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Abstract 7 

We review the different molecular mechanisms giving rise to the repulsive hydration force 8 

between biologically relevant surfaces such as lipid bilayers and bio-ceramics. As we will show, 9 

the hydration force manifests itself in very different and subtle ways depending on the substrates. 10 

Soft, mobile surfaces such as lipid bilayers tend to exhibit monotonic, decaying hydration force, 11 

originated from the entropic constriction of the lipid head groups. Solid surfaces on the other 12 

hand, tend to exhibit a periodic oscillatory hydration force, originated from the surface induced 13 

polarization of water molecules. In this review we will describe both subtle faces of this 14 

important interaction by first describing the early experiments performed on solid surfaces and 15 

their interpretation by recent simulation studies. Then we will describe the hydration force 16 

between fluid interfaces such as bilayers and explain how experimentally researchers have 17 

unraveled the dominant role of the lipid head groups conformation. 18 

 19 

INTRODUCTION 20 

For decades, it was perceived that the Derjaguin Landau Verwey and Overbeek (DLVO) 21 

theory[1, 2], a combination of repulsive electrical double layer forces and attractive van der 22 
Waals forces, is able to describe the properties of wide range of colloids and bio-colloids. 23 

According to this theory, at separations below 2-4 nm, attractive van der Waals forces always 24 
dominates over the repulsive double layer forces leading to an adhesive contact. However, 25 
several phenomena (re-peptization, hydrophobic colloids, and silica particles) were found not to 26 

obey this theory as these materials neither coagulated nor swelled as predicted by DLVO theory. 27 
Thus, the idea of a repulsive force, the hydration force, acting at a few nanometer separation 28 
distance, overcoming the van der Waals primary adhesive minimum arose. These observations, 29 

yet, were not sufficient to prove the existence of an additional force simply because other 30 

repulsive contributions such as the Stern layers compression or  the possible presence of steric 31 
repulsive interactions had to be ruled out [3]. Frens and Overbeek [4, 5] proposed a model which 32 
explained the removal of the primary adhesive minimum by shifting the hard wall cut off to a 33 
finite separation of D = D0 + 2d, where D0 was the zero distance and d the diameter of ions. This 34 
theory showed that the net repulsion could continue to rise steeply as the inter-particle distance 35 

separation decreased to contact even when the surface charge density or potential was low. After 36 
this first intent, the necessity of directly measuring the interaction forces vs. separation distance 37 
was the subject of intense research in order to experimentally verify if the force laws measured 38 

can be fitted using DLVO-Stern model or if it requires some extra force to be fitted. In what 39 
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follows, we will describe the experimental characterization of the hydration forces, in two main 40 

systems, namely lipid membranes and solid substrates, the apparent discrepancies in the 41 
experimental observations that have emerged and the common ground between different 42 
researches. We describe the various experimental methods that are still used to determine such 43 

forces and continue with a detailed description of the results obtained from Surface Force 44 
Apparatus (SFA).  45 

FORCE MONITORING TECHNIQUES 46 

Several direct force measuring techniques have been developed till date. Some were 47 
devised for specific purposes while others have been implemented for a broad range of 48 
applications. The first technique to provide the quantitative data into the short range hydration 49 
forces is the Osmotic Pressure (OP) technique. OP is able to measure the repulsive forces in 50 

aqueous solutions between surfactants or lipid bilayers [6-8], aligned clay sheets [9, 10] and 51 

aligned macromolecules [11]. In this method, osmotic pressure is applied to the aqueous sample 52 

and the equilibrium spacing between surfaces is monitored by X-rays. This technique, however, 53 
is unable to measure interaction forces at longer range and is thus limited to only the repulsive 54 
parts of the force laws. OP is not able to detect any adhesive forces. Later, SFA was developed 55 
by Tabor, Winterton and Israelachvili [12-14] to measure the van der Waals forces between 56 

molecularly smooth mica surfaces in air or vacuum. Israelachvili further modified the apparatus 57 
and enabled it to monitor forces in liquid medium as well. This opened the gateway to the broad 58 

field of modern surface science for instance rheology [15], tribology [16], sensing [17], 59 
electrochemistry [18], corrosion [19].  60 

Figure 1A shows the schematic representation of the SFA apparatus. A white light beam 61 
is directed through two curved discs covered with back-silvered mica sheets of thickness 2 to 5 62 

