National Institute of Health, the frequency for the T allele 

of rs174547 in an American population is lower than that of a European population, at 

0.41 (NIH, 2017). The frequency of the T allele in this population is 0.85. This is greater 

than that of either the European or American frequencies. 

 This could be due to the fact that the Quebec population is a known Founder 

population (Roy-Gagnon et al., 2011). A Founder population is a new population that is 

established from very few individuals (or founders) and, as a result, exhibits reduced 

genetic variation. Due to this, rare disease alleles are enriched, leading to higher numbers 

of homozygotes displaying the disease phenotype (Kristiansson, Naukkarinen, & 

Peltonen, 2008). Such populations have been instrumental in medical genetics for 

research on genetic diseases. The Quebec population has been valuable in the study of 

genotype-phenotype interactions in Usher syndrome (Ebermann et al., 2009) and retinitis 

pigmentosa (Coussa et al., 2015; Koenekoop et al., 2003). The Founder Effect could 

potentially explain the increased frequency of the T allele at rs17457 in this study 

population. 

Summary and Conclusion 

 Genetic studies of complex disease have recently become possible, but they have 

required vast study cohorts for an individual trait and international collaborations on 

enormous scales (Consortium, 2007). Large global populations may not always be 

necessary to study the genetics of complex diseases, like AMD. Susceptibility to complex 

disease involves contributions from common variants and rare variants. Several common 

variants are likely to explain a substantial fraction of the genetic contribution to a 

complex disease, while more rare variants have a greater impact on the phenotype of the 
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disease. The statistical power required to detect susceptibility alleles is positively 

correlated with the frequency of the allele and the penetrance, or degree of phenotypic 

expression of the allele in the test population. Founder populations may be required to 

better define a risk allele that, although significant, gets lost in GWAS as a result of 

population-specific effects. A number of researchers have discussed the advantages of the 

use of Founder populations in medical genetics. Some of the benefits include genetic, 

environmental and phenotypic homogeneity, good genealogical records, higher degree of 

linkage disequilibrium, and reduced allelic heterogeneity (Cohen et al., 2004; 

Kristiansson et al., 2008; Lohmueller, Pearce, Pike, Lander, & Hirschhorn, 2003; Zeggini 

et al., 2005). 

 This study has shown that the most influential SNPs in AMD occur as expected in 

the Quebec population, with just over 50% of the study sample carrying CFHY402H and 

ARMS2A69S. The Quebec population has also been potentially identified as having a 

Founder Effect for FADS1 rs17457. This SNP has been identified as a significant 

contributor to AMD in GWAS studies (Neale et al., 2010), but its role has not been well 

characterized. Due to its high frequency, the Quebec population is an ideal sample to 

achieve a better understanding of the role that the FADS1 SNP plays in the leading cause 

of legal blindness in the Western world. 
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Chapter 3: Study 2 - Visual Function 

 Hutchison and Tay were the first to describe Age-related Macular Degeneration 

(AMD) as “symmetrical central choroidoretinal disease occurring in senile persons” 

(Hutchinson & Tay, 1875). Today, AMD is known as a complex, late-onset retinal 

disease characterized by the progressive and irreversible loss of central vision affecting 

the macula. It is the leading cause of blindness in older adults (Bergeron-Sawitzke et al., 

2009; Gehrs, Anderson, Johnson, & Hageman, 2006; Katta et al., 2009). 

 Through traditional methods of evaluating visual function, the deficits caused by 

the disease are well characterized. Eye-chart tests have shown that individuals with AMD 

suffer losses in visual acuity (Alexander et al., 1988; Cacho, Dickinson, Reeves, & 

Harper, 2007). These losses may be gradual in the case of atrophic or dry AMD or 

sudden in the case of exudative or wet AMD. Losses in contrast sensitivity have also 

been documented, using a series of gratings varying in spatial frequency and contrast or 

letters of decreasing contrast (Lennerstrand & Ahlstrom, 1989; Midena, Angeli, Blarzino, 

Valenti, & Segato, 1997). Visual field assessments have demonstrated that most AMD 

patients lose visual function in some region of their macula. Stereovision tests, such as 

the Titmus and the Randot, have determined that those with AMD have poor stereopsis 

(Cao & Markowitz, 2014). These losses are common to all individuals who develop 

AMD, but their degree of severity and progression is not. Individuals who have had the 

same subtype of AMD (wet or dry) for the same length of time will rarely display 

functional losses with the same characteristics (Fletcher & Schuchard, 1997; Rees, 

Kabanarou, Culham, & Rubin, 2005).  

 Single nucleotide polymorphisms (SNPs) play a role in the development of AMD. 

They have been shown to contribute to disease incidence (Andreoli et al., 2009; Johanna 

M. Seddon et al., 2009), progression (Dietzel et al., 2014) and subtype (Andreoli et al., 

2009; Cheng et al., 2013; Wegscheider et al., 2007). Since the post-Human Genome 

Project era, molecular biologists have been trying to establish how each AMD SNP 

affects the function of its respective protein product and the mechanism by which it 

contributes to retinal degeneration (Cooke Bailey et al., 2014). More recently, SNPs have 
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been studied with respect to their roles in treatment response to anti-VEGF (Imai et al., 

2010; Lee, Raya, Kymes, Shiels, & Brantley Jr., 2009; Riaz et al., 2016; Smailhodzic et 

al., 2012) and mineral supplements (Awh, Lane, Hawken, Zanke, & Kim, 2013; Chew et 

al., 2014; B. M. J. Merle et al., 2015), but they have not been well studied in terms of 

their association with visual function. With genotyping becoming more common in the 

monitoring and treatment of AMD, it will be important to explain the impact of having an 

AMD SNP in terms that are relevant to the patient. It is generally accepted that the most 

relevant issue to the patient is not only visual function or the capacity of the visual system.   

In addition, patients are concerned with their functional vision or how well they can 

utilize their remaining vision in order to carry on their daily activities. 

 The SNPs with the largest genetic contribution to AMD are CFHY402H (Edwards 

et al., 2005; 2015; Kortvely et al., 2010) and ARMS2A69S (Ersoy et al., 2015; Kortvely 

et al., 2010; Schaumberg, Hankinson, Guo, Rimm, & Hunter, 2007). In the Quebec 

population, from which this study has sampled, the AMD SNP rs174547 in FADS1 

appears to have an unusually high prevalence. Due to those factors, the latter three SNPs 

were selected for inclusion in the present study investigating their relationship to visual 

function. It was expected that carriers of these SNPs would experience greater functional 

losses compared to non-carriers, with homozygotes displaying the greatest functional 

impairment overall. 

Methods 

 The same individuals who were tested in the first segment of this research also 

participated in this part of the study. The results of their genetic tests were taken into 

account herein. 

 Visual function was evaluated using a variety assessment tools. These included a 

general questionnaire of demographics and visual history, distance visual acuity, contrast 

sensitivity, colour vision, retinal sensitivity, location of fixation and fixation stability. 
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 Visual acuity was measured using the EDTRS chart (See Appendix B). This chart 

was created to eliminate the design flaws of earlier visual acuity charts. The chart is more 

accurate due to the incorporation of specific criteria, including the same number of letters 

per row, equal spacing of rows, equal spacing of letters in a row and individual rows 

being balanced for letter difficulty. To prevent memorization, different charts were used 

for assessing left-eye, right-eye and binocular acuity. 

 Contrast sensitivity was measured using the Mars test (See Appendix B). With 

this test, it is the contrast, and not the letter (or numeral) size, which diminishes from the 

beginning to the end of the chart, thus controlling for visual acuity. 

 Colour vision was assessed using the Farnsworth Dichromatous-15 (D-15) Colour 

Arrangement Test (See Appendix B). The task requires arrangement of a set of coloured 

discs in a series. Those with colour deficits are known to make errors in sequencing the 

discs. Based on these mistakes, the type of colour deficiency can be determined.  

 Fixation stability was measured using the Scanning Laser Ophthalmoscope 

function of the Optos OCT/SLO (Figure 2). The SLO component uses confocal scanning 

laser microscopy to view the retinal surface in real time. The operator is able to view a 

participant’s retina as he/she looks at a projected image. This allows identification of the 

location of fixation on the retina and its stability.  

 The fixation stability task requires the participant to gaze as steadily as possible at 

a target for a period of 20-seconds. An automatic eye tracker compensates for eye 

movements during the test period. The final output of this test is the superimposition of 

all the photos taken during the 20-second time frame. In the case of stable fixation, the 

target crosses are clustered together on the retina while unstable fixation would display 

the crosses spread out. Fixation stability was quantified using a bivariate contour ellipse 

area (BCEA). This is the area into which 95% of the target crosses fall, measured in 

square degrees. A smaller area is indicative of better fixation stability. 
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Figure 2. Bivariate Contour Ellipse Area (BCEA). 

The BCEA is used to quantify fixation stability. An ellipse is drawn around the centre of 

fixation, with 95% of the fixation points within the ellipse. The area, measured in square 

degrees represents fixation stability. Typically, a BCEA less than 2 square degrees is 

considered stable fixation, while a BCEA greater than 2 square degrees is considered 

unstable fixation (Schuchard, 2005).  
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 The location of fixation or preferred retinal locus (PRL) is determined using the 

results of the fixation stability test with the retinal topography function of the OCT/SLO.  

Retinal topography measures the volume of the retinal layers. Such a scan allows the 

identification of the anatomical fovea. Once the fovea is located, the image can be 

superimposed over the result of the fixation test and the distance between anatomical 

fovea and PRL can be measured. 

Analysis 

 All calculations were performed using SPSS software, version 20.0 (IBM Corp, 

2011; JASP Team, 2017). Chi Square was used to compare the results of the Farnsworth 

D-15 between AMD and controls and between carriers and non-carriers of each SNP. 

Independent Student’s t tests were used to compare the means of visual acuity, contrast 

sensitivity, BCEA and eccentricity between AMD and controls and between carriers and 

non-carriers of each SNP of interest. Since the data did not follow a normal distribution, 

the nonparametric Mann-Whitney U test was also used to compare mean ranks. One-way 

ANOVA was used to compare the results of visual function against the zygosity of each 

SNP of interest. 

Results 

 As expected, the AMD group performed significantly worse on traditional 

measures of visual function. Figures 3 and 4 present the results for visual acuity and 

contrast sensitivity. The Farnsworth D-15 (Figure 5) showed that individuals with AMD 

were more likely to have difficulty with colour vision than controls, χ2=9.079, p=0.003, 

particularly in the tritan range of the spectrum, χ2=11.17, p=0.011. Those with AMD also 

had larger BCEA values. A large BCEA value is interpreted as poor fixation stability, 

indicating that individuals with AMD have poorer fixation stability compared to controls, 

but the difference was not statistically significant (Figure 6). The AMD group also had 

greater eccentricity of fixation when compared to the control group, however this 

difference was also not statistically significant either (Figure 7). 
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Figure 3. Binocular Visual Acuity in AMD Group Versus Control Group 

The graph shows the AMD group (1) and control group (2) on the x-axis plotted against 

logMAR binocular visual acuity on the y-axis. An independent Student’s t test shows a 

significant difference between mean logMAR visual acuity in the AMD group versus the 

control group. The Mann-Whitney U test compared mean ranks and showed the same 

result. 
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Figure 4. Mars Contrast Sensitivity in AMD Group versus Control Group 
 

An independent Student’s t test showed a significant difference between the mean 

contrast sensitivity of the AMD group and control group. The Mann-Whitney U test 

(MWU) supported this result. The boxplot shows the Mars contrast sensitivities in log 

units (y-axis) of the AMD group and the control group, 1 and 2 on the x-axis, 

respectively. Contrast sensitivity was measured binocularly.  

 

  



 61 

 

 

Figure 5. The Farnsworth D15. 
 

(A) shows the contingency table and Chi-squared test for those that passed or failed from 

the AMD group and the control group. A greater number of the AMD group were unable 

to pass the colour test compared to the control group. A p value of 0.003 indicates this 

difference is statistically significant. (B) shows the Chi-squared test taking the different 

colour axes into account. Those that fall under ‘Normal’ successfully passed the D15 

while those under ‘Protan’ or ‘Tritan’ made errors along that colour axis. The ‘Unknown’ 

category represents those that made errors that did not fall under a particular colour axis. 

There were no participants who qualified as ‘Deutan’. 
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Figure 6. Fixation Stability of AMD Group versus Control Group.  
 

BCEA was converted to a log10 scale to correct for skewness. An independent Student’s 

t test showed no significant difference in mean log BCEA between the AMD group and 

controls. The Mann-Whitney U test (MWU) supported this result. The boxplot shows the 

AMD group (1) versus control group (2) on the x-axis against log BCEA on the y-axis. 
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Figure 7.  Eccentricity of Fixation. 

The eccentricity of fixation, or PRL, is measured in degrees from the anatomical fovea, 

which is considered zero, to the centre of fixation (BCEA). Eccentricity was converted to 

a log10 scale to correct for skewness. The AMD group has a greater average eccentricity 

compared to the control. Means are not significantly different according to an 

independent Student’s t test. This is supported by the Mann-Whitney U test comparing 

mean ranks. The boxplot shows the AMD group (1) and the control group (2) on the x-

axis against log eccentricity on the y-axis. 
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Carriers of the CFHY402H appear to fixate with greater eccentricity than those 

who do not carry the SNP, but statistical significance is only achieved when zygosity is 

considered, F(2,34)=9.53, p<0.001 (Figure 8). This greater eccentricity does not appear 

to affect visual acuity or fixation stability. There was no significant difference between 

carriers and non-carriers in terms of contrast sensitivity or colour vision. 

 Homozygous carriers of ARMS2A69S showed poorer visual acuity and contrast 

sensitivity compared to heterozygotes and non-carriers (Figures 9 & 10). There were no 

statistically significant differences between carriers and non-carriers for colour vision, 

fixation stability or eccentricity. There were no significant trends with respect to visual 

function and the FADS1 SNP. 

 The demographic questionnaire collected data about lifestyle that has been known 

to influence the development of AMD. Smoking history was recorded in terms of number 

of years and number of cigarettes smoked per day. These parameters were used to 

calculate ‘smoking dose’ which is a measure of the number of cigarettes smoked per year 

spent smoking. The number of years spent smoking and smoking dose but not the number 

of cigarettes per day correlated with binocular visual acuity (Figure 11), BCEA (Figure 

12) and eccentricity (Figure 13), even when age was controlled for. Sun protection was 

recorded in terms of how often the participant wore sunglasses. One-way ANCOVA 

controlling for age showed those who reported never wearing sunglasses had an earlier 

age of AMD onset compared to those who did wear sunglasses F(3,29) = 3.589, p = 

0.025 (Figure 14). 

Discussion 

 Smoking has been established as a risk factor for AMD by several studies (C 

Delcourt et al., 1998; W. Smith et al., 1996; Vingerling et al., 1996). This study agrees 

with a meta-analysis published in 2005, in that there is a relationship between the number 

of years spent smoking and severity of AMD (Thornton et al., 2005). The current study 
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Figure 8. CFHY402H Carriers and Eccentricity of Fixation. 

One-way ANOVA showed a highly significant difference between CFHY402H zygosity 

and eccentricity of fixation. The graph shows zygosity along the x-axis with ‘0’ 

representing non-carriers, ‘1’ representing heterozygotes, and ‘2’ representing 

homozygotes and eccentricity from fovea on the y-axis (in degrees). Post-hoc analysis 

showed that homozygotes fixated the most eccentrically. 
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Figure 9. ARMS2A69S Carriers and Visual Acuity 

One-way ANOVA showed a highly significant difference between the logMAR visual 

acuities depending of the zygosity of the ARMS2 SNP. The graph shows the zygosity 

along the x-axis with ‘0’ representing non-carriers, ‘1’ representing heterozygotes, and ‘2’ 

representing homozygotes and logMAR visual acuity on the y-axis. A higher logMAR 

value indicates poorer visual acuity. Post-hoc analysis showed that homozygote carriers 

had poorer visual acuity than heterozygotes or non-carriers. 



 67 

 

Figure 10. ARMS2A69S Carriers and Mars Contrast Sensitivity. 

One-way ANOVA showed a significant difference in contrast sensitivity with respect to 

ARMS2A69S SNP zygosity. Post-hoc analysis showed homozygous carriers to have 

poorer contrast sensitivity compared to heterozygotes or non-carriers. The graph shows 

ARMS2 zygosity along the x-axis with ‘0’ representing non-carriers, ‘1’ representing 

heterozygotes, and ‘2’ representing homozygotes. The y-axis displays the log score of 

Mars contrast sensitivity. A higher score indicates better contrast sensitivity.  
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went a step further, finding a correlation between years smoking and visual function in 

terms of visual acuity, fixation stability and eccentricity. 

 It was assumed that the AMD group would perform worse than the control group 

in terms of visual function. This was true for all parameters except for eccentricity of 

fixation. Eccentricity is not a traditional means of measuring visual function, likely 

because SLO technology is not readily available in most clinical settings. Given that 

AMD affects the central retina, it would make sense for those with the disease to be 

fixating more eccentrically compared to individuals with a healthy fovea. However, this 

is not always the case. These results agree with earlier reports from Reinhard et al. in 

2007 and Greenstein et al. in 2008. Scotomas come in different shapes and sizes and it is 

possible for the fovea to be spared (Schuchard, 2005; Sunness, Rubin, Zuckerbrod, & 

Applegate, 2008), resulting in the lack of difference in average eccentricity between the 

AMD group and controls. 