µm. The silver thickness on mica is about 45 nm to 50 nm to allow at least 95% reflection. The 63 

discs are placed in cross cylinder geometry creating a three layer interferometer. The interference 64 
fringes emerging from the apparatus are called fringes of equal chromatic order (FECO). The 65 
transmitted light is directed to a spectrometer for further analysis of FECO fringes. The 66 

interaction force, F, acting between the surfaces is measured by the deflection of a spring on 67 
which one of the surfaces is mounted [20]. This technique has distance and force resolutions of 1 68 

Å and 1 N respectively [21]. The detailed description of the instrument is given in ref. [22]. 69 
Using white light interferometry, the separation distance, the radius of curvature and the 70 
interacting force can be in-situ monitored in SFA experiments.[23] Hence, absolute distance 71 

referencing and normalization of the measured forces by radius of curvature remain 72 
unambiguous. Yet, in SFA experiments, the contact area is macroscopic and typically in the 73 
range of hundreds or thousands of μm

2 
which

 
is much larger than that the typical contact area 74 

measured in single molecule force spectroscopy [24]. 75 

The Atomic Force Microscope (AFM) technique is widely used to measure interaction 76 

forces between surfaces at the molecular scale[24]. The schematic of AFM is shown in Figure 77 
1B. In an AFM experiment, a small tip attached to a lever is moved toward a surface. Meanwhile 78 
the deflection of the lever and the displacement of the base to which the lever is mounted are 79 
measured as shown in Figure 1B. The deflection of the lever is measured using a laser beam 80 
reflected into a four quadrant diode and converted into interaction force using Hooke's law. The 81 
zero distance (the situation at which the tip is in contact with the sample) in an AFM experiment, 82 
however, is assumed by calibration with a hard wall of unknown origin. The exact shape and the 83 
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roughness of an AFM tip in contact with the surface is usually unknown which often complicates 84 

the direct comparison even between different AFM experiments. 85 

 

Fig. 1: Schematic representation of A) Surface Force Apparatus system and B) Atomic Force Microscope 

 86 
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 In this report, we review the origin and evolution of the repulsive hydration force in 87 

various electrolyte solutions taking into account especially the SFA results, and corroborate the 88 
results by simulation and other experimental techniques wherever applicable. 89 

FORCES BETWEEN SOLID SURFACES IN ELECTROLYTE SOLUTION  90 

The very first, accurate and direct measurement of forces between solid mica surfaces 91 
immersed in aqueous electrolyte using SFA by Israelachvili and Adams [25] is shown in Figure 92 

2 (the results obtained by Pashley el al. is also combined in Figure 2A). It shows the forces 93 
between two charged hydrophilic mica surfaces in K

+
 solutions in the concentration range of 1 to 94 

10
-5 

M at 20
0
C at pH 6. Figure 2A shows pure DLVO interaction below 10

-3 
M and an additional 95 

monotonic short range repulsion at or above this concentration for K
+
 ions. Pashley boldly 96 

reported the rise of hydration forces only above a certain critical bulk concentration which 97 

depends on the electrolyte [26]. Hydration forces become apparent only when hydrated cations 98 

adsorbed on mica are prevented from desorbing the surfaces upon approach. Pashley showed that 99 

this force is completely absent at ∼5 × 10
−6 

M for Na
+
 and in hydrochloric acid solutions up to 100 

1.2 × 10
−3 

M [27]. Pashley and Israelachvili [28] further reconfirmed the rise of an additional 101 
short-range repulsive hydration force only above a certain electrolyte concentration by careful 102 

examination of the interaction forces below 2 nm of separation distance in aqueous KC1 103 
solutions. The authors showed that the increase of the hydration force occurred both in 104 

magnitude and range (attaining 4–5 nm) with the increase of adsorbed ions on the surface. 105 
Pashley calculated the magnitude of the hydration force which followed the series Na

+
 > Li

+
 > 106 

K
+
 > Cs

+
 using a simple site-binding model to describe the charging behavior of interacting mica 107 

surface [29]. The DLVO-regulation theory was subtracted from the total measured force on the 108 
assumption that the mica surfaces apparently were fully covered with adsorbed cations. 109 

Qualitatively, with the exception of sodium, it seemed that the smaller the ions the stronger is its  110 

 

Fig. 2 A: Semi-logarithmic plot of force vs. distance measured between curved mica surfaces in aqueous 
K+

 solution ranging from 10-5 M to 1 M. B: Comparison of the hydration force of monovalent K+ of 10-1 M 
with divalent ions Mg2+ and Ca2+ of 3 M and 5 M respectively . Adapted from ref [25-29] and [32]. 
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binding capacity to mica. Similar results were observed by Hribar et al. and Goldberg et 111 

al. [30, 31].  112 

Pashley and Israelachvili [32] also measured the interaction forces between mica surfaces 113 
in divalent metal (Mg

2+
, Ca

2+
, Sr

2+
, and Ba

2+
) chloride solutions. They found that at 114 

concentrations ≥ 1.0 M, the divalent cations firmly bind to the interacting mica surfaces giving 115 

rise to a repulsive short-range force (see Figure 2B) seemingly due to the residual hydration 116 
shells of the bound cations. The authors inferred that the divalent cations were more strongly 117 
hydrated than monovalent cations and therefore did not easily shed their hydration layers in order 118 
to bind to the mica surface and give rise to hydration force at higher concentrations than 119 
monovalent cations do. The magnitude of the hydration force followed the series Mg

2+ 
> Ca

2+ 
> 120 

Li
+
~ Na

+ 
> K

+ 
> Cs

+
. Israelachvili and Adams also observed that the double layer forces were 121 

much reduced in Ca(NO3)2 and BaCl2 solutions compared to those in KNO3 solutions and were 122 

not accurately described by DLVO theory [33]. Using a modified set up of SFA,  Rabinovich et 123 
al.[34] carried out direct measurements of the interaction forces between gold spheres and 124 
crossed quartz filaments in air within the region of distances from 10 to 100 nm. The authors 125 
observed deviations from DLVO theory below 5 nm which they attributed to the influence of 126 

structural forces. Ruckenstein et al. [35] suggested that bilayers of charges formed by the 127 
adsorption of hydrated ions and that charged bilayer generated a polarization in the neighboring 128 

water molecules which propagates into the liquid. The repulsive hydration forces were generated 129 
by the overlap of the polarization layers of the two plates. 130 

 All the mentioned studies confirmed independently the existence of an interaction force, 131 

different from the normal van der Waals and double-layer forces. This force was found to be 132 

independent to the type of electrolyte. Therefore it was classified as an additional force and not a 133 

modification of the double-layer force. Hence, for the first time, the repulsive forces which later 134 

will be defined as hydration forces was introduced. The general inference that is drawn by these 135 

early studies is that the force was intrinsically repulsive and decayed monotonically with 136 

 
Fig. 3 Force measured between two curved mica surfaces as a function of distance in 10-3 M KCl 
solution. Adapted from ref [38]. 
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distance out to a separation distance of around 5 nm.  137 

 On one hand, these results were considered as a breakthrough since the full force law 138 
was possible to be determined/verified experimentally but on the other hand, they were 139 
contradicting the results of computer simulations [36, 37] which were predicting an oscillatory 140 
density profile extending several molecular diameters into the liquid. Abraham [36] suspected 141 
that the hydration force would probably arise between hydrophilic surfaces, such as silica and 142 

mica, since strongly H-bonding surface groups modify the H-bonding network of nearby liquid 143 
water molecules. 144 

 In 1983 Israelachvili and Pashley[38] meticulously measured the hydration force in 10
-3

 145 

M KCl solution of pH 5.5 between molecularly smooth mica surfaces. The authors reported that 146 

the hydration force was not monotonic once the separation distance was smaller or equal to 20 Å. 147 

The hydration force was oscillatory having a minima and maxima of periodicity 2.5 ± 0.3 Å, 148 

roughly the diameter of a water molecule (Fig. 3). The schematic in Figure 3 shows that the 149 

adsorption of ions on the mica surface orders water molecule at the surface. Using atomic force 150 

microscopy(AFM) and computer simulations, Ricci et al. [39] recently showed that cations 151 

adsorbed on the surface of mica could induce ordered water layers at the surface of 152 

homogeneous solids in aqueous solutions as shown in Figure 4. Similar results were reported in a 153 

recent study using molecular dynamics simulations between two mica surfaces in an aqueous 154 

KCl electrolyte solution by Leng et al. [40]. Urbic et al. [41] also came to the same conclusion in 155 

a simulation study. The authors used the Mercedes-Benz (MB) model of water, in NVT and µVT 156 