 The Farnsworth D-15 showed that the AMD group experienced more difficulty 

distinguishing colour compared to the control group. Those with AMD had the most 

difficulty in the tritan spectrum, which encompasses blue-yellow wavelengths of light. 

The ability to distinguish different colours in this spectrum is known to decrease with age 

(Schneck, Haegerstrom-Portnoy, Lott, & Brabyn, 2014; Werner, Bayer, Schwarz, 

Zrenner, & Paulus, 2010). It appears that individuals with AMD have an exaggerated 

age-related effect. This is likely due to a combination of blue wavelength cones being the 

fewest number in the retina and most susceptible to damage by bright visible light 

(Cruickshanks, Klein, & Klein, 1993; Tomany, Cruickshanks KJ, Klein R, Klein BE, 

2004). Further study with the use of an anomalscope could be used to quantify this effect. 

 Individuals carrying the CFHY402H SNP had significantly greater eccentric 

fixation compared to non-carriers. Those with two copies of the mutation displayed 

greater eccentricity than either non-carriers or single-copy carriers. The CFH SNP has 

been linked to increased drusen deposition, especially within 500µm of the fovea (Chang 

et al., 2014; C Delcourt et al., 2011). Since drusen are not efficiently removed in AMD, 

they would create permanent damage to the fovea, forcing fixation outward. Additionally, 
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persons carrying two mutated copies of CFH have been shown to have more central 

drusen than single copy carriers or non-carriers (Chang et al., 2014). This reflects the 

results of eccentricity in this study.  

 It has been well documented that visual acuity decreases with increasing 

eccentricity (Provis, Dubis, Maddess, & Carroll, 2013). With this, it is expected that 

fixation stability would decrease as well, though research shows mixed results 

(Greenstein et al., 2008; Reinhard et al., 2007). The current study showed, when all 

subjects were pooled, that increasing eccentricity significantly correlated with poorer 

visual acuity and less stable fixation. When subjects were separated into carriers versus 

non-carriers of CFHY402H, carriers had significantly greater eccentricity, but showed no 

significant difference in visual acuity or fixation stability. Some research has explored the 

plasticity of the oculomotor system in central vision loss and the training of a preferred 

retinal locus. They have shown that fixation stability can be improved and subjects can 

experience gains in reading speed and letter acuity (Nilsson et al., 1998, 2003; Tarita-

Nistor, Gonzalez, Mandelcorn, Lillakas, & Steinbach, 2009), giving support to the old 

adage “practice makes perfect”. Perhaps that is what happened in the case of the 

CFHY402H carriers. CFHY402H contributes to the development of early AMD (Dietzel 

et al., 2014). It is likely that carriers have had eccentric fixation longer and have had more 

practice, reducing the expected discrepancy in visual acuity and fixation stability. 

 Carriers of the ARMS2A69S appear to have poorer visual function in more 

traditional terms (visual acuity and contrast sensitivity). The parameters of visual acuity 

and contrast sensitivity are dependent on the integrity of the photoreceptors themselves. 

Given ARMS2 expression is localized specifically to the photoreceptors (Gatta et al., 

2008; Katta et al., 2009), it makes sense that a mutation in ARMS2 would lead to a 

deficit in photoreceptor function reflected by poorer visual acuity and contrast sensitivity. 

Conclusion 

 The results of this study support what has become common knowledge; 

individuals with AMD have poorer visual function compared to age-matched controls 
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with normal vision. Interestingly, it appears the CFHY402H SNP may influence 

functional vision through structural damage to the central retina, leading to more 

eccentric fixation. Conversely, ARMS2A69S appears to play more of a role in the 

function of photoreceptors over contribution to structural damage. There were no 

significant differences on measures of visual function in terms of carriers versus non-

carriers of the FADS1 T allele. If the FADS1 T allele has an effect on visual function, it 

is likely a subtle one that would require greater numbers of C allele homozygotes to be 

seen. Further research investigating these new hypotheses is required in order to 

definitively establish these links. 
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Chapter 4: Study 3 - Retinal Structure 

 Drusen are one of the primary diagnostic criteria in AMD and have been a topic 

of debate for over 150 years. They are small extracellular deposits of debris located under 

the retina and visible on fundus photos as yellow dots. In 1877, Meyer speculated that 

drusen began at Bruch’s membrane and were due to excretions from the retinal pigment 

epithelium (RPE). He went on to state that they were not only associated with age, but 

also inflammation and the nutritional state of the retina (Loeffler & Lee, 1998; Meyer, 

1877). Despite many research groups having studied drusen, attempting to determine 

their biogenesis and how to eliminate them, over a century later, clinicians and 

researchers are still lacking fundamental information and left searching for answers. The 

most important finding to date is that not all drusen are created equal. Unfortunately, the 

term ‘drusen’ is still used by clinicians, histologists and biochemists alike to describe the 

deposits in Bruch’s membrane despite differing morphology and composition. 

 Most often, drusen are classified clinically through ophthalmoscopy, fundus 

photography and fundus angiography. Drusen can be referred to as hard or soft and size is 

taken into account when considering risk of progression (Bird et al., 1995). The hard type 

of drusen is found in the peripheral retina and occurs with increasing age. They are 

typically < 63µm in diameter, although they can be as large as 125µm if they are flat in 

appearance. The greater the number of hard drusen, the more likely one is to develop the 

soft type. Soft drusen are > 63µm and have more substance to them compared to hard 

drusen (Williams, Craig, Passmore, & Silvestri, 2009). It is speculated that drusen 

deposits contribute to photoreceptor cell dysfunction and death by obstructing the 

exchange of nutrients and debris between the choroid and RPE. Additionally, drusen 

attract inflammatory activity that triggers a cascade promoting apoptosis, cell death and 

choroidal neovascularization (Lotery & Trump, 2007; Luibl et al., 2006). Drusen can also 

be identified by pattern and retinal location - macular versus peripheral (Williams et al., 

2009). One pattern that is often described is that of reticular pseudodrusen (RPD). They 

appear as interlacing yellow ribbons and are external to the RPE compared to other types, 

which are located within the RPE and Bruch’s membrane. RPD are better observed via 

scanning laser ophthalmoscope (SLO), which is not commonly available clinically, 
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compared to fundus photography (Boddu et al., 2014). Other drusen patterns have been 

identified histologically (Anderson et al., 2004, 2002; Hageman et al., 2001) but have yet 

to be identified in vivo. 

 One instrument that has become widely available in clinical settings is the optical 

coherence tomographer (OCT). This technology has evolved such that the resolution and 

sampling rate allows visualization of drusen ultrastructure in vivo. In 2006, ultra-high 

resolution OCT was used to identify three distinct drusen patterns in dry AMD (Pieroni et 

al., 2006). Image resolution in this study was limited due to the nature of the time-domain 

scanning technique at the time. Since then, another study using spectral domain OCT was 

able to identify 17 different drusen patterns. These patterns resulted from the combination 

of subcategories under four different characteristics: drusen shape, internal reflectivity, 

homogeneity and presence or absence of overlying foci. The same study was the first to 

identify drusen with a core on OCT (Khanifar, Koreishi, Izatt, & Toth, 2008). It is 

thought the cores may correspond to vesicles composed of activated complement 

components in histological studies (Anderson et al., 2002; Hageman et al., 2001).  

 The association of the presence of drusen with AMD genotypes has been 

investigated over the last decade. The two most widely discussed mutations contributing 

to AMD are single nucleotide polymorphisms (SNPs), referred to as CFHY402H and 

ARMS2A69S (Edwards et al., 2005; Ersoy et al., 2015; Kortvely et al., 2010). SNPs are 

single base pair changes in a gene sequence. These particular SNPs lead to amino acid 

substitutions in the encoded proteins ultimately affecting protein function. One of these 

mutations is CFHY402H (Edwards et al., 2005; Haines et al., 2005; R J Klein et al., 

2005; Patel et al., 2008). This SNP causes a histidine (H) to tyrosine (Y) substitution in 

the complement factor H (CFH) protein. The second SNP is ARMS2A69S, which is a 

serine (S) to alanine (A) substitution in the protein encoded by age-related maculopathy 

susceptibility gene 2 (Ding et al., 2009; Jakobsdottir et al., 2005). 

 Recent studies are in agreement that CFHY402H and ARMS2A69S contribute to 

the progression of AMD (Edwards et al., 2005; Ersoy et al., 2015; Kortvely et al., 2010; 

Yu, Reynolds, Rosner, Daly, & Seddon, 2012). Some report the CFH SNP as being 
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associated with early drusen formation (Boon et al., 2009; Dietzel et al., 2014; Yu et al., 

2012) and the ARMS2 SNP as contributing to later drusen progression (Dietzel et al., 

2014; Yu et al., 2012). Whether or not these SNPs are linked to the type of AMD, wet 

versus dry, is still unclear (Cheng et al., 2013; Chong et al., 2015; Droz et al., 2008). 

Others have investigated the presence of these SNPs with respect to the location and 

pattern of drusen deposition. Carriers of the ARMS2 SNP have been reported to have a 

higher incidence of RPD, described earlier. Carriers of the same SNP tend to display 

more drusen near choroidal vessels as well (Kortvely et al., 2010; Ueda-Arakawa et al., 

2013). On the other hand, the CFH SNP has had mixed reports with some reporting an 

association with RPD (Edwards et al., 2005; Hageman et al., 2005; Haines et al., 2005; R 

J Klein et al., 2005) and others reporting a lower incidence of RPD (Boon et al., 2009; 

Chong et al., 2015; R T Smith et al., 2011; Ueda-Arakawa et al., 2013) The same SNP 

was associated with cuticular drusen, which appear as a series of small raised subretinal 

deposits not associated with a thickening of Bruch’s membrane (Boon et al., 2009). 

Homozygous carriers of the CFH SNP were found to have greater numbers of central 

drusen, covering just over 50% of the central 500µm radial area of the macula with 

drusen (Chong et al., 2015). CFHY402H has been linked to peripheral drusen as well 

(Droz et al., 2008). 

 Few studies have attempted to link drusen to AMD genotypes through in vivo 

imaging, especially in the detail described by Khanifar et al. Drusen are still best 

characterized through post-mortem histological sections. A 2015 study was able to 

confirm a link between the CFH risk SNP and drusen area, volume, and RPE atrophy 

identified via OCT in an Amish population (Ramana et al., 2015). A link between AMD 

SNPs and the characterisitics of drusen visible on OCT would improve understanding of 

the pathogenesis of AMD and gain some of the fundamental information that is still 

lacking. This study aimed to investigate whether the most common AMD SNPs can be 

linked to drusen ultrastructure as seen on OCT. 
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Methods 

 Participants were recruited from the Montreal Retina Institute and the School of 

Optometry Clinic at the Université de Montréal. Study protocol was approved by Le 

Comité d'éthique de la recherche en santé at the university and followed the tenets of the 

Declaration of Helsinki. All study participants gave signed informed consent prior to their 

participation in the study. 

 Subjects aged 70 years or older and diagnosed with AMD by an ophthalmologist 

or optometrist we recruited for this study. Individuals with comorbid glaucoma, 

neurological disorders or a diagnosis of dementia were excluded.  

 For 10 participants from the patient group, genotyping was conducted as part of a 

previous study (Smailhodzic et al., 2012) by Radboud University Medical Center in 

Nijmegen, Netherlands. The remainder of the patient group and the control group were 

genotyped from saliva samples by Asper Biotech Ltd. in Estonia. 

Retinal Structure 

 Retinal structure was evaluated using fundus photography and the OCT/SLO. 

Mydriadic eye drops were used to dilate pupils. At maximum dilation, colour fundus 

photos were taken using a Canon CR-1 fundus camera. Two optometrists evaluated 

fundus photographs using the Age-related Eye Disease Study (AREDS) grading schema 

(Davis et al., 2005). Fundus photos were also evaluated in terms of AMD type (wet or 

dry), pigment mottling, geographic atrophy, and drusen. Pigment mottling was assessed 

in terms of severity (none, mild, moderate or severe). Geographic atrophy was also 

assessed based on severity. The percentage of the macula affected by geographic atrophy 

was also considered. Drusen were categorized as small, medium or large based on the 

AREDS guidelines. The number of drusen in each size category was approximated into 

the following categories: zero, 1 to 5, 5 to 10, 10 to 25, 25 or more.  

 The Optos OCT/SLO raster scan function was used to take cross sectional images 

of the macular region in each eye. A total of 32 parallel cross-sectional scans are taken 



 75 

from the top of the fundus to the bottom. A custom-made MATLAB program was used to 

identify drusen boundaries and characteristics based on four categories: shape, 

homogeneity, reflectivity and hyper-reflective foci (Table IV). Drusen were measured in 

terms of retinal area in square microns. 

Analysis  

 All calculations were performed using SPSS software, version 20.0 (IBM Corp, 

2011; JASP Team, 2017). Pearson’s correlation was used to compare drusen 

characteristics identified via OCT to AMD characteristics identified via fundus 

photography. Kruskal-Wallis was used to compare SNP zygosity to the mean ranks of 

drusen characteristics. Due to the small sample size, an alpha < 0.1 was considered a 

significant result in statistical tests. 

Results 

 A total of 19 eyes had OCT images viable for labelling. The average area covered 

by drusen per eye was 29,050 square microns in the better eye. Table V shows the 

descriptive statistics per drusen characteristic subcategory. In terms of shape, most fell 

under the concave subcategory (82.2%) followed by convex (13.3%) and then pointy 

(4.47%). Most drusen had a nonhomogeneous nature, with 18.86% having a core. Just 

over half of the drusenoid area was labelled as having high internal reflectivity (54.97%), 

followed by mid-reflectivity (28.41%) and low reflectivity (16.61%). Only a small 

percentage of the drusenoid area was identified as having hyper-reflective foci above the 

druse (13.09%). 

Only 16 eyes had fundus photos clear enough for grading. The frequency 

distribution per AMD grade can be seen in Figure 11. AMD grade determined from 

fundus photography positively correlated with drusen area, drusen of concave and pointy 

shape, drusen of mid and high reflectivity, drusen with nonhomogeneous content, drusen 

with core and drusen with overlying hyperreflective foci from OCT scans. These 

correlations are displayed in Tables VI-VIII. Severity of geographic atrophy was 

positively    
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Table IV. Description of Drusen Characteristics 
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Table V. Descriptive Statistics for Each Drusen Characteristic and Subcategory 
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Figure 11. AMD Grade of Participants. 

A total of 16 eyes had gradable fundus photos. This graph shows the distribution fundus 

photos falling under each AREDS category. The most participants fall into category 1, 

early AMD. The second most populated category is category 4, late AMD, which can be 

geographic atrophy or neovascularization. 

 

  



 79 

Table VI. Correlation of AMD Grade with Drusen Area and Shape 

 

AMD grade showed significant positive correlations with drusen area, and drusen that 

were concave or pointy in shape. This means that eyes with more advanced forms of 

AMD have more drusen and were more likely to have drusen classified as concave or 

pointy in shape. 
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Table VII. Correlation of AMD Grade with Drusen Reflectivity and Foci 

 

AMD grade had significant positive correlations with drusen of high or mid reflectivity 

and the presence of overlying hyperreflective foci. This means eyes with more advanced 

forms of AMD were more likely to have greater numbers of high or mid reflective drusen 

and overlying hyperreflective foci compared to eyes in earlier stages of disease. 

 

 

 

 

 



 81 

Table VIII. Correlation of AMD Grade with Drusen Content 

 

AMD grade had significant positive correlations with drusen of nonhomogeneous content, 

with and without cores. The more AMD had progressed in the eye, the more 

nonhomogeneous drusen it was likely to have.
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 correlated with drusen area, drusen concave in shape, drusen of mid and high reflectivity, 

drusen with nonhomogeneous content and drusen with overlying hyperreflective foci. 

These correlations are displayed in Tables IX-XI. The percentage of the macula already 

covered with geographic atrophy was positively correlated with drusen of mid reflectivity 

and drusen with core (Tables XII and XII). Drusen characteristics visible on OCT did not 

show any significant correlations with drusen size or severity of pigment mottling as 

determined from fundus photos.   

 When CFHY402H zygosity was correlated with drusen OCT characteristics, there 

were significant positive correlations with drusen area, r = 0.411, p = 0.081, and drusen 

of mid reflectivity, r = 0.449, p = 0.054 (Tables XIV-XVI). Kruskal-Wallis showed that 

homozygotes had a greater percentage of their macula affected by geographic atrophy 

compared to other participants, H(2) = 6.603, p = 0.037 (Figure 12).  

 ARMS2A69S zygosity also correlated with drusen of mid reflectivity (r = 0.527, 

p = 0.020), but to a slightly higher degree than CFHY402H. The ARMS2 SNP also 

showed a positive correlation with drusen of homogenous content (r = 0.413, p = 0.079). 

There were no significant correlations between the FADS1 SNP zygosity and drusen 

characteristics. The correlations of drusen characteristics and ARMS2A69S zygosity can 

be seen in Tables XVII-XX. Similarly, Kruskal-Wallis analysis did not show any 

significant trends between the ARMS2 or FADS1 SNPs and drusen characteristics. 

Discussion 

Drusen Characteristics and Genetics 

 Both CFHY402H and ARMS2A69S SNPs correlated with drusen of mid 

reflectivity. A large percentage of drusen were labelled as having mid reflectivity in this 

study, while it was the highest occurring pattern of reflectance reported in Khanifar et al. 