Monte Carlo computer simulations and observed oscillations in the forces between inert plates, 157 

due to water structure, even at plates separation of 5-10 water diameters. Cherepanov et al. [42] 158 

showed the increase of the hydration repulsion with ionic strength by molecular dynamics 159 

simulation. Henderson et al. [43] reported 7 force oscillations below 2 nm between spheres 160 

brought in contact using a non-continuum molecular theory. Using grand canonical molecular-161 

dynamics simulations. Li et al. [44] reported oscillatory solvation forces between hydrophilic 162 

mica and glass surfaces. Fenter et al. [45, 46] studied the mica (001)-water interface under 163 

ambient conditions using High-resolution x-ray reflectivity. The results revealed density 164 

 
 

Fig. 4: The schematic representation of cation/s (K+) being randomly adsorbed (a) and adsorbed 
forming a row on mica (b). Similarly c and d represents the density of oxygen atoms of the water 
molecules. In the case of single ion, the value of oxygen density is the radial average around K+ ions. 
In the latter case, the average oxygen density is obtained by considering a rectangle of 0.5nm width 
aligned with the row of the ions and centered on them. Adapted from ref [39]. 
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oscillations of the water oxygen atoms in the normal direction to the surface, providing evidence 165 

of interfacial water ordering. The spacing between neighboring water layers in the near-surface 166 

region, were approximately 2.5(2) – 2.7(2) Å, close to the size of a water molecule. The density 167 

oscillations extended to about 10 Å above the surface and did not strictly maintain a constant 168 

periodicity. The authors came to the conclusion that the primary hydration layer was followed by 169 

a weakly modulated hydration structure that extended more than 1 nm above the surface. 170 

 The described experimental and simulation results show that for monovalent ions the 171 

hydration force between hard surfaces appears only above a critical ion concentration and is not 172 

only monotonically repulsive but has an oscillatory component superimposed to it.  173 

Attempts have been made to measure the forces between surfaces other than mica. Horn 174 
et al. [47] measured the monotonic short-range repulsive force devoid of oscillatory component 175 

in NaCl solutions between silica surfaces. The measured force was found insensitive to the ionic 176 
conditions making it apparently intrinsic to the surfaces. Similar forces have been measured 177 

between silica surfaces by Vigil et al. [48], Ducker et al.[49], between mica surfaces by Shubin 178 

et al. [50],  between (0001) sapphire surfaces by Drucker et al. [51], and between glass fibers by 179 
Rabinovich et al.[34] using different techniques. According to Iler [52, 53], silica is amorphous 180 
and its negative surface charges are located at the ends of short silica hairs protruding a few 181 

angstroms from the surfaces which shifts the Outer Helmholtz Plane farther out than the physical 182 
solid-liquid interface (the van der Waals plane) causing the DLVO interaction to be more 183 

repulsive. A similar effect is observed for finite sized counterions adsorbed on mica surfaces [54, 184 
55]. Chapel [56] measured forces between two pyrogenic silica sheets immersed in monovalent 185 
electrolytes (CsCl, KC1, NaC1, LiC1). Contrary to the previous results, his results showed that 186 

the strength and the range of the hydration force decrease with increasing the degree of hydration 187 

of the counter ion. This is opposite to the behavior of mica for which adsorbed counter ions have 188 

been reported to generate a hydration repulsion. The effects of counter ions on hydration forces, 189 
weakening for silica and enhancing for mica, show that the origin of the short-range interaction 190 

is not unique.  191 

The existence of hydration force was evidenced by several researchers using various 192 

modes of AFM [49, 57-67]. As postulated by Israelachvili et al.[21], experimentally shown by 193 

Atkins et al. and Zeng et al.[68, 69], and theoretically shown by Yang et al. [70]; a tip roughness 194 

greater than the molecular diameter of the water molecule plays an important role in smearing 195 

out the oscillatory component of the hydration force. Adsorbed chemical compounds can also 196 

alter significantly the stability of the hydration layer as recently shown by Akrami et al. [71]. 197 

Direct in situ characterization of the AFM tip or of any interacting surface cannot be performed 198 

till date which limits our understanding of the role of surface roughness or chemistry in the 199 

appearance or disappearance of hydration forces. For more details, readers are suggested to 200 

consider refs [68, 72-77]. 201 

As discussed, the simulation studies have always been leading showing the layered 202 
density profile [36, 78-80] analogous to the hydration shell and/or evidences of interfacial 203 

layering near interfaces [81-93] for various types of substrates. Layered density profile were also 204 
experimentally shown under potential control [94-97]. The recent advancement of X-ray 205 
techniques [98-103] have enabled atomic-scale studies of interfaces. Liquid density oscillations 206 
near solid surfaces have been observed in many systems [104-108]. Neutron scattering 207 
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measurements have also demonstrated the existence of structured fluid layers under confinement 208 