(2008). This leads to speculation that mid reflectivity is related to pathogenesis over low 

reflectivity, which was of low prevalence in the current study and in Khanifar et al, 2008.  
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Table IX. Correlation of GA Severity with Drusen Area and Shape 

 

The severity of GA had significant positive correlations with drusen area and drusen that 

were classified as concave in shape. This means that eyes with more severe GA, had 

more retina covered by drusen and more of those drusen were classified as concave 

compared to eyes with less severe GA. 
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Table X. Correlation of GA Severity with Drusen Reflectivity and Foci 

 

The severity of GA had significant positive correlations with drusen of high and mid 

reflectivity and overlying hyper-reflective foci. Eyes with more severe GA had drusen of 

greater reflectivity and more overlying foci compared to eyes with less severe GA. 
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Table XI. Correlation of GA Severity with Drusen Content 

 

GA severity had a significant, positive correlation with drusen of nonhomogeneous 

content. 
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Table XII. Correlation of Percentage of the Macula Affected by GA with Drusen Area 
and Shape 

 

The percentage of the macula affected by GA was not significantly correlated with drusen 

area or drusen shape, even when p < 0.1 was considered significant. 
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Table XIII. Correlation with Percentage of Macula Affected by GA with Drusen 
Reflectivity and Foci 

 

If p < 0.1 is considered significant, then the percentage of the macula affected by drusen 

showed a significant, positive correlation with drusen of mid reflectivity. 
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Table XIV. Correlation of Percentage of Macula Affected by GA with Drusen Content 

 

If p < 0.1 is considered significant, then the percentage of the macula affected by drusen 

showed a significant, positive correlation with nonhomogeneous drusen possessing a core. 
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Table XV. Correlations of CFHY402H Zygosity with Drusen Area and Shape 

 

When p < 0.10 was considered significant, Pearson’s correlation showed a significant, 

positive trend between CFH SNP zygostiy and drusen area. Individuals with more copies 

of CFHY402H had greater areas of drusen in their better eye. 
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Table XVI. Correlations of CFHY402H Zygosity with Drusen Reflectivity and Foci 

 

When p < 0.10 was considered significant, Pearson’s correlation showed a significant 

positive trend with respect to CFH SNP zygosity and drusen of mid reflectivity. 

Individuals with more copies of CFHY402H had greater areas of drusen with mid 

reflectivity. 
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Table XVII. Correlations of CFHY402H Zygosity with Drusen Content 

 

There were no significant correlations between drusen content and CFHY402H zygosity, 

even when p < 0.10 was considered significant. 
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Figure 12. Percentage of the Macula Affected by GA According to CFHY402H Zygosity. 

This boxplot displays the number of copies of the CFHY402H SNP carried (x-axis) 

versus the percentage of the macula affected by GA (y-axis). Kruskal-Wallis showed a 

significant difference between mean ranks of affected macular area according to CFH 

SNP zygosity, H(2) = 6.603, p = 0.037. Individuals with AMD having two copies of the 

SNP had a greater average percentage of macula affected by GA in the better eye 

compared to those carrying one or no copies of the SNP. 
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Table XVIII. Correlation of ARMS2A69S with Drusen Area and Shape. 

 

There were no significant correlations between ARMS2A69S zygosity and drusen area or 

shape, even when p < 0.10 was considered significant. 
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Table XIX. Correlation of ARMS2A69S Zygosity with Drusen Reflectivity and Foci. 

 

Pearson’s correlation showed a significant, positive trend between ARMS2 SNP zygosity 

and drusen of mid reflectivity. Individuals with more copies of ARMS2A69S had more 

drusen of mid reflectivity. 
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Table XX. Correlations of ARMS2A69S Zygosity and Drusen Content. 

 

When p < 0.10 was considered significant, Pearson’s correlation showed a significant, 

positive trend between ARMS2 SNP zygosity and homogeneous drusen. Individuals with 

more copies of ARMS2A69S had more drusen with homogeneous content. 
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 The ARMS2 SNP was linked to drusen having homogeneous content. Although 

current literature does not speculate as to what the homogeneous content could represent, 

the correlation with ARMS2 suggests it may be drusen consisting mainly of 

photoreceptor material. The SNP could lead to the improper processing and/or turnover 

of photoreceptor components leading to their accumulation in the retina. In order for the 

accumulation to appear homogeneous, it would need to have little else accumulate with it, 

suggesting a homogeneous druse would appear before inflammatory proteins got 

involved. This would explain the low occurrence of homogeneous drusen if they all 

progress to become nonhomogeneous, but this theory does not agree with studies 

suggesting that the involvement of ARMS2A69S occurs in later drusen progression 

(Dietzel et al., 2014; Yu et al., 2012). There is still much speculation concerning ARMS2 

and its actual function. More study of the wild type ARMS2 gene and histological study 

of homogeneous drusen would provide more evidence to support a better hypothesis 

concerning this correlation. 

  It was hypothesized that the presence of CFHY402H would be linked to the 

presence of drusen with core due to the similar structures being identified in histological 

studies. The zygosity of this SNP did not significantly correlate with the presence of 

drusen with core in this sample. This is likely due to the small sample size. An alternative 

theory could be that misfolded complement proteins that occur in drusen do not always 

form vesicular structures resembling the cores seen on OCT. Perhaps, another protein, 

like beta-amyloid, is required for misfolded complement proteins to interact with before 

they can form such an organized structure. If this were the case, it would be more likely 

to see a correlation between the other protein and drusen with core, and CFHY402H 

zygosity and drusen area. This alternative theory is supported by a significant, positive 

correlation between drusen area and CFHY402H zygosity when p < 0.10 was considered 

significant, r = 0.411, p = 0.081. A larger sample size would likely give this result more 

statistical power. Beta-amyloid was not a parameter that was measured in this study, but 

it has been shown to be present in the vesicular structures along with complement 

components (D H Anderson et al., 2004, 2002; Hageman et al., 2001). Currently, 

methods to identify beta-amyloid in vivo are still in their infancy. Recent research on the 
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polarization properties of the protein (Campbell et al., 2015; Hamel et al., 2016) show in 

vivo identification may be possible via two-photon microscopy in the not too distant 

future (Avila et al., 2015). Even more recently, the natural fluorochrome curcumin, was 

formulated to be used as a probe to identify beta-amyloid in vivo through a modified SLO 

(Koronyo et al., 2017). 

 In order to establish if any relationship between the FADS1 SNP and retina 

structure exist, a greater proportion of non-carriers would be required in the sample. This 

would likely be achieved with recruitment outside Quebec given the potential of a 

FADS1 Founder Effect. The current sample has only three participants with AMD and 

without the mutation. The FADS1 SNP could potentially contribute to retinal damage 

through several different mechanisms (described in Chapter 2), making it more likely to 

contribute to several different drusen characteristics.  

Limitations 

 One of the major limitations of this study is sample size. There are a large number 

of drusen characteristics. Each characteristic must be well-defined and have enough eyes 

per subcategory to achieve proper statistical power. A larger proportion of participants 

with dry AMD would have also been helpful in better defining drusen characteristics. Dry 

AMD does not have the confounds of fluid and the scaring that occurs afterwards as is 

the case with wet AMD. Another limitation is intra-user and inter-user reliability in terms 

of labelling. Reliability is currently being established, but the labelling process is labour-

intensive making it difficult to complete for most professionals. Recent research 

(Schlanitz et al., 2015; Schlanitz et al., 2010; Schlanitz et al., 2017) manually segmented 

drusen boundaries, but used an algorithm to label them, cutting down on labour. Sample 

size was also a limiting factor with respect to drusen characteristics. There are a large 

number of drusen patterns that could exist and a large sample size would be required to 

better define them all. 

 Future research will include the use of such algorithms, as well as machine 

learning to minimize labour and improve the accuracy of labelling. The study of drusen 

characteristics via OCT could provide more information than that available through 
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fundus photo grading. OCT images could provide a sub classification system for drusen 

provided characteristics can be correlated to data from biochemical studies based on 

cadaver eyes. Eventually, prospective studies on the characteristics may lead to models 

for prediction of progression to later stages. 

Conclusion 

 The results of this study agree with previous literature showing a link between the 

CFH and ARMS2 risks SNPs, more severe forms of AMD, and drusen (Chong et al., 

2015; Hoffman et al., 2016; Magnusson et al., 2006; Ueda-Arakawa et al., 2013). Both 

SNPs were related to drusen of mid reflectivity suggesting this characteristic may be 

indicative of disease progression. The CFHY402H SNP was not linked to the presence of 

a core within drusen as hypothesized, but this connection cannot be ruled out. 

CFHY402H was linked to drusen area and drusen of nonhomogeneous content, however 

an interaction between CFH and beta-amyloid may be a requirement for the formation of 

nonhomogeneous drusen with core. Recent research shows this may be possible to 

determine in the not too distant future (Avila et al., 2015; Koronyo et al., 2017). 

 Although this study provides some insight on the link between AMD risk 

genotype and retinal structure, it also highlights how much remains unknown about the 

origins of drusen and their progression. There are numerous studies on the genetics of 

AMD and the equivalent on the histopathology and imaging of drusen, but they largely 

remain separate domains. Only better communication among investigators in these 

domains will achieve increased understanding of the mechanism that begins with AMD 

risk SNPs and leads to the formation of drusen, the hallmark of the disease.   
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Chapter 5: Study 4 - Cognitive Function 

 With the aging of the Canadian population, the number of individuals affected by 

Age-related Macular Degeneration (AMD) is on the rise. AMD is presently the leading 

cause of legal blindness in industrialized nations with a prevalence that increases with age 

(R J Klein et al., 2007). This pathology impairs, among others, the ability to read, to 

recognize faces, and to drive, all of which can lead to a decreased quality of life and loss 

of autonomy. To date, AMD is understood to be a degenerative condition with few 

treatment options.  

 In addition to a higher prevalence of AMD, increased aging of the population will 

result in a higher prevalence of age-related cognitive impairment. At present, the World 

Health Organization estimates that approximately 5-7% of the population aged 60 and 

over suffers from cognitive impairment (World Health Organization, 2012b; Wortmann, 

2012), with a large increase in the absolute number of individuals affected predicted with 

the shift in demographics. Cognitive impairment refers to a decrease in a person’s ability 

to remember and think, to the extent that it interferes with the ability to perform daily 

activities. 

 Not only does the prevalence of both AMD and cognitive impairment increase 

with age, there is a growing body of scientific literature linking the two. This started 

around the turn of the millennium with large-scale population-based studies reporting a 

higher prevalence of cognitive impairment among individuals with AMD (Klaver et al., 

1999; Wong et al., 2002). In the first decade of the 2000s, research determining shared 

risk factors and histopathological characteristics began to surface (Anderson et al., 2004; 

L V Johnson et al., 2002; Katta et al., 2009; Terai et al., 2001). Since then, with advances 

in science and technology and the data released from genome-wide association studies 

(GWAS), researchers have developed their abilities to study complex diseases. A 

complex disease is caused by a combination of genetic, environmental and lifestyle 

factors. Characterizing the contribution of a factor to a complex disease is difficult due to 

the factor being obscured or confounded by other contributing factors (Craig, 2008). A 

reasonable place to start is the examination of a genetic factor and the associated 
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phenotype. This association can be transferred into better knowledge of the disease 

mechanism, which is what leads to new or better treatment options.  

 AMD and AD are prime examples of complex diseases. Both have benefitted 

from the information gained from GWAS but have, so far, been studied separately in 

terms of the genetic factors and associated phenotypes. This study aims to investigate the 

AMD-cognitive impairment comorbidity with respect to possible common genetic factors. 

Candidate Genes 

 The similar disease risk factors in AMD and AD and the common histopathology 

lead to the hypothesis that gene mutations may be the starting point of a common 

pathogenesis in these conditions. The first mutation to be associated with AMD was the 

Y402H SNP in CFH. This association was reported by four studies in 2005 (Edwards et 

al., 2005; Hageman et al., 2005; Haines et al., 2005; R J Klein et al., 2005). CFH is the 

gatekeeper for the complement cascade. A mutation impairing its function results in 

increased inflammation.  

 Inflammation was first associated with AD in 1907 by Alzheimer himself 

(Alzheimer, Stelzmann, Schnitzlein, & Murtagh, 1995). In addition, beta-amyloid (βA), 

the hallmark of both AMD and AD has been shown to trigger the complement cascade. 

Considering that complement-driven inflammation and βA are implicated in both AMD 

and AD, the same polymorphisms that infer risk for AMD may also modulate AD risk. 

 Second to CFHY402H, the SNP having the greatest impact on AMD risk is 

ARMS2A69S. Compared to CFH, ARMS2 is not as well characterized. Research to date 

has found that it is expressed in the brain and in the retina (Gatta et al., 2008). It also 

contributes to activation of the complement cascade. A recent study suggests ARMS2 is 

involved in complement-mediated clearance of cellular debris. The A69S SNP causes 

mRNA instability resulting in a deficiency of the protein. Without the ARMS2 protein 

present, the complement cascade is not activated to clean up necrotic cells and unwanted 

debris. This can lead to the formation of drusen and senile plaques (Micklisch et al., 

2017). 
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FADS1 and Cognitive Health 

 To date, FADS1 rs174547 has not been investigated as a factor involved in both 

AMD and AD. The role of this SNP in AMD was discussed in Chapter Two. In terms of 

AD, the condition of the FADS1 gene product is important for the structural integrity of 

the brain. Approximately half of the brain’s dry mass is composed of omega-3 PUFAs, 

the lipids that depend on FADS1 for their biosynthesis, and approximately 90% of this is 

DHA (Weiser, Butt, & Mohajeri, 2016). DHA is used in the phospholipid membranes of 

brain cells and also serves as a precursor for bioactive molecules required for brain 

function (Freemantle, Lalovic, Mechawar, & Turecki, 2012). It is enriched at synaptic 

terminals and changes in its concentration can affect cellular characteristics and 

physiological processes such as neurotransmitter release, signal transduction, 

neuroinflammation and neuronal differentiation and growth (Orr & Bazinet, 2008; Uauy 

& Dangour, 2006).  

 Altered brain PUFA content has been implicated in cognitive, psychiatric and 

neurodegenerative disorders (Fraser, Tayler, & Love, 2010; McNamara, Liu, Jandacek, 

Rider, & Tso, 2008; Muldoon et al., 2010). A study measuring dietary intake of DHA 

showed that baseline levels positively correlated with larger volumes of gray matter and 

better declarative memory performance (Titova, Sjögren, Brooks, & Benedict, 2013). An 

observational study relying on blood DHA levels over dietary intake suggested a positive 

correlation between DHA concentration and cognition in healthy adults (Muldoon et al., 

2010). Further, a 5-year prospective longitudinal study showed that a decline in MMSE 

scores was negatively correlated with DHA levels (van Gelder, Tijhuis, Kalmijn, & 

Kromhout, 2007). This led researchers to theorize that lower levels of DHA are 

associated with unfavourable cognition (Freemantle et al., 2012; Lassek & Gaulin, 2011). 

When this theory was applied to treatment, it was found that adults with mild memory 

complaints supplemented with DHA and EPA showed improvement episodic memory 

(Yurko-Mauro et al., 2015). A randomized controlled trial in healthy older adults found 

improvements in executive function, white matter integrity, and neurovascular function 

as well as increases in gray-matter volume when supplemented with DHA over a period 

of 26 weeks (Weiser et al., 2016). The Alzheimer’s Disease Neuroimaging Initiative Trail 
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also found significant correlations between fish oil supplementation and lower levels of 

brain atrophy in the hippocampus and cortical brain matter in patients (Hebert, Weuve, & 

Evans, 2013). 

 The hallmark neuropathologies of AD are the βA plaques seen on post-mortem 

examination. βA plaques limit brain plasticity, promoting the loss of memory by 

increasing inflammation via activated microglia and higher levels of pro-inflammatory 

cytokines (Weiser et al., 2016). In vitro studies have shown that DHA inhibits the 

interaction of β-secretase with APP, essentially stopping the formation of βA aggregates. 

β-secretase is the enzyme that processes APP to form βA, which cannot be cleared by 

microglia. The prevention of this interaction decreases the formation of βA and 

stimulates microglia to properly phagocytize APP products (Grimm et al., 2011; Hjorth et 

al., 2013).  

Limitations of Recent Studies 

 A number of studies have reported an association between AMD and cognitive 

impairment. However, these studies have been limited regarding the evaluation of 

cognitive impairment. Some studies have used subscales of neuropsychological scales, 

such as the Wechsler Adults Intelligence Scale to assess cognitive function (AREDS 

Research Group, 2006). Alone, these subscales cannot be used to reach a clinical 

diagnosis of cognitive impairment. Many studies used the MMSE and found an 

association of cognitive impairment with late AMD, but not early AMD (Baker et al., 

2009). There is evidence of this test not being sensitive to MCI (Dag et al., 2014; Hoops 

et al., 2009; Nasreddine et al., 2005). As a result, it is possible that earlier stages of AMD 

could be associated with milder cognitive impairment too subtle to be detected by the 

MMSE. 

 This study aimed to overcome these limitations by using the MMSE as well as the 

MoCA, which has been shown to be able to identify cases of MCI not detected by the 

MMSE (Dag et al., 2014). Additionally, psychophysical measures were incorporated to 

measure the processing ability of the brain that can affect visual perception.  
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Methods 

 Participants were recruited from the Montreal Retina Institute and the School of 

Optometry Clinic at the Université de Montréal. The study protocol was approved by Le 

Comité d'éthique de la recherche en santé at the Université de Montréal and followed the 

tenets of the Declaration of Helsinki.  All study participants gave signed informed 

consent prior to their participation in the study. 

 Subjects aged 70 years or older and diagnosed with AMD by an ophthalmologist 

or optometrist were recruited for this study. Individuals with comorbid glaucoma, 

neurological disorders, or a diagnosis of dementia were excluded. The control group also 

consisted of participants aged 70 years or older. They were required to have normal, 

healthy retinas. Exclusion criteria included retinal disease, glaucoma and diagnosed 

cognitive problems. 

 For 10 participants from the patient group, genotyping was conducted as part of a 

previous study (Smailhodzic et al., 2012) by Radboud University Medical Center in 

Nijmegen, Netherlands. The remainder of the patient group and the control group were 

genotyped by targeted mutation analysis from saliva samples by Asper Biotech Ltd. in 

Estonia. 

Cognitive Assessment  

 Cognitive testing incorporated a combination of two questionnaires, (the Mini-

Mental State Exam (MMSE) and the Montreal Cognitive Assessment (MoCA), and 

psychophysical testing (the NeuroMinder and Neurotracker). 

 The MMSE is a brief test that screens for cognitive impairment. It is typically 

used to detect dementia, estimate severity of cognitive impairment, and monitor cognitive 

changes over time. It covers a number of categories including orientation to time and 

place, repeating lists of words, simple arithmetic, language use and comprehension, and 

basic motor skills. Customized versions of the MMSE exist. A version tailored to the 
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visually impaired population was used. (See Appendix C for a copy of the MMSE 

questionnaire and scoring instructions.) 

 The MoCA is used to screen for mild cognitive impairment. It covers several 

different cognitive aspects. The short-term-memory recall task involves two learning 

trials of five nouns and delayed recall after approximately 5 minutes. Multiple aspects of 

executive function are assessed using an alternation task, a phonemic fluency task, and a 

two-item verbal abstraction task. Attention, concentration and working memory are 

evaluated using a sustained attention task (target detection using tapping), a serial 

subtraction task and digits forward and backward. Language is assessed using a three-

item naming task with low-familiarity animals (ex. lion, camel, rhinoceros) and repetition 

of two syntactically complex sentences. Finally, orientation to time and place is evaluated. 

A version of this questionnaire has also been modified for the visually impaired 

population. (See Appendix C for the version of the MoCA used and the corresponding 

scoring instructions.) 

 The NeuroMinder by Cognisens, is a psychophysical tool used to study the subtle 

effects of cognitive impairment as it relates to vision. It is used to measure mild 

perceptual impairment (MPI), the precursor to mild cognitive impairment (MCI). It was 

used to examine perceptual-cognitive skills such as perceptual processing and working 

memory capacity for visual stimuli. The Neurominder uses a series of gratings to 

calculate a perception threshold for first-order (FO) and second-order (SO) stimuli. A 

higher threshold score would indicate poorer perception. The tool has been used to 

evaluate second-order perceptual processing in athletes and in older adults compared to 

younger adults (Faubert, 2002; Habak & Faubert, 2000). Deficits in second-order 

processing are thought to be one of the initial signs of MCI (Habak & Faubert, 2000). 

These deficits are so subtle that they would not be identified by traditional questionnaires.  

 The Neurotracker was used to examine perceptual-cognitive skills such as 

awareness, focus and decision-making. It involves following targets through dynamic 

motion across a wide 3D projection. The Neurotracker uses a 3D multiple-object tracking 

(3DMOT) task. Briefly, the task requires participants to view 8 spheres inside a virtual 
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cube and to track the movement of three of them over 10 seconds. The spheres move on 

linear trajectories, colliding with one another and with the walls of the virtual cube. More 

details are discussed in Legault et al. (2012). The 3DMOT speed threshold protocol was 

used as an output measure (Faubert & Sidebottom, 2012). A higher speed threshold 

indicates better performance. 

Analysis 

 The Mann-Whitney U test was used to compare the resultant ranks of cognitive 

measures between the AMD group and the control group. The same test was also used to 

compare means between carriers and non-carriers of each SNP of interest. Kruskal-Wallis 

was used to compare the results of cognitive tests across zygosity for each SNP. All 

calculations were conducted using SPSS software, version 20.0. and JASP version 0.8.1.2 

(IBM Corp, 2011; JASP Team, 2017). 

Results 

 The AMD group consisted of 21 individuals (4M, 17F) with an average age of 

78.9 years (range: 71-92). The control group consisted of 18 individuals (6M, 12F) with 

an average age of 74.1 years (Range: 70-85). Descriptive statistics were presented in 

Chapter 2.  

 Genetic testing determined that there were 21 carriers of CFHY402H with 17 

being homozygous. Of the AMD group, 10 were carriers with five of them being 

homozygous. There were also 21 carriers of ARMS2A69S with six being homozygous. 

Of the AMD group, 12 were carriers including nine homozygotes. See Chapter 2 for 

genetic distributions.  

Cognitive Questionnaires 

 All 39 participants completed the MMSE. Two participants scored in the range of 

mild impairment. Those participants were both from the AMD group. One of them was 

heterozygous for the ARMS2A69S and homozygous for the FADS1 SNP while the other 

was homozygous for the FADS1 SNP. 
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 There were 13 individuals scoring in the range of MCI according to the MoCA. 

There were eight from the AMD group (38.1%) and five from the control group (27.7%). 

Although more individuals from the AMD group scored positive for MCI, the average 

score between groups was not significantly different, t(37) = -1.197, p = 0.239 and U = 

150.0, p = 0.273. The range of scores between groups did differ. From the control group, 

four of the five scored 25 points, one point below the normal range. The fifth individual 

scored 24 points. The eight from the AMD group had a broader range in scores from 20 

to 25. 

 Although the average MoCA scores did not differ between the AMD group and 

controls, the subscales they had difficulty with did. Those from the control group scoring 

positive for MCI had significantly lower scores on the delayed recall subscale compared 

to those from the same group who passed, U = 2.5, p = 0.002. Comparatively, those from 

the AMD group with MCI scored significantly poorer on delayed recall, U = 14.5, p = 

0.005, in addition to the orientation, U = 37.5, p = 0.034, and abstraction, U = 24.5, p = 

0.007, subscales of the MoCA compared to the rest of the AMD group. 

 When scores for the blind version of the MoCA were calculated, the number of 

individuals scoring in the MCI range decreased from 13 to 10. Only one of these three 

individuals had AMD. Results changed little for the AMD group with 33.3% scoring 

positive for MCI on the MoCA Blind, while there was an improvement for the control 

group with 16.7% scoring positive for MCI. See Table XXI and Figure 13 for details of 

the results of the cognitive questionnaires. 

 The CFHY402H SNP was carried by seven of the 13 who scored below normal 

on the MoCA. Two of them were homozygotes, neither of which had AMD. Scores 

obtained by carriers and non-carriers of CFHY402H were not significantly different. In 

terms of the subscales, carriers of the SNP had significantly lower scores on only the 
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Table XXI. Cognitive Questionnaire Results 

AMD 
Group 

MoCA  MoCA 
Blind 

MMSE Control 
Group 

MoCA MoCA 
Blind 

MMSE 

AMD001 27 19 30 CTRL001 30 22 30 
AMD002 25* 17* 28 CTRL002 29 21 30 
AMD003 24* 16* 29 CTRL003 27 19 27 
AMD004 28 20 29 CTRL004 24* 17* 28 
AMD005 24* 17* 29 CTRL005 26 19 27 
AMD006 27 19 26 CTRL006 29 22 30 
AMD007 20* 14* 24* CRTL007 29 21 30 
AMD009 25* 18 25* CRTL008 29 21 30 
AMD010 26 18 29 CRTL009 28 20 30 
AMD011 27 20 27 CRTL010 25* 17* 27 
AMD012 30 22 30 CTRL011 29 22 30 
AMD013 30 22 30 CTRL012 25* 17* 30 
AMD014 29 21 30 CTRL013 30 22 30 
AMD015 28 21 30 CTRL014 27 19 30 
AMD016 28 20 29 CTRL015 25* 19 30 
AMD017 28 22 29 CTRL016 25* 18 30 
AMD018 24* 16* 27 CTRL017 29 22 30 
AMD019 28 22 29 CTRL018 30 22 30 
AMD020 29 22 30     
AMD022 30 22 30     
AMD023 22* 16* 29     

* participants scoring positive for MCI 

Note: The MoCA is scored out of 30, with scores below 26 considered in the range of 

MCI. The MoCA Blind is scored out of 22 with scores below 18 considered in the range 

of MCI. The MMSE is scored out of 30 with scores below 25 considered in the range of 

cognitive impairment. See Appendix C for further details of questionnaires and scoring. 
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Figure 13. The Results of the MoCA: AMD Group vs. Control Group 

The independent Student’s t test showed no significant difference between mean MoCA 

scores of the AMD group versus the control group. The same was true when the 

nonparametric Mann-Whitney U test (MWU) was used to compare mean ranks. The box 

plot displays the AMD group (1) and control group (2) on the x-axis versus the MoCA 

score on the y-axis.   
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language subscale, H = 6.27, p = 0.044. The effect was more pronounced in carriers with 

AMD. 

 The ARMS2 SNP was carried by five of the individuals who scored below the 

normal range on the MoCA. They were all heterozygous for the SNP, with four of them 

being from the AMD group and one from the control group. MoCA scores did not 

significantly differ between carriers and non-carriers of ARMS2A69S. The same was true 

for subscale scores. 

 All 13 of those scoring positive for cognitive impairment on the MoCA were 

carriers of the FADS1 SNP. Seven of the eight from the AMD group with MCI were 

homozygotes, while three of the five from the control group were homozygotes. Kruskal-

Wallis showed that homozygous carriers of the FADS1 SNP had lower cognitive scores 

compared to heterozygous carriers and non-carriers, H = 8.52, p = 0.014. Homozygotes 

with AMD had particular difficulty on the language and abstraction subscales. 

Neurominder and 3DMOT 

 There were no significant correlations between the Neurominder or 3D-MOT 

results and results of the cognitive questionnaires. There were also no correlations with 

age. The Mann-Whitney U test showed no significant differences between Neurominder 

or 3D-MOT thresholds and carrier status of any of the SNPs of interest. However, when 

zygosity was considered, scores on FO orientation and direction thresholds as measured 

by the Neurominder significantly differed with respect to ARMS2 SNP zygosity, F(2,34) 

= 3.479, p = 0.042 and F(2,34) = 5.230, p = 0.010, respectively. Non-carriers had lower 

detection thresholds, indicating better performance on the test compared to heterozygotes 

or homozygotes, who had the highest thresholds (Figures 14 & 15). 

 Independent Student’s t tests and Mann-Whitney U tests showed significant 

differences between the performance of individuals in the AMD group and controls on 

both the Neurominder and 3D-MOT. The control group had significantly lower detection  
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Figure 14. FO Direction and ARMS2A69S Zygosity. 

One-way ANOVA showed a significant difference between FO direction perception 

thresholds based on ARMS2A69S zygosity. Post-hoc analysis determined homozygotes 

had a significantly higher detection threshold (poorer score) compared to non-carriers. 

The graph plots zygosity along the x-axis versus the log threshold of perception for FO 

direction. The bars display the standard error for non-carriers (0), heterozygotes (1) and 

homozygotes (2). 
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Figure 15. FO Orientation and ARMS2A69S Zygosity. 

One-way ANOVA showed a significant difference in FO orientation perception 

thresholds based on ARMS2A69S zygosity. Post-hoc analysis determined homozygotes 

had a significantly higher detection threshold (poorer score) compared to non-carriers and 

herterozygotes. The graph plots zygosity along the x-axis versus the log threshold of 

perception for FO orientation. The bars display the standard error for non-carriers (0), 

heterozygotes (1) and homozygotes (2). 
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thresholds for first order direction (Figure 16), t(37) = 4.282, p < 0.001 and U = 324.5, p 

< 0.001, and orientation (Figure 17), t(37) = 3.058, p = 0.004 and U = 292.0, p = 0.004, 

stimuli compared to the AMD group. The same was true for second order direction 

(Figure 18), t(37) = 3.336, p = 0.003 and U = 296.5, p = 0.003, and orientation (Figure 

19), t(37) = 2.950, p = 0.005 and U = 279.5, p = 0.011, stimuli. The speed threshold on 

the 3D-MOT was significantly higher for the control group than for the AMD group 

(Figure 20), t(37) = -3.963, p < 0.001 and U = 50.5, p < 0.001. 

Discussion 

 The results of this study supported with those of Dag et al. (2014) showing that 

the MoCA is more sensitive to cases of MCI than the MMSE. Most of the participants 

had nearly perfect scores on the MMSE while there was greater variation on the MoCA. 

When scores on the original MoCA were compared to their MoCA Blind scores, there 

was not a lot of change in terms of those from the AMD group that passed or failed. This 

was surprising, since a study on the sensitivity and specificity of the MoCA Blind 

determined that removing the visual items resulted in a better specificity for detecting 

MCI (Wittich et al., 2010). This is likely due to sampling. The current sample was 

recruited from retina practices and optometry clinics, resulting in a wider range of visual 

acuities and fixation stabilities. Wittich and his colleagues recruited their sample from a 

rehabilitation centre requiring its clients to have a visual acuity of 20/60 in the better eye. 

It would be useful to determine at which visual acuity the MoCA Blind is more accurate. 

Also, fixation stability may be a factor to consider in whether the visual components of a 

cognitive questionnaire should be used in evaluating someone with vision impairment 

given that it has an impact on activities of daily living such as face recognition (Seiple et 

al., 2013), reading speed (Seiple et al., 2005) and eye-hand coordination (Timberlake et 

al., 2008). 

The percentage of those with AMD who did not pass the MoCA was in agreement 

with previous studies (Duponsel et al., 2010; Wittich, Murphy, & Mulrooney, 2014) at 

38.1%. The percentage of controls scoring positive for MCI on the MoCA (27.7%) was 
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Figure 16. FO Direction Results from the Neurominder. 

An Independent Student’s t Test showed a significant difference in mean perception 

thresholds for FO direction thresholds between the AMD group and control group. This 

result remained unchanged when the nonparametric Mann-Whitney U test was used to 

compare mean ranks. The AMD group had a higher detection threshold (poorer score) 

compared to the control group. The boxplot displays the log perception threshold for FO 

direction (y-axis) for the AMD group (1) and control group (2).   
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Figure 17. FO Orientation Results from the Neurominder. 

An Independent Student’s t test showed a significant difference in mean FO orientation 

perception thresholds between the AMD group and the control group. The Mann-

Whitney U test results were in agreement. The AMD group had a higher detection 

threshold (poorer score) compared to the control group. The boxplot displays the average 

log perception threshold for FO orientation (y-axis) for the AMD group (1) and control 

group (2).  
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Figure 18. SO Direction Results from the Neurominder. 

An Independent Student’s t test showed a significant difference in mean SO direction 

perception thresholds between the AMD group and the control group. The Mann-

Whitney U test of mean ranks supported this result. The AMD group had a higher 

detection threshold (poorer score) compared to the control group. The boxplot displays 

the average log perception threshold for SO direction (y-axis) for the AMD group (1) and 

control group (2).  
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Figure 19. SO Orientation Results from the Neurominder 

An Independent Student’s t test showed a significant difference in mean SO orientation 

perception thresholds between the AMD group and the control group. The Mann-

Whitney U test was in agreement with this result. The AMD group had a higher detection 

threshold (poorer score) compared to the control group. The boxplot displays the log 

perception threshold for SO orientation (y-axis) for the AMD group (1) and control group 

(2).  
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Figure 20. 3DMOT Results in the AMD Group vs. Control Group 

An Independent Student’s t test showed a significant difference in mean 3DMOT 

threshold speeds between the AMD group and the control group. The Mann-Whitney U 

test also supported this. The AMD group had a lower speed threshold (poorer score) 

compared to the control group. The boxplot displays the log perception threshold for 

correction identification on the 3DMOT (y-axis) for the AMD group (1) and control 

group (2).  
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high compared to MCI prevalence reported elsewhere (Gauthier et al., 2006; Lopez et al., 

2003). This is likely due to sampling error and would be lower in a larger sample. In 

addition to size, another limitation related to the sample is the character of the individuals 

who are likely to volunteer for such a study. Given the specialized equipment this 

research required, testing had to be conducted onsite. This was a factor in the decision of 

whether or not to participate for many individuals. Those less confident in their 

independence and mobility were more likely to decline participation causing a potential 

bias in the sample. Although a decline due to cognitive impairment would affect the 

groups equally, this bias would likely be stronger in the AMD group due to the 

confounding factor of functional vision impairment. This bias could be overcome by 

using portable equipment should it ever become available. 

MoCA scores were not significantly different between the AMD group and the 

control group, but the groups did differ on which subscales were difficult for them. Those 

from the control group who did not pass the MoCA had difficulty with delayed recall, 

which is typical of an MCI diagnosis. Not all cases of MCI progress to AD. Prospective 

research has shown that cases of MCI presenting with deficits in memory in addition to 

deficits in other cognitive domains are more likely to convert to AD (Summers & 

Saunders, 2012). Those with AMD who did not pass the MoCA had difficulty on the 

delayed recall subscale in addition to orientation and abstraction. This leads to the 

hypothesis that those with AMD scoring positive for MCI on the MoCA may be at a 

higher risk of developing AD compared to controls. Prospective studies would have to be 

conducted to confirm this. 