[88, 89], [109-112]. Mineral-water interface using X ray has been studied by Fenter et al. [46, 209 
113-118]. For details mineral–water interfacial structures revealed by synchrotron X-ray 210 
scattering refer to references [45, 119] 211 

Thus from above close examination of the studies, both experimental and theoretical, we 212 

can draw the following conclusions:  213 

1. Above the critical concentration, the adsorption of cation on the mica surface is the cause 214 
of the repulsive hydration force and the hydration force is not only monotonically 215 
repulsive but an additional oscillatory component is superimposed to it below 2 nm and 216 
its periodicity is equal to the mean molecular diameter of water. 217 

2. The critical concentration depends on the type of the electrolyte. The critical 218 

concentration for divalent metal ion is always higher than that for the monovalent metal 219 

ion solution.  220 

3. The magnitude of the oscillatory force component depends on the extent of adsorption of 221 
cation on the surface which in turn depends on the concentration of the solution. The 222 
more the cations adsorbed the strong is the hydration force. 223 

4. Surface roughness plays an important role in smearing out the oscillatory component of 224 

the hydration forces. 225 

 226 

  227 
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HYDRATION FORCES BETWEEN LIPID BILAYERS 228 

Lipid bilayers have been extensively studied in the past 50 years.  Lipid bilayer are formed by 229 

the self assembly, in water, of lipid molecules into a bilayer structure through hydrophobic 230 

interactions between hydrocarbon tails of the molecules. As a consequence, the interfacial 231 

properties of a bilayer differs significantly from those of solid surfaces mostly due to the inherent 232 

mobility of the lipid molecules forming the bilayers. As we will see, such mobility dramatically 233 

modulates the interaction of the bilayer with water molecules, solvated ions and with other 234 

bilayers as well. In what follows, we describe the recent efforts that have been made towards a 235 

better understanding of such interactions and the future directions of research that these recent 236 

results are offering. 237 

The water-bilayer interface 238 

 The structure of the water bilayer interface has been studied extensively using spectroscopic 239 

techniques such as Nuclear Magnetic Resonance (NMR) and Infrared (IR spectroscopy).[120]  240 

Early studies performed using NMR and molecular dynamic simulation (MDS) focused on 241 

identifying the number of molecules necessary to form the hydration shell of lipids. It is 242 

commonly accepted that this number varies between 17-22 water molecules depending on the 243 

lipid head group, lipid area [121]  and availability of ions or solutes and temperature (see Figure 244 

5).[122] More recent simulations have suggested that the interfacial water can mostly be 245 

classified into  three categories which are [123, 124] (i) buried water located close to the 246 

carbonyl groups, (ii) first external hydration shell near the phosphorylcholine groups and (iii) 247 

secondary hydration shell. Even though such classification has not been confirmed 248 

 
Figure 5: molecular representation of the water-lipid interface in a model bilayer made of 
DPPC. Also shown is the water density profile across the bilayer-water interface. 
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experimentally, there are clear experimental evidences of strongly bound water molecules to 249 

lipid head groups.  250 

Water distribution around lipid head group can be easily disturbed by external factor. In 251 

particular, presence of ions, especially cations have been shown experimentally to alter lipid 252 

molecular area and diffusivity. Since Na
+
 is the most physiologically abundant, its interaction 253 

with lipid bilayers has been extensively studied, theoretically and experimentally. For example 254 

Fluorescence Correlation Spectroscopy (FCS) has been used to characterize POPC self-diffusion 255 

coefficient in presence of varying concentration of NaCl at different temperatures. The study 256 

shows that independent to the fluorescent marker used, the augment in concentration of salt tend 257 

to decrease the diffusion of POPC molecules.[125] Simulation studies confirmed this observation 258 

and revealed that tight coordination complexes involving one Na
+
, three lipid molecules and 1-2 259 

water molecules could be formed. Similar results were reported with mixed lipid bilayers.[126]  260 

The binding of other types of species such as organic molecules have also been reported to 261 

strongly affect the behavior of water molecules near the bilayer interface. For example, dimethyl 262 

sulfoxide (DMSO) has been widely studied for its ability to preserve cellular membrane during 263 

cryo-preservation. Such important property was recently explained using PFG NMR and the 264 

SFA.[127] 265 

Interaction forces between lipid bilayers 266 

The interaction forces acting between apposing lipid bilayers include the following: [52]  267 