 The CFHY402H and ARMS2A69S SNPs appeared not to have an impact on the 

results of cognitive questionnaires, as MoCA scores were not significantly different 

between carriers and non-carriers. Conversely, all participants scoring positive for MCI 

on the MoCA were carriers of FADS1 rs174547 with homozygotes having the lowest 

scores. This finding supports the biochemical research discussed in the introduction. The 

presence of the rs174547 SNP increases delta-5 desaturase activity which, in turn, 

reduces DHA (Cakiner-Egilmez, 2008; Fauser et al., 2011; Hellstrand et al., 2012; 

Merino et al., 2011), a vital component for brain structure and cognition (Freemantle et 
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al., 2012; Lassek & Gaulin, 2011; van Gelder et al., 2007). A direct link should still be 

established, but these results support the theory of FADS1 rs174547 playing a role in 

cognitive impairment. 

 In terms of the psychophysical measures, the control group outperformed the 

AMD group on every parameter. This was expected as vision obviously plays a role in 

the measurement of visual perception. (The aspects of vision that affected the AMD 

group’s performance will be discussed in a later chapter.) Interestingly, there were no 

significant differences on Neurominder or Neurotracker scores based on those who 

passed or failed the MoCA. When the AMD group and control group were analysed 

separately, there was still nothing of interest to report for the AMD group, but the control 

group showed significant correlations between MoCA score and 3DMOT log speed 

threshold and SO orientation log threshold. In other words, control subjects with better 

MoCA scores were able perform better on the 3DMOT task and detection of SO 

orientation on the Neurominder. 

 Carriers of the ARMS2A69S SNP appear to have poorer performance on the FO 

detection tasks from the Neurominder, especially homozygotes. The FO tasks were based 

on the modulation of contrast in the gratings presented to the participant. Contrast 

sensitivity typically depends on the integrity of photoreceptors in the retina. 

Photoreceptor dysfunction due to the presence of the ARMS2 SNP could account for the 

poor performance of homozygous carriers. Expression studies on ARMS2 have localized 

the gene product to the photoreceptors (Gatta et al., 2008). Although its exact function is 

still under investigation, the A69S SNP is thought to prevent the production of the 

ARMS2 gene product.  

Conclusion 

 Although the prevalence of MCI among those with AMD was not much higher 

than controls in this sample, the prevalence is higher than that reported in other normally-

sighted populations (Gauthier et al., 2006). Additionally, those with AMD scoring 

positive for MCI according to the MoCA had difficulty with different cognitive domains 
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compared to controls scoring positive for MCI. This distribution of cognitive impairment 

indicates that those with AMD and MCI may be more likely to progress to AD than 

controls with MCI. 

Psychophysical measures of perception like the Neurominder and 3DMOT appear 

to provide more insight on cognitive impairment in healthy older adults as their 

performance correlated with outcomes from cognitive questionnaires. Measures like these 

are too dependent on visual information to provide accurate insight on the cognitive 

status of individuals with AMD. This is evidenced by the differences in performance of 

the AMD group versus the controls and the lack of correlation between performance and 

cognitive questionnaire scores in the AMD group. 

No significant relationships between the most prominent AMD SNPs, 

CFHY402H and ARMS2A69S, and MCI were identified, giving support to previous 

claims that although AMD and AD have many similarities, the underlying genetic 

mechanisms are different (Proitsi et al., 2012). Findings were different for the FADS1 

SNP. Carriers, both with and without AMD, were more likely to have lower cognitive 

scores compared to non-carriers. Further, all those scoring positive for MCI according to 

the MoCA were homozygous for the FADS1 SNP. These results suggest FADS1 

rs174547 may be a better focus for better understanding any common genetic mechanism 

in the AMD-MCI co-morbidity. 
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Chapter 6: Study 5 - Retinal Structure, Visual Function, and Cognition 

 A growing body of literature has been reporting a co-occurrence of visual and 

cognitive impairment (Baker et al., 2009; Boxerman et al., 2015; Harrabi et al., 2015; 

Pham et al., 2006; Whitson et al., 2010; T. Y. Wong et al., 2002). Researchers in the field 

of low vision rehabilitation have had to adapt cognitive measures to accommodate vision 

impairment (Busse et al., 2002; Nasreddine et al., 2005) and conversely, low vision 

rehabilitation programs are being designed to take cognitive impairment into account 

(Whitson et al., 2011, 2013). Several studies have investigated the ocular manifestations 

of cognitive impairment, either to better define the visual complaints from AD patients or 

in search for biomarkers for a definitive diagnosis. 

Researchers testing functional vision in AD patients have identified a reduced 

adaptive reflex in response to light. Idiaquez and colleagues found a smaller resting pupil 

diameter, a smaller darkness reflex amplitude and a slower dilation velocity in individuals 

with AD (Idiaquez, Alvarez, Villagra, & San Martin, 1994). A later study investigated 

pupillary response to Tropicamide in AD, Parkinson’s disease and control. The effect of 

Tropicamide was not significantly different between groups, however, they did find that 

peak constriction amplitude to the pupillary light reflex was significantly reduced in both 

disease groups. Further, the peak constriction amplitude significantly correlated with the 

severity of dementia in the AD group (Granholm et al., 2003).  

Some research groups were more focused on ocular anatomy. A 2010 study used 

a scanning laser ophthalmoscope (SLO) to observe changes in the optic nerve head of 

patients with Alzheimer’s disease (AD) compared to controls. They reported a decrease 

in the volume and area of the neuroretinal rim and a higher cup to disc ratio in the AD 

group compared to controls (Hinton et al., 2010). These findings led the research team to 

hypothesize that AD was associated with decline in optic nerve fibers passing through the 

optic nerve head into the brain. This hypothesis is supported by earlier reports of optic 

disc cupping and pallor (Danesh-Meyer et al., 2006; Hinton et al., 1986, 2010).  
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Since beta-amyloid, better known as the hallmark of AD, was identified as a 

component of some drusen in AMD (Dentchev et al., 2003; L V Johnson et al., 2002), 

there has been a greater focus on the retina being a link between AMD and AD. Changes 

in the retinal nerve fiber layer (RNFL) were examined in AD patients versus controls. 

Although some studies report no differences in RNFL thickness between individuals with 

AD and age-matched controls (Kergoat, Kergoat, Justino, Chertkow, et al., 2001), many 

found a significant thinning in the RNFL of those with AD (Iseri et al., 2006; Parisi et al., 

2001). Others reported similar results including a MCI group, which had greater RNFL 

thickness compared to the AD group, but still thinner than controls (Kesler et al., 2011; 

Paquet et al., 2007). Based on post-mortem histological findings (J C Blanks et al., 1981, 

1987; Hinton et al., 1986), it is thought this decrease in thickness is due to retinal 

ganglion cell degeneration (Danesh-Meyer et al., 2006). 

More recently, researcher have been attempting to find a way of identifying beta-

amyloid in the live retina. A Canadian research group has been attempting to identify the 

spectral signature of beta-amyloid through two-photon microscopy (Avila et al., 2015; 

Campbell et al., 2015; Hamel et al., 2016) while an American group used a curcumin 

formulation to image beta-amyloid in vivo in rats (Koronyo-Hamaoui et al., 2011). The 

latter group recently published a proof of concept trial in humans. They were able to 

visualize the load and distribution of beta-amyloid in the retina via OCT, but found no 

correlation between retinal amyloid index and Mini Mental State Exam Scores.  

 The aim of this section of the study was to reinforce the connections drawn 

between AMD, the retina, and cognitive impairment through the presence of drusen. This 

was accomplished through the use of functional vision parameters such as fixation 

stability and eccentricity, which are now standard in the evaluation of visual function in 

AMD and more sensitive cognitive measures than that of the MMSE. There was an 

attempt to establish links between drusen characteristics observed on OCT and cognitive 

impairment without the use of specialized equipment that is unavailable clinically, or 

fluorochromes used in other studies. 
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Methods 

 Participants were recruited from the Montreal Retina Institute and the School of 

Optometry Clinic at the University of Montreal. Study protocol was approved by Le 

Comité d'éthique de la recherche en santé at the Université de Montréal and followed the 

tenets of the Declaration of Helsinki.  All study participants gave signed informed 

consent prior to their participation in the study. 

 Subjects aged 70 years or older and diagnosed with AMD by an ophthalmologist 

or optometrist were recruited for this study. Individuals with comorbid glaucoma, 

neurological disorders or a diagnosis of dementia were excluded. The control group 

consisted of participants aged 70 years or older. They were required to have normal, 

healthy retinas. Exclusion criteria included retinal disease, glaucoma and diagnosed 

cognitive problems. 

Visual Function 

 Visual function was evaluated using a variety of parameters. This included 

distance visual acuity, contrast sensitivity, colour vision, retinal sensitivity, location of 

fixation and fixation stability. (See Appendices B - D for further description.)   

 Retinal sensitivity was measured using the microperimetry function of the Optos 

Optical Coherence Tomographer/Scanning Laser Ophthalmoscope (OCT/SLO). A polar 3 

12° grid was centred on the fovea. The stimulus was equivalent to a Goldman III with 

200ms projection time. A 4-2 strategy was used with an automatic eye tracker to 

compensate for eye movements.  

 Fixation stability was measured using the SLO function that uses confocal 

scanning laser microscopy to view the retinal surface in real time. The operator is able to 

view a participant’s retina as he/she looks at a projected image. This allows identification 

of the location of fixation on the retina and its stability.  
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 The fixation stability task required the participant to gaze as steadily as possible at 

a target for a period of 20 seconds with a sampling rate of 4Hz. The final output of this 

test was the superimposition of all the photos taken during the 20-second time frame. In 

the case of stable fixation, the target crosses are clustered together on the retina while 

unstable fixation would display the crosses spread out. Fixation stability was quantified 

using a bivariate contour ellipse area (BCEA). This is the area in which 95% of the target 

crosses are located, measured in square degrees. A smaller area was indicative of better 

fixation stability. 

 The location of fixation or preferred retinal locus (PRL) was determined using the 

results of the fixation stability test with the retinal topography function of the OCT/SLO.  

Retinal topography measures the volume of the retinal layers. Such a scan allows the 

identification of the anatomical fovea. Once the fovea is located, the image can be 

superimposed over the result of the fixation test and the distance between the anatomical 

fovea and the PRL can be measured. 

Retinal Structure 

 Retinal structure was evaluated using fundus photography and the OCT/SLO. 

 Colour fundus photos were taken using a Canon CR-1 fundus camera. Two 

optometrists evaluated photos using the Age-related Eye Disease Study (AREDS) 

grading schema. 

 The Optos OCT/SLO raster scan function was used to take cross sectional images 

of the retina in each eye. A total of 32 parallel cross-sectional scans are taken from the 

top of the fundus to the bottom. Raster scans were used to identify drusen characteristics 

based on four categories: shape, homogeneity, reflectivity and hyper-reflective foci. 

 MATLAB was used to measure drusen area and tally the number of drusen falling 

under each characteristic category and subcategory. 
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Cognitive Assessment 

 Cognitive testing incorporated a combination of questionnaires (the Mini-Mental 

State Exam (MMSE) and the Montreal Cognitive Assessment (MoCA) and 

psychophysical testing (Neurominder and Neurotracker). 

 The MMSE is a brief test that screens for cognitive impairment. It is typically 

used in medicine to detect dementia, estimate severity of cognitive impairment and 

monitor cognitive changes over time. It covers a number of categories including 

orientation to time and place, short-term memory, simple arithmetic skills, language use 

and comprehension, and basic motor skills.  

 The MoCA is used to screen for mild cognitive impairment. It also covers several 

different cognitive aspects. The short-term memory recall task involves two learning 

trials of five nouns and delayed recall after approximately 5 minutes. Multiple aspects of 

executive functions are assessed using an alternation task, a phonemic fluency task, and a 

two-item verbal abstraction task. Attention, concentration and working memory are 

evaluated using a sustained attention task (target detection using tapping), a serial 

subtraction task and digits forward and backward. Language is assessed using a three-

item naming task with low-familiarity animals (ex. lion, camel, rhinoceros) and repetition 

of two syntactically complex sentences. Finally, orientation to time and place is evaluated. 

A version of this questionnaire has also been modified for the visually impaired 

population. 

 The Neurominder by Cognisens, is a psychophysical tool used to study the subtle 

effects of cognitive impairment as it relates to vision. It is used to measure mild 

perceptual impairment (MPI), the precursor to mild cognitive impairment (MCI). It was 

used to examine perceptual-cognitive skills such as perceptual processing and working 

memory capacity for visual stimuli. The Neurominder has been used to evaluate second-

order perceptual processing in athletes and in older adults compared to younger adults. 

Deficits in second-order processing are thought to be one of the initial signs of MCI 

(Faubert, 2002; Habak & Faubert, 2000). These deficits are so subtle that they would not 

be identified by traditional questionnaires. 
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 The Neurotracker was used to examine perceptual-cognitive skills such as 

awareness, focus and decision-making. It involves following targets through dynamic 

motion across a wide 3D projection. (See Appendix C). 

Analysis 

 Pearson’s correlation was used to compare continuous and interval data in visual 

function, retinal structure, and cognitive function.  

Results 

Visual Function – Cognitive Measures 

 When cognitive parameters were compared to those of visual function, Pearson’s 

correlation showed a significant relationship between cognitive scores on the MoCA or 

MMSE and age, AMD onset, VA and Mars contrast sensitivity, but when the results were 

controlled for age, these correlations became non-significant. The Mann-Whitney U test 

showed no significant difference in visual function between those who passed the MoCA 

and those who failed. When the same analysis was repeated for the AMD group alone 

and for the control group alone, the same result was achieved in each case.  

Retinal Structure – Visual Function 

 Drusen characteristics from the better eye, as identified on OCT images, did not 

correlate with visual acuity in the respective eye or binocular visual acuity. There were 

also no significant correlations with fixation stability (BCEA) or eccentricity in the best 

eye. Binocular contrast sensitivity was negatively correlated with concave drusen, r = -

0.515, p = 0.024, drusen of high reflectivity, r = -0.478, p = 0.039, and drusen of mid 

reflectivity in the better eye, r = -0.502, p = 0.029.  

 Drusen characteristics in the worse eye did not correlate with contrast sensitivity 

or eccentricity, but some did correlate with visual acuity and fixation stability. Visual 

acuity in the worse eye was positively correlated with the presence of core, r = 0.506, p = 

0.032, and overlying hyper-reflective foci, r = 0.590, p = 0.010. Binocular visual acuity 
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also significantly correlated with some drusen characteristics in the worse eye. These 

included drusen area, convex drusen, concave drusen, presence of core and presence of 

overlying hyperreflective foci. Fixation stability (log BCEA) was positively correlated 

with drusen area, drusen that were concave or convex in shape, drusen of high reflectivity, 

overlying foci, and drusen of nonhomogeneous content with or without core. These 

correlations can be seen in Tables XXII - XXVII. 

Retinal Structure – Cognitive Measures  

 The scores from cognitive questionnaires did not correlate with any of the drusen 

characteristics from OCT images. Neither the Mann-Whitney U test nor the independent 

Student’s t test showed any significant difference between the presence of drusen 

characteristics in those that passed the MoCA and those who scored positive for MCI. 

The drusen characteristic that came the closest to reaching significance was overlying 

hyperreflective foci, U = 15.50, p = 0.067; t(15.5) = 2.13, p = 0.050.   

 In the better eye, the presence of drusen of mid reflectivity was positively 

correlated with detection thresholds on the Neurominder. Participants with more drusen 

of mid reflectivity had a poorer performance on the Neurominder compared to those with 

fewer mid reflective drusen. Additionally, the SO direction detection threshold was 

positively correlated with drusen area, concave drusen and drusen of high reflectivity, 

while the SO orientation detection threshold was positively correlated with only concave 

drusen. Threshold speed on the 3DMOT was not correlated with any drusen 

characteristics in the better eye (Tables XXVIII - XXX). 

 The 3DMOT had more numerous significant correlations with drusen 

characteristics in the worse eye. 3DMOT speed threshold negatively correlated with 

drusen of mid reflectivity, drusen with core, and drusen with overlying hyper-reflective 

foci. Participants with better performance on the 3DMOT had fewer drusen with mid 

reflectivity, cores, and overlying foci (Tables XXXI - XXXIII). There were fewer 

significant correlations with drusen characteristics from the worse eye and the 

Neurominder. SO direction detection thresholds were positively correlated with drusen of 
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low reflectivity and FO orientation detection thresholds were positively correlated with 

overlying hyper-reflective foci (Tables XXXXI - XXXIII). 

Discussion 

Visual Function - Cognitive Measures 

 It is not surprising that traditional parameters of visual function did not correlate 

with cognitive measures. Visual function, as measured by visual acuity and contrast 

sensitivity, is all related to the working capacity of the eye, which is diminished in AMD. 

It is important to remember that visual function is distinct from cognition. Visual input is 

part of perception and cognition, but it only provides physical information. Perception 

and cognition are higher order processes that use sensory input, but also take memory and 

experience into account. When vision is impaired, as in AMD, incorrect visual 

information can be delivered to the brain, but the brain still has memory and experience 

to sort this out.  

 Visual function did appear to have an impact on the results of the Neurominder 

and the 3DMOT. These instruments rely more heavily on visual cues compared to 

cognitive questionnaires like the MoCA and MMSE. Orientation tasks in particular, are 

contrast-defined and contrast sensitivity is known to be diminished in AMD as evidenced 

in this study and others. In the case of these instruments, experience and memory cannot 

be used to augment any incorrect visual information being received. 

Retinal Structure – Visual Function 

 Research on binocular vision in AMD has shown that the eye with better visual 

acuity and oculomotor control drives binocular vision (Tarita-Nistor, Brent, Steinbach, & 

Gonzalez, 2011). The current study defined the better and worse eye of participants based 

on this definition. Binocular contrast sensitivity was negatively correlated with concave 

drusen and drusen of high and mid reflectivity in the better eye, which indicates binocular 

contrast sensitivity was poorer with greater amounts of those drusen characteristics.  
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Table XXII. Correlation of Visual Function with Drusen Characteristics in the Better 
Eye. 

 

There was a significant negative correlation between binocular contrast sensitivity and 

drusen that were considered concave in shape in the better eye. Having concave drusen in 

the better eye tended to be related to poorer contrast sensitivity. 
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Table XXIII. Correlations of Visual Function and Drusen Reflectivity in the Better Eye. 

 

There were significant negative correlations between contrast sensitivity in the better eye 

and the presence of high and mid reflective drusen in the same eye. The greater the 

number of high or mid reflective drusen in the better eye, the poorer was the contrast 

sensitivity. 
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Table XXIV. Correlation of Visual Function with Drusen Content in the Better Eye. 

 

There were no significant correlations with visual function and drusen content as 

identified on OCT. 
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Table XXV. Correlation of Visual Function with Drusen Characteristics in the Worse 
Eye. 

 

Visual acuity had a significant positive correlation with the presence of drusen with 

overlying hyperreflective foci in the worse eye. Increased foci tended to have poorer 

visual acuity in the respective eye. Binocular visual acuity had significant positive 

correlation with drusen area, drusen with concave or convex shape and drusen with 

overlying hyperreflective foci in the worse eye. Binocular visual acuity was poorer with 

increasing incidence of the latter drusen characteristics in the worse eye. Fixation stability 

in the worse eye also had significant positive correlations with the same drusen 

characteristics as binocular acuity. 
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Table XXVI. Correlation of Visual Function with Drusen Reflectivity in the Worse Eye. 

 

Fixation stability in the worse-eye had a significant positive correlation with drusen of 

high reflectivity in the same eye. As the presence of drusen with high reflectivity 

increased, the BCEA also increased, indicating more unstable fixation. 
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Table XXVII. Correlation with Visual Function and Drusen Content in the Worse Eye. 

 

Visual acuity, binocular and worse-eye, had positive correlations with the presence of 

nonhomogeneous drusen with core in the worse eye. Fixation stability had significant 

positive correlations with nonhomogeneous drusen, with and without core. 
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Table XXVIII. Correlation of Neurominder/Neurotracker Parameters and Drusen 
Characteristics in the Better Eye. 

 

Drusen considered concave in shape had positive correlations with SO direction and 

orientation. This indicates that individuals with more concave drusen had higher second 

order detection thresholds (poorer performance) on the Neurominder.  
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Table XXIX. Correlation of Neurominder/Neurotracker Parameters and Drusen 
Reflectivity in the Better Eye. 

 

Drusen of high reflectivity had significant positive correlations with SO direction and 

orientation. The more drusen of high reflectivity an individual had in the better eye, the 

higher was the SO detection threshold (poorer performance) on the Neurominder. Drusen 

of mid reflectivity had significant positive correlations with FO and SO direction on the 

Neurominder. The more drusen of mid reflectivity an individual had in the better eye, the 

higher were the direction detection thresholds (poorer performance) on the Neurominder. 
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Table XXX. Correlation of Neurominder/Neurotracker Parameters and Drusen Content 
in the Better Eye. 

 

There were no significant correlations with Neurominder or NeuroTracker parameters 

and drusen content in the better eye. 
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Table XXXI. Correlation of Neurominder/Neurotracker Parameters with Drusen 
Characteristics in the Worse Eye. 

 

Drusen with overlying hyperreflective foci had a significant positive correlation with FO 

orientation on the Neurominder and a significant negative correlation with 3DMOT. The 

greater the incidence of foci, the higher the FO orientation detection threshold (poorer 

performance) on the Neurominder and the lower the speed threshold (poorer 

performance) on the 3DMOT. 
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Table XXXII. Correlation of Neurominder/Neurotracker Parameters with Drusen 
Reflectivity in the Worse Eye. 

 

Drusen of mid and low reflectivity had significant, negative correlations with 3DMOT. 

The greater, the incidence of low or mid reflective drusen, the higher the speed threshold 

(poorer performance) on 3DMOT. 
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Table XXXIII. Correlation of Neurominder/Neurotracker Parameters and Drusen 
Content in the Worse Eye. 

 

Drusen with core has a significant, negative correlation with 3DMOT. The greater the 

incidence of drusen with core in the worse eye, the higher the speed threshold (poorer 

performance) on 3DMOT. 
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Interestingly, these were the only correlations between binocular vision and the drusen 

characteristics of the better eye.  

In the worse eye, binocular visual acuity was significantly positively correlated 

with drusen area, drusen that were concave or convex in shape, nonhomogeneous drusen 

with core and drusen with overlying hyperreflective foci. This means that visual acuity 

got worse with the increasing incidence of these characteristics in the worse eye. 

Although one would expect binocular visual acuity to correlate with damage in the better 

eye, this finding does not disagree with the research that showed binocular vision is 

driven by the better eye (Tarita-Nistor et al., 2011). The current results show that 

although binocular summation is no longer possible, individuals still experience binocular 

vision on some level. Binocularity is still driven by the better eye, but degeneration 

occurring in the worse eye still has an effect on visual function. 

 In terms of drusen shape, those considered concave had the most significant 

correlations with visual function parameters. Convex drusen were positively correlated 

with fixation stability in the worse eye, while there were no correlations with drusen 

having a pointed shape. Presumably, this is due to the effect the shape has on the 

photoreceptor layer. Convex drusen have regular dome shapes, which elevate the 

photoreceptor layer, but appear not to disrupt it, while concave drusen have a more 

irregular shape, often making it hard to tell if the photoreceptor layer is still intact. If this 

is the case, then concave drusen would play a larger role in the function of the retina. 

Pointed drusen are relatively small compared to either concave or convex drusen and it 

has been suggested that these may represent a wrinkling of the outer limiting membrane 

rather than actual drusenoid deposits (Pieroni et al., 2006). 

 Drusen of high reflectivity were correlated with binocular contrast sensitivity and 

fixation stability in the worse eye, while mid reflective drusen were only correlated with 

fixation stability in the worse eye. An ultrahigh resolution OCT study conducted in 2006, 

matched drusen on OCT images to what was known from fundus photos at the time. It 

was suggested that drusen of mid reflectivity were soft drusen: extracellular debris, which 

is typically less reflective than the RPE. The same study suggested that high reflectivity 
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indicated migration of RPE cells (Pieroni et al., 2006). This migration could be 

happening in order to achieve better nutrient supply, or it could indicate migration in 

terms of cellular degeneration. If either theory is correct, then correlation with visual 

function would make sense and the results of this study would support the theories put 

forth by Pieroni et al. Following this line of thought, the mid reflective drusen would 

represent less mature drusen, having not been present long enough to cause permanent 

damage to the overlying RPE cells. This theory would explain why there were fewer 

correlations of visual function with drusen of mid reflectivity compared to drusen of high 

reflectivity. There were no correlations with drusen of low reflectivity, suggesting that it 

may not affect visual function. There is still some debate about what would correspond to 

the low reflectivity. Pieroni et al (2006) suggest that it could be an early sign of the 

development of wet AMD while another group has suggested these spots correspond to 

calcified sites on fundus photos (Khanifar et al., 2008). 

 The presence of nonhomogeneous drusen with core in the worse eye was 

significantly correlated with binocular visual acuity, visual acuity in the same eye and 

fixation stability in the same eye. This suggests that the most detrimental type of drusen 

content is that of the core, followed by nonhomogeneous drusen without core, which 

were also significantly correlated with fixation stability in the worse eye. There have 

been few studies discussing drusen content visible on images as OCT image analysis has 

only recently become possible. Khanifar et al. (2008) was the first to identify the drusen 

with core subtype. The core, seen on OCT, could correspond to the vesicular structures 

identified in histological studies (Anderson et al., 2004; L V Johnson et al., 2002). If this 

is the case, then perhaps the formation of a core requires the interaction between beta-

amyloid and complement components. This would suggest that one of those components 

is missing from the drusen than do not contain a core. Given that the outer layer of the 

vesicle stains positive for complement components (Anderson et al., 2004; L V Johnson 

et al., 2002), nonhomogeneous drusen could primarily contain the inner layer of vesicles - 

beta-amyloid.  
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 Retinal Structure – Cognitive Measures 

 This section of the study has shown the wealth of data that can be obtained from 

the study of retinal structure in vivo and different measures of perception and cognition. It 

seems that performances on cognitive measures are likely due to characteristics of retinal 

structure that affect visual function given the lack of correlations with the MoCA, rather 

than these characteristics being linked to cognitive impairment. Large amounts of data are 

not necessarily useful if connections cannot be drawn. The results here highlight the need 

to better refine the identification of drusen characteristics seen on OCT through machine 

learning. Given that OCT is a clinical staple, having software to identify characteristics 

that could be linked to functional or maybe even cognitive deficits would be an asset and 

much easier to incorporate into clinical practice than expensive new technology or 

persuading patients to take curcumin daily for a month to achieve sufficient dosage 

(Koronyo et al., 2017). It is also likely that these characteristics will have to be linked to 

histopathology before attempting to make connections to cognitive function  

Conclusion 

This study shows how retinal structure can impact visual function. The presence 

of drusen is related to poorer visual function in the more affected eye and to poorer 

binocular function. Despite the different functional abilities of eyes with AMD, some 

form of binocular vision is maintained. Binocular vision is driven by the better 

functioning eye but hindered by the structural damage in the worse eye. 

The results of this study highlight the importance of visual input to perception and 

cognition. The AMD group, with impaired visual input, performed better on cognitive 

questionnaires where they were able to use stored experience and memory compared to 

psychophysical tests that depend more on visual cues. Perhaps in the cognitive evaluation 

of those with visual impairment, their ability to decipher meaning from limited visual 

input should be considered. 
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Chapter 7: General Discussion 

 The objective of this study was to learn more about the Age-related  Macular 

Degeneration/cognitive impairment co-morbidity. This was the first study to examine the 

co-morbidity across the spectrum of genotype, retinal structure, and visual and cognitive 

function and one of a few to consider the same spectrum in a sample of individuals with 

AMD.  

 Traditional methods of evaluating retinal structure and visual and cognitive 

function were used, but newer technology such as scanning laser ophthalmoscope (SLO), 

optical coherence tomography (OCT) and psychophysical testing (Neurominder and 

3DMOT) were incorporated with varying degrees of success. This study was successful 

in goals to replicate previous studies showing that the single nucleotide polymorphisms 

(SNPs) in complement factor H (CFH), rs1061170, and Age-related Maculopathy 

Susceptibility Gene 2 (ARMS2), rs10490924 occur more frequently in individuals with 

AMD than in not affected persons (Edwards et al., 2005; Fisher et al., 2005; Fritsche et 

al., 2008, 2014; Gatta et al., 2008; Hageman et al., 2005; Haines et al., 2005) and that 

more affected by AMD score positive for mild cognitive impairment (MCI) compared to 

the general population (AREDS Research Group, 2006; Boxerman et al., 2015; Duponsel 

et al., 2010; Wittich et al., 2014; Wong et al., 2002; Woo et al., 2012). Although this 

study did provide further insight on the AMD-MCI comorbidity and identified FADS1 

rs174547 as possible contributor, it was less successful in showing a concrete relationship 

between the original SNPs of interest and MCI or drusen characteristics.  

Genetic Findings 

 This participant-sample data in this study agrees with previous studies (Edwards 

et al., 2005; Fisher et al., 2005; Fritsche et al., 2008; Gatta et al., 2008; Hageman et al., 

2005; Haines et al., 2005; R J Klein et al., 2005) showing that many individuals with 

AMD carry the SNPs CFHY402H and ARMS2A69S. In the case of each SNP, just over 

half of the AMD sample was identified as having at least one copy and individuals who 

were homozygous for these SNPs were far more common in the AMD group compared to 
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the control group. An unexpected finding was the frequency of the FADS1 SNP 

associated with AMD in the study sample. The minor allele frequency for this sample 

(AMD and control groups) was 0.85 which is higher than that reported for American 

(0.41) or European (0.66) populations (NIH, 2017). A large-scale population study would 

be required to confirm the theory of this being due to a Founder Effect. Given that the 

French-Canadian population from which this sample is derived is already a confirmed 

Founder population (Roy-Gagnon et al., 2011), the theory seems a likely explanation. 

FADS1 rs174547 has not been well characterized in the role it plays in AMD. Although 

identified in GWAS as a significant contributor to AMD (Neale et al., 2010), it has been 

overlooked for further study in favour of more influential SNPs such as CFHY402H and 

ARMS2A69S. The high frequency in the French-Canadian population would make this 

population ideal for studies aiming to better characterize the role of the FADS1 SNP in 

AMD. 

Genetics and Visual Function 

 The results of this study support what is now common knowledge - the visual 

function of those with AMD is poorer compared to age-matched controls. The unique 

finding is that AMD risk SNPs CFHY402H and ARMS2A69S can be linked to poorer 

visual function in AMD, but also in individuals having normal vision. When participants 

with AMD and controls were pooled and analyzed according to the carrier status of these 

SNPs, it was found that carriers of ARMS2A69S performed worse on traditional 

measures of visual function such as visual acuity and contrast sensitivity, while carriers 

of CFHY402H had poorer performance on newer measures of visual function such as 

eccentric fixation. This shows that these SNPs contribute to AMD, but are not sufficient 

alone to cause the disease. This just further supports the multifactorial disease model of 

AMD. 

 There is still much speculation with respect to the function of the ARMS2 gene 

product (Kanda et al., 2007). It was identified in GWAS attempting to identify variants 

associated with AMD and was named accordingly. Over the last decade, many studies 

have attempted to characterize the function of the ARMS2 protein with little success. 



 146 

Some of this is due to SNPs in ARMS2, also contributing to AMD, that prevent the gene 

from being transcribed into mRNA or cause the transcription of unstable mRNA that 

degrades before translation into protein (Fritsche et al., 2014). ARMS2A69S is a SNP 

that occurs in the coding region of the gene that does not affect its transcription. Early 

localization studies established that ARMS2 was expressed in the human retina and 

localized its expression to photoreceptors (Fritsche et al., 2008). Subsequent studies 

refined its localization to the inner segments of both rods and cones, specifically, the 

mitochondria-enriched ellipsoid region of photoreceptor inner segments (Fritsche et al., 

2014). This led to the hypothesis of a role in mitochondrial homeostasis. Mitochondrial-

associated diseases are increasingly recognized as due to disturbances in cellular energy 

supply, generation of reactive oxygen species and/or initiation of apoptosis (Lin & Beal, 

2006), all of which have been implicated as contributing to AMD development (Garcia-

Escudero et al., 2013; Kaarniranta et al., 2011; Katta et al., 2009; Sivak, 2013). 

 The mitochondrial localization of ARMS2 and the association of the A69S variant 

with oxidative stress could have dire consequences for retinal photoreceptors. Increased 

levels of oxidative stress, reactive oxygen species or lack of cellular energy could be 

causing photoreceptor mitochondria to trigger apoptosis and subsequent cell death. This 

would explain the association of the presence of ARMS2A69S with poor contrast 

sensitivity and visual acuity given these parameters are dependent on the integrity of the 

photoreceptors themselves. Further, this is supported by the dose-dependent nature of the 

SNP. Those heterozygous for ARMS2A69S have one wild type copy of ARMS2 and 

while non-carriers would have two wild type copies. Photoreceptors expressing the wild 

type ARMS2 would not have the same fate as those expressing the risk variant, 

explaining the better performance of non-carriers and then heterozygotes compared to 

homozygotes on contrast sensitivity and visual acuity.  

 Carriers of CFHY402H have poorer performance on visual function in terms of 

having more eccentric fixation compared to non-carriers. Oddly, carriers did not display 

poorer visual acuity or fixation stability compared to non-carriers. This disagrees with 

previous research showing that greater eccentricity correlates with visual acuity and 

poorer fixation stability (Provis et al., 2013). This trend was only seen in carriers versus 
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non-carriers of CFHY402H as the expected correlation occurred in the sample as a whole. 

This is possibly explained by CFHY402H being linked to greater incidence of drusen and 

not the function of retinal cells. This theory is supported by the current study showing 

that carriers of this SNP have greater drusen area compared to non-carriers. Drusen 

formation, particularly in the central retina would disrupt the architecture of the retina, 

forcing fixation outwards. Given the link between the CFH SNP and the early stages of 

AMD (Dietzel et al., 2014), carriers would likely have time to adapt to the change in 

eccentricity, improving their visual acuity and fixation stability.  