(i) van der Waals interactions forces between the bilayer hydrocarbons layer across 268 

water,  269 

(ii) hydration forces due to the expulsion of water molecules upon compression of the 270 

bilayers, 271 

(iii)  the hydrophobic interaction between lipid tails across water,  272 

(iv) the protrusion interaction forces due to the restriction of lipids position 273 

fluctuations along the direction of compression, 274 

(v) the lipid head group overlap involving conformational change of the head groups 275 

upon compression,  276 

(vi) the undulation forces due to bending fluctuations of the bilayers and 277 

(vii) the electrostatic interaction forces due to bilayer surface charging.  278 

Each of these contributions have been studied both experimentally and theoretically. 279 

Mathematical expressions of these interactions are provided in Table 1 and the reader is referred 280 

to the original references for further details of their derivation. 281 

Interaction forces between lipid bilayers or lipid membranes have been measured using a variety 282 

of techniques. The two main techniques have been the osmotic pressure technique (OP) and the 283 

SFA. As can be seen in Figure 6A and B, both measurement techniques give similar results on 284 

single component lipid bilayers and multi-component lipid bilayers/membranes. Important 285 

differences should also be noticed: when using the OP technique, the thickness of the lipid 286 

bilayers increases (the lipid molecular area decreases) as the applied pressure increases; while in 287 
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the SFA measurement, the lipid bilayer becomes thinner (the molecular area increases) at the 288 

contact area due to lateral diffusion of lipids during the compression. These important 289 

differences explain why hemifusion/fusion of bilayers is rarely reported using the OP technique 290 

and can be easily observed using the SFA. 291 

 
Figure 6: Short range forces measured between single component lipid bilayers (A) and multi-
component lipid bilayers and lipid membranes (B). (A) Interaction forces between lipid bilayers of egg PC 
measured independently with the SFA and by the osmotic pressure technique (OP). Both measurements 
show the presence of a net repulsive force exponentially decreasing with the bilayer separation 
distance. The characteristic decay length of this interaction is 2.5 Å. Note that in the SFA experiment 
only, membrane hemifusion is observed at a pressure of 10 MPa [128] (B) Interaction forces between 
multi-component membranes. Measurement performed between myelin lipid bilayers using the SFA in 
buffer saline show that addition of calcium in the medium promotes hemifusion of the membranes. 
Experiment performed with the osmotic pressure method show the interaction forces between integral 
myelin membranes  from [129]. The results illustrate that the long range portion of the interaction 
forces measured by SFA and OP, mainly caused by the electrostatic interaction, are in very  good 
agreement besides the presence of transmembrane proteins in the myelin membranes which are absent 
in myelin lipid bilayers. Interestingly, myelin membranes do not present any signs of hemifusion during 
the experiment while hemifusion was clearly observed with the SFA at a surface pressure of 
approximately 7-10 MPa. Adapted from Refs [129], [130], [139] 

  292 
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Table 1: Interaction forces commonly encountered at lipid bilayers and at solid surfaces 293 

Contribution Equation  Reference 
    

Head group 

overlap 

     
  

    
  

 
 
 

  

  
 

  
 
 

  

  for D < 2L             

     
   

  
          for 0.4L < D < 1.8L            

(Eq. 1) 

 

 

(Eq. 2) 

[130, 131] 

    

Undulation       
        

                                                            (Eq. 3) [132] 

    

Hydrophobic 

interaction 

      
      

  
              

   
  

 

 
                 

    
                                 

(Eq. 4) [133-135] 

    

Protrusion 

interaction 
                                                         

          

(Eq. 5) [136, 137] 

    

van der Waals      
  

                                                               (Eq. 6) [52] 

    

Electrostatic           
 
                      (Eq. 7) [52] 

    

Hydration         
      (Eq. 8) [52] 

Oscillatory  

(structural) 

     
  

             
   

 
    

(Eq. 9) [52] 

              

 294 

It is important to note that all these interaction forces originates from very distinct causes and 295 

therefore exhibit very different magnitudes and act over very different length scales. As a 296 

consequence, the separation distance D between the bilayer does not have the same origin point 297 

or (operational plane) in each contribution.[52] For example, the plane of origin of the 298 

electrostatic interaction should be located at the position where surface charges are located which 299 

might be quite different from the origin plane of the van der Waals interaction. Shifting of the 300 

plane of origin of an interaction potential is usually done by replacing the separation distance D 301 

by D-D0 where D0 is the shifting distance. 302 

All the interactions presented in Table 1 do not have to be necessarily considered in every 303 

situation. For example in a physiological fluid or in a buffer saline solution containing salt 304 

concentrations of typically 150 mM (1:1 electrolyte), the van der Waals interaction is usually 305 

found to be negligible compared to other contributions. The presence of free ions in the medium 306 
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screens the zero-frequency term of the van der Waals interaction over a distance equals to the 307 