 It appears that ARMS2A69S is linked to photoreceptor dysfunction and 

CFHY402H is linked to disruption of retinal architecture through drusen. Those carrying 

both SNPs would have compounding factors of photoreceptor dysfunction and disruption 

of retinal architecture, supporting the increased incidence of AMD among carriers of both 

SNPs (Gorin, 2012; J M Seddon, Reynolds, Yu, Daly, & Rosner, 2011; Seddon, 

Reynolds, Yu, & Rosner, 2013; Seddon et al., 2009). It remains to be seen, however, why 

some individuals who carry these SNPs do not develop AMD. Multifactorial disease 

models suggest environmental and lifestyle factors could be deciding factors. Perhaps 

carriers of ARMS2A69S who are vigilant about wearing sunglasses and/or have brown 

eyes have made a difference in protecting their retinas from oxidative stress caused by the 

sun enough to prevent the development of AMD. Meanwhile, those who do not wear 

sunglasses and/or have less pigment in their irises are more exposed to sun damage, and 

have the added dysfunction of ARMS2A69S leading to AMD. Conversely, non-smoking 

carriers of CFHY402H would have less systemic inflammation, creating less demand on 

CFH and the alternative complement system, enabling the retina to better clear debris. 

Meanwhile, carriers who are also smokers would have increased demands on the 

alternative complement while would likely not be able to compensate along with the CFH 

SNP. 

Genetics and Retinal Structure 

  This research is the second attempt to connect AMD SNPs to drusen 

characteristics via OCT. To date, there has been little attention given to AMD risk 
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variants and drusen accumulation (Boon et al., 2008; Munch et al., 2010; Yu et al., 2011), 

let alone any connection these that variants may have to OCT-derived drusen 

measurements that can be monitored in vivo. A 2015 study reports an association between 

the CFH rs12038333 risk SNP and drusen area and RPE atrophy through univariate 

analyses (Ramana et al., 2015). Although rs12038333 differs from the CFHY402H SNP 

discussed in the present study, both studies link mutations in the CFH gene with drusen 

suggesting that drusen are linked to dysfunction of the CFH gene product rather than a 

specific SNP. The present study, although using a much smaller sample size, reports 

significant correlations of CFHY402H with drusen area and percentage of the macula 

covered by geographic atrophy (GA) and goes a step further, linking the CFHY402H 

SNP with drusen of mid reflectivity.  

 Findings are in agreement with Ramana et al. (2015) in terms of ARMS2A69. 

The same SNP was used in both studies and neither found a significant correlation with 

drusen area or percentage of the macular affected by GA. In examining more extensive 

OCT-derived drusen characteristics, this study found significant correlations with drusen 

of mid reflectivity and drusen of homogeneous content.  

Genetics and Cognitive Function 

 No significant differences in cognitive score on the MMSE or MoCA 

questionnaires were found between carriers and non-carriers of the CFHY402H and 

ARMS2A69S SNPs. In this sample, it appears that these SNPs may not play a role in 

cognitive impairment, but as mentioned previously, a larger sample size would provide 

more interpretable. Conversely, the results show that the FADS1 SNP may have a role in 

cognitive impairment given that all those scoring positive for MCI according to the 

MoCA were carriers of the SNP. It was also shown that individuals carrying two copies 

of FADS1 rs174547 had lower cognitive scores compared to those with only one copy or 

none at all. Although the discovery of the potential FADS1 rs174547 Founder Effect in 

the Quebec population is interesting and has implications for future study of the 

epidemiology of AMD, it is problematic in attempting to link the SNP to an AMD-MCI 

co-morbidity is problematic. To confirm a link between the FADS1 SNP and MCI, the 
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study should be repeated, but with a larger sample with a carrier versus non-carrier 

distribution. 

 There were no significant differences between threshold responses on the 

Neurominder or 3DMOT with respect to carriers versus non-carriers of the SNPs of 

interest, including FADS1. When zygosity was considered, the Neurominder showed a 

significant difference between carrier status of ARMS2A69S and threshold for first order 

(FO) stimuli. Those with two copies of the ARMS2 SNP had a higher threshold elevation 

compared to heterozygotes and non-carriers, indicating poorer performance. Research on 

object attributes has shown that FO attributes are processed in V1 and higher order 

functions, like visual working memory, are not required for rectification (Faubert, 2002; 

Habak & Faubert, 2000). Current views surmise that the neuropathology of AD begins in 

the limbic system and prelimbic cortices before extending into higher order posterior 

association areas, then to lower-order association area like V1 (Albers et al., 2015; Braak 

& Braak, 1995; Lewis, Campbell, Terry, & Morrison, 1987) Based on this view, it would 

make more sense for the poorer Neurominder scores to be on the detection of second 

order (SO) stimuli rather than FO given the requirement of visual working memory and 

higher order association cortices to rectify SO attributes. This is supported by other 

studies on AD and object attributes that found deficits in the perception of motion, a SO 

attribute, compared to individuals without symptoms of dementia (Albers et al., 2015; 

Gilmore et al., 1994; Rizzo & Nawrot, 1998). It was thought that this could be due to 

selective damage to the magnocellular pathway, the retino-cortical pathway that connects 

the retina to areas 17 and 18 of the primary visual cortex. Here, information is then 

further projected to the middle temporal cortex, which plays a role in the perception and 

integration of motion-related information (Chang et al., 2014; Hof & Morrison, 1990). 

This is supported by significant cellular loss in specific layers of area 17 and 18 that 

project to motion-processing areas (Hof & Morrison, 1990).  

 It would seem that if carriers of ARMS2A69S demonstrated deficits in detection 

of FO stimuli, they would also display deficits in the detection of SO stimuli or, at least, 

obtain poorer scores on SO direction given the implications of cellular loss in the 

magnocellular pathway (Chang et al., 2014; Gilmore, Groth, & Thomas, 2006; Hof & 
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Morrison, 1990; Rizzo & Nawrot, 1998). This was not the case. The deficits in detection 

of solely FO stimuli lead to the hypothesis that these results are not due to top-down, 

cortical deficits alone. It could be possible that those with the ARMS2 SNP are affected 

by the top-down neuropathology that starts in the limbic system in addition to bottom-up 

neuropathology that begins in the retina and visual cortices. Evidence from 

histopathological studies in transgenic mice (Koronyo-Hamaoui et al., 2011) and in 

humans (McKee et al., 2006) have shown that posterior cortical visual areas can be 

substantially affected by neuropathology prior to the onset of the symptoms of dementia. 

Having top-down and bottom-up neuropathologies could explain the higher prevalence of 

MCI among those with AMD compared to the general population. However, a second 

option and the more likely of the two, is that the FO deficits are simply due to the retinal 

pathology of AMD and the visual cortex is not affected. Of course, diminished visual 

input from the retina due to either aging or visual pathology has been considered. Some 

studies have gone on to show that the visual information received from the retina can be 

improved, if not recovered, by increasing the contrast of the visual stimuli (Cronin-

Golomb et al., 1991; Gilmore et al., 2006). The current study would support this due to 

results showing carriers of ARMS2A69S to have significantly poorer contrast sensitivity 

compared to non-carriers. To rule out the first hypothesis, imaging studies beyond the 

scope of this dissertation would be required to identify any structural abnormalities in the 

visual cortex. 

 The most obvious limitation in the present study is the sample size. Recruitment 

based on genotype is not yet possible and leaving it to chance is costly. When studying 

the association between a SNP and a complex disease, many factors beyond that of effect 

size and alpha level must be taken into consideration. Some of these include disease 

prevalence, linkage disequilibrium, allele frequency and inheritance model. To evaluate a 

single SNP, it is recommended to have 248 cases and the equivalent number of control 

subjects. This is based on an odds ratio of 2, a disease prevalence of 5%, a minor allele 

frequency of 5%, complete linkage disequilibrium, a 1:1 case-control ratio and a 5% error 

rate in allelic testing (Hong & Park, 2012). In addition, this study investigated the 

association between AMD SNPs and the AMD-MCI co-morbidity. The higher prevalence 
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of MCI among those with AMD has only recently come to light and to date, there are few 

studies examining genetic contributions (Logue et al., 2014; Lukiw, Surjyadipta, et al., 

2012; Proitsi et al., 2012; Williams et al., 2015). Due to this state of knowledge, many of 

the factors involved in determining a reliable sample size have not yet been established. 

The Co-morbidity: AMD versus Controls 

 The results of this study agree with others reporting a higher prevalence of MCI 

among those with AMD compared to that in the general population. This study found that 

approximately 38% of individuals with AMD scored positive for cognitive impairment 

according to the MoCA. This study had a small sample size, but the rates are between 30 

and 50%, similar to other studies using the MoCA (Duponsel et al., 2010; Wittich et al., 

2014) and higher than those of studies using other measures of cognitive status (Klaver et 

al., 1999; Whitson et al., 2010; Wong, Iu, Koizumi, & Lai, 2012). This prevalence is 

higher than that of MCI or AD in general population, which was reported to be 3-19% 

(Gauthier et al., 2006) and 5-7% (World Health Organization, 2012a) of individuals over 

the age of 60, respectively. 

 Although the AMD and control groups in this study did not differ significantly on 

their average MoCA scores, they did differ on which subscales they found most difficult. 

Individuals from the control group who scored positive for MCI had difficulty with 

delayed recall, or memory. Individuals with AMD who scored positive for MCI had 

difficulty with delayed recall in addition to the abstraction and orientation subscales. Not 

all diagnoses of MCI convert to AD or another form of dementia. Prospective research 

has shown that the cases of MCI most likely to convert to AD are those that display 

memory deficits in addition to impairment other cognitive domains (Summers & 

Saunders, 2012). The results herein show that persons with AMD and MCI may be more 

likely to develop AD compared to controls with MCI. Of course, this should be 

confirmed with prospective studies in an AMD population and more rigorous testing of 

distinct cognitive domains, but it has strong implication for low vision rehabilitation. 

Low vision rehabilitation depends largely on training and one’s ability to understand and 

remember instructions. Research in a low vision rehabilitation setting has reported a 
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higher risk of functional disability and poorer quality of life for individuals with vision 

impairment and cognitive deficits compared to those with vision impairment alone 

(Whitson et al., 2007). When the traditional low vision rehabilitation program was 

augmented to accommodate cognitive decline, improvements in both visual function and 

cognitive abilities were seen (Whitson et al., 2013). Rehabilitation programs like this are 

not yet common practice, but could have a significant impact on the effectiveness of 

services for individuals with a vision impairment/cognitive impairment co-morbidity.  

Conclusion 

 In the past, disease was identified solely by dysfunction. AMD and AD were 

simply age-related vision loss and dementia respectively. As science advanced, these 

functional outcomes were traced back to changes in the affected individual’s organs or 

tissues, leading to the discovery that a disease mechanism was already well underway 

before symptoms began. In the 1800s, ophthalmoscopy identified yellowish spots on the 

retina of those with central vision loss and in 1906 histological study of post-mortem 

brain tissue found plaques in the brains of individuals with Alzheimer’s disease 

(Alzheimer et al., 1995). More recently, science has reached the other end of the 

spectrum - genotype. This had led to the understanding that genes contain the blueprint 

for tissue architecture and this architecture is what determines function. Based on this 

concept, disease prediction models are beginning to be constructed and waiting for the 

functional deficits of a disease to become apparent is no longer necessary. By that time, 

the process is likely too advanced to reverse. With the sequencing of the human genome, 

genotype can be determined at any point during the lifespan and provided that enough is 

known about the genotype-structure-function relationship, disease outcomes can be 

predicted. Science is evolving with the ultimate goal of being able to prevent disease by 

knowing the genotype right from the start. In some instances, science is on the brink of 

success with gene replacement therapies as in the case Leber’s Congenital Amourosis 

(Coussa, Lopez Solache, & Koenekoop, 2017) while, in other cases, it is still a struggle to 

achieve a definitive diagnosis before death. 
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 Some disease models are simple, like that of Stargardt disease, the junvenile form 

of AMD. Inheriting two mutated copies of ABCA4, a gene encoding a retina-specific 

protein, leads to the disease. The protein is important in the clearance of toxins produced 

during photoreceptor outer-segment recycling. These toxins are made during 

photobleaching and their accumulation leads to photoreceptor degeneration (Allikmets, 

Singh, et al., 1997). Here, a mutation in the gene disrupts tissue architecture, which 

ultimately alters function. This creates many different domains in which to study a 

disease, each requiring experts in genetics, molecular biology, therapeutics, rehabilitation, 

etc. Not all diseases are as straightforward as Stargardt disease. AMD and AD are much 

more complex having gene interactions and environmental factors to consider, creating 

even more perspectives from which to study the disease mechanism. In terms of complex 

disease, the best way to reach that ultimate goal of prevention is to increase 

communication across the spectrum. 

 The goal of this research was exactly that - to explore the relationship across the 

spectrum of genotype, structure and function in AMD and cognitive impairment. In doing 

so, FADS1 rs174547 has been identified as a potential genetic target in this co-morbidity. 

The French-Canadian population has also been identified as a prime population to better 

understand the role of the FADS1 SNP in the AMD disease mechanism due to the high 

frequency with which it occurs in this population. 

The known AMD SNPs CFHY402H and ARMS2A69S appear not to play a major 

role in this comorbidity. Nonetheless, this research has contributed to a better 

understanding of their role in AMD pathogenesis. The CFH SNP was linked to more 

eccentric fixation leading to the hypothesis that it plays a role in the disruption of retinal 

architecture. This was further supported by correlations with drusen area and greater 

amounts of geographic atrophy. Conversely, the ARMS2 SNP was linked to deficits in 

visual acuity and contrast sensitivity, visual functions localized to the photoreceptors 

themselves. In terms of retinal structure ARMS2A69S was linked to drusen of a 

homogenous nature, leading again to the hypothesis that the SNP contributes to AMD 

through the loss of photoreceptor integrity. 
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In addition to genetic findings, this study adds to the growing body of literature 

reporting a high prevalence of cognitive impairment in AMD. This research also supports 

previous studies demonstrating that the MoCA is more effective in detecting mild forms 

of cognitive impairment compared to the MMSE. Additionally, the cognitive domains 

screened by the MoCA show a difference between individuals with AMD and age-

matched controls. Those with AMD scoring positive for MCI have difficulty in other 

cognitive domains in addition to memory, indicating a higher risk of conversion to 

Alzheimer’s Disease. 

By establishing a relationship between genotype, structure and function, both 

diseases will be better understood making it possible for genotype alone to become a 

predictive measure. Genotype can be determined early in life. Given that some risk 

factors for these diseases are modifiable, those carrying risk variants might be able to take 

preventative measures, decreasing their chances of developing AMD, MCI or AD. 

Finding a genetic link between two such prevalent diseases would provide a target for 

drug development. With the emerging fields of pharmacogenetics and personalized 

medicine, it is becoming more important to understand how genetics can influence the 

onset, progression and treatment-response of disease. In addition, rehabilitation 

specialists would be able to personalize services and anticipate cognitive decline for those 

with the high-risk genes. This, in turn, will make the rehabilitation service delivery 

process more efficient and effective.  
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Consent Form 

Visual Impairment/Cognitive Impairment Co-morbidity; 
Examining the Genotype-Structure-Function Relationship 

(Primary Participants, genotyped) 

Researcher Caitlin Murphy, M. Sc. 
Ph.D. student 
School of optometry, University of Montreal. 

Supervisors Olga Overbury, Ph. D. 
Professor 
School of optometry, University of Montreal. 

Jocelyn Faubert, Ph. D. 
Professor 
School of optometry, University of Montreal 

Funding: none. 

Preamble 

 We are inviting you to take part in a genetic study. However, 
before you decide and sign the Information and Consent Document, 
take the time to read, understand and carefully think about the 
following information. 

 This Information and Consent Document may contain 
information or words that you do not understand. You should ask the 
researcher in charge of the study or members of the study staff to 
answer your questions and explain any word or statement that you do 
not understand.  

 

Nature and Objectives of Study 

 The number of Canadian seniors affected by Age-related Macular 
Degeneration (AMD) and early cognitive changes is on the rise. While 
AMD affects abilities such as reading and driving, cognitive changes 
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can reduce one’s ability to understand and to communicate. Thus, both 
conditions severely affect quality of life, independence and social 
participation. Currently, the causes of AMD and cognitive impairment 
are not well understood and there are few, if any, effective treatments. 
As life expectancy increases and our population ages, more cases will 
develop. In a recent study, one of five older adults receiving low vision 
rehabilitation for macular disease scored positive for cognitive 
impairment. The high occurrence of these occurring together suggests 
that visual and cognitive impairments may be related.  

The goal of this study is to explore the relationship among 
genotype (the variation in your genes), the structure of your eye and 
your visual function. By establishing a relationship between genotype, 
structure and function, both conditions will be better understood 
making it possible for genotype alone to become a predictive measure. 
Genotype can be determined early in life. Those carrying risk genes 
can take preventative measures earlier in life, decreasing their chances 
of developing AMD or cognitive impairment. 

Participation 

 You are being recruited for this study because you have been 
diagnosed with AMD and recently volunteered to participate in a 
genotyping study conducted at the Montreal Retina Institute. If you 
decide to participate, information from Dr. Chen’s study and your 
current visual function will be used. The testing will occur over two 
sessions. Test sessions will occur at the School of Optometry at the 
University of Montreal and will also last approximately 45 minutes. 
There will be two tests session in total and they will be scheduled at 
your convenience. 

Study Procedure 

First session (45 minutes) 

1. It will begin with a short questionnaire that collects information 
such as your age, language, heritage, etc. 

2. Visual function testing will also take place during the first session. 
This collection of tests will measure visual acuity, contrast 
sensitivity, colour vision and reading acuity  

3. Two eye drops per eye (2.5% phenylephrine® and 1% 
tropicamide®) will be administered in order to dilate your pupils. 
This allows us to take better pictures of the back of your eyes. 
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4. While waiting for your pupils to dilate, you will then respond to 
two questionnaires; the Montreal Cognitive Assessment (MoCA) 
and the Mini-Mental State Exam (MMSE) which will be 
administered to measure cognitive status. These questionnaires 
are typically used clinically to detect or measure the severity of 
cognitive impairment and monitor cognitive changes over time. 
They cover a number of categories including orientation to time 
and place, repeating lists of words, simple math, language use 
and understanding, and basic motor skills. 

5. A colour fundus camera will be used to take pictures of your eyes. 

 
Second session (45 minutes) 

1. It will include use of a device called ophthalmoscope 
(OCT/SLO). This device, commonly used in ophthalmology 
exams, will be used to: 
a. Observe and evaluate the layers of your retina (the back of 

your eye). 
b. View the retinal surface in real time. 
c. Measure the response of your eye to small lights. 
d. Determine the borders of any scarring resulting from your 

AMD can be located.  
2. Lastly, the NeuroMinder and NeuroTracker, both by Cognisens, 

are computer programs that measure changes in visual 
perception (how you see things). The NeuroMinder involves 
viewing stripes of varying contrast and determining the 
direction of motion (up, down, left or right). The NeuroTracker 
involves tracking the movement of bouncing balls in a 3D 
environment. This will be achieved by wearing 3D glasses 

 
Study Risks 

All tests are non-invasive but, do require use of your eyes. There 
is a risk of your eyes becoming tired and teary from testing.  

Dilation drops are commonly used by eye doctors during routine 
eye exams. They are required for taking pictures of your retinas. Side 
effects to the drops are possible. Minor irritation may be felt when first 
putting in the drops. This will last approximately 10 seconds. When 
dilation is maximal, your pupil will appear larger and near vision will be 
blurry. Reading and any activity up close will be difficult for a period of 
up to six hours after first putting in the drops. Your pupil will appear 
larger for approximately the same amount of time. It is possible that 
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you will be more sensitive to light following dilation of the eye. It is 
therefore recommended to wear sunglasses outside when dilated.   

You should not drive on the day of the testing because your 
pupils may be dilated. Driving is not recommended when dilated 
because dilation can distort vision temporarily. If you are coming by 
car, then you need to have someone drive you. It is not necessary to 
be accompanied if you are taking the subway, bus or any other form of 
transportation where you will not put others at risk while your vision is 
distorted.   

Disadvantages Associated with this Study 

 This study occurs in two sessions at the University of Montreal. 
Due to pupil dilation, you will be asked to either use public 
transportation or have someone drive with you to the testing session. 

Advantages 

 This research is on-going and will take many years, it is unlikely 
that you will get any direct benefit from taking part in this study. This 
research may lead to better diagnosis and treatment in future for 
patients who have the same or a similar condition as you. 

Compensation 

This study is strictly voluntary. You will not be compensated for your 
time. 

Dissemination of Results 

Reports about your DNA testing can be made available to you. A 
research assistant will go over the report with you. Be aware that this 
information may not affect only you, but relatives that share your 
genes as well. Laboratory report interpretation and genetic counseling 
services can be made available to you.  

Evaluation of the overall results will only be performed as a 
group and not by individual patient. The medical implications of the 
results of this testing, if any, will only be known after many studies 
like this one are done. If requested, a summary of the findings from 
this research can be given over the phone. 

If the results of the study are published, your name will not be 
used and no information that discloses your identity will be released or 
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published. 
 

Voluntary Participation and the Right to Withdraw 

 You may choose whether you would like to take part in this 
study. If you choose to take part now, you can change your mind later 
and stop at any time and for any reason with a simple verbal request. 
Your future medical care and your relationship with your doctor and or 
other people involved in your care will not change in any way.  

Confidentiality 

 All the information collected about you during the study will 
remain confidential. To protect your identity and name, identifying 
information will be replaced with a code (numbers and/or letters), the 
link between the code and your identity will be held by the researcher 
in charge of the study. Only the researcher responsible for the study 
(Caitlin Murphy) and Olga Overbury will have direct access to this 
information. Your results will be kept secure within the Low Vision Lab 
at the school of optometry and will be destroyed 10 years after the 
end of this study.  In the case that these results are published, your 
name and identity will not be revealed. No information that discloses 
your identity will be allowed to leave the institution.  

Evaluation of the overall results will only be performed as a 
group and not by individual patient. The medical implications of the 
results of this testing, if any, will only be known after many studies 
like this one are done. 

 
Contact 

 If you have questions about the study or if you feel you have a 
problem related to taking part in the study, you can communicate with 
the researcher in charge of the study. 

 

 For any information of an ethical nature regarding your 
participation in this study, you can contact the research ethics advisor 
of the University of Montreal’s health research ethics board (CERES). 
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 For more information on your rights as participants in the study, 
we invite you to consult the University of Montreal participants’ 
webpage at: http://recherche.umontreal.ca/participants (French only).  

 Any complaints concerning this research can be addressed to the 
ombudsman of the University of Montreal. It is possible to contact the 
ombudsman toll-free. The ombudsman is fluent in French and English, 
and will take your calls between 9:00 AM and 5:00 PM. 
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Consent 

 I have read and reviewed the Information and Consent 
Document and the study was explained to me.  My questions were 
answered to my satisfaction. I was given the time to think about 
whether I want to take part in this study.  

 I agree to take part in this study according to the conditions set 
in this Information and Consent Document.  A dated and signed copy 
of this Information and Consent Document will be given to me. 

   

 

First and last name (Participant)  Signature 

 

  Date : 

 

As a member of the research team, I explained the research project to 
____________________________ (name of participant). I answered 
his/her questions and informed him/her of their rights. The latter told 
me that he/she agreed to participate in this research project.  For my 
part, I pledge to conduct the research project as described and 
discussed. Consent form administered and explained in person by: 

   

 

First and last name (Researcher)  Signature 

 

  Date : 
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Consent Form 

Visual Impairment/Cognitive Impairment Co-morbidity; 
Examining the Genotype-Structure-Function Relationship 

(consent form control group, no AMD) 

Researcher Caitlin Murphy, M. Sc. 
Ph.D. student 
School of optometry, University of Montreal. 

Supervisors Olga Overbury, Ph. D. 
Professor 
School of optometry, University of Montreal 

Jocelyn Faubert, Ph. D. 
Professor 
School of optometry, University of Montreal 

Funding: none. 

 

Preamble 

 We are inviting you to take part in a genetic study. You are 
being recruited for this study because you do not have AMD and have 
no reported family history of AMD. However, before you decide and 
sign the Information and Consent Document, take the time to read, 
understand and carefully think about the following information. 

 This Information and Consent Document may contain 
information or words that you do not understand. You should ask the 
researcher in charge of the study or members of the study staff to 
answer your questions and explain any word or statement that you do 
not understand.  

Nature and Objectives of Study 

 The number of Canadian seniors affected by Age-related Macular 
Degeneration (AMD) and early cognitive changes is on the rise. While 
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AMD affects abilities such as reading and driving, cognitive changes 
can reduce one’s ability to understand and to communicate. Thus, both 
conditions severely affect quality of life, independence and social 
participation. Currently, the causes of AMD and cognitive impairment 
are not well understood and there are few, if any, effective treatments. 
As life expectancy increases and our population ages, more cases will 
develop. In a recent study, one of five older adults receiving low vision 
rehabilitation for macular disease scored positive for cognitive 
impairment. The high occurrence of these occurring together suggests 
that visual and cognitive impairments may be related.  

 The goal of this study is to explore the relationship among 
genotype (the variation in your genes), the structure of your eye and 
your visual function. By establishing a relationship between genotype, 
structure and function, both conditions will be better understood 
making it possible for genotype alone to become a predictive measure. 
Genotype can be determined early in life. Those carrying risk genes 
can take preventative measures earlier in life, decreasing their chances 
of developing AMD or cognitive impairment. 

Participation 

 You are being recruited for this study because you have normal 
vision (have not been diagnosed with AMD). If you decide to 
participate, information about your current visual function will be 
measured and a DNA sample for genotyping will be obtained. The 
testing will occur over two sessions. Test sessions will occur at the 
School of Optometry at the University of Montreal and will also last 
approximately 45 minutes. There will be two tests session in total and 
they will be scheduled at your convenience. 

Study Procedure 

First session (45 minutes) 

1. It will begin with a short questionnaire that collects information 
such as your age, language, heritage, etc. 

2. Visual function testing will also take place during the first session. 
This collection of tests will measure visual acuity, contrast 
sensitivity, colour vision and reading acuity  

3. Two eye drops per eye (2.5% phenylephrine® and 1% 
Tropicamide® will be administered in order to dilate your pupils. 
This allows us to take better pictures of the back of your eyes. 
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4. While waiting for your pupils to dilate, you will respond to two 
questionnaires; the Montreal Cognitive Assessment (MoCA) and 
the Mini-Mental State Exam (MMSE) which will be administered 
to measure cognitive status. These questionnaires are typically 
used clinically to detect or measure the severity of cognitive 
impairment and monitor cognitive changes over time. They cover 
a number of categories including orientation to time and place, 
repeating lists of words, simple math, language use and 
understanding, and basic motor skills. 

5. A DNA sample will be collected by rubbing a swab along the 
inside of your cheek. Your sample will be sent to Asper BioTech 
who will identify any AMD risk genes you may have. 

6. A colour fundus camera will be used to take pictures of your eyes. 
 

Second session (45 minutes) 

1. It will include use of a device called ophthalmoscope 
(OCT/SLO). This device, commonly used in ophthalmology 
exams, will be used to: 
a. Observe and evaluate the layers of your retina (the back of 

your eye). 
b. View the retinal surface in real time. 
c. Measure the response of your eye to small lights. 
d. Determine the borders of any scarring resulting from your 

AMD can be located.  
2. Lastly, the NeuroMinder and NeuroTracker, both by Cognisens, 

are computer programs that measure changes in visual 
perception (how you see things). The NeuroMinder involves 
viewing stripes of varying contrast and determining the 
direction of motion (up, down, left or right). The NeuroTracker 
involves tracking the movement of bouncing balls in a 3D 
environment. This will be achieved by wearing 3D glasses. 
 

 
 
 
 
Study Risks 

All tests are non-invasive but, do require use of your eyes. There is a 
risk of your eyes becoming tired and teary from testing. 
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Dilation drops are commonly used by eye doctors during routine 
eye exams. They are required for taking pictures of your retinas. Side 
effects to the drops are possible. Minor irritation may be felt when first 
putting in the drops. This will last approximately 10 seconds. When 
dilation is maximal, your pupil will appear larger and near vision will be 
blurry. Reading and any activity up close will be difficult for a period of 
up to six hours after first putting in the drops. Your pupil will appear 
larger for approximately the same amount of time. It is possible that 
you will be more sensitive to light following dilation of the eye. It is 
therefore recommended to wear sunglasses outside when dilated.   

You should not drive on the day of the testing because your 
pupils may be dilated. Driving is not recommended when dilated 
because dilation can distort vision temporarily. If you are coming by 
car, then you need to have someone drive you. It is not necessary to 
be accompanied if you are taking the subway, bus or any other form of 
transportation where you will not put others at risk while your vision is 
distorted.   

  When you give a DNA sample for research, you share genetic 
information, not only about yourself, but also biological (blood) 
relatives who share your genes or DNA. There is a risk that information 
from genetic research could possibly be tied to you. The potential re-
identification of information (eg, by an employer or insurer) may lead 
to loss of privacy and possible future discrimination in employment or 
insurance, against you or your biological relatives. You should be aware 
that genetic information cannot be protected against disclosure by 
court order. 

Please indicate your choice regarding knowledge of your AMD genotype. 

☐ I understand the risks and want the results of my genetic test. I 
understand that AMD is a complex disease influenced by genes and the 
environment. Asper BioTech will determine which gene variants I carry 
and calculate the risk of development of AMD. Carrying AMD variants 
does not mean I will get the disease for certain. 

☐ I do not want the results of my genetic test. 
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Disadvantages Associated with this Study 

 This study occurs in two sessions at the University of Montreal. 
Due to pupil dilation, you will be asked to either use public 
transportation or have someone drive with you to the testing session. 

Advantages 

 This research is on-going and will take many years, it is unlikely 
that you will get any direct benefit from taking part in this study. This 
research may lead to better diagnosis and treatment in future for 
patients who have the same or a similar condition as you. 

Compensation 

This study is strictly voluntary. You will not be compensated for your 
time. 

Dissemination of Results 

Reports about your DNA testing can be made available to you. 
Asper BioTecjh provides a report in simple terms that explain the 
genetic markers you have and your risk of developing AMD. A research 
assistant will go over this report with you. Be aware that this 
information may not affect only you, but relatives that share your 
genes as well. Laboratory report interpretation and genetic counseling 
services can be made available through Asper Biotech.  

Evaluation of the overall results will only be performed as a 
group and not by individual patient. The medical implications of the 
results of this testing, if any, will only be known after many studies 
like this one are done. If requested, a summary of the findings from 
this research can be given over the phone. 

 If the results of the study are published, your name will not be 
used and no information that discloses your identity will be released or 
published. 
 

Voluntary Participation and the Right to Withdraw 

 You may choose whether you would like to take part in this 
study. If you choose to take part now, you can change your mind later 
and stop at any time and for any reason. Your future medical care and 
your relationship with your doctor and or other people involved in your 
care will not change in any way.  
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Confidentiality 

 All the information collected about you during the study will 
remain confidential within the limits of the Law. To protect the your 
identity and name, identifying information will be replaced with a code 
(numbers and/or letters), the link between the code and your identity 
will be held by the researcher in charge of the study. Only the 
researcher responsible for the study (Caitlin Murphy) and Dr. Overbury 
will have direct access to this information. Your results will be kept 
secure within the Low Vision Lab at the school of optometry and will be 
destroyed after 10 years.  In the case that these results are published, 
your name and identity will not be revealed. No information that 
discloses your identity will be allowed to leave the institution.  

Contact 

 If you have questions about the study or if you feel you have a 
problem related to taking part in the study, you can communicate with 
the researcher in charge of the study. 

 For any information of an ethical nature regarding your 
participation in this study, you can contact the coordinator of the 
University of Montreal’s health research ethics board (CERES). 

 For more information on your rights as participants in the study, 
we invite you to consult the University of Montreal participants’ 
webpage at: http://recherche.umontreal.ca/participants.  

 Any complaints concerning this research can be addressed to the 
ombudsman of the University of Montreal. It is possible to contact the 
ombudsman toll-free. The ombudsman is fluent in French and English, 
and will take your calls between 9:00 AM and 5:00 PM. 
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Consent 

A copy of the Information and Consent Document will be placed in my 
medical file. Therefore, I understand that they are available to any 
person or organization that has access to my medical file.  
 

I have read and reviewed the Information and Consent Document and 
the study was explained to me. My questions were answered to my 
satisfaction. I was given the time to think about whether I want to 
take part in this study.  

I agree to take part in this study according to the conditions set in this 
Information and Consent Document. A dated and signed copy of this 
Information and Consent Document will be given to me. 

   

 

First and last name (Participant)  Signature 

 

  Date : 
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As a member of the research team, I explained the research project to 
____________________________ (name of participant). I answered 
his/her questions and informed him/her of their rights. The latter told 
me that he/she agreed to participate in this research project. For my 
part, I pledge to conduct the research project as described and 
discussed. Consent form administered and explained in person by: 

   

 

First and last name (Researcher)  Signature 

 

  Date : 
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Appendix B: Measures of Visual Function 
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ETDRS Visual Acuity Assessment 
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Mars Letter Contrast Sensitivity Test 
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Farnsworth D-15 Colour Assessment 
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Optical Coherence Tomographer/Scanning Laser Ophthalmoscope (OCT/SLO)

 

The OCT function was used to take raster scans of participant eyes from which drusen 
characteristics were studied. The OCT function also took retinal topography scans, which 
allowed location of the anatomical fovea. The SLO function was used to measured 
fixation stability. 
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Example Raster Scan 

 

A raster scan from a retina with AMD. Three drusen are labelled according to the 

categories described in Khanifar et al., 2008. The scan also shows spots of geographic 

atrophy on the right where light passes into the choroid due to degeneration of the RPE. 
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Appendix C: Measures of Cognitive Function 
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The Mini Mental-State Exam (MMSE) 
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The Montreal Cognitive Assessment (MoCA) 
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The Neurominder By Cognisens 

 

The Neurominder by Cognisens measures mild perceptual impairment, which is thought 

to be the precursor to MCI. Deficits in second-order processing are suggested to be one of 

the initial signs of MCI. Deficits like this are too subtle to be identified by traditional 

questionnaires. The Neurominder uses a series of gratings to measure threshold 

perception of first and second-order stimuli.  
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Neurotracker and 3D Multiple Object Tracking (3DMOT) 

 

 

The Neurotracker assesses perceptual-cognitive skills such as attention, focus and 
decision-making. The user is seated and asked to track the movement of targets across a 
3D projection. Older adults are asked to track three objects (even though this example 
highlights four). Three balls are highlighted at the beginning of each trial. The highlight 
disappears and the targets bounce inside a cube-shaped space. Once motion stops, each 
ball is assigned a number. The user is asked to identify which targets were highlighted at 
the beginning of the trial.  
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