Debye screening length (roughly 1 nm at physiological conditions). 308 

The hydrophobic interaction is usually considered to play a minor role in the total interaction 309 

between bilayers mainly because it is generally counterbalanced by other contributions such as 310 

the electrostatic or the head group overlap force. Hydrophobic forces should only be considered 311 

when hemifusion/fusion of the bilayers occurs. As the bilayers are compressed, thinning will 312 

start to occur and will favor the exposure of the hidden hydrophobic core of the bilayer to the 313 

aqueous medium. It is clear then that appearance of the hydrophobic interaction between facing 314 

bilayers depends on lipids molecular coverage and its variation with confinement. Donaldson et 315 

al.  [133] provided a simple expression for the molecular area of elastic lipid bilayers in presence 316 

of the hydrophobic interaction: 317 

                 
    

          (Eq. 8) 318 

Using the expression of the hydrophobic interaction together with the electrostatic and steric 319 

contributions, Banquy et al. described the interaction forces between two model myelin lipid 320 

bilayers immersed in buffered saline solution.[138] The authors showed that consideration of the 321 

hydrophobic interaction allowed to predict the onset of hemifusion of the bilayers which 322 

occurred when the lipid molecular area increased by almost 30% (see Figure 7A). The critical 323 

molecular area at which hemifusion appears, i.e. the point where the hydrophobic interaction 324 

counterbalances all other repulsive interactions, is strongly dependent on the cohesive strength of 325 

the bilayers and the lipid molecular area.  326 

Figure 7B presents a situation where a photosensitive bilayer was deposited on mica by the 327 

vesicle deposition method. When compressed, the bilayers hemifused at a critical molecular area 328 

which was 16% higher than the equilibrium value. When illuminated under UV light, the 329 

surfactant molecules changed conformation and became more hydrophilic which dramatically 330 

expanded both the interfacial energy and the molecular area of the molecules at rest. Thus, the 331 

critical molecular area at hemifusion was found to be 25% higher than the value at equilibrium. 332 
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Figure 7: (A) Interaction energy between two myelin lipid bilayers in presence of 2 mM Ca2+ ions.  
Calcium ions facilitate the hemifusion of the bilayers as denoted by a breakthrough instability in the 
interaction energy profile. Such instability is governed by the hydrophobic interaction between the 
hydrocarbon tails of the lipids that are being exposed during compression and thinning of the bilayers. 
Adapted from [139] (B) Interaction force measured between photosensitive surfactant bilayers. In this 
system the hydrophobic force was modulated by the exposure of the light sensitive hydrocarbon tails to 
UV light leading to different energetic barrier to hemifusion. Adapted from [139] 

 333 

The undulation interaction has by far the longest range and is comparable in magnitude to the 334 

van der Waals interaction. The magnitude of this interaction can be strongly by different external 335 

parameters. For example, lipid bilayer supported on a solid substrate will almost no undulations. 336 

As shown in Eq. 3, undulation forces are also extremely sensitive to temperature which can be 337 

useful in experimental settings where fine tuning of this interaction is required. Ions have also an 338 

important impact on undulation forces. Free ions in solution can either adsorb on lipid 339 
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membranes, alter head group dissociation degree or their hydration level. All these factors will 340 

impact directly or indirectly the bending modulus of the bilayer and therefore the undulation 341 

forces. For low salt concentration (or large surface charges),[140] derived the following 342 

expression for the bending modulus of symmetrical bilayers: 343 

   
    

 
 
  

 
 
 

     (Eq. 9) 344 

Considering that             for a 1:1 electrolyte at room temperature, simplification of Eq. 345 

9 leads to       which results in a weak dependence on salt concentration. In the high salt 346 

regime, the expression of the bending modulus becomes: 347 

   
         

  
      (Eq. 10) 348 

where  is the surface charge and  the dielectric constant of the medium. Using the Grahame 349 

equation for a 1:1 electrolyte, the expression for  becomes                 
 
       350 

which leads to the same weak dependence for the interaction pressure      . 351 

The head group overlap and protrusion forces are usually difficult to distinguish from each other 352 

and are often termed "steric hydration" forces. The protrusion force is related to the 353 

hydrophilicity of the bilayer while the head group overlap force is more related to the hydration 354 

of the head groups.  In both cases, it is important to remember that these forces do not originate 355 

from water structuring at the bilayer-water interface. Since both interactions exhibit an 356 

exponential decay (see Eq. 2 and 5), comparison of their characteristic decay length should in 357 

principles provide useful insights into the contribution that dominates the total interaction. A 358 

back of the envelope calculation already provides good estimates of the expected values of these 359 

two parameters. Considering the interfacial tension between water and hydrocarbon to be 50 360 

mJ/m
2
 and the cross sectional radius of the hydrocarbon chain to be close to 0.2 nm, we found 361 

using Eq. 5, 0.13 nm. On the other hand, the size of a phosphatidyl head group is expected to 362 

be close to 0.8 nm giving (Eq. 2) 0.25 nm. Since these two decay lengths are comparable, it is 363 

a priori difficult to identify the dominant one.  364 

In a recent study by Schrader et al. [141], the authors characterized the effect of DMSO, in 365 

water, on the interactions between bilayers. The authors elegantly demonstrated that by 366 

increasing the concentration of DMSO in water from 0% to 7.5%, the decay length of the 367 

interaction force markedly decreased from 0.2 to 0.15 nm (see Fig. 9).  Since the interfacial 368 

tension between water/DMSO and hydrocarbon decreases with increasing the DMSO content, it 369 

is clear that the measured change in decay length  could not be accounted by the presence of 370 

protruding forces. However, using NMR diffusion measurements, the authors showed that the 371 

change in decay length observed in presence of higher concentrations of DMSO was correlated 372 

with a change in hydrodynamic radius of the head group ionic moieties. The authors concluded 373 

that the interaction forces between DPPC bilayers at separation distance lower than 2 nm were 374 

dominated by the head group overlap force which is tuned by the competition between DMSO 375 

and water molecules to interact with the lipid head group. 376 
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 377 

 
Fig.8 Short range interaction forces measured between DPPC lipid layers in presence of a water-DMSO 
solution. Measurements show a decrease of the range and the decay of the interaction forces which is a 
characteristic signature of a conformational change of the lipid head group mediated by DMSO. Adapted 
from [142]. 

These recent and previous studies [142-144] underscore the important fact that the so called 378 

"steric hydration" is actually an steric-entropic force similar to the polymer-brush interaction 379 
described by Alexander and deGennes. The role of water is solely to modulate the hydration, and 380 
therefore the conformation, of the lipid head groups. The effect of water on the degree of 381 

hydration of a lipid head group is a solvation effect which in term of interaction forces will 382 

manifests itself as a shift in the interaction, while the effect on the lipid head group will change 383 
the decay length and the range of the interaction.  384 
The understanding of these subtle effects provides a powerful framework to study the interaction 385 

of a large number of solute molecules such as ions or small molecules such as peptides 386 
interacting directly or indirectly with the surface of lipid bilayers.  387 

 388 
In light of this review of the literature on the measurements of the hydration interaction we can 389 
highlight a few similarities and differences when comparing the force laws obtained with solid 390 
and soft (fluid) surfaces. In terms of similarities, for both systems, the hydration force exhibits a 391 
monotonically decaying component whose decay length varies between 0.1 and 1 nm. The origin 392 

of this component is quite different in both systems: for solid surfaces it involves water 393 
molecules bound to the surfaces either directly or via strongly adsorbed ions, while for soft lipid 394 

bilayers it is related to the lipid head-group conformation and level of hydration. A clear 395 
evidence that origin of the hydration force in both systems is different can be appreciated in the 396 
fact that the hydration force between solid surfaces appears only above a critical salt 397 
concentration which is not the case for soft bilayers.  398 
Hard atomically flat surfaces are the only system exhibiting an oscillatory component of the 399 

hydration superimposed to the monotically decaying component. The appearance of this 400 
component is in part related to water conformational polarization induced by the presence of ions 401 
on the surface.  402 
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Finally, it is important to remind that the appearance of the hydration force has been quite often 403 

associated mainly to the ordering water molecules on the surfaces. Hydration forces rise from the 404 
overlapping and therefore rearrangement of this ordering of water molecules. There is obviously 405 
a connection between ordering/structuring of water and the hydration force, but both phenomena 406 

should be always carefully distinguished. 407 
 408 
 409 
  410 
